WorldWideScience

Sample records for hiv-1 tat peptide

  1. Inhibition of Non Canonical HIV-1 Tat Secretion Through the Cellular Na+,K+-ATPase Blocks HIV-1 Infection

    Directory of Open Access Journals (Sweden)

    Silvia Agostini

    2017-07-01

    Full Text Available Besides its essential role in the activation of HIV-1 gene expression, the viral Tat protein has the unusual property of trafficking in and out of cells. In contrast to Tat internalization, the mechanism involved in extracellular Tat release has so far remained elusive. Here we show that Tat secretion occurs through a Golgi-independent pathway requiring binding of Tat with three short, non-consecutive intracytoplasmic loops at the C-terminus of the cellular Na+,K+-ATPase pump alpha subunit. Ouabain, a pump inhibitor, blocked this interaction and prevented Tat secretion; virions produced in the presence of this drug were less infectious, consistent the capacity of virion-associated Tat to increase HIV-1 infectivity. Treatment of CD4+ T-cells with short peptides corresponding to the Tat-binding regions of the pump alpha subunit impaired extracellular Tat release and blocked HIV-1 replication. Thus, non canonical, extracellular Tat secretion is essential for viral infectivity.

  2. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro.

    Science.gov (United States)

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-06-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44-61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties.

  3. Interaction of the phospholipid scramblase 1 with HIV-1 Tat results in the repression of Tat-dependent transcription

    International Nuclear Information System (INIS)

    Kusano, Shuichi; Eizuru, Yoshito

    2013-01-01

    Highlights: •PLSCR1 specifically interacted with HIV-1 Tat in vitro and in vivo. •PLSCR1 repressed Tat-dependent transactivation of the HIV-1 LTR. •Suppression of PLSCR1 expression enhanced the levels of HIV-1 transcripts. •PLSCR1 reduced the nuclear localization of Tat. -- Abstract: Human phospholipid scramblase 1 (PLSCR1) is an interferon (IFN)-stimulated gene and possesses an IFN-mediated antiviral function. We show here that PLSCR1 directly interacts with human immunodeficiency virus type-1 (HIV-1) Tat. This interaction occurs both in vitro and in vivo through amino acids 160–250 of PLSCR1. Overexpression of PLSCR1 efficiently represses the Tat-dependent transactivation of the HIV-1 long terminal repeat (LTR) and reduces the nuclear translocation of Tat. In addition, shRNA-mediated suppression of endogenous PLSCR1 expression enhances the levels of gag mRNA in an HIV-1-infected T-cell line. These findings indicate that PLSCR1 negatively regulates the Tat-dependent transactivation of the HIV-1 LTR during HIV-1 infection

  4. Safety and immunogenicity of HIV-1 Tat toxoid in immunocompromised HIV-1-infected patients.

    Science.gov (United States)

    Gringeri, A; Santagostino, E; Muça-Perja, M; Mannucci, P M; Zagury, J F; Bizzini, B; Lachgar, A; Carcagno, M; Rappaport, J; Criscuolo, M; Blattner, W; Burny, A; Gallo, R C; Zagury, D

    1998-01-01

    To antagonize the deleterious effects of the HIV-1 toxin extracellular Tat on uninfected immune cells, we developed a new strategy of anti-HIV-1 vaccine using an inactivated but immunogenic Tat (Tat toxoid). Tat toxoid has been assayed for safety and immunogenicity in seropositive patients. The phase I vaccine clinical trial testing Tat toxoid preparation in Seppic Isa 51 oil adjuvant was performed on 14 HIV-1-infected asymptomatic although biologically immunocompromised individuals (500-200 CD4+ cells/mm3). Following as many as 8 injections, no clinical defects were observed. All patients exhibited an antibody (Ab) response to Tat, and some had cell-mediated immunity (CMI) as evaluated by skin test in vivo and T-cell proliferation in vitro. These results provide initial evidence of safety and potency of Tat toxoid vaccination in HIV-1-infected individuals.

  5. Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR RNA.

    Directory of Open Access Journals (Sweden)

    Matthew S Lalonde

    2011-05-01

    Full Text Available The RNA response element TAR plays a critical role in HIV replication by providing a binding site for the recruitment of the viral transactivator protein Tat. Using a structure-guided approach, we have developed a series of conformationally-constrained cyclic peptides that act as structural mimics of the Tat RNA binding region and block Tat-TAR interactions at nanomolar concentrations in vitro. Here we show that these compounds block Tat-dependent transcription in cell-free systems and in cell-based reporter assays. The compounds are also cell permeable, have low toxicity, and inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic L50 exhibited an IC(50 ∼250 nM. Surprisingly, inhibition of LTR-driven HIV-1 transcription could not account for the full antiviral activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic inhibition curve with the first phase occurring after HIV-1 entry into the host cell and during the initiation of HIV-1 reverse transcription. The second phase coincides with inhibition of HIV-1 transcription. Reconstituted reverse transcription assays confirm that HIV-1 (- strand strong stop DNA synthesis is blocked by L50-TAR RNA interactions in-vitro. These findings are consistent with genetic evidence that TAR plays critical roles both during reverse transcription and during HIV gene expression. Our results suggest that antiviral drugs targeting TAR RNA might be highly effective due to a dual inhibitory mechanism.

  6. Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury

    Science.gov (United States)

    Stevens, Patrick R.; Gawryluk, Jeremy W.; Hui, Liang; Chen, Xuesong; Geiger, Jonathan D.

    2015-01-01

    HIV-1 infected individuals are living longer but experiencing a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells leads to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat1-72-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND. PMID:25613139

  7. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    OpenAIRE

    Somayeh Kadkhodayan; Shiva Irani; Seyed Mehdi Sadat; Fatemeh Fotouhi; Azam Bolhassani

    2016-01-01

    Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa) could act as a cell penetrating peptide (CPP). In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confi...

  8. Potent inhibition of HIV-1 replication by a Tat mutant.

    Directory of Open Access Journals (Sweden)

    Luke W Meredith

    Full Text Available Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection.

  9. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus.

    Science.gov (United States)

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2012-01-01

    The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these

  10. RNA glycosidase and other agents target Tat to inhibit HIV-1 transcription.

    Science.gov (United States)

    Harrich, David; Jin, Hongping

    2018-03-20

    The HIV-1 tat gene encodes a small 86-104 amino acid protein depending on the HIV-1 strain. Tat is essential for HIV-1 replication through interactions with numerous cellular transcription factors. The interaction between Tat and P-TEFb, which is a cellular protein complex composed of cyclin T1 and CDK9, delivers P-TEFb to the newly transcribed viral mRNAs where phosphorylation of RNA polymerase II by CDK9 leads to highly efficient mRNA transcription. It has long been recognized that Tat is a potential anti-HIV-1 target and possibly a viral Achilles' heel. However, specifically targeting Tat without affecting normal host cell functions has been challenging. Means to inactivate Tat have been reported that includes small compounds, transdominant negative Tat proteins, and by plant-derived antivirals. Investigations of these agents have reported encouraging outcomes that inform and may hopefully affect strategies for a functional HIV-1 cure. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  11. In vitro nuclear interactome of the HIV-1 Tat protein.

    LENUS (Irish Health Repository)

    Gautier, Virginie W

    2009-01-01

    BACKGROUND: One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86-101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry. RESULTS: Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture. CONCLUSION: We have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will

  12. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat.

    Directory of Open Access Journals (Sweden)

    Lisa Muniz

    Full Text Available The human immunodeficiency virus 1 (HIV-1 transcriptional transactivator (Tat is essential for synthesis of full-length transcripts from the integrated viral genome by RNA polymerase II (Pol II. Tat recruits the host positive transcription elongation factor b (P-TEFb to the HIV-1 promoter through binding to the transactivator RNA (TAR at the 5'-end of the nascent HIV transcript. P-TEFb is a general Pol II transcription factor; its cellular activity is controlled by the 7SK small nuclear RNA (snRNA and the HEXIM1 protein, which sequester P-TEFb into transcriptionally inactive 7SK/HEXIM/P-TEFb snRNP. Besides targeting P-TEFb to HIV transcription, Tat also increases the nuclear level of active P-TEFb through promoting its dissociation from the 7SK/HEXIM/P-TEFb RNP by an unclear mechanism. In this study, by using in vitro and in vivo RNA-protein binding assays, we demonstrate that HIV-1 Tat binds with high specificity and efficiency to an evolutionarily highly conserved stem-bulge-stem motif of the 5'-hairpin of human 7SK snRNA. The newly discovered Tat-binding motif of 7SK is structurally and functionally indistinguishable from the extensively characterized Tat-binding site of HIV TAR and importantly, it is imbedded in the HEXIM-binding elements of 7SK snRNA. We show that Tat efficiently replaces HEXIM1 on the 7SK snRNA in vivo and therefore, it promotes the disassembly of the 7SK/HEXIM/P-TEFb negative transcriptional regulatory snRNP to augment the nuclear level of active P-TEFb. This is the first demonstration that HIV-1 specifically targets an important cellular regulatory RNA, most probably to promote viral transcription and replication. Demonstration that the human 7SK snRNA carries a TAR RNA-like Tat-binding element that is essential for the normal transcriptional regulatory function of 7SK questions the viability of HIV therapeutic approaches based on small drugs blocking the Tat-binding site of HIV TAR.

  13. Interaction between HIV-1 Tat and DNA-PKcs modulates HIV transcription and class switch recombination.

    Science.gov (United States)

    Zhang, Shi-Meng; Zhang, He; Yang, Tian-Yi; Ying, Tian-Yi; Yang, Pei-Xiang; Liu, Xiao-Dan; Tang, Sheng-Jian; Zhou, Ping-Kun

    2014-01-01

    HIV-1 tat targets a variety of host cell proteins to facilitate viral transcription and disrupts host cellular immunity by inducing lymphocyte apoptosis, but whether it influences humoral immunity remains unclear. Previously, our group demonstrated that tat depresses expression of DNA-PKcs, a critical component of the non-homologous end joining pathway (NHEJ) of DNA double-strand breaks repair, immunoglobulin class switch recombination (CSR) and V(D)J recombination, and sensitizes cells to ionizing radiation. In this study, we demonstrated that HIV-1 Tat down-regulates DNA-PKcs expression by directly binding to the core promoter sequence. In addition, Tat interacts with and activates the kinase activity of DNA-PKcs in a dose-dependent and DNA independent manner. Furthermore, Tat inhibits class switch recombination (CSR) at low concentrations (≤ 4 µg/ml) and stimulates CSR at high concentrations (≥ 8 µg/ml). On the other hand, low protein level and high kinase activity of DNA-PKcs promotes HIV-1 transcription, while high protein level and low kinase activity inhibit HIV-1 transcription. Co-immunoprecipitation results revealed that DNA-PKcs forms a large complex comprised of Cyclin T1, CDK9 and Tat via direct interacting with CDK9 and Tat but not Cyclin T1. Taken together, our results provide new clues that Tat regulates host humoral immunity via both transcriptional depression and kinase activation of DNA-PKcs. We also raise the possibility that inhibitors and interventions directed towards DNA-PKcs may inhibit HIV-1 transcription in AIDS patients.

  14. HIV-1 Tat regulates the expression of the dcw operon and stimulates the proliferation of bacteria.

    Science.gov (United States)

    Wei, Jinsong; Zhang, Yumin; Knapp, Pamela E; Zhao, Tianyong

    2016-01-01

    Infections of pathogenic bacteria are very common in acquired immunodeficiency syndrome (AIDS) patients. However, the biological effects of HIV-1 Tat on bacteria are incompletely understood. In this study, HIV-1 Tat was expressed in Escherichia coli and Pseudomonas aeruginosa (PA01) to investigate its biological effects on bacteria. Bacterial cells expressing either HIV-1 Tat1-86 (Tat1-86) or HIV-1 Tat1-72 (Tat1-72) grow significantly faster than those with either only an empty vector or an unrelated control (GFP or Rluc). Supplementation of purified HIV-1 Tat1-86 or Tat1-101 protein into bacterial culture medium stimulated the growth of both E. coli and PA01. The expression profile of certain cell division-associated genes, such as those in the division cell wall (dcw) operon (ftsA, ftsQ, ftsW and ftsZ), yafO and zipA, was altered in HIV-1 Tat1-86 expressing E. coli BL21(DE3). Furthermore, the expression of firefly luciferase (Fluc) reporter gene, when engineered for control by the dcw promoter and terminator, was enhanced by HIV-1 Tat in E. coli, confirming that HIV-1 Tat transcriptionally regulates the expression of the dcw operon. The finding that HIV-1 Tat stimulates bacterial growth whether it is produced intracellularly or applied extracellularly may have relevance for HIV patients who are highly susceptible to opportunistic bacterial infections. Contents category: Viruses -Retroviruses. The GenBank accession number for the sequence of HIV-1 Tat1-86 is AF324439.1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    Directory of Open Access Journals (Sweden)

    Somayeh Kadkhodayan

    2016-07-01

    Full Text Available Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa could act as a cell penetrating peptide (CPP. In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confirmed by western blot analysis and was purified using reverse staining method. Materials and Methods: In this experimental study, primarily, cloning of Tat-Nef fusion gene was done in pGEX6p2 expression vector. Then, the expression of Tat-Nef recombinat protein in E.coli BL21 (DE3 strain was performed by using IPTG inducer. The protein expression was confirmed by SDS-PAGE and western blotting using anti-Nef monoclonal antibody. Then, the recombinant fusion protein was purified from gel using reverse staining method. Results: The results of PCR analysis and enzyme digestion showed a clear band of ~ 726 bp in agarose gel indicating the correct Tat-Nef fusion cloning in pGEX6p2 prokaryotic expression vector. In addition, a 54 kDa band of Tat-Nef on SDS-PAGE revealed Tat-Nef protein expression that western blot analysis using anti-Nef monoclonal antibody confirmed it. Conclusion: The purified Tat-Nef recombinant fusion protein will be used as an antigen for protein vaccine design against HIV infection.

  16. Targeted PEG-based bioconjugates enhance the cellular uptake and transport of a HIV-1 TAT nonapeptide.

    Science.gov (United States)

    Ramanathan, S; Qiu, B; Pooyan, S; Zhang, G; Stein, S; Leibowitz, M J; Sinko, P J

    2001-12-13

    We previously described the enhanced cell uptake and transport of R.I-K(biotin)-Tat9, a large ( approximately 1500 Da) peptidic inhibitor of HIV-1 Tat protein, via SMVT, the intestinal biotin transporter. The aim of the present study was to investigate the feasibility of targeting biotinylated PEG-based conjugates to SMVT in order to enhance cell uptake and transport of Tat9. The 29 kDa peptide-loaded bioconjugate (PEG:(R.I-Cys-K(biotin)-Tat9)8) used in these studies contained eight copies of R.I-K(biotin)-Tat9 appended to PEG by means of a cysteine linkage. The absorptive transport of biotin-PEG-3400 (0.6-100 microM) and the bioconjugate (0.1-30 microM) was studied using Caco-2 cell monolayers. Inhibition of biotin-PEG-3400 by positive controls (biotin, biocytin, and desthiobiotin) was also determined. Uptake of these two compounds was also determined in CHO cells transfected with human SMVT (CHO/hSMVT) and control cells (CHO/pSPORT) over the concentration ranges of 0.05-12.5 microM and 0.003-30 microM, respectively. Nonbiotinylated forms of these two compounds, PEG-3350 and PEG:(R.I-Cys-K-Tat9)8, were used in the control studies. Biotin-PEG-3400 transport was found to be concentration-dependent and saturable in Caco-2 cells (K(m)=6.61 microM) and CHO/hSMVT cells (K(m)=1.26 microM). Transport/uptake was significantly inhibited by positive control substrates of SMVT. PEG:(R.I-Cys-K(biotin)Tat9)8 also showed saturable transport kinetics in Caco-2 cells (K(m)=6.13 microM) and CHO/hSMVT cells (K(m)=8.19 microM). Maximal uptake in molar equivalents of R.I-Cys-K(biotin)Tat9 was 5.7 times greater using the conjugate versus the biotinylated peptide alone. Transport of the nonbiotinylated forms was significantly lower (PPEG-3400 and PEG:(R.I-Cys-K(biotin)Tat9)8 interact with human SMVT to enhance the cellular uptake and transport of these larger molecules and that targeted bioconjugates may have potential for enhancing the cellular uptake and transport of small peptide

  17. Antibodies to the HIV-1 Tat protein correlated with nonprogression to AIDS: a rationale for the use of Tat toxoid as an HIV-1 vaccine.

    Science.gov (United States)

    Zagury, J F; Sill, A; Blattner, W; Lachgar, A; Le Buanec, H; Richardson, M; Rappaport, J; Hendel, H; Bizzini, B; Gringeri, A; Carcagno, M; Criscuolo, M; Burny, A; Gallo, R C; Zagury, D

    1998-01-01

    To investigate which immune parameters, such as antibodies against HIV-1 specificities, or viral parameters, such as p24 antigenemia, are predictive of disease progression. We performed studies on serum collected from individuals exhibiting two extremes of disease evolution--67 fast progressors (FP) and 182 nonprogressors (NP)--at their enrollment. After a 1- to 2-year clinical follow-up of 104 nonprogressors after their enrollment, we could determine the best serologic predictors for disease progression. We investigated levels of antibodies to tetanus toxoid and to HIV antigens including Env, Gag, Nef, and Tat proteins, as well as p24 antigenemia, viremia, CD4 cell count, and interferon-alpha (IFN-alpha) titers in FPs and NPs, and we correlated these data with clinical and biologic signs of progression. p24 Antigenemia, a marker of viral replication, and anti-Tat antibodies were highly and inversely correlated in both groups (P < .001). Furthermore, anti-p24 antibodies and low serum IFN-alpha levels were correlated to the NP versus the FP cohort. Finally, among NPs, only antibodies to Tat and not to the other HIV specificities (Env, Nef, Gag) were significantly predictive of clinical stability during their follow-up. Antibodies toward HIV-1 Tat, which are inversely correlated to p24 antigenemia, appear as a critical marker for a lack of disease progression. This study strongly suggests that rising anti-Tat antibodies through active immunization may be beneficial in AIDS vaccine development to control viral replication.

  18. Morphine Tolerance and Physical Dependence Are Altered in Conditional HIV-1 Tat Transgenic Mice.

    Science.gov (United States)

    Fitting, Sylvia; Stevens, David L; Khan, Fayez A; Scoggins, Krista L; Enga, Rachel M; Beardsley, Patrick M; Knapp, Pamela E; Dewey, William L; Hauser, Kurt F

    2016-01-01

    Despite considerable evidence that chronic opiate use selectively affects the pathophysiologic consequences of human immunodeficiency virus type 1 (HIV-1) infection in the nervous system, few studies have examined whether neuro-acquired immune deficiency syndrome (neuroAIDS) might intrinsically alter the pharmacologic responses to chronic opiate exposure. This is an important matter because HIV-1 and opiate abuse are interrelated epidemics, and HIV-1 patients are often prescribed opiates as a treatment of HIV-1-related neuropathic pain. Tolerance and physical dependence are inevitable consequences of frequent and repeated administration of morphine. In the present study, mice expressing HIV-1 Tat in a doxycycline (DOX)-inducible manner [Tat(+)], their Tat(-) controls, and control C57BL/6 mice were chronically exposed to placebo or 75-mg morphine pellets to explore the effects of Tat induction on morphine tolerance and dependence. Antinociceptive tolerance and locomotor activity tolerance were assessed using tail-flick and locomotor activity assays, respectively, and physical dependence was measured with the platform-jumping assay and recording of other withdrawal signs. We found that Tat(+) mice treated with DOX [Tat(+)/DOX] developed an increased tolerance in the tail-flick assay compared with control Tat(-)/DOX and/or C57/DOX mice. Equivalent tolerance was developed in all mice when assessed by locomotor activity. Further, Tat(+)/DOX mice expressed reduced levels of physical dependence to chronic morphine exposure after a 1-mg/kg naloxone challenge compared with control Tat(-)/DOX and/or C57/DOX mice. Assuming the results seen in Tat transgenic mice can be generalized to neuroAIDS, our findings suggest that HIV-1-infected individuals may display heightened analgesic tolerance to similar doses of opiates compared with uninfected individuals and show fewer symptoms of physical dependence. Copyright © 2015 by The American Society for Pharmacology and Experimental

  19. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    International Nuclear Information System (INIS)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi; Rhim, Hyangshuk; Bae, Yong Soo; Choi, Soo Young; Park, Jinseu

    2014-01-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction

  20. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  1. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    International Nuclear Information System (INIS)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro; Maekawa, Toru

    2012-01-01

    Highlights: ► We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. ► 3-D images of TAT-SPIONs in a cell are clearly shown. ► Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  2. A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites

    Directory of Open Access Journals (Sweden)

    Knezevich Anna

    2007-05-01

    Full Text Available Abstract HIV-1 transcription is tightly regulated: silent in long-term latency and highly active in acutely-infected cells. Transcription is activated by the viral protein Tat, which recruits the elongation factor P-TEFb by binding the TAR sequence present in nascent HIV-1 RNAs. In this study, we analyzed the dynamic of the TAR:Tat:P-TEFb complex in living cells, by performing FRAP experiments at HIV-1 transcription sites. Our results indicate that a large fraction of Tat present at these sites is recruited by Cyclin T1. We found that in the presence of Tat, Cdk9 remained bound to nascent HIV-1 RNAs for 71s. In contrast, when transcription was activated by PMA/ionomycin, in the absence of Tat, Cdk9 turned-over rapidly and resided on the HIV-1 promoter for only 11s. Thus, the mechanism of trans-activation determines the residency time of P-TEFb at the HIV-1 gene, possibly explaining why Tat is such a potent transcriptional activator. In addition, we observed that Tat occupied HIV-1 transcription sites for 55s, suggesting that the TAR:Tat:P-TEFb complex dissociates from the polymerase following transcription initiation, and undergoes subsequent cycles of association/dissociation.

  3. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. Black-Right-Pointing-Pointer 3-D images of TAT-SPIONs in a cell are clearly shown. Black-Right-Pointing-Pointer Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  4. Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat

    Directory of Open Access Journals (Sweden)

    Muller Sylviane

    2008-07-01

    Full Text Available Abstract Background During HIV-1 infection, the Tat protein plays a key role by transactivating the transcription of the HIV-1 proviral DNA. In addition, Tat induces apoptosis of non-infected T lymphocytes, leading to a massive loss of immune competence. This apoptosis is notably mediated by the interaction of Tat with microtubules, which are dynamic components essential for cell structure and division. Tat binds two Zn2+ ions through its conserved cysteine-rich region in vitro, but the role of zinc in the structure and properties of Tat is still controversial. Results To investigate the role of zinc, we first characterized Tat apo- and holo-forms by fluorescence correlation spectroscopy and time-resolved fluorescence spectroscopy. Both of the Tat forms are monomeric and poorly folded but differ by local conformational changes in the vicinity of the cysteine-rich region. The interaction of the two Tat forms with tubulin dimers and microtubules was monitored by analytical ultracentrifugation, turbidity measurements and electron microscopy. At 20°C, both of the Tat forms bind tubulin dimers, but only the holo-Tat was found to form discrete complexes. At 37°C, both forms promoted the nucleation and increased the elongation rates of tubulin assembly. However, only the holo-Tat increased the amount of microtubules, decreased the tubulin critical concentration, and stabilized the microtubules. In contrast, apo-Tat induced a large amount of tubulin aggregates. Conclusion Our data suggest that holo-Tat corresponds to the active form, responsible for the Tat-mediated apoptosis.

  5. Direct effects of HIV-1 Tat on excitability and survival of primary dorsal root ganglion neurons: possible contribution to HIV-1-associated pain.

    Directory of Open Access Journals (Sweden)

    Xianxun Chi

    Full Text Available The vast majority of people living with human immunodeficiency virus type 1 (HIV-1 have pain syndrome, which has a significant impact on their quality of life. The underlying causes of HIV-1-associated pain are not likely attributable to direct viral infection of the nervous system due to the lack of evidence of neuronal infection by HIV-1. However, HIV-1 proteins are possibly involved as they have been implicated in neuronal damage and death. The current study assesses the direct effects of HIV-1 Tat, one of potent neurotoxic viral proteins released from HIV-1-infected cells, on the excitability and survival of rat primary dorsal root ganglion (DRG neurons. We demonstrated that HIV-1 Tat triggered rapid and sustained enhancement of the excitability of small-diameter rat primary DRG neurons, which was accompanied by marked reductions in the rheobase and resting membrane potential (RMP, and an increase in the resistance at threshold (R(Th. Such Tat-induced DRG hyperexcitability may be a consequence of the inhibition of cyclin-dependent kinase 5 (Cdk5 activity. Tat rapidly inhibited Cdk5 kinase activity and mRNA production, and roscovitine, a well-known Cdk5 inhibitor, induced a very similar pattern of DRG hyperexcitability. Indeed, pre-application of Tat prevented roscovitine from having additional effects on the RMP and action potentials (APs of DRGs. However, Tat-mediated actions on the rheobase and R(Th were accelerated by roscovitine. These results suggest that Tat-mediated changes in DRG excitability are partly facilitated by Cdk5 inhibition. In addition, Cdk5 is most abundant in DRG neurons and participates in the regulation of pain signaling. We also demonstrated that HIV-1 Tat markedly induced apoptosis of primary DRG neurons after exposure for longer than 48 h. Together, this work indicates that HIV-1 proteins are capable of producing pain signaling through direct actions on excitability and survival of sensory neurons.

  6. The cross-talk of HIV-1 Tat and methamphetamine in HIV-associated neurocognitive disorders

    Directory of Open Access Journals (Sweden)

    Susana T Valente

    2015-10-01

    Full Text Available Antiretroviral therapy (ART has dramatically improved the lives of HIV-1 infected individuals. Nonetheless, HIV associated neurocognitive disorders (HAND, which range from undetectable neurocognitive impairments to severe dementia, still affect approximately 50% of the infected population, hampering their quality of life.The persistence of HAND is promoted by several factors, including longer life expectancies, the residual levels of virus in the central nervous system and the continued presence of HIV-1 regulatory proteins such as the transactivator of transcription (Tat in the brain. Tat is a secreted viral protein that crosses the blood brain barrier into the central nervous system, where it has the ability to directly act on neurons and non-neuronal cells alike. These actions result in the release of soluble factors involved in inflammation, oxidative stress and excitotoxicity, ultimately resulting in neuronal damage. The percentage of methamphetamine abusers is high among the HIV-1-positive population compared to the general population. On the other hand, methamphetamine abuse is correlated with increased viral replication, enhanced Tat-mediated neurotoxicity and neurocognitive impairments. Although several strategies have been investigated to reduce HAND and methamphetamine use, no clinically approved treatment is currently available. Here, we review the latest findings of the effects of Tat and methamphetamine in HAND and discuss a few promising potential therapeutic developments.

  7. Crosstalk between HDAC6 and Nox2-based NADPH oxidase mediates HIV-1 Tat-induced pro-inflammatory responses in astrocytes

    Directory of Open Access Journals (Sweden)

    Gi Soo Youn

    2017-08-01

    Full Text Available Histone deacetylase 6 (HDAC6 likely is important in inflammatory diseases. However, how HDAC6 exerts its effect on inflammatory processes remains unclear. HIV-1 transactivator of transcription (Tat activates NADPH oxidase resulting in generation of reactive oxygen species (ROS, leading to extensive neuro-inflammation in the central nervous system. We investigated the correlation of HDAC6 and NADPH oxidase in HIV-1 Tat-stimulated astrocytes. HDAC6 knockdown attenuated HIV-1 Tat-induced ROS generation and NADPH oxidase activation. HDAC6 knockdown suppressed HIV-1 Tat-induced expression of NADPH oxidase subunits, such as Nox2, p47phox, and p22phox. Specific inhibition of HDAC6 using tubastatin A suppressed HIV-1 Tat-induced ROS generation and activation of NADPH oxidase. N-acetyl cysteine, diphenyl iodonium, and apocynin suppressed HIV-1 Tat-induced expression of HDAC6 and the pro-inflammatory chemokines CCL2, CXCL8, and CXCL10. Nox2 knockdown attenuated HIV-1 Tat-induced HDAC6 expression and subsequent expression of chemokines. The collective results point to the potential crosstalk between HDAC6 and NADPH oxidase, which could be a combined therapeutic target for relief of HIV-1 Tat-mediated neuro-inflammation. Keywords: HIV-1 Tat, HDAC6, NADPH oxidase, ROS, Inflammation, Astrocytes

  8. HIV-1 Tat depresses DNA-PKCS expression and DNA repair, and sensitizes cells to ionizing radiation

    International Nuclear Information System (INIS)

    Sun Yi; Huang Yuechen; Xu Qinzhi; Wang Huiping; Bai Bei; Sui Jianli; Zhou Pingkun

    2006-01-01

    Purpose There is accumulating evidence that cancer patients with human immmunodeficiency virus-1/acquired immunodeficency syndrome (HIV-1/AIDS) have more severe tissue reactions and often develop cutaneous toxic effects when subjected to radiotherapy. Here we explored the effects of the HIV-1 Tat protein on cellular responses to ionizing radiation. Methods and Materials Two Tat-expressing cell lines, TT2 and TE671-Tat, were derived from human rhabdomyosarcoma cells by transfecting with the HIV-1 tat gene. Radiosensitivity was determined using colony-forming ability. Gene expression was assessed by cDNA microarray and immunohybridization. The Comet assay and γ-H2AX foci were use to detect DNA double-strand breaks (DSBs) and repair. Radiation-induced cell cycle changes were detected by flow cytometry. Results The radiosensitivity of TT2 and TE671-Tat cells was significantly increased as compared with parental TE671 cells or the control TE671-pCI cells. Tat also increased proliferation activity. The comet assay and γH2AX foci detection revealed a decreased capacity to repair radiation-induced DNA DSBs in Tat-expressing cells. Microarray assay demonstrated that the DNA repair gene DNA-PKcs, and cell cycle-related genes Cdc20, Cdc25C, KIF2C and CTS1 were downregulated in Tat-expressing cells. Depression of DNA-PKcs in Tat-expressing cells was further confirmed by RT-PCR and immuno-hybridization analysis. Tat-expressing cells exhibited a prolonged S phase arrest after 4 Gy γ-irradiation, and a noticeable delay in the initiation and elimination of radiation-induced G 2 /M arrest as compared with parental cells. In addition, the G 2 /M arrest was incomplete in TT2 cells. Moreover, HIV-1 Tat resulted in a constitutive overexpression of cyclin B1 protein. Conclusion HIV-1 Tat protein sensitizes cells to ionizing radiation via depressing DNA repair and dysregulating cell cycle checkpoints. These observations provide new insight into the increased tissue reactions of AIDS

  9. HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier?

    Directory of Open Access Journals (Sweden)

    Daniel René

    2008-05-01

    Full Text Available Abstract The acquired immunodeficiency syndrome (AIDS is accompanied by a significant increase in the incidence of neoplasms. Several causative agents have been proposed for this phenomenon. These include immunodeficiency and oncogenic DNA viruses and the HIV-1 protein Tat. Cancer in general is closely linked to genomic instability and DNA repair mechanisms. The latter maintains genomic stability and serves as a cellular anti-cancer barrier. Defects in DNA repair pathway are associated with carcinogenesis. This review focuses on newly discovered connections of the HIV-1 protein Tat, as well as cellular co-factors of Tat, to double-strand break DNA repair. We propose that the Tat-induced DNA repair deficiencies may play a significant role in the development of AIDS-associated cancer.

  10. HIV-1 TAT protein enhances sensitization to methamphetamine by affecting dopaminergic function.

    Science.gov (United States)

    Kesby, James P; Najera, Julia A; Romoli, Benedetto; Fang, Yiding; Basova, Liana; Birmingham, Amanda; Marcondes, Maria Cecilia G; Dulcis, Davide; Semenova, Svetlana

    2017-10-01

    Methamphetamine abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein TAT induces dysfunction of mesolimbic dopaminergic systems which may result in impaired reward processes and contribute to methamphetamine abuse. These studies investigated the impact of TAT expression on methamphetamine-induced locomotor sensitization, underlying changes in dopamine function and adenosine receptors in mesolimbic brain areas and neuroinflammation (microgliosis). Transgenic mice with doxycycline-induced TAT protein expression in the brain were tested for locomotor activity in response to repeated methamphetamine injections and methamphetamine challenge after a 7-day abstinence period. Dopamine function in the nucleus accumbens (Acb) was determined using high performance liquid chromatography. Expression of dopamine and/or adenosine A receptors (ADORA) in the Acb and caudate putamen (CPu) was assessed using RT-PCR and immunohistochemistry analyses. Microarrays with pathway analyses assessed dopamine and adenosine signaling in the CPu. Activity-dependent neurotransmitter switching of a reserve pool of non-dopaminergic neurons to a dopaminergic phenotype in the ventral tegmental area (VTA) was determined by immunohistochemistry and quantified with stereology. TAT expression enhanced methamphetamine-induced sensitization. TAT expression alone decreased striatal dopamine (D1, D2, D4, D5) and ADORA1A receptor expression, while increasing ADORA2A receptors expression. Moreover, TAT expression combined with methamphetamine exposure was associated with increased adenosine A receptors (ADORA1A) expression and increased recruitment of dopamine neurons in the VTA. TAT expression and methamphetamine exposure induced microglia activation with the largest effect after combined exposure. Our findings suggest that dopamine-adenosine receptor interactions and reserve pool neuronal recruitment may represent potential targets to develop new treatments for

  11. Interplay between Structure and Charge as a Key to Allosteric Modulation of Human 20S Proteasome by the Basic Fragment of HIV-1 Tat Protein.

    Directory of Open Access Journals (Sweden)

    Przemysław Karpowicz

    Full Text Available The proteasome is a giant protease responsible for degradation of the majority of cytosolic proteins. Competitive inhibitors of the proteasome are used against aggressive blood cancers. However, broadening the use of proteasome-targeting drugs requires new mechanistic approaches to the enzyme's inhibition. In our previous studies we described Tat1 peptide, an allosteric inhibitor of the proteasome derived from a fragment of the basic domain of HIV-Tat1 protein. Here, we attempted to dissect the structural determinants of the proteasome inhibition by Tat1. Single- and multiple- alanine walking scans were performed. Tat1 analogs with stabilized beta-turn conformation at positions 4-5 and 8-9, pointed out by the molecular dynamics modeling and the alanine scan, were synthesized. Structure of Tat1 analogs were analyzed by circular dichroism, Fourier transform infrared and nuclear magnetic resonance spectroscopy studies, supplemented by molecular dynamics simulations. Biological activity tests and structural studies revealed that high flexibility and exposed positive charge are hallmarks of Tat1 peptide. Interestingly, stabilization of a beta-turn at the 8-9 position was necessary to significantly improve the inhibitory potency.

  12. Structure-based design of ligands for protein basic domains: Application to the HIV-1 Tat protein

    Science.gov (United States)

    Filikov, Anton V.; James, Thomas L.

    1998-05-01

    A methodology has been developed for designing ligands to bind a flexible basic protein domain where the structure of the domain is essentially known. It is based on an empirical binding free energy function developed for highly charged complexes and on Monte Carlo simulations in internal coordinates with both the ligand and the receptor being flexible. HIV-1 encodes a transactivating regulatory protein called Tat. Binding of the basic domain of Tat to TAR RNA is required for efficient transcription of the viral genome. The structure of a biologically active peptide containing the Tat basic RNA-binding domain is available from NMR studies. The goal of the current project is to design a ligand which will bind to that basic domain and potentially inhibit the TAR-Tat interaction. The basic domain contains six arginine and two lysine residues. Our strategy was to design a ligand for arginine first and then a superligand for the basic domain by joining arginine ligands with a linker. Several possible arginine ligands were obtained by searching the Available Chemicals Directory with DOCK 3.5 software. Phytic acid, which can potentially bind multiple arginines, was chosen as a building block for the superligand. Calorimetric binding studies of several compounds to methylguanidine and Arg-/Lys-containing peptides were performed. The data were used to develop an empirical binding free energy function for prediction of affinity of the ligands for the Tat basic domain. Modeling of the conformations of the complexes with both the superligand and the basic domain being flexible has been carried out via Biased Probability Monte Carlo (BPMC) simulations in internal coordinates (ICM 2.6 suite of programs). The simulations used parameters to ensure correct folding, i.e., consistent with the experimental NMR structure of a 25-residue Tat peptide, from a random starting conformation. Superligands for the basic domain were designed by joining together two molecules of phytic acid with

  13. HIV-1 tat promotes integrin-mediated HIV transmission to dendritic cells by binding Env spikes and competes neutralization by anti-HIV antibodies.

    Directory of Open Access Journals (Sweden)

    Paolo Monini

    Full Text Available Use of Env in HIV vaccine development has been disappointing. Here we show that, in the presence of a biologically active Tat subunit vaccine, a trimeric Env protein prevents in monkeys virus spread from the portal of entry to regional lymph nodes. This appears to be due to specific interactions between Tat and Env spikes that form a novel virus entry complex favoring R5 or X4 virus entry and productive infection of dendritic cells (DCs via an integrin-mediated pathway. These Tat effects do not require Tat-transactivation activity and are blocked by anti-integrin antibodies (Abs. Productive DC infection promoted by Tat is associated with a highly efficient virus transmission to T cells. In the Tat/Env complex the cysteine-rich region of Tat engages the Env V3 loop, whereas the Tat RGD sequence remains free and directs the virus to integrins present on DCs. V2 loop deletion, which unshields the CCR5 binding region of Env, increases Tat/Env complex stability. Of note, binding of Tat to Env abolishes neutralization of Env entry or infection of DCs by anti-HIV sera lacking anti-Tat Abs, which are seldom present in natural infection. This is reversed, and neutralization further enhanced, by HIV sera containing anti-Tat Abs such as those from asymptomatic or Tat-vaccinated patients, or by sera from the Tat/Env vaccinated monkeys. Thus, both anti-Tat and anti-Env Abs are required for efficient HIV neutralization. These data suggest that the Tat/Env interaction increases HIV acquisition and spreading, as a mechanism evolved by the virus to escape anti-Env neutralizing Abs. This may explain the low effectiveness of Env-based vaccines, which are also unlikely to elicit Abs against new Env epitopes exposed by the Tat/Env interaction. As Tat also binds Envs from different clades, new vaccine strategies should exploit the Tat/Env interaction for both preventative and therapeutic interventions.

  14. Inhibition of GABAergic Neurotransmission by HIV-1 Tat and Opioid Treatment in the Striatum Involves μ-opioid Receptors

    Directory of Open Access Journals (Sweden)

    Changqing Xu

    2016-11-01

    Full Text Available Due to combined antiretroviral therapy (cART, human immunodeficiency virus type 1 (HIV-1 is considered a chronic disease with high prevalence of mild forms of neurocognitive impairments, also referred to as HIV-associated neurocognitive disorders (HAND. Although opiate drug use can exacerbate HIV-1 Tat-induced neuronal damage, it remains unknown how and to what extent opioids interact with Tat on the GABAergic system. We conducted whole-cell recordings in mouse striatal slices and examined the effects of HIV-1 Tat in the presence and absence of morphine (1 μM and damgo (1 μM on GABAergic neurotransmission. Results indicated a decrease in the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs and miniature IPSCs (mIPSCs by Tat (5 – 50 nM in a concentration-dependent manner. The significant Tat-induced decrease in IPSCs was abolished when removing extracellular and/or intracellular calcium. Treatment with morphine or damgo alone significantly decreased the frequency, but not amplitude of IPSCs. Interestingly, morphine but not damgo indicated an additional downregulation of the mean frequency of mIPSCs in combination with Tat. Pretreatment with naloxone (1 μM and CTAP (1 μM prevented the Tat-induced decrease in sIPSCs frequency but only naloxone prevented the combined Tat and morphine effect on mIPSCs frequency. Results indicate a Tat- or opioid-induced decrease in GABAergic neurotransmission via µ-opioid receptors with combined Tat and morphine effects involving additional opioid receptor-related mechanisms. Exploring the interactions between Tat and opioids on the GABAergic system may help to guide future research on HAND in the context of opiate drug use.

  15. HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.

    Science.gov (United States)

    Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra

    2014-01-01

    BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.

  16. Biocompatible anionic polymeric microspheres as priming delivery system for effetive HIV/AIDS Tat-based vaccines.

    Directory of Open Access Journals (Sweden)

    Fausto Titti

    Full Text Available Here we describe a prime-boost regimen of vaccination in Macaca fascicularis that combines priming with novel anionic microspheres designed to deliver the biologically active HIV-1 Tat protein and boosting with Tat in Alum. This regimen of immunization modulated the IgG subclass profile and elicited a balanced Th1-Th2 type of humoral and cellular responses. Remarkably, following intravenous challenge with SHIV89.6Pcy243, vaccinees significantly blunted acute viremia, as compared to control monkeys, and this control was associated with significantly lower CD4+ T cell depletion rate during the acute phase of infection and higher ability to resume the CD4+ T cell counts in the post-acute and chronic phases of infection. The long lasting control of viremia was associated with the persistence of high titers anti-Tat antibodies whose profile clearly distinguished vaccinees in controllers and viremics. Controllers, as opposed to vaccinated and viremic cynos, exhibited significantly higher pre-challenge antibody responses to peptides spanning the glutamine-rich and the RGD-integrin-binding regions of Tat. Finally, among vaccinees, titers of anti-Tat IgG1, IgG3 and IgG4 subclasses had a significant association with control of viremia in the acute and post-acute phases of infection. Altogether these findings indicate that the Tat/H1D/Alum regimen of immunization holds promise for next generation vaccines with Tat protein or other proteins for which maintenance of the native conformation and activity are critical for optimal immunogenicity. Our results also provide novel information on the role of anti-Tat responses in the prevention of HIV pathogenesis and for the design of new vaccine candidates.

  17. Inhibition of GABAergic Neurotransmission by HIV-1 Tat and Opioid Treatment in the Striatum Involves ?-Opioid Receptors

    OpenAIRE

    Xu, Changqing; Fitting, Sylvia

    2016-01-01

    Due to combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease with high prevalence of mild forms of neurocognitive impairments, also referred to as HIV-associated neurocognitive disorders (HAND). Although opiate drug use can exacerbate HIV-1 Tat-induced neuronal damage, it remains unknown how and to what extent opioids interact with Tat on the GABAergic system. We conducted whole-cell recordings in mouse striatal slices and examined...

  18. Preliminary study on the inhibition of nuclear internalization of Tat peptides by conjugation with a receptor-specific peptide and fluorescent dyes

    Science.gov (United States)

    Shen, Duanwen; Liang, Kexiang; Ye, Yunpeng; Tetteh, Elizabeth; Achilefu, Samuel

    2006-02-01

    Numerous studies have shown that basic Tat peptide (48-57) internalized non-specifically in cells and localized in the nucleus. However, localization of imaging agents in cellular nucleus is not desirable because of the potential mutagenesis. When conjugated to the peptides that undergo receptor-mediated endocytosis, Tat peptide could target specific cells or pathologic tissue. We tested this hypothesis by incorporating a somatostatin receptor-avid peptide (octreotate, Oct) and two different fluorescent dyes, Cypate 2 (Cy2) and fluorescein 5'-carboxlic acid (5-FAM), into the Tat-peptide sequence. In addition to the Cy2 or 5-FAM-labeled Oct conjugated to Tat peptide (Tat) to produce Tat-Oct-Cypate2 or Tat-Oct-5-FAM, we also labeled the Tat the Tat peptide with these dyes (Tat-Cy2 and Tat-5-FAM) to serve as positive control. A somatostatin receptor-positive pancreatic tumor cell line, AR42J, was used to assess cell internalization. The results show that Tat-5-FAM and Tat-Cypate2 localized in both nucleus and cytoplasm of the cells. In contrast to Tat-Oct-Cypate2, which localized in both the cytoplasm and nucleus, Tat-Oct-5-FAM internalized in the cytoplasm but not in the nucleus of AR42J cells. The internalizations were inhibited by adding non-labeled corresponding peptides, suggesting that the endocytoses of each group of labeled and the corresponding unlabeled compounds occurred through a common pathway. Thus, fluorescent probes and endocytosis complex between octreotate and somatostatin receptors in cytoplasm could control nuclear internalization of Tat peptides.

  19. HIV-1 Tat C-mediated regulation of tumor necrosis factor receptor-associated factor-3 by microRNA 32 in human microglia

    Directory of Open Access Journals (Sweden)

    Mishra Ritu

    2012-06-01

    Full Text Available Abstract Background HIV-1 Tat protein is known to be associated with neuroinflammation, a condition that develops in almost half of patients infected with HIV-1. HIV-1 Tat can alter glial neuroprotective functions, leading to neurotoxicity within the CNS. HIV-1 Tat is known to be secreted from productively infected cells and can affect neighboring uninfected cells by modulating cellular gene expression in a bystander fashion. Methods We were interested to study whether exogenous exposure to HIV-1 Tat-C protein perturbs the microRNA (miRNA expression profile of human microglial cells, leading to altered protein expression. We used protein expression and purification, miRNA overexpression, miRNA knockdown, transfection, site-directed mutagenesis, real-time PCR, luciferase assay and western blotting techniques to perform our study. Results HIV-1 Tat-C treatment of human microglial cells resulted in a dose-dependent increase in miR-32 expression. We found that tumor necrosis factor-receptor–associated factor 3 TRAF3 is a direct target for miR-32, and overexpression of miR-32 in CHME3 cells decreased TRAF3 both at the mRNA and the protein level. Recovery of TRAF3 protein expression after transfection of anti-miR-32 and the results of the luciferase reporter assay provided direct evidence of TRAF3 regulation by miR-32. We found that the regulation of interferon regulatory factor 3 (IRF3 and IRF7 is controlled by cellular levels of TRAF3 protein in microglial cells, as after overexpression of miR-32 and application of anti-miR-32, expression levels of IRF3 and IRF7 were inversely regulated by expression levels of TRAF3. Thus, our results suggest a novel miRNA mediated mechanism for regulation of TRAF3 in human microglial cells exposed to HIV-1 Tat C protein. These results may help to elucidate the detrimental neuroinflammatory consequences of HIV-1 Tat C protein in bystander fashion. Conclusion HIV-1 Tat protein can modulate TRAF3 expression through

  20. Induction of human immunodeficiency virus (HIV-1 envelope specific cell-mediated immunity by a non-homologous synthetic peptide.

    Directory of Open Access Journals (Sweden)

    Ammar Achour

    2007-11-01

    Full Text Available Cell mediated immunity, including efficient CTL response, is required to prevent HIV-1 from cell-to-cell transmission. In previous investigations, we have shown that B1 peptide derived by Fourier transformation of HIV-1 primary structures and sharing no sequence homology with the parent proteins was able to generate antiserum which recognizes envelope and Tat proteins. Here we have investigated cellular immune response towards a novel non-homologous peptide, referred to as cA1 peptide.The 20 amino acid sequence of cA1 peptide was predicted using the notion of peptide hydropathic properties; the peptide is encoded by the complementary anti-sense DNA strand to the sense strand of previously described non-homologous A1 peptide. In this report we demonstrate that the cA1 peptide can be a target for major histocompatibility complex (MHC class I-restricted cytotoxic T lymphocytes in HIV-1-infected or envelope-immunized individuals. The cA1 peptide is recognized in association with different MHC class I allotypes and could prime in vitro CTLs, derived from gp160-immunized individuals capable to recognize virus variants.For the first time a theoretically designed immunogen involved in broad-based cell-immune memory activation is described. Our findings may thus contribute to the advance in vaccine research by describing a novel strategy to develop a synthetic AIDS vaccine.

  1. HIV-1 Tat reduces nephrin in human podocytes: a potential mechanism for enhanced glomerular permeability in HIV-associated nephropathy.

    Science.gov (United States)

    Doublier, Sophie; Zennaro, Cristina; Spatola, Tiziana; Lupia, Enrico; Bottelli, Antonella; Deregibus, Maria Chiara; Carraro, Michele; Conaldi, Pier Giulio; Camussi, Giovanni

    2007-02-19

    To determine whether HIV-1 Tat may directly alter glomerular permeability in HIV-associated nephropathy (HIVAN). Heavy proteinuria is a hallmark of HIVAN. The slit diaphragm is the ultimate glomerular filtration barrier critical for maintaining the efficiency of the ultrafiltration unit of the kidney. In this study, we evaluated the direct effect of Tat protein on the permeability of isolated glomeruli and on the expression of nephrin, the main slit diaphragm component, by human cultured podocytes. Permeability was studied by measuring the permeability to albumin in isolated rat glomeruli. We also evaluated the expression of nephrin in human cultured podocytes by using immunofluorescence and Western blot. We found that Tat increased albumin permeability in isolated glomeruli, and rapidly induced the redistribution and loss of nephrin in cultured podocytes. Pretreatment of glomeruli and podocytes with blocking antibodies showed that Tat reduced nephrin expression by engaging vascular endothelial growth factor receptors types 2 and 3 and the integrin alphavbeta3. Pre-incubation of podocytes with two platelet-activating factor (PAF) receptor antagonists prevented the loss and redistribution of nephrin induced by Tat, suggesting that PAF is an intracellular mediator of Tat action. Tat induced a rapid PAF synthesis by podocytes. When podocytes transfected to overexpress PAF-acetylhydrolase, the main catabolic enzyme of PAF, were stimulated with Tat, the redistribution and loss of nephrin was abrogated. The present results define a mechanism by which Tat may reduce nephrin expression in podocytes, thus increasing glomerular permeability. This provides new insights in the understanding of HIVAN pathogenesis.

  2. Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 Tat-induced dendritic losses and death

    Directory of Open Access Journals (Sweden)

    Suzuki Masami

    2011-11-01

    Full Text Available Abstract Background Fractalkine/CX3CL1 and its cognate receptor CX3CR1 are abundantly expressed in the CNS. Fractalkine is an unusual C-X3-C motif chemokine that is important in neuron-microglial communication, a co-receptor for HIV infection, and can be neuroprotective. To assess the effects of fractalkine on opiate-HIV interactive neurotoxicity, wild-type murine striatal neurons were co-cultured with mixed glia from the striata of wild-type or Cx3cr1 knockout mice ± HIV-1 Tat and/or morphine. Time-lapse digital images were continuously recorded at 20 min intervals for up to 72 h using computer-aided microscopy to track the same cells repeatedly. Results Co-exposure to Tat and morphine caused synergistic increases in neuron death, dendritic pruning, and microglial motility as previously reported. Exogenous fractalkine prevented synergistic Tat and morphine-induced dendritic losses and neuron death even though the inflammatory mediator TNF-α remained significantly elevated. Antibody blockade of CX3CR1 mimicked the toxic effects of morphine plus Tat, but did not add to their toxicity; while fractalkine failed to protect wild-type neurons co-cultured with Cx3cr1-/--null glia against morphine and Tat toxicity. Exogenous fractalkine also normalized microglial motility, which is elevated by Tat and morphine co-exposure, presumably limiting microglial surveillance that may lead to toxic effects on neurons. Fractalkine immunofluorescence was expressed in neurons and to a lesser extent by other cell types, whereas CX3CR1 immunoreactivity or GFP fluorescence in cells cultured from the striatum of Cx3cr1-/- (Cx3cr1GFP/GFP mice were associated with microglia. Immunoblotting shows that fractalkine levels were unchanged following Tat and/or morphine exposure and there was no increase in released fractalkine as determined by ELISA. By contrast, CX3CR1 protein levels were markedly downregulated. Conclusions The results suggest that deficits in fractalkine

  3. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Koczor, Christopher A., E-mail: ckoczor@emory.edu; Fields, Earl; Jedrzejczak, Mark J.; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Shang, Joan; Torres, Rebecca A.; Lewis, William

    2015-11-01

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides for calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein abundance of

  4. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression

    International Nuclear Information System (INIS)

    Koczor, Christopher A.; Fields, Earl; Jedrzejczak, Mark J.; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Shang, Joan; Torres, Rebecca A.; Lewis, William

    2015-01-01

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides for calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein abundance of

  5. Progesterone protects normative anxiety-like responding among ovariectomized female mice that conditionally express the HIV-1 regulatory protein, Tat, in the CNS.

    Science.gov (United States)

    Paris, Jason J; Fenwick, Jason; McLaughlin, Jay P

    2014-05-01

    Increased anxiety is co-morbid with human immunodeficiency virus (HIV) infection. Actions of the neurotoxic HIV-1 regulatory protein, Tat, may contribute to affective dysfunction. We hypothesized that Tat expression would increase anxiety-like behavior of female GT-tg bigenic mice that express HIV-1 Tat protein in the brain in a doxycycline-dependent manner. Furthermore, given reports that HIV-induced anxiety may occur at lower rates among women, and that the neurotoxic effects of Tat are ameliorated by sex steroids in vitro, we hypothesized that 17β-estradiol and/or progesterone would ameliorate Tat-induced anxiety-like effects. Among naturally-cycling proestrous and diestrous mice, Tat-induction via 7days of doxycycline treatment significantly increased anxiety-like responding in an open field, elevated plus maze and a marble-burying task, compared to treatment with saline. Proestrous mice demonstrated less anxiety-like behavior than diestrous mice in the open field and elevated plus maze, but these effects did not significantly interact with Tat-induction. Among ovariectomized mice, doxycycline-induced Tat protein significantly increased anxiety-like behavior in an elevated plus maze and a marble burying task compared to saline-treated mice, but not an open field (where anxiety-like responding was already maximal). Co-administration of progesterone (4mg/kg), but not 17β-estradiol (0.09mg/kg), with doxycycline significantly ameliorated anxiety-like responding in the elevated plus maze and marble burying tasks. When administered together, 17β-estradiol partially antagonized the protective effects of progesterone on Tat-induced anxiety-like behavior. These findings support evidence of steroid-protection over HIV-1 proteins, and extend them by demonstrating the protective capacity of progesterone on Tat-induced anxiety-like behavior of ovariectomized female mice. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters.

    Science.gov (United States)

    Ziegler, André; Seelig, Joachim

    2004-01-01

    The positively charged protein transduction domain of the HIV-1 TAT protein (TAT-PTD; residues 47-57 of TAT) rapidly translocates across the plasma membrane of living cells. This property is exploited for the delivery of proteins, drugs, and genes into cells. The mechanism of this translocation is, however, not yet understood. Recent theories for translocation suggest binding of the protein transduction domain (PTD) to extracellular glycosaminoglycans as a possible mechanism. We have studied the binding equilibrium between TAT-PTD and three different glycosaminoglycans with high sensitivity isothermal titration calorimetry and provide the first quantitative thermodynamic description. The polysulfonated macromolecules were found to exhibit multiple identical binding sites for TAT-PTD with only small differences between the three species as far as the thermodynamic parameters are concerned. Heparan sulfate (HS, molecular weight, 14.2 +/- 2 kDa) has 6.3 +/- 1.0 independent binding sites for TAT-PTD which are characterized by a binding constant K0 = (6.0 +/- 0.6) x 10(5) M(-1) and a reaction enthalpy deltaHpep0 = -4.6 +/- 1.0 kcal/mol at 28 degrees C. The binding affinity, deltaGpep0, is determined to equal extent by enthalpic and entropic contributions. The HS-TAT-PTD complex formation entails a positive heat capacity change of deltaCp0 = +135 cal/mol peptide, which is characteristic of a charge neutralization reaction. This is in contrast to hydrophobic binding reactions which display a large negative heat capacity change. The stoichiometry of 6-7 TAT-PTD molecules per HS corresponds to an electric charge neutralization. Light scattering data demonstrate a maximum scattering intensity at this stoichiometric ratio, the intensity of which depends on the order of mixing of the two components. The data suggest cross-linking and/or aggregation of HS-TAT-PTD complexes. Two other glycosaminoglycans, namely heparin and chondroitin sulfate B, were also studied with isothermal

  7. MD simulation of the Tat/Cyclin T1/CDK9 complex revealing the hidden catalytic cavity within the CDK9 molecule upon Tat binding.

    Directory of Open Access Journals (Sweden)

    Kaori Asamitsu

    Full Text Available In this study, we applied molecular dynamics (MD simulation to analyze the dynamic behavior of the Tat/CycT1/CDK9 tri-molecular complex and revealed the structural changes of P-TEFb upon Tat binding. We found that Tat could deliberately change the local flexibility of CycT1. Although the structural coordinates of the H1 and H2 helices did not substantially change, H1', H2', and H3' exhibited significant changes en masse. Consequently, the CycT1 residues involved in Tat binding, namely Tat-recognition residues (TRRs, lost their flexibility with the addition of Tat to P-TEFb. In addition, we clarified the structural variation of CDK9 in complex with CycT1 in the presence or absence of Tat. Interestingly, Tat addition significantly reduced the structural variability of the T-loop, thus consolidating the structural integrity of P-TEFb. Finally, we deciphered the formation of the hidden catalytic cavity of CDK9 upon Tat binding. MD simulation revealed that the PITALRE signature sequence of CDK9 flips the inactive kinase cavity of CDK9 into the active form by connecting with Thr186, which is crucial for its activity, thus presumably recruiting the substrate peptide such as the C-terminal domain of RNA pol II. These findings provide vital information for the development of effective novel anti-HIV drugs with CDK9 catalytic activity as the target.

  8. The effects of HIV-1 regulatory TAT protein expression on brain reward function, response to psychostimulants and delay-dependent memory in mice.

    Science.gov (United States)

    Kesby, James P; Markou, Athina; Semenova, Svetlana

    2016-10-01

    Depression and psychostimulant abuse are common comorbidities among humans with immunodeficiency virus (HIV) disease. The HIV regulatory protein TAT is one of multiple HIV-related proteins associated with HIV-induced neurotoxicity. TAT-induced dysfunction of dopamine and serotonin systems in corticolimbic brain areas may result in impaired reward function, thus, contributing to depressive symptoms and psychostimulant abuse. Transgenic mice with doxycycline-induced TAT protein expression in the brain (TAT+, TAT- control) show neuropathology resembling brain abnormalities in HIV+ humans. We evaluated brain reward function in response to TAT expression, nicotine and methamphetamine administration in TAT+ and TAT- mice using the intracranial self-stimulation procedure. We evaluated the brain dopamine and serotonin systems with high-performance liquid chromatography. The effects of TAT expression on delay-dependent working memory in TAT+ and TAT- mice using the operant delayed nonmatch-to-position task were also assessed. During doxycycline administration, reward thresholds were elevated by 20% in TAT+ mice compared with TAT- mice. After the termination of doxycycline treatment, thresholds of TAT+ mice remained significantly higher than those of TAT- mice and this was associated with changes in mesolimbic serotonin and dopamine levels. TAT+ mice showed a greater methamphetamine-induced threshold lowering compared with TAT- mice. TAT expression did not alter delay-dependent working memory. These results indicate that TAT expression in mice leads to reward deficits, a core symptom of depression, and a greater sensitivity to methamphetamine-induced reward enhancement. Our findings suggest that the TAT protein may contribute to increased depressive-like symptoms and continued methamphetamine use in HIV-positive individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The HIV-1 viral protein Tat increases glutamate and decreases GABA exocytosis from human and mouse neocortical nerve endings.

    Science.gov (United States)

    Musante, Veronica; Summa, Maria; Neri, Elisa; Puliti, Aldamaria; Godowicz, Tomasz T; Severi, Paolo; Battaglia, Giuseppe; Raiteri, Maurizio; Pittaluga, Anna

    2010-08-01

    Human immunodeficiency virus-1 (HIV-1)-encoded transactivator of transcription (Tat) potentiated the depolarization-evoked exocytosis of [(3)H]D-aspartate ([(3)H]D-ASP) from human neocortical terminals. The metabotropic glutamate (mGlu) 1 receptor antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) prevented this effect, whereas the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP) was ineffective. Western blot analysis showed that human neocortex synaptosomes possess mGlu1 and mGlu5 receptors. Tat potentiated the K(+)-evoked release of [(3)H]D-ASP or of endogenous glutamate from mouse neocortical synaptosomes in a CPCCOEt-sensitive and MPEP-insensitive manner. Deletion of mGlu1 receptors (crv4/crv4 mice) or mGlu5 receptors (mGlu5(-/-)mouse) silenced Tat effects. Tat enhanced inositol 1,4,5-trisphosphate production in human and mouse neocortical synaptosomes, consistent with the involvement of group I mGlu receptors. Tat inhibited the K(+)-evoked release of [(3)H]gamma-aminobutyric acid ([(3)H]GABA) from human synaptosomes and that of endogenous GABA or [(3)H]GABA from mouse nerve terminals; the inhibition was insensitive to CPCCOEt or MPEP. Tat-induced effects were retained by Tat(37-72) but not by Tat(48-85). In mouse neocortical slices, Tat facilitated the K(+)- and the veratridine-induced release of [(3)H]D-ASP in a CPCCOEt-sensitive manner and was ineffective in crv4/crv4 mouse slices. These observations are relevant to the comprehension of the pathophysiological effects of Tat in central nervous system and may suggest new potential therapeutic approaches to the cure of HIV-1-associated dementia.

  10. Improved intracellular delivery of glucocerebrosidase mediated by the HIV-1 TAT protein transduction domain

    International Nuclear Information System (INIS)

    Lee, Kyun Oh; Luu, Nga; Kaneski, Christine R.; Schiffmann, Raphael; Brady, Roscoe O.; Murray, Gary J.

    2005-01-01

    Enzyme replacement therapy (ERT) for Gaucher disease designed to target glucocerebrosidase (GC) to macrophages via mannose-specific endocytosis is very effective in reversing hepatosplenomegaly, and normalizing hematologic parameters but is less effective in improving bone and lung involvement and ineffective in brain. Recombinant GCs containing an in-frame fusion to the HIV-1 trans-activator protein transduction domain (TAT) were expressed in eukaryotic cells in order to obtain active, normally glycosylated GC fusion proteins for enzyme uptake studies. Despite the absence of mannose-specific endocytic receptors on the plasma membranes of various fibroblasts, the recombinant GCs with C-terminal TAT fusions were readily internalized by these cells. Immunofluorescent confocal microscopy demonstrated the recombinant TAT-fusion proteins with a mixed endosomal and lysosomal localization. Thus, TAT-modified GCs represent a novel strategy for a new generation of therapeutic enzymes for ERT for Gaucher disease

  11. Combined metabonomic and quantitative real-time PCR analyses reveal systems metabolic changes in Jurkat T-cells treated with HIV-1 Tat protein.

    Science.gov (United States)

    Liao, Wenting; Tan, Guangguo; Zhu, Zhenyu; Chen, Qiuli; Lou, Ziyang; Dong, Xin; Zhang, Wei; Pan, Wei; Chai, Yifeng

    2012-11-02

    HIV-1 Tat protein is released by infected cells and can affect bystander uninfected T cells and induce numerous biological responses which contribute to its pathogenesis. To elucidate the complex pathogenic mechanism, we conducted a comprehensive investigation on Tat protein-related extracellular and intracellular metabolic changes in Jurkat T-cells using combined gas chromatography-mass spectrometry (GC-MS), reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) and a hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS)-based metabonomics approach. Quantitative real-time PCR (qRT-PCR) analyses were further employed to measure expressions of several relevant enzymes together with perturbed metabolic pathways. Combined metabonomic and qRT-PCR analyses revealed that HIV-1 Tat caused significant and comprehensive metabolic changes, as represented by significant changes of 37 metabolites and 10 relevant enzymes in HIV-1 Tat-treated cells. Using MetaboAnalyst 2.0, it was found that 11 pathways (Impact-value >0.10) among the regulated pathways were acutely perturbed, including sphingolipid metabolism, glycine, serine and threonine metabolism, pyruvate metabolism, inositol phosphate metabolism, arginine and proline metabolism, citrate cycle, phenylalanine metabolism, tryptophan metabolism, pentose phosphate pathway, glycerophospholipid metabolism, glycolysis or gluconeogenesis. These results provide metabolic evidence of the complex pathogenic mechanism of HIV-1 Tat protein as a "viral toxin", and would help obligate Tat protein as "an important target" for therapeutic intervention and vaccine development.

  12. Effects of the TAT peptide orientation and relative location on the protein transduction efficiency.

    Science.gov (United States)

    Guo, Qingguo; Zhao, Guojie; Hao, Fengjin; Guan, Yifu

    2012-05-01

    To understand the protein transduction domain (PTD)-mediated protein transduction behavior and to explore its potential in delivering biopharmaceutic drugs, we prepared four TAT-EGFP conjugates: TAT(+)-EGFP, TAT(-)-EGFP, EGFP-TAT(+) and EGFP-TAT(-), where TAT(+) and TAT(-) represent the original and the reversed TAT sequence, respectively. These four TAT-EGFP conjugates were incubated with HeLa and PC12 cells for in vitro study as well as injected intraperitoneally to mice for in vivo study. Flow cytometric results showed that four TAT-EGFP conjugates were able to traverse HeLa and PC12 cells with almost equal transduction efficiency. The in vivo study showed that the TAT-EGFP conjugates could be delivered into different organs of mice with different transduction capabilities. Bioinformatic analyses and CD spectroscopic data revealed that the TAT peptide has no defined secondary structure, and conjugating the TAT peptide to the EGFP cargo protein would not alter the native structure and the function of the EGFP protein. These results conclude that the sequence orientation, the spatial structure, and the relative location of the TAT peptide have much less effect on the TAT-mediated protein transduction. Thus, the TAT-fused conjugates could be constructed in more convenient and flexible formats for a wide range of biopharmaceutical applications. © 2011 John Wiley & Sons A/S.

  13. Extensive interactions between HIV TAT and TAF(II)250.

    Science.gov (United States)

    Weissman, J D; Hwang, J R; Singer, D S

    2001-03-09

    The HIV transactivator, Tat, has been shown to be capable of potent repression of transcription initiation. Repression is mediated by the C-terminal segment of Tat, which binds the TFIID component, TAF(II)250, although the site(s) of interaction were not defined previously. We now report that the interaction between Tat and TAF(II)250 is extensive and involves multiple contacts between the Tat protein and TAF(II)250. The C-terminal domain of Tat, which is necessary for repression of transcription initiation, binds to a segment of TAF(II)250 that encompasses its acetyl transferase (AT) domain (885-1034 amino acids (aa)). Surprisingly, the N-terminal segment of Tat, which contains its activation domains, also binds to TAF(II)250 and interacts with two discontinuous segments of TAF(II)250 located between 885 and 984 aa and 1120 and 1279 aa. Binding of Tat to the 885-984 aa segment of TAF(II)250 requires the cysteine-rich domain of Tat, but not the acidic or glutamine-rich domains. Binding by the N-terminal domain of Tat to the 1120-1279 aa TAF(II)250 segment does not involve the acidic, cysteine- or glutamine-rich domains. Repression of transcription initiation by Tat requires functional TAF(II)250. We now demonstrate that transcription of the HIV LTR does not depend on TAF(II)250 which may account for its resistance to Tat mediated repression.

  14. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein

    Directory of Open Access Journals (Sweden)

    Marker Daniel F

    2012-11-01

    Full Text Available Abstract Background Human Immunodeficiency Virus-1 (HIV-1 associated neurocognitive disorders (HANDs are accompanied by significant morbidity, which persists despite the use of combined antiretroviral therapy (cART. While activated microglia play a role in pathogenesis, changes in their immune effector functions, including phagocytosis and proinflammatory signaling pathways, are not well understood. We have identified leucine-rich repeat kinase 2 (LRRK2 as a novel regulator of microglial phagocytosis and activation in an in vitro model of HANDs, and hypothesize that LRRK2 kinase inhibition will attenuate microglial activation during HANDs. Methods We treated BV-2 immortalized mouse microglia cells with the HIV-1 trans activator of transcription (Tat protein in the absence or presence of LRRK2 kinase inhibitor (LRRK2i. We used Western blot, qRT-PCR, immunocytochemistry and latex bead engulfment assays to analyze LRRK2 protein levels, proinflammatory cytokine and phagocytosis receptor expression, LRRK2 cellular distribution and phagocytosis, respectively. Finally, we utilized ex vivo microfluidic chambers containing primary hippocampal neurons and BV-2 microglia cells to investigate microglial phagocytosis of neuronal axons. Results We found that Tat-treatment of BV-2 cells induced kinase activity associated phosphorylation of serine 935 on LRRK2 and caused the formation of cytoplasmic LRRK2 inclusions. LRRK2i decreased Tat-induced phosphorylation of serine 935 on LRRK2 and inhibited the formation of Tat-induced cytoplasmic LRRK2 inclusions. LRRK2i also decreased Tat-induced process extension in BV-2 cells. Furthermore, LRRK2i attenuated Tat-induced cytokine expression and latex bead engulfment. We examined relevant cellular targets in microfluidic chambers and found that Tat-treated BV-2 microglia cells cleared axonal arbor and engulfed neuronal elements, whereas saline treated controls did not. LRRK2i was found to protect axons in the presence

  15. HIV-1 tat protein recruits CIS to the cytoplasmic tail of CD127 to induce receptor ubiquitination and proteasomal degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sugden, Scott, E-mail: scott.sugden@ircm.qc.ca [The Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 (Canada); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 (Canada); Ghazawi, Feras [The Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 (Canada); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 (Canada); MacPherson, Paul, E-mail: pmacpherson@toh.on.ca [The Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 (Canada); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 (Canada); Division of Infectious Diseases, The Ottawa Hospital General Campus, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 (Canada)

    2016-11-15

    HIV-1 Tat protein down regulates expression of the IL-7 receptor alpha-chain (CD127) from the surface of CD8 T cells resulting in impaired T cell proliferation and cytolytic capacity. We have previously shown that soluble Tat protein is taken up by CD8 T cells and interacts with the cytoplasmic tail of CD127 to induce receptor degradation. The N-terminal domain of Tat interacts with CD127 while the basic domain directs CD127 to the proteasome. We have also shown that upon IL-7 binding to its receptor, CD127 is phosphorylated resulting in CIS-mediated proteasomal degradation. Here, we show that Tat mimics this process by recruiting CIS to CD127 in the absence of IL-7 and receptor phosphorylation, leading to CD127 ubiquitination and degradation. Tat therefore acts as an adapter to induce cellular responses under conditions where they may not otherwise occur. Thusly, Tat reduces IL-7 signaling and impairs CD8 T cell survival and function. -- Highlights: •Soluble HIV-1 Tat decreases CD127 expression on CD8 T cells, causing dysfunction. •Tat induces CD127 ubiquitination without activating IL-7 signaling. •Tat binds CD127 and recruits the E3 ubiquitin ligase CIS via its basic domain. •Tat hijacks a normal cellular mechanism to degrade CD127 without IL-7 signaling.

  16. HIV-1 tat protein recruits CIS to the cytoplasmic tail of CD127 to induce receptor ubiquitination and proteasomal degradation

    International Nuclear Information System (INIS)

    Sugden, Scott; Ghazawi, Feras; MacPherson, Paul

    2016-01-01

    HIV-1 Tat protein down regulates expression of the IL-7 receptor alpha-chain (CD127) from the surface of CD8 T cells resulting in impaired T cell proliferation and cytolytic capacity. We have previously shown that soluble Tat protein is taken up by CD8 T cells and interacts with the cytoplasmic tail of CD127 to induce receptor degradation. The N-terminal domain of Tat interacts with CD127 while the basic domain directs CD127 to the proteasome. We have also shown that upon IL-7 binding to its receptor, CD127 is phosphorylated resulting in CIS-mediated proteasomal degradation. Here, we show that Tat mimics this process by recruiting CIS to CD127 in the absence of IL-7 and receptor phosphorylation, leading to CD127 ubiquitination and degradation. Tat therefore acts as an adapter to induce cellular responses under conditions where they may not otherwise occur. Thusly, Tat reduces IL-7 signaling and impairs CD8 T cell survival and function. -- Highlights: •Soluble HIV-1 Tat decreases CD127 expression on CD8 T cells, causing dysfunction. •Tat induces CD127 ubiquitination without activating IL-7 signaling. •Tat binds CD127 and recruits the E3 ubiquitin ligase CIS via its basic domain. •Tat hijacks a normal cellular mechanism to degrade CD127 without IL-7 signaling.

  17. The HIV-1 Tat protein modulates CD4 expression in human T cells through the induction of miR-222.

    Science.gov (United States)

    Orecchini, Elisa; Doria, Margherita; Michienzi, Alessandro; Giuliani, Erica; Vassena, Lia; Ciafrè, Silvia Anna; Farace, Maria Giulia; Galardi, Silvia

    2014-01-01

    Several cellular microRNAs show substantial changes in expression during HIV-1 infection and their active role in the viral life cycle is progressively emerging. In the present study, we found that HIV-1 infection of Jurkat T cells significantly induces the expression of miR-222. We show that this induction depends on HIV-1 Tat protein, which is able to increase the transcriptional activity of NFkB on miR-222 promoter. Moreover, we demonstrate that miR-222 directly targets CD4, a key receptor for HIV-1, thus reducing its expression. We propose that Tat, by inducing miR-222 expression, complements the CD4 downregulation activity exerted by other viral proteins (i.e., Nef, Vpu, and Env), and we suggest that this represents a novel mechanism through which HIV-1 efficiently represses CD4 expression in infected cells.

  18. The HIV-1 Tat protein modulates CD4 expression in human T cells through the induction of miR-222

    Science.gov (United States)

    Orecchini, Elisa; Doria, Margherita; Michienzi, Alessandro; Giuliani, Erica; Vassena, Lia; Ciafrè, Silvia Anna; Farace, Maria Giulia; Galardi, Silvia

    2014-01-01

    Several cellular microRNAs show substantial changes in expression during HIV-1 infection and their active role in the viral life cycle is progressively emerging. In the present study, we found that HIV-1 infection of Jurkat T cells significantly induces the expression of miR-222. We show that this induction depends on HIV-1 Tat protein, which is able to increase the transcriptional activity of NFkB on miR-222 promoter. Moreover, we demonstrate that miR-222 directly targets CD4, a key receptor for HIV-1, thus reducing its expression. We propose that Tat, by inducing miR-222 expression, complements the CD4 downregulation activity exerted by other viral proteins (i.e., Nef, Vpu, and Env), and we suggest that this represents a novel mechanism through which HIV-1 efficiently represses CD4 expression in infected cells. PMID:24717285

  19. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    Science.gov (United States)

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to

  20. The Tat protein of human immunodeficiency virus-1 enhances hepatitis C virus replication through interferon gamma-inducible protein-10

    Directory of Open Access Journals (Sweden)

    Qu Jing

    2012-04-01

    Full Text Available Abstract Background Co-infection with human immunodeficiency virus-1 (HIV-1 and hepatitis C virus (HCV is associated with faster progression of liver disease and an increase in HCV persistence. However, the mechanism by which HIV-1 accelerates the progression of HCV liver disease remains unknown. Results HIV-1/HCV co-infection is associated with increased expression of interferon gamma-induced protein-10 (IP-10 mRNA in peripheral blood mononuclear cells (PBMCs. HCV RNA levels were higher in PBMCs of patients with HIV-1/HCV co-infection than in patients with HCV mono-infection. HIV-1 Tat and IP-10 activated HCV replication in a time-dependent manner, and HIV-1 Tat induced IP-10 production. In addition, the effect of HIV-1 Tat on HCV replication was blocked by anti-IP-10 monoclonal antibody, demonstrating that the effect of HIV-1 Tat on HCV replication depends on IP-10. Taken together, these results suggest that HIV-1 Tat protein activates HCV replication by upregulating IP-10 production. Conclusions HIV-1/HCV co-infection is associated with increased expression of IP-10 mRNA and replication of HCV RNA. Furthermore, both HIV-1 Tat and IP-10 activate HCV replication. HIV-1 Tat activates HCV replication by upregulating IP-10 production. These results expand our understanding of HIV-1 in HCV replication and the mechanism involved in the regulation of HCV replication mediated by HIV-1 during co-infection.

  1. A Tat-grafted anti-nucleic acid antibody acquires nuclear-localization property and a preference for TAR RNA

    International Nuclear Information System (INIS)

    Jeong, Jong-Geun; Kim, Dong-Sik; Kim, Yong-Sung; Kwon, Myung-Hee

    2011-01-01

    Highlights: → We generate ' H3 Tat-3D8' by grafting Tat 48-60 peptide to VH CDR of 3D8 scFv antibody. → H3 Tat-3D8 antibody retains nucleic acid binding and hydrolyzing activities. → H3 Tat-3D8 acquires a preference for TAR RNA structure. → Properties of Tat 48-60 is transferred to an antibody via Tat-grafting into a CDR. -- Abstract: The 3D8 single chain variable fragment (3D8 scFv) is an anti-nucleic acid antibody that can hydrolyze nucleic acids and enter the cytosol of cells without reaching the nucleus. The Tat peptide, derived from the basic region of the HIV-1 Tat protein, translocates to cell nuclei and has TAR RNA binding activity. In this study, we generated a Tat-grafted antibody ( H3 Tat-3D8) by replacing complementarity-determining region 3 (CDR3) within the VH domain of the 3D8 scFv with a Tat 48-60 peptide (GRKKRRQRRRPPQ). H3 Tat-3D8 retained the DNA-binding and DNA-hydrolyzing activity of the scFv, and translocated to the nuclei of HeLa cells and preferentially recognized TAR RNA. Thus, the properties associated with the Tat peptide were transferred to the antibody via Tat-grafting without loss of the intrinsic DNA-binding and hydrolyzing activities of the 3D8 scFv antibody.

  2. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells.

    Science.gov (United States)

    Oufir, Mouhssin; Bisset, Leslie R; Hoffmann, Stefan R K; Xue, Gongda; Klauser, Stephan; Bergamaschi, Bianca; Gervaix, Alain; Böni, Jürg; Schüpbach, Jörg; Gutte, Bernd

    2011-01-01

    An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  3. On the role of the second coding exon of the HIV-1 Tat protein in virus replication and MHC class I downregulation

    NARCIS (Netherlands)

    Verhoef, K.; Bauer, M.; Meyerhans, A.; Berkhout, B.

    1998-01-01

    Tat is an essential protein of human immunodeficiency virus type 1 (HIV-1) and activates transcription from the viral long terminal repeat (LTR) promoter. The tat gene is composed of two coding exons of which the first, corresponding to the N-terminal 72 amino acid residues, has been reported to be

  4. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells

    Directory of Open Access Journals (Sweden)

    Mouhssin Oufir

    2011-01-01

    Full Text Available An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  5. Structural Study of a New HIV-1 Entry Inhibitor and Interaction with the HIV-1 Fusion Peptide in Dodecylphosphocholine Micelles.

    Science.gov (United States)

    Pérez, Yolanda; Gómara, Maria José; Yuste, Eloísa; Gómez-Gutierrez, Patricia; Pérez, Juan Jesús; Haro, Isabel

    2017-08-25

    Previous studies support the hypothesis that the envelope GB virus C (GBV-C) E1 protein interferes the HIV-1 entry and that a peptide, derived from the region 139-156 of this protein, has been defined as a novel HIV-1 entry inhibitor. In this work, we firstly focus on the characterization of the structural features of this peptide, which are determinant for its anti-HIV-1 activity and secondly, on the study of its interaction with the proposed viral target (i.e., the HIV-1 fusion peptide). We report the structure of the peptide determined by NMR spectroscopy in dodecylphosphocholine (DPC) micelles solved by using restrained molecular dynamics calculations. The acquisition of different NMR experiments in DPC micelles (i.e., peptide-peptide titration, diffusion NMR spectroscopy, and addition of paramagnetic relaxation agents) allows a proposal of an inhibition mechanism. We conclude that a 18-mer peptide from the non-pathogenic E1 GBV-C protein, with a helix-turn-helix structure inhibits HIV-1 by binding to the HIV-1 fusion peptide at the membrane level, thereby interfering with those domains in the HIV-1, which are critical for stabilizing the six-helix bundle formation in a membranous environment. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Chemical Composition of Essential Oils from Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis, and Their Effects on the HIV-1 Tat Protein Function.

    Science.gov (United States)

    Feriotto, Giordana; Marchetti, Nicola; Costa, Valentina; Beninati, Simone; Tagliati, Federico; Mischiati, Carlo

    2018-02-01

    New drugs would be beneficial to fight resistant HIV strains, in particular those capable of interfering with essential viral functions other than those targeted by highly active antiretroviral therapy drugs. Despite the central role played by Tat protein in HIV transcription, a search for vegetable extracts able to hamper this important viral function was never carried out. In this work, we evaluated the chemical composition and possible interference of essential oil from Thymus vulgaris, Cananga odorata, Cymbopogon citratus, and Rosmarinus officinalis with the Tat/TAR-RNA interaction and with Tat-induced HIV-1 LTR transcription. GC/MS Analysis demonstrated the biodiversity of herbal species translated into essential oils composed of different blends of terpenes. In all of them, 4 - 6 constituents represent from 81.63% to 95.19% of the total terpenes. Essential oils of Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis were active in interfering with Tat functions, encouraging further studies to identify single terpenes responsible for the antiviral activity. In view of the quite different composition of these essential oils, we concluded that their interference on Tat function depends on specific terpene or a characteristic blend. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  7. Recognition of HIV-1 peptides by host CTL is related to HIV-1 similarity to human proteins.

    Directory of Open Access Journals (Sweden)

    Morgane Rolland

    Full Text Available BACKGROUND: While human immunodeficiency virus type 1 (HIV-1-specific cytotoxic T lymphocytes preferentially target specific regions of the viral proteome, HIV-1 features that contribute to immune recognition are not well understood. One hypothesis is that similarities between HIV and human proteins influence the host immune response, i.e., resemblance between viral and host peptides could preclude reactivity against certain HIV epitopes. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the extent of similarity between HIV-1 and the human proteome. Proteins from the HIV-1 B consensus sequence from 2001 were dissected into overlapping k-mers, which were then probed against a non-redundant database of the human proteome in order to identify segments of high similarity. We tested the relationship between HIV-1 similarity to host encoded peptides and immune recognition in HIV-infected individuals, and found that HIV immunogenicity could be partially modulated by the sequence similarity to the host proteome. ELISpot responses to peptides spanning the entire viral proteome evaluated in 314 individuals showed a trend indicating an inverse relationship between the similarity to the host proteome and the frequency of recognition. In addition, analysis of responses by a group of 30 HIV-infected individuals against 944 overlapping peptides representing a broad range of individual HIV-1B Nef variants, affirmed that the degree of similarity to the host was significantly lower for peptides with reactive epitopes than for those that were not recognized. CONCLUSIONS/SIGNIFICANCE: Our results suggest that antigenic motifs that are scarcely represented in human proteins might represent more immunogenic CTL targets not selected against in the host. This observation could provide guidance in the design of more effective HIV immunogens, as sequences devoid of host-like features might afford superior immune reactivity.

  8. Conjugation to the cell-penetrating peptide TAT potentiates the photodynamic effect of carboxytetramethylrhodamine.

    Directory of Open Access Journals (Sweden)

    Divyamani Srinivasan

    2011-03-01

    Full Text Available Cell-penetrating peptides (CPPs can transport macromolecular cargos into live cells. However, the cellular delivery efficiency of these reagents is often suboptimal because CPP-cargo conjugates typically remain trapped inside endosomes. Interestingly, irradiation of fluorescently labeled CPPs with light increases the release of the peptide and its cargos into the cytosol. However, the mechanism of this phenomenon is not clear. Here we investigate the molecular basis of the photo-induced endosomolytic activity of the prototypical CPPs TAT labeled to the fluorophore 5(6-carboxytetramethylrhodamine (TMR.We report that TMR-TAT acts as a photosensitizer that can destroy membranes. TMR-TAT escapes from endosomes after exposure to moderate light doses. However, this is also accompanied by loss of plasma membrane integrity, membrane blebbing, and cell-death. In addition, the peptide causes the destruction of cells when applied extracellularly and also triggers the photohemolysis of red blood cells. These photolytic and photocytotoxic effects were inhibited by hydrophobic singlet oxygen quenchers but not by hydrophilic quenchers.Together, these results suggest that TAT can convert an innocuous fluorophore such as TMR into a potent photolytic agent. This effect involves the targeting of the fluorophore to cellular membranes and the production of singlet oxygen within the hydrophobic environment of the membranes. Our findings may be relevant for the design of reagents with photo-induced endosomolytic activity. The photocytotoxicity exhibited by TMR-TAT also suggests that CPP-chromophore conjugates could aid the development of novel Photodynamic Therapy agents.

  9. Physics of HIV

    Science.gov (United States)

    Tristram-Nagle, Stephanie

    2018-05-01

    This review summarizes over a decade of investigations into how membrane-binding proteins from the HIV-1 virus interact with lipid membrane mimics of various HIV and host T-cell membranes. The goal of the work was to characterize at the molecular level both the elastic and structural changes that occur due to HIV protein/membrane interactions, which could lead to new drugs to thwart the HIV virus. The main technique used to study these interactions is diffuse x-ray scattering, which yields the bending modulus, K C, as well as structural parameters such as membrane thickness, area/lipid and position of HIV peptides (parts of HIV proteins) in the membrane. Our methods also yield information about lipid chain order or disorder caused by the peptides. This review focuses on three stages of the HIV-1 life cycle: (1) infection, (2) Tat membrane transport, and (3) budding. In the infection stage, our lab studied three different parts of HIV-1 gp41 (glycoprotein 41 fusion protein): (1) FP23, the N-terminal 23 amino acids that interact non-specifically with the T-cell host membrane to cause fusion of two membranes, and its trimer version, (2) cholesterol recognition amino acid consensus sequence, on the membrane proximal external region near the membrane-spanning domain, and (3) lentiviral lytic peptide 2 on the cytoplasmic C-terminal tail. For Tat transport, we used membrane mimics of the T-cell nuclear membrane as well as simpler models that varied charge and negative curvature. For membrane budding, we varied the myristoylation of the MA31 peptide as well as the negatively charged lipid. These studies show that HIV peptides with different roles in the HIV life cycle affect differently the relevant membrane mimics. In addition, the membrane lipid composition plays an important role in the peptides’ effects.

  10. Mimicking protein-protein interactions through peptide-peptide interactions: HIV-1 gp120 and CXCR4

    Directory of Open Access Journals (Sweden)

    Andrea eGross

    2013-09-01

    Full Text Available We have recently designed a soluble synthetic peptide that functionally mimics the HIV-1 coreceptor CXCR4, which is a chemokine receptor that belongs to the family of seven-transmembrane GPCRs. This CXCR4 mimetic peptide, termed CX4-M1, presents the three extracellular loops (ECLs of the receptor. In binding assays involving recombinant proteins, as well as in cellular infection assays, CX4-M1 was found to selectively recognize gp120 from HIV-1 strains that use CXCR4 for cell entry (X4 tropic HIV-1. Furthermore, anti-HIV-1 antibodies modulate this interaction in a molecular mechanism related to that of their impact on the gp120-CXCR4 interaction. We could now show that the selectivity of CX4-M1 pertains not only to gp120 from X4 tropic HIV-1, but also to synthetic peptides presenting the V3 loops of these gp120 proteins. The V3 loop is thought to be an essential part of the coreceptor binding site of gp120 that contacts the second ECL of the coreceptor. We were able to experimentally confirm this notion in binding assays using substitution analogs of CX4-M1 and the V3 loop peptides, respectively, as well as in cellular infection assays. These results indicate that interactions of the HIV-1 Env with coreceptors can be mimicked by synthetic peptides, which may be useful to explore these interactions at the molecular level in more detail.

  11. Effect of the peptide Tat(49-57) on the bio-distribution and similar radiopharmaceuticals dosimetry of the bombesin

    International Nuclear Information System (INIS)

    Santos C, C. L.

    2011-01-01

    The gastrin-releasing peptide receptor (GRP-r) is over-expressed in prostate and breast cancer. 99m Tc-Bombesin ( 99m Tc-Bn) has been reported as a radiopharmaceutical with specific cell GRP-r binding. The HIV Tat(49-57)-derived peptide has been used to deliver a large variety of molecules to cell nuclei. New hybrid radiopharmaceuticals of type 99m Tc-N 2 S 2 -Tat(49-57)-Lys 3 -Bn ( 99m Tc-Tat-Bn) and 188 Re-N 2 S 2 -Tat(49-57)-Lys 3 -Bn ( 188 Re-Tat-Bn), would increase cell uptake and internalized in cancer cell nuclei could act as an effective system of targeted radiotherapy using Auger and internal conversion (I C) electron emissions near DNA. The aim of this research was to prepare and assess in vitro and in vivo uptake kinetics in cancer cells of 99m Tc/ 188 Re-Tat-Bn and the in vitro nucleus and cytoplasm internalization kinetics in GRP receptor-positive cancer cells as well as to evaluate the subcellular-level radiation absorbed dose associated with the observed effect on cancer cell DNA proliferation. Structures of N 2 S 2 -Tat-Bn and Tc/Re(O)N 2 S 2 -Tat-Bn were calculated by an Mm procedure. 99m Tc-Tat-Bn and 188 Re-Tat-Bn were synthesized and stability studies carried out by HPLC and I TLC-Sg analyses in serum and cysteine solutions. In vitro internalization was tested using human prostate cancer Pc 3 cells and breast carcinoma cell lines MDA-Mb 231 and MCF 7. Nuclei from cells were isolated using a nuclear extraction kit. Total disintegrations in each subcellular compartment were calculated by integration of experimental time activity kinetic curves. Nucleus internalization was corroborated by con focal microscopy images using immunofluorescent labelled Tat-Bn. Biodistribution was determined in Pc 3 tumor-bearing nude mice. The Penelope code was used to simulate and calculate the absorbed dose by contribution of β, Auger and I C electrons in the cytoplasm and nucleus using geometric models built from immunofluorescent cell images. A cell proliferation

  12. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments

    International Nuclear Information System (INIS)

    Imai, Masaki; Baranyi, Lajos; Okada, Noriko; Okada, Hidechika

    2007-01-01

    HIV-1 infection requires interaction of viral envelope protein gp160 with CD4 and a chemokine receptor, CCR5 or CXCR4 as entry coreceptor. We designed HIV-inhibitory peptides targeted to CCR5 using a novel computer program (ANTIS), which searched all possible sense-antisense amino acid pairs between proteins. Seven AHBs were found in CCR5 receptor. All AHB peptides were synthesized and tested for their ability to prevent HIV-1 infection to human T cells. A peptide fragment (LC5) which is a part of the CCR5 receptor corresponding to the loop between the fifth and sixth transmembrane regions (amino acids 222-240) proved to inhibit HIV-1 IIIB infection of MT-4 cells. Interaction of these antisense peptides could be involved in sustaining HIV-1 infectivity. LC5 effectively indicated dose-dependent manner, and the suppression was enhanced additively by T20 peptide, which inhibits infection in vitro by disrupting the gp41 conformational changes necessary for membrane fusion. Thus, these results indicate that CCR5-derived AHB peptides could provide a useful tool to define the mechanism(s) of HIV infection, and may provide insight which will contribute to the development of an anti-HIV-1 reagent

  13. Nullbasic, a potent anti-HIV tat mutant, induces CRM1-dependent disruption of HIV rev trafficking.

    Directory of Open Access Journals (Sweden)

    Min-Hsuan Lin

    Full Text Available Nullbasic, a mutant of the HIV-1 Tat protein, has anti-HIV-1 activity through mechanisms that include inhibition of Rev function and redistribution of the HIV-1 Rev protein from the nucleolus to the nucleoplasm and cytoplasm. Here we investigate the mechanism of this effect for the first time, establishing that redistribution of Rev by Nullbasic is not due to direct interaction between the two proteins. Rather, Nullbasic affects subcellular localization of cellular proteins that regulate Rev trafficking. In particular, Nullbasic induced redistribution of exportin 1 (CRM1, nucleophosmin (B23 and nucleolin (C23 from the nucleolus to the nucleus when Rev was coexpressed, but never in its absence. Inhibition of the Rev:CRM1 interaction by leptomycin B or a non-interacting RevM10 mutant completely blocked redistribution of Rev by Nullbasic. Finally, Nullbasic did not inhibit importin β- or transportin 1-mediated nuclear import, suggesting that cytoplasmic accumulation of Rev was due to increased export by CRM1. Overall, our data support the conclusion that CRM1-dependent subcellular redistribution of Rev from the nucleolus by Nullbasic is not through general perturbation of either nuclear import or export. Rather, Nullbasic appears to interact with and disrupt specific components of a Rev trafficking complex required for its nucleocytoplasmic shuttling and, in particular, its nucleolar accumulation.

  14. Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers

    NARCIS (Netherlands)

    Yesylevskyy, Semen; Marrink, Siewert-Jan; Mark, Alan E.

    2009-01-01

    Cell-penetrating peptides (CPPs) have recently attracted much interest due to their apparent ability to penetrate cell membranes in an energy-independent manner. Here molecular-dynamics simulation techniques were used to study the interaction of two CPPs: penetratin and the TAT peptide with

  15. HIV-1 Tat affects the programming and functionality of human CD8⁺ T cells by modulating the expression of T-box transcription factors.

    Science.gov (United States)

    Sforza, Fabio; Nicoli, Francesco; Gallerani, Eleonora; Finessi, Valentina; Reali, Eva; Cafaro, Aurelio; Caputo, Antonella; Ensoli, Barbara; Gavioli, Riccardo

    2014-07-31

    HIV infection is characterized by several immune dysfunctions of both CD8⁺ and CD4⁺ T cells as hyperactivation, impairment of functionality and expansion of memory T cells. CD8⁺ T-cell dysfunctions have been associated with increased expression of T-bet, Eomesdermin and pro-inflammatory cytokines, and with down-regulation of CD127. The HIV-1 trans-activator of transcription (Tat) protein, which is released by infected cells and detected in tissues of HIV-positive individuals, is known to contribute to the dysregulation of CD4⁺ T cells; however, its effects on CD8⁺ T cells have not been investigated. Thus, in this study, we sought to address whether Tat may affect CD8⁺ T-cell functionality and programming. CD8⁺ T cells were activated by T-cell receptor engagement in the presence or absence of Tat. Cytokine production, killing capacity, surface phenotype and expression of transcription factors important for T-cell programming were evaluated. Tat favors the secretion of interleukin-2, interferon-γ and granzyme B in CD8⁺ T cells. Behind this functional modulation we observed that Tat increases the expression of T-bet, Eomesdermin, Blimp-1, Bcl-6 and Bcl-2 in activated but not in unstimulated CD8⁺ T lymphocytes. This effect is associated with the down-regulation of CD127 and the up-regulation of CD27. Tat deeply alters the programming and functionality of CD8⁺ T lymphocytes.

  16. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.

    Science.gov (United States)

    Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu

    2013-08-01

    To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  18. An attenuated herpes simplex virus type 1 (HSV1 encoding the HIV-1 Tat protein protects mice from a deadly mucosal HSV1 challenge.

    Directory of Open Access Journals (Sweden)

    Mariaconcetta Sicurella

    Full Text Available Herpes simplex virus types 1 and 2 (HSV1 and HSV2 are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat. In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ, induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1

  19. An attenuated herpes simplex virus type 1 (HSV1) encoding the HIV-1 Tat protein protects mice from a deadly mucosal HSV1 challenge.

    Science.gov (United States)

    Sicurella, Mariaconcetta; Nicoli, Francesco; Gallerani, Eleonora; Volpi, Ilaria; Berto, Elena; Finessi, Valentina; Destro, Federica; Manservigi, Roberto; Cafaro, Aurelio; Ensoli, Barbara; Caputo, Antonella; Gavioli, Riccardo; Marconi, Peggy C

    2014-01-01

    Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and

  20. Recombinant TAT-BMI-1 fusion protein induces ex vivo expansion of human umbilical cord blood-derived hematopoietic stem cells.

    Science.gov (United States)

    Codispoti, Bruna; Rinaldo, Nicola; Chiarella, Emanuela; Lupia, Michela; Spoleti, Cristina Barbara; Marafioti, Maria Grazia; Aloisio, Annamaria; Scicchitano, Stefania; Giordano, Marco; Nappo, Giovanna; Lucchino, Valeria; Moore, Malcolm A S; Zhou, Pengbo; Mesuraca, Maria; Bond, Heather Mandy; Morrone, Giovanni

    2017-07-04

    Transplantation of hematopoietic stem cells (HSCs) is a well-established therapeutic approach for numerous disorders. HSCs are typically derived from bone marrow or peripheral blood after cytokine-induced mobilization. Umbilical cord blood (CB) represents an appealing alternative HSC source, but the small amounts of the individual CB units have limited its applications. The availability of strategies for safe ex vivo expansion of CB-derived HSCs (CB-HSCs) may allow to extend the use of these cells in adult patients and to avoid the risk of insufficient engraftment or delayed hematopoietic recovery.Here we describe a system for the ex vivo expansion of CB-HSCs based on their transient exposure to a recombinant TAT-BMI-1 chimeric protein. BMI-1 belongs to the Polycomb family of epigenetic modifiers and is recognized as a central regulator of HSC self-renewal. Recombinant TAT-BMI-1 produced in bacteria was able to enter the target cells via the HIV TAT-derived protein transduction peptide covalently attached to BMI-1, and conserved its biological activity. Treatment of CB-CD34+ cells for 3 days with repeated addition of 10 nM purified TAT-BMI-1 significantly enhanced total cell expansion as well as that of primitive hematopoietic progenitors in culture. Importantly, TAT-BMI-1-treated CB-CD34+ cells displayed a consistently higher rate of multi-lineage long-term repopulating activity in primary and secondary xenotransplants in immunocompromised mice. Thus, recombinant TAT-BMI-1 may represent a novel, effective reagent for ex vivo expansion of CB-HSC for therapeutic purposes.

  1. Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.

    Science.gov (United States)

    Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman

    In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (Pdendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  2. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles

    Directory of Open Access Journals (Sweden)

    Chu YC

    2017-02-01

    Full Text Available Yongchao Chu,1,* Ning Chen,2,* Huajun Yu,2,* Hongjie Mu,1 Bin He,1 Hongchen Hua,1 Aiping Wang,1 Kaoxiang Sun1 1School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People’s Republic of China; 2Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People’s Republic of China *These authors contributed equally to this work Abstract: A nanoparticle (NP was developed to target choroidal neovascularization (CNV via topical ocular administration. The NPs were prepared through conjugation of internalizing arginine-glycine-aspartic acid RGD (iRGD; Ac-CCRGDKGPDC and transactivated transcription (TAT (RKKRRQRRRC peptide to polymerized ethylene glycol and lactic-co-glycolic acid. The iRGD sequence can specifically bind with integrin αvβ3, while TAT facilitates penetration through the ocular barrier. 1H nuclear magnetic resonance and high-performance liquid chromatography demonstrated that up to 80% of iRGD and TAT were conjugated to poly(ethylene glycol–poly(lactic-co-glycolic acid. The resulting particle size was 67.0±1.7 nm, and the zeta potential of the particles was −6.63±0.43 mV. The corneal permeation of iRGD and TAT NPs increased by 5.50- and 4.56-fold compared to that of bare and iRGD-modified NPs, respectively. Cellular uptake showed that the red fluorescence intensity of iRGD and TAT NPs was highest among primary NPs and iRGD- or TAT-modified NPs. CNV was fully formed 14 days after photocoagulation in Brown Norway (BN rats as shown by optical coherence tomography and fundus fluorescein angiography analyses. Choroidal flat mounts in BN rats showed that the red fluorescence intensity of NPs followed the order of iRGD and TAT NPs > TAT-modified NPs > iRGD-modified NPs

  3. Conformational preferences of a chimeric peptide HIV-1 immunogen from the C4-V3 domains of gp120 envelope protein of HIV-1 CAN0A based on solution NMR: comparison to a related immunogenic peptide from HIV-1 RF.

    Science.gov (United States)

    Vu, H M; de Lorimier, R; Moody, M A; Haynes, B F; Spicer, L D

    1996-04-23

    A critical problem to overcome on HIV vaccine design is the variability among HIV strains. One strategy to solve this problem is the construction of multicomponent immunogens reflective of common HIV motifs. Currently, it is not known if these motifs should be based primarily on amino acid sequence or higher-order structure of the viral proteins of a combination of the two. In this paper, we report NMR-derived solution conformations for a sympathetic peptide taken from the C4 and V3 domains of HIV-1 CAN0A gp120 envelope protein. This peptide, designated T1-SP10CAN0(A), is compared to a recently reported C4-V3 peptide. T1-SP10RF(A) from the HIV-1 RF strain [de Lorimier et al. (1994) Biochemistry 33, 2055-2062], in terms of conformational features and immune responses in mice [Haynes et al. (1995) AIDS Res. Hum. Retroviruses 11, 211-221]. The T1 segment of 16 amino acids from the gp120 C4 domain is identical in both peptides and exhibits nascent helical character. The SP10 region, taken from the gp120 V3 loop, differs from that of T1-SP10RF(A) in both sequence and conformations. A reverse turn is observed at the conserved GPGX sequence. The rest of the Sp10 domain is extended with the exception of the last three residues which show evidence for a helical arrangement. Modeling of the turn region of the T1-SP10CAN0(A) peptide shows exposure of a continuous apolar stretch of side chains similar to that reported in the crystal structure of a V3 peptide from HIV-1 MN complexed with a monoclonal antibody [Rini et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 6325-6329]. this hydrophobic patch is interrupted by a charged Lys residue in the T1-SP10RF(A) peptide. This observation suggests that the HIV-1 CAN0A and HIV-1 RF C4-V3 peptides can induce widely different anti-HIV antibodies. consistent with immunogenic results.

  4. Chimeric peptide-mediated siRNA transduction to inhibit HIV-1 infection.

    Science.gov (United States)

    Bivalkar-Mehla, Shalmali; Mehla, Rajeev; Chauhan, Ashok

    2017-04-01

    Persistent human immunodeficiency virus 1 (HIV-1) infection provokes immune activation and depletes CD4 +  lymphocytes, leading to acquired immunodeficiency syndrome. Uninterrupted administration of combination antiretroviral therapy (cART) in HIV-infected patients suppresses viral replication to below the detectable level and partially restores the immune system. However, cART-unresponsive residual HIV-1 infection and elusive transcriptionally silent but reactivatable viral reservoirs maintain a permanent viral DNA blue print. The virus rebounds within a few weeks after interruption of suppressive therapy. Adjunct gene therapy to control viral replication by ribonucleic acid interference (RNAi) is a post-transcriptional gene silencing strategy that could suppress residual HIV-1 burden and overcome viral resistance. Small interfering ribonucleic acids (siRNAs) are efficient transcriptional inhibitors, but need delivery systems to reach inside target cells. We investigated the potential of chimeric peptide (FP-PTD) to deliver specific siRNAs to HIV-1-susceptible and permissive cells. Chimeric FP-PTD peptide was designed with an RNA binding domain (PTD) to bind siRNA and a cell fusion peptide domain (FP) to enter cells. FP-PTD-siRNA complex entered and inhibited HIV-1 replication in susceptible cells, and could be a candidate for in vivo testing.

  5. A Tat-conjugated Peptide Nucleic Acid Tat-PNA-DR Inhibits Hepatitis B Virus Replication In Vitro and In Vivo by Targeting LTR Direct Repeats of HBV RNA

    Science.gov (United States)

    Zeng, Zhengyang; Han, Shisong; Hong, Wei; Lang, Yange; Li, Fangfang; Liu, Yongxiang; Li, Zeyong; Wu, Yingliang; Li, Wenxin; Zhang, Xianzheng; Cao, Zhijian

    2016-01-01

    Hepatitis B virus (HBV) infection is a major cause of chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma, all of which are severe threats to human health. However, current clinical therapies for HBV are limited by potential side effects, toxicity, and drug-resistance. In this study, a cell-penetrating peptide-conjugated peptide nucleic acid (PNA), Tat-PNA-DR, was designed to target the direct repeat (DR) sequences of HBV. Tat-PNA-DR effectively inhibited HBV replication in HepG2.2.15 cells. Its anti-HBV effect relied on the binding of Tat-PNA-DR to the DR, whereby it suppressed the translation of hepatitis B e antigen (HBeAg), HBsAg, HBV core, hepatitis B virus x protein, and HBV reverse transcriptase (RT) and the reverse transcription of the HBV genome. Furthermore, Tat-PNA-DR administered by intravenous injection efficiently cleared HBeAg and HBsAg in an acute hepatitis B mouse model. Importantly, it induced an 80% decline in HBV DNA in mouse serum, which was similar to the effect of the widely used clinical drug Lamivudine (3TC). Additionally, a long-term hydrodynamics HBV mouse model also demonstrated Tat-PNA-DR's antiviral effect. Interestingly, Tat-PNA-DR displayed low cytotoxicity, low mouse acute toxicity, low immunogenicity, and high serum stability. These data indicate that Tat-PNA-DR is a unique PNA and a promising drug candidate against HBV. PMID:26978579

  6. A Tat-conjugated Peptide Nucleic Acid Tat-PNA-DR Inhibits Hepatitis B Virus Replication In Vitro and In Vivo by Targeting LTR Direct Repeats of HBV RNA

    Directory of Open Access Journals (Sweden)

    Zhengyang Zeng

    2016-01-01

    Full Text Available Hepatitis B virus (HBV infection is a major cause of chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma, all of which are severe threats to human health. However, current clinical therapies for HBV are limited by potential side effects, toxicity, and drug-resistance. In this study, a cell-penetrating peptide-conjugated peptide nucleic acid (PNA, Tat-PNA-DR, was designed to target the direct repeat (DR sequences of HBV. Tat-PNA-DR effectively inhibited HBV replication in HepG2.2.15 cells. Its anti-HBV effect relied on the binding of Tat-PNA-DR to the DR, whereby it suppressed the translation of hepatitis B e antigen (HBeAg, HBsAg, HBV core, hepatitis B virus x protein, and HBV reverse transcriptase (RT and the reverse transcription of the HBV genome. Furthermore, Tat-PNA-DR administered by intravenous injection efficiently cleared HBeAg and HBsAg in an acute hepatitis B mouse model. Importantly, it induced an 80% decline in HBV DNA in mouse serum, which was similar to the effect of the widely used clinical drug Lamivudine (3TC. Additionally, a long-term hydrodynamics HBV mouse model also demonstrated Tat-PNA-DR's antiviral effect. Interestingly, Tat-PNA-DR displayed low cytotoxicity, low mouse acute toxicity, low immunogenicity, and high serum stability. These data indicate that Tat-PNA-DR is a unique PNA and a promising drug candidate against HBV.

  7. Negotiation of intracellular membrane barriers by TAT-modified gold nanoparticles.

    Science.gov (United States)

    Krpetić, Zeljka; Saleemi, Samia; Prior, Ian A; Sée, Violaine; Qureshi, Rumana; Brust, Mathias

    2011-06-28

    This paper contributes to the debate on how nanosized objects negotiate membrane barriers inside biological cells. The uptake of peptide-modified gold nanoparticles by HeLa cells has been quantified using atomic emission spectroscopy. The TAT peptide from the HIV virus was singled out as a particularly effective promoter of cellular uptake. The evolution of the intracellular distribution of TAT-modified gold nanoparticles with time has been studied in detail by TEM and systematic image analysis. An unusual trend of particles disappearing from the cytosol and the nucleus and accumulating massively in vesicular bodies was observed. Subsequent release of the particles, both by membrane rupture and by direct transfer across the membrane boundary, was frequently found. Ultimately, near total clearing of particles from the cells occurred. This work provides support for the hypothesis that cell-penetrating peptides can enable small objects to negotiate membrane barriers also in the absence of dedicated transport mechanisms.

  8. Human immunodeficiency virus-1 protein Tat induces excitotoxic loss of presynaptic terminals in hippocampal cultures.

    Science.gov (United States)

    Shin, Angela H; Thayer, Stanley A

    2013-05-01

    Human immunodeficiency virus (HIV) infection of the CNS produces dendritic damage that correlates with cognitive decline in patients with HIV-associated neurocognitive disorders (HAND). HIV-induced neurotoxicity results in part from viral proteins shed from infected cells, including the HIV transactivator of transcription (Tat). We previously showed that Tat binds to the low density lipoprotein receptor-related protein (LRP), resulting in overactivation of NMDA receptors, activation of the ubiquitin-proteasome pathway, and subsequent loss of postsynaptic densities. Here, we show that Tat also induces a loss of presynaptic terminals. The number of presynaptic terminals was quantified using confocal imaging of synaptophysin fused to green fluorescent protein (Syn-GFP). Tat-induced loss of presynaptic terminals was secondary to excitatory postsynaptic mechanisms because treatment with an LRP antagonist or an NMDA receptor antagonist inhibited this loss. Treatment with nutlin-3, an E3 ligase inhibitor, prevented Tat-induced loss of presynaptic terminals. These data suggest that Tat-induced loss of presynaptic terminals is a consequence of excitotoxic postsynaptic activity. We previously found that ifenprodil, an NR2B subunit-selective NMDA receptor antagonist, induced recovery of postsynaptic densities. Here we show that Tat-induced loss of presynaptic terminals was reversed by ifenprodil treatment. Thus, Tat-induced loss of presynaptic terminals is reversible, and this recovery can be initiated by inhibiting a subset of postsynaptic NMDA receptors. Understanding the dynamics of synaptic changes in response to HIV infection of the CNS may lead to the design of improved pharmacotherapies for HAND patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Evidence for conformational flexibility in the Tat-TAR recognition motif of cyclin T1

    International Nuclear Information System (INIS)

    Das, Chandreyee; Edgcomb, Stephen P.; Peteranderl, Ralph; Chen, Lily; Frankel, Alan D.

    2004-01-01

    Cyclin T1 (CycT1) is a cellular transcription elongation factor that also participates in Tat-mediated activation of several lentiviral promoters. In human immunodeficiency virus (HIV), CycT1 is required for Tat to bind tightly to TAR and interacts in the ternary complex via its Tat-TAR recognition motif (TRM). In the related bovine immunodeficiency virus (BIV), Tat recognizes its cognate TAR element with high affinity and specificity in the absence of CycT1. At both promoters, CycT1 recruits the Cdk9 kinase, which phosphorylates RNA polymerase II to generate processive transcription complexes. To examine the physical properties of CycT1, we purified a functional domain corresponding to residues 1-272 and found that it possesses a stably folded core, as judged by partial proteolysis and circular dichroism experiments. Interestingly, the C-terminal 20 residues corresponding to the TRM appear conformationally flexible or disordered. The TRM of the bovine CycT1 (bCycT1) is similarly sensitive to proteolysis yet differs in sequence from the human protein. In particular, bCycT1 lacks a cysteine at residue 261 known to be critical for HIV but not BIV ternary complex formation, and mutagenesis data are consistent with a proposed role for this cysteine in metal binding. The apparent flexibility of the TRM suggests that conformational rearrangements may accompany formation of CycT1-Tat-TAR ternary complexes and may contribute to different TAR recognition strategies in different lentiviruses

  10. Effect of the peptide Tat(49-57) on the bio-distribution and similar radiopharmaceuticals dosimetry of the bombesin; Efecto del peptido TAT(49-57) sobre la biodistribucion y dosimetria de radiofarmacos analogos de la bombesina

    Energy Technology Data Exchange (ETDEWEB)

    Santos C, C. L.

    2011-07-01

    The gastrin-releasing peptide receptor (GRP-r) is over-expressed in prostate and breast cancer. {sup 99m}Tc-Bombesin ({sup 99m}Tc-Bn) has been reported as a radiopharmaceutical with specific cell GRP-r binding. The HIV Tat(49-57)-derived peptide has been used to deliver a large variety of molecules to cell nuclei. New hybrid radiopharmaceuticals of type {sup 99m}Tc-N{sub 2}S{sub 2}-Tat(49-57)-Lys{sup 3}-Bn ({sup 99m}Tc-Tat-Bn) and {sup 188}Re-N{sub 2}S{sub 2}-Tat(49-57)-Lys{sup 3}-Bn ({sup 188}Re-Tat-Bn), would increase cell uptake and internalized in cancer cell nuclei could act as an effective system of targeted radiotherapy using Auger and internal conversion (I C) electron emissions near DNA. The aim of this research was to prepare and assess in vitro and in vivo uptake kinetics in cancer cells of {sup 99m}Tc/{sup 188}Re-Tat-Bn and the in vitro nucleus and cytoplasm internalization kinetics in GRP receptor-positive cancer cells as well as to evaluate the subcellular-level radiation absorbed dose associated with the observed effect on cancer cell DNA proliferation. Structures of N{sub 2}S{sub 2}-Tat-Bn and Tc/Re(O)N{sub 2}S{sub 2}-Tat-Bn were calculated by an Mm procedure. {sup 99m}Tc-Tat-Bn and {sup 188}Re-Tat-Bn were synthesized and stability studies carried out by HPLC and I TLC-Sg analyses in serum and cysteine solutions. In vitro internalization was tested using human prostate cancer Pc 3 cells and breast carcinoma cell lines MDA-Mb 231 and MCF 7. Nuclei from cells were isolated using a nuclear extraction kit. Total disintegrations in each subcellular compartment were calculated by integration of experimental time activity kinetic curves. Nucleus internalization was corroborated by con focal microscopy images using immunofluorescent labelled Tat-Bn. Biodistribution was determined in Pc 3 tumor-bearing nude mice. The Penelope code was used to simulate and calculate the absorbed dose by contribution of {beta}, Auger and I C electrons in the cytoplasm and

  11. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape.

    Science.gov (United States)

    Salomone, Fabrizio; Cardarelli, Francesco; Di Luca, Mariagrazia; Boccardi, Claudia; Nifosì, Riccardo; Bardi, Giuseppe; Di Bari, Lorenzo; Serresi, Michela; Beltram, Fabio

    2012-11-10

    Efficient endocytosis into a wide range of target cells and low toxicity make the arginine-rich Tat peptide (Tat(11): YGRKKRRQRRR, residues 47-57 of HIV-1 Tat protein) an excellent transporter for delivery purposes. Unfortunately, molecules taken up by endocytosis undergo endosomal entrapment and possible metabolic degradation. Escape from the endosome is therefore actively researched. In this context, antimicrobial peptides (AMPs) provide viable templates for the design of new membrane-disruptive motifs. In particular the Cecropin-A and Melittin hybrids (CMs) are among the smallest and most effective peptides with membrane-perturbing abilities. Here we present a novel chimeric peptide in which the Tat(11) motif is fused to the CM(18) hybrid (KWKLFKKIGAVLKVLTTG, residues 1-7 of Cecropin-A and 2-12 of Melittin). When administered to cells, CM(18)-Tat(11) combines the two desired functionalities: efficient uptake and destabilization of endocytotic-vesicle membranes. We show that this chimeric peptide effectively increases cargo-molecule cytoplasm availability and allows the subsequent intracellular localization of diverse membrane-impermeable molecules (i.e. Tat(11)-EGFP fusion protein, calcein, dextrans, and plasmidic DNA) with no detectable cytotoxicity. The present results open the way to the rational engineering of "modular" cell-penetrating peptides (CPPs) that combine (i) efficient translocation from the extracellular milieu into vesicles and (ii) efficient release of molecules from vesicles into the cytoplasm. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. "cART intensification by the HIV-1 Tat B clade vaccine: progress to phase III efficacy studies".

    Science.gov (United States)

    Cafaro, Aurelio; Sgadari, Cecilia; Picconi, Orietta; Tripiciano, Antonella; Moretti, Sonia; Francavilla, Vittorio; Pavone Cossut, Maria Rosaria; Buttò, Stefano; Cozzone, Giovanni; Ensoli, Fabrizio; Monini, Paolo; Ensoli, Barbara

    2018-02-01

    In spite of its success at suppressing HIV replication, combination antiretroviral therapy (cART) only partially reduces immune dysregulation and loss of immune functions. These cART-unmet needs appear to be due to persistent virus replication and cell-to-cell transmission in reservoirs, and are causes of increased patients' morbidity and mortality. Up to now, therapeutic interventions aimed at cART-intensification by attacking the virus reservoir have failed. Areas covered: We briefly review the rationale and clinical development of Tat therapeutic vaccine in cART-treated subjects in Italy and South Africa (SA). Vaccination with clade-B Tat induced cross-clade neutralizing antibodies, immune restoration, including CD4 + T cell increase particularly in low immunological responders, and reduction of proviral DNA. Phase III efficacy trials in SA are planned both in adult and pediatric populations. Expert commentary: We propose the Tat therapeutic vaccine as a pathogenesis-driven intervention that effectively intensifies cART and may lead to a functional cure and provide new perspectives for prevention and virus eradication strategies.

  13. Interactive HIV-1 Tat and morphine-induced synaptodendritic injury is triggered through focal disruptions in Na⁺ influx, mitochondrial instability, and Ca²⁺ overload.

    Science.gov (United States)

    Fitting, Sylvia; Knapp, Pamela E; Zou, Shiping; Marks, William D; Bowers, M Scott; Akbarali, Hamid I; Hauser, Kurt F

    2014-09-17

    Synaptodendritic injury is thought to underlie HIV-associated neurocognitive disorders and contributes to exaggerated inflammation and cognitive impairment seen in opioid abusers with HIV-1. To examine events triggering combined transactivator of transcription (Tat)- and morphine-induced synaptodendritic injury systematically, striatal neuron imaging studies were conducted in vitro. These studies demonstrated nearly identical pathologic increases in dendritic varicosities as seen in Tat transgenic mice in vivo. Tat caused significant focal increases in intracellular sodium ([Na(+)]i) and calcium ([Ca(2+)]i) in dendrites that were accompanied by the emergence of dendritic varicosities. These effects were largely, but not entirely, attenuated by the NMDA and AMPA receptor antagonists MK-801 and CNQX, respectively. Concurrent morphine treatment accelerated Tat-induced focal varicosities, which were accompanied by localized increases in [Ca(2+)]i and exaggerated instability in mitochondrial inner membrane potential. Importantly, morphine's effects were prevented by the μ-opioid receptor antagonist CTAP and were not observed in neurons cultured from μ-opioid receptor knock-out mice. Combined Tat- and morphine-induced initial losses in ion homeostasis and increases in [Ca(2+)]i were attenuated by the ryanodine receptor inhibitor ryanodine, as well as pyruvate. In summary, Tat induced increases in [Na(+)]i, mitochondrial instability, excessive Ca(2+) influx through glutamatergic receptors, and swelling along dendrites. Morphine, acting via μ-opioid receptors, exacerbates these excitotoxic Tat effects at the same subcellular locations by mobilizing additional [Ca(2+)]i and by further disrupting [Ca(2+)]i homeostasis. We hypothesize that the spatiotemporal relationship of μ-opioid and aberrant AMPA/NMDA glutamate receptor signaling is critical in defining the location and degree to which opiates exacerbate the synaptodendritic injury commonly observed in neuro

  14. Enhanced Cellular Uptake of Albumin-Based Lyophilisomes when Functionalized with Cell-Penetrating Peptide TAT in HeLa Cells

    NARCIS (Netherlands)

    van Bracht, Etienne; Versteegden, Luuk R. M.; Stolle, Sarah; Verdurmen, Wouter P. R.; Woestenenk, Rob; Raave, Rene; Hafmans, Theo; Oosterwijk, Egbert; Brock, Roland; van Kuppevelt, Toin H.; Daamen, Willeke F.

    2014-01-01

    Lyophilisomes are a novel class of biodegradable proteinaceous nano/micrometer capsules with potential use as drug delivery carrier. Cell-penetrating peptides (CPPs) including the TAT peptide have been successfully implemented for intracellular delivery of a broad variety of cargos including various

  15. Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Pankratova, Stanislava; Nielsen, Peter E

    2005-01-01

    Cell-penetrating peptides have been widely used to improve cellular delivery of a variety of proteins and antisense agents. However, recent studies indicate that such cationic peptides are predominantly entering cells via an endosomal pathway. We now show that the nuclear antisense effect in He......La cells of a variety of peptide nucleic acid (PNA) peptide conjugates is significantly enhanced by addition of 6 mM Ca(2+) (as well as by the lysosomotrophic agent chloroquine). In particular, the antisense activities of Tat(48-60) and heptaarginine-conjugated PNAs were increased 44-fold and 8.5-fold......, respectively. Evidence is presented that the mechanism involves endosomal release. The present results show that Ca(2+) can be used as an effective enhancer for in vitro cellular delivery of cationic peptide-conjugated PNA oligomers, and also emphasize the significance of the endosomal escape route...

  16. Epitopes of human immunodeficiency virus regulatory proteins tat, nef, and rev are expressed in normal human tissue

    NARCIS (Netherlands)

    Parmentier, H. K.; van Wichen, D. F.; Meyling, F. H.; Goudsmit, J.; Schuurman, H. J.

    1992-01-01

    The expression of regulatory proteins tat, rev, and nef of human immunodeficiency virus type-1 (HIV-1) and tat of HIV-2 was studied in frozen sections of lymph nodes from HIV-1-infected individuals, and various tissues from uninfected persons. In HIV-1-positive lymph nodes, monoclonal antibodies to

  17. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  18. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli

    DEFF Research Database (Denmark)

    Cristóbal, S.; de Gier, J.-W.; Nielsen, Henrik

    1999-01-01

    -routed into the TAT pathway, suggesting that Sec-targeting signals in Lep can override TAT-targeting information in the TorA signal peptide. We also show that the TorA signal peptide can be converted into a Sec-targeting signal peptide by increasing the hydrophobicity of its h-region. Thus, beyond the twin...... the TorA TAT-targeting signal peptide to the Sec-dependent inner membrane protein leader peptidase (Lep). We find that the soluble, periplasmic P2 domain from Lep is re-routed by the TorA signal peptide into the TAT pathway. In contrast, the full-length TorA–Lep fusion protein is not re...

  19. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    International Nuclear Information System (INIS)

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-01-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs

  20. Characterization of HIV-Specific CD4+T Cell Responses against Peptides Selected with Broad Population and Pathogen Coverage

    DEFF Research Database (Denmark)

    Buggert, Marcus; Norstrom, Melissa M.; Czarnecki, Chris

    2012-01-01

    for the identification of HIV-specific CD4+ T cells targeting broadly reactive epitopes in populations with diverse ethnic background stems from the vast genomic variation of HIV and the diversity of the host cellular immune system. Here, we describe a novel epitope selection strategy, PopCover, that aims to resolve...... this challenge, and identify a set of potential HLA class II-restricted HIV epitopes that in concert will provide optimal viral and host coverage. Using this selection strategy, we identified 64 putative epitopes (peptides) located in the Gag, Nef, Env, Pol and Tat protein regions of HIV. In total, 73...... II-restricted epitopes. All together, selection strategies, such as PopCover, might with success be used for the evaluation of antigen-specific CD4+ T cell responses and design of future vaccines....

  1. Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells

    International Nuclear Information System (INIS)

    Tada, Hiroomi; Lashgari, M.; Amini, S.; Khalili, K.; Rappaport, J.; Wong-Staal, F.

    1990-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC virus (JCV), a human papovavirus. PML is a relatively rare disease seen predominantly in immunocompromised individuals and is a frequent complication observed in AIDS patients. The significantly higher incidence of PML in AIDS patients than in other immunosuppressive disorders has suggested that the presence of human immunodeficiency virus type 1 (HIV-1) in the brain may directly or indirectly contribute to the pathogenesis of this disease. In the present study the authors have examined the expression of the JCV genome in both glial and non-glial cells in the presence of HIV-1 regulatory proteins. They find that the HIV-1-encoded trans-regulatory protein tat increases the basal activity of the JCV late promoter, JCV L , in glial cells. They conclude that the presence of the HIV-1-encoded tat protein may positively affect the JCV lytic cycle in glial cells by stimulating JCV gene expression. The results suggest a mechanism for the relatively high incidence of PML in AIDS patients than in other immunosuppressive disorders. Furthermore, the findings indicate that the HIV-1 regulatory protein tat may stimulate other viral and perhaps cellular promoters, in addition to its own

  2. Novel PI3K/Akt Inhibitors Screened by the Cytoprotective Function of Human Immunodeficiency Virus Type 1 Tat

    Science.gov (United States)

    Kim, Dong-Hyun; Kim, Baek

    2011-01-01

    The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors. PMID:21765914

  3. Novel PI3K/Akt inhibitors screened by the cytoprotective function of human immunodeficiency virus type 1 Tat.

    Directory of Open Access Journals (Sweden)

    Yuri Kim

    Full Text Available The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors.

  4. Non-immunogenicity of overlapping gag peptides pulsed on autologous cells after vaccination of HIV infected individuals.

    Directory of Open Access Journals (Sweden)

    Henrik N Kløverpris

    Full Text Available HIV Gag-specific CD4+ and CD8+ T-cell responses are important for HIV immune control. Pulsing overlapping Gag peptides on autologous lymphocytes (OPAL has proven immunogenic and effective in reducing viral loads in multiple pigtail macaque studies, warranting clinical evaluation.We performed a phase I, single centre, placebo-controlled, double-blinded and dose-escalating study to evaluate the safety and preliminary immunogenicity of a novel therapeutic vaccine approach 'OPAL-HIV-Gag(c'. This vaccine is comprised of 120 15mer peptides, overlapping by 11 amino acids, spanning the HIV Gag C clade sequence proteome, pulsed on white blood cells enriched from whole blood using a closed system, followed by intravenous reinfusion. Patients with undetectable HIV viral loads (<50 copies/ml plasma on HAART received four administrations at week 0, 4, 8 and 12, and were followed up for 12 weeks post-treatment. Twenty-three people were enrolled in four groups: 12 mg (n = 6, 24 mg (n = 7, 48 mg (n = 2 or matching placebo (n = 8 with 18 immunologically evaluable. T-cell immunogenicity was assessed by IFNγ ELIspot and intracellular cytokine staining (ICS.The OPAL-HIV-Gag(c peptides were antigenic in vitro in 17/17 subjects. After vaccination with OPAL-HIV-Gag(c, 1/6 subjects at 12 mg and 1/6 subjects at 24 mg dose groups had a 2- and 3-fold increase in ELIspot magnitudes from baseline, respectively, of Gag-specific CD8+ T-cells at week 14, compared to 0/6 subjects in the placebo group. No Gag-specific CD4+ T-cell responses or overall change in Rev, Nef, Tat and CMV specific responses were detected. Marked, transient and self-limiting lymphopenia was observed immediately post-vaccination (4 hours in OPAL-HIV-Gag(c but not in placebo recipients, with median fall from 1.72 to 0.67 million lymphocytes/mL for active groups (P<0.001, compared to post-placebo from 1.70 to 1.56 lymphocytes/ml (P = 0.16.Despite strong immunogenicity observed in

  5. Suppression of gastric cancer dissemination by ephrin-B1-derived peptide.

    Science.gov (United States)

    Tanaka, Masamitsu; Kamata, Reiko; Yanagihara, Kazuyoshi; Sakai, Ryuichi

    2010-01-01

    Interaction of the Eph family of receptor protein tyrosine kinases and their ligands, ephrin family members, induces bidirectional signaling through cell-cell contacts. High expression of B-type ephrin is associated with high invasion potential of tumors, and we previously observed that signaling through the C-terminus of ephrin-B1 mediates the migration and invasion of cells, and is involved in the promotion of carcinomatous peritonitis in vivo. Here we show that the intracellular introduction of a synthetic peptide derived from ephrin-B1 C-terminus blocks ephrin-B1 mediated signaling in scirrhous gastric cancer cells. Treatment of cancer cells with a fusion peptide consisting of HIV-TAT and amino acids 331-346 of ephrin-B1 (PTD-EFNB1-C) suppressed the activation of RhoA, mediated by the association of ephrin-B1 with an adaptor protein Dishevelled, and also inhibited extracellular secretion of metalloproteinase. Moreover, injection of PTD-EFNB1-C peptide into the peritoneal cavity of nude mice suppressed carcinomatous peritonitis of intraperitoneally transplanted scirrhous gastric cancer cells. These results indicate the possible application of ephrin-B1 C-terminal peptide to develop novel protein therapy for scirrhous gastric carcinoma, especially in the stage of tumor progression, including peritoneal dissemination.

  6. Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Vanesa; Conde, Joao; Hernandez, Yulan [Universidad de Zaragoza, Instituto de Nanociencia de Aragon (Spain); Baptista, Pedro V. [Universidade Nova de Lisboa, Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Centro de Investigacao em Genetica Molecular Humana (Portugal); Ibarra, M. R.; Fuente, Jesus M. de la, E-mail: jmfuente@unizar.es [Universidad de Zaragoza, Instituto de Nanociencia de Aragon (Spain)

    2012-06-15

    The surface chemistry of gold nanoparticles (AuNPs) plays a critical role in the self-assembly of thiolated molecules and in retaining the biological function of the conjugated biomolecules. According to the well-established gold-thiol interaction the undefined ionic species on citrate-reduced gold nanoparticle surface can be replaced with a self-assembled monolayer of certain thiolate derivatives and other biomolecules. Understanding the effect of such derivatives in the functionalization of several types of biomolecules, such as PEGs, peptides or nucleic acids, has become a significant challenge. Here, an approach to attach specific biomolecules to the AuNPs ({approx}14 nm) surface is presented together with a study of their effect in the functionalization with other specific derivatives. The effect of biofunctional spacers such as thiolated poly(ethylene glycol) (PEG) chains and a positive peptide, TAT, in dsRNA loading on AuNPs is reported. Based on the obtained data, we hypothesize that loading of oligonucleotides onto the AuNP surface may be controlled by ionic and weak interactions positioning the entry of the oligo through the PEG layer. We demonstrate that there is a synergistic effect of the TAT peptide and PEG chains with specific functional groups on the enhancement of dsRNA loading onto AuNPs.

  7. Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles

    International Nuclear Information System (INIS)

    Sanz, Vanesa; Conde, João; Hernández, Yulán; Baptista, Pedro V.; Ibarra, M. R.; Fuente, Jesús M. de la

    2012-01-01

    The surface chemistry of gold nanoparticles (AuNPs) plays a critical role in the self-assembly of thiolated molecules and in retaining the biological function of the conjugated biomolecules. According to the well-established gold–thiol interaction the undefined ionic species on citrate-reduced gold nanoparticle surface can be replaced with a self-assembled monolayer of certain thiolate derivatives and other biomolecules. Understanding the effect of such derivatives in the functionalization of several types of biomolecules, such as PEGs, peptides or nucleic acids, has become a significant challenge. Here, an approach to attach specific biomolecules to the AuNPs (∼14 nm) surface is presented together with a study of their effect in the functionalization with other specific derivatives. The effect of biofunctional spacers such as thiolated poly(ethylene glycol) (PEG) chains and a positive peptide, TAT, in dsRNA loading on AuNPs is reported. Based on the obtained data, we hypothesize that loading of oligonucleotides onto the AuNP surface may be controlled by ionic and weak interactions positioning the entry of the oligo through the PEG layer. We demonstrate that there is a synergistic effect of the TAT peptide and PEG chains with specific functional groups on the enhancement of dsRNA loading onto AuNPs.

  8. Thermodynamic studies of a series of homologous HIV-1 TAR RNA ligands reveal that loose binders are stronger Tat competitors than tight ones.

    Science.gov (United States)

    Pascale, Lise; Azoulay, Stéphane; Di Giorgio, Audrey; Zenacker, Laura; Gaysinski, Marc; Clayette, Pascal; Patino, Nadia

    2013-06-01

    RNA is a major drug target, but the design of small molecules that modulate RNA function remains a great challenge. In this context, a series of structurally homologous 'polyamide amino acids' (PAA) was studied as HIV-1 trans-activating response (TAR) RNA ligands. An extensive thermodynamic study revealed the occurence of an enthalpy-entropy compensation phenomenon resulting in very close TAR affinities for all PAA. However, their binding modes and their ability to compete with the Tat fragment strongly differ according to their structure. Surprisingly, PAA that form loose complexes with TAR were shown to be stronger Tat competitors than those forming tight ones, and thermal denaturation studies demonstrated that loose complexes are more stable than tight ones. This could be correlated to the fact that loose and tight ligands induce distinct RNA conformational changes as revealed by circular dichroism experiments, although nuclear magnetic resonance (NMR) experiments showed that the TAR binding site is the same in all cases. Finally, some loose PAA also display promising inhibitory activities on HIV-infected cells. Altogether, these results lead to a better understanding of RNA interaction modes that could be very useful for devising new ligands of relevant RNA targets.

  9. IMMUNOLOGICAL CHARACTERISTIC OF SYNTHETIC PEPTIDES SIMILAR TO ACTUAL HIV ANTIGEN DETERMINANTS

    Directory of Open Access Journals (Sweden)

    S. V. Korobova

    2016-01-01

    Full Text Available The development of HIV vaccine remains an important goal in prophylaxis and therapy of HIV/ AIDS epidemics. There are various approaches for development of а candidate vaccine based on induction of neutralizing antibodies and cell-mediated immunity. Synthetic peptides are considered promising vaccine antigens since they are capable of activating both humoral and cellular immune response. HIV-1 envelope gp120 is the target for neutralizing antiviral antibodies. The V3 region of the HIV-1 gp120 is highly immunogenic and important for the virus-coreceptor interaction. In a RV144 vaccine trial, the levels of vaccine-induced IgG antibodies recognizing V1V2 regions from multiple HIV-1 subtypes show inverse correlations with a risk for HIV-1 infection. Meanwhile, HIV is characterized by high diversity. The consensus and mosaic immunogens are complete but artificial proteins, which are computationally designed to elicit immune responses with improved cross-reactive broadness. We have been studied immunogenic properties of synthetic peptides derived from V1, V2, V3 loop regions of the consensus M HIV1 (CON-S sequence group of the gp 120 envelope protein and V3 loop derived from a Russian RUA022a2 isolate. These peptides specifically reacted to HIV-positive sera in ELISA, thus indicating their similarity to appropriate HIV proteins. The peptides proved to be weakly immunogenic. Therefore, Freund complete adjuvant was used to enhance peptide immunogenicity. To assess the immunogenicity, the mice were immunized with a peptide mixture. Antibodies have been developed to every peptide from the mixture, being, predominantly, of IgG isotype. The antibody titers depended on the length of peptide sequences. However, the sera from immunized mice did not have a HIV neutralizing activity. The serum neutralization was assessed by pseudovirus-based assay, using a molecular clone of virus isolates CAP 45.2.00.G3 and QH.209.14.M.EnvA2. The virus neutralization is a

  10. Cross-reactive microbial peptides can modulate HIV-specific CD8+ T cell responses.

    Directory of Open Access Journals (Sweden)

    Christopher W Pohlmeyer

    Full Text Available Heterologous immunity is an important aspect of the adaptive immune response. We hypothesized that this process could modulate the HIV-1-specific CD8+ T cell response, which has been shown to play an important role in HIV-1 immunity and control. We found that stimulation of peripheral blood mononuclear cells (PBMCs from HIV-1-positive subjects with microbial peptides that were cross-reactive with immunodominant HIV-1 epitopes resulted in dramatic expansion of HIV-1-specific CD8+ T cells. Interestingly, the TCR repertoire of HIV-1-specific CD8+ T cells generated by ex vivo stimulation of PBMCs using HIV-1 peptide was different from that of cells stimulated with cross-reactive microbial peptides in some HIV-1-positive subjects. Despite these differences, CD8+ T cells stimulated with either HIV-1 or cross-reactive peptides effectively suppressed HIV-1 replication in autologous CD4+ T cells. These data suggest that exposure to cross-reactive microbial antigens can modulate HIV-1-specific immunity.

  11. In vitro and in vivo evaluation of a water-in-oil microemulsion system for enhanced peptide intestinal delivery.

    Science.gov (United States)

    Liu, Dongyun; Kobayashi, Taku; Russo, Steven; Li, Fengling; Plevy, Scott E; Gambling, Todd M; Carson, Johnny L; Mumper, Russell J

    2013-01-01

    Peptide and protein drugs have become the new generation of therapeutics, yet most of them are only available as injections, and reports on oral local intestinal delivery of peptides and proteins are quite limited. The aim of this work was to develop and evaluate a water-in-oil (w/o) microemulsion system in vitro and in vivo for local intestinal delivery of water-soluble peptides after oral administration. A fluorescent labeled peptide, 5-(and-6)-carboxytetramethylrhodamine labeled HIV transactivator protein TAT (TAMRA-TAT), was used as a model peptide. Water-in-oil microemulsions consisting of Miglyol 812, Capmul MCM, Tween 80, and water were developed and characterized in terms of appearance, viscosity, conductivity, morphology, and particle size analysis. TAMRA-TAT was loaded and its enzymatic stability was assessed in modified simulated intestinal fluid (MSIF) in vitro. In in vivo studies, TAMRA-TAT intestinal distribution was evaluated using fluorescence microscopy after TAMRA-TAT microemulsion, TAMRA-TAT solution, and placebo microemulsion were orally gavaged to mice. The half-life of TAMRA-TAT in microemulsion was enhanced nearly three-fold compared to that in the water solution when challenged by MSIF. The treatment with TAMRA-TAT microemulsion after oral administration resulted in greater fluorescence intensity in all intestine sections (duodenum, jejunum, ileum, and colon) compared to TAMRA-TAT solution or placebo microemulsion. The in vitro and in vivo studies together suggested TAMRA-TAT was better protected in the w/o microemulsion in an enzyme-containing environment, suggesting that the w/o microemulsions developed in this study may serve as a potential delivery vehicle for local intestinal delivery of peptides or proteins after oral administration.

  12. A novel branched TAT(47-57) peptide for selective Ni(2+) introduction into the human fibrosarcoma cell nucleus.

    Science.gov (United States)

    Szyrwiel, Łukasz; Shimura, Mari; Shirataki, Junko; Matsuyama, Satoshi; Matsunaga, Akihiro; Setner, Bartosz; Szczukowski, Łukasz; Szewczuk, Zbigniew; Yamauchi, Kazuto; Malinka, Wiesław; Chavatte, Laurent; Łobinski, Ryszard

    2015-07-01

    A TAT47-57 peptide was modified on the N-terminus by elongation with a 2,3-diaminopropionic acid residue and then by coupling of two histidine residues on its N-atoms. This branched peptide could bind to Ni under physiological conditions as a 1 : 1 complex. We demonstrated that the complex was quantitatively taken up by human fibrosarcoma cells, in contrast to Ni(2+) ions. Ni localization (especially at the nuclei) was confirmed by imaging using both scanning X-ray fluorescence microscopy and Newport Green fluorescence. A competitive assay with Newport Green showed that the latter displaced the peptide ligand from the Ni-complex. Ni(2+) delivered as a complex with the designed peptide induced substantially more DNA damage than when introduced as a free ion. The availability of such a construct opens up the way to investigate the importance of the nucleus as a target for the cytotoxicity, genotoxicity or carcinogenicity of Ni(2+).

  13. Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2013-05-01

    Full Text Available Antimicrobial peptides (AMPs, small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD. The majority of these AMPs (>86% possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1 or methicillin-resistant Staphylococcus aureus (MRSA. While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells.

  14. Development & automation of a novel ["1"8F]F prosthetic group, 2-["1"8F]-fluoro-3-pyridinecarboxaldehyde, and its application to an amino(oxy)-functionalised Aβ peptide

    International Nuclear Information System (INIS)

    Morris, Olivia; Gregory, J.; Kadirvel, M.; Henderson, Fiona; Blykers, A.; McMahon, Adam; Taylor, Mark; Allsop, David; Allan, Stuart; Grigg, J.; Boutin, Herve; Prenant, Christian

    2016-01-01

    2-["1"8F]-Fluoro-3-pyridinecarboxaldehyde (["1"8F]FPCA) is a novel, water-soluble prosthetic group. It's radiochemistry has been developed and fully-automated for application in chemoselective radiolabelling of amino(oxy)-derivatised RI-OR2-TAT peptide, (Aoa-k)-RI-OR2-TAT, using a GE TRACERlab FX-FN. RI-OR2-TAT is a brain-penetrant, retro-inverso peptide that binds to amyloid species associated with Alzheimer's Disease. Radiolabelled (Aoa-k)-RI-OR2-TAT was reproducibly synthesised and the product of the reaction with FPCA has been fully characterised. In-vivo biodistribution of ["1"8F]RI-OR2-TAT has been measured in Wistar rats.

  15. NF90 una proteína celular que se une a RNAds inhibe la transactivación del LTR del HIV-1 mediada por TAT

    Directory of Open Access Journals (Sweden)

    Silvio Urcuqui Inchima

    2001-04-01

    Full Text Available

    La transactivación del LTR de HIV-1 requiere la interacción de la proteína Tat ( trans-activation transcription con la estructura TAR ( trans-activation response, que se encuentra localizada en el extremo 5’ de todos los transcriptos virales. La interacción de la proteína Tat con TAR forma un precomplejo transcripcional indispensable para la eficiente transcripción del genoma viral.
    La interacción de diferentes factores celulares (cdk9 y ciclina T, entre otros con el precomplejo Tat-TAR, constituye un complejo estable que facilita la fosforilación de la subunidad mayor de la RNA polimerasa II, asegurando una eficiente elongación de los transcriptos virales. No se han descripto proteínas capaces de regular negativamente la función de Tat con resultados nefastos para la replicación viral. También se ha descrito otro tipo de proteínas celulares con capacidad de interactuar con TAR. El ejemplo mejor caracterizado es la proteína-kinasa dependiente de RNA (PKR, se autofosforila y mediante fosforilación del factor eIF2, inhibe la síntesis de proteínas. Con el presente trabajo se
    pretendió aislar y caracterizar otras proteínas celulares capaces de interactuar con la estructura TAR y estudiar su efecto en la función de Tat.

     

  16. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Directory of Open Access Journals (Sweden)

    Barbara Ensoli

    2010-11-01

    Full Text Available Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002. Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002, served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+ and CD8(+ cellular activation (CD38 and HLA-DR together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+ T cells and B cells with reduction of CD8(+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+ and CD8(+ T cells were accompanied by increases of CD4(+ and CD8(+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite

  17. Exploring the impact of the side-chain length on peptide/RNA binding events.

    Science.gov (United States)

    Sbicca, Lola; González, Alejandro López; Gresika, Alexandra; Di Giorgio, Audrey; Closa, Jordi Teixido; Tejedor, Roger Estrada; Andréola, Marie-Line; Azoulay, Stéphane; Patino, Nadia

    2017-07-19

    The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K D ) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.

  18. TAT-Mediated Delivery of Tousled Protein to Salivary Glands Protects Against Radiation-Induced Hypofunction

    Energy Technology Data Exchange (ETDEWEB)

    Sunavala-Dossabhoy, Gulshan, E-mail: gsunav@lsuhsc.edu [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Palaniyandi, Senthilnathan; Richardson, Charles; De Benedetti, Arrigo [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Schrott, Lisa [Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Caldito, Gloria [Department of Bioinformatics and Computational Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States)

    2012-09-01

    Purpose: Patients treated with radiotherapy for head-and-neck cancer invariably suffer its deleterious side effect, xerostomia. Salivary hypofunction ensuing from the irreversible destruction of glands is the most common and debilitating oral complication affecting patients undergoing regional radiotherapy. Given that the current management of xerostomia is palliative and ineffective, efforts are now directed toward preventive measures to preserve gland function. The human homolog of Tousled protein, TLK1B, facilitates chromatin remodeling at DNA repair sites and improves cell survival against ionizing radiation (IR). Therefore, we wanted to determine whether a direct transfer of TLK1B protein to rat salivary glands could protect against IR-induced salivary hypofunction. Methods: The cell-permeable TAT-TLK1B fusion protein was generated. Rat acinar cell line and rat salivary glands were pretreated with TAT peptide or TAT-TLK1B before IR. The acinar cell survival in vitro and salivary function in vivo were assessed after radiation. Results: We demonstrated that rat acinar cells transduced with TAT-TLK1B were more resistant to radiation (D{sub 0} = 4.13 {+-} 1.0 Gy; {alpha}/{beta} = 0 Gy) compared with cells transduced with the TAT peptide (D{sub 0} = 4.91 {+-} 1.0 Gy; {alpha}/{beta} = 20.2 Gy). Correspondingly, retroductal instillation of TAT-TLK1B in rat submandibular glands better preserved salivary flow after IR (89%) compared with animals pretreated with Opti-MEM or TAT peptide (31% and 39%, respectively; p < 0.01). Conclusions: The results demonstrate that a direct transfer of TLK1B protein to the salivary glands effectively attenuates radiation-mediated gland dysfunction. Prophylactic TLK1B-protein therapy could benefit patients undergoing radiotherapy for head-and-neck cancer.

  19. Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site.

    Science.gov (United States)

    Klug, Yoel A; Ashkenazi, Avraham; Viard, Mathias; Porat, Ziv; Blumenthal, Robert; Shai, Yechiel

    2014-07-15

    Lipid-conjugated peptides have advanced the understanding of membrane protein functions and the roles of lipids in the membrane milieu. These lipopeptides modulate various biological systems such as viral fusion. A single function has been suggested for the lipid, binding to the membrane and thus elevating the local concentration of the peptide at the target site. In the present paper, we challenged this argument by exploring in-depth the antiviral mechanism of lipopeptides, which comprise sphinganine, the lipid backbone of DHSM (dihydrosphingomyelin), and an HIV-1 envelope-derived peptide. Surprisingly, we discovered a partnership between the lipid and the peptide that impaired early membrane fusion events by reducing CD4 receptor lateral diffusion and HIV-1 fusion peptide-mediated lipid mixing. Moreover, only the joint function of sphinganine and its conjugate peptide disrupted HIV-1 fusion protein assembly and folding at the later fusion steps. Via imaging techniques we revealed for the first time the direct localization of these lipopeptides to the virus-cell and cell-cell contact sites. Overall, the findings of the present study may suggest lipid-protein interactions in various biological systems and may help uncover a role for elevated DHSM in HIV-1 and its target cell membranes.

  20. Enhanced glucagon-like peptide-1 (GLP-1) response to oral glucose in glucose-intolerant HIV-infected patients on antiretroviral therapy

    DEFF Research Database (Denmark)

    Andersen, O; Haugaard, S B; Holst, Jens Juul

    2005-01-01

    concentrations of GLP-1 and GIP were determined frequently during a 3-h, 75-g glucose tolerance test. Insulin secretion rates (ISRs) were calculated by deconvolution of C-peptide concentrations. RESULTS: The incremental area under the curve (incrAUC) for GLP-1 was increased by 250% in IGT patients compared...... without adjustment (r=0.38, Pglucose incrAUC (r=0.49, Pglucose-intolerant, HIV-infected male patients may display enhanced GLP-1 responses to oral glucose compared with normal glucose-tolerant HIV-infected male patients......OBJECTIVES: We investigated whether the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which are major regulators of glucose tolerance through the stimulation of insulin secretion, contribute to impaired glucose tolerance (IGT) among HIV...

  1. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Directory of Open Access Journals (Sweden)

    Cowburn David

    2011-05-01

    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  2. A Peptide Derived from the HIV-1 gp120 Coreceptor-Binding Region Promotes Formation of PAP248-286 Amyloid Fibrils to Enhance HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Jinquan Chen

    Full Text Available Semen is a major vehicle for HIV transmission. Prostatic acid phosphatase (PAP fragments, such as PAP248-286, in human semen can form amyloid fibrils to enhance HIV infection. Other endogenous or exogenous factors present during sexual intercourse have also been reported to promote the formation of seminal amyloid fibrils.Here, we demonstrated that a synthetic 15-residue peptide derived from the HIV-1 gp120 coreceptor-binding region, designated enhancing peptide 2 (EP2, can rapidly self-assemble into nanofibers. These EP2-derivated nanofibers promptly accelerated the formation of semen amyloid fibrils by PAP248-286, as shown by Thioflavin T (ThT and Congo red assays. The amyloid fibrils presented similar morphology, assessed via transmission electron microscopy (TEM, in the presence or absence of EP2. Circular dichroism (CD spectroscopy revealed that EP2 accelerates PAP248-286 amyloid fibril formation by promoting the structural transition of PAP248-286 from a random coil into a cross-β-sheet. Newly formed semen amyloid fibrils effectively enhanced HIV-1 infection in TZM-bl cells and U87 cells by promoting the binding of HIV-1 virions to target cells.Nanofibers composed of EP2 promote the formation of PAP248-286 amyloid fibrils and enhance HIV-1 infection.

  3. Construction of a novel chimera consisting of a chelator-containing Tat peptide conjugated to a morpholino antisense oligomer for technetium-99m labeling and accelerating cellular kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yumin [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)]. E-mail: yumin.zhang@mpi.com; Tung, C.-H. [Center for Molecular Imaging Research, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 (United States); He Jiang [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Liu Ning [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Yanachkov, Ivan [GlSynthesis, Worcester, MA 01605 (United States); Liu Guozheng [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Rusckowski, Mary [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Vanderheyden, Jean-Luc [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)

    2006-02-15

    The attempt to target the limited copies of messenger RNA (mRNA) in vivo with radiolabeled nucleobase oligomers as antisense probes is challenging. Selecting an antisense molecule with superior properties, enhancing the cellular kinetics, and improving the radiolabeling chemistry would be the reasonable approach to accomplish this goal. The present study reports a method to construct a chimera of phosphorodiamidate morpholino nucleobase oligomer (MORF) covalently conjugated to a peptide containing a cell membrane transduction Tat peptide and an N{sub 2}S{sub 2} chelator for technetium-99m ({sup 99m}Tc) radiolabeling (N{sub 2}S{sub 2}-Tat-MORF). The radiolabeling properties and cellular kinetics of {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF were measured. As hypothesized, the preparation of {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF could be achieved by an instant one-step method with labeling efficiency greater than 95%, and the {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF showed distinct properties in cell culture from those of a control, the same MORF sequence without Tat but with mercaptoacetyltriglycine (MAG{sub 3}) as chelator for {sup 99m}Tc ({sup 99m}Tc-MAG{sub 3}-MORF). {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF achieved maximum accumulation of about 35% within 2 h, while {sup 99m}Tc-MAG{sub 3}-MORF showed lower and steadily increasing accumulations but of less than 1% in 24 h. These preliminary results demonstrated that the proposed chimera has properties for easy labeling, and {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF prepared by this method possesses enhanced cellular kinetics and merits further investigation for in vivo mRNA targeting.

  4. Design and expression of a short peptide as an HIV detection probe

    Energy Technology Data Exchange (ETDEWEB)

    Lines, Jamie A.; Yu, Zhiqiang; Dedkova, Larisa M.; Chen, Shengxi, E-mail: shengxi.chen.1@asu.edu

    2014-01-03

    Highlights: •We designed a short fusion peptide (FP-50) for in vivo expression. •This peptide is a very promising component for detection of gp120 protein. •The detectable level is about 20–200 times lower than previously published methods. •It is a novel probe to detect HIV-1 gp120 during early stages of HIV infection. -- Abstract: To explore a low-cost novel probe for HIV detection, we designed and prepared a 50-amino acid-length short fusion peptide (FP-50) via Escherichia coli in vivo expression. It was employed as a novel probe to detect HIV-1 gp120 protein. The detectable level of gp120 protein using the FP-50 peptide was approximately 20–200 times lower than previously published methods that used a pair of monoclonal antibodies. Thus, this short peptide is a very promising component for detection of gp120 protein during early stages of HIV infection.

  5. Transient nature of long-term nonprogression and broad virus-specific proliferative T-cell responses with sustained thymic output in HIV-1 controllers.

    Directory of Open Access Journals (Sweden)

    Samantha J Westrop

    Full Text Available HIV-1(+ individuals who, without therapy, conserve cellular anti-HIV-1 responses, present with high, stable CD4(+ T-cell numbers, and control viral replication, facilitate analysis of atypical viro-immunopathology. In the absence of universal definition, immune function in such HIV controllers remains an indication of non-progression.CD4 T-cell responses to a number of HIV-1 proteins and peptide pools were assessed by IFN-gamma ELISpot and lymphoproliferative assays in HIV controllers and chronic progressors. Thymic output was assessed by sjTRECs levels. Follow-up of 41 HIV-1(+ individuals originally identified as "Long-term non-progressors" in 1996 according to clinical criteria, and longitudinal analysis of two HIV controllers over 22 years, was also performed. HIV controllers exhibited substantial IFN-gamma producing and proliferative HIV-1-specific CD4 T-cell responses to both recombinant proteins and peptide pools of Tat, Rev, Nef, Gag and Env, demonstrating functional processing and presentation. Conversely, HIV-specific T-cell responses were limited to IFN-gamma production in chronic progressors. Additionally, thymic output was approximately 19 fold higher in HIV controllers than in age-matched chronic progressors. Follow-up of 41 HIV-1(+ patients identified as LTNP in 1996 revealed the transitory characteristics of this status. IFN-gamma production and proliferative T-cell function also declines in 2 HIV controllers over 22 years.Although increased thymic output and anti-HIV-1 T-cell responses are observed in HIV controllers compared to chronic progressors, the nature of nonprogressor/controller status appears to be transitory.

  6. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    Science.gov (United States)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  7. A triad of lys12, lys41, arg78 spatial domain, a novel identified heparin binding site on tat protein, facilitates tat-driven cell adhesion.

    Directory of Open Access Journals (Sweden)

    Jing Ai

    Full Text Available Tat protein, released by HIV-infected cells, has a battery of important biological effects leading to distinct AIDS-associated pathologies. Cell surface heparan sulfate protoglycans (HSPGs have been accepted as endogenous Tat receptors, and the Tat basic domain has been identified as the heparin binding site. However, findings that deletion or substitution of the basic domain inhibits but does not completely eliminate Tat-heparin interactions suggest that the basic domain is not the sole Tat heparin binding site. In the current study, an approach integrating computational modeling, mutagenesis, biophysical and cell-based assays was used to elucidate a novel, high affinity heparin-binding site: a Lys12, Lys41, Arg78 (KKR spatial domain. This domain was also found to facilitate Tat-driven β1 integrin activation, producing subsequent SLK cell adhesion in an HSPG-dependent manner, but was not involved in Tat internalization. The identification of this new heparin binding site may foster further insight into the nature of Tat-heparin interactions and subsequent biological functions, facilitating the rational design of new therapeutics against Tat-mediated pathological events.

  8. Tat-mediated protein delivery in living Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Delom, Frederic; Fessart, Delphine; Caruso, Marie-Elaine; Chevet, Eric

    2007-01-01

    The Tat protein from HIV-1 fused with heterologous proteins traverses biological membranes in a transcellular process called: protein transduction. This has already been successfully exploited in various biological models, but never in the nematode worm Caenorhabditis elegans. TAT-eGFP or GST-eGFP proteins were fed to C. elegans worms, which resulted in the specific localization of Tat-eGFP to epithelial intestinal cells. This system represents an efficient tool for transcellular transduction in C. elegans intestinal cells. Indeed, this approach avoids the use of tedious purification steps to purify the TAT fusion proteins and allows for rapid analyses of the transduced proteins. In addition, it may represent an efficient tool to functionally analyze the mechanisms of protein transduction as well as to complement RNAi/KO in the epithelial intestinal system. To sum up, the advantage of this technology is to combine the potential of bacterial expression system and the Tat-mediated transduction technique in living worm

  9. Lipid raft-like liposomes used for targeted delivery of a chimeric entry-inhibitor peptide with anti-HIV-1 activity.

    Science.gov (United States)

    Gómara, María José; Pérez-Pomeda, Ignacio; Gatell, José María; Sánchez-Merino, Victor; Yuste, Eloisa; Haro, Isabel

    2017-02-01

    The work reports the design and synthesis of a chimeric peptide that is composed of the peptide sequences of two entry inhibitors which target different sites of HIV-1 gp41. The chimeric peptide offers the advantage of targeting two gp41 regions simultaneously: the fusion peptide and the loop both of which are membrane active and participate in the membrane fusion process. We therefore use lipid raft-like liposomes as a tool to specifically direct the chimeric inhibitor peptide to the membrane domains where the HIV-1 envelope protein is located. Moreover, the liposomes that mimic the viral membrane composition protect the chimeric peptide against proteolytic digestion thereby increasing the stability of the peptide. The described liposome preparations are suitable nanosystems for managing hydrophobic entry-inhibitor peptides as putative therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Novel anti-HIV peptides containing multiple copies of artificially designed heptad repeat motifs

    International Nuclear Information System (INIS)

    Shi Weiguo; Qi Zhi; Pan Chungen; Xue Na; Debnath, Asim K.; Qie Jiankun; Jiang Shibo; Liu Keliang

    2008-01-01

    The peptidic anti-HIV drug T20 (Fuzeon) and its analog C34 share a common heptad repeat (HR) sequence, but they have different functional domains, i.e., pocket- and lipid-binding domains (PBD and LBD, respectively). We hypothesize that novel anti-HIV peptides may be designed by using artificial sequences containing multiple copies of HR motifs plus zero, one or two functional domains. Surprisingly, we found that the peptides containing only the non-natural HR sequences could significantly inhibit HIV-1 infection, while addition of PBD and/or LBD to the peptides resulted in significant improvement of anti-HIV-1 activity. These results suggest that these artificial HR sequences, which may serve as structural domains, could be used as templates for the design of novel antiviral peptides against HIV and other viruses with class I fusion proteins

  11. High-yield nontoxic gene transfer through conjugation of the CM₁₈-Tat₁₁ chimeric peptide with nanosecond electric pulses.

    Science.gov (United States)

    Salomone, Fabrizio; Breton, Marie; Leray, Isabelle; Cardarelli, Francesco; Boccardi, Claudia; Bonhenry, Daniel; Tarek, Mounir; Mir, Lluis M; Beltram, Fabio

    2014-07-07

    We report a novel nontoxic, high-yield, gene delivery system based on the synergistic use of nanosecond electric pulses (NPs) and nanomolar doses of the recently introduced CM18-Tat11 chimeric peptide (sequence of KWKLFKKIGAVLKVLTTGYGRKKRRQRRR, residues 1-7 of cecropin-A, 2-12 of melittin, and 47-57 of HIV-1 Tat protein). This combined use makes it possible to drastically reduce the required CM18-Tat11 concentration and confines stable nanopore formation to vesicle membranes followed by DNA release, while no detectable perturbation of the plasma membrane is observed. Two different experimental assays are exploited to quantitatively evaluate the details of NPs and CM18-Tat11 cooperation: (i) cytofluorimetric analysis of the integrity of synthetic 1,2-dioleoyl-sn-glycero-3-phosphocholine giant unilamellar vesicles exposed to CM18-Tat11 and NPs and (ii) the in vitro transfection efficiency of a green fluorescent protein-encoding plasmid conjugated to CM18-Tat11 in the presence of NPs. Data support a model in which NPs induce membrane perturbation in the form of transient pores on all cellular membranes, while the peptide stabilizes membrane defects selectively within endosomes. Interestingly, atomistic molecular dynamics simulations show that the latter activity can be specifically attributed to the CM18 module, while Tat11 remains essential for cargo binding and vector subcellular localization. We argue that this result represents a paradigmatic example that can open the way to other targeted delivery protocols.

  12. Specificity of RSG-1.2 peptide binding to RRE-IIB RNA element of HIV-1 over Rev peptide is mainly enthalpic in origin.

    Science.gov (United States)

    Kumar, Santosh; Bose, Debojit; Suryawanshi, Hemant; Sabharwal, Harshana; Mapa, Koyeli; Maiti, Souvik

    2011-01-01

    Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔT(m) = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a K(a) = 16.2±0.6×10(7) M(-1) where enthalpic change ΔH = -13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = -2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (K(a) = 3.1±0.4×10(7) M(-1)) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding.

  13. Tat-dependent repression of human immunodeficiency virus type 1 long terminal repeat promoter activity by fusion of cellular transcription factors

    International Nuclear Information System (INIS)

    Zhao Cunyou; Chen Yali; Park, Jiyoung; Kim, Jae Bum; Tang Hong

    2004-01-01

    Transcription initiation from HIV-1 long terminal repeat (LTR) promoter requires the virally encoded transactivator, Tat, and several cellular co-factors to accomplish the Tat-dependent processive transcription elongation. Individual cellular transcription activators, LBP-1b and Oct-1, on the other hand, have been shown to inhibit LTR promoter activities probably via competitive binding against TFIID to the TATA-box in LTR promoter. To explore the genetic interference strategies against the viral replication, we took advantage of the existence of the bipartite DNA binding domains and the repression domains of LBP-1b and Oct-1 factors to generate a chimeric transcription repressor. Our results indicated that the fusion protein of LBP-1b and Oct-1 exhibited higher DNA binding affinity to the viral promoter than the individual factors, and little interference with the host cell gene expression due to its anticipated rare cognate DNA sites in the host cell genome. Moreover, the chimera exerted increased Tat-dependent repression of transcription initiation at the LTR promoter both in vitro and in vivo compared to LBP-1b, Oct-1 or combination of LBP-1b and Oct-1. These results might provide the lead in generating a therapeutic reagent useful to suppress HIV-1 replication

  14. HIPdb: a database of experimentally validated HIV inhibiting peptides.

    Science.gov (United States)

    Qureshi, Abid; Thakur, Nishant; Kumar, Manoj

    2013-01-01

    Besides antiretroviral drugs, peptides have also demonstrated potential to inhibit the Human immunodeficiency virus (HIV). For example, T20 has been discovered to effectively block the HIV entry and was approved by the FDA as a novel anti-HIV peptide (AHP). We have collated all experimental information on AHPs at a single platform. HIPdb is a manually curated database of experimentally verified HIV inhibiting peptides targeting various steps or proteins involved in the life cycle of HIV e.g. fusion, integration, reverse transcription etc. This database provides experimental information of 981 peptides. These are of varying length obtained from natural as well as synthetic sources and tested on different cell lines. Important fields included are peptide sequence, length, source, target, cell line, inhibition/IC(50), assay and reference. The database provides user friendly browse, search, sort and filter options. It also contains useful services like BLAST and 'Map' for alignment with user provided sequences. In addition, predicted structure and physicochemical properties of the peptides are also included. HIPdb database is freely available at http://crdd.osdd.net/servers/hipdb. Comprehensive information of this database will be helpful in selecting/designing effective anti-HIV peptides. Thus it may prove a useful resource to researchers for peptide based therapeutics development.

  15. The dual action of poly(ADP-ribose polymerase -1 (PARP-1 inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    Directory of Open Access Journals (Sweden)

    Slava eRom

    2015-08-01

    Full Text Available The transcription of HIV-1 (HIV is regulated by complex mechanisms involving various cellular factors and virus-encoded transactivators. Poly(ADP-ribose polymerase 1 (PARP-1 inhibition has emerged recently as a potent anti-inflammatory tool, since PARP-1 is involved in the regulation of some genes through its interaction with various transcription factors. We propose a novel approach to diminish HIV replication via PARP-1 inhibition using human primary monocyte-derived macrophages (MDM as an in vitro model system. PARP-1 inhibitors were able to reduce HIV replication in MDM by 60-80% after 7 days infection. Long Terminal Repeat (LTR acts as a switch in virus replication and can be triggered by several agents such as: Tat, tumor necrosis factor α (TNFα, and phorbol 12-myristate 13-acetate (PMA. Overexpression of Tat in MDM transfected with an LTR reporter plasmid led to a 4.2-fold increase in LTR activation; PARP inhibition resulted in 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85-95%. MDM treated with PARP inhibitors showed 90% reduction in NFκB activity (known to mediate PMA- and TNFα-induced HIV LTR activation. Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These findings suggest that HIV replication in MDM could be suppressed by PARP inhibition via NFκB suppression, diminution of LTR activation and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide a potent approach to treatment of HIV infection.

  16. Adsorption of Cathepsin B-sensitive peptide conjugated DOX on nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Huang Shanshan; Shao Jianqun [School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069 (China); Gao Lifang [Center for Food and Drug Safety Evaluation of Capital Medical University, Beijing 100069 (China); Qi Yingzhe [School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069 (China); Ye Ling, E-mail: lingye@ccmu.edu.cn [School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069 (China)

    2011-08-01

    Drug delivery mediated by nanodiamonds (NDs) has shown great promise in controlled drug release field. In present study, dipeptide (Phe-Lys) conjugated antitumor drug doxorubicin hydrochloride (DOX) with self-immolative p-aminobenzylcarbonyl (PABC) spacer was non-covalently bound to carboxylated NDs via the electrostatic interactions. HIV-1 trans-activating transcriptor peptide (TAT) was additionally integrated to this ND-based delivery system in order to enhance the transmembrane efficiency. Fourier transforms infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and zeta potentials were applied to characterize the DOX and TAT loaded ND delivery platform. The adsorption equilibrium, kinetics and thermodynamics for the adsorption of peptide conjugated DOX onto NDs were investigated. It was found that the adsorption fitted well with the Freundlich model and conformed to pseudo-second order kinetics. It also showed that the adsorption was a spontaneous and exothermic process. Therefore, our work offered a facile way to formulate a ND-based drug delivery platform with multifunctionality in a layer by layer adsorption fashion.

  17. Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era

    Directory of Open Access Journals (Sweden)

    Koollawat Chupradit

    2017-09-01

    Full Text Available Human immunodeficiency virus (HIV is a causative agent of acquired immune deficiency syndrome (AIDS. Highly active antiretroviral therapy (HAART can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.

  18. Therapeutic Vaccination Using Cationic Liposome-Adjuvanted HIV Type 1 Peptides Representing HLA-Supertype-Restricted Subdominant T Cell Epitopes

    DEFF Research Database (Denmark)

    Román, Victor Raúl Gómez; Jensen, Kristoffer Jarlov; Jensen, Sanne Skov

    2013-01-01

    We have designed a therapeutic HIV-1 vaccine concept based on peptides together with the adjuvant CAF01. Peptides represented 15 HLA-supertype-restricted subdominant and conserved CD8 T cell epitopes and three CD4 T-helper cell epitopes. In this phase I clinical trial, safety and immunogenicity...... were assessed in untreated HIV-1-infected individuals in Guinea-Bissau, West Africa. Twenty-three HIV-1-infected individuals were randomized to receive placebo (n=5) or vaccine (n=18). Safety was appraised by clinical follow-up combined with monitoring of biochemistry, hematology, CD4 T cell counts......, and HIV-1 viral loads. T cell immunogenicity was monitored longitudinally by interferon (IFN)-γ ELISpot. New vaccine-specific T cell responses were induced in 6/14 vaccinees for whom ELISpot data were valid. CD4 T cell counts and viral loads were stable. The study shows that therapeutic immunization...

  19. PDGF-mediated protection of SH-SY5Y cells against Tat toxin involves regulation of extracellular glutamate and intracellular calcium

    International Nuclear Information System (INIS)

    Zhu Xuhui; Yao Honghong; Peng Fuwang; Callen, Shannon; Buch, Shilpa

    2009-01-01

    The human immunodeficiency virus (HIV-1) protein Tat has been implicated in mediating neuronal apoptosis, one of the hallmark features of HIV-associated dementia (HAD). Mitigation of the toxic effects of Tat could thus be a potential mechanism for reducing HIV toxicity in the brain. In this study we demonstrated that Tat-induced neurotoxicity was abolished by NMDA antagonist-MK801, suggesting the role of glutamate in this process. Furthermore, we also found that pretreatment of SH-SY5Y cells with PDGF exerted protection against Tat toxicity by decreasing extracellular glutamate levels. We also demonstrated that extracellular calcium chelator EGTA was able to abolish PDGF-mediated neuroprotection, thereby underscoring the role of calcium signaling in PDGF-mediated neuroprotection. We also showed that Erk signaling pathway was critical for PDGF-mediated protection of cells. Additionally, blocking calcium entry with EGTA resulted in suppression of PDGF-induced Erk activation. These findings thus underscore the role of PDGF-mediated calcium signaling and Erk phosphorylation in the protection of cells against HIV Tat toxicity.

  20. Penetration of polymeric nanoparticles loaded with an HIV-1 inhibitor peptide derived from GB virus C in a vaginal mucosa model.

    Science.gov (United States)

    Ariza-Sáenz, Martha; Espina, Marta; Bolaños, Nuria; Calpena, Ana Cristina; Gomara, María José; Haro, Isabel; García, María Luisa

    2017-11-01

    Despite the great effort to decrease the HIV infectivity rate, current antiretroviral therapy has several weaknesses; poor bioavailability, development of drug resistance and poor ability to access tissues. However, molecules such as peptides have emerged asa new expectative to HIV eradication. The vaginal mucosa is the main spreading point of HIV. There are natural barriers such as the vaginal fluid which protects the vaginal epithelium from any foreign agents reaching it. This work has developed and characterized Nanoparticles (NPs) coated with glycol chitosan (GC), loaded with an HIV-1 inhibitor peptide (E2). In vitro release and ex vivo studies were carried out using the vaginal mucosa of swine and the peptide was determined by HPLC MS/MS validated method. Moreover, the peptide was labeled with 5(6)-carboxyfluoresceine and entrapped into the NPs to carried out in vivo studies and to evaluate the NPs penetration and toxicity in the vaginal mucosa of the swine. The mean size of the NPs, ξ and the loading percentage were fundamental features for to reach the vaginal tissue and to release the peptide within intercellular space. The obtained results suggesting that the fusion inhibitor peptides loaded into the NPs coated with GC might be a new way to fight the HIV-1, due to the formulation might reach the human epithelial mucosa and release peptide without any side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Adding an Artificial Tail—Anchor to a Peptide-Based HIV-1 Fusion Inhibitor for Improvement of Its Potency and Resistance Profile

    Directory of Open Access Journals (Sweden)

    Shan Su

    2017-11-01

    Full Text Available Peptides derived from the C-terminal heptad repeat (CHR of human immunodeficiency virus type 1 (HIV-1 envelope protein transmembrane subunit gp41, such as T20 (enfuvirtide, can bind to the N-terminal heptad repeat (NHR of gp41 and block six-helix bundle (6-HB formation, thus inhibiting HIV-1 fusion with the target cell. However, clinical application of T20 is limited because of its low potency and genetic barrier to resistance. HP23, the shortest CHR peptide, exhibits better anti-HIV-1 activity than T20, but the HIV-1 strains with E49K mutations in gp41 will become resistant to it. Here, we modified HP23 by extending its C-terminal sequence using six amino acid residues (E6 and adding IDL (Ile-Asp-Leu to the C-terminus of E6, which is expected to bind to the shallow pocket in the gp41 NHR N-terminal region. The newly designed peptide, designated HP23-E6-IDL, was about 2- to 16-fold more potent than HP23 against a broad spectrum of HIV-1 strains and more than 12-fold more effective against HIV-1 mutants resistant to HP23. These findings suggest that addition of an anchor–tail to the C-terminus of a CHR peptide will allow binding with the pocket in the gp41 NHR that may increase the peptide’s antiviral efficacy and its genetic barrier to resistance.

  2. Prediction of twin-arginine signal peptides

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nielsen, Henrik; Widdick, D.

    2005-01-01

    expressions, whereas hydrophobicity discrimination of Tat- and Sec- signal peptides is carried out by an artificial neural network. A potential cleavage site of the predicted Tat signal peptide is also reported. The TatP prediction server is available as a public web server at http://www.cbs.dtu.dk/services/TatP/....

  3. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    International Nuclear Information System (INIS)

    Debebe, Zufan; Ammosova, Tatyana; Jerebtsova, Marina; Kurantsin-Mills, Joseph; Niu, Xiaomei; Charles, Sharroya; Richardson, Des R.; Ray, Patricio E.; Gordeuk, Victor R.; Nekhai, Sergei

    2007-01-01

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics

  4. Design and biological evaluation of 99mTc-N2S2-Tat(49–57)-c(RGDyK): A hybrid radiopharmaceutical for tumors expressing α(v)β(3) integrins

    International Nuclear Information System (INIS)

    Ocampo-García, Blanca E.; Santos-Cuevas, Clara L.; De León-Rodríguez, Luis M.; García-Becerra, Rocío; Ordaz-Rosado, David; Luna-Guitiérrez, Myrna A.; Jiménez-Mancilla, Nallely P.; Romero-Piña, Mario E.; Ferro-Flores, Guillermina

    2013-01-01

    The α(ν)β(3) integrin is over-expressed in the tumor neovasculature and the tumor cells of glioblastomas. The HIV Tat-derived peptide has been used to deliver various cargos into cells. The aim of this research was to synthesize and assess the in vitro and in vivo uptake of 99m Tc-N 2 S 2 -Tat(49–57)-c(RGDyK) ( 99m Tc-Tat-RGD) in α(ν)β(3) integrin positive cancer cells and compare it to that of a conventional 99m Tc-RGD peptide ( 99m Tc-EDDA/HYNIC-E-[c(RGDfK)] 2 ). Methods: The c(RGDyK) peptide was conjugated to a maleimidopropionyl (MP) moiety through Lys, and the MP group was used as the branch position to form a thioether with the Cys 12 side chain of the Tat(49–57)-spacer-N 2 S 2 peptide. 99m Tc-Tat-RGD was prepared, and stability studies were carried out by size exclusion HPLC analyses in human serum. The in vitro affinity for α(v)β(3) integrin was determined by a competitive binding assay. In vitro internalization was determined using glioblastoma C6 cells. Biodistribution studies were accomplished in athymic mice with C6 induced tumors that had blocked and unblocked receptors. Images were obtained using a micro-SPECT/CT. Results: 99m Tc-Tat-RGD was obtained with a radiochemical purity higher than 95%, as determined by radio-HPLC and ITLC-SG analyses. Protein binding was 15.7% for 99m Tc-Tat-RGD and 5.6% for 99m Tc-RGD. The IC 50 values were 6.7 nM ( 99m Tc-Tat-RGD) and 4.6 nM ( 99m Tc-RGD). Internalization in C6 cells was higher in 99m Tc-Tat-RGD (37.5%) than in 99m Tc-RGD (10%). Biodistribution studies and in vivo micro-SPECT/CT images in mice showed higher tumor uptake for 99m Tc-Tat-RGD (6.98% ± 1.34% ID/g at 3 h) than that of 99m Tc-RGD (3.72% ± 0.52% ID/g at 3 h) with specific recognition for α(v)β(3) integrins. Conclusions: Because of the significant cell internalization (Auger and internal conversion electrons) and specific recognition for α(v)β(3) integrins, the hybrid 99m Tc-N 2 S 2 -Tat(49–57)-c(RGDyK) radiopharmaceutical is

  5. NMR spectroscopic studies of a TAT-derived model peptide in imidazolium-based ILs: influence on chemical shifts and the cis/trans equilibrium state.

    Science.gov (United States)

    Wiedemann, Christoph; Ohlenschläger, Oliver; Mrestani-Klaus, Carmen; Bordusa, Frank

    2017-09-13

    NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual 1 H and 13 C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived. The observed chemical shift changes indicate significant interactions between the peptide and the ILs. In addition, we examined the impact of different ILs towards the cis/trans equilibrium state of the Xaa-Pro peptide bonds. In this context, the IL cations appear to be of exceptional importance for inducing an alteration of the native cis/trans equilibrium state of Xaa-Pro bonds in favour of the trans-isomers.

  6. Secretory TAT-peptide-mediated protein transduction of LIF receptor α-chain distal cytoplasmic motifs into human myeloid HL-60 cells

    Directory of Open Access Journals (Sweden)

    Q. Sun

    2012-10-01

    Full Text Available The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3 can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.

  7. Secretory TAT-peptide-mediated protein transduction of LIF receptor α-chain distal cytoplasmic motifs into human myeloid HL-60 cells

    International Nuclear Information System (INIS)

    Sun, Q.; Xiong, J.; Lu, J.; Xu, S.; Li, Y.; Zhong, X.P.; Gao, G.K.; Liu, H.Q.

    2012-01-01

    The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy

  8. Secretory TAT-peptide-mediated protein transduction of LIF receptor α-chain distal cytoplasmic motifs into human myeloid HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Q. [Department of Hyperbaric Medicine, No. 401 Hospital of PLA, Qingdao (China); Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China); Xiong, J. [Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China); Lu, J. [Office of Medical Education, Training Department, Second Military Medical University, Shanghai (China); Xu, S. [Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China); Li, Y. [State Food and Drug Administration of China,Huangdao Branch, Qingdao (China); Zhong, X.P.; Gao, G.K. [Department of Hyperbaric Medicine, No. 401 Hospital of PLA, Qingdao (China); Liu, H.Q. [2Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China)

    2012-06-22

    The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.

  9. Sifuvirtide, a potent HIV fusion inhibitor peptide

    International Nuclear Information System (INIS)

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-01-01

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC 50 ), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC 50 ) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1 IIIB were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  10. Analysis of in vitro toxicity of five cell-penetrating peptides by metabolic profiling

    International Nuclear Information System (INIS)

    Kilk, Kalle; Mahlapuu, Riina; Soomets, Ursel; Langel, Ulo

    2009-01-01

    Cell-penetrating peptides (CPPs) are promising candidates for safe and efficient delivery vectors for a wide range of cargoes. However, any compound that is internalized into cells may affect the cell homeostasis. The plethora of possible biological responses makes large scale 'omics' studies appealing approaches for hunting any unsuspected side-effects and evaluate the toxicity of drug candidates. Here we have compared the alterations in cytosolic metabolome of CHO cells caused by five representatives of the most common CPPs: transportan (TP), penetratin (pAntp), HIV Tat derived peptide (pTat), nonaarginine (R 9 ) and model amphipathic peptide (MAP). Analysis was done by liquid chromatography-mass spectrometry techniques, principal component analysis and heatmap displays. Results showed that the intracellular metabolome was the most affected by TP followed by pTat and MAP. Only minor changes could be associated with pAntp or R 9 treatment. The cells could recover from a treatment with 5 μM TP, but no recovery was observed at higher concentration. Both metabolomic and control experiments showed that TP affected cellular redox potential, depleted energy and the pools of purines and pyrimidines. In conclusion, we have performed a metabolomic analysis comparing the safety of cell-penetrating peptides and demonstrate the toxicity of one of them.

  11. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.

    Science.gov (United States)

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J; Telenti, Amalio; de Bakker, Paul I W; Walker, Bruce D; Ripke, Stephan; Brumme, Chanson J; Pulit, Sara L; Carrington, Mary; Kadie, Carl M; Carlson, Jonathan M; Heckerman, David; Graham, Robert R; Plenge, Robert M; Deeks, Steven G; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P; Guiducci, Candace; Gupta, Namrata; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L; Lemay, Paul; O'Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L; Vine, Seanna; Addo, Marylyn M; Allen, Todd M; Altfeld, Marcus; Henn, Matthew R; Le Gall, Sylvie; Streeck, Hendrik; Haas, David W; Kuritzkes, Daniel R; Robbins, Gregory K; Shafer, Robert W; Gulick, Roy M; Shikuma, Cecilia M; Haubrich, Richard; Riddler, Sharon; Sax, Paul E; Daar, Eric S; Ribaudo, Heather J; Agan, Brian; Agarwal, Shanu; Ahern, Richard L; Allen, Brady L; Altidor, Sherly; Altschuler, Eric L; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C; Benson, Anne M; Berger, Judith; Bernard, Nicole F; Bernard, Annette M; Birch, Christopher; Bodner, Stanley J; Bolan, Robert K; Boudreaux, Emilie T; Bradley, Meg; Braun, James F; Brndjar, Jon E; Brown, Stephen J; Brown, Katherine; Brown, Sheldon T; Burack, Jedidiah; Bush, Larry M; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H; Carmichael, J Kevin; Casey, Kathleen K; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T; Chez, Nancy; Chirch, Lisa M; Cimoch, Paul J; Cohen, Daniel; Cohn, Lillian E; Conway, Brian; Cooper, David A; Cornelson, Brian; Cox, David T; Cristofano, Michael V; Cuchural, George; Czartoski, Julie L; Dahman, Joseph M; Daly, Jennifer S; Davis, Benjamin T; Davis, Kristine; Davod, Sheila M; DeJesus, Edwin; Dietz, Craig A; Dunham, Eleanor; Dunn, Michael E; Ellerin, Todd B; Eron, Joseph J; Fangman, John J W; Farel, Claire E; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A; French, Neel K; Fuchs, Jonathan D; Fuller, Jon D; Gaberman, Jonna; Gallant, Joel E; Gandhi, Rajesh T; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C; Gaultier, Cyril R; Gebre, Wondwoosen; Gilman, Frank D; Gilson, Ian; Goepfert, Paul A; Gottlieb, Michael S; Goulston, Claudia; Groger, Richard K; Gurley, T Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W David; Harrigan, P Richard; Hawkins, Trevor N; Heath, Sonya; Hecht, Frederick M; Henry, W Keith; Hladek, Melissa; Hoffman, Robert P; Horton, James M; Hsu, Ricky K; Huhn, Gregory D; Hunt, Peter; Hupert, Mark J; Illeman, Mark L; Jaeger, Hans; Jellinger, Robert M; John, Mina; Johnson, Jennifer A; Johnson, Kristin L; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C; Kauffman, Carol A; Khanlou, Homayoon; Killian, Robert K; Kim, Arthur Y; Kim, David D; Kinder, Clifford A; Kirchner, Jeffrey T; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P Todd; Kurisu, Wayne; Kwon, Douglas S; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M; Lee, David M; Lee, Jean M L; Lee, Marah J; Lee, Edward T Y; Lemoine, Janice; Levy, Jay A; Llibre, Josep M; Liguori, Michael A; Little, Susan J; Liu, Anne Y; Lopez, Alvaro J; Loutfy, Mono R; Loy, Dawn; Mohammed, Debbie Y; Man, Alan; Mansour, Michael K; Marconi, Vincent C; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N; Martin, Harold L; Mayer, Kenneth Hugh; McElrath, M Juliana; McGhee, Theresa A; McGovern, Barbara H; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X; Menezes, Prema; Mesa, Greg; Metroka, Craig E; Meyer-Olson, Dirk; Miller, Andy O; Montgomery, Kate; Mounzer, Karam C; Nagami, Ellen H; Nagin, Iris; Nahass, Ronald G; Nelson, Margret O; Nielsen, Craig; Norene, David L; O'Connor, David H; Ojikutu, Bisola O; Okulicz, Jason; Oladehin, Olakunle O; Oldfield, Edward C; Olender, Susan A; Ostrowski, Mario; Owen, William F; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M; Perlmutter, Aaron M; Pierce, Michael N; Pincus, Jonathan M; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J; Rhame, Frank S; Richards, Constance Shamuyarira; Richman, Douglas D; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C; Rosenberg, Eric S; Rosenthal, Daniel; Ross, Polly E; Rubin, David S; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R; Sanchez, William C; Sanjana, Veeraf M; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M; Shalit, Peter; Shay, William; Shirvani, Vivian N; Silebi, Vanessa I; Sizemore, James M; Skolnik, Paul R; Sokol-Anderson, Marcia; Sosman, James M; Stabile, Paul; Stapleton, Jack T; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F Lisa; Stone, Valerie E; Stone, David R; Tambussi, Giuseppe; Taplitz, Randy A; Tedaldi, Ellen M; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A; Trinh, Phuong D; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J; Vecino, Isabel; Vega, Vilma M; Veikley, Wenoah; Wade, Barbara H; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J; Warner, Daniel A; Weber, Robert D; Webster, Duncan; Weis, Steve; Wheeler, David A; White, David J; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G; van't Wout, Angelique; Wright, David P; Yang, Otto O; Yurdin, David L; Zabukovic, Brandon W; Zachary, Kimon C; Zeeman, Beth; Zhao, Meng

    2010-12-10

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection.

  12. The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation

    Science.gov (United States)

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J.; Telenti, Amalio; de Bakker, Paul I.W.; Walker, Bruce D.; Jia, Xiaoming; McLaren, Paul J.; Ripke, Stephan; Brumme, Chanson J.; Pulit, Sara L.; Telenti, Amalio; Carrington, Mary; Kadie, Carl M.; Carlson, Jonathan M.; Heckerman, David; de Bakker, Paul I.W.; Pereyra, Florencia; de Bakker, Paul I.W.; Graham, Robert R.; Plenge, Robert M.; Deeks, Steven G.; Walker, Bruce D.; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M.; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P.; Guiducci, Candace; Gupta, Namrata; Carrington, Mary; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Pereyra, Florencia; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L.; Lemay, Paul; O’Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L.; Vine, Seanna; Addo, Marylyn M.; Allen, Todd M.; Altfeld, Marcus; Henn, Matthew R.; Le Gall, Sylvie; Streeck, Hendrik; Walker, Bruce D.; Haas, David W.; Kuritzkes, Daniel R.; Robbins, Gregory K.; Shafer, Robert W.; Gulick, Roy M.; Shikuma, Cecilia M.; Haubrich, Richard; Riddler, Sharon; Sax, Paul E.; Daar, Eric S.; Ribaudo, Heather J.; Agan, Brian; Agarwal, Shanu; Ahern, Richard L.; Allen, Brady L.; Altidor, Sherly; Altschuler, Eric L.; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J.; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C.; Benson, Anne M.; Berger, Judith; Bernard, Nicole F.; Bernard, Annette M.; Birch, Christopher; Bodner, Stanley J.; Bolan, Robert K.; Boudreaux, Emilie T.; Bradley, Meg; Braun, James F.; Brndjar, Jon E.; Brown, Stephen J.; Brown, Katherine; Brown, Sheldon T.; Burack, Jedidiah; Bush, Larry M.; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H.; Carmichael, J. Kevin; Casey, Kathleen K.; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T.; Chez, Nancy; Chirch, Lisa M.; Cimoch, Paul J.; Cohen, Daniel; Cohn, Lillian E.; Conway, Brian; Cooper, David A.; Cornelson, Brian; Cox, David T.; Cristofano, Michael V.; Cuchural, George; Czartoski, Julie L.; Dahman, Joseph M.; Daly, Jennifer S.; Davis, Benjamin T.; Davis, Kristine; Davod, Sheila M.; Deeks, Steven G.; DeJesus, Edwin; Dietz, Craig A.; Dunham, Eleanor; Dunn, Michael E.; Ellerin, Todd B.; Eron, Joseph J.; Fangman, John J.W.; Farel, Claire E.; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A.; French, Neel K.; Fuchs, Jonathan D.; Fuller, Jon D.; Gaberman, Jonna; Gallant, Joel E.; Gandhi, Rajesh T.; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C.; Gaultier, Cyril R.; Gebre, Wondwoosen; Gilman, Frank D.; Gilson, Ian; Goepfert, Paul A.; Gottlieb, Michael S.; Goulston, Claudia; Groger, Richard K.; Gurley, T. Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W. David; Harrigan, P. Richard; Hawkins, Trevor N.; Heath, Sonya; Hecht, Frederick M.; Henry, W. Keith; Hladek, Melissa; Hoffman, Robert P.; Horton, James M.; Hsu, Ricky K.; Huhn, Gregory D.; Hunt, Peter; Hupert, Mark J.; Illeman, Mark L.; Jaeger, Hans; Jellinger, Robert M.; John, Mina; Johnson, Jennifer A.; Johnson, Kristin L.; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C.; Kauffman, Carol A.; Khanlou, Homayoon; Killian, Robert K.; Kim, Arthur Y.; Kim, David D.; Kinder, Clifford A.; Kirchner, Jeffrey T.; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P. Todd; Kurisu, Wayne; Kwon, Douglas S.; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M.; Lee, David M.; Lee, Jean M.L.; Lee, Marah J.; Lee, Edward T.Y.; Lemoine, Janice; Levy, Jay A.; Llibre, Josep M.; Liguori, Michael A.; Little, Susan J.; Liu, Anne Y.; Lopez, Alvaro J.; Loutfy, Mono R.; Loy, Dawn; Mohammed, Debbie Y.; Man, Alan; Mansour, Michael K.; Marconi, Vincent C.; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N.; Martin, Harold L.; Mayer, Kenneth Hugh; McElrath, M. Juliana; McGhee, Theresa A.; McGovern, Barbara H.; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X.; Menezes, Prema; Mesa, Greg; Metroka, Craig E.; Meyer-Olson, Dirk; Miller, Andy O.; Montgomery, Kate; Mounzer, Karam C.; Nagami, Ellen H.; Nagin, Iris; Nahass, Ronald G.; Nelson, Margret O.; Nielsen, Craig; Norene, David L.; O’Connor, David H.; Ojikutu, Bisola O.; Okulicz, Jason; Oladehin, Olakunle O.; Oldfield, Edward C.; Olender, Susan A.; Ostrowski, Mario; Owen, William F.; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M.; Perlmutter, Aaron M.; Pierce, Michael N.; Pincus, Jonathan M.; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C.; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J.; Rhame, Frank S.; Richards, Constance Shamuyarira; Richman, Douglas D.; Robbins, Gregory K.; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C.; Rosenberg, Eric S.; Rosenthal, Daniel; Ross, Polly E.; Rubin, David S.; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R.; Sanchez, William C.; Sanjana, Veeraf M.; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M.; Shalit, Peter; Shay, William; Shirvani, Vivian N.; Silebi, Vanessa I.; Sizemore, James M.; Skolnik, Paul R.; Sokol-Anderson, Marcia; Sosman, James M.; Stabile, Paul; Stapleton, Jack T.; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F. Lisa; Stone, Valerie E.; Stone, David R.; Tambussi, Giuseppe; Taplitz, Randy A.; Tedaldi, Ellen M.; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A.; Trinh, Phuong D.; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J.; Vecino, Isabel; Vega, Vilma M.; Veikley, Wenoah; Wade, Barbara H.; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J.; Warner, Daniel A.; Weber, Robert D.; Webster, Duncan; Weis, Steve; Wheeler, David A.; White, David J.; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G.; Wout, Angelique van’t; Wright, David P.; Yang, Otto O.; Yurdin, David L.; Zabukovic, Brandon W.; Zachary, Kimon C.; Zeeman, Beth; Zhao, Meng

    2011-01-01

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection. PMID:21051598

  13. Photochemical internalisation of a macromolecular protein toxin using a cell penetrating peptide-photosensitiser conjugate.

    Science.gov (United States)

    Wang, Julie T-W; Giuntini, Francesca; Eggleston, Ian M; Bown, Stephen G; MacRobert, Alexander J

    2012-01-30

    Photochemical internalisation (PCI) is a site-specific technique for improving cellular delivery of macromolecular drugs. In this study, a cell penetrating peptide, containing the core HIV-1 Tat 48-57 sequence, conjugated with a porphyrin photosensitiser has been shown to be effective for PCI. Herein we report an investigation of the photophysical and photobiological properties of a water soluble bioconjugate of the cationic Tat peptide with a hydrophobic tetraphenylporphyrin derivative. The cellular uptake and localisation of the amphiphilic bioconjugate was examined in the HN5 human head and neck squamous cell carcinoma cell line. Efficient cellular uptake and localisation in endo/lysosomal vesicles was found using fluorescence detection, and light-induced, rupture of the vesicles resulting in a more diffuse intracellular fluorescence distribution was observed. Conjugation of the Tat sequence with a hydrophobic porphyrin thus enables cellular delivery of an amphiphilic photosensitiser which can then localise in endo/lysosomal membranes, as required for effective PCI treatment. PCI efficacy was tested in combination with a protein toxin, saporin, and a significant reduction in cell viability was measured versus saporin or photosensitiser treatment alone. This study demonstrates that the cell penetrating peptide-photosensitiser bioconjugation strategy is a promising and versatile approach for enhancing the therapeutic potential of bioactive agents through photochemical internalisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. CRMP-2 peptide mediated decrease of high and low voltage-activated calcium channels, attenuation of nociceptor excitability, and anti-nociception in a model of AIDS therapy-induced painful peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Piekarz Andrew D

    2012-07-01

    Full Text Available Abstract Background The ubiquity of protein-protein interactions in biological signaling offers ample opportunities for therapeutic intervention. We previously identified a peptide, designated CBD3, that suppressed inflammatory and neuropathic behavioral hypersensitivity in rodents by inhibiting the ability of collapsin response mediator protein 2 (CRMP-2 to bind to N-type voltage-activated calcium channels (CaV2.2 [Brittain et al. Nature Medicine 17:822–829 (2011]. Results and discussion Here, we utilized SPOTScan analysis to identify an optimized variation of the CBD3 peptide (CBD3A6K that bound with greater affinity to Ca2+ channels. Molecular dynamics simulations demonstrated that the CBD3A6K peptide was more stable and less prone to the unfolding observed with the parent CBD3 peptide. This mutant peptide, conjugated to the cell penetrating motif of the HIV transduction domain protein TAT, exhibited greater anti-nociception in a rodent model of AIDS therapy-induced peripheral neuropathy when compared to the parent TAT-CBD3 peptide. Remarkably, intraperitoneal administration of TAT-CBD3A6K produced none of the minor side effects (i.e. tail kinking, body contortion observed with the parent peptide. Interestingly, excitability of dissociated small diameter sensory neurons isolated from rats was also reduced by TAT-CBD3A6K peptide suggesting that suppression of excitability may be due to inhibition of T- and R-type Ca2+ channels. TAT-CBD3A6K had no effect on depolarization-evoked calcitonin gene related peptide (CGRP release compared to vehicle control. Conclusions Collectively, these results establish TAT-CBD3A6K as a peptide therapeutic with greater efficacy in an AIDS therapy-induced model of peripheral neuropathy than its parent peptide, TAT-CBD3. Structural modifications of the CBD3 scaffold peptide may result in peptides with selectivity against a particular subset of voltage-gated calcium channels resulting in a multipharmacology of

  15. Calcitonin Gene-Related Peptide Induces HIV-1 Proteasomal Degradation in Mucosal Langerhans Cells.

    Science.gov (United States)

    Bomsel, Morgane; Ganor, Yonatan

    2017-12-01

    The neuroimmune dialogue between peripheral neurons and Langerhans cells (LCs) within mucosal epithelia protects against incoming pathogens. LCs rapidly internalize human immunodeficiency virus type 1 (HIV-1) upon its sexual transmission and then trans -infect CD4 + T cells. We recently found that the neuropeptide calcitonin gene-related peptide (CGRP), secreted mucosally from peripheral neurons, inhibits LC-mediated HIV-1 trans -infection. In this study, we investigated the mechanism of CGRP-induced inhibition, focusing on HIV-1 degradation in LCs and its interplay with trans -infection. We first show that HIV-1 degradation occurs in endolysosomes in untreated LCs, and functionally blocking such degradation with lysosomotropic agents results in increased trans -infection. We demonstrate that CGRP acts via its cognate receptor and at a viral postentry step to induce faster HIV-1 degradation, but without affecting the kinetics of endolysosomal degradation. We reveal that unexpectedly, CGRP shifts HIV-1 degradation from endolysosomes toward the proteasome, providing the first evidence for functional HIV-1 proteasomal degradation in LCs. Such efficient proteasomal degradation significantly inhibits the first phase of trans -infection, and proteasomal, but not endolysosomal, inhibitors abrogate CGRP-induced inhibition. Together, our results establish that CGRP controls the HIV-1 degradation mode in LCs. The presence of endogenous CGRP within innervated mucosal tissues, especially during the sexual response, to which CGRP contributes, suggests that HIV-1 proteasomal degradation predominates in vivo Hence, proteasomal, rather than endolysosomal, HIV-1 degradation in LCs should be enhanced clinically to effectively restrict HIV-1 trans -infection. IMPORTANCE During sexual transmission, HIV-1 is internalized and degraded in LCs, the resident antigen-presenting cells in mucosal epithelia. Yet during trans -infection, infectious virions escaping degradation are transferred

  16. Molecular epidemiology of HIV-1 among the HIV infected people of Manipur, Northeastern India: Emergence of unique recombinant forms.

    Science.gov (United States)

    Sharma, Adhikarimayum Lakhikumar; Singh, Thiyam Ramsing; Devi, Khuraijam Ranjana; Singh, Lisam Shanjukumar

    2017-06-01

    According to the Joint National Programme on HIV/AIDS (UNAIDS), the northeastern region of India has the highest HIV prevalence in the country. This study was conducted to determine the current HIV-1 molecular epidemiology of Manipur, a state in northeast India. Blood samples from HIV-1 seropositive subjects were collected between June 2011 and February 2014. The partial regions of HIV-1 genes; pol and tat-vpu-env were independently amplified, sequenced, analyzed, and genotyped. Based on all sequences generated from 110 samples using pol and/or tat-vpu-env gene, the overall HIV-1 genotypes distribution of Manipur was as follows: 65.45% (72/110) subtype C, 32.73% (36/110) unique recombinant forms (URFs), and 1.82% (2/110) subtype B. The distribution of HIV-1 genotypes among the risk groups was: heterosexual: 58.33% (35/60) subtype C, 38.33% (23/60) URFs, and 3.34% (2/60) subtype B; intravenous drug users (IDUs): 85.36% (35/41) subtype C, 9.76% (4/41) URFs, and 4.88% (2/41) subtype B; mother to child (MTC): 50% (3/6) URFs and 50% (3/6) subtype C and blood transfusion: 100% (3/3) subtype C. The findings for the first time revealed the emergence of URFs of HIV-1 in Manipur which is predominant among the sexual and MTC risk groups as compared to IDUs. Taking together, this study illustrated that Manipur is the "recombinant hotspot of HIV" of India. The results will provide the clinical importance for continuous monitoring of HIV-infections in order to design appropriate prevention measures to limit the spread of new HIV infections. © 2016 Wiley Periodicals, Inc.

  17. HIV-1 gp41 Fusion Intermediate: A Target for HIV Therapeutics

    Directory of Open Access Journals (Sweden)

    Chungen Pan

    2010-02-01

    Full Text Available Human immunodeficiency virus (HIV-1 infection is initiated by the binding of gp120 envelope glyco-protein to its cell receptor (CD4 and a coreceptor (CXCR4 or CCR5, followed by a series of conformational changes in the gp41 transmembrane subunit. These changes include insertion of fusion peptide into the target cell membrane and association of C-heptad repeat (CHR peptide with the N-heptad repeat (NHR trimer, a pre-hairpin fusion intermediate. A stable six-helix bundle core is then formed, bringing the viral envelope and target cell membrane into close proximity for fusion. Peptides derived from the CHR region, such as T20 and C34, inhibit HIV-1 fusion by interacting with the gp41 fusion intermediate. A number of anti-HIV-1 peptides and small molecule compounds targeting the gp41 NHR-trimer have been identified. By combining HIV fusion/entry inhibitors targeting different sites in the gp41 fusion intermediate, a potent synergistic effect takes place, resulting in a potential new therapeutic strategy for the HIV infection/AIDS. Here, we present an overview of the current development of anti-HIV drugs, particularly those targeting the gp41 fusion intermediate.

  18. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Jacob Barbara A

    2009-02-01

    Full Text Available Abstract Background HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined. Results HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization. Conclusion Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.

  19. Interference with RUNX1/ETO Leukemogenic Function by Cell-Penetrating Peptides Targeting the NHR2 Oligomerization Domain

    Directory of Open Access Journals (Sweden)

    Yvonne Bartel

    2013-01-01

    Full Text Available The leukemia-associated fusion protein RUNX1/ETO is generated by the chromosomal translocation t(8;21 which appears in about 12% of all de novo acute myeloid leukemias (AMLs. Essential for the oncogenic potential of RUNX1/ETO is the oligomerization of the chimeric fusion protein through the nervy homology region 2 (NHR2 within ETO. In previous studies, we have shown that the intracellular expression of peptides containing the NHR2 domain inhibits RUNX1/ETO oligomerization, thereby preventing cell proliferation and inducing differentiation of RUNX1/ETO transformed cells. Here, we show that introduction of a recombinant TAT-NHR2 fusion polypeptide into the RUNX1/ETO growth-dependent myeloid cell line Kasumi-1 results in decreased cell proliferation and increased numbers of apoptotic cells. This effect was highly specific and mediated by binding the TAT-NHR2 peptide to ETO sequences, as TAT-polypeptides containing the oligomerization domain of BCR did not affect cell proliferation or apoptosis in Kasumi-1 cells. Thus, the selective interference with NHR2-mediated oligomerization by peptides represents a challenging but promising strategy for the inhibition of the leukemogenic potential of RUNX1/ETO in t(8;21-positive leukemia.

  20. The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides.

    Science.gov (United States)

    Cao, Limin; Li, Binbin; Yi, Peiwei; Zhang, Hailu; Dai, Jianwu; Tan, Bo; Deng, Zongwu

    2014-04-01

    Three Gd-DOTA-peptide complexes with different peptide sequence are synthesized and used as T1 contrast agent to label human mesenchymal stem cells (hMSCs) for magnetic resonance imaging study. The peptides include a universal cell penetrating peptide TAT, a linear MSC-specific peptide EM7, and a cyclic MSC-specific peptide CC9. A significant difference in labeling efficacy is observed between the Gd-DOTA-peptides as well as a control Dotarem. All Gd-DOTA-peptides as well as Dotarem induce significant increase in T1 relaxation rate which is in favor of T1-weighted MR imaging. Gd-DOTA-CC9 yields the maximum labeling efficacy but poor T1 contrast enhancement. Gd-DOTA-EM7 yields the minimum labeling efficacy but better T1 contrast enhancement. Gd-DOTA-TAT yields a similar labeling efficacy as Gd-DOTA-CC9 and similar T1 contrast enhancement as Gd-DOTA-EM7. The underlying mechanism that governs T1 contrast enhancement effect is discussed. Our results suggest that T1 contrast enhancement induced by Gd-DOTA-peptides depends not only on the introduced cellular Gd content, but more importantly on the effect that Gd-DOTA-peptides exert on the T1-relaxation and T2-relaxation processes/rates. Both T1 and particularly T2 relaxation rate have to be taken into account to interpret T1 contrast enhancement. In addition, the interpretation has to be based on cellular instead of aqueous longitudinal and transverse relaxivities of Gd-DOTA-peptides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase.

    Science.gov (United States)

    Ma, Xianyue; Cline, Kenneth

    2013-03-01

    Twin arginine translocation (Tat) systems of thylakoid and bacterial membranes transport folded proteins using the proton gradient as the sole energy source. Tat substrates have hydrophobic signal peptides with an essential twin arginine (RR) recognition motif. The multispanning cpTatC plays a central role in Tat operation: It binds the signal peptide, directs translocase assembly, and may facilitate translocation. An in vitro assay with pea (Pisum sativum) chloroplasts was developed to conduct mutagenesis and analysis of cpTatC functions. Ala scanning mutagenesis identified mutants defective in substrate binding and receptor complex assembly. Mutations in the N terminus (S1) and first stromal loop (S2) caused specific defects in signal peptide recognition. Cys matching between substrate and imported cpTatC confirmed that S1 and S2 directly and specifically bind the RR proximal region of the signal peptide. Mutations in four lumen-proximal regions of cpTatC were defective in receptor complex assembly. Copurification and Cys matching analyses suggest that several of the lumen proximal regions may be important for cpTatC-cpTatC interactions. Surprisingly, RR binding domains of adjacent cpTatCs directed strong cpTatC-cpTatC cross-linking. This suggests clustering of binding sites on the multivalent receptor complex and explains the ability of Tat to transport cross-linked multimers. Transport of substrate proteins cross-linked to the signal peptide binding site tentatively identified mutants impaired in the translocation step.

  2. Nef exosomes isolated from the plasma of individuals with HIV-associated dementia (HAD) can induce Aβ(1-42) secretion in SH-SY5Y neural cells.

    Science.gov (United States)

    Khan, Mahfuz B; Lang, Michelle J; Huang, Ming-Bo; Raymond, Andrea; Bond, Vincent C; Shiramizu, Bruce; Powell, Michael D

    2016-04-01

    In the era of combined antiretroviral therapy (CART), many of the complications due to HIV-1 infection have diminished. One exception is HIV-associated neurocognitive disorder (HAND). HAND is a spectrum of disorders in cognitive function that ranges from asymptomatic disease to severe dementia (HAD). The milder form of HAND has actually remained the same or slightly increased in prevalence in the CART era. Even in individuals who have maintained undetectable HIV RNA loads, viral proteins such as Nef and Tat can continue to be expressed. In this report, we show that Nef protein and nef messenger RNA (mRNA) are packaged into exosomes that remain in circulation in patients with HAD. Plasma-derived Nef exosomes from patients with HAD have the ability to interact with the neuroblastoma cell line SH-SY5Y and deliver nef mRNA. The mRNA can induce expression of Nef in target cells and subsequently increase expression and secretion of beta-amyloid (Aβ) and Aβ peptides. Increase secretion of amyloid peptide could contribute to cognitive impairment seen in HAND.

  3. Systematic Analysis of the Functions of Lysine Acetylation in the Regulation of Tat Activity.

    Directory of Open Access Journals (Sweden)

    Minghao He

    Full Text Available The Tat protein of HIV-1 has several well-known properties, such as nucleocytoplasmic trafficking, transactivation of transcription, interaction with tubulin, regulation of mitotic progression, and induction of apoptosis. Previous studies have identified a couple of lysine residues in Tat that are essential for its functions. In order to analyze the functions of all the lysine residues in Tat, we mutated them individually to alanine, glutamine, and arginine. Through systematic analysis of the lysine mutants, we discovered several previously unidentified characteristics of Tat. We found that lysine acetylation could modulate the subcellular localization of Tat, in addition to the regulation of its transactivation activity. Our data also revealed that lysine mutations had distinct effects on microtubule assembly and Tat binding to bromodomain proteins. By correlation analysis, we further found that the effects of Tat on apoptosis and mitotic progression were not entirely attributed to its effect on microtubule assembly. Our findings suggest that Tat may regulate diverse cellular activities through binding to different proteins and that the acetylation of distinct lysine residues in Tat may modulate its interaction with various partners.

  4. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA

    Directory of Open Access Journals (Sweden)

    Malhotra M

    2013-05-01

    Full Text Available Meenakshi Malhotra,1 Catherine Tomaro-Duchesneau,1 Shyamali Saha,2 Imen Kahouli,3 Satya Prakash11Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, 2Faculty of Dentistry, 3Department of Experimental Medicine, McGill University, Montreal, QC, CanadaAbstract: Recently, cell-penetrating peptides have been proposed to translocate antibodies, proteins, and other molecules in targeted drug delivery. The proposed study presents the synthesis and characterization of a peptide-based chitosan nanoparticle for small interfering RNA (siRNA delivery, in-vitro. Specifically, the synthesis included polyethylene glycol (PEG, a hydrophilic polymer, and trans-activated transcription (TAT peptide, which were chemically conjugated on the chitosan polymer. The conjugation was achieved using N-Hydroxysuccinimide-PEG-maleimide (heterobifunctional PEG as a cross-linker, with the bifunctional PEG facilitating the amidation reaction through its N-Hydroxysuccinimide group and reacting with the amines on chitosan. At the other end of PEG, the maleimide group was chemically conjugated with the cysteine-modified TAT peptide. The degree of substitution on chitosan with PEG and on PEG with TAT was confirmed using colorimetric assays. The resultant polymer was used to form nanoparticles complexing siRNA, which were then characterized for particle size, morphology, cellular uptake, and cytotoxicity. The nanoparticles were tested in-vitro on mouse neuroblastoma cells (Neuro2a. Particle size and surface charge were characterized and an optimal pH condition and PEG molecular weight were determined to form sterically stable nanoparticles. Results indicate 7.5% of the amines in chitosan polymer were conjugated to the PEG and complete conjugation of TAT peptide was observed on the synthesized PEGylated chitosan polymer. Compared with unmodified chitosan nanoparticles, the nanoparticles formed at pH 6 were

  5. Vulnerability to the infection by HIV in female prisoners of the P.F.B. assessed by serological and T.A.T. techniques

    OpenAIRE

    Leila Strazza de Azevedo

    2003-01-01

    O objetivo foi avaliar a vulnerabilidade do HIV de detentas da P.F.B.. Utilizou-se técnicas sorológicas e TAT. 290 detentas entrevistadas com questionário sobre comportamentos e hábitos destas mulheres e parceiros sobre: promiscuidade sexual; UDI; DST. Avaliou-se com detentas: mitos, crenças, idade, escolaridade e conhecimento HIV. A soroprevalência para HIV foi obtida e relacionada com os comportamentos de risco por análise univariada, com a utilização de tabelas de contingência entre variáv...

  6. The human immunodeficiency virus-1 protein Tat and its discrete fragments evoke selective release of acetylcholine from human and rat cerebrocortical terminals through species-specific mechanisms.

    Science.gov (United States)

    Feligioni, Marco; Raiteri, Luca; Pattarini, Roberto; Grilli, Massimo; Bruzzone, Santina; Cavazzani, Paolo; Raiteri, Maurizio; Pittaluga, Anna

    2003-07-30

    The effect of the human immunodeficiency virus-1 protein Tat was investigated on neurotransmitter release from human and rat cortical nerve endings. Tat failed to affect the release of several neurotransmitters, such as glutamate, GABA, norepinephrine, and others, but it evoked the release of [3H]ACh via increase of cytosolic [Ca2+]. In human nerve terminals, the Tat effect partly depends on Ca2+ entry through voltage-sensitive Ca2+ channels, because Cd2+ halved the Tat-evoked release. Activation of group I metabotropic glutamate receptors (mGluR) and mobilization of Ca2+ from IP3-sensitive intraterminal stores are also involved, because the Tat effect was prevented by mGluR antagonists 2-methyl-6-(phenylethynyl)pyridine hydrochloride and 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester and by the IP3 receptor antagonists heparin and xestospongin C. Furthermore, the group I selective mGlu agonist (RS)-3,5-dihydroxyphenylglycine enhanced [3H]ACh release. In rat nerve terminals, the Tat-evoked release neither depends on external Ca2+ ions entry nor on IP3-mediated mechanisms. Tat seems to cause mobilization of Ca2+ from ryanodine-sensitive internal stores because its effect was prevented by both 8-bromo-cyclic adenosine diphosphate-ribose and dantrolene. The Tat-evoked release from human synaptosomes was mimicked by the peptide sequences Tat 32-62, Tat 49-86, and Tat 41-60. In contrast, the Tat 49-86 and Tat 61-80 fragments, but not the Tat 32-62 fragment, were active in rat synaptosomes. In conclusion, Tat elicits Ca2+-dependent [3H]ACh release by species-specific intraterminal mechanisms by binding via discrete amino acid sequences to different receptive sites on human and rat cholinergic terminals.

  7. Inhibition of HIV Replication by Cyclic and Hairpin PNAs Targeting the HIV-1 TAR RNA Loop

    Science.gov (United States)

    Upert, Gregory; Di Giorgio, Audrey; Upadhyay, Alok; Manvar, Dinesh; Pandey, Nootan; Pandey, Virendra N.; Patino, Nadia

    2012-01-01

    Human immunodeficiency virus-1 (HIV-1) replication and gene expression entails specific interaction of the viral protein Tat with its transactivation responsive element (TAR), to form a highly stable stem-bulge-loop structure. Previously, we described triphenylphosphonium (TPP) cation-based vectors that efficiently deliver nucleotide analogs (PNAs) into the cytoplasm of cells. In particular, we showed that the TPP conjugate of a linear 16-mer PNA targeting the apical stem-loop region of TAR impedes Tat-mediated transactivation of the HIV-1 LTR in vitro and also in cell culture systems. In this communication, we conjugated TPP to cyclic and hairpin PNAs targeting the loop region of HIV-1 TAR and evaluated their antiviral efficacy in a cell culture system. We found that TPP-cyclic PNAs containing only 8 residues, showed higher antiviral potency compared to hairpin PNAs of 12 or 16 residues. We further noted that the TPP-conjugates of the 8-mer cyclic PNA as well as the 16-mer linear PNA displayed similar antiviral efficacy. However, cyclic PNAs were shown to be highly specific to their target sequences. This communication emphasizes on the importance of small constrained cyclic PNAs over both linear and hairpin structures for targeting biologically relevant RNA hairpins. PMID:23029603

  8. Inhibition of HIV Replication by Cyclic and Hairpin PNAs Targeting the HIV-1 TAR RNA Loop

    Directory of Open Access Journals (Sweden)

    Gregory Upert

    2012-01-01

    Full Text Available Human immunodeficiency virus-1 (HIV-1 replication and gene expression entails specific interaction of the viral protein Tat with its transactivation responsive element (TAR, to form a highly stable stem-bulge-loop structure. Previously, we described triphenylphosphonium (TPP cation-based vectors that efficiently deliver nucleotide analogs (PNAs into the cytoplasm of cells. In particular, we showed that the TPP conjugate of a linear 16-mer PNA targeting the apical stem-loop region of TAR impedes Tat-mediated transactivation of the HIV-1 LTR in vitro and also in cell culture systems. In this communication, we conjugated TPP to cyclic and hairpin PNAs targeting the loop region of HIV-1 TAR and evaluated their antiviral efficacy in a cell culture system. We found that TPP-cyclic PNAs containing only 8 residues, showed higher antiviral potency compared to hairpin PNAs of 12 or 16 residues. We further noted that the TPP-conjugates of the 8-mer cyclic PNA as well as the 16-mer linear PNA displayed similar antiviral efficacy. However, cyclic PNAs were shown to be highly specific to their target sequences. This communication emphasizes on the importance of small constrained cyclic PNAs over both linear and hairpin structures for targeting biologically relevant RNA hairpins.

  9. Assessment of the chemosensitizing activity of TAT-RasGAP317-326 in childhood cancers.

    Directory of Open Access Journals (Sweden)

    Nadja Chevalier

    Full Text Available Although current anti-cancer protocols are reasonably effective, treatment-associated long-term side effects, induced by lack of specificity of the anti-cancer procedures, remain a challenging problem in pediatric oncology. TAT-RasGAP317-326 is a RasGAP-derived cell-permeable peptide that acts as a sensitizer to various anti-cancer treatments in adult tumor cells. In the present study, we assessed the effect of TAT-RasGAP317-326 in several childhood cancer cell lines. The RasGAP-derived peptide-induced cell death was analyzed in several neuroblastoma, Ewing sarcoma and leukemia cell lines (as well as in normal lymphocytes. Cell death was evaluated using flow cytometry methods in the absence or in the presence of the peptide in combination with various genotoxins used in the clinics (4-hydroperoxycyclophosphamide, etoposide, vincristine and doxorubicin. All tested pediatric tumors, in response to at least one genotoxin, were sensitized by TAT-RasGAP317-326. The RasGAP-derived peptide did not increase cell death of normal lymphocytes, alone or in combination with the majority of the tested chemotherapies. Consequently, TAT-RasGAP317-326 may benefit children with tumors by increasing the efficacy of anti-cancer therapies notably by allowing reductions in anti-cancer drug dosage and the associated drug-induced side effects.

  10. TAT improves in vitro transportation of fortilin through midgut and into hemocytes of white shrimp Litopenaeus vannamei

    Science.gov (United States)

    Zhou, Yi; Zhang, Wenbing; Mai, Kangsen; Xu, Wei; Zhang, Yanjiao; Ai, Qinghui; Wang, Xiaojie

    2012-06-01

    Fortilin is a multifunctional protein implicated in many important cellular processes. Since injection of Pm-fortilin reduces shrimp mortality caused by white spot syndrome virus (WSSV), there is potential application of fortilin in shrimp culture. In the present study, in order to improve trans-membrane transportation efficiency, the protein transduction domain of the transactivator of transcription (TAT) peptide was fused to fortilin. The Pichia pastoris yeast expression system, which is widely accepted in animal feeds, was used for production of recombinant fusion protein. Green fluorescence protein (GFP) was selected as a reporter because of its intrinsic visible fluorescence. The fortilin, TAT and GFP fusion protein were constructed. Their trans-membrane transportation efficiency and effects on immune response of shrimp were analyzed in vitro. Results showed that TAT peptide improved in vitro uptake of fortilin into the hemocytes and midgut of Litopenaeus vannamei. The phenoloxidase (PO) activity of hemocytes incubated with GFP-Fortilin or GFP-Fortilin-TAT was significantly increased compared with that in the control without expressed fortilin. The PO activity of hemocytes incubated with 200 μg mL-1 GFP-Fortilin-TAT was significantly higher than that in the group with the same concentration of GFP-Fortilin. Hemocytes incubated with GFP-Fortilin-TAT at all concentrations showed significantly higher nitric oxide synthase (NOS) activity than those in the control or in the GFP-Fortilin treatment. The present in vitro study indicated that TAT fusion protein improved the immune effect of fortilin.

  11. Cell Type Preference of a Novel Human Derived Cell-Permeable Peptide dNP2 and TAT in Murine Splenic Immune Cells.

    Directory of Open Access Journals (Sweden)

    Sangho Lim

    Full Text Available Cell-permeable peptides (CPPs have been widely studied as an attractive drug delivery system to deliver therapeutic macromolecules such as DNA, RNA, and protein into cells. However, its clinical application is still limited and controversial due to the lack of a complete understanding of delivery efficiency in target cells. Previously we identified and characterized the novel and superior CPP, named dNP2, and here we comparatively analyzed intracellular delivery efficiency of dNP2 and TAT in various immune cells of mouse spleen to demonstrate their cell type preference. dNP2- or TAT-conjugated fluorescent proteins were most efficiently taken up by phagocytic cells such as dendritic cells and macrophages while little protein uptake was seen by lymphocytes including T cells, B cells, and NK cells. Interestingly CD8+ lymphoid dendritic cells and CD62LloCD44hi memory like T cell subsets showed significantly better uptake efficiency in vitro and in vivo relative to other dendritic cells or T cells, respectively. In addition, activated macrophages, T cells, and B cells took up the proteins more efficiently relative to when in the resting state. Importantly, only dNP2, not TAT, shows significant intracellular protein delivery efficiency in vivo. Collectively, this study provides important information regarding heterogeneous intracellular delivery efficiency of CPPs such as dNP2 and TAT with cell type preference in the spleen needed for its application in phagocytic cells or activated immune cells.

  12. Novel tetra-peptide insertion in Gag-p6 ALIX-binding motif in HIV-1 subtype C associated with protease inhibitor failure

    Science.gov (United States)

    Neogi, Ujjwal; RAO, Shwetha D; BONTELL, Irene; VERHEYEN, Jens; RAO, Vasudev R; GORE, Sagar C; SONI, Neelesh; SHET, Anita; SCHÜLTER, Eugen; EKSTRAND, Maria L.; WONDWOSSEN, Amogne; KAISER, Rolf; MADHUSUDHAN, Mallur S.; PRASAD, Vinayaka R; SONNERBORG, Anders

    2014-01-01

    A novel tetra-peptide insertion was identified in Gag-p6 ALIX-binding region which is appears in protease inhibitor (PI) failure Indian HIV-1C sequences (Odds Ratio 17.1, p<0.001) but naturally present in half of untreated Ethiopian sequences. The insertion will probably restore the ALIX mediated virus release pathway, which is lacking in HIV-1C. The clinical importance of such insertion need to be evaluated in HIV-1C dominating regions were PI-drugs are being scaled up as second line treatment options. PMID:25102091

  13. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    International Nuclear Information System (INIS)

    Jung, Kyung oh; Youn, Hyewon; Kim, Seung Hoo; Kim, Young-Hwa; Kang, Keon Wook; Chung, June-Key

    2016-01-01

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and "6"4Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescence signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.

  14. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kyung oh [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of); Youn, Hyewon, E-mail: hwyoun@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of); Cancer Imaging Center, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Seung Hoo [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Kim, Young-Hwa [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Kang, Keon Wook [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Chung, June-Key, E-mail: jkchung@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of)

    2016-08-26

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and {sup 64}Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescence signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.

  15. Alterations of HIV-1 envelope phenotype and antibody-mediated neutralization by signal peptide mutations.

    Directory of Open Access Journals (Sweden)

    Chitra Upadhyay

    2018-01-01

    Full Text Available HIV-1 envelope glycoprotein (Env mediates virus attachment and entry into the host cells. Like other membrane-bound and secreted proteins, HIV-1 Env contains at its N terminus a signal peptide (SP that directs the nascent Env to the endoplasmic reticulum (ER where Env synthesis and post-translational modifications take place. SP is cleaved during Env biosynthesis but potentially influences the phenotypic traits of the Env protein. The Env SP sequences of HIV-1 isolates display high sequence variability, and the significance of such variability is unclear. We postulate that changes in the Env SP influence Env transport through the ER-Golgi secretory pathway and Env folding and/or glycosylation that impact on Env incorporation into virions, receptor binding and antibody recognition. We first evaluated the consequences of mutating the charged residues in the Env SP in the context of infectious molecular clone HIV-1 REJO.c/2864. Results show that three different mutations affecting histidine at position 12 affected Env incorporation into virions that correlated with reduction of virus infectivity and DC-SIGN-mediated virus capture and transmission. Mutations at positions 8, 12, and 15 also rendered the virus more resistant to neutralization by monoclonal antibodies against the Env V1V2 region. These mutations affected the oligosaccharide composition of N-glycans as shown by changes in Env reactivity with specific lectins and by mass spectrometry. Increased neutralization resistance and N-glycan composition changes were also observed when analogous mutations were introduced to another HIV-1 strain, JRFL. To the best of our knowledge, this is the first study showing that certain residues in the HIV-1 Env SP can affect virus neutralization sensitivity by modulating oligosaccharide moieties on the Env N-glycans. The HIV-1 Env SP sequences thus may be under selective pressure to balance virus infectiousness with virus resistance to the host antibody

  16. A new class of HIV-1 protease inhibitor: the crystallographic structure, inhibition and chemical synthesis of an aminimide peptide isostere.

    Science.gov (United States)

    Rutenber, E E; McPhee, F; Kaplan, A P; Gallion, S L; Hogan, J C; Craik, C S; Stroud, R M

    1996-09-01

    The essential role of HIV-1 protease (HIV-1 PR) in the viral life cycle makes it an attractive target for the development of substrate-based inhibitors that may find efficacy as anti-AIDS drugs. However, resistance has arisen to potent peptidomimetic drugs necessitating the further development of novel chemical backbones for diversity based chemistry focused on probing the active site for inhibitor interactions and binding modes that evade protease resistance. AQ148 is a potent inhibitor of HIV-1 PR and represents a new class of transition state analogues incorporating an aminimide peptide isostere. A 3-D crystallographic structure of AQ148, a tetrapeptide isostere, has been determined in complex with its target HIV-1 PR to a resolution of 2.5 A and used to evaluate the specific structural determinants of AQ148 potency and to correlate structure-activity relationships within the class of related compounds. AQ148 is a competitive inhibitor of HIV-1 PR with a Ki value of 137 nM. Twenty-nine derivatives have been synthesized and chemical modifications have been made at the P1, P2, P1', and P2' sites. The atomic resolution structure of AQ148 bound to HIV-1 PR reveals both an inhibitor binding mode that closely resembles that of other peptidomimetic inhibitors and specific protein/inhibitor interactions that correlate with structure-activity relationships. The structure provides the basis for the design, synthesis and evaluation of the next generation of hydroxyethyl aminimide inhibitors. The aminimide peptide isostere is a scaffold with favorable biological properties well suited to both the combinatorial methods of peptidomimesis and the rational design of potent and specific substrate-based analogues.

  17. Opening of the TAR hairpin in the HIV-1 genome causes aberrant RNA dimerization and packaging

    Directory of Open Access Journals (Sweden)

    Das Atze T

    2012-07-01

    Full Text Available Abstract Background The TAR hairpin is present at both the 5′ and 3′ end of the HIV-1 RNA genome. The 5′ element binds the viral Tat protein and is essential for Tat-mediated activation of transcription. We recently observed that complete TAR deletion is allowed in the context of an HIV-1 variant that does not depend on this Tat-TAR axis for transcription. Mutations that open the 5′ stem-loop structure did however affect the leader RNA conformation and resulted in a severe replication defect. In this study, we set out to analyze which step of the HIV-1 replication cycle is affected by this conformational change of the leader RNA. Results We demonstrate that opening the 5′ TAR structure through a deletion in either side of the stem region caused aberrant dimerization and reduced packaging of the unspliced viral RNA genome. In contrast, truncation of the TAR hairpin through deletions in both sides of the stem did not affect RNA dimer formation and packaging. Conclusions These results demonstrate that, although the TAR hairpin is not essential for RNA dimerization and packaging, mutations in TAR can significantly affect these processes through misfolding of the relevant RNA signals.

  18. [Transduction peptides, the useful face of a new signaling mechanism].

    Science.gov (United States)

    Joliot, Alain; Prochiantz, Alain

    2005-03-01

    Transduction peptides that cross the plasma membrane of live cells are commonly used for the in vitro and in vivo targeting of hydrophilic drugs into the cell interior. Although this family of peptides has recently increased and will probably continue to do so, the two mainly used peptides are derived from transcription factors. Indeed, TAT is a 12 amino acid long arginine-rich peptide present in the HIV transcription factor, and penetratin - or its variants - corresponds to 16 amino acids that define the highly conserved third helix of the DNA-binding domain (homeodomain) of homeoprotein transcription factors. In this review, we shall recall the different steps that have led to the discovery of transduction peptides and present the most likely hypotheses concerning the mechanisms involved in their internalization. At the risk of being incomplete or, even, biased, we shall concentrate on penetratins and TAT. The reason is that these peptides have been studied for over ten years leading to the edification of robust knowledge regarding their properties. This attitude will not preclude comparisons with other peptides, if necessary. Our goal is to describe the mode of action of these transduction peptides, their range of activity in term of cell types that accept them and cargoes that they can transport, and, also, some of the limitations that one can encounter in their use. Finally, based on the idea that peptide transduction is the technological face of a physiological property of some transcription factors, we shall discuss the putative physiological function of homeoprotein transduction, and, as a consequence, the possibility to use these factors as therapeutic proteins.

  19. Novel tetra-peptide insertion in Gag-p6 ALIX-binding motif in HIV-1 subtype C associated with protease inhibitor failure in Indian patients.

    Science.gov (United States)

    Neogi, Ujjwal; Rao, Shwetha D; Bontell, Irene; Verheyen, Jens; Rao, Vasudev R; Gore, Sagar C; Soni, Neelesh; Shet, Anita; Schülter, Eugen; Ekstrand, Maria L; Wondwossen, Amogne; Kaiser, Rolf; Madhusudhan, Mallur S; Prasad, Vinayaka R; Sonnerborg, Anders

    2014-09-24

    A novel tetra-peptide insertion was identified in Gag-p6 ALIX-binding region, which appeared in protease inhibitor failure Indian HIV-1C sequences (odds ratio=17.1, P < 0.001) but was naturally present in half of untreated Ethiopian HIV-1C sequences. The insertion is predicted to restore ALIX-mediated virus release pathway, which is lacking in HIV-1C. The clinical importance of the insertion needs to be evaluated in HIV-1C dominating regions wherein the use of protease inhibitor drugs are being scaled up.

  20. Performance of V3-based HIV-1 sero subtyping in HIV endemic areas

    Directory of Open Access Journals (Sweden)

    Lara Tavoschi

    2011-12-01

    Full Text Available HIV-1 serosubtyping based on reactivity to peptides from the V3 region of gp120 is a low-cost and easy to perform procedure often used in geographical areas with high prevalence and incidence of HIV infection. We evaluated the performance of V3-based serotyping on 148 sera from 118 HIV-1-infected individuals living in Uganda, with estimated dates of seroconversion. Of the 148 tested samples, 68 (46.0% specifically reacted with only one of the V3 peptides included in the test (SP, 64 (43.2% did not react with any peptide (NR and 16 (10.8% reacted with two or more peptides (CR. According to the estimated seroconversion date, the large majority of samples collected early after infection belonged to the NR group. These samples had also a low Avidity Index. In contrast, samples collected later after infection belonged mainly to CR and SP groups and had also a higher avidity index. These results indicate that the performance of V3-based assays depends on maturation of HIV-specific immune response and can be significantly lowered when these tests are carried out on specimens collected from recently infected individuals.

  1. Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes

    International Nuclear Information System (INIS)

    Nair, M.P.N.; Pottathil, R.; Heimer, E.P.; Schwartz, S.A.

    1988-01-01

    Recombinant and synthetic peptides corresponding to envelope proteins of the human immunodeficiency virus (HIV) were examined for their effects on the activities of lymphocytes from normal donors in vitro. Although lymphocytes cultured with env-gag peptides produced significant amounts of IgG, addition of env-gag peptides to a pokeweed mitogen-induced B-cell activation system resulted in suppression of immunoglobulin synthesis by normal lymphocytes. Recombinant antigens, env-gag and env-80 dihydrofolate reductase (DHFR), produced a substantial proliferative response by peripheral blood mononuclear cells (PBMC) as determined by [ 3 H]thymidine incorporation. PBMC precultured with HIV synthetic peptide env 578-608 also manifested significant proliferative responses as compared to control cultures. CD3 + lymphocytes precultured with recombinant HIV antigens, env-gag and env-80 DHFR, and synthetic HIV peptide, env 487-511, showed moderate but significant proliferative responses. Both recombinant antigens and synthetic peptides also produced a dose-dependent stimulatory effect on proliferation by CD3 - lymphocytes. These studies demonstrate that recombinant and synthetic peptides of the HIV genome express immunoregulatory T- and B-cell epitopes. Identification of unique HIV epitopes with immunogenic and immunoregulatory activities is necessary for the development of an effective vaccine against HIV infection

  2. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Kara G Lassen

    2006-07-01

    Full Text Available HIV-1 latency in resting CD4+ T cells represents a major barrier to virus eradication in patients on highly active antiretroviral therapy (HAART. We describe here a novel post-transcriptional block in HIV-1 gene expression in resting CD4+ T cells from patients on HAART. This block involves the aberrant localization of multiply spliced (MS HIV-1 RNAs encoding the critical positive regulators Tat and Rev. Although these RNAs had no previously described export defect, we show that they exhibit strict nuclear localization in resting CD4+ T cells from patients on HAART. Overexpression of the transcriptional activator Tat from non-HIV vectors allowed virus production in these cells. Thus, the nuclear retention of MS HIV-1 RNA interrupts a positive feedback loop and contributes to the non-productive nature of infection of resting CD4+ T cells. To define the mechanism of nuclear retention, proteomic analysis was used to identify proteins that bind MS HIV-1 RNA. Polypyrimidine tract binding protein (PTB was identified as an HIV-1 RNA-binding protein differentially expressed in resting and activated CD4+ T cells. Overexpression of PTB in resting CD4+ T cells from patients on HAART allowed cytoplasmic accumulation of HIV-1 RNAs. PTB overexpression also induced virus production by resting CD4+ T cells. Virus culture experiments showed that overexpression of PTB in resting CD4+ T cells from patients on HAART allowed release of replication-competent virus, while preserving a resting cellular phenotype. Whether through effects on RNA export or another mechanism, the ability of PTB to reverse latency without inducing cellular activation is a result with therapeutic implications.

  3. Structural Insights into the Mechanisms of Action of Short-Peptide HIV-1 Fusion Inhibitors Targeting the Gp41 Pocket

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhang

    2018-02-01

    Full Text Available The deep hydrophobic pocket of HIV-1 gp41 has been considered a drug target, but short-peptides targeting this site usually lack potent antiviral activity. By applying the M-T hook structure, we previously generated highly potent short-peptide fusion inhibitors that specifically targeted the pocket site, such as MT-SC22EK, HP23L, and LP-11. Here, the crystal structures of HP23L and LP-11 bound to the target mimic peptide N36 demonstrated the critical intrahelical and interhelical interactions, especially verifying that the hook-like conformation was finely adopted while the methionine residue was replaced by the oxidation-less prone residue leucine, and that addition of an extra glutamic acid significantly enhanced the binding and inhibitory activities. The structure of HP23L bound to N36 with two mutations (E49K and L57R revealed the critical residues and motifs mediating drug resistance and provided new insights into the mechanism of action of inhibitors. Therefore, the present data help our understanding for the structure-activity relationship (SAR of HIV-1 fusion inhibitors and facilitate the development of novel antiviral drugs.

  4. Cellular Uptake and Photo-Cytotoxicity of a Gadolinium(III-DOTA-Naphthalimide Complex “Clicked” to a Lipidated Tat Peptide

    Directory of Open Access Journals (Sweden)

    William I. O’Malley

    2016-02-01

    Full Text Available A new bifunctional macrocyclic chelator featuring a conjugatable alkynyl-naphthalimide fluorophore pendant group has been prepared and its Gd(III complex coupled to a cell-penetrating lipidated azido-Tat peptide derivative using Cu(I-catalysed “click” chemistry. The resulting fluorescent conjugate is able to enter CAL-33 tongue squamous carcinoma cells, as revealed by confocal microscopy, producing a very modest anti-proliferative effect (IC50 = 93 µM. Due to the photo-reactivity of the naphthalimide moiety, however, the conjugate’s cytotoxicity is significantly enhanced (IC50 = 16 µM upon brief low-power UV-A irradiation.

  5. Effects of integration and replication on transcription of the HIV-1 long terminal repeat

    NARCIS (Netherlands)

    Jeang, K. T.; Berkhout, B.; Dropulic, B.

    1993-01-01

    The activity of a promoter is influenced by chromosomal and cell cycle/replication context. We analyzed the influences of integration and replication on transcription of the human immunodeficiency virus (HIV)-1 long terminal repeat (LTR). We found that one requirement for Tat trans-activated

  6. Structural Basis for Species Selectivity in the HIV-1 gp120-CD4 Interaction: Restoring Affinity to gp120 in Murine CD4 Mimetic Peptides

    Directory of Open Access Journals (Sweden)

    Kristin Kassler

    2011-01-01

    Full Text Available The first step of HIV-1 infection involves interaction between the viral glycoprotein gp120 and the human cellular receptor CD4. Inhibition of the gp120-CD4 interaction represents an attractive strategy to block HIV-1 infection. In an attempt to explore the known lack of affinity of murine CD4 to gp120, we have investigated peptides presenting the putative gp120-binding site of murine CD4 (mCD4. Molecular modeling indicates that mCD4 protein cannot bind gp120 due to steric clashes, while the larger conformational flexibility of mCD4 peptides allows an interaction. This finding is confirmed by experimental binding assays, which also evidenced specificity of the peptide-gp120 interaction. Molecular dynamics simulations indicate that the mCD4-peptide stably interacts with gp120 via an intermolecular β-sheet, while an important salt-bridge formed by a C-terminal lysine is lost. Fixation of the C-terminus by introducing a disulfide bridge between the N- and C-termini of the peptide significantly enhanced the affinity to gp120.

  7. Peptide-derivatized SB105-A10 dendrimer inhibits the infectivity of R5 and X4 HIV-1 strains in primary PBMCs and cervicovaginal histocultures.

    Directory of Open Access Journals (Sweden)

    Isabella Bon

    Full Text Available Peptide dendrimers are a class of molecules that exhibit a large array of biological effects including antiviral activity. In this report, we analyzed the antiviral activity of the peptide-derivatized SB105-A10 dendrimer, which is a tetra-branched dendrimer synthetized on a lysine core, in activated peripheral blood mononuclear cells (PBMCs that were challenged with reference and wild-type human immunodeficiency virus type 1 (HIV-1 strains. SB105-A10 inhibited infections by HIV-1 X4 and R5 strains, interfering with the early phases of the viral replication cycle. SB105-A10 targets heparan sulfate proteoglycans (HSPGs and, importantly, the surface plasmon resonance (SPR assay revealed that SB105-A10 strongly binds gp41 and gp120, most likely preventing HIV-1 attachment/entry through multiple mechanisms. Interestingly, the antiviral activity of SB105-A10 was also detectable in an organ-like structure of human cervicovaginal tissue, in which SB105-A10 inhibited the HIV-1ada R5 strain infection without altering the tissue viability. These results demonstrated the strong antiviral activity of SB105-A10 and suggest a potential microbicide use of this dendrimer to prevent the heterosexual transmission of HIV-1.

  8. Identification of conserved subdominant HIV Type 1 CD8(+) T Cell epitopes restricted within common HLA Supertypes for therapeutic HIV Type 1 vaccines

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Kløverpris, Henrik; Jensen, Kristoffer Jarlov

    2012-01-01

    The high HIV-1 prevalence, up to 4.6% in Guinea-Bissau, West Africa, makes it a relevant location for testing of therapeutic vaccines. With the aim of performing a clinical study in Guinea-Bissau, after first testing the vaccine for safety in Denmark, Europe, we here describe the design...... of a universal epitope peptide-based T cell vaccine with relevance for any geographic locations. The two major obstacles when designing such a vaccine are the high diversities of the HIV-1 genome and of the human major histocompatibility complex (MHC) class I. We selected 15 CD8-restricted epitopes predicted......-specific, HLA-restricted T cell specificities using peptide-MHC class I tetramer labeling of CD8(+) T cells from HIV-1-infected individuals. The selected vaccine epitopes are infrequently targeted in HIV-1-infected individuals from both locations. Moreover, we HLA-typed HIV-1-infected individuals...

  9. Interdisciplinary Evaluation of Broadly-Reactive HLA Class II Restricted Epitopes Eliciting HIV-Specific CD4+T Cell Responses

    DEFF Research Database (Denmark)

    Buggert, M.; Norström, M.; Lundegaard, Claus

    2011-01-01

    , the functional and immunodominant discrepancies of CD4+ T cell responses targeting promiscuous MHC II restricted HIV epitopes remains poorly defined. Thus, utilization of interdisciplinary approaches might aid revealing broadly- reactive peptides eliciting CD4 + T cell responses. Methods: We utilized the novel...... bioinformatic prediction program NetMHCIIpan to select 64 optimized MHC II restricted epitopes located in the HIV Gag, Pol, Env, Nef and Tat regions. The epitopes were selected to cover the global diversity of the virus (multiple subtypes) and the human immune system(diverse MHC II types). Optimized...

  10. Genetic architecture of HIV-1 genes circulating in north India & their functional implications.

    Science.gov (United States)

    Neogi, Ujjwal; Sood, Vikas; Ronsard, Larence; Singh, Jyotsna; Lata, Sneh; Ramachandran, V G; Das, S; Wanchu, Ajay; Banerjea, Akhil C

    2011-12-01

    This review presents data on genetic and functional analysis of some of the HIV-1 genes derived from HIV-1 infected individuals from north India (Delhi, Punjab and Chandigarh). We found evidence of novel B/C recombinants in HIV-1 LTR region showing relatedness to China/Myanmar with 3 copies of Nfκb sites; B/C/D mosaic genomes for HIV-1 Vpr and novel B/C Tat. We reported appearance of a complex recombinant form CRF_02AG of HIV-1 envelope sequences which is predominantly found in Central/Western Africa. Also one Indian HIV-1 envelope subtype C sequence suggested exclusive CXCR4 co-receptor usage. This extensive recombination, which is observed in about 10 per cent HIV-1 infected individuals in the Vpr genes, resulted in remarkably altered functions when compared with prototype subtype B Vpr. The Vpu C was found to be more potent in causing apoptosis when compared with Vpu B when analyzed for subG1 DNA content. The functional implications of these changes as well as in other genes of HIV-1 are discussed in detail with possible implications for subtype-specific pathogenesis highlighted.

  11. Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling

    International Nuclear Information System (INIS)

    Oh, Somi; You, Eunae; Ko, Panseon; Jeong, Jangho; Keum, Seula; Rhee, Sangmyung

    2017-01-01

    Microtubules are required for diverse cellular processes, and abnormal regulation of microtubule dynamics is closely associated with severe diseases including malignant tumors. In this study, we report that α-tubulin N-acetyltransferase (αTAT1), a regulator of α-tubulin acetylation, is required for colon cancer proliferation and invasion via regulation of Wnt1 and its downstream genes expression. Public transcriptome analysis showed that expression of ATAT1 is specifically upregulated in colon cancer tissue. A knockout (KO) of ATAT1 in the HCT116 colon cancer cell line, using the CRISPR/Cas9 system showed profound inhibition of proliferative and invasive activities of these cancer cells. Overexpression of αTAT1 or the acetyl-mimic K40Q α-tubulin mutant in αTAT1 KO cells restored the invasiveness, indicating that microtubule acetylation induced by αTAT1 is critical for HCT116 cell invasion. Analysis of colon cancer-related gene expression in αTAT1 KO cells revealed that the loss of αTAT1 decreased the expression of WNT1. Mechanistically, abrogation of tubulin acetylation by αTAT1 knockout inhibited localization of β-catenin to the plasma membrane and nucleus, thereby resulting in the downregulation of Wnt1 and of its downstream genes including CCND1, MMP-2, and MMP-9. These results suggest that αTAT1-mediated Wnt1 expression via microtubule acetylation is important for colon cancer progression. - Highlights: • Ablation of αTAT1 inhibits HCT116 colon cancer cell invasion. • αTAT1/acetylated microtubules regulate expression of Wnt1/β-catenin target genes. • Acetylated microtubules regulate cellular localization of β-catenin. • Loss of αTAT1 prevents Wnt1 from inducing β-catenin-dependent and -independent pathways.

  12. An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer.

    Science.gov (United States)

    Weinberger, Leor S; Shenk, Thomas

    2007-01-01

    Animal viruses (e.g., lentiviruses and herpesviruses) use transcriptional positive feedback (i.e., transactivation) to regulate their gene expression. But positive-feedback circuits are inherently unstable when turned off, which presents a particular dilemma for latent viruses that lack transcriptional repressor motifs. Here we show that a dissipative feedback resistor, composed of enzymatic interconversion of the transactivator, converts transactivation circuits into excitable systems that generate transient pulses of expression, which decay to zero. We use HIV-1 as a model system and analyze single-cell expression kinetics to explore whether the HIV-1 transactivator of transcription (Tat) uses a resistor to shut off transactivation. The Tat feedback circuit was found to lack bi-stability and Tat self-cooperativity but exhibited a pulse of activity upon transactivation, all in agreement with the feedback resistor model. Guided by a mathematical model, biochemical and genetic perturbation of the suspected Tat feedback resistor altered the circuit's stability and reduced susceptibility to molecular noise, in agreement with model predictions. We propose that the feedback resistor is a necessary, but possibly not sufficient, condition for turning off noisy transactivation circuits lacking a repressor motif (e.g., HIV-1 Tat). Feedback resistors may be a paradigm for examining other auto-regulatory circuits and may inform upon how viral latency is established, maintained, and broken.

  13. Deciphering structure-activity relationships in a series of Tat/TAR inhibitors.

    Science.gov (United States)

    Pascale, Lise; González, Alejandro López; Di Giorgio, Audrey; Gaysinski, Marc; Teixido Closa, Jordi; Tejedor, Roger Estrada; Azoulay, Stéphane; Patino, Nadia

    2016-11-01

    A series of pentameric "Polyamide Amino Acids" (PAAs) compounds derived from the same trimeric precursor have been synthesized and investigated as HIV TAR RNA ligands, in the absence and in the presence of a Tat fragment. All PAAs bind TAR with similar sub-micromolar affinities but their ability to compete efficiently with the Tat fragment strongly differs, IC50 ranging from 35 nM to >2 μM. While NMR and CD studies reveal that all PAA interact with TAR at the same site and induce globally the same RNA conformational change upon binding, a comparative thermodynamic study of PAA/TAR equilibria highlights distinct TAR binding modes for Tat competitor and non-competitor PAAs. This led us to suggest two distinct interaction modes that have been further validated by molecular modeling studies. While the binding of Tat competitor PAAs induces a contraction at the TAR bulge region, the binding of non-competitor ones widens it. This could account for the distinct PAA ability to compete with Tat fragment. Our work illustrates how comparative thermodynamic studies of a series of RNA ligands of same chemical family are of value for understanding their binding modes and for rationalizing structure-activity relationships.

  14. Imperatorin inhibits HIV-1 replication through an Sp1-dependent pathway.

    Science.gov (United States)

    Sancho, Rocío; Márquez, Nieves; Gómez-Gonzalo, Marta; Calzado, Marco A; Bettoni, Giorgio; Coiras, Maria Teresa; Alcamí, José; López-Cabrera, Manuel; Appendino, Giovanni; Muñoz, Eduardo

    2004-09-03

    Coumarins and structurally related compounds have been recently shown to present anti-human immunodeficiency virus, type 1 (HIV-1) activity. Among them, the dietary furanocoumarin imperatorin is present in citrus fruits, in culinary herbs, and in some medicinal plants. In this study we report that imperatorin inhibits either vesicular stomatitis virus-pseudotyped or gp160-enveloped recombinant HIV-1 infection in several T cell lines and in HeLa cells. These recombinant viruses express luciferase as a marker of viral replication. Imperatorin did not inhibit the reverse transcription nor the integration steps in the viral cell cycle. Using several 5' long terminal repeat-HIV-1 constructs where critical response elements were either deleted or mutated, we found that the transcription factor Sp1 is critical for the inhibitory activity of imperatorin induced by both phorbol 12-myristate 13-acetate and HIV-1 Tat. Moreover in transient transfections imperatorin specifically inhibited phorbol 12-myristate 13-acetate-induced transcriptional activity of the Gal4-Sp1 fusion protein. Since Sp1 is also implicated in cell cycle progression we further studied the effect of imperatorin on cyclin D1 gene transcription and protein expression and in HeLa cell cycle progression. We found that imperatorin strongly inhibited cyclin D1 expression and arrested the cells at the G(1) phase of the cell cycle. These results highlight the potential of Sp1 transcription factor as a target for natural anti-HIV-1 compounds such as furanocoumarins that might have a potential therapeutic role in the management of AIDS.

  15. CTL epitope distribution patterns in the Gag and Nef proteins of HIV-1 from subtype A infected subjects in Kenya: Use of multiple peptide sets increases the detectable breadth of the CTL response

    Directory of Open Access Journals (Sweden)

    Birx Deborah L

    2006-04-01

    Full Text Available Abstract Background Subtype A is a major strain in the HIV-1 pandemic in eastern Europe, central Asia and in certain regions of east Africa, notably in rural Kenya. While considerable effort has been focused upon mapping and defining immunodominant CTL epitopes in HIV-1 subtype B and subtype C infections, few epitope mapping studies have focused upon subtype A. Results We have used the IFN-γ ELIspot assay and overlapping peptide pools to show that the pattern of CTL recognition of the Gag and Nef proteins in subtype A infection is similar to that seen in subtypes B and C. The p17 and p24 proteins of Gag and the central conserved region of Nef were targeted by CTL from HIV-1-infected Kenyans. Several epitope/HLA associations commonly seen in subtype B and C infection were also observed in subtype A infections. Notably, an immunodominant HLA-C restricted epitope (Gag 296–304; YL9 was observed, with 8/9 HLA-CW0304 subjects responding to this epitope. Screening the cohort with peptide sets representing subtypes A, C and D (the three most prevalent HIV-1 subtypes in east Africa, revealed that peptide sets based upon an homologous subtype (either isolate or consensus only marginally improved the capacity to detect CTL responses. While the different peptide sets detected a similar number of responses (particularly in the Gag protein, each set was capable of detecting unique responses not identified with the other peptide sets. Conclusion Hence, screening with multiple peptide sets representing different sequences, and by extension different epitope variants, can increase the detectable breadth of the HIV-1-specific CTL response. Interpreting the true extent of cross-reactivity may be hampered by the use of 15-mer peptides at a single concentration and a lack of knowledge of the sequence that primed any given CTL response. Therefore, reagent choice and knowledge of the exact sequences that prime CTL responses will be important factors in

  16. Anti-apoptotic peptides protect against radiation-induced cell death

    International Nuclear Information System (INIS)

    McConnell, Kevin W.; Muenzer, Jared T.; Chang, Kathy C.; Davis, Chris G.; McDunn, Jonathan E.; Coopersmith, Craig M.; Hilliard, Carolyn A.; Hotchkiss, Richard S.; Grigsby, Perry W.; Hunt, Clayton R.

    2007-01-01

    The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15 Gy radiation. In mice exposed to 5 Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues

  17. Identification of a human protein-derived HIV-1 fusion inhibitor targeting the gp41 fusion core structure.

    Directory of Open Access Journals (Sweden)

    Lijun Chao

    Full Text Available The HIV-1 envelope glycoprotein (Env gp41 plays a crucial role in the viral fusion process. The peptides derived from the C-terminal heptad repeat (CHR of gp41 are potent HIV fusion inhibitors. However, the activity of these anti-HIV-1 peptides in vivo may be attenuated by their induction of anti-gp41 antibodies. Thus, it is essential to identify antiviral peptides or proteins with low, or no, immunogenicity to humans. Here, we found that the C-terminal fragment (aa 462-521 of the human POB1 (the partner of RalBP1, designated C60, is an HIV-1 fusion inhibitor. It bound to N36, the peptide derived from the N-terminal heptad repeat (NHR of gp41, and to the six-helix bundle (6-HB formed by N36 and C34, a CHR-peptide, but it did not bind to C34. Unlike the CHR-peptides, C60 did not block gp41 6-HB formation. Rather, results suggest that C60 inhibits HIV-1 fusion by binding to the 6-HB, in particular, the residues in the gp41 NHR domain that are exposed on the surface of 6-HB. Since 6-HB plays a crucial role in the late stage of fusion between the viral envelope and endosomal membrane during the endocytic process of HIV-1, C60 may serve as a host restriction factor to suppress HIV-1 entry into CD4+ T lymphocytes. Taken together, it can be concluded from these results that C60 can be used as a lead for the development of anti-HIV-1 therapeutics or microbicides for the treatment and prevention of HIV-1 infection, as well as a molecular probe to study the fusogenic mechanism of HIV-1.

  18. HIV-1 binding and neutralizing antibodies of injecting drug users

    Directory of Open Access Journals (Sweden)

    E.P. Ouverney

    2005-09-01

    Full Text Available Previous studies have demonstrated a stronger seroreactivity against some synthetic peptides responsible for inducing neutralizing antibodies in injecting drug users (IDU compared to that of individuals sexually infected with HIV-1 (S, but the effectiveness in terms of the neutralizing ability of these antibodies has not been evaluated. Our objective was to study the humoral immune response of IDU by determining the specificity of their antibodies and the presence of neutralizing antibodies. The neutralization capacity against the HIV-1 isolate MN (genotype B, the primary HIV-1 isolate 95BRRJ021 (genotype F, and the seroreactivity with peptides known to induce neutralizing antibodies, from the V2 and V3 loops of different HIV-1 subtypes, were analyzed. Seroreactivity indicates that IDU plasma are more likely to recognize a broader range of peptides than S plasma, with significantly higher titers, especially of V3 peptides. Similar neutralization frequencies of the MN isolate were observed in plasma of the IDU (16/47 and S (20/60 groups in the 1:10 dilution. The neutralization of the 95BRRJ021 isolate was more frequently observed for plasma from the S group (15/23 than from the IDU group (15/47, P = 0.0108. No correlation between neutralization and seroreactivity with the peptides tested was observed. These results suggest that an important factor responsible for the extensive and broad humoral immune response observed in IDU is their infection route. There was very little difference in neutralizing antibody response between the IDU and S groups despite their differences in seroreactivity and health status.

  19. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir

    2008-01-01

    Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathway...... for future in vivo applications. We find that simply conjugating a lipid domain (fatty acid) to the cationic peptide (a CatLip conjugate) increases the biological effect of the corresponding PNA (CatLip) conjugates in a luciferase cellular antisense assay up to 2 orders of magnitude. The effect increases...... with increasing length of the fatty acid (C8-C16) but in parallel also results in increased cellular toxicity, with decanoic acid being optimal. Furthermore, the relative enhancement is significantly higher for Tat peptide compared to oligoarginine. Confocal microscopy and chloroquine enhancement indicates...

  20. Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection

    Science.gov (United States)

    Doria, Margherita; Neri, Francesca; Gallo, Angela; Farace, Maria Giulia; Michienzi, Alessandro

    2009-01-01

    Adenosine deaminases that act on dsRNA (ADARs) are enzymes that target double-stranded regions of RNA converting adenosines into inosines (A-to-I editing) thus contributing to genome complexity and fine regulation of gene expression. It has been described that a member of the ADAR family, ADAR1, can target viruses and affect their replication process. Here we report evidence showing that ADAR1 stimulates human immuno deficiency virus type 1 (HIV-1) replication by using both editing-dependent and editing-independent mechanisms. We show that over-expression of ADAR1 in HIV-1 producer cells increases viral protein accumulation in an editing-independent manner. Moreover, HIV-1 virions generated in the presence of over-expressed ADAR1 but not an editing-inactive ADAR1 mutant are released more efficiently and display enhanced infectivity, as demonstrated by challenge assays performed with T cell lines and primary CD4+ T lymphocytes. Finally, we report that ADAR1 associates with HIV-1 RNAs and edits adenosines in the 5′ untranslated region (UTR) and the Rev and Tat coding sequence. Overall these results suggest that HIV-1 has evolved mechanisms to take advantage of specific RNA editing activity of the host cell and disclose a stimulatory function of ADAR1 in the spread of HIV-1. PMID:19651874

  1. Adjuvanted HLA-supertype restricted subdominant peptides induce new T-cell immunity during untreated HIV-1-infection

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Brandt, Lea; Vinner, Lasse

    2013-01-01

    . T-cell immunogenicity was examined longitudinally by a flow cytometry (CD107a, IFNγ, TNFα, IL-2 and/or MIP1β expression) as well as IFNγ ELISPOT. Safety was evaluated by clinical follow up combined with monitoring of biochemistry, hematology, CD4 T-cell counts and viral load. New CD4 and CD8 T......-cell responses specific for one or more vaccine epitopes were induced in 10/10 vaccinees. The responses were dominated by CD107a and MIP1β expression. There were no significant changes in HIV-1 viral load or CD4 T-cell counts. Our study demonstrates that the peptide/CAF01 vaccine is safe and that it is possible...

  2. Cardiac Dysfunction in HIV-1 Transgenic Mouse: Role of Stress and BAG3.

    Science.gov (United States)

    Cheung, Joseph Y; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Tilley, Douglas G; Gao, Erhe; Koch, Walter J; Rabinowitz, Joseph; Klotman, Paul E; Khalili, Kamel; Feldman, Arthur M

    2015-08-01

    Since highly active antiretroviral therapy improved long-term survival of acquired immunodeficiency syndrome (AIDS) patients, AIDS cardiomyopathy has become an increasingly relevant clinical problem. We used human immunodeficiency virus (HIV)-1 transgenic (Tg26) mouse to explore molecular mechanisms of AIDS cardiomyopathy. Tg26 mice had significantly lower left ventricular (LV) mass and smaller end-diastolic and end-systolic LV volumes. Under basal conditions, cardiac contractility and relaxation and single myocyte contraction dynamics were not different between wild-type (WT) and Tg26 mice. Ten days after open heart surgery, contractility and relaxation remained significantly depressed in Tg26 hearts, suggesting that Tg26 mice did not tolerate surgical stress well. To simulate heart failure in which expression of Bcl2-associated athanogene 3 (BAG3) is reduced, we down-regulated BAG3 by small hairpin ribonucleic acid in WT and Tg26 hearts. BAG3 down-regulation significantly reduced contractility in Tg26 hearts. BAG3 overexpression rescued contractile abnormalities in myocytes expressing the HIV-1 protein Tat. We conclude: (i) Tg26 mice exhibit normal contractile function at baseline; (ii) Tg26 mice do not tolerate surgical stress well; (iii) BAG3 down-regulation exacerbated cardiac dysfunction in Tg26 mice; (iv) BAG3 overexpression rescued contractile abnormalities in myocytes expressing HIV-1 protein Tat; and (v) BAG3 may occupy a role in pathogenesis of AIDS cardiomyopathy. © 2015 Wiley Periodicals, Inc.

  3. Synthesis and Characterization of a Gd-DOTA-D-Permeation Peptide for Magnetic Resonance Relaxation Enhancement of Intracellular Targets

    Directory of Open Access Journals (Sweden)

    Andrew M. Prantner

    2003-10-01

    Full Text Available Many MR contrast agents have been developed and proven effective for extracellular nontargeted applications, but exploitation of intracellular MR contrast agents has been elusive due to the permeability barrier of the plasma membrane. Peptide transduction domains can circumvent this permeability barrier and deliver cargo molecules to the cell interior. Based upon enhanced cellular uptake of permeation peptides with D-amino acid residues, an all-D Tat basic domain peptide was conjugated to DOTA and chelated to gadolinium. Gd-DOTA-D-Tat peptide in serum at room temperature showed a relaxivity of 7.94 ± 0.11 mM−1 sec−1 at 4.7 T. The peptide complex displayed no significant binding to serum proteins, was efficiently internalized by human Jurkat leukemia cells resulting in intracellular T1 relaxation enhancement, and in preliminary T1-weighted MRI experiments, significantly enhanced liver, kidney, and mesenteric signals.

  4. Human macrophages support persistent transcription from unintegrated HIV-1 DNA

    International Nuclear Information System (INIS)

    Kelly, Jeremy; Beddall, Margaret H.; Yu Dongyang; Iyer, Subashini R.; Marsh, Jon W.; Wu Yuntao

    2008-01-01

    Retroviruses require integration of their RNA genomes for both stability and productive viral replication. In HIV infection of non-dividing, resting CD4 T cells, where integration is greatly impeded, the reverse transcribed HIV DNA has limited biological activity and a short half-life. In metabolically active and proliferating T cells, unintegrated DNA rapidly diminishes with cell division. HIV also infects the non-dividing but metabolically active macrophage population. In an in vitro examination of HIV infection of macrophages, we find that unintegrated viral DNA not only has an unusual stability, but also maintains biological activity. The unintegrated linear DNA, 1-LTR, and 2-LTR circles are stable for at least 30 days. Additionally, there is persistent viral gene transcription, which is selective and skewed towards viral early genes such as nef and tat with highly diminished rev and vif. One viral early gene product Nef was measurably synthesized. We also find that independent of integration, the HIV infection process in macrophages leads to generation of numerous chemokines

  5. Tat-antioxidant 1 protects against stress-induced hippocampal HT-22 cells death and attenuate ischaemic insult in animal model.

    Science.gov (United States)

    Kim, So Mi; Hwang, In Koo; Yoo, Dae Young; Eum, Won Sik; Kim, Dae Won; Shin, Min Jea; Ahn, Eun Hee; Jo, Hyo Sang; Ryu, Eun Ji; Yong, Ji In; Cho, Sung-Woo; Kwon, Oh-Shin; Lee, Keun Wook; Cho, Yoon Shin; Han, Kyu Hyung; Park, Jinseu; Choi, Soo Young

    2015-06-01

    Oxidative stress-induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat-Atox1 and examined the roles of Tat-Atox1 in oxidative stress-induced hippocampal HT-22 cell death and an ischaemic injury animal model. Tat-Atox1 effectively transduced into HT-22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)-induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat-Atox1 regulated cellular survival signalling such as p53, Bad/Bcl-2, Akt and mitogen-activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat-Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat-Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat-Atox1 protects against oxidative stress-induced HT-22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat-Atox1 has potential as a therapeutic agent for the treatment of oxidative stress-induced ischaemic damage. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Necroptosis takes place in human immunodeficiency virus type-1 (HIV-1-infected CD4+ T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Ting Pan

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection is characterized by progressive depletion of CD4+ T lymphocytes and dysfunction of the immune system. The numbers of CD4+ T lymphocytes in the human body are maintained constantly by homeostatic mechanisms that failed during HIV-1 infection, resulting in progressive loss of CD4+ T cells mainly via apoptosis. Recently, a non-apoptotic form of necrotic programmed cell death, named necroptosis, has been investigated in many biological and pathological processes. We then determine whether HIV-1-infected cells also undergo necroptosis. In this report, we demonstrate that HIV-1 not only induces apoptosis, but also mediates necroptosis in the infected primary CD4+ T lymphocytes and CD4+ T-cell lines. Necroptosis-dependent cytopathic effects are significantly increased in HIV-1-infected Jurkat cells that is lack of Fas-associated protein-containing death domain (FADD, indicating that necroptosis occurs as an alternative cell death mechanism in the absence of apoptosis. Unlike apoptosis, necroptosis mainly occurs in HIV-infected cells and spares bystander damage. Treatment with necrostatin-1(Nec-1, a RIP1 inhibitor that specifically blocks the necroptosis pathway, potently restrains HIV-1-induced cytopathic effect and interestingly, inhibits the formation of HIV-induced syncytia in CD4+ T-cell lines. This suggests that syncytia formation is mediated, at least partially, by necroptosis-related processes. Furthermore, we also found that the HIV-1 infection-augmented tumor necrosis factor-alpha (TNF-α plays a key role in inducing necroptosis and HIV-1 Envelope and Tat proteins function as its co-factors. Taken together,necroptosis can function as an alternative cell death pathway in lieu of apoptosis during HIV-1 infection, thereby also contributing to HIV-1-induced cytopathic effects. Our results reveal that in addition to apoptosis, necroptosis also plays an important role in HIV-1-induced pathogenesis.

  7. Safety and immunogenicity of a live recombinant canarypox virus expressing HIV type 1 gp120 MN MN tm/gag/protease LAI (ALVAC-HIV, vCP205) followed by a p24E-V3 MN synthetic peptide (CLTB-36) administered in healthy volunteers at low risk for HIV infection. AGIS Group and L'Agence Nationale de Recherches sur Le Sida.

    Science.gov (United States)

    Salmon-Céron, D; Excler, J L; Finkielsztejn, L; Autran, B; Gluckman, J C; Sicard, D; Matthews, T J; Meignier, B; Valentin, C; El Habib, R; Blondeau, C; Raux, M; Moog, C; Tartaglia, J; Chong, P; Klein, M; Milcamps, B; Heshmati, F; Plotkin, S

    1999-05-01

    A live recombinant canarypox vector expressing HIV-1 gpl20 MN tm/gag/protease LAI (ALVAC-HIV, vCP205) alone or boosted by a p24E-V3 MN synthetic peptide (CLTB-36) was tested in healthy volunteers at low risk for HIV infection for their safety and immunogenicity. Both antigens were well tolerated. ALVAC-HIV (vCP205) induced low levels of neutralizing antibodies against HIV-1 MN in 33% of the volunteers. None of them had detectable neutralizing antibodies against a nonsyncytium-inducing HIV-1 clade B primary isolate (Bx08). After the fourth injection of vCP205, CTL activity was detected in 33% of the volunteers and was directed against Env, Gag, and Pol. This activity was mediated by both CD4+ and CD8+ lymphocytes. On the other hand, the CLTB-36 peptide was poorly immunogenic and induced no neutralizing antibodies or CTLs. Although the ALVAC-HIV (vCP205) and CLTB-36 prime-boost regimen was not optimal, further studies with ALVAC-HIV (vCP205) are warranted because of its clear induction of a cellular immune response and utility as a priming agent for other subunit antigens such as envelope glycoproteins, pseudoparticles, or new peptides.

  8. Randomized Phase I: Safety, Immunogenicity and Mucosal Antiviral Activity in Young Healthy Women Vaccinated with HIV-1 Gp41 P1 Peptide on Virosomes.

    Directory of Open Access Journals (Sweden)

    Geert Leroux-Roels

    Full Text Available Mucosal antibodies harboring various antiviral activities may best protect mucosal surfaces against early HIV-1 entry at mucosal sites and they should be ideally induced by prophylactic HIV-1 vaccines for optimal prevention of sexually transmitted HIV-1. A phase I, double-blind, randomized, placebo-controlled trial was conducted in twenty-four healthy HIV-uninfected young women. The study objectives were to assess the safety, tolerability and immunogenicity of virosomes harboring surface HIV-1 gp41-derived P1 lipidated peptides (MYM-V101. Participants received placebo or MYM-V101 vaccine at 10 μg/dose or 50 μg/dose intramuscularly at week 0 and 8, and intranasally at week 16 and 24. MYM-V101 was safe and well-tolerated at both doses administered by the intramuscular and intranasal routes, with the majority of subjects remaining free of local and general symptoms. P1-specific serum IgGs and IgAs were induced in all high dose recipients after the first injection. After the last vaccination, vaginal and rectal P1-specific IgGs could be detected in all high dose recipients. Approximately 63% and 43% of the low and high dose recipients were respectively tested positive for vaginal P1-IgAs, while 29% of the subjects from the high dose group tested positive for rectal IgAs. Serum samples had total specific IgG and IgA antibody concentrations ≥ 0.4 μg/mL, while mucosal samples were usually below 0.01 μg/mL. Vaginal secretions from MYM-V101 vaccinated subjects were inhibiting HIV-1 transcytosis but had no detectable neutralizing activity. P1-specific Th1 responses could not be detected on PBMC. This study demonstrates the excellent safety and tolerability of MYM-V101, eliciting systemic and mucosal antibodies in the majority of subjects. Vaccine-induced mucosal anti-gp41 antibodies toward conserved gp41 motifs were harboring HIV-1 transcytosis inhibition activity and may contribute to reduce sexually-transmitted HIV-1.ClinicalTrials.gov NCT01084343.

  9. Structure-Related Roles for the Conservation of the HIV-1 Fusion Peptide Sequence Revealed by Nuclear Magnetic Resonance.

    Science.gov (United States)

    Serrano, Soraya; Huarte, Nerea; Rujas, Edurne; Andreu, David; Nieva, José L; Jiménez, María Angeles

    2017-10-17

    Despite extensive characterization of the human immunodeficiency virus type 1 (HIV-1) hydrophobic fusion peptide (FP), the structure-function relationships underlying its extraordinary degree of conservation remain poorly understood. Specifically, the fact that the tandem repeat of the FLGFLG tripeptide is absolutely conserved suggests that high hydrophobicity may not suffice to unleash FP function. Here, we have compared the nuclear magnetic resonance (NMR) structures adopted in nonpolar media by two FP surrogates, wtFP-tag and scrFP-tag, which had equal hydrophobicity but contained wild-type and scrambled core sequences LFLGFLG and FGLLGFL, respectively. In addition, these peptides were tagged at their C-termini with an epitope sequence that folded independently, thereby allowing Western blot detection without interfering with FP structure. We observed similar α-helical FP conformations for both specimens dissolved in the low-polarity medium 25% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), but important differences in contact with micelles of the membrane mimetic dodecylphosphocholine (DPC). Thus, whereas wtFP-tag preserved a helix displaying a Gly-rich ridge, the scrambled sequence lost in great part the helical structure upon being solubilized in DPC. Western blot analyses further revealed the capacity of wtFP-tag to assemble trimers in membranes, whereas membrane oligomers were not observed in the case of the scrFP-tag sequence. We conclude that, beyond hydrophobicity, preserving sequence order is an important feature for defining the secondary structures and oligomeric states adopted by the HIV FP in membranes.

  10. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Science.gov (United States)

    Prashar, Vishal; Bihani, Subhash; Das, Amit; Ferrer, Jean-Luc; Hosur, Madhusoodan

    2009-11-17

    It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  11. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  12. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1.

    Science.gov (United States)

    Banerjee, Camellia; Archin, Nancie; Michaels, Daniel; Belkina, Anna C; Denis, Gerald V; Bradner, James; Sebastiani, Paola; Margolis, David M; Montano, Monty

    2012-12-01

    The persistence of latent HIV-1 remains a major challenge in therapeutic efforts to eradicate infection. We report the capacity for HIV reactivation by a selective small molecule inhibitor of BET family bromodomains, JQ1, a promising therapeutic agent with antioncogenic properties. JQ1 reactivated HIV transcription in models of latent T cell infection and latent monocyte infection. We also tested the effect of exposure to JQ1 to allow recovery of replication-competent HIV from pools of resting CD4(+) T cells isolated from HIV-infected, ART-treated patients. In one of three patients, JQ1 allowed recovery of virus at a frequency above unstimulated conditions. JQ1 potently suppressed T cell proliferation with minimal cytotoxic effect. Transcriptional profiling of T cells with JQ1 showed potent down-regulation of T cell activation genes, including CD3, CD28, and CXCR4, similar to HDAC inhibitors, but JQ1 also showed potent up-regulation of chromatin modification genes, including SIRT1, HDAC6, and multiple lysine demethylases (KDMs). Thus, JQ1 reactivates HIV-1 while suppressing T cell activation genes and up-regulating histone modification genes predicted to favor increased Tat activity. Thus, JQ1 may be useful in studies of potentially novel mechanisms for transcriptional control as well as in translational efforts to identify therapeutic molecules to achieve viral eradication.

  13. Nuclear Matrix protein SMAR1 represses HIV-1 LTR mediated transcription through chromatin remodeling

    International Nuclear Information System (INIS)

    Sreenath, Kadreppa; Pavithra, Lakshminarasimhan; Singh, Sandeep; Sinha, Surajit; Dash, Prasanta K.; Siddappa, Nagadenahalli B.; Ranga, Udaykumar; Mitra, Debashis; Chattopadhyay, Samit

    2010-01-01

    Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that > 98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFα leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.

  14. Structural basis for TatA oligomerization: an NMR study of Escherichia coli TatA dimeric structure.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available Many proteins are transported across lipid membranes by protein translocation systems in living cells. The twin-arginine transport (Tat system identified in bacteria and plant chloroplasts is a unique system that transports proteins across membranes in their fully-folded states. Up to date, the detailed molecular mechanism of this process remains largely unclear. The Escherichia coli Tat system consists of three essential transmembrane proteins: TatA, TatB and TatC. Among them, TatB and TatC form a tight complex and function in substrate recognition. The major component TatA contains a single transmembrane helix followed by an amphipathic helix, and is suggested to form the translocation pore via self-oligomerization. Since the TatA oligomer has to accommodate substrate proteins of various sizes and shapes, the process of its assembly stands essential for understanding the translocation mechanism. A structure model of TatA oligomer was recently proposed based on NMR and EPR observations, revealing contacts between the transmembrane helices from adjacent subunits. Herein we report the construction and stabilization of a dimeric TatA, as well as the structure determination by solution NMR spectroscopy. In addition to more extensive inter-subunit contacts between the transmembrane helices, we were also able to observe interactions between neighbouring amphipathic helices. The side-by-side packing of the amphipathic helices extends the solvent-exposed hydrophilic surface of the protein, which might be favourable for interactions with substrate proteins. The dimeric TatA structure offers more detailed information of TatA oligomeric interface and provides new insights on Tat translocation mechanism.

  15. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang [Wayne State Univ., Detroit, MI (United States); Case Western Reserve Univ., Cleveland, OH (United States); Harbor Hospital Baltimore, MD (United States); Wang, Yong [Wayne State Univ., Detroit, MI (United States); Yedidi, Ravikiran S. [Wayne State Univ., Detroit, MI (United States); National Institutes of Health, Bethesda, MD (United States); Dewdney, Tamaria G. [Wayne State Univ., Detroit, MI (United States); Reiter, Samuel J. [Wayne State Univ., Detroit, MI (United States); Brunzelle, Joseph S. [Northwestern Univ. Feinberg School of Medicine, Chicago, IL (United States); Kovari, Iulia A. [Wayne State Univ., Detroit, MI (United States); Kovari, Ladislau C. [Wayne State Univ., Detroit, MI (United States)

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  16. Effects of sequence changes in the HIV-1 gp41 fusion peptide on CCR5 inhibitor resistance

    International Nuclear Information System (INIS)

    Anastassopoulou, Cleo G.; Ketas, Thomas J.; Sanders, Rogier W.; Johan Klasse, Per; Moore, John P.

    2012-01-01

    A rare pathway of HIV-1 resistance to small molecule CCR5 inhibitors such as Vicriviroc (VCV) involves changes solely in the gp41 fusion peptide (FP). Here, we show that the G516V change is critical to VCV resistance in PBMC and TZM-bl cells, although it must be accompanied by either M518V or F519I to have a substantial impact. Modeling VCV inhibition data from the two cell types indicated that G516V allows both double mutants to use VCV-CCR5 complexes for entry. The model further identified F519I as an independent determinant of preference for the unoccupied, high-VCV affinity form of CCR5. From inhibitor-free reversion cultures, we also identified a substitution in the inner domain of gp120, T244A, which appears to counter the resistance phenotype created by the FP substitutions. Examining the interplay of these changes will enhance our understanding of Env complex interactions that influence both HIV-1 entry and resistance to CCR5 inhibitors.

  17. Liquefaction of Semen Generates and Later Degrades a Conserved Semenogelin Peptide That Enhances HIV Infection

    Science.gov (United States)

    Liu, Haichuan; Usmani, Shariq M.; Neidleman, Jason; Müller, Janis A.; Avila-Herrera, Aram; Gawanbacht, Ali; Zirafi, Onofrio; Chu, Simon; Dong, Ming; Kumar, Senthil T.; Smith, James F.; Pollard, Katherine S.; Fändrich, Marcus; Kirchhoff, Frank; Münch, Jan; Witkowska, H. Ewa; Greene, Warner C.

    2014-01-01

    ABSTRACT Semen enhances HIV infection in vitro, but how long it retains this activity has not been carefully examined. Immediately postejaculation, semen exists as a semisolid coagulum, which then converts to a more liquid form in a process termed liquefaction. We demonstrate that early during liquefaction, semen exhibits maximal HIV-enhancing activity that gradually declines upon further incubation. The decline in HIV-enhancing activity parallels the degradation of peptide fragments derived from the semenogelins (SEMs), the major components of the coagulum that are cleaved in a site-specific and progressive manner upon initiation of liquefaction. Because amyloid fibrils generated from SEM fragments were recently demonstrated to enhance HIV infection, we set out to determine whether any of the liquefaction-generated SEM fragments associate with the presence of HIV-enhancing activity. We identify SEM1 from amino acids 86 to 107 [SEM1(86-107)] to be a short, cationic, amyloidogenic SEM peptide that is generated early in the process of liquefaction but that, conversely, is lost during prolonged liquefaction due to the activity of serine proteases. Synthetic SEM1(86-107) amyloids directly bind HIV-1 virions and are sufficient to enhance HIV infection of permissive cells. Furthermore, endogenous seminal levels of SEM1(86-107) correlate with donor-dependent variations in viral enhancement activity, and antibodies generated against SEM1(86-107) recognize endogenous amyloids in human semen. The amyloidogenic potential of SEM1(86-107) and its virus-enhancing properties are conserved among great apes, suggesting an evolutionarily conserved function. These studies identify SEM1(86-107) to be a key, HIV-enhancing amyloid species in human semen and underscore the dynamic nature of semen's HIV-enhancing activity. IMPORTANCE Semen, the most common vehicle for HIV transmission, enhances HIV infection in vitro, but how long it retains this activity has not been investigated. Semen

  18. NMR structures of anti-HIV D-peptides derived from the N-terminus of viral chemokine vMIP-II

    International Nuclear Information System (INIS)

    Mori, Mayuko; Liu Dongxiang; Kumar, Santosh; Huang Ziwei

    2005-01-01

    The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus has unique biological activities in that it blocks the cell entry by several different human immunodeficiency virus type 1 (HIV-1) strains via chemokine receptors including CXCR4 and CCR5. In this paper, we report the solution structure of all-D-amino acid peptides derived from the N-terminus of vMIP-II, which have been shown to have strong CXCR4 binding activity and potently inhibit HIV-1 entry via CXCR4, by using long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments. Both of all-D-peptides vMIP-II (1-10) and vMIP-II (1-21), which are designated as DV3 and DV1, respectively, have higher CXCR4 binding ability than their L-peptide counterparts. They are partially structured in aqueous solution, displaying a turn-like structure over residues 5-8. The small temperature coefficients of His-6 amide proton for both peptides also suggest the formation of a small hydrophobic pocket centered on His-6. The structural features of DV3 are very similar to the reported solution structure of all-L-peptide vMIP-II (1-10) [M.P. Crump, E. Elisseeva, J. Gong, I. Clark-Lewis, B.D. Sykes, Structure/function of human herpesvirus-8 MIP-II (1-71) and the antagonist N-terminal segment (1-10), FEBS Lett. 489 (2001) 171], which is consistent with the notion that D- and L-enantiomeric peptides can adopt mirror image conformations. The NMR structures of the D-peptides provide a structural basis to understand their mechanism of action and design new peptidomimetic analogs to further explore the structure-activity relationship of D-peptide ligand binding to CXCR4

  19. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  20. Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design.

    Science.gov (United States)

    Cai, Lifeng; Gochin, Miriam; Liu, Keliang

    2011-12-01

    Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein - mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), Nterminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors.

  1. Factors associated with long turnaround time for early infant diagnosis of HIV in Myanmar.

    Science.gov (United States)

    Thiha, Soe; Shewade, Hemant Deepak; Philip, Sairu; Aung, Thet Ko; Kyaw, Nang Thu Thu; Oo, Myo Minn; Kyaw, Khine Wut Yee; Wint War, May; Oo, Htun Nyunt

    2017-01-01

    A previous review of early infant diagnosis (EID) using polymerase chain reaction technology (PCR) under integrated HIV care (IHC) program in Myanmar revealed a low uptake of timely (within 6 to 8 weeks of babies' age) EID and a long turnaround time (TAT) of receiving results. This study aimed to determine the proportion and factors associated with the composite outcome of a long TAT (≥7 weeks; from sample collection to receipt of result by mother) or nonreceipt of result among HIV-exposed babies whose blood samples were collected for PCR at mother's CD4 count of 100-350 cells/mm 3 at enrollment [adjusted RR (0.95 confidence intervals, CI): 0.8 (0.7, 0.9)] had a 20% lower risk of long TAT or nonreceipt of results when compared with ≥350 cells/mm 3 . Distance between ART center and PCR facility ≥105 km [adjusted RR (0.95 CI): 1.2 (1.1, 1.4)], when compared with mother was high. Point-of-care testing for EID may reduce TAT/nonreceipt of results by the mother. Health system, laboratory, and logistic factors such as sample transportation, laboratory procedures, and result dispatching associated with long TAT should be further explored.

  2. Endogenous MCM7 microRNA cluster as a novel platform to multiplex small interfering and nucleolar RNAs for combinational HIV-1 gene therapy.

    Science.gov (United States)

    Chung, Janet; Zhang, Jane; Li, Haitang; Ouellet, Dominique L; DiGiusto, David L; Rossi, John J

    2012-11-01

    Combinational therapy with small RNA inhibitory agents against multiple viral targets allows efficient inhibition of viral production by controlling gene expression at critical time points. Here we explore combinations of different classes of therapeutic anti-HIV-1 RNAs expressed from within the context of an intronic MCM7 (minichromosome maintenance complex component-7) platform that naturally harbors 3 microRNAs (miRNAs). We replaced the endogenous miRNAs with anti-HIV small RNAs, including small interfering RNAs (siRNAs) targeting HIV-1 tat and rev messages that function to induce post-transcriptional gene silencing by the RNA interference pathway, a nucleolar-localizing RNA ribozyme that targets the conserved U5 region of HIV-1 transcripts for degradation, and finally nucleolar trans-activation response (TAR) and Rev-binding element (RBE) RNA decoys designed to sequester HIV-1 Tat and Rev proteins inside the nucleolus. We demonstrate the versatility of the MCM7 platform in expressing and efficiently processing the siRNAs as miRNA mimics along with nucleolar small RNAs. Furthermore, three of the combinatorial constructs tested potently suppressed viral replication during a 1-month HIV challenge, with greater than 5-log inhibition compared with untransduced, HIV-1-infected CEM T lymphocytes. One of the most effective constructs contains an anti-HIV siRNA combined with a nucleolar-localizing U5 ribozyme and TAR decoy. This represents the first efficacious example of combining Drosha-processed siRNAs with small nucleolar ribonucleoprotein (snoRNP)-processed nucleolar RNA chimeras from a single intron platform for effective inhibition of viral replication. Moreover, we demonstrated enrichment/selection for cells expressing levels of the antiviral RNAs that provide optimal inhibition under the selective pressure of HIV. The combinations of si/snoRNAs represent a new paradigm for combinatorial RNA-based gene therapy applications.

  3. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Directory of Open Access Journals (Sweden)

    Vishal Prashar

    Full Text Available BACKGROUND: It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS. In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. PRINCIPAL FINDINGS: We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. CONCLUSIONS/SIGNIFICANCE: The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  4. HIV-1 subtype C in commerical sex workers in Addis Ababa, Ethiopia

    NARCIS (Netherlands)

    Hussein, M.; Abebe, A.; Pollakis, G.; Brouwer, M.; Petros, B.; Fontanet, A. L.; Rinke de Wit, T. F.

    2000-01-01

    In this study, we have investigated the diversity of the current HIV-1 strains circulating in Addis Ababa, Ethiopia; in addition, we have evaluated the applicability of peptide enzyme-linked immunosorbent assay (ELISA) and heteroduplex mobility assay (HMA) for HIV-1 subtyping. Previous studies have

  5. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    Directory of Open Access Journals (Sweden)

    Joel Bozue

    Full Text Available Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  6. Proceedings from the NIMH symposium on "NeuroAIDS in Africa: neurological and neuropsychiatric complications of HIV".

    Science.gov (United States)

    Buch, Shilpa; Chivero, Ernest T; Hoare, Jackie; Jumare, Jibreel; Nakasujja, Noeline; Mudenda, Victor; Paul, Robert; Kanmogne, Georgette D; Sacktor, Ned; Wood, Charles; Royal, Walter; Joseph, Jeymohan

    2016-10-01

    Despite major advances in HIV-1 treatment, the prevalence of HIV-associated neurocognitive disorders (HAND) remains a problem, particularly as individuals on suppressive treatment continue to live longer. To facilitate discussion on emerging and future directions in HAND research, a meeting was held in Durban, South Africa in March 2015 as part of the Society of Neuroscientists of Africa (SONA) conference. The objective of the meeting was to assess the impact of HIV subtype diversity on HAND and immunological dysfunction. The meeting brought together international leaders in the area of neurological complications of HIV-1 infection with special focus on the African population. Research presentations indicated that HAND was highly prevalent and that inflammatory cytokines and immune-activation played important roles in progression of neurocognitive impairment. Furthermore, children on antiretroviral therapy were also at risk for developing neurocognitive impairment. With respect to the effect of HIV-1 subtype diversity, analyses of HIV-1 clade C infection among South Africans revealed that clade C infection induced cognitive impairment that was independent of the substitution in HIV-1 Trans-Activator of Transcription (Tat; C31S). At the cellular level, a Zambian study showed that clade C infection resulted in reduced brain cell death compared with clade B infection suggesting clade specific variations in mediating brain cell injury. Furthermore, ex vivo Tat protein from clade CRF02_AG, prevalent in West/ Central Africa, exhibited reduced disruption of brain endothelium compared with clade B Tat protein. Discussions shed light on future research directions aimed at understanding biomarkers and disease mechanisms critical for HAND.

  7. Molecular dynamics and MM/GBSA-integrated protocol probing the correlation between biological activities and binding free energies of HIV-1 TAR RNA inhibitors.

    Science.gov (United States)

    Peddi, Saikiran Reddy; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    The interaction of HIV-1 transactivator protein Tat with its cognate transactivation response (TAR) RNA has emerged as a promising target for developing antiviral compounds and treating HIV infection, since it is a crucial step for efficient transcription and replication. In the present study, molecular dynamics (MD) simulations and MM/GBSA calculations have been performed on a series of neamine derivatives in order to estimate appropriate MD simulation time for acceptable correlation between ΔG bind and experimental pIC 50 values. Initially, all inhibitors were docked into the active site of HIV-1 TAR RNA. Later to explore various conformations and examine the docking results, MD simulations were carried out. Finally, binding free energies were calculated using MM/GBSA method and were correlated with experimental pIC 50 values at different time scales (0-1 to 0-10 ns). From this study, it is clear that in case of neamine derivatives as simulation time increased the correlation between binding free energy and experimental pIC 50 values increased correspondingly. Therefore, the binding energies which can be interpreted at longer simulation times can be used to predict the bioactivity of new neamine derivatives. Moreover, in this work, we have identified some plausible critical nucleotide interactions with neamine derivatives that are responsible for potent inhibitory activity. Furthermore, we also provide some insights into a new class of oxadiazole-based back bone cyclic peptides designed by incorporating the structural features of neamine derivatives. On the whole, this approach can provide a valuable guidance for designing new potent inhibitors and modify the existing compounds targeting HIV-1 TAR RNA.

  8. Inhibition of HIV-1 by curcumin A, a novel curcumin analog

    Science.gov (United States)

    Kumari, Namita; Kulkarni, Amol A; Lin, Xionghao; McLean, Charlee; Ammosova, Tatiana; Ivanov, Andrey; Hipolito, Maria; Nekhai, Sergei; Nwulia, Evaristus

    2015-01-01

    Despite the remarkable success of combination antiretroviral therapy at curtailing HIV progression, emergence of drug-resistant viruses, chronic low-grade inflammation, and adverse effects of combination antiretroviral therapy treatments, including metabolic disorders collectively present the impetus for development of newer and safer antiretroviral drugs. Curcumin, a phytochemical compound, was previously reported to have some in vitro anti-HIV and anti-inflammatory activities, but poor bioavailability has limited its clinical utility. To circumvent the bioavailability problem, we derivatized curcumin to sustain retro-aldol decomposition at physiological pH. The lead compound derived, curcumin A, showed increased stability, especially in murine serum where it was stable for up to 25 hours, as compared to curcumin that only had a half-life of 10 hours. Both curcumin and curcumin A showed similar inhibition of one round of HIV-1 infection in cultured lymphoblastoid (also called CEM) T cells (IC50=0.7 μM). But in primary peripheral blood mononuclear cells, curcumin A inhibited HIV-1 more potently (IC50=2 μM) compared to curcumin (IC50=12 μM). Analysis of specific steps of HIV-1 replication showed that curcumin A inhibited HIV-1 reverse transcription, but had no effect on HIV-1 long terminal repeat basal or Tat-induced transcription, or NF-κB-driven transcription at low concentrations that affected reverse transcription. Finally, we showed curcumin A induced expression of HO-1 and decreased cell cycle progression of T cells. Our findings thus indicate that altering the core structure of curcumin could yield more stable compounds with potent antiretroviral and anti-inflammatory activities. PMID:26366056

  9. Tat-CBR1 inhibits inflammatory responses through the suppressions of NF-κB and MAPK activation in macrophages and TPA-induced ear edema in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Nam [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Kim, Dae Won [Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Kangneung 210-702 (Korea, Republic of); Jo, Hyo Sang; Shin, Min Jea; Ahn, Eun Hee; Ryu, Eun Ji; Yong, Ji In; Cha, Hyun Ju; Kim, Sang Jin; Yeo, Hyeon Ji; Youn, Jong Kyu; Hwang, Jae Hyeok [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Jeong, Ji-Heon; Kim, Duk-Soo [Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 330-090 (Korea, Republic of); Cho, Sung-Woo [Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Park, Jinseu [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Eum, Won Sik, E-mail: wseum@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2015-07-15

    Human carbonyl reductase 1 (CBR1) plays a crucial role in cell survival and protects against oxidative stress response. However, its anti-inflammatory effects are not yet clearly understood. In this study, we examined whether CBR1 protects against inflammatory responses in macrophages and mice using a Tat-CBR1 protein which is able to penetrate into cells. The results revealed that purified Tat-CBR1 protein efficiently transduced into Raw 264.7 cells and inhibited lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2), nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) expression levels. In addition, Tat-CBR1 protein leads to decreased pro-inflammatory cytokine expression through suppression of nuclear transcription factor-kappaB (NF-κB) and mitogen activated protein kinase (MAPK) activation. Furthermore, Tat-CBR1 protein inhibited inflammatory responses in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation when applied topically. These findings indicate that Tat-CBR1 protein has anti-inflammatory properties in vitro and in vivo through inhibition of NF-κB and MAPK activation, suggesting that Tat-CBR1 protein may have potential as a therapeutic agent against inflammatory diseases. - Highlights: • Transduced Tat-CBR1 reduces LPS-induced inflammatory mediators and cytokines. • Tat-CBR1 inhibits MAPK and NF-κB activation. • Tat-CBR1 ameliorates inflammation response in vitro and in vivo. • Tat-CBR1 may be useful as potential therapeutic agent for inflammation.

  10. Functional substitution by TAT-utrophin in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kevin J Sonnemann

    2009-05-01

    Full Text Available The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr or DeltaR4-21 "micro" utrophin (muUtr protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT, the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT, the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT, and increased specific force production (9.7+/-1.1 N/cm(2 versus 12.8+/-0.9 N/cm(2; PBS versus TAT.These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.

  11. A preliminary electron microscopic investigation into the interaction between Aβ1-42 peptide and a novel nanoliposome- coupled retro-inverso peptide inhibitor, developed as a potential treatment for Alzheimer's disease

    Science.gov (United States)

    Sherer, M.; Fullwood, N. J.; Taylor, M.; Allsop, D.

    2015-10-01

    Alzheimer's disease (AD) is a progressive neurodegenerative condition that results in severe cognitive and functional decline in sufferers and for which there are currently no effective treatments to halt or reverse disease progression. AD is the most common form of dementia and age is the major risk factor for this disease. With worldwide population structures changing as increasing number of individuals survive into old age, there is urgent need for novel disease modifying treatments for this condition, which has profound effects upon sufferers in addition to those around them. Some of us have previously developed a peptide inhibitor of Aβ1-42 aggregation (RI-OR2-TAT) that has been shown to reduce Aβ1-42 pathology in vivo in mouse models of AD. ∼1690 copies of RI-OR2-TAT have been covalently attached to nanoliposome carrier particles forming Peptide Inhibitor NanoParticles (PINPs), and this study investigated the effect of PINPs upon Aβ1-42 aggregation at the molecular level. Our results show that PINPs are able to reduce Aβ1-42 aggregation and do so by binding early (oligomers) and late (fibrillar) stage aggregates. These results highlight the ability of PINPs to disrupt the formation of multiple Aβ1-42 aggregates capable of causing neurotoxicity and thus provide a strong case for PINPs to be carried forward into early stage clinical trials as a novel therapeutic option for the treatment of AD.

  12. Excision of HIV-1 proviral DNA by recombinant cell permeable tre-recombinase.

    Directory of Open Access Journals (Sweden)

    Lakshmikanth Mariyanna

    Full Text Available Over the previous years, comprehensive studies on antiretroviral drugs resulted in the successful introduction of highly active antiretroviral therapy (HAART into clinical practice for treatment of HIV/AIDS. However, there is still need for new therapeutic approaches, since HAART cannot eradicate HIV-1 from the infected organism and, unfortunately, can be associated with long-term toxicity and the development of drug resistance. In contrast, novel gene therapy strategies may have the potential to reverse the infection by eradicating HIV-1. For example, expression of long terminal repeat (LTR-specific recombinase (Tre-recombinase has been shown to result in chromosomal excision of proviral DNA and, in consequence, in the eradication of HIV-1 from infected cell cultures. However, the delivery of Tre-recombinase currently depends on the genetic manipulation of target cells, a process that is complicating such therapeutic approaches and, thus, might be undesirable in a clinical setting. In this report we demonstrate that E.coli expressed Tre-recombinases, tagged either with the protein transduction domain (PTD from the HIV-1 Tat trans-activator or the translocation motif (TLM of the Hepatitis B virus PreS2 protein, were able to translocate efficiently into cells and showed significant recombination activity on HIV-1 LTR sequences. Tre activity was observed using episomal and stable integrated reporter constructs in transfected HeLa cells. Furthermore, the TLM-tagged enzyme was able to excise the full-length proviral DNA from chromosomal integration sites of HIV-1-infected HeLa and CEM-SS cells. The presented data confirm Tre-recombinase activity on integrated HIV-1 and provide the basis for the non-genetic transient application of engineered recombinases, which may be a valuable component of future HIV eradication strategies.

  13. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    Energy Technology Data Exchange (ETDEWEB)

    Yedidi, Ravikiran S. [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Muhuhi, Joseck M. [Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); Liu, Zhigang [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Bencze, Krisztina Z. [Department of Chemistry, Fort Hays State University, Hays, KS 67601 (United States); Koupparis, Kyriacos [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); O’Connor, Carrie E.; Kovari, Iulia A. [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Spaller, Mark R. [Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); Kovari, Ladislau C., E-mail: kovari@med.wayne.edu [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States)

    2013-09-06

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.

  14. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    International Nuclear Information System (INIS)

    Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang; Bencze, Krisztina Z.; Koupparis, Kyriacos; O’Connor, Carrie E.; Kovari, Iulia A.; Spaller, Mark R.; Kovari, Ladislau C.

    2013-01-01

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC 50 : 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the 15 N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC 50 : 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of 15 N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV

  15. Weak anti-HIV CD8+ T-cell effector activity in HIV primary infection

    Science.gov (United States)

    Dalod, Marc; Dupuis, Marion; Deschemin, Jean-Christophe; Goujard, Cécile; Deveau, Christiane; Meyer, Laurence; Ngo, Nicole; Rouzioux, Christine; Guillet, Jean-Gérard; Delfraissy, Jean-François; Sinet, Martine; Venet, Alain

    1999-01-01

    HIV-specific CD8+ T cells play a major role in the control of virus during HIV primary infection (PI) but do not completely prevent viral replication. We used IFN-γ enzyme-linked immunospot assay and intracellular staining to characterize the ex vivo CD8+ T-cell responses to a large variety of HIV epitopic peptides in 24 subjects with early HIV PI. We observed HIV-specific responses in 71% of subjects. Gag and Nef peptides were more frequently recognized than Env and Pol peptides. The number of peptides recognized was low (median 2, range 0–6). In contrast, a much broader response was observed in 30 asymptomatic subjects with chronic infection: all were responders with a median of 5 peptides recognized (range 1–13). The frequency of HIV-specific CD8+ T cells among PBMC for a given peptide was of the same order of magnitude in both groups. The proportion of HIV-specific CD8+CD28– terminally differentiated T cells was much lower in PI than at the chronic stage of infection. The weakness of the immune response during HIV PI could partially account for the failure to control HIV. These findings have potential importance for defining immunotherapeutic strategies and establishing the goals for effective vaccination. J. Clin. Invest. 104:1431–1439 (1999). PMID:10562305

  16. A novel strategy to activate cytoprotective genes in the injured brain

    International Nuclear Information System (INIS)

    Zhao, Jing; Redell, John B.; Moore, Anthony N.; Dash, Pramod K.

    2011-01-01

    Highlights: → A strategy to increase cytoprotective gene expression in injured tissue is outlined. → A peptide containing a DEETGE motif can increase Nrf2 responsive genes in vivo. → Gene expression in injured brains requires a calpain cleavage site. → This peptide decreases BBB compromise when infused pre- or post-brain injury. → Cleavage sites for disease-specific proteases could be used to treat that condition. -- Abstract: The transcription factor nuclear factor E2-related factor 2 (Nrf2) regulates the expression of multiple cytoprotective genes that have been shown to offer protection in response to a number of insults. The present study describes a novel strategy to increase expression of Nrf2-responsive genes in brain injured mice. Under normal conditions, the adapter protein Kelch-like ECH-associated protein 1 (Keap1) binds to Nrf2 and promotes its proteosomal degradation in the cytoplasm. The amino acid sequence DEETGE, located at amino acid 77-82 of Nrf2, is critical for Nrf2-Keap1 interaction, and synthetic peptides containing this sequence can be used to disrupt the complex in vitro. We observed that intracerebroventricular (i.c.v.) infusion of a peptide containing the DEETGE sequence along with the cell transduction domain of the HIV-TAT protein (TAT-DEETGE) into brain-injured mice did not increase the mRNA levels for Nrf2-driven genes. However, when a calpain cleavage sequence was introduced between the TAT sequence and the DEETGE sequence, the new peptide (TAT-CAL-DEETGE) increased the mRNA levels of these genes. Increased gene expression was not observed when the TAT-CAL-DEETGE peptide was injected into uninjured animals. Furthermore, injection of TAT-CAL-DEETGE peptides before or after brain injury reduced blood-brain barrier compromise, a prominent secondary pathology that negatively influences outcome. The present strategy to increase Nrf2-responsive gene expression can be adapted to treat other insults or diseases based on their

  17. Evaluation of the internalization kinetics of the radiopharmaceutical 99mTc-N2S2-Tat(49-57)Lys3-Bn with diagnostic purposes, using comet assay

    International Nuclear Information System (INIS)

    Luna G, M. A.

    2011-01-01

    Gastrin-rea leasing peptide receptors (GRP-r) are over expressed in breast and prostate cancer cells. Bombesin (Bn) binds specifically and strongly to GRP-r and this is the base for to label the Bn with radionuclides by gamma rays. Tat (49-57) is a peptide that across the cell membrane easily so that, when it is conjugated to different proteins, it can works as a Trojan horse, facilitating the drug internalization to the cells. The radiopharmaceutical 99m Tc-N 2 S 2 -Tat(49-57)-Lys 3 -Bn was prepared for diagnosis and therapy at early stage of breast cancer. The objective of this study was to determine the role of Tat in the internalization kinetics of radiopharmaceuticals measured by DNA damage induced by means of comet assay. Human lymphocytes were treated with the following protocols: a) Tat-Bn, b) 99m Tc-Bn, or c) 99m Tc-N 2 S 2 -Tat(49-57)-Lys 3 -Bn, also an untreated group was conformed. The internalization was evaluated at 0, 5, 10, 15, 30 and 60 min after exposure with three repetitions each one, and for radiopharmaceuticals with 2.9, 6.6, 9.0 and 14.8 MBq activities. DNA damage was scored in 100 cells per time and treatment, as tail length and tail moment. A Kruskal-Wallis variance analysis with p≤ 0.05 was applied for comparison between treatments. The results showed that the damage caused by 99m Tc-N 2 S 2 -Tat(49-57)-Lys 3 -Bn is significantly higher than that caused by 99m Tc-Bn and Tat-Bn, showing that Tat favors the internalization of the radiopharmaceutical. (Author)

  18. Broadening of the T-cell repertoire to HIV-1 Gag p24 by vaccination of HLA-A2/DR transgenic mice with overlapping peptides in the CAF05 adjuvant

    DEFF Research Database (Denmark)

    Korsholm, Karen S; Karlsson, Ingrid; Tang, Sheila T

    2013-01-01

    Induction of broad T-cell immune responses is regarded as critical for vaccines against the human immunodeficiency virus type 1 (HIV-1) which exhibit high diversity and, therefore, focus has been on inducing cytotoxic CD8 T-cell responses against the more conserved parts of the virus, such as the....../DR-transgenic mouse model. Thus, combining overlapping Gag p24 peptides with CAF05 appears to be a promising and simple strategy for inducing broader T-cell responses to multiple conserved epitopes which will be relevant for both prophylactic and therapeutic HIV-1 vaccines....

  19. Prediction of exposed domains of envelope glycoprotein in Indian HIV-1 isolates and experimental confirmation of their immunogenicity in humans

    Directory of Open Access Journals (Sweden)

    Mohabatkar H.

    2004-01-01

    Full Text Available We describe the impact of subtype differences on the seroreactivity of linear antigenic epitopes in envelope glycoprotein of HIV-1 isolates from different geographical locations. By computer analysis, we predicted potential antigenic sites of envelope glycoprotein (gp120 and gp4l of this virus. For this purpose, after fetching sequences of proteins of interest from data banks, values of hydrophilicity, flexibility, accessibility, inverted hydrophobicity, and secondary structure were considered. We identified several potential antigenic epitopes in a B subtype strain of envelope glycoprotein of HIV-1 (IIIB. Solid- phase peptide synthesis methods of Merrifield and Fmoc chemistry were used for synthesizing peptides. These synthetic peptides corresponded mainly to the C2, V3 and CD4 binding sites of gp120 and some parts of the ectodomain of gp41. The reactivity of these peptides was tested by ELISA against different HIV-1-positive sera from different locations in India. For two of these predicted epitopes, the corresponding Indian consensus sequences (LAIERYLKQQLLGWG and DIIGDIRQAHCNISEDKWNET (subtype C were also synthesized and their reactivity was tested by ELISA. These peptides also distinguished HIV-1-positive sera of Indians with C subtype infections from sera from HIV-negative subjects.

  20. Cellular specificity of HIV-1 replication can be controlled by LTR sequences

    International Nuclear Information System (INIS)

    Reed-Inderbitzin, Edward; Maury, Wendy

    2003-01-01

    Two well-established determinants of retroviral tropism are envelope sequences that regulate entry and LTR sequences that can regulate viral expression in a cell-specific manner. Studies with human immunodeficiency virus-1 (HIV-1) have demonstrated that tropism of this virus maps primarily to variable envelope sequences. Studies have demonstrated that T cell and macrophage-specific transcription factor binding motifs exist in the upstream region of the LTR U3; however, the ability of the core enhancer/promoter proximal elements (two NF-κB and three Sp1 sites) to function well in macrophages and T cells have led many to conclude that HIV LTR sequences are not primary determinants of HIV tropism. To determine if cellular specificity could be imparted to HIV by the core enhancer elements, the enhancer/promoter proximal region of the HIV LTR was substituted with motifs that control gene expression in a myeloid-specific manner. The enhancer region from equine infectious anemia virus (EIAV) when substituted for the HIV enhancer/promoter proximal region was found to drive expression in a macrophage-specific manner and was responsive to HIV Tat. The addition of a 5' methylation-dependent binding site (MDBP) and a promoter proximal Sp1 motif increased expression without altering cellular specificity. Spacing between the promoter proximal region and the TATA box was also found to influence LTR activity. Infectivity studies using chimeric LTRs within the context of a dual-tropic infectious molecular clone established that these LTRs directed HIV replication and production of infectious virions in macrophages but not primary T cells or T cell lines. This investigation demonstrates that cellular specificity can be imparted onto HIV-1 replication at the level of viral transcription and not entry

  1. A novel local anesthetic system: transcriptional transactivator peptide-decorated nanocarriers for skin delivery of ropivacaine

    Directory of Open Access Journals (Sweden)

    Chen CY

    2017-06-01

    Full Text Available Chuanyu Chen, Peijun You Department of Anesthesiology, Shandong Jining No 1 People’s Hospital, Jining, Shandong, People’s Republic of China Purpose: Barrier properties of the skin and physicochemical properties of drugs are the main factors for the delivery of local anesthetic molecules. The present work evaluates the anesthetic efficacy of drug-loaded nanocarrier (NC systems for the delivery of local anesthetic drug, ropivacaine (RVC. Methods: In this study, transcriptional transactivator peptide (TAT-decorated RVC-loaded NCs (TAT-RVC/NCs were successfully fabricated. Physicochemical properties of NCs were determined in terms of particle size, zeta potential, drug encapsulation efficiency, drug-loading capacity, stability, and in vitro drug release. The skin permeation of NCs was examined using a Franz diffusion cell mounted with depilated mouse skin in vitro, and in vivo anesthetic effect was evaluated in mice. Results: The results showed that TAT-RVC/NCs have a mean diameter of 133.2 nm and high drug-loading capacity of 81.7%. From the in vitro skin permeation results, it was observed that transdermal flux of TAT-RVC/NCs was higher than that of RVC-loaded NCs (RVC/NCs and RVC injection. The evaluation of in vivo anesthetic effect illustrated that TAT-RVC/NCs can enhance the transdermal delivery of RVC by reducing the pain threshold in mice. Conclusion: These results indicate that TAT-decorated NCs systems are useful for overcoming the barrier function of the skin, decreasing the dosage of RVC and enhancing the anesthetic effect. Therefore, TAT-decorated NCs can be used as an effective transdermal delivery system for local anesthesia. Keywords: local anesthetic system, ropivacaine, transcriptional transactivator peptide, nanocarriers, skin delivery

  2. A preliminary electron microscopic investigation into the interaction between Aβ1-42 peptide and a novel nanoliposome- coupled retro-inverso peptide inhibitor, developed as a potential treatment for Alzheimer's disease

    International Nuclear Information System (INIS)

    Sherer, M; Fullwood, N J; Taylor, M; Allsop, D

    2015-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative condition that results in severe cognitive and functional decline in sufferers and for which there are currently no effective treatments to halt or reverse disease progression. AD is the most common form of dementia and age is the major risk factor for this disease. With worldwide population structures changing as increasing number of individuals survive into old age, there is urgent need for novel disease modifying treatments for this condition, which has profound effects upon sufferers in addition to those around them. Some of us have previously developed a peptide inhibitor of Aβ 1-42 aggregation (RI-OR2-TAT) that has been shown to reduce Aβ 1-42 pathology in vivo in mouse models of AD. ∼1690 copies of RI-OR2-TAT have been covalently attached to nanoliposome carrier particles forming Peptide Inhibitor NanoParticles (PINPs), and this study investigated the effect of PINPs upon Aβ 1-42 aggregation at the molecular level. Our results show that PINPs are able to reduce Aβ 1-42 aggregation and do so by binding early (oligomers) and late (fibrillar) stage aggregates. These results highlight the ability of PINPs to disrupt the formation of multiple Aβ 1-42 aggregates capable of causing neurotoxicity and thus provide a strong case for PINPs to be carried forward into early stage clinical trials as a novel therapeutic option for the treatment of AD. (paper)

  3. Structural Basis for Degenerate Recognition of Natural HIV Peptide Variants by Cytotoxic Lymphocytes

    International Nuclear Information System (INIS)

    Martinez-Hackert, E.; Anikeeva, N.; Kalams, S.; Walker, B.; Hendrickson, W.; Sykulev, Y.

    2006-01-01

    It is well established that even small changes in amino acid side chains of antigenic peptide bound to MHC protein may completely abrogate recognition of the peptide-MHC (pMHC) complex by the T-cell receptor (TCR). Often, however, several non-conservative substitutions in the peptide antigen are accommodated and do not impair its recognition by TCR. For example, a preponderance of natural sequence variants of the HIV p17 Gag-derived peptide SLYNTVATL (SL9) are recognized by cytotoxic T lymphocytes (CTL), which implies that interactions with SL9 variants are degenerate both with respect to the class I MHC molecule and with respect to TCR. Here we study the molecular basis for this degenerate recognition of SL9 variants. We show that several SL9 variants bind comparably well to soluble HLA-A2 and to a particular soluble TCR and that these variants are active in the cognate cytotoxicity assay. Natural SL9 variation is restricted by its context in the HIV p17 matrix protein, and we have used synthetic variants to explore the wider spectrum of recognition. High-resolution crystal structures of seven selected SL9 variants bound to HLA-A2 all have remarkably similar peptide conformations and side-chain dispositions outside sites of substitution. This preservation of the peptide conformation despite epitope variations suggests a mechanism for the observed degeneracy in pMHC recognition by TCR, and may contribute to the persistence of SL9-mediated immune responses in chronically infected individuals

  4. Polymeric pH nanosensor with extended measurement range bearing octaarginine as cell penetrating peptide

    DEFF Research Database (Denmark)

    Ke, Peng; Sun, Honghao; Liu, Mingxing

    2016-01-01

    A synthetic peptide octaarginine which mimics human immunodeficiency virus-1, Tat protein is used as cell penetrating moiety for new pH nanosensors which demonstrate enhanced cellular uptake and expanded measurement range from pH 3.9 to pH 7.3 by simultaneously incorporating two complemental pH-s......H-sensitive fluorophores in a same nanoparticle. The authors believe that this triple fluorescent pH sensor provides a new tool to pH measurements that can have application in cellular uptake mechanism study and new nanomedicine design.......A synthetic peptide octaarginine which mimics human immunodeficiency virus-1, Tat protein is used as cell penetrating moiety for new pH nanosensors which demonstrate enhanced cellular uptake and expanded measurement range from pH 3.9 to pH 7.3 by simultaneously incorporating two complemental p...

  5. Evaluation of the internalization kinetics of the radiopharmaceutical {sup 99m}Tc-N{sub 2}S{sub 2}-Tat(49-57)Lys{sup 3}-Bn with diagnostic purposes, using comet assay; Evaluacion de la cinetica de internalizacion del radiofarmaco {sup 99m}Tc-N{sub 2}S{sub 2}-TAT(49-57)Lys{sup 3}-BN con fines diagnosticos, empleando ensayo cometa

    Energy Technology Data Exchange (ETDEWEB)

    Luna G, M. A.

    2011-07-01

    Gastrin-rea leasing peptide receptors (GRP-r) are over expressed in breast and prostate cancer cells. Bombesin (Bn) binds specifically and strongly to GRP-r and this is the base for to label the Bn with radionuclides by gamma rays. Tat (49-57) is a peptide that across the cell membrane easily so that, when it is conjugated to different proteins, it can works as a Trojan horse, facilitating the drug internalization to the cells. The radiopharmaceutical {sup 99m}Tc-N{sub 2}S{sub 2}-Tat(49-57)-Lys{sup 3}-Bn was prepared for diagnosis and therapy at early stage of breast cancer. The objective of this study was to determine the role of Tat in the internalization kinetics of radiopharmaceuticals measured by DNA damage induced by means of comet assay. Human lymphocytes were treated with the following protocols: a) Tat-Bn, b) {sup 99m}Tc-Bn, or c) {sup 99m}Tc-N{sub 2}S{sub 2}-Tat(49-57)-Lys{sup 3}-Bn, also an untreated group was conformed. The internalization was evaluated at 0, 5, 10, 15, 30 and 60 min after exposure with three repetitions each one, and for radiopharmaceuticals with 2.9, 6.6, 9.0 and 14.8 MBq activities. DNA damage was scored in 100 cells per time and treatment, as tail length and tail moment. A Kruskal-Wallis variance analysis with p{<=} 0.05 was applied for comparison between treatments. The results showed that the damage caused by {sup 99m}Tc-N{sub 2}S{sub 2}-Tat(49-57)-Lys{sup 3}-Bn is significantly higher than that caused by {sup 99m}Tc-Bn and Tat-Bn, showing that Tat favors the internalization of the radiopharmaceutical. (Author)

  6. V3-serotyping programme evaluated for HIV-1 variation in the Netherlands and Curacao

    NARCIS (Netherlands)

    Wolf F de; Akker R van den; Valk M; Bakker M; Goudsmit J; Loon AM van; VIR; UVA/HRL

    1995-01-01

    To obtain insight into the variation of the HIV-1 V3 neutralization domain of variants circulating in the Netherlands, 126 Dutch, 70 Curacao and 45 African serum samples from HIV-1 infected individuals were screened for antibody reactivity to a set of 16 to 17 mer synthetic peptides, representing

  7. Interactive Effects of Cocaine on HIV Infection: Implication in HIV-Associated Neurocognitive Disorder and NeuroAIDS

    Directory of Open Access Journals (Sweden)

    Santosh eDahal

    2015-09-01

    Full Text Available Substantial epidemiological studies suggest that not only, being one of the reasons for the transmission of the human immunodeficiency virus (HIV, but drug abuse also serves its role in determining the disease progression and severity among the HIV infected population. This article focuses on the drug cocaine, and its role in facilitating entry of HIV into the CNS and mechanisms of development of neurologic complications in infected individuals. Cocaine is a powerfully addictive central nervous system stimulating drug, which increases the level of neurotransmitter dopamine in the brain, by blocking the dopamine transporters (DAT which is critical for dopamine homeostasis and neurocognitive function. Tat protein of HIV acts as an allosteric modulator of DAT, where as cocaine acts as reuptake inhibitor. When macrophages in the CNS are exposed to dopamine, their number increases. These macrophages release inflammatory mediators and neurotoxins, causing chronic neuroinflammation. Cocaine abuse during HIV infection enhances the production of platelet monocyte complexes (PMCs, which may cross transendothelial barrier, and result in HIV-associated neurocognitive disorder (HAND. HAND is characterized by neuroinflammation, including astrogliosis, multinucleated giant cells, and neuronal apoptosis that is linked to progressive virus infection and immune deterioration. Cocaine and viral proteins are capable of eliciting signaling transduction pathways in neurons, involving in mitochondrial membrane potential loss, oxidative stress, activation of JNK, p38, and ERK/MAPK pathways, and results in downstream activation of NF-κB that leads to HAND. Tat-induced inflammation provokes permeability of the Blood Brain Barrier (BBB in the platelet dependent manner, which can potentially be the reason for progression to HAND during HIV infection. A better understanding on the role of cocaine in HIV infection can give a clue in developing novel therapeutic strategies

  8. Tat-haFGF14–154 Upregulates ADAM10 to Attenuate the Alzheimer Phenotype of APP/PS1 Mice through the PI3K-CREB-IRE1α/XBP1 Pathway

    Directory of Open Access Journals (Sweden)

    Tian Meng

    2017-06-01

    Full Text Available Acid fibroblast growth factor (aFGF has shown neuroprotection in Alzheimer’s disease (AD models in previous studies, yet its mechanism is still uncertain. Here we report that the efficacy of Tat-haFGF14–154 is markedly increased when loaded cationic liposomes for intranasal delivery are intranasally administered to APP/PS1 mice. Our results demonstrated that liposomal Tat-haFGF14–154 treatment significantly ameliorated behavioral deficits, relieved brain Aβ burden, and increased the expression and activity of disintegrin and metalloproteinase domain-containing protein 10 (ADAM10 in the brain. Tat-haFGF14–154 antagonized Aβ1–42-induced cell death and structural damage in rat primary neurons in an ADAM10-dependent manner, which, in turn, was promoted by the activation of XBP1 splicing and modulated by the PI3K-CREB pathway. Both knockdown of ADAM10 and inhibition of PI3K (LY294002 negated Tat-haFGF14–154 rescue. Thus, Tat-haFGF14–154 activates the IRE1α/XBP1 pathway of the unfolded protein response (UPR against the endoplasmic reticulum (ER stress induced by Aβ, and, subsequently, the nuclear translocation of spliced XBP1 (XBP1s promotes transcription of ADAM10. These results highlight the important role of ADAM10 and its activation through the PI3K-CREB-IRE1α/XBP1 pathway as a key factor in the mechanism of neuroprotection for Tat-haFGF14–154.

  9. Sequential immunization with V3 peptides from primary human immunodeficiency virus type 1 produces cross-neutralizing antibodies against primary isolates with a matching narrow-neutralization sequence motif.

    Science.gov (United States)

    Eda, Yasuyuki; Takizawa, Mari; Murakami, Toshio; Maeda, Hiroaki; Kimachi, Kazuhiko; Yonemura, Hiroshi; Koyanagi, Satoshi; Shiosaki, Kouichi; Higuchi, Hirofumi; Makizumi, Keiichi; Nakashima, Toshihiro; Osatomi, Kiyoshi; Tokiyoshi, Sachio; Matsushita, Shuzo; Yamamoto, Naoki; Honda, Mitsuo

    2006-06-01

    An antibody response capable of neutralizing not only homologous but also heterologous forms of the CXCR4-tropic human immunodeficiency virus type 1 (HIV-1) MNp and CCR5-tropic primary isolate HIV-1 JR-CSF was achieved through sequential immunization with a combination of synthetic peptides representing HIV-1 Env V3 sequences from field and laboratory HIV-1 clade B isolates. In contrast, repeated immunization with a single V3 peptide generated antibodies that neutralized only type-specific laboratory-adapted homologous viruses. To determine whether the cross-neutralization response could be attributed to a cross-reactive antibody in the immunized animals, we isolated a monoclonal antibody, C25, which neutralized the heterologous primary viruses of HIV-1 clade B. Furthermore, we generated a humanized monoclonal antibody, KD-247, by transferring the genes of the complementary determining region of C25 into genes of the human V region of the antibody. KD-247 bound with high affinity to the "PGR" motif within the HIV-1 Env V3 tip region, and, among the established reference antibodies, it most effectively neutralized primary HIV-1 field isolates possessing the matching neutralization sequence motif, suggesting its promise for clinical applications involving passive immunizations. These results demonstrate that sequential immunization with B-cell epitope peptides may contribute to a humoral immune-based HIV vaccine strategy. Indeed, they help lay the groundwork for the development of HIV-1 vaccine strategies that use sequential immunization with biologically relevant peptides to overcome difficulties associated with otherwise poorly immunogenic epitopes.

  10. Alkylating HIV-1 Nef - a potential way of HIV intervention

    Directory of Open Access Journals (Sweden)

    Cai Catherine

    2010-07-01

    Full Text Available Abstract Background Nef is a 27 KDa HIV-1 accessory protein. It downregulates CD4 from infected cell surface, a mechanism critical for efficient viral replication and pathogenicity. Agents that antagonize the Nef-mediated CD4 downregulation may offer a new class of drug to combat HIV infection and disease. TPCK (N-α-p-tosyl-L-phenylalanine chloromethyl ketone and TLCK (N-α-p-tosyl-L-lysine chloromethyl ketone are alkylation reagents that chemically modify the side chain of His or Cys residues in a protein. In search of chemicals that inhibit Nef function, we discovered that TPCK and TLCK alkylated HIV Nef. Methods Nef modification by TPCK was demonstrated on reducing SDS-PAGE. The specific cysteine residues modified were determined by site-directed mutagenesis and mass spectrometry (MS. The effect of TPCK modification on Nef-CD4 interaction was studied using fluorescence titration of a synthetic CD4 tail peptide with recombinant Nef-His protein. The conformational change of Nef-His protein upon TPCK-modification was monitored using CD spectrometry Results Incubation of Nef-transfected T cells, or recombinant Nef-His protein, with TPCK resulted in mobility shift of Nef on SDS-PAGE. Mutagenesis analysis indicated that the modification occurred at Cys55 and Cys206 in Nef. Mass spectrometry demonstrated that the modification was a covalent attachment (alkylation of TPCK at Cys55 and Cys206. Cys55 is next to the CD4 binding motif (A56W57L58 in Nef required for Nef-mediated CD4 downregulation and for AIDS development. This implies that the addition of a bulky TPCK molecule to Nef at Cys55 would impair Nef function and reduce HIV pathogenicity. As expected, Cys55 modification reduced the strength of the interaction between Nef-His and CD4 tail peptide by 50%. Conclusions Our data suggest that this Cys55-specific alkylation mechanism may be exploited to develop a new class of anti HIV drugs.

  11. The HIV-1 V3 domain on field isolates: participation in generation of escape virus in vivo and accessibility to neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Akerblom, L; Heegaard, P M

    1995-01-01

    The V3 domain is highly variable and induces HIV neutralizing antibodies (NA). Here we addressed the issues of 1) the participation of mutations in V3 in generation of neutralization resistant escape virus in vivo and 2) the applicability of synthetic V3 peptides corresponding to field isolates...... to induce neutralizing immune sera. Seven peptides corresponding to the V3 region of primary and escape virus from 3 HIV-1 infected patients were synthesized and used for antibody (Abs) studies and immunizations. The anti-V3 Abs titre in patient serum was generally low against peptides corresponding...... to autologous virus isolated later than the serum sample in contrast to the titre against peptides corresponding to virus isolated earlier than the serum sample. Furthermore, neutralizing anti-V3 monoclonal antibodies (MAbs) raised against V3 peptides from laboratory strains of HIV-1 showed distinct binding...

  12. Identification of novel targets for HIV-1: Molecular dynamics simulation and binding energy calculations

    Science.gov (United States)

    Pandey, Vishnudatt; Tiwari, Gargi; Mall, Vijaya Shri; Tiwari, Rakesh Kumar; Ojha, R. P.

    2018-05-01

    HIV-1 envelope glycoprotein-mediated fusion is managed by the concerted coalescence of the HIV-1 gp41 N- and C- helical regions, which is a product in the formation of 6-helix bundles. These two regions are considered prime targets for peptides and antibodies that inhibit HIV-1 entry. There are so many rational method aimed to attach a rationally designed artificial tail to the C-terminus of HIV-1 fusion inhibitors to increase their antiviral potency. Here M. D. simulation was performed to go insight for study of C-terminal tail of Ile-Asp-Leu (IDL).

  13. Specificity and polyreactivity of the antibody response during natural HIV-1 infection

    OpenAIRE

    Wang, Xin

    2006-01-01

    The specificity and polyreactivity of the antibody response in natural HIV-1 infection were studied. First, to investigate the overall antibody response, overlapping linear peptides were used to screen sera taken from HIV-1-infected individuals. The polyclonal antibody response was relatively stable during long-term infection, compared with acute infection, and mostly directed against immunodominant regions. Low level, transient antibody responses were detected against membrane proximal exter...

  14. Functional analysis of human aromatic amino acid transporter MCT10/TAT1 using the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Uemura, Satoshi; Mochizuki, Takahiro; Kurosaka, Goyu; Hashimoto, Takanori; Masukawa, Yuki; Abe, Fumiyoshi

    2017-10-01

    Tryptophan is an essential amino acid in humans and an important serotonin and melatonin precursor. Monocarboxylate transporter MCT10 is a member of the SLC16A family proteins that mediates low-affinity tryptophan transport across basolateral membranes of kidney, small intestine, and liver epithelial cells, although the precise transport mechanism remains unclear. Here we developed a simple functional assay to analyze tryptophan transport by human MCT10 using a deletion mutant for the high-affinity tryptophan permease Tat2 in Saccharomyces cerevisiae. tat2Δtrp1 cells are defective in growth in YPD medium because tyrosine present in the medium competes for the low-affinity tryptophan permease Tat1 with tryptophan. MCT10 appeared to allow growth of tat2Δtrp1 cells in YPD medium, and accumulate in cells deficient for Rsp5 ubiquitin ligase. These results suggest that MCT10 is functional in yeast, and is subject to ubiquitin-dependent quality control. Whereas growth of Tat2-expressing cells was significantly impaired by neutral pH, that of MCT10-expressing cells was nearly unaffected. This property is consistent with the transport mechanism of MCT10 via facilitated diffusion without a need for pH gradient across the plasma membrane. Single-nucleotide polymorphisms (SNPs) are known to occur in the human MCT10 coding region. Among eight SNP amino acid changes in MCT10, the N81K mutation completely abrogated tryptophan import without any abnormalities in the expression or localization. In the MCT10 modeled structure, N81 appeared to protrude into the putative trajectory of tryptophan. Plasma membrane localization of MCT10 and the variant proteins was also verified in human embryonic kidney 293T cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Human cyclin T1 expression ameliorates a T-cell-specific transcriptional limitation for HIV in transgenic rats, but is not sufficient for a spreading infection of prototypic R5 HIV-1 strains ex vivo

    Directory of Open Access Journals (Sweden)

    Littman Dan R

    2009-01-01

    Full Text Available Abstract Background Cells derived from native rodents have limits at distinct steps of HIV replication. Rat primary CD4 T-cells, but not macrophages, display a profound transcriptional deficit that is ameliorated by transient trans-complementation with the human Tat-interacting protein Cyclin T1 (hCycT1. Results Here, we generated transgenic rats that selectively express hCycT1 in CD4 T-cells and macrophages. hCycT1 expression in rat T-cells boosted early HIV gene expression to levels approaching those in infected primary human T-cells. hCycT1 expression was necessary, but not sufficient, to enhance HIV transcription in T-cells from individual transgenic animals, indicating that endogenous cellular factors are critical co-regulators of HIV gene expression in rats. T-cells from hCD4/hCCR5/hCycT1-transgenic rats did not support productive infection of prototypic wild-type R5 HIV-1 strains ex vivo, suggesting one or more significant limitation in the late phase of the replication cycle in this primary rodent cell type. Remarkably, we identify a replication-competent HIV-1 GFP reporter strain (R7/3 YU-2 Env that displays characteristics of a spreading, primarily cell-to-cell-mediated infection in primary T-cells from hCD4/hCCR5-transgenic rats. Moreover, the replication of this recombinant HIV-1 strain was significantly enhanced by hCycT1 transgenesis. The viral determinants of this so far unique replicative ability are currently unknown. Conclusion Thus, hCycT1 expression is beneficial to de novo HIV infection in a transgenic rat model, but additional genetic manipulations of the host or virus are required to achieve full permissivity.

  16. Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides

    NARCIS (Netherlands)

    Berkhout, Ben; van Wamel, Jeroen L. B.; Beljaars, Leonie; Meijer, Dirk K. F.; Visser, Servaas; Floris, René

    2002-01-01

    In a search for natural proteins with anti-HIV activity, we screened a large set of purified proteins from bovine milk and peptide fragments thereof. Because several charged proteins and peptides are known to inhibit the process of virus entry, we selected proteins with an unusual charge composition

  17. Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides

    NARCIS (Netherlands)

    Berkhout, B; van Wamel, JLB; Beljaars, L; Meijer, DKF; Visser, Servaas; Floris, R

    In a search for natural proteins with anti-HIV activity, we screened a large set of purified proteins from bovine milk and peptide fragments thereof. Because several charged proteins and peptides are known to inhibit the process of virus entry, we selected proteins with an unusual charge composition

  18. Inhibition of NF-κB by a cell permeable form of IκBα induces apoptosis in eosinophils

    International Nuclear Information System (INIS)

    Fujihara, Satoko; Jaffray, Ellis; Farrow, Stuart N.; Rossi, Adriano G.; Haslett, Christopher; Hay, Ronald T.

    2005-01-01

    An 11 amino acid HIV-TAT peptide can deliver target proteins into a variety of cells in a receptor-independent manner. To generate a highly specific inhibitor of the transcription factor NF-κB, we have fused the TAT-peptide to a version of IκBα that is resistant to signal-induced degradation. TAT-IκBα(S32A, S36A) inhibited NF-κB-dependent transcription in HeLa and A549 cells by retaining NF-κB p65 in the cytoplasm. Introduction of TAT-IκBα(S32A, S36A) into human eosinophils inhibited the nuclear translocation of NF-κB and induced apoptosis. Thus, continuous NF-κB-dependent transcription is important for eosinophil survival. While eosinophils are normally refractive to standard methods of gene delivery, the ability of TAT fusion proteins to be taken up by these cells should enable a detailed molecular analysis of survival pathways in these cells

  19. Bovine Lactoferrampin, Human Lactoferricin, and Lactoferrin 1-11 Inhibit Nuclear Translocation of HIV Integrase.

    Science.gov (United States)

    Wang, Winston Yan; Wong, Jack Ho; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Cheung, Randy Chifai; Ng, Tzi Bun

    2016-08-01

    This study aimed to investigate fragments derived from human and bovine lactoferrins for ability to inhibit nuclear translocation of HIV-1 integrase. It was shown that human lactoferricin, human lactoferrin 1-11, and bovine lactoferrampin reduced nuclear distribution of HIV-1 integrase. Bovine lactoferrampin could inhibit both the activity and nuclear translocation of HIV-1 integrase. Human lactoferrampin, bovine lactoferricin, and bovine lactoferrin 1-11 had no effect on HIV-1 integrase nuclear translocation. Human lactoferrampin which inhibited the activity of integrase did not prevent its nuclear translocation. Human lactoferricin and lactoferrin 1-11 did not inhibit HIV-1 integrase nuclear translocation despite their ability to attenuate the enzyme activity. The discrepancy between the findings on reduction of HIV-1 activity and inhibition of nuclear translocation of HIV-1 integrase was due to the different mechanisms involved. A similar reasoning can also be applied to the different inhibitory potencies of the milk peptides on different HIV enzymes, i.e., nuclear translocation.

  20. Neuroprotective effect of TAT-14-3-3ε fusion protein against cerebral ischemia/reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Yuanjun Zhu

    Full Text Available Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB due to its large size. A protein transduction domain (PTD of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP, which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic

  1. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection.

    Science.gov (United States)

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D; Ndung'u, Thumbi; Ndhlovu, Zaza M

    2017-04-01

    Immune control of viral infections is heavily dependent on helper CD4 + T cell function. However, the understanding of the contribution of HIV-specific CD4 + T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4 + T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4 + T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4 + T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4 + T cells in HIV controllers than progressors ( P = 0.0001), and these expanded Gag-specific CD4 + T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control ( r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4 + T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4 + T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4 + T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4 + T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV

  2. Hit-and-run stimulation: a novel concept to reactivate latent HIV-1 infection without cytokine gene induction.

    Science.gov (United States)

    Wolschendorf, Frank; Duverger, Alexandra; Jones, Jennifer; Wagner, Frederic H; Huff, Jason; Benjamin, William H; Saag, Michael S; Niederweis, Michael; Kutsch, Olaf

    2010-09-01

    Current antiretroviral therapy (ART) efficiently controls HIV-1 replication but fails to eradicate the virus. Even after years of successful ART, HIV-1 can conceal itself in a latent state in long-lived CD4(+) memory T cells. From this latent reservoir, HIV-1 rebounds during treatment interruptions. Attempts to therapeutically eradicate this viral reservoir have yielded disappointing results. A major problem with previously utilized activating agents is that at the concentrations required for efficient HIV-1 reactivation, these stimuli trigger high-level cytokine gene expression (hypercytokinemia). Therapeutically relevant HIV-1-reactivating agents will have to trigger HIV-1 reactivation without the induction of cytokine expression. We present here a proof-of-principle study showing that this is a possibility. In a high-throughput screening effort, we identified an HIV-1-reactivating protein factor (HRF) secreted by the nonpathogenic bacterium Massilia timonae. In primary T cells and T-cell lines, HRF triggered a high but nonsustained peak of nuclear factor kappa B (NF-kappaB) activity. While this short NF-kappaB peak potently reactivated latent HIV-1 infection, it failed to induce gene expression of several proinflammatory NF-kappaB-dependent cellular genes, such as those for tumor necrosis factor alpha (TNF-alpha), interleukin-8 (IL-8), and gamma interferon (IFN-gamma). Dissociation of cellular and viral gene induction was achievable, as minimum amounts of Tat protein, synthesized following application of a short NF-kappaB pulse, triggered HIV-1 transactivation and subsequent self-perpetuated HIV-1 expression. In the absence of such a positive feedback mechanism, cellular gene expression was not sustained, suggesting that strategies modulating the NF-kappaB activity profile could be used to selectively trigger HIV-1 reactivation.

  3. Broad antibody mediated cross-neutralization and preclinical immunogenicity of new codon-optimized HIV-1 clade CRF02_AG and G primary isolates.

    Directory of Open Access Journals (Sweden)

    Simon M Agwale

    Full Text Available Creation of an effective vaccine for HIV has been an elusive goal of the scientific community for almost 30 years. Neutralizing antibodies are assumed to be pivotal to the success of a prophylactic vaccine but previous attempts to make an immunogen capable of generating neutralizing antibodies to primary "street strain" isolates have resulted in responses of very limited breadth and potency. The objective of the study was to determine the breadth and strength of neutralizing antibodies against autologous and heterologous primary isolates in a cohort of HIV-1 infected Nigerians and to characterize envelopes from subjects with particularly broad or strong immune responses for possible use as vaccine candidates in regions predominated by HIV-1 CRF02_AG and G subtypes. Envelope vectors from a panel of primary Nigerian isolates were constructed and tested with plasma/sera from the same cohort using the PhenoSense HIV neutralizing antibody assay (Monogram Biosciences Inc, USA to assess the breadth and potency of neutralizing antibodies. The immediate goal of this study was realized by the recognition of three broadly cross-neutralizing sera: (NG2-clade CRF02_AG, NG3-clade CRF02_AG and NG9- clade G. Based on these findings, envelope gp140 sequences from NG2 and NG9, complemented with a gag sequence (Clade G and consensus tat (CRF02_AG and G antigens have been codon-optimized, synthesized, cloned and evaluated in BALB/c mice. The intramuscular administration of these plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial specific humoral response against all constructs and strong cellular responses against the gag and tat constructs. These preclinical findings provide a framework for the design of candidate vaccine for use in regions where the HIV-1 epidemic is driven by clades CRF02_AG and G.

  4. Broad antibody mediated cross-neutralization and preclinical immunogenicity of new codon-optimized HIV-1 clade CRF02_AG and G primary isolates.

    Science.gov (United States)

    Agwale, Simon M; Forbi, Joseph C; Notka, Frank; Wrin, Terri; Wild, Jens; Wagner, Ralf; Wolf, Hans

    2011-01-01

    Creation of an effective vaccine for HIV has been an elusive goal of the scientific community for almost 30 years. Neutralizing antibodies are assumed to be pivotal to the success of a prophylactic vaccine but previous attempts to make an immunogen capable of generating neutralizing antibodies to primary "street strain" isolates have resulted in responses of very limited breadth and potency. The objective of the study was to determine the breadth and strength of neutralizing antibodies against autologous and heterologous primary isolates in a cohort of HIV-1 infected Nigerians and to characterize envelopes from subjects with particularly broad or strong immune responses for possible use as vaccine candidates in regions predominated by HIV-1 CRF02_AG and G subtypes. Envelope vectors from a panel of primary Nigerian isolates were constructed and tested with plasma/sera from the same cohort using the PhenoSense HIV neutralizing antibody assay (Monogram Biosciences Inc, USA) to assess the breadth and potency of neutralizing antibodies. The immediate goal of this study was realized by the recognition of three broadly cross-neutralizing sera: (NG2-clade CRF02_AG, NG3-clade CRF02_AG and NG9- clade G). Based on these findings, envelope gp140 sequences from NG2 and NG9, complemented with a gag sequence (Clade G) and consensus tat (CRF02_AG and G) antigens have been codon-optimized, synthesized, cloned and evaluated in BALB/c mice. The intramuscular administration of these plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial specific humoral response against all constructs and strong cellular responses against the gag and tat constructs. These preclinical findings provide a framework for the design of candidate vaccine for use in regions where the HIV-1 epidemic is driven by clades CRF02_AG and G.

  5. Approaches to Preventative and Therapeutic HIV vaccines

    Science.gov (United States)

    Gray, Glenda E.; Laher, Fatima; Lazarus, Erica; Ensoli, Barbara; Corey, Lawrence

    2016-01-01

    Novel strategies are being researched to discover vaccines to prevent and treat HIV-1. Nonefficacious preventative vaccine approaches include bivalent recombinant gp120 alone, HIV gene insertion into an Adenovirus 5 (Ad5) virus vector and the DNA prime/Ad5 boost vaccine regimen. However, the ALVAC-HIV prime/AIDSVAX® B/E gp120 boost regimen showed 31.2% efficacy at 3.5 years, and is being investigated as clade C constructs with an additional boost. Likewise, although multiple therapeutic vaccines have failed in the past, in a non-placebo controlled trial, a Tat vaccine demonstrated immune cell restoration, reduction of immune activation, and reduced HIV-1 DNA viral load. Monoclonal antibodies for passive immunization or treatment show promise, with VRC01 entering advanced clinical trials. PMID:26985884

  6. The homeodomain derived peptide Penetratin induces curvature of fluid membrane domains.

    Directory of Open Access Journals (Sweden)

    Antonin Lamazière

    Full Text Available BACKGROUND: Protein membrane transduction domains that are able to cross the plasma membrane are present in several transcription factors, such as the homeodomain proteins and the viral proteins such as Tat of HIV-1. Their discovery resulted in both new concepts on the cell communication during development, and the conception of cell penetrating peptide vectors for internalisation of active molecules into cells. A promising cell penetrating peptide is Penetratin, which crosses the cell membranes by a receptor and metabolic energy-independent mechanism. Recent works have claimed that Penetratin and similar peptides are internalized by endocytosis, but other endocytosis-independent mechanisms have been proposed. Endosomes or plasma membranes crossing mechanisms are not well understood. Previously, we have shown that basic peptides induce membrane invaginations suggesting a new mechanism for uptake, "physical endocytosis". METHODOLOGY/PRINCIPAL FINDINGS: Herein, we investigate the role of membrane lipid phases on Penetratin induced membrane deformations (liquid ordered such as in "raft" microdomains versus disordered fluid "non-raft" domains in membrane models. Experimental data show that zwitterionic lipid headgroups take part in the interaction with Penetratin suggesting that the external leaflet lipids of cells plasma membrane are competent for peptide interaction in the absence of net negative charges. NMR and X-ray diffraction data show that the membrane perturbations (tubulation and vesiculation are associated with an increase in membrane negative curvature. These effects on curvature were observed in the liquid disordered but not in the liquid ordered (raft-like membrane domains. CONCLUSIONS/SIGNIFICANCE: The better understanding of the internalisation mechanisms of protein transduction domains will help both the understanding of the mechanisms of cell communication and the development of potential therapeutic molecular vectors. Here we

  7. Natural controlled HIV infection: Preserved HIV-specific immunity despite undetectable replication competent virus

    International Nuclear Information System (INIS)

    Kloosterboer, Nico; Groeneveld, Paul H.P.; Jansen, Christine A.; Vorst, Teun J.K. van der; Koning, Fransje; Winkel, Carel N.; Duits, Ashley J.; Miedema, Frank; Baarle, Debbie van; Rij, Ronald P. van; Brinkman, Kees; Schuitemaker, Hanneke

    2005-01-01

    Long-term non-progressive HIV infection, characterized by low but detectable viral load and stable CD4 counts in the absence of antiviral therapy, is observed in about 5% of HIV-infected patients. Here we identified four therapy naive individuals who are strongly seropositive for HIV-1 but who lack evidence of detectable HIV p24 antigen, plasma RNA, and proviral DNA in routine diagnostic testing. With an ultrasensitive PCR, we established that frequencies of pol proviral DNA sequences were as low as 0.2-0.5 copies/10 6 PBMC. HIV could not be isolated using up to 30 x 10 6 patient PBMC. One individual was heterozygous for CCR5 Δ32, but CCR5 expression on CD4 + T cells was normal to high in all four individuals. In vitro R5 and X4 HIV-1 susceptibility of CD8-depleted PBMC of all study subjects was significantly lower than the susceptibility of CD8-depleted PBMC of healthy blood donors. All individuals expressed protective HLA-B*58s alleles and showed evidence of HIV-specific cellular immunity either by staining with HLA-B*57 tetramers folded with an HIV RT or gag peptide or after stimulation with HIV-1 p24 gag, RT, or nef peptides in ELIspot analysis. HIV-specific CD4 + T helper cells were demonstrated by proliferation of CD4 + T cells and intracellular staining for IL-2 and IFNγ after stimulation with an HIV-gag peptide pool. Sera of all individuals showed antibody-mediated neutralization of both R5 and X4 HIV-1 variants. These data implicate that very low-level antigen exposure is sufficient for sustained HIV-specific immunity and suggest the possibility of a multi-factorial control of HIV infection

  8. Paramyxovirus F1 protein has two fusion peptides: implications for the mechanism of membrane fusion.

    Science.gov (United States)

    Peisajovich, S G; Samuel, O; Shai, Y

    2000-03-10

    Viral fusion proteins contain a highly hydrophobic segment, named the fusion peptide, which is thought to be responsible for the merging of the cellular and viral membranes. Paramyxoviruses are believed to contain a single fusion peptide at the N terminus of the F1 protein. However, here we identified an additional internal segment in the Sendai virus F1 protein (amino acids 214-226) highly homologous to the fusion peptides of HIV-1 and RSV. A synthetic peptide, which includes this region, was found to induce membrane fusion of large unilamellar vesicles, at concentrations where the known N-terminal fusion peptide is not effective. A scrambled peptide as well as several peptides from other regions of the F1 protein, which strongly bind to membranes, are not fusogenic. The functional and structural characterization of this active segment suggest that the F1 protein has an additional internal fusion peptide that could participate in the actual fusion event. The presence of homologous regions in other members of the same family suggests that the concerted action of two fusion peptides, one N-terminal and the other internal, is a general feature of paramyxoviruses. Copyright 2000 Academic Press.

  9. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    Directory of Open Access Journals (Sweden)

    Irna Sufiawati

    Full Text Available Herpes simplex virus (HSV types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD. Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.

  10. RGDS- and TAT-conjugated upconversion of NaYF4:Yb3+/Er3+&SiO2 nanoparticles: in vitro human epithelioid cervix carcinoma cellular uptake, imaging, and targeting

    Czech Academy of Sciences Publication Activity Database

    Kostiv, Uliana; Kotelnikov, Ilya; Proks, Vladimír; Šlouf, Miroslav; Kučka, Jan; Engstová, Hana; Ježek, Petr; Horák, Daniel

    2016-01-01

    Roč. 8, č. 31 (2016), s. 20422-20431 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA15-01897S; GA ČR(CZ) GA16-02702S Institutional support: RVO:61389013 ; RVO:67985823 Keywords : upconversion, nanoparticles * RGDS peptide * TAT peptide Subject RIV: CD - Macromolecular Chemistry; BO - Biophysics (FGU-C) Impact factor: 7.504, year: 2016

  11. Monoclonal antibodies against a synthetic peptide from human immunodeficiency virus type 1 Nef protein

    DEFF Research Database (Denmark)

    Steinaa, L; Wulff, A M; Saermark, T

    1994-01-01

    Monoclonal antibodies against a synthetic peptide (aa 138-152) from HIV-1 Nef protein were produced and characterized. Three hybridoma lines producing monoclonal antibodies (MAbs) against the synthetic peptide were generated by fusion between P3-X63 Ag8.653 myeloma cells and BALB/c splenocytes from...... mice immunized with the synthetic peptide coupled to keyhole limpet hemocyanin (KLH). The hybridomas were screened and selected by ELISA with the peptide coupled to bovine serum albumin (BSA) immobilized to the polystyrene surface and specificity for the peptide was confirmed by competitive ELISA...... with the peptide free in solution. The reactions of the MAbs with a 5-aa motif (WCYKL) included in the sequence were examined with synthetic peptides and two of the MAbs reacted with the motif. The recognitions of recombinant full-length Nef protein were also tested. One MAb reacted with the protein in both ELISA...

  12. HIV-specific antibodies but not t-cell responses are associated with protection in seronegative partners of HIV-1-infected individuals in Cambodia.

    Science.gov (United States)

    Nguyen, Marie; Pean, Polidy; Lopalco, Lucia; Nouhin, Janin; Phoung, Viseth; Ly, Nary; Vermisse, Pierre; Henin, Yvette; Barré-Sinoussi, Françoise; Burastero, Samuele E; Reynes, Jean-Marc; Carcelain, Guislaine; Pancino, Gianfranco

    2006-08-01

    To study biological factors related to protection against HIV-1 infection in Cambodia, we recruited 48 partners of HIV-1-infected patients who remained uninfected (exposed uninfected individuals, EUs) despite unprotected sexual intercourse for more than 1 year and 49 unexposed controls (UCs). HIV-1-specific antibodies (IgA anti-gp41 and IgG anti-CD4-gp120 complex), T-cell responses, and cellular factors that may be involved in protection (peripheral blood mononuclear cell [PBMC] resistance to HIV-1 infection and beta-chemokine production) were evaluated. Anti-HIV-1 antibodies were higher in EUs than those in UCs (P = 0.01 and P = 0.04 for anti-gp41 and anti-CD4-gp120, respectively). We observed a decreased susceptibility to a primary Cambodian isolate, HIV-1KH019, in EU PBMCs as compared with UC PBMCs (P = 0.03). A weak T-cell response to one pool of HIV-1 Gag peptides was found by ELISpot in 1 of 19 EUs. Whereas T-cell specific immunity was not associated to protection, our results suggest that HIV-specific humoral immunity and reduced cell susceptibility to infection may contribute to protection against HIV-1 infection in Cambodian EUs.

  13. Biophysical characterization of Vpu from HIV-1 suggests a channel-pore dualism.

    Science.gov (United States)

    Mehnert, T; Routh, A; Judge, P J; Lam, Y H; Fischer, D; Watts, A; Fischer, W B

    2008-03-01

    Vpu from HIV-1 is an 81 amino acid type I integral membrane protein which consists of a cytoplasmic and a transmembrane (TM) domain. The TM domain is known to alter membrane permeability for ions and substrates when inserted into artificial membranes. Peptides corresponding to the TM domain of Vpu (Vpu(1-32)) and mutant peptides (Vpu(1-32)-W23L, Vpu(1-32)-R31V, Vpu(1-32)-S24L) have been synthesized and reconstituted into artificial lipid bilayers. All peptides show channel activity with a main conductance level of around 20 pS. Vpu(1-32)-W23L has a considerable flickering pattern in the recordings and longer open times than Vpu(1-32). Whilst recordings for Vpu(1-32)-R31V are almost indistinguishable from those of the WT peptide, recordings for Vpu(1-32)-S24L do not exhibit any noticeable channel activity. Recordings of WT peptide and Vpu(1-32)-W23L indicate Michaelis-Menten behavior when the salt concentration is increased. Both peptide channels follow the Eisenman series I, indicative for a weak ion channel with almost pore like characteristics. 2007 Wiley-Liss, Inc.

  14. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy

    Directory of Open Access Journals (Sweden)

    Kliger Yossef

    2003-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV, whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2 is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41 differs in length, and has no sequence homology with S2. Results Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1 an N-terminal leucine/isoleucine zipper-like sequence, and (2 a C-terminal heptad repeat located upstream of (3 an aromatic residue-rich region juxtaposed to the (4 transmembrane segment. Conclusions This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.

  15. Synergistic gene and drug tumor therapy using a chimeric peptide.

    Science.gov (United States)

    Han, Kai; Chen, Si; Chen, Wei-Hai; Lei, Qi; Liu, Yun; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2013-06-01

    Co-delivery of gene and drug for synergistic therapy has provided a promising strategy to cure devastating diseases. Here, an amphiphilic chimeric peptide (Fmoc)2KH7-TAT with pH-responsibility for gene and drug delivery was designed and fabricated. As a drug carrier, the micelles self-assembled from the peptide exhibited a much faster doxorubicin (DOX) release rate at pH 5.0 than that at pH 7.4. As a non-viral gene vector, (Fmoc)(2)KH(7)-TAT peptide could satisfactorily mediate transfection of pGL-3 reporter plasmid with or without the existence of serum in both 293T and HeLa cell-lines. Besides, the endosome escape capability of peptide/DNA complexes was investigated by confocal laser scanning microscopy (CLSM). To evaluate the co-delivery efficiency and the synergistic anti-tumor effect of gene and drug, p53 plasmid and DOX were simultaneously loaded in the peptide micelles to form micelleplexes during the self-assembly of the peptide. Cellular uptake and intracellular delivery of gene and drug were studied by CLSM and flow cytometry respectively. And p53 protein expression was determined via Western blot analysis. The in vitro cytotoxicity and in vivo tumor inhibition effect were also studied. Results suggest that the co-delivery of gene and drug from peptide micelles resulted in effective cell growth inhibition in vitro and significant tumor growth restraining in vivo. The chimeric peptide-based gene and drug co-delivery system will find great potential for tumor therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor

    International Nuclear Information System (INIS)

    Boggiano, Cesar; Jiang Shibo; Lu Hong; Zhao Qian; Liu Shuwen; Binley, James; Blondelle, Sylvie E.

    2006-01-01

    Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1α to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors

  17. Extracellular histones identified in crocodile blood inhibit in-vitro HIV-1 infection.

    Science.gov (United States)

    Kozlowski, Hannah N; Lai, Eric T L; Havugimana, Pierre C; White, Carl; Emili, Andrew; Sakac, Darinka; Binnington, Beth; Neschadim, Anton; McCarthy, Stephen D S; Branch, Donald R

    2016-08-24

    It has been reported that crocodile blood contains potent antibacterial and antiviral properties. However, its effects on HIV-1 infection remain unknown. We obtained blood from saltwater crocodiles to examine whether serum or plasma could inhibit HIV-1 infection. We purified plasma fractions then used liquid chromatography-mass spectrometry to identify the inhibitory protein factor(s). We then analyzed the ability of recombinant proteins to recapitulate HIV-1 inhibition and determine their mechanism of action. Crocodylus porosus plasma was tested for inhibition of Jurkat T-cell HIV-1 infection. Inhibitor(s) were purified by reverse-phase chromatography then identified by protein liquid chromatography-mass spectrometry. Anti-HIV-1 activity of purified plasma or recombinant proteins were measured by p24 enzyme-linked immunosorbent assay and luciferase readouts, and mechanism of action was determined by measuring HIV-1 RNA, cDNA and transcription (using 1G5 cells). Crocodile plasma contains potent inhibitors of HIV-1IIIB infection, which were identified as histones. Recombinant human histones H1 and H2A significantly reduced HIV-1JR-FL infection (IC50 of 0.79 and 0.45 μmol/l, respectively), whereas H4 enhanced JR-FL luciferase activity. The inhibitory effects of crocodile plasma, recombinant H1 or recombinant H2A on HIV-1 infection were during or post-viral transcription. Circulating histones in crocodile blood, possibly released by neutrophil extracellular traps, are significant inhibitors of HIV-1 infection in-vitro. Extracellular recombinant histones have different effects on HIV-1 transcription and protein expression and are downregulated in HIV-1 patients. Circulating histones may be a novel resistance factor during HIV-1 infection, and peptide versions should be explored as future HIV-1 therapeutics that modulate viral transcription.

  18. [Studies on antigencity of human immunodeficiency virus type 1 (HIV-1) external glycoprotein as well as its expression in Pichia pastoris].

    Science.gov (United States)

    Zhao, Li-Hui; Yu, Xiang-Hui; Jiang, Chun-Lai; Wu, Yong-Ge; Shen, Jia-Cong; Kong, Wei

    2007-05-01

    Based on the computer simulation, we analyzed hydrophobicity, potential epitope of recombined subtypes HIV-1 Env protein (851 amino acids) from Guangxi in China. Compared with conservative peptides of other subtypes in env protein, three sequences (469-511aa, 538-674aa, 700-734aa) were selected to recombine into a chimeric gene that codes three conservative epitope peptides with stronger antigencity, and was constructed in the yeast expression plasmid pPICZB. Chimeric proteins were expressed in Pichia pastoris under the induction of methanol, and were analyzed by SDS-PAGE and Westernblot. The results showed that fusion proteins of three-segment antigen were expressed in Pichia pastoris and that specific protein band at the site of 40kD was target protein, which is interacted with HIV-1 serum. The target proteins were purified by metal Ni-sepharose 4B, and were demonstrated to possess good antigenic specificity from the data of ELISA. This chimeric antigen may be used as research and developed into HIV diagnostic reagents.

  19. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific.

    Science.gov (United States)

    Evans, Edward L; Becker, Jordan T; Fricke, Stephanie L; Patel, Kishan; Sherer, Nathan M

    2018-04-01

    Cells derived from mice and other rodents exhibit profound blocks to HIV-1 virion production, reflecting species-specific incompatibilities between viral Tat and Rev proteins and essential host factors cyclin T1 (CCNT1) and exportin-1 (XPO1, also known as CRM1), respectively. To determine if mouse cell blocks other than CCNT1 and XPO1 affect HIV's postintegration stages, we studied HIV-1 NL4-3 gene expression in mouse NIH 3T3 cells modified to constitutively express HIV-1-compatible versions of CCNT1 and XPO1 (3T3.CX cells). 3T3.CX cells supported both Rev-independent and Rev-dependent viral gene expression and produced relatively robust levels of virus particles, confirming that CCNT1 and XPO1 represent the predominant blocks to these stages. Unexpectedly, however, 3T3.CX cells were remarkably resistant to virus-induced cytopathic effects observed in human cell lines, which we mapped to the viral protein Vif and its apparent species-specific capacity to induce G 2 /M cell cycle arrest. Vif was able to mediate rapid degradation of human APOBEC3G and the PPP2R5D regulatory B56 subunit of the PP2A phosphatase holoenzyme in mouse cells, thus demonstrating that Vif NL4-3 's modulation of the cell cycle can be functionally uncoupled from some of its other defined roles in CUL5-dependent protein degradation. Vif was also unable to induce G 2 /M cell cycle arrest in other nonhuman cell types, including cells derived from nonhuman primates, leading us to propose that one or more human-specific cofactors underpin Vif's ability to modulate the cell cycle. IMPORTANCE Cells derived from mice and other rodents exhibit profound blocks to HIV-1 replication, thus hindering the development of a low-cost small-animal model for studying HIV/AIDS. Here, we engineered otherwise-nonpermissive mouse cells to express HIV-1-compatible versions of two species-specific host dependency factors, cyclin T1 (CCNT1) and exportin-1 (XPO1) (3T3.CX cells). We show that 3T3.CX cells rescue HIV-1

  20. Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes.

    Science.gov (United States)

    Kunze, Christine; Börner, Kathleen; Kienle, Eike; Orschmann, Tanja; Rusha, Ejona; Schneider, Martha; Radivojkov-Blagojevic, Milena; Drukker, Micha; Desbordes, Sabrina; Grimm, Dirk; Brack-Werner, Ruth

    2018-02-01

    Astrocytes, the most abundant cells in the mammalian brain, perform key functions and are involved in several neurodegenerative diseases. The human immunodeficiency virus (HIV) can persist in astrocytes, contributing to the HIV burden and neurological dysfunctions in infected individuals. While a comprehensive approach to HIV cure must include the targeting of HIV-1 in astrocytes, dedicated tools for this purpose are still lacking. Here we report a novel Adeno-associated virus-based vector (AAV9P1) with a synthetic surface peptide for transduction of astrocytes. Analysis of AAV9P1 transduction efficiencies with single brain cell populations, including primary human brain cells, as well as human brain organoids demonstrated that AAV9P1 targeted terminally differentiated human astrocytes much more efficiently than neurons. We then investigated whether AAV9P1 can be used to deliver HIV-inhibitory genes to astrocytes. To this end we generated AAV9P1 vectors containing genes for HIV-1 proviral editing by CRISPR/Cas9. Latently HIV-1 infected astrocytes transduced with these vectors showed significantly diminished reactivation of proviruses, compared with untransduced cultures. Sequence analysis identified mutations/deletions in key HIV-1 transcriptional control regions. We conclude that AAV9P1 is a promising tool for gene delivery to astrocytes and may facilitate inactivation/destruction of persisting HIV-1 proviruses in astrocyte reservoirs. © 2017 Wiley Periodicals, Inc.

  1. Prediction of the Secondary Structure of HIV-1 gp120

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Nielsen, Jens O.

    1996-01-01

    Fourier transform infrared spectroscopy. The predicted secondary structure of gp120 compared well with data from NMR analysis of synthetic peptides from the V3 loop and the C4 region. As a first step towards modeling the tertiary structure of gp120, the predicted secondary structure may guide the design......The secondary structure of HIV-1 gp120 was predicted using multiple alignment and a combination of two independent methods based on neural network and nearest-neighbor algorithms. The methods agreed on the secondary structure for 80% of the residues in BH10 gp120. Six helices were predicted in HIV...

  2. Tat protein vaccination of cynomolgus macaques influences SHIV-89.6P cy243 epitope variability.

    Science.gov (United States)

    Ridolfi, Barbara; Genovese, Domenico; Argentini, Claudio; Maggiorella, Maria Teresa; Sernicola, Leonardo; Buttò, Stefano; Titti, Fausto; Borsetti, Alessandra; Ensoli, Barbara

    2008-02-01

    In a previous study we showed that vaccination with the native Tat protein controlled virus replication in five out of seven monkeys against challenge with the simian human immunodeficiency virus (SHIV)-89.6P cy243 and that this protection correlated with T helper (Th)-1 response and cytotoxic T lymphocyte (CTL) activity. To address the evolution of the SHIV-89.6P cy243 both in control and vaccinated infected monkeys, the sequence of the human immunodeficiency virus (HIV)-1 Tat protein and the C2-V3 Env region of the proviral-DNA-derived clones were analyzed in both control and vaccinated but unprotected animals. We also performed analysis of the T cell epitope using a predictive epitope model taking into consideration the phylogeny of the variants. Our results suggest that even though the viral evolution observed in both groups of monkeys was directed toward variations in the major histocompatibility complex (MHC)-I epitopes, in the control animals it was associated with mutational escape of such epitopes. On the contrary, it is possible that viral evolution in the vaccinated monkeys was linked to mutations that arose to keep high the viral fitness. In the vaccinated animals the reduction of epitope variability, obtained prompting the immune system by vaccination and inducing a specific immunological response against virus, was able to reduce the emergence of escape mutants. Thus the intervention of host's selective forces in driving CTL escape mutants and in modulating viral fitness appeared to be different in the two groups of monkeys. We concluded that in the vaccinated unprotected animals, vaccination with the Tat protein induced a broad antiviral response, as demonstrated by the reduced ability to develop escape mutants, which is known to help in the control of viral replication.

  3. A European multicientre study on the comparison of HIV-1 viral loads between VERIS HIV-1 Assay and Roche COBAS® TAQMAN® HIV-1 test, Abbott RealTime HIV-1 Assay, and Siemens VERSANT HIV-1 Assay.

    Science.gov (United States)

    Braun, Patrick; Delgado, Rafael; Drago, Monica; Fanti, Diana; Fleury, Hervé; Hofmann, Jörg; Izopet, Jacques; Kühn, Sebastian; Lombardi, Alessandra; Mancon, Alessandro; Marcos, Mª Angeles; Mileto, Davide; Sauné, Karine; O'Shea, Siobhan; Pérez-Rivilla, Alfredo; Ramble, John; Trimoulet, Pascale; Vila, Jordi; Whittaker, Duncan; Artus, Alain; Rhodes, Daniel

    2017-07-01

    Viral load monitoring is essential for patients under treatment for HIV. Beckman Coulter has developed the VERIS HIV-1 Assay for use on the novel, automated DxN VERIS Molecular Diagnostics System. ¥ OBJECTIVES: Evaluation of the clinical performance of the new quantitative VERIS HIV-1 Assay at multiple EU laboratories. Method comparison with the VERIS HIV-1 Assay was performed with 415 specimens at 5 sites tested with COBAS ® AmpliPrep/COBAS ® TaqMan ® HIV-1 Test, v2.0, 169 specimens at 3 sites tested with RealTime HIV-1 Assay, and 202 specimens from 2 sites tested with VERSANT HIV-1 Assay. Patient monitoring sample results from 4 sites were also compared. Bland-Altman analysis showed the average bias between VERIS HIV-1 Assay and COBAS HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay to be 0.28, 0.39, and 0.61 log 10 cp/mL, respectively. Bias at low end levels below 1000cp/mL showed predicted bias to be <0.3 log 10 cp/mL for VERIS HIV-1 Assay versus COBAS HIV-1 Test and RealTime HIV-1 Assay, and <0.5 log 10 cp/mL versus VERSANT HIV-1 Assay. Analysis on 174 specimens tested with the 0.175mL volume VERIS HIV-1 Assay and COBAS HIV-1 Test showed average bias of 0.39 log 10 cp/mL. Patient monitoring results using VERIS HIV-1 Assay demonstrated similar viral load trends over time to all comparators. The VERIS HIV-1 Assay for use on the DxN VERIS System demonstrated comparable clinical performance to COBAS ® HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Construction of Nef-positive doxycycline-dependent HIV-1 variants using bicistronic expression elements

    Energy Technology Data Exchange (ETDEWEB)

    Velden, Yme U. van der; Kleibeuker, Wendy; Harwig, Alex; Klaver, Bep; Siteur-van Rijnstra, Esther; Frankin, Esmay; Berkhout, Ben; Das, Atze T., E-mail: a.t.das@amc.uva.nl

    2016-01-15

    Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatible with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication. - Highlights: • Different approaches to encode additional proteins in the HIV-1 genome were tested. • IRES translation elements are incompatible with efficient HIV-1 replication. • Ubiquitin and 2A fusion protein approaches allow efficient HIV-1 replication. • Doxycycline-controlled HIV-1 variants that encode all viral proteins were developed. • Nef stimulates HIV-rtTA replication in primary cells and human immune system mice.

  5. Interaction of phosphorus dendrimers with HIV peptides—Fluorescence studies of nano-complexes formation

    Energy Technology Data Exchange (ETDEWEB)

    Ciepluch, Karol, E-mail: ciepluch@biol.uni.lodz.pl [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236 Lodz (Poland); Ionov, Maksim [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236 Lodz (Poland); Majoral, Jean-Pierre [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 Route de Narbonne, F-31077 Toulouse cedex 4 (France); Muñoz-Fernández, Maria Angeles [Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid (Spain); Bryszewska, Maria [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236 Lodz (Poland)

    2014-04-15

    In this study, dendrimers emerge as an alternative approach for delivery of HIV peptides to dendritic cells. Gp160, NH-EIDNYTNTIYTLLEE-COOH; P24, NH-DTINEEAAEW-COOH and Nef, NHGMDDPEREVLEWRFDSRLAF-COOH peptides were complexed with two types of positively charged phosphorus-containing dendrimers (CPD). Fluorescence polarization, dynamic light scattering, transmission and electron microscopy (TEM) techniques were chosen to evaluate the dendriplexes stability. We were able to show that complexes were stable in time and temperature. This is crucial for using these peptide/dendrimer nano-complexes in a new vaccine against HIV-1 infection. -- Highlights: • The phosphorus dendrimers as nanocarriers of HIV-peptides are proposed. • The complexes of dendrimers and HIV-peptides were stable in time, temperature. • The results convince that phosphorus dendrimers could be consider as anti-HIV vaccine candidates.

  6. Interaction of phosphorus dendrimers with HIV peptides—Fluorescence studies of nano-complexes formation

    International Nuclear Information System (INIS)

    Ciepluch, Karol; Ionov, Maksim; Majoral, Jean-Pierre; Muñoz-Fernández, Maria Angeles; Bryszewska, Maria

    2014-01-01

    In this study, dendrimers emerge as an alternative approach for delivery of HIV peptides to dendritic cells. Gp160, NH-EIDNYTNTIYTLLEE-COOH; P24, NH-DTINEEAAEW-COOH and Nef, NHGMDDPEREVLEWRFDSRLAF-COOH peptides were complexed with two types of positively charged phosphorus-containing dendrimers (CPD). Fluorescence polarization, dynamic light scattering, transmission and electron microscopy (TEM) techniques were chosen to evaluate the dendriplexes stability. We were able to show that complexes were stable in time and temperature. This is crucial for using these peptide/dendrimer nano-complexes in a new vaccine against HIV-1 infection. -- Highlights: • The phosphorus dendrimers as nanocarriers of HIV-peptides are proposed. • The complexes of dendrimers and HIV-peptides were stable in time, temperature. • The results convince that phosphorus dendrimers could be consider as anti-HIV vaccine candidates

  7. Similarities and differences in the nucleic acid chaperone activity of HIV-2 and HIV-1 nucleocapsid proteins in vitro.

    Science.gov (United States)

    Pachulska-Wieczorek, Katarzyna; Stefaniak, Agnieszka K; Purzycka, Katarzyna J

    2014-07-03

    The nucleocapsid domain of Gag and mature nucleocapsid protein (NC) act as nucleic acid chaperones and facilitate folding of nucleic acids at critical steps of retroviral replication cycle. The basic N-terminus of HIV-1 NC protein was shown most important for the chaperone activity. The HIV-2 NC (NCp8) and HIV-1 NC (NCp7) proteins possess two highly conserved zinc fingers, flanked by basic residues. However, the NCp8 N-terminal domain is significantly shorter and contains less positively charged residues. This study characterizes previously unknown, nucleic acid chaperone activity of the HIV-2 NC protein. We have comparatively investigated the in vitro nucleic acid chaperone properties of the HIV-2 and HIV-1 NC proteins. Using substrates derived from the HIV-1 and HIV-2 genomes, we determined the ability of both proteins to chaperone nucleic acid aggregation, annealing and strand exchange in duplex structures. Both NC proteins displayed comparable, high annealing activity of HIV-1 TAR DNA and its complementary nucleic acid. Interesting differences between the two NC proteins were discovered when longer HIV substrates, particularly those derived from the HIV-2 genome, were used in chaperone assays. In contrast to NCp7, NCp8 weakly facilitates annealing of HIV-2 TAR RNA to its complementary TAR (-) DNA. NCp8 is also unable to efficiently stimulate tRNALys3 annealing to its respective HIV-2 PBS motif. Using truncated NCp8 peptide, we demonstrated that despite the fact that the N-terminus of NCp8 differs from that of NCp7, this domain is essential for NCp8 activity. Our data demonstrate that the HIV-2 NC protein displays reduced nucleic acid chaperone activity compared to that of HIV-1 NC. We found that NCp8 activity is limited by substrate length and stability to a greater degree than that of NCp7. This is especially interesting in light of the fact that the HIV-2 5'UTR is more structured than that of HIV-1. The reduced chaperone activity observed with NCp8 may

  8. Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection

    International Nuclear Information System (INIS)

    Wang, Lin-Xu; Mellon, Michael; Bowder, Dane; Quinn, Meghan; Shea, Danielle; Wood, Charles; Xiang, Shi-Hua

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene from Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture

  9. Cytoplasmic transduction peptide (CTP): New approach for the delivery of biomolecules into cytoplasm in vitro and in vivo

    International Nuclear Information System (INIS)

    Kim, Daeyou; Jeon, Choonju; Kim, Jeong-Hwan; Kim, Mi-Seon; Yoon, Cheol-Hee; Choi, In-Soo; Kim, Sung-Hoon; Bae, Yong-Soo

    2006-01-01

    The protein transduction domain (PTD) of HIV-1 TAT has been extensively documented with regard to its membrane transduction potential, as well as its efficient delivery of biomolecules in vivo. However, the majority of PTD and PTD-conjugated molecules translocate to the nucleus rather than to the cytoplasm after transduction, due to the functional nuclear localization sequence (NLS). Here, we report a cytoplasmic transduction peptide (CTP), which was deliberately designed to ensure the efficient cytoplasmic delivery of the CTP-fused biomolecules. In comparison with PTD, CTP and its fusion partners exhibited a clear preference for cytoplasmic localization, and also markedly enhanced membrane transduction potential. Unlike the mechanism underlying PTD-mediated transduction, CTP-mediated transduction occurs independently of the lipid raft-dependent macropinocytosis pathway. The CTP-conjugated Smac/DIABLO peptide (Smac-CTP) was also shown to be much more efficient than Smac-PTD in the blockage of the antiapoptotic properties of XIAP, suggesting that cytoplasmic functional molecules can be more efficiently targeted by CTP-mediated delivery. In in vivo trafficking studies, CTP-fused β-gal exhibited unique organ tropisms to the liver and lymph nodes when systemically injected into mice, whereas PTD-β-gal exhibited no such tropisms. Taken together, our findings implicate CTP as a novel delivery peptide appropriate for (i) molecular targeting to cytoplasmic compartments in vitro, (ii) the development of class I-associated CTL vaccines, and (iii) special drug delivery in vivo, without causing any untoward effects on nuclear genetic material

  10. Anti-inflammatory effects of Tat-Annexin protein on ovalbumin-induced airway inflammation in a mouse model of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun Hwa; Kim, Dae Won; Kim, Hye Ri; Woo, Su Jung; Kim, So Mi; Jo, Hyo Sang [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Jeon, Seong Gyu [Department of Life Science, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Cho, Sung-Woo [Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Park, Jong Hoon [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Won, Moo Ho [Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Park, Jinseu [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Eum, Won Sik, E-mail: wseum@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We construct a cell permeable Tat-ANX1 fusion protein. Black-Right-Pointing-Pointer We examined the protective effects of Tat-ANX1 protein on OVA-induced asthma in animal models. Black-Right-Pointing-Pointer Transduced Tat-ANX1 protein protects from the OVA-induced production of cytokines and eosinophils in BAL fluid. Black-Right-Pointing-Pointer Tat-ANX1 protein markedly reduced OVA-induced MAPK in lung tissues. Black-Right-Pointing-Pointer Tat-ANX1 protein could be useful as a therapeutic agent for lung disorders including asthma. -- Abstract: Chronic airway inflammation is a key feature of bronchial asthma. Annexin-1 (ANX1) is an anti-inflammatory protein that is an important modulator and plays a key role in inflammation. Although the precise action of ANX1 remains unclear, it has emerged as a potential drug target for inflammatory diseases such as asthma. To examine the protective effects of ANX1 protein on ovalbumin (OVA)-induced asthma in animal models, we used a cell-permeable Tat-ANX1 protein. Mice sensitized and challenged with OVA antigen had an increased amount of cytokines and eosinophils in their bronchoalveolar lavage (BAL) fluid. However, administration of Tat-ANX1 protein before OVA challenge significantly decreased the levels of cytokines (interleukin (IL)-4, IL-5, and IL-13) and BAL fluid in lung tissues. Furthermore, OVA significantly increased the activation of mitogen-activated protein kinase (MAPK) in lung tissues, whereas Tat-ANX1 protein markedly reduced phosphorylation of MAPKs such as extracellular signal-regulated protein kinase, p38, and stress-activated protein kinase/c-Jun N-terminal kinase. These results suggest that transduced Tat-ANX1 protein may be a potential protein therapeutic agent for the treatment of lung disorders including asthma.

  11. Metabolic cleavage of cell-penetrating peptides in contact with epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Nielsen, Hanne Mørck; Jahnke, Heinz-Georg

    2004-01-01

    We assessed the metabolic degradation kinetics and cleavage patterns of some selected CPP (cell-penetrating peptides) after incubation with confluent epithelial models. Synthesis of N-terminal CF [5(6)-carboxyfluorescein]-labelled CPP, namely hCT (human calcitonin)-derived sequences, Tat(47-57) a...

  12. HIV-1 protease-substrate coevolution in nelfinavir resistance.

    Science.gov (United States)

    Kolli, Madhavi; Ozen, Ayşegül; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2014-07-01

    Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30's interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR-p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. A Conserved Target Site in HIV-1 Gag RNA is Accessible to Inhibition by Both an HDV Ribozyme and a Short Hairpin RNA

    Directory of Open Access Journals (Sweden)

    Robert J Scarborough

    2014-01-01

    Full Text Available Antisense-based molecules targeting HIV-1 RNA have the potential to be used as part of gene or drug therapy to treat HIV-1 infection. In this study, HIV-1 RNA was screened to identify more conserved and accessible target sites for ribozymes based on the hepatitis delta virus motif. Using a quantitative screen for effects on HIV-1 production, we identified a ribozyme targeting a highly conserved site in the Gag coding sequence with improved inhibitory potential compared to our previously described candidates targeting the overlapping Tat/Rev coding sequence. We also demonstrate that this target site is highly accessible to short hairpin directed RNA interference, suggesting that it may be available for the binding of antisense RNAs with different modes of action. We provide evidence that this target site is structurally conserved in diverse viral strains and that it is sufficiently different from the human transcriptome to limit off-target effects from antisense therapies. We also show that the modified hepatitis delta virus ribozyme is more sensitive to a mismatch in its target site compared to the short hairpin RNA. Overall, our results validate the potential of a new target site in HIV-1 RNA to be used for the development of antisense therapies.

  14. Designing Peptide-Based HIV Vaccine for Chinese

    Science.gov (United States)

    Fan, Xiaojuan

    2014-01-01

    CD4+ T cells are central to the induction and maintenance of CD8+ T cell and antibody-producing B cell responses, and the latter are essential for the protection against disease in subjects with HIV infection. How to elicit HIV-specific CD4+ T cell responses in a given population using vaccines is one of the major areas of current HIV vaccine research. To design vaccine that targets specifically Chinese, we assembled a database that is comprised of sequences from 821 Chinese HIV isolates and 46 human leukocyte antigen (HLA) DR alleles identified in Chinese population. We then predicted 20 potential HIV epitopes using bioinformatics approaches. The combination of these 20 epitopes has a theoretical coverage of 98.1% of the population for both the prevalent HIV genotypes and also Chinese HLA-DR types. We suggest that testing this vaccine experimentally will facilitate the development of a CD4+ T cell vaccine especially catered for Chinese. PMID:25136573

  15. Propensity of a single-walled carbon nanotube-peptide to mimic a KK10 peptide in an HLA-TCR complex

    Science.gov (United States)

    Feng, Mei; Bell, David R.; Zhou, Ruhong

    2017-12-01

    The application of nanotechnology to improve disease diagnosis, treatment, monitoring, and prevention is the goal of nanomedicine. We report here a theoretical study of a functionalized single-walled carbon nanotube (CNT) mimic binding to a human leukocyte antigen-T cell receptor (HLA-TCR) immune complex as a first attempt of a potential nanomedicine for human immunodeficiency virus (HIV) vaccine development. The carbon nanotube was coated with three arginine residues to imitate the HIV type 1 immunodominant viral peptide KK10 (gag 263-272: KRWIILGLNK), named CNT-peptide hereafter. Through molecular dynamics simulations, we explore the CNT-peptide and KK10 binding to an important HLA-TCR complex. Our results suggest that the CNT-peptide and KK10 bind comparably to the HLA-TCR complex, but the CNT-peptide forms stronger interactions with the TCR. Desorption simulations highlight the innate flexibility of KK10 over the CNT-peptide, resulting in a slightly higher desorption energy required for KK10 over the CNT-peptide. Our findings indicate that the designed CNT-peptide mimic has favorable propensity to activate TCR pathways and should be further explored to understand therapeutic potential.

  16. Gonadal steroids differentially modulate neurotoxicity of HIV and cocaine: testosterone and ICI 182,780 sensitive mechanism

    Directory of Open Access Journals (Sweden)

    Mactutus Charles F

    2005-06-01

    Full Text Available Abstract Background HIV Associated Dementia (HAD is a common complication of human immunodeficiency virus (HIV infection that erodes the quality of life for patients and burdens health care providers. Intravenous drug use is a major route of HIV transmission, and drug use is associated with increased HAD. Specific proteins released as a consequence of HIV infection (e.g., gp120, the HIV envelope protein and Tat, the nuclear transactivating protein have been implicated in the pathogenesis of HAD. In primary cultures of human fetal brain tissue, subtoxic doses of gp120 and Tat are capable of interacting with a physiologically relevant dose of cocaine, to produce a significant synergistic neurotoxicity. Using this model system, the neuroprotective potential of gonadal steroids was investigated. Results 17β-Estradiol (17β-E2, but not 17α-estradiol (17α-E2, was protective against this combined neurotoxicity. Progesterone (PROG afforded limited neuroprotection, as did dihydrotestosterone (DHT. The efficacy of 5α-testosterone (T-mediated neuroprotection was robust, similar to that provided by 17β-E2. In the presence of the specific estrogen receptor (ER antagonist, ICI-182,780, T's neuroprotection was completely blocked. Thus, T acts through the ER to provide neuroprotection against HIV proteins and cocaine. Interestingly, cholesterol also demonstrated concentration-dependent neuroprotection, possibly attributable to cholesterol's serving as a steroid hormone precursor in neurons. Conclusion Collectively, the present data indicate that cocaine has a robust interaction with the HIV proteins gp120 and Tat that produces severe neurotoxicity, and this toxicity can be blocked through pretreatment with ER agonists.

  17. Poly(ADP-ribose) polymerase inhibitors suppress UV-induced human immunodeficiency virus type 1 gene expression at the posttranscriptional level

    International Nuclear Information System (INIS)

    Yamagoe, S.; Kohda, T.; Oishi, M.

    1991-01-01

    Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed

  18. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Fischer, William [Los Alamos National Laboratory; Wallstrom, Timothy [Los Alamos National Laboratory

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.

  19. Prime-Boost Vaccination Using Chemokine-Fused gp120 DNA and HIV Envelope Peptides Activates Both Immediate and Long-Term Memory Cellular Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2010-01-01

    Full Text Available HIV vaccine candidates with improved immunogenicity and induction of mucosal T-cell immunity are needed. A prime-boost strategy using a novel HIV glycoprotein 120 DNA vaccine was employed to immunize rhesus macaques. The DNA vaccine encoded a chimeric gp120 protein in fusion with monocyte chemoattractant protein-3, which was hypothesized to improve the ability of antigen-presenting cells to capture viral antigen through chemokine receptor-mediated endocytosis. DNA vaccination induced virus-reactive T cells in peripheral blood, detectable by T cell proliferation, INFγ ELISPOT and sustained IL-6 production, without humoral responses. With a peptide-cocktail vaccine containing a set of conserved polypeptides of HIV-1 envelope protein, given by nasogastric administration, primed T-cell immunity was significantly boosted. Surprisingly, long-term and peptide-specific mucosal memory T-cell immunity was detected in both vaccinated macaques after one year. Therefore, data from this investigation offer proof-of-principle for potential effectiveness of the prime-boost strategy with a chemokine-fused gp120 DNA and warrant further testing in the nonhuman primate models for developing as a potential HIV vaccine candidate in humans.

  20. The HIV-1 V3 domain on field isolates: participation in generation of escape virus in vivo and accessibility to neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Akerblom, L; Heegaard, P M

    1995-01-01

    The V3 domain is highly variable and induces HIV neutralizing antibodies (NA). Here we addressed the issues of 1) the participation of mutations in V3 in generation of neutralization resistant escape virus in vivo and 2) the applicability of synthetic V3 peptides corresponding to field isolates...... patterns against V3 peptides corresponding to sequential primary and escape field isolates, with the strongest reactivity against late isolated escape virus. These observations suggest that the neutralization epitope was influenced by the appearance of mutations. When used as immunogen in rabbits, V3...... to induce neutralizing immune sera. Seven peptides corresponding to the V3 region of primary and escape virus from 3 HIV-1 infected patients were synthesized and used for antibody (Abs) studies and immunizations. The anti-V3 Abs titre in patient serum was generally low against peptides corresponding...

  1. Construction and immunogenicity of replication-competent adenovirus 5 host range mutant recombinants expressing HIV-1 gp160 of SF162 and TV1 strains.

    Science.gov (United States)

    Hidajat, Rachmat; Kuate, Seraphin; Venzon, David; Kalyanaraman, Vaniambadi; Kalisz, Irene; Treece, James; Lian, Ying; Barnett, Susan W; Robert-Guroff, Marjorie

    2010-05-21

    An HIV Env immunogen capable of eliciting broad immunity is critical for a successful vaccine. We constructed and characterized adenovirus 5 host range mutant (Ad5hr) recombinants encoding HIV(SF162) gp160 (subtype B) and HIV(TV1) gp160 (subtype C). Immunization of mice with one or both induced cellular immunity to subtype B and C peptides by ELISpot, and antibody responses with high binding titers to HIV Env of subtypes A, B, C, and E. Notably, Ad5hr-HIV(TV1) gp160 induced better cellular immunity than Ad5hr-HIV(SF162) gp160, either alone or following co-administration. Thus, the TV1 Env recombinant alone may be sufficient for eliciting immune responses against both subtype B and C envelopes. Further studies of Ad5hr-HIV(TV1) gp160 in rhesus macaques will evaluate the suitability of this insert for a future phase I clinical trial using a replication-competent Ad4 vector. Published by Elsevier Ltd.

  2. Die TAT-Z as voorspeller vir prestasiemotivering

    Directory of Open Access Journals (Sweden)

    F. V. N. Cilliers

    1979-11-01

    Die gebruik van die TAT-Z, 'n projeksietoets vir Swartmans, word ondersoek om prestasiemotivering veral tydens die indiensnemingsituasie te voorspel. Positiewe resultate is op 3 van die 10 kaarte (nrs. 4, 6 en 9 van die TAT-Z verkry. Aanbevelings word gemaak aangaande die aanpassing van hierdie projeksietoets ten einde meer inligting oor prestasiemotivering, bloot te lê.

  3. HIV-1 transmission linkage in an HIV-1 prevention clinical trial

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Thomas [Los Alamos National Laboratory; Campbell, Mary S [UNIV OF WASHINGTON; Mullins, James I [UNIV OF WASHINGTON; Hughes, James P [UNIV OF WASHINGTON; Wong, Kim G [UNIV OF WASHINGTON; Raugi, Dana N [UNIV OF WASHINGTON; Scrensen, Stefanie [UNIV OF WASHINGTON

    2009-01-01

    HIV-1 sequencing has been used extensively in epidemiologic and forensic studies to investigate patterns of HIV-1 transmission. However, the criteria for establishing genetic linkage between HIV-1 strains in HIV-1 prevention trials have not been formalized. The Partners in Prevention HSV/HIV Transmission Study (ClinicaITrials.gov NCT00194519) enrolled 3408 HIV-1 serodiscordant heterosexual African couples to determine the efficacy of genital herpes suppression with acyclovir in reducing HIV-1 transmission. The trial analysis required laboratory confirmation of HIV-1 linkage between enrolled partners in couples in which seroconversion occurred. Here we describe the process and results from HIV-1 sequencing studies used to perform transmission linkage determination in this clinical trial. Consensus Sanger sequencing of env (C2-V3-C3) and gag (p17-p24) genes was performed on plasma HIV-1 RNA from both partners within 3 months of seroconversion; env single molecule or pyrosequencing was also performed in some cases. For linkage, we required monophyletic clustering between HIV-1 sequences in the transmitting and seroconverting partners, and developed a Bayesian algorithm using genetic distances to evaluate the posterior probability of linkage of participants sequences. Adjudicators classified transmissions as linked, unlinked, or indeterminate. Among 151 seroconversion events, we found 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) to have indeterminate transmissions. Nine (8.3%) were linked by consensus gag sequencing only and 8 (7.4%) required deep sequencing of env. In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage

  4. Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles in combination with Ulex Europaeus-I lectin as M cell target.

    Science.gov (United States)

    Manocha, Monika; Pal, Pramod Chandra; Chitralekha, K T; Thomas, Beena Elizabeth; Tripathi, Vinita; Gupta, Siddhartha Dutta; Paranjape, Ramesh; Kulkarni, Smita; Rao, D Nageswara

    2005-12-01

    The predominant route of HIV infection is through the sexual transmission via M cells. Most of the peptide and protein vaccines show poor transport across the epithelial barrier and are commonly administered by parenteral route. In the present study four HIV peptides from envelope (gp 41-LZ (leucine zipper), gp 41-FD (fusion domain) and gp120-C2) and regulatory (Nef) region in poly lactic-co-glycolide (PLG) micro-particle delivery were evaluated in mice of outbred and with different genetic background to compare immune response versus MHC restriction. Out of the combinational and single routes of immunization attempted, the single route maintained the IgG, IgA and sIgA in sera and washes for longer duration as compared to combinational routes in which the response was declined. The study demonstrated that single intranasal immunization offered significantly higher immune response (pPP>or=SP. The cytokine measurement profile of IL-2, IFN-gamma and IL-6 and low levels of IL-4 in the cultural supernatants of SP, PP and LP showed mixed CD4(+) Th1 and Th2 immune response. The p24 assay showed high percent inhibition of HIV-IIIB virus with sera and washes obtained from intranasal route. Thus, overall the study highlighted the combination of UEA-1 lectin with HIV peptides in micro-particles through intranasal immunization generated systemic as well as mucosal immune response.

  5. In vitro modeling of HIV proviral activity in microglia.

    Science.gov (United States)

    Campbell, Lee A; Richie, Christopher T; Zhang, Yajun; Heathward, Emily J; Coke, Lamarque M; Park, Emily Y; Harvey, Brandon K

    2017-12-01

    Microglia, the resident macrophages of the brain, play a key role in the pathogenesis of HIV-associated neurocognitive disorders (HAND) due to their productive infection by HIV. This results in the release of neurotoxic viral proteins and pro-inflammatory compounds which negatively affect the functionality of surrounding neurons. Because models of HIV infection within the brain are limited, we aimed to create a novel microglia cell line with an integrated HIV provirus capable of recreating several hallmarks of HIV infection. We utilized clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing technology and integrated a modified HIV provirus into CHME-5 immortalized microglia to create HIV-NanoLuc CHME-5. In the modified provirus, the Gag-Pol region is replaced with the coding region for NanoLuciferase (NanoLuc), which allows for the rapid assay of HIV long terminal repeat activity using a luminescent substrate, while still containing the necessary genetic material to produce established neurotoxic viral proteins (e.g. tat, nef, gp120). We confirmed that HIV-NanoLuc CHME-5 microglia express NanoLuc, along with the HIV viral protein Nef. We subsequently exposed these cells to a battery of experiments to modulate the activity of the provirus. Proviral activity was enhanced by treating the cells with pro-inflammatory factors lipopolysaccharide (LPS) and tumor necrosis factor alpha and by overexpressing the viral regulatory protein Tat. Conversely, genetic modification of the toll-like receptor-4 gene by CRISPR/Cas9 reduced LPS-mediated proviral activation, and pharmacological application of NF-κB inhibitor sulfasalazine similarly diminished proviral activity. Overall, these data suggest that HIV-NanoLuc CHME-5 may be a useful tool in the study of HIV-mediated neuropathology and proviral regulation. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  6. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap.

    Science.gov (United States)

    Gray, Glenda E; Mayer, Kenneth H; Elizaga, Marnie L; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C; Sato, Alicia; Gu, Niya; Tomaras, Georgia D; Tucker, Timothy; Barnett, Susan W; Mkhize, Nonhlanhla N; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-06-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 10(9) PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4(+) T-cell and CD8(+) T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4(+) T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4(+) T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.). Copyright © 2016 Gray et al.

  7. EASY-HIT: HIV full-replication technology for broad discovery of multiple classes of HIV inhibitors.

    Science.gov (United States)

    Kremb, Stephan; Helfer, Markus; Heller, Werner; Hoffmann, Dieter; Wolff, Horst; Kleinschmidt, Andrea; Cepok, Sabine; Hemmer, Bernhard; Durner, Jörg; Brack-Werner, Ruth

    2010-12-01

    HIV replication assays are important tools for HIV drug discovery efforts. Here, we present a full HIV replication system (EASY-HIT) for the identification and analysis of HIV inhibitors. This technology is based on adherently growing HIV-susceptible cells, with a stable fluorescent reporter gene activated by HIV Tat and Rev. A fluorescence-based assay was designed that measures HIV infection by two parameters relating to the early and the late phases of HIV replication, respectively. Validation of the assay with a panel of nine reference inhibitors yielded effective inhibitory concentrations consistent with published data and allowed discrimination between inhibitors of early and late phases of HIV replication. Finer resolution of the effects of reference drugs on different steps of HIV replication was achieved in secondary time-of-addition assays. The EASY-HIT assay yielded high Z' scores (>0.9) and signal stabilities, confirming its robustness. Screening of the LOPAC(1280) library identified 10 compounds (0.8%), of which eight were known to inhibit HIV, validating the suitability of this assay for screening applications. Studies evaluating anti-HIV activities of natural products with the EASY-HIT technology led to the identification of three novel inhibitory compounds that apparently act at different steps of HIV-1 replication. Furthermore, we demonstrate successful evaluation of plant extracts for HIV-inhibitory activities, suggesting application of this technology for the surveillance of biological extracts with anti-HIV activities. We conclude that the EASY-HIT technology is a versatile tool for the discovery and characterization of HIV inhibitors.

  8. The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide

    International Nuclear Information System (INIS)

    Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.; Santos, Nuno C.

    2010-01-01

    Research highlights: → Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. → Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. → This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended the study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.

  9. Effects of prostratin on Cyclin T1/P-TEFb function and the gene expression profile in primary resting CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Rice Andrew P

    2006-10-01

    Full Text Available Abstract Background The latent reservoir of human immunodeficiency virus type 1 (HIV-1 in resting CD4+ T cells is a major obstacle to the clearance of infection by highly active antiretroviral therapy (HAART. Recent studies have focused on searches for adjuvant therapies to activate this reservoir under conditions of HAART. Prostratin, a non tumor-promoting phorbol ester, is a candidate for such a strategy. Prostratin has been shown to reactivate latent HIV-1 and Tat-mediated transactivation may play an important role in this process. We examined resting CD4+ T cells from healthy donors to determine if prostratin induces Cyclin T1/P-TEFb, a cellular kinase composed of Cyclin T1 and Cyclin-dependent kinase-9 (CDK9 that mediates Tat function. We also examined effects of prostratin on Cyclin T2a, an alternative regulatory subunit for CDK9, and 7SK snRNA and the HEXIM1 protein, two factors that associate with P-TEFb and repress its kinase activity. Results Prostratin up-regulated Cyclin T1 protein expression, modestly induced CDK9 protein expression, and did not affect Cyclin T2a protein expression. Although the kinase activity of CDK9 in vitro was up-regulated by prostratin, we observed a large increase in the association of 7SK snRNA and the HEXIM1 protein with CDK9. Using HIV-1 reporter viruses with and without a functional Tat protein, we found that prostratin stimulation of HIV-1 gene expression appears to require a functional Tat protein. Microarray analyses were performed and several genes related to HIV biology, including APOBEC3B, DEFA1, and S100 calcium-binding protein genes, were found to be regulated by prostratin. Conclusion Prostratin induces Cyclin T1 expression and P-TEFb function and this is likely to be involved in prostratin reactivation of latent HIV-1 proviruses. The large increase in association of 7SK and HEXIM1 with P-TEFb following prostratin treatment may reflect a requirement in CD4+ T cells for a precise balance between

  10. Integration of prevention of mother-to-child transmission of HIV (PMTCT postpartum services with other HIV care and treatment services within the maternal and child health setting in Zimbabwe, 2012.

    Directory of Open Access Journals (Sweden)

    Katherine Wiegert

    Full Text Available We assessed the integration of PMTCT services during the postpartum period including early infant diagnosis of HIV (EID and adult and pediatric antiretroviral therapy (ART in maternal and child health (MCH facilities in Zimbabwe.From August to December 2012 we conducted a cross-sectional survey of a nationally representative sample of 151 MCH facilities. A questionnaire was used to survey each site about staff training, dried blood spot sample (DBS collection, turnaround time (TAT for test results, PMTCT services, and HIV care and treatment linkages for HIV-infected mothers and children and HIV-exposed infants. Descriptive analyses were used. Of the facilities surveyed, all facilities were trained on DBS collection and 92% responded. Approximately, 99% of responding facilities reported providing DBS collection and a basic HIV-exposed infant service package including EID, extended nevirapine prophylaxis, and use of cotrimoxazole. DBS collection was integrated with immunisations at 83% of facilities, CD4 testing with point-of-care machines was available at 37% of facilities, and ART for both mothers and children was provided at 27% of facilities. More than 80% of facilities reported that DBS test results take >4 weeks to return; TAT did not have a direct association with any specific type of transport, distance to the lab, or intermediate stops for data to travel.Zimbabwe has successfully scaled up and integrated the national EID and PMTCT programs into the existing MCH setting. The long TAT of infant DBS test results and the lack of integrated ART programs in the MCH setting could reduce effectiveness of the national PMTCT and ART programs. Addressing these important gaps will support successful implementation of the 2014 Zimbabwe's PMTCT guidelines under which all HIV-infected pregnant and breastfeeding women will be offered life-long ART and decentralized ART care.

  11. A novel glutamine–RNA interaction identified by screening libraries in mammalian cells

    OpenAIRE

    Tan, Ruoying; Frankel, Alan D.

    1998-01-01

    The arginine-rich motif provides a versatile framework for RNA recognition in which few amino acids other than arginine are needed to mediate specific binding. Using a mammalian screening system based on transcriptional activation by HIV Tat, we identified novel arginine-rich peptides from combinatorial libraries that bind tightly to the Rev response element of HIV. Remarkably, a single glutamine, but not asparagine, within a stretch of polyarginine can mediate high-affinity binding. These re...

  12. Dendritic cell mediated delivery of plasmid DNA encoding LAMP/HIV-1 Gag fusion immunogen enhances T cell epitope responses in HLA DR4 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gregory G Simon

    2010-01-01

    Full Text Available This report describes the identification and bioinformatics analysis of HLA-DR4-restricted HIV-1 Gag epitope peptides, and the application of dendritic cell mediated immunization of DNA plasmid constructs. BALB/c (H-2d and HLA-DR4 (DRA1*0101, DRB1*0401 transgenic mice were immunized with immature dendritic cells transfected by a recombinant DNA plasmid encoding the lysosome-associated membrane protein-1/HIV-1 Gag (pLAMP/gag chimera antigen. Three immunization protocols were compared: 1 primary subcutaneous immunization with 1x10(5 immature dendritic cells transfected by electroporation with the pLAMP/gag DNA plasmid, and a second subcutaneous immunization with the naked pLAMP/gag DNA plasmid; 2 primary immunization as above, and a second subcutaneous immunization with a pool of overlapping peptides spanning the HIV-1 Gag sequence; and 3 immunization twice by subcutaneous injection of the pLAMP/gag DNA plasmid. Primary immunization with pLAMP/gag-transfected dendritic cells elicited the greatest number of peptide specific T-cell responses, as measured by ex vivo IFN-gamma ELISpot assay, both in BALB/c and HLA-DR4 transgenic mice. The pLAMP/gag-transfected dendritic cells prime and naked DNA boost immunization protocol also resulted in an increased apparent avidity of peptide in the ELISpot assay. Strikingly, 20 of 25 peptide-specific T-cell responses in the HLA-DR4 transgenic mice contained sequences that corresponded, entirely or partially to 18 of the 19 human HLA-DR4 epitopes listed in the HIV molecular immunology database. Selection of the most conserved epitope peptides as vaccine targets was facilitated by analysis of their representation and variability in all reported sequences. These data provide a model system that demonstrates a the superiority of immunization with dendritic cells transfected with LAMP/gag plasmid DNA, as compared to naked DNA, b the value of HLA transgenic mice as a model system for the identification and evaluation

  13. Engineering Cellular Resistance to HIV-1 Infection In Vivo Using a Dual Therapeutic Lentiviral Vector

    Directory of Open Access Journals (Sweden)

    Bryan P Burke

    2015-01-01

    Full Text Available We described earlier a dual-combination anti-HIV type 1 (HIV-1 lentiviral vector (LVsh5/C46 that downregulates CCR5 expression of transduced cells via RNAi and inhibits HIV-1 fusion via cell surface expression of cell membrane-anchored C46 antiviral peptide. This combinatorial approach has two points of inhibition for R5-tropic HIV-1 and is also active against X4-tropic HIV-1. Here, we utilize the humanized bone marrow, liver, thymus (BLT mouse model to characterize the in vivo efficacy of LVsh5/C46 (Cal-1 vector to engineer cellular resistance to HIV-1 pathogenesis. Human CD34+ hematopoietic stem/progenitor cells (HSPC either nonmodified or transduced with LVsh5/C46 vector were transplanted to generate control and treatment groups, respectively. Control and experimental groups displayed similar engraftment and multilineage hematopoietic differentiation that included robust CD4+ T-cell development. Splenocytes isolated from the treatment group were resistant to both R5- and X4-tropic HIV-1 during ex vivo challenge experiments. Treatment group animals challenged with R5-tropic HIV-1 displayed significant protection of CD4+ T-cells and reduced viral load within peripheral blood and lymphoid tissues up to 14 weeks postinfection. Gene-marking and transgene expression were confirmed stable at 26 weeks post-transplantation. These data strongly support the use of LVsh5/C46 lentiviral vector in gene and cell therapeutic applications for inhibition of HIV-1 infection.

  14. Phase 1 safety and immunogenicity evaluation of ADMVA, a multigenic, modified vaccinia Ankara-HIV-1 B'/C candidate vaccine.

    Directory of Open Access Journals (Sweden)

    Sandhya Vasan

    Full Text Available BACKGROUND: We conducted a Phase I dose-escalation trial of ADMVA, a Clade-B'/C-based HIV-1 candidate vaccine expressing env, gag, pol, nef, and tat in a modified vaccinia Ankara viral vector. Sequences were derived from a prevalent circulating HIV-1 recombinant form in Yunnan, China, an area of high HIV incidence. The objective was to evaluate the safety and immunogenicity of ADMVA in human volunteers. METHODOLOGY/PRINCIPAL FINDINGS: ADMVA or placebo was administered intramuscularly at months 0, 1 and 6 to 50 healthy adult volunteers not at high risk for HIV-1. In each dosage group [1x10(7 (low, 5x10(7 (mid, or 2.5x10(8 pfu (high] volunteers were randomized in a 3:1 ratio to receive ADMVA or placebo in a double-blinded design. Subjects were followed for local and systemic reactogenicity, adverse events including cardiac adverse events, and clinical laboratory parameters. Study follow up was 18 months. Humoral immunogenicity was evaluated by anti-gp120 binding ELISA, immunoflourescent staining, and HIV-1 neutralization. Cellular immunogenicity was assessed by a validated IFNgamma ELISpot assay and intracellular cytokine staining. Anti-vaccinia binding titers were measured by ELISA. ADMVA was generally well-tolerated, with no vaccine-related serious adverse events or cardiac adverse events. Local or systemic reactogenicity events were reported by 77% and 78% of volunteers, respectively. The majority of events were of mild intensity. The IFNgamma ELISpot response rate to any HIV antigen was 0/12 (0% in the placebo group, 3/12 (25% in the low dosage group, 6/12 (50% in the mid dosage group, and 8/13 (62% in the high dosage group. Responses were often multigenic and occasionally persisted up to one year post vaccination. Antibodies to gp120 were detected in 0/12 (0%, 8/13 (62%, 6/12 (50% and 10/13 (77% in the placebo, low, mid, and high dosage groups, respectively. Antibodies persisted up to 12 months after vaccination, with a trend toward agreement

  15. Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody.

    Directory of Open Access Journals (Sweden)

    Maria Trott

    Full Text Available HIV neutralizing antibodies (nAbs represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP and elite controllers (EC, represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike.

  16. RECOVERY ACT - Thylakoid Assembly and Folded Protein Transport by the Tat Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Dabney-Smith, Carole [Miami Univ., Oxford, OH (United States)

    2016-07-18

    system mechanism in chloroplasts will lead to a better understanding of the biogenesis of photosynthetic membranes potentially providing a means to engineer photosynthetic complexes into synthetic membranes for energy production. We are especially well prepared to undertake this project because we have developed a novel functional replacement assay, which was used to demonstrate a correlation of Tha4 oligomerization to transport. Thylakoids of plant chloroplasts provide a very robust, reliable assay to gain mechanistic detail about cpTat systems, providing most of the biochemical analyses to date. We plan to test our central hypothesis and accomplish the overall objective of this proposal by (1) Identifying the cpTat component(s) that interact with the mature domain of precursor during transport, (2) Determining the organization of the cpTat translocon, and (3) Comparing Tha4 topology in thylakoids during active transport and at rest. The proposed studies are innovative due to our ability to correlate structural changes in cpTat protein complexes during the transport of precursor. At the completion of this project, we expect to know the cpTat component(s) that interacts directly with the mature domain of the precursor, important because it is not known which components comprise the pore for passage of the mature domain. We also expect to know the arrangement of the components in the cpTat transport complex through direct interaction between Tha4 and the other CpTat components, a key point to establishing the mechanism of translocation. Lastly, we expect to correlate topological changes of Tha4 with precursor transport, key to establishing Tha4's role in the transport process. The successful completion of these studies is expected to have an important impact in understanding chloroplast biogenesis and assembly of photosynthetic complexes in plants and photosynthetic bacteria.

  17. Clinical presentation and opportunistic infections in HIV-1, HIV-2 and HIV-1/2 dual seropositive patients in Guinea-Bissau

    DEFF Research Database (Denmark)

    Sørensen, Allan; Jespersen, Sanne; Katzenstein, Terese L

    2016-01-01

    HIV-2 is prevalent. In this study, we aimed to characterize the clinical presentations among HIV-1, HIV-2 and HIV-1/2 dual seropositive patients. Methods: In a cross-sectional study, newly diagnosed HIV patients attending the HIV outpatient clinic at Hospital Nacional Sim~ao Mendes in Guinea......-Bissau were enrolled. Demographical and clinical data were collected and compared between HIV-1, HIV-2 and HIV-1/2 dual seropositive patients. Results: A total of 169 patients (76% HIV-1, 17% HIV-2 and 6% HIV 1/2) were included in the study between 21 March 2012 and 14 December 2012. HIV-1 seropositive...... antigen. Conclusion: HIV-1 and HIV-1/2 seropositive patients have lower CD4 cell counts than HIV-2 seropositive patients when diagnosed with HIV with only minor clinical and demographic differences among groups. Few patients were diagnosed with TB and cryptococcal disease was not found to be a major...

  18. Elevated NT-pro-brain natriuretic peptide level is independently associated with all-cause mortality in HIV-infected women in the early and recent HAART eras in the Women's Interagency HIV Study cohort.

    Directory of Open Access Journals (Sweden)

    Matthew R Gingo

    Full Text Available HIV-infected individuals are at increased risk of right and left heart dysfunction. N-terminal-pro-brain natriuretic peptide (NT-proBNP, a marker of cardiac ventricular strain and systolic dysfunction, may be associated with all-cause mortality in HIV-infected women. The aim of this study was to determine if elevated levels of NT-proBNP is associated with increased mortality in HIV-infected women.Prospective cohort study.We measured NT-proBNP in 936 HIV-infected and 387 age-matched HIV-uninfected women early (10/11/94 to 7/17/97 and 1082 HIV-infected and 448 HIV-uninfected women late (4/1/08 to 10/7/08 in the highly active antiretroviral therapy (HAART periods in the Women's Interagency HIV Study. An NT-proBNP >75th percentile was more likely in HIV-infected persons, but only statistically significant in the late period (27% vs. 21%, unadjusted p = 0.03. In HIV-infected participants, NT-proBNP>75th percentile was independently associated with worse 5-year survival in the early HAART period (HR 1.8, 95% CI 1.3-2.4, p<0.001 and remained a predictor of mortality in the late HAART period (HR 2.8, 95% CI 1.4-5.5, p = 0.002 independent of other established risk covariates (age, race/ethnicity, body mass index, smoking, hepatitis C serostatus, hypertension, renal function, and hemoglobin. NT-proBNP level was not associated with mortality in HIV-uninfected women.NT-proBNP is a novel independent marker of mortality in HIV-infected women both when HAART was first introduced and currently. As NT-proBNP is often associated with both pulmonary hypertension and left ventricular dysfunction, these findings suggest that these conditions may contribute significantly to adverse outcomes in this population, requiring further definition of causes and treatments of elevated NT-proBNP in HIV-infected women.

  19. μ-opioid modulation of HIV-1 coreceptor expressionand HIV-1 replication

    International Nuclear Information System (INIS)

    Steele, Amber D.; Henderson, Earl E.; Rogers, Thomas J.

    2003-01-01

    A substantial proportion of HIV-1-infected individuals are intravenous drug users (IVDUs) who abuse opiates. Opioids induce a number of immunomodulatory effects that may directly influence HIV-1 disease progression. In the present report, we have investigated the effect of opioids on the expression of the major HIV-1 coreceptors CXCR4 and CCR5. For these studies we have focused on opiates which are ligands for the μ-opioid receptor. Our results show that DAMGO, a selective μ-opioid agonist, increases CXCR4 and CCR5 expression in both CD3 + lymphoblasts and CD14 + monocytes three- to fivefold. Furthermore, DAMGO-induced elevation of HIV-1 coreceptor expression translates into enhanced replication of both X4 and R5 viral strains of HIV-1. We have confirmed the role of the μ-opioid receptor based on the ability of a μ-opioid receptor-selective antagonist to block the effects of DAMGO. We have also found that morphine enhances CXCR4 and CCR5 expression and subsequently increases both X4 and R5 HIV-1 infection. We suggest that the capacity of μ-opioids to increase HIV-1 coreceptor expression and replication may promote viral binding, trafficking of HIV-1-infected cells, and enhanced disease progression

  20. Focal glomerulosclerosis in proviral and c-fms transgenic mice links Vpr expression to HIV-associated nephropathy

    International Nuclear Information System (INIS)

    Dickie, Peter; Roberts, Amanda; Uwiera, Richard; Witmer, Jennifer; Sharma, Kirti; Kopp, Jeffrey B.

    2004-01-01

    Clinical and morphologic features of human immunodeficiency virus (HIV)-associated nephropathy (HIVAN), such as proteinuria, sclerosing glomerulopathy, tubular degeneration, and interstitial disease, have been modeled in mice bearing an HIV proviral transgene rendered noninfectious through a deletion in gag/pol. Exploring the genetic basis of HIVAN, HIV transgenic mice bearing mutations in either or both of the accessory genes nef and vpr were created. Proteinuria and focal glomerulosclerosis (FGS) only developed in mice with an intact vpr gene. Transgenic mice bearing a simplified proviral DNA (encoding only Tat and Vpr) developed renal disease characterized by FGS in which Vpr protein was localized to glomerular and tubular epithelia by immunohistochemistry. The dual transgenic progeny of HIV[Tat/Vpr] mice bred to HIV[ΔVpr] proviral transgenic mice displayed a more severe nephropathy with no apparent increase in Vpr expression, implying that multiple viral genes contribute to HIVAN. However, the unique contribution of macrophage-specific Vpr expression in the development of glomerular disease was underscored by the induction of FGS in multiple murine lines bearing a c-fms/vpr transgene

  1. Efficient generation of dopamine neuron-like cells from skin-derived precursors with a synthetic peptide derived from von Hippel-Lindau protein.

    Science.gov (United States)

    Kubo, Atsuhiko; Yoshida, Tetsuhiko; Kobayashi, Nahoko; Yokoyama, Takaakira; Mimura, Toshiro; Nishiguchi, Takao; Higashida, Tetsuhiro; Yamamoto, Isao; Kanno, Hiroshi

    2009-12-01

    Skin-derived precursors (SKPs) from mammalian dermis represent neural crest-related stem cells capable of differentiating into both neural and mesodermal progency. SKPs are of clinical interest because they serve as accessible autologous donor cells for neuronal repair for neuronal intractable diseases. However, little is known about the efficient generation of neurons from SKPs, and phenotypes of neurons generated from SKPs have been restricted. In addition, the neuronal repair using their generated neurons as donor cells has not been achieved. The von Hippel-Lindau protein (pVHL) is one of the proteins that play an important role during neuronal differentiation, and recently neuronal differentiation of neural progenitor cells by intracellular delivery of a synthetic VHL peptide derived from elongin BC-binding site has been demonstrated. In the present study, a synthetic VHL peptide derived from elongin BC-binding site was conjugated to the protein transduction domain (PTD) of HIV-TAT protein (TATVHL peptide) to facilitate entry into cells, and we demonstrate the efficient generation of cells with dopaminergic phenotype from SKPs with the intracellular delivery of TATVHL peptide, and characterized the generated cells. The TATVHL peptide-treated SKPs expressed neuronal marker proteins, particularly dopamine neuron markers, and also up-regulated mRNA levels of proneural basic helix-loop-helix factors. After the TATVHL peptide treatment, transplanted SKPs into Parkinson's disease (PD) model rats sufficiently differentiated into dopamine neuron-like cells in PD model rats, and partially but significantly corrected behavior of PD model rats. The generated dopamine neuron-like cells are expected to serve as donor cells for neuronal repair for PD.

  2. 99m Tc-UBI 29-41: radiolabelled antimicrobial peptide for the diagnostic by image of infectious processes

    International Nuclear Information System (INIS)

    Ferro F, G.; Ramirez C, F.M.; Murphy, C.A. de; Pedraza L, M.; Rodriguez C, J.; Melendez A, L.

    2005-01-01

    Recently the radiolabelled anti microbic peptides has intended as new radiopharmaceuticals for distinguish a bacterial infection of a sterile inflammatory process through a diagnostic image. The ubiquicidine 29-41 (UBI), it is a fragment of an anti microbic cationic peptide located in the human skin whose sequence of amino acids is Thr-Gly-Arg-Ala-Lys-Arg-Arg-Met-Gln-Tyr-Asn-Arg-Arg. The objective of this study was to develop a derived of the UBI 29-41 radiolabelled with Tc-99m in high radiochemical purity and to evaluate the feasibility of using it in the specific detection of infectious focuses. The molecular structures of the UBI as well as of other 2 cationic peptides used as control (Tat-1-Scr and Tat-2-Scr), they were calculated and optimized in their more stable configuration by molecular mechanics procedures and quantum mechanics. Once established the site for the labelled with 99m Tc, the three complexes were represented by the general formula [Tc(V)(O)(H 2 O) 2 (Lys n=1,2 -Arg n=0.1 -peptide)] 10+,11+ , with potential energy of 104.5 Kcal/mol, 95.6 Kcal/mol and 90.8 Kcal/mol for the 99m Tc-Tat-1-Scr, 99m Tc-Tat-2-Scr and 99m Tc-UBI 29-41 respectively. The three radio complexes got ready experimentally and their stability in vitro saline solution is evaluated, human serum and cysteine solutions. The experimental results correlated appropriately with the calculated data. The specificity in vitro was carried out evaluating the percentage of union of the 99m Tc-UBI 29-41 as well as of the control peptides at bacteria of S. aureus and two tumoral cellular lines (LS174T and ACHN). The In vivo specificity was determined using Balb-C mice with induction in a paw of an infectious process and in another paw of a sterile inflammatory process. Simultaneously it was administered to the mice with infection and inflammation induced 99m Tc-UBI 29-41 and 67 Ga-citrate this last an unspecific radiopharmaceutical used so much in the detection of infectious processes as

  3. Characterization of two candidate genes, NCoA3 and IRF8, potentially involved in the control of HIV-1 latency

    Directory of Open Access Journals (Sweden)

    Gumez Audrey

    2005-11-01

    Full Text Available Abstract Background The persistence of latent HIV-1 reservoirs is the principal barrier preventing the eradication of HIV-1 infection in patients by current antiretroviral therapy. It is thus crucial to understand the molecular mechanisms involved in the establishment, maintenance and reactivation of HIV-1 latency. Since chromatin remodeling has been implicated in the transcriptional reactivation of the HIV-1 promoter, we assessed the role of the histone deacetylase inhibitor sodium butyrate (NaB on two HIV-1 latently infected cell lines (U1 and ACH-2 gene expression. Results Analysis of microarrays data led us to select two candidate genes: NCoA3 (Nuclear Receptor Coactivator 3, a nuclear receptor coactivator and IRF8 (Interferon Regulatory Factor 8, an interferon regulatory factor. NCoA3 gene expression is upregulated following NaB treatment of latently infected cells whereas IRF8 gene expression is strongly downregulated in the promonocytic cell line following NaB treatment. Their differential expressions were confirmed at the transcriptional and translational levels. Moreover, NCoA3 gene expression was also upregulated after treatment of U1 and ACH-2 cells with phorbol myristyl acetate (PMA but not trichostatin A (TSA and after treatment with NaB of two others HIV-1 latently infected cell lines (OM10.1 and J1.1. IRF8 gene is only expressed in U1 cells and was also downregulated after treatment with PMA or TSA. Functional analyses confirmed that NCoA3 synergizes with Tat to enhance HIV-1 promoter transcription and that IRF8 represses the IRF1-mediated activation through the HIV-1 promoter Interferon-stimulated response element (ISRE. Conclusion These results led us to postulate that NCoA3 could be involved in the transcriptional reactivation of the HIV-1 promoter from latency and that IRF8 may contribute to the maintenance of the latent state in the promonocytic cell line. Implication of these factors in the maintenance or reactivation of the

  4. Antiviral activity against human immunodeficiency virus-1 in vitro by myristoylated-peptide from Heliothis virescens

    International Nuclear Information System (INIS)

    Ourth, Donald D.

    2004-01-01

    An insect antiviral compound was purified from Heliothis virescens larval hemolymph by gel-filtration high pressure liquid chromatography (HPLC) and C-18 reverse-phase HPLC and its structure was determined by mass spectrometry. The antiviral compound is an N-myristoylated-peptide containing six amino acids with calculated molecular weight of 916 Da. The N-terminus contains the fatty acid myristoyl, and the C-terminus contains histidine with two methyl groups giving the histidine a permanent positive charge. The remainder of the compound is essentially non-polar. The structure of the compound corresponds with the 'myristate plus basic' motif expressed by certain viral proteins in their binding to the cytoplasmic side of the plasma membrane to initiate viral assembly and budding from a host cell. The insect antiviral compound may inhibit viral assembly and/or budding of viruses from host cells that could include the human immunodeficiency virus-1 (HIV-1) and herpes simplex virus-1 that use this motif for exit from a host cell. Using the formazan assay, the myristoylated-peptide was effective against HIV-1, with a nine times increase in the viability and protection in vitro of treated CEM-SS cells when compared with infected but untreated control cells

  5. Application of Bacillus sp. TAT105 to reduce ammonia emissions during pilot-scale composting of swine manure.

    Science.gov (United States)

    Kuroda, Kazutaka; Tanaka, Akihiro; Furuhashi, Kenich; Nakasaki, Kiyohiko

    2017-12-01

    Thermophilic ammonium-tolerant bacterium Bacillus sp. TAT105 grows and reduces ammonia (NH 3 ) emissions by assimilating ammonium nitrogen during composting of swine feces. To evaluate the efficacy of a biological additive containing TAT105 at reducing NH 3 emissions, composting tests of swine manure on a pilot scale (1.8 m 3 ) were conducted. In the TAT105-added treatment, NH 3 emissions and nitrogen loss were lower than those in the control treatment without TAT105. No significant difference was detected in losses in the weight and volatile solids between the treatments. Concentration of thermophilic ammonium-tolerant bacteria in the compost increased in both treatments at the initial stage of composting. In the TAT105-added treatment, bacterial concentration reached ~10 9 colony-forming units per gram of dry matter, several-fold higher than that in the control and stayed at the same level until the end. These results suggest that TAT105 grows during composting and reduces NH 3 emissions in TAT105-added treatment.

  6. TIT FOR TAT in sticklebacks and the evolution of cooperation

    Science.gov (United States)

    Milinski, Manfred

    1987-01-01

    The problems of achieving mutual cooperation can be formalized in a game called the Prisoner's Dilemma in which selfish defection is always more rewarding than cooperation1. If the two protagonists have a certain minimum probability of meeting again a strategy called TIT FOR TAT is very successful2. In TIT FOR TAT the player cooperates on the first move and thereafter does whatever the opponent did on the previous move. I have studied the behaviour of fish when confronting a potential predator, because conflicts can arise within pairs of fish in these circumstances which I argue resemble a series of games of Prisoner's Dilemma. Using a system of mirrors, single three-spined sticklebacks (Gasterosteus aculeatus) approaching a live predator were provided with either a simulated cooperating companion or a simulated defecting one. In both cases the test fish behaved according to TIT FOR TAT supporting the hypothesis that cooperation can evolve among egoists.

  7. Immune defence against HIV-1 infection in HIV-1-exposed seronegative persons.

    Science.gov (United States)

    Schmechel, S C; Russell, N; Hladik, F; Lang, J; Wilson, A; Ha, R; Desbien, A; McElrath, M J

    2001-11-01

    Rare individuals who are repeatedly exposed to HIV-1 through unprotected sexual contact fail to acquire HIV-1 infection. These persons represent a unique study population to evaluate mechanisms by which HIV-1 replication is either prevented or controlled. We followed longitudinally a group of healthy HIV-1 seronegative persons each reporting repeated high-risk sexual activities with their HIV-1-infected partner at enrollment. The volunteers were primarily (90%) male homosexuals, maintaining high risk activities with their known infected partner (45%) or multiple other partners (61%). We evaluated the quantity and specificity of HIV-1-specific T cells in 31 exposed seronegatives (ES) using a IFN-gamma ELISPOT assay to enumerate T cells recognizing epitopes within HIV-1 Env, Gag, Pol and Nef. PBMC from only three of the 31 volunteers demonstrated ex vivo HIV-1-specific IFN-gamma secretion, in contrast to nearly 30% exhibiting cytolytic responses in previous studies. These findings suggest that if T cell responses in ES are induced by HIV-1 exposure, the frequency is at low levels in most of them, and below the level of detection using the ELISPOT assay. Alternative approaches to improve the sensitivity of detection may include use of dendritic cells as antigen-presenting cells in the ex vivo assay and more careful definition of the risk behavior and extent of HIV-1 exposure in conjunction with the evaluation of T cell responses.

  8. A compensatory mutation provides resistance to disparate HIV fusion inhibitor peptides and enhances membrane fusion.

    Directory of Open Access Journals (Sweden)

    Matthew P Wood

    Full Text Available Fusion inhibitors are a class of antiretroviral drugs used to prevent entry of HIV into host cells. Many of the fusion inhibitors being developed, including the drug enfuvirtide, are peptides designed to competitively inhibit the viral fusion protein gp41. With the emergence of drug resistance, there is an increased need for effective and unique alternatives within this class of antivirals. One such alternative is a class of cyclic, cationic, antimicrobial peptides known as θ-defensins, which are produced by many non-human primates and exhibit broad-spectrum antiviral and antibacterial activity. Currently, the θ-defensin analog RC-101 is being developed as a microbicide due to its specific antiviral activity, lack of toxicity to cells and tissues, and safety in animals. Understanding potential RC-101 resistance, and how resistance to other fusion inhibitors affects RC-101 susceptibility, is critical for future development. In previous studies, we identified a mutant, R5-tropic virus that had evolved partial resistance to RC-101 during in vitro selection. Here, we report that a secondary mutation in gp41 was found to restore replicative fitness, membrane fusion, and the rate of viral entry, which were compromised by an initial mutation providing partial RC-101 resistance. Interestingly, we show that RC-101 is effective against two enfuvirtide-resistant mutants, demonstrating the clinical importance of RC-101 as a unique fusion inhibitor. These findings both expand our understanding of HIV drug-resistance to diverse peptide fusion inhibitors and emphasize the significance of compensatory gp41 mutations.

  9. Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals

    International Nuclear Information System (INIS)

    Zhang, Nawei; Zhang, Zhenyu; Feng, Shan; Wang, Qingtao; Malamud, Daniel; Deng, Haiteng

    2013-01-01

    Highlights: ► A high-throughput method for profiling and quantification of the differentially expressed proteins in saliva samples was developed. ► Identified that DMBT1, S100A7, S100A8, S100A9 and alpha defensin were up-regulated in saliva from HIV-1 seropositive patients. ► Established analytical strategies are translatable to the clinical setting. -- Abstract: In the present study, we have established a new methodology to analyze saliva proteins from HIV-1-seropositive patients before highly active antiretroviral therapy (HAART) and seronegative controls. A total of 593 and 601 proteins were identified in the pooled saliva samples from 5 HIV-1 subjects and 5 controls, respectively. Forty-one proteins were found to be differentially expressed. Bioinformatic analysis of differentially expressed salivary proteins showed an increase of antimicrobial proteins and decrease of protease inhibitors upon HIV-1 infection. To validate some of these differentially expressed proteins, a high-throughput quantitation method was established to determine concentrations of 10 salivary proteins in 40 individual saliva samples from 20 seropositive patients before HAART and 20 seronegative subjects. This method was based on limited protein separation within the zone of the stacking gel of the 1D SDS PAGE and using isotope-coded synthetic peptides as internal standards. The results demonstrated that a combination of protein profiling and targeted quantitation is an efficient method to identify and validate differentially expressed salivary proteins. Expression levels of members of the calcium-binding S100 protein family and deleted in malignant brain tumors 1 protein (DMBT1) were up-regulated while that of Mucin 5B was down-regulated in HIV-1 seropositive saliva samples, which may provide new perspectives for monitoring HIV-infection and understanding the mechanism of HIV-1 infectivity

  10. Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Nawei; Zhang, Zhenyu [Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing (China); Feng, Shan [MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing (China); Wang, Qingtao [Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing (China); Malamud, Daniel [NYU College of Dentistry, 345 East 24th Street, New York, NY 10010 (United States); Deng, Haiteng, E-mail: dht@mail.tsinghua.edu.cn [MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing (China)

    2013-04-24

    Highlights: ► A high-throughput method for profiling and quantification of the differentially expressed proteins in saliva samples was developed. ► Identified that DMBT1, S100A7, S100A8, S100A9 and alpha defensin were up-regulated in saliva from HIV-1 seropositive patients. ► Established analytical strategies are translatable to the clinical setting. -- Abstract: In the present study, we have established a new methodology to analyze saliva proteins from HIV-1-seropositive patients before highly active antiretroviral therapy (HAART) and seronegative controls. A total of 593 and 601 proteins were identified in the pooled saliva samples from 5 HIV-1 subjects and 5 controls, respectively. Forty-one proteins were found to be differentially expressed. Bioinformatic analysis of differentially expressed salivary proteins showed an increase of antimicrobial proteins and decrease of protease inhibitors upon HIV-1 infection. To validate some of these differentially expressed proteins, a high-throughput quantitation method was established to determine concentrations of 10 salivary proteins in 40 individual saliva samples from 20 seropositive patients before HAART and 20 seronegative subjects. This method was based on limited protein separation within the zone of the stacking gel of the 1D SDS PAGE and using isotope-coded synthetic peptides as internal standards. The results demonstrated that a combination of protein profiling and targeted quantitation is an efficient method to identify and validate differentially expressed salivary proteins. Expression levels of members of the calcium-binding S100 protein family and deleted in malignant brain tumors 1 protein (DMBT1) were up-regulated while that of Mucin 5B was down-regulated in HIV-1 seropositive saliva samples, which may provide new perspectives for monitoring HIV-infection and understanding the mechanism of HIV-1 infectivity.

  11. Thermodynamic characterization of the peptide assembly inhibitor binding to HIV-1 capsid protein

    Czech Academy of Sciences Publication Activity Database

    Kožíšek, Milan; Durčák, Jindřich; Konvalinka, Jan

    2013-01-01

    Roč. 10, Suppl. 1 (2013), S37-S37 ISSN 1742-4690. [Frontiers of Retrovirology: Complex retorviruses, retroelements and their hosts. 16.09.2013-18.09.2013, Cambridge] R&D Projects: GA ČR GA13-19561S Institutional support: RVO:61388963 Keywords : HIV -1 capsid protein * CAI Subject RIV: EE - Microbiology, Virology http://www.retrovirology.com/content/10/S1/P108

  12. Identification of a methylated oligoribonucleotide as a potent inhibitor of HIV-1 reverse transcription complex.

    Science.gov (United States)

    Grigorov, Boyan; Bocquin, Anne; Gabus, Caroline; Avilov, Sergey; Mély, Yves; Agopian, Audrey; Divita, Gilles; Gottikh, Marina; Witvrouw, Myriam; Darlix, Jean-Luc

    2011-07-01

    Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1.

  13. Multifaceted counter-APOBEC3G mechanisms employed by HIV-1 Vif.

    Science.gov (United States)

    Britan-Rosich, Elena; Nowarski, Roni; Kotler, Moshe

    2011-07-29

    In the absence of human immunodeficiency virus type 1 (HIV-1) Vif protein, the host antiviral deaminase apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) restricts the production of infectious HIV-1 by deamination of dC residues in the negative single-stranded DNA produced by reverse transcription. The Vif protein averts the lethal threat of deamination by precluding the packaging of A3G into assembling virions by mediating proteasomal degradation of A3G. In spite of this robust Vif activity, residual A3G molecules that escape degradation and incorporate into newly assembled virions are potentially deleterious to the virus. We hypothesized that virion-associated Vif inhibits A3G enzymatic activity and therefore prevents lethal mutagenesis of the newly synthesized viral DNA. Here, we show that (i) Vif-proficient HIV-1 particles released from H9 cells contain A3G with lower specific activity compared with Δvif-virus-associated A3G, (ii) encapsidated HIV-1 Vif inhibits the deamination activity of recombinant A3G, and (iii) purified HIV-1 Vif protein and the Vif-derived peptide Vif25-39 inhibit A3G activity in vitro at nanomolar concentrations in an uncompetitive manner. Our results manifest the potentiality of Vif to control the deamination threat in virions or in the pre-integration complexes following entry to target cells. Hence, virion-associated Vif could serve as a last line of defense, protecting the virus against A3G antiviral activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Contribution of immunological and virological factors to extremely severe primary HIV-1 infection

    Science.gov (United States)

    Dalmau, Judith; Puertas, Maria Carmen; Azuara, Marta; Mariño, Ana; Frahm, Nicole; Mothe, Beatriz; Izquierdo-Useros, Nuria; Buzón, Maria José; Paredes, Roger; Matas, Lourdes; Allen, Todd M.; Brander, Christian; Rodrigo, Carlos; Clotet, Bonaventura; Martinez-Picado, Javier

    2009-01-01

    Background During acute HIV infection, high viral loads and the induction of host immune responses typically coincide with the onset of clinical symptoms. However, clinically severe presentations during acute HIV-1 infection, including AIDS-defining symptoms, are unusual. Methods Virus isolates were tested for clade, drug susceptibility, coreceptor usage, and growth rate for two cases of clinically severe sexual transmission. HLA genotype was determined, and HIV-1-specific CTL responses to an overlapping peptide set spanning the entire HIV clade A and clade B proteome were assayed. Results The virus isolated from the two unrelated cases of severe primary HIV-1 infection showed R5/X4 dual/mixed tropism, belonged to clade B and CRF02-AG, and were highly replicative in peripheral blood mononuclear cell culture. Impaired humoral responses were paralleled by a profound absence of HIV-1-specific CTL responses to the entire viral proteome in the two study cases. One case for which the virus source was available, showed a remarkable HLA similarity between the transmission pair as all 4 HLA-A and -B alleles were HLA supertype-matched between the subjects involved in the transmission case. Conclusions The data suggest that concurrence of viral and host factors contribute to the clinical severity of primary HIV-1 infection and that subjects infected with highly replicative dual tropic viruses are more prone to develop AIDS-defining symptoms during acute infection if they are unable to mount humoral and cellular HIV-1-specific immune responses. Concordant HLA supertypes might facilitate the preferential transmission of HLA-adapted viral variants, further accelerating disease progression. PMID:19093810

  15. Broad, Intense Anti-Human Immunodeficiency Virus (HIV) Ex Vivo CD8+ Responses in HIV Type 1-Infected Patients: Comparison with Anti-Epstein-Barr Virus Responses and Changes during Antiretroviral Therapy

    Science.gov (United States)

    Dalod, Marc; Dupuis, Marion; Deschemin, Jean-Christophe; Sicard, Didier; Salmon, Dominique; Delfraissy, Jean-Francois; Venet, Alain; Sinet, Martine; Guillet, Jean-Gerard

    1999-01-01

    The ex vivo antiviral CD8+ repertoires of 34 human immunodeficiency virus (HIV)-seropositive patients with various CD4+ T-cell counts and virus loads were analyzed by gamma interferon enzyme-linked immunospot assay, using peptides derived from HIV type 1 and Epstein-Barr virus (EBV). Most patients recognized many HIV peptides, with markedly high frequencies, in association with all the HLA class I molecules tested. We found no correlation between the intensity of anti-HIV CD8+ responses and the CD4+ counts or virus load. In contrast, the polyclonality of anti-HIV CD8+ responses was positively correlated with the CD4+ counts. The anti-EBV responses were significantly less intense than the anti-HIV responses and were positively correlated with the CD4+ counts. Longitudinal follow-up of several patients revealed the remarkable stability of the anti-HIV and anti-EBV CD8+ responses in two patients with stable CD4+ counts, while both antiviral responses decreased in two patients with obvious progression toward disease. Last, highly active antiretroviral therapy induced marked decreases in the number of anti-HIV CD8+ T cells, while the anti-EBV responses increased. These findings emphasize the magnitude of the ex vivo HIV-specific CD8+ responses at all stages of HIV infection and suggest that the CD8+ hyperlymphocytosis commonly observed in HIV infection is driven mainly by virus replication, through intense, continuous activation of HIV-specific CD8+ T cells until ultimate progression toward disease. Nevertheless, highly polyclonal anti-HIV CD8+ responses may be associated with a better clinical status. Our data also suggest that a decrease of anti-EBV CD8+ responses may occur with depletion of CD4+ T cells, but this could be restored by highly active antiretroviral treatment. PMID:10438796

  16. Ligand-Modified Human Serum Albumin Nanoparticles for Enhanced Gene Delivery.

    Science.gov (United States)

    Look, Jennifer; Wilhelm, Nadine; von Briesen, Hagen; Noske, Nadja; Günther, Christine; Langer, Klaus; Gorjup, Erwin

    2015-09-08

    The development of nonviral gene delivery systems is a great challenge to enable safe gene therapy. In this study, ligand-modified nanoparticles based on human serum albumin (HSA) were developed and optimized for an efficient gene therapy. Different glutaraldehyde cross-linking degrees were investigated to optimize the HSA nanoparticles for gene delivery. The peptide sequence arginine-glycine-aspartate (RGD) and the HIV-1 transactivator of transduction sequence (Tat) are well-known as promising targeting ligands. Plasmid DNA loaded HSA nanoparticles were covalently modified on their surface with these different ligands. The transfection potential of the obtained plasmid DNA loaded RGD- and Tat-modified nanoparticles was investigated in vitro, and optimal incubation conditions for these preparations were studied. It turned out that Tat-modified HSA nanoparticles with the lowest cross-linking degree of 20% showed the highest transfection potential. Taken together, ligand-functionalized HSA nanoparticles represent promising tools for efficient and safe gene therapy.

  17. Frequency of human immunodeficiency virus type-2 in hiv infected patients in Maputo City, Mozambique

    Directory of Open Access Journals (Sweden)

    Bhatt Nilesh

    2011-08-01

    Full Text Available Abstract The HIV/AIDS pandemic is primarily caused by HIV-1. Another virus type, HIV-2, is found mainly in West African countries. We hypothesized that population migration and mobility in Africa may have facilitated the introduction and spreading of HIV-2 in Mozambique. The presence of HIV-2 has important implications for diagnosis and choice of treatment of HIV infection. Hence, the aim of this study was to estimate the prevalence of HIV-2 infection and its genotype in Maputo, Mozambique. HIV-infected individuals (N = 1,200 were consecutively enrolled and screened for IgG antibodies against HIV-1 gp41 and HIV-2 gp36 using peptide-based enzyme immunoassays (pepEIA. Specimens showing reactivity on the HIV-2 pepEIA were further tested using the INNO-LIA immunoblot assay and HIV-2 PCR targeting RT and PR genes. Subtype analysis of HIV-2 was based on the protease gene. After screening with HIV-2 pepEIA 1,168 were non-reactive and 32 were reactive to HIV-2 gp36 peptide. Of this total, 30 specimens were simultaneously reactive to gp41 and gp36 pepEIA while two samples reacted solely to gp36 peptide. Only three specimens containing antibodies against gp36 and gp105 on the INNO-LIA immunoblot assay were found to be positive by PCR to HIV-2 subtype A. The proportion of HIV-2 in Maputo City was 0.25% (90%CI 0.01-0.49. The HIV epidemic in Southern Mozambique is driven by HIV-1, with HIV-2 also circulating at a marginal rate. Surveillance program need to improve HIV-2 diagnosis and consider periodical survey aiming to monitor HIV-2 prevalence in the country.

  18. CTL escape mediated by proteasomal destruction of an HIV-1 cryptic epitope.

    Directory of Open Access Journals (Sweden)

    Sylvain Cardinaud

    2011-05-01

    Full Text Available Cytotoxic CD8+ T cells (CTLs play a critical role in controlling viral infections. HIV-infected individuals develop CTL responses against epitopes derived from viral proteins, but also against cryptic epitopes encoded by viral alternative reading frames (ARF. We studied here the mechanisms of HIV-1 escape from CTLs targeting one such cryptic epitope, Q9VF, encoded by an HIVgag ARF and presented by HLA-B*07. Using PBMCs of HIV-infected patients, we first cloned and sequenced proviral DNA encoding for Q9VF. We identified several polymorphisms with a minority of proviruses encoding at position 5 an aspartic acid (Q9VF/5D and a majority encoding an asparagine (Q9VF/5N. We compared the prevalence of each variant in PBMCs of HLA-B*07+ and HLA-B*07- patients. Proviruses encoding Q9VF/5D were significantly less represented in HLA-B*07+ than in HLA-B*07- patients, suggesting that Q9FV/5D encoding viruses might be under selective pressure in HLA-B*07+ individuals. We thus analyzed ex vivo CTL responses directed against Q9VF/5D and Q9VF/5N. Around 16% of HLA-B*07+ patients exhibited CTL responses targeting Q9VF epitopes. The frequency and the magnitude of CTL responses induced with Q9VF/5D or Q9VF/5N peptides were almost equal indicating a possible cross-reactivity of the same CTLs on the two peptides. We then dissected the cellular mechanisms involved in the presentation of Q9VF variants. As expected, cells infected with HIV strains encoding for Q9VF/5D were recognized by Q9VF/5D-specific CTLs. In contrast, Q9VF/5N-encoding strains were neither recognized by Q9VF/5N- nor by Q9VF/5D-specific CTLs. Using in vitro proteasomal digestions and MS/MS analysis, we demonstrate that the 5N variation introduces a strong proteasomal cleavage site within the epitope, leading to a dramatic reduction of Q9VF epitope production. Our results strongly suggest that HIV-1 escapes CTL surveillance by introducing mutations leading to HIV ARF-epitope destruction by proteasomes.

  19. Effects of altered TatC proteins on protein secretion efficiency via the twin-arginine translocation pathway of Bacillus subtilis

    NARCIS (Netherlands)

    Eijlander, Robyn T.; Kolbusz, Magdalena A.; Berendsen, Erwin M.; Kuipers, Oscar P.

    Protein translocation via the Tat machinery in thylakoids and bacteria occurs through a cooperation between the TatA, TatB and TatC subunits, of which the TatC protein forms the initial Tat substrate-binding site. The Bacillus subtilis Tat machinery lacks TatB and comprises two separate TatAC

  20. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells.

    Directory of Open Access Journals (Sweden)

    Ki Jung Lim

    Full Text Available Cell-penetrating peptides (CPPs have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2 was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49-57. The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv directed toward a mutated K-ras (G12V. BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity.

  1. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells.

    Science.gov (United States)

    Lim, Ki Jung; Sung, Bong Hyun; Shin, Ju Ri; Lee, Young Woong; Kim, Da Jung; Yang, Kyung Seok; Kim, Sun Chang

    2013-01-01

    Cell-penetrating peptides (CPPs) have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2) was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49-57). The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv) directed toward a mutated K-ras (G12V). BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity.

  2. Tat-PRAS40 prevent hippocampal HT-22 cell death and oxidative stress induced animal brain ischemic insults.

    Science.gov (United States)

    Shin, Min Jea; Kim, Dae Won; Jo, Hyo Sang; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Kim, Ji An; Hwang, Jung Soon; Sohn, Eun Jeong; Jeong, Ji-Heon; Kim, Duk-Soo; Kwon, Hyeok Yil; Cho, Yong-Jun; Lee, Keunwook; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2016-08-01

    Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia. We showed that Tat-PRAS40 transduced into HT-22 cells, and significantly protected against cell death by reducing the levels of H2O2 and derived reactive species, and DNA fragmentation as well as via the regulation of Bcl-2, Bax, and caspase 3 expression levels in H2O2 treated cells. Also, we showed that transduced Tat-PARS40 protein markedly increased phosphorylated RRAS40 expression levels and 14-3-3σ complex via the Akt signaling pathway. In an animal ischemia model, Tat-PRAS40 effectively transduced into the hippocampus in animal brain and significantly protected against neuronal cell death in the CA1 region. We showed that Tat-PRAS40 protein effectively transduced into hippocampal neuronal cells and markedly protected against neuronal cell damage. Therefore, we suggest that Tat-PRAS40 protein may be used as a therapeutic protein for ischemia and oxidative stress-induced brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I. Integrase inhibition

    International Nuclear Information System (INIS)

    Lee-Huang, Sylvia; Huang, Philip Lin; Zhang Dawei; Lee, Jae Wook; Bao Ju; Sun Yongtao; Chang, Young-Tae; Zhang, John; Huang, Paul Lee

    2007-01-01

    We have identified oleuropein (Ole) and hydroxytyrosol (HT) as a unique class of HIV-1 inhibitors from olive leaf extracts effective against viral fusion and integration. We used molecular docking simulation to study the interactions of Ole and HT with viral targets. We find that Ole and HT bind to the conserved hydrophobic pocket on the surface of the HIV-gp41 fusion domain by hydrogen bonds with Q577 and hydrophobic interactions with I573, G572, and L568 on the gp41 N-terminal heptad repeat peptide N36, interfering with formation of the gp41 fusion-active core. To test and confirm modeling predications, we examined the effect of Ole and HT on HIV-1 fusion complex formation using native polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Ole and HT exhibit dose-dependent inhibition on HIV-1 fusion core formation with EC 50 s of 66-58 nM, with no detectable toxicity. Our findings on effects of HIV-1 integrase are reported in the subsequent article

  4. Influenza vaccination of HIV-1-positive and HIV-1-negative former intravenous drug users.

    Science.gov (United States)

    Amendola, A; Boschini, A; Colzani, D; Anselmi, G; Oltolina, A; Zucconi, R; Begnini, M; Besana, S; Tanzi, E; Zanetti, A R

    2001-12-01

    The immunogenicity of an anti-influenza vaccine was assessed in 409 former intravenous drug user volunteers and its effect on the levels of HIV-1 RNA, proviral DNA and on CD4+ lymphocyte counts in a subset HIV-1-positive subjects was measured. HIV-1-positive individuals (n = 72) were divided into three groups on the basis of their CD4+ lymphocyte counts, while the 337 HIV-1-negative participants were allocated into group four. Haemagglutination inhibiting (HI) responses varied from 45.8 to 70% in the HIV-1-positive subjects and were significantly higher in group four (80.7% responses to the H1N1 strain, 81.6% to the H3N2 strain, and 83% to the B strain). The percentage of subjects with HI protective antibody titres (> or = 1:40) increased significantly after vaccination, especially in HIV-1 uninfected subjects. Immunization caused no significant changes in CD4+ counts and in neither plasma HIV-1 RNA nor proviral DNA levels. Therefore, vaccination against influenza may benefit persons infected by HIV-1. Copyright 2001 Wiley-Liss, Inc.

  5. 海马神经元中TAT-GluR6-9c-dansyl小肽的荧光观察%Delivery of GluR6-9c into hippocampal neurons by TAT transduction domain

    Institute of Scientific and Technical Information of China (English)

    纵艳艳; 裴冬生; 孙亚峰; 张光毅

    2005-01-01

    目的研究TAT-GluR6-9c-dansyl荧光小肽是否可以进入细胞内部.方法在培养的海马神经元中加入TAT-GluR6-9c-dansyl荧光小肽和对照肽TAT38-48-dansyl.结果用10 μmol/L TAT-GluR6-9c-dansyl处理的海马神经元在荧光显微镜下可以观到绿色荧光的出现,而对照肽TAT38-48-dansyl无荧光出现.结论 TAT-GluR6-9c-dansyl荧光小肽可以进入细胞.

  6. T-cell responses targeting HIV Nef uniquely correlate with infected cell frequencies after long-term antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Allison S Thomas

    2017-09-01

    Full Text Available HIV-specific CD8+ T-cell responses limit viral replication in untreated infection. After the initiation of antiretroviral therapy (ART, these responses decay and the infected cell population that remains is commonly considered to be invisible to T-cells. We hypothesized that HIV antigen recognition may persist in ART-treated individuals due to low-level or episodic protein expression. We posited that if persistent recognition were occurring it would be preferentially directed against the early HIV gene products Nef, Tat, and Rev as compared to late gene products, such as Gag, Pol, and Env, which have higher barriers to expression. Using a primary cell model of latency, we observed that a Nef-specific CD8+ T-cell clone exhibited low-level recognition of infected cells prior to reactivation and robust recognition shortly thereafter. A Gag-specific CD8+ T-cell clone failed to recognized infected cells under these conditions, corresponding with a lack of detectable Gag expression. We measured HIV-specific T-cell responses in 96 individuals who had been suppressed on ART for a median of 7 years, and observed a significant, direct correlation between cell-associated HIV DNA levels and magnitudes of IFN-γ-producing Nef/Tat/Rev-specific T-cell responses. This correlation was confirmed in an independent cohort (n = 18. Correlations were not detected between measures of HIV persistence and T-cell responses to other HIV antigens. The correlation with Nef/Tat/Rev-specific T-cells was attributable to Nef-specific responses, the breadth of which also correlated with HIV DNA levels. These results suggest that ongoing Nef expression in ART-treated individuals drives preferential maintenance and/or expansion of T-cells reactive to this protein, implying sensing of infected cells by the immune system. The direct correlation, however, suggests that recognition does not result in efficient elimination of infected cells. These results raise the possibility that

  7. Glycans Flanking the Hypervariable Connecting Peptide between the A and B Strands of the V1/V2 Domain of HIV-1 gp120 Confer Resistance to Antibodies That Neutralize CRF01_AE Viruses

    Science.gov (United States)

    O’Rourke, Sara M.; Sutthent, Ruengpung; Phung, Pham; Mesa, Kathryn A.; Frigon, Normand L.; To, Briana; Horthongkham, Navin; Limoli, Kay; Wrin, Terri; Berman, Phillip W.

    2015-01-01

    Understanding the molecular determinants of sensitivity and resistance to neutralizing antibodies is critical for the development of vaccines designed to prevent HIV infection. In this study, we used a genetic approach to characterize naturally occurring polymorphisms in the HIV envelope protein that conferred neutralization sensitivity or resistance. Libraries of closely related envelope genes, derived from virus quasi-species, were constructed from individuals infected with CRF01_AE viruses. The libraries were screened with plasma containing broadly neutralizing antibodies, and neutralization sensitive and resistant variants were selected for sequence analysis. In vitro mutagenesis allowed us to identify single amino acid changes in three individuals that conferred resistance to neutralization by these antibodies. All three mutations created N-linked glycosylation sites (two at N136 and one at N149) proximal to the hypervariable connecting peptide between the C-terminus of the A strand and the N-terminus of the B strand in the four-stranded V1/V2 domain β-sheet structure. Although N136 has previously been implicated in the binding of broadly neutralizing monoclonal antibodies, this glycosylation site appears to inhibit the binding of neutralizing antibodies in plasma from HIV-1 infected subjects. Previous studies have reported that the length of the V1/V2 domain in transmitted founder viruses is shorter and possesses fewer glycosylation sites compared to viruses isolated from chronic infections. Our results suggest that vaccine immunogens based on recombinant envelope proteins from clade CRF01_AE viruses might be improved by inclusion of envelope proteins that lack these glycosylation sites. This strategy might improve the efficacy of the vaccines used in the partially successful RV144 HIV vaccine trial, where the two CRF01_AE immunogens (derived from the A244 and TH023 isolates) both possessed glycosylation sites at N136 and N149. PMID:25793890

  8. Semen Bacterial Concentrations and HIV-1 RNA Shedding Among HIV-1-Seropositive Kenyan Men.

    Science.gov (United States)

    Korhonen, Christine J; Srinivasan, Sujatha; Huang, Dandi; Ko, Daisy L; Sanders, Eduard J; Peshu, Norbert M; Krieger, John N; Muller, Charles H; Coombs, Robert W; Fredricks, David N; Graham, Susan M

    2017-03-01

    HIV-1 is transmitted through semen from men to their sexual partners. Genital infections can increase HIV-1 RNA shedding in semen, but shedding also occurs in the absence of typical pathogens. We hypothesized that higher bacterial concentrations in semen would be associated with higher HIV-1 RNA levels. We analyzed semen samples from 42 HIV-1-seropositive Kenyan men using quantitative polymerase chain reaction (PCR) to assess bacterial concentrations and real-time PCR to measure HIV-1 RNA levels. Generalized estimation equations were used to evaluate associations between these 2 measures. Broad-range 16S rRNA gene PCR with pyrosequencing was performed on a subset of 13 samples to assess bacterial community composition. Bacteria were detected in 96.6% of 88 samples by quantitative PCR. Semen bacterial concentration and HIV-1 RNA levels were correlated 0.30 (P = 0.01). The association between bacterial concentration and HIV-1 RNA detection was not significant after adjustment for antiretroviral therapy (ART) (adjusted odds ratio: 1.27, 95% CI: 0.84 to 1.91). Factors associated with semen bacterial concentration included insertive anal sex (adjusted beta 0.92, 95% CI: 0.12 to 1.73) and ART use (adjusted beta: -0.77, 95% CI: -1.50 to 0.04). Among 13 samples with pyrosequencing data, Corynebacterium spp., Staphylococcus spp., and Streptococcus spp. were most frequently detected. Most of these HIV-1-infected men had bacteria in their semen. ART use was associated with undetectable semen HIV-1 RNA and lower semen bacterial concentrations, whereas insertive anal sex was associated with higher bacterial concentrations. Additional studies evaluating the relationship between semen bacteria, inflammation, mucosal immunity, and HIV-1 shedding are needed to understand implications for HIV-1 transmission.

  9. HIV-1 molecular epidemiology among newly diagnosed HIV-1 individuals in Hebei, a low HIV prevalence province in China.

    Science.gov (United States)

    Lu, Xinli; Kang, Xianjiang; Liu, Yongjian; Cui, Ze; Guo, Wei; Zhao, Cuiying; Li, Yan; Chen, Suliang; Li, Jingyun; Zhang, Yuqi; Zhao, Hongru

    2017-01-01

    New human immunodeficiency virus type 1 (HIV-1) diagnoses are increasing rapidly in Hebei. The aim of this study presents the most extensive HIV-1 molecular epidemiology investigation in Hebei province in China thus far. We have carried out the most extensive systematic cross-sectional study based on newly diagnosed HIV-1 positive individuals in 2013, and characterized the molecular epidemiology of HIV-1 based on full length gag-partial pol gene sequences in the whole of Hebei. Nine HIV-1 genotypes based on full length gag-partial pol gene sequence were identified among 610 newly diagnosed naïve individuals. The four main genotypes were circulating recombinant form (CRF)01_AE (53.4%), CRF07_BC (23.4%), subtype B (15.9%), and unique recombinant forms URFs (4.9%). Within 1 year, three new genotypes (subtype A1, CRF55_01B, CRF65_cpx), unknown before in Hebei, were first found among men who have sex with men (MSM). All nine genotypes were identified in the sexually contracted HIV-1 population. Among 30 URFs, six recombinant patterns were revealed, including CRF01_AE/BC (40.0%), CRF01_AE/B (23.3%), B/C (16.7%), CRF01_AE/C (13.3%), CRF01_AE/B/A2 (3.3%) and CRF01_AE/BC/A2 (3.3%), plus two potential CRFs. This study elucidated the complicated characteristics of HIV-1 molecular epidemiology in a low HIV-1 prevalence northern province of China and revealed the high level of HIV-1 genetic diversity. All nine HIV-1 genotypes circulating in Hebei have spread out of their initial risk groups into the general population through sexual contact, especially through MSM. This highlights the urgency of HIV prevention and control in China.

  10. HIV-1 molecular epidemiology among newly diagnosed HIV-1 individuals in Hebei, a low HIV prevalence province in China.

    Directory of Open Access Journals (Sweden)

    Xinli Lu

    Full Text Available New human immunodeficiency virus type 1 (HIV-1 diagnoses are increasing rapidly in Hebei. The aim of this study presents the most extensive HIV-1 molecular epidemiology investigation in Hebei province in China thus far. We have carried out the most extensive systematic cross-sectional study based on newly diagnosed HIV-1 positive individuals in 2013, and characterized the molecular epidemiology of HIV-1 based on full length gag-partial pol gene sequences in the whole of Hebei. Nine HIV-1 genotypes based on full length gag-partial pol gene sequence were identified among 610 newly diagnosed naïve individuals. The four main genotypes were circulating recombinant form (CRF01_AE (53.4%, CRF07_BC (23.4%, subtype B (15.9%, and unique recombinant forms URFs (4.9%. Within 1 year, three new genotypes (subtype A1, CRF55_01B, CRF65_cpx, unknown before in Hebei, were first found among men who have sex with men (MSM. All nine genotypes were identified in the sexually contracted HIV-1 population. Among 30 URFs, six recombinant patterns were revealed, including CRF01_AE/BC (40.0%, CRF01_AE/B (23.3%, B/C (16.7%, CRF01_AE/C (13.3%, CRF01_AE/B/A2 (3.3% and CRF01_AE/BC/A2 (3.3%, plus two potential CRFs. This study elucidated the complicated characteristics of HIV-1 molecular epidemiology in a low HIV-1 prevalence northern province of China and revealed the high level of HIV-1 genetic diversity. All nine HIV-1 genotypes circulating in Hebei have spread out of their initial risk groups into the general population through sexual contact, especially through MSM. This highlights the urgency of HIV prevention and control in China.

  11. Relaxed evolution in the tyrosine aminotransferase gene tat in old world fruit bats (Chiroptera: Pteropodidae).

    Science.gov (United States)

    Shen, Bin; Fang, Tao; Yang, Tianxiao; Jones, Gareth; Irwin, David M; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.

  12. HIV-1 vaccines

    Science.gov (United States)

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  13. Psoriasis Patients Are Enriched for Genetic Variants That Protect against HIV-1 Disease

    Science.gov (United States)

    Chen, Haoyan; Hayashi, Genki; Lai, Olivia Y.; Dilthey, Alexander; Kuebler, Peter J.; Wong, Tami V.; Martin, Maureen P.; Fernandez Vina, Marcelo A.; McVean, Gil; Wabl, Matthias; Leslie, Kieron S.; Maurer, Toby; Martin, Jeffrey N.; Deeks, Steven G.; Carrington, Mary; Bowcock, Anne M.; Nixon, Douglas F.; Liao, Wilson

    2012-01-01

    An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis. PMID:22577363

  14. Binding and thermodynamics of REV peptide-ctDNA interaction.

    Science.gov (United States)

    Upadhyay, Santosh Kumar

    2017-03-01

    The thermodynamics of DNA-ligand binding is important as it provides useful information to understand the details of binding processes. HIV-1 REV response element (RRE) located in the env coding region of the viral genome is reported to be well conserved across different HIV-1 isolates. In this study, the binding characteristics of Calf thymus DNA (ctDNA) and REV peptide from HIV-1 were investigated using spectroscopic (UV-visible, fluorescence, and circular dichroism (CD)) and isothermal titration calorimetric (ITC) techniques. Thermal stability and ligand binding properties of the ctDNA revealed that native ctDNA had a T m of 75.5 °C, whereas the ctDNA-REV peptide complex exhibited an incremental shift in the T m by 8 °C, indicating thermal stability of the complex. CD data indicated increased ellipticity due to large conformational changes in ctDNA molecule upon binding with REV peptide and two binding stoichiometric modes are apparent. The ctDNA experienced condensation due to large conformational changes in the presence of REV peptide and positive B→Ψ transition was observed at higher molar charge ratios. Fluorescence studies performed at several ligand concentrations revealed a gradual decrease in the fluorescence intensity of EtBr-bound ctDNA in response to increasing ligand concentrations. The fluorescence data further confirmed two stoichiometric modes of binding for ctDNA-REV peptide complex as previously observed with CD studies. The binding enthalpies were determined using ITC in the temperature range of 293 K-308 K. The ITC binding isotherm was exothermic at all temperatures examined, with low ΔH values indicating that the ctDNA-REV peptide interaction is driven largely by entropy. The heat capacity change (ΔC p ) was insignificant, an unusual finding in the area of DNA-peptide interaction studies. The variation in the values obtained for ΔH, ΔS, and ΔG with temperature further suggests that ctDNA-REV peptide interaction is entropically

  15. Improving ED specimen TAT using Lean Six Sigma.

    Science.gov (United States)

    Sanders, Janet H; Karr, Tedd

    2015-01-01

    Lean and Six Sigma are continuous improvement methodologies that have garnered international fame for improving manufacturing and service processes. Increasingly these methodologies are demonstrating their power to also improve healthcare processes. The purpose of this paper is to discuss a case study for the application of Lean and Six Sigma tools in the reduction of turnaround time (TAT) for Emergency Department (ED) specimens. This application of the scientific methodologies uncovered opportunities to improve the entire ED to lab system for the specimens. This case study provides details on the completion of a Lean Six Sigma project in a 1,000 bed tertiary care teaching hospital. Six Sigma's Define, Measure, Analyze, Improve, and Control methodology is very similar to good medical practice: first, relevant information is obtained and assembled; second, a careful and thorough diagnosis is completed; third, a treatment is proposed and implemented; and fourth, checks are made to determine if the treatment was effective. Lean's primary goal is to do more with less work and waste. The Lean methodology was used to identify and eliminate waste through rapid implementation of change. The initial focus of this project was the reduction of turn-around-times for ED specimens. However, the results led to better processes for both the internal and external customers of this and other processes. The project results included: a 50 percent decrease in vials used for testing, a 50 percent decrease in unused or extra specimens, a 90 percent decrease in ED specimens without orders, a 30 percent decrease in complete blood count analysis (CBCA) Median TAT, a 50 percent decrease in CBCA TAT Variation, a 10 percent decrease in Troponin TAT Variation, a 18.2 percent decrease in URPN TAT Variation, and a 2-5 minute decrease in ED registered nurses rainbow draw time. This case study demonstrated how the quantitative power of Six Sigma and the speed of Lean worked in harmony to improve

  16. Relaxed evolution in the tyrosine aminotransferase gene tat in old world fruit bats (Chiroptera: Pteropodidae.

    Directory of Open Access Journals (Sweden)

    Bin Shen

    Full Text Available Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae and two New World fruit bats (Phyllostomidae. Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.

  17. Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export.

    Science.gov (United States)

    Behrens, Ryan T; Aligeti, Mounavya; Pocock, Ginger M; Higgins, Christina A; Sherer, Nathan M

    2017-02-01

    HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide

  18. Chimeric peptides as modulators of CK2-dependent signaling: Mechanism of action and off-target effects.

    Science.gov (United States)

    Zanin, Sofia; Sandre, Michele; Cozza, Giorgio; Ottaviani, Daniele; Marin, Oriano; Pinna, Lorenzo A; Ruzzene, Maria

    2015-10-01

    Protein kinase CK2 is a tetrameric enzyme composed of two catalytic (α/α') and two regulatory (β) subunits. It has a global prosurvival function, especially in cancer, and represents an attractive therapeutic target. Most CK2 inhibitors available so far are ATP-competitive compounds; however, the possibility to block only the phosphorylation of few substrates has been recently explored, and a compound composed of a Tat cell-penetrating peptide and an active cyclic peptide, selected for its ability to bind to the CK2 substrate E7 protein of human papilloma virus, has been developed [Perea et al., Cancer Res. 2004; 64:7127-7129]. By using a similar chimeric peptide (CK2 modulatory chimeric peptide, CK2-MCP), we performed a study to dissect its molecular mechanism of action and the signaling pathways that it affects in cells. We found that it directly interacts with CK2 itself, counteracting the regulatory and stabilizing functions of the β subunit. Cell treatment with CK2-MCP induces a rapid decrease of the amount of CK2 subunits, as well as of other signaling proteins. Concomitant cell death is observed, more pronounced in tumor cells and not accompanied by apoptotic events. CK2 relocalizes to lysosomes, whose proteases are activated, while the proteasome machinery is inhibited. Several sequence variants of the chimeric peptide have been also synthesized, and their effects compared to those of the parental peptide. Intriguingly, the Tat moiety is essential not only for cell penetration but also for the in vitro efficacy of the peptide. We conclude that this class of chimeric peptides, in addition to altering some properties of CK2 holoenzyme, affects several other cellular targets, causing profound perturbations of cell biology. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A Cell Internalizing Antibody Targeting Capsid Protein (p24 Inhibits the Replication of HIV-1 in T Cells Lines and PBMCs: A Proof of Concept Study.

    Directory of Open Access Journals (Sweden)

    Syed A Ali

    Full Text Available There remains a need for newer therapeutic approaches to combat HIV/AIDS. Viral capsid protein p24 plays important roles in HIV pathogenesis. Peptides and small molecule inhibitors targeting p24 have shown to inhibit virus replication in treated cell. High specificity and biological stability of monoclonal antibodies (mAbs make them an attractive contender for in vivo treatments. However, mAbs do not enter into cells, thus are restricted to target surface molecules. This also makes targeting intracellular HIV-1 p24 a challenge. A mAb specific to p24 that can internalize into the HIV-infected cells is hypothesized to inhibit the virus replication. We selected a mAb that has previously shown to inhibit p24 polymerization in an in vitro assay and chemically conjugated it with cell penetrating peptides (CPP to generate cell internalizing anti-p24 mAbs. Out of 8 CPPs tested, κFGF-MTS -conjugated mAbs internalized T cells most efficiently. At nontoxic concentration, the κFGF-MTS-anti-p24-mAbs reduced the HIV-1 replication up to 73 and 49% in T-lymphocyte and PBMCs respectively. Marked inhibition of HIV-1 replication in relevant cells by κFGF-MTS-anti-p24-mAbs represents a viable strategy to target HIV proteins present inside the cells.

  20. Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir.

    Science.gov (United States)

    Chiozzini, Chiara; Arenaccio, Claudia; Olivetta, Eleonora; Anticoli, Simona; Manfredi, Francesco; Ferrantelli, Flavia; d'Ettorre, Gabriella; Schietroma, Ivan; Andreotti, Mauro; Federico, Maurizio

    2017-09-01

    Intact HIV-1 and exosomes can be internalized by dendritic cells (DCs) through a common pathway leading to their transmission to CD4 + T lymphocytes by means of mechanisms defined as trans-infection and trans-dissemination, respectively. We previously reported that exosomes from HIV-1-infected cells activate both uninfected quiescent CD4 + T lymphocytes, which become permissive to HIV-1, and latently infected cells, with release of HIV-1 particles. However, nothing is known about the effects of trans-dissemination of exosomes produced by HIV-1-infected cells on uninfected or latently HIV-1-infected CD4 + T lymphocytes. Here, we report that trans-dissemination of exosomes from HIV-1-infected cells induces cell activation in resting CD4 + T lymphocytes, which appears stronger with mature than immature DCs. Using purified preparations of both HIV-1 and exosomes, we observed that mDC-mediated trans-dissemination of exosomes from HIV-1-infected cells to resting CD4 + T lymphocytes induces efficient trans-infection and HIV-1 expression in target cells. Most relevant, when both mDCs and CD4 + T lymphocytes were isolated from combination anti-retroviral therapy (ART)-treated HIV-1-infected patients, trans-dissemination of exosomes from HIV-1-infected cells led to HIV-1 reactivation from the viral reservoir. In sum, our data suggest a role of exosome trans-dissemination in both HIV-1 spread in the infected host and reactivation of the HIV-1 reservoir.

  1. eCD4-Ig variants that more potently neutralize HIV-1.

    Science.gov (United States)

    Fetzer, Ina; Gardner, Matthew R; Davis-Gardner, Meredith E; Prasad, Neha R; Alfant, Barnett; Weber, Jesse A; Farzan, Michael

    2018-03-28

    The HIV-1 entry inhibitor eCD4-Ig is a fusion of CD4-Ig and a coreceptor-mimetic peptide. eCD4-Ig is markedly more potent than CD4-Ig, with neutralization efficiencies approaching those of HIV-1 broadly neutralizing antibodies (bNAbs). However, unlike bNAbs, eCD4-Ig neutralizes all HIV-1, HIV-2 and SIV isolates that it has been tested against, suggesting that it may be useful in clinical settings where antibody escape is a concern. Here we characterize three new eCD4-Ig variants, each with different architectures and each utilizing D1.22, a stabilized form of CD4 domain 1. These variants were 10- to 20-fold more potent than our original eCD4-Ig variant, with a construct bearing four D1.22 domains (eD1.22-HL-Ig) exhibiting the greatest potency. However, this variant mediated less efficient antibody-dependent cell-mediated cytotoxicity (ADCC) activity than eCD4-Ig itself or several other eCD4-Ig variants, including the smallest variant (eD1.22-Ig). A variant with the same architecture as original eCD4-Ig (eD1.22-D2-Ig) showed modestly higher thermal stability and best prevented promotion of infection of CCR5-positive, CD4-negative cells. All three variants, and eCD4-Ig itself, mediated more efficient shedding of the HIV-1 envelope glycoprotein gp120 than did CD4-Ig. Finally, we show that only three D1.22 mutations contributed to the potency of eD1.22-D2-Ig, and that introduction of these changes into eCD4-Ig resulted in a variant 9-fold more potent than eCD4-Ig and 2-fold more potent than eD1.22-D2-Ig. These studies will assist in developing eCD4-Ig variants with properties optimized for prophylaxis, therapy, and cure applications. IMPORTANCE HIV-1 bNAbs have properties different from antiretroviral compounds. Specifically, antibodies can enlist immune effector cells to eliminate infected cells, whereas antiretroviral compounds simply interfere with various steps in the viral lifecycle. Unfortunately, HIV-1 is adept at evading antibody recognition, limiting the

  2. Developing strategies for HIV-1 eradication

    Science.gov (United States)

    Durand, Christine M.; Blankson, Joel N.; Siliciano, Robert F.

    2014-01-01

    Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication, transforming the outlook for infected patients. However, reservoirs of replication-competent forms of the virus persist during HAART, and when treatment is stopped, high rates of HIV-1 replication return. Recent insights into HIV-1 latency, as well as a report that HIV-1 infection was eradicated in one individual, have renewed interest in finding a cure for HIV-1 infection. Strategies for HIV-1 eradication include gene therapy and hematopoietic stem cell transplantation, stimulating host immunity to control HIV-1 replication, and targeting latent HIV-1 in resting memory CD4+ T cells. Future efforts should aim to provide better understanding of how to reconstitute the CD4+ T cell compartment with genetically engineered cells, exert immune control over HIV-1 replication, and identify and eliminate all viral reservoirs. PMID:22867874

  3. Semen Bacterial Concentrations and HIV-1 RNA Shedding Among HIV-1–Seropositive Kenyan Men

    Science.gov (United States)

    Srinivasan, Sujatha; Huang, Dandi; Ko, Daisy L.; Sanders, Eduard J.; Peshu, Norbert M.; Krieger, John N.; Muller, Charles H.; Coombs, Robert W.; Fredricks, David N.; Graham, Susan M.

    2017-01-01

    Introduction: HIV-1 is transmitted through semen from men to their sexual partners. Genital infections can increase HIV-1 RNA shedding in semen, but shedding also occurs in the absence of typical pathogens. We hypothesized that higher bacterial concentrations in semen would be associated with higher HIV-1 RNA levels. Methods: We analyzed semen samples from 42 HIV-1–seropositive Kenyan men using quantitative polymerase chain reaction (PCR) to assess bacterial concentrations and real-time PCR to measure HIV-1 RNA levels. Generalized estimation equations were used to evaluate associations between these 2 measures. Broad-range 16S rRNA gene PCR with pyrosequencing was performed on a subset of 13 samples to assess bacterial community composition. Results: Bacteria were detected in 96.6% of 88 samples by quantitative PCR. Semen bacterial concentration and HIV-1 RNA levels were correlated 0.30 (P = 0.01). The association between bacterial concentration and HIV-1 RNA detection was not significant after adjustment for antiretroviral therapy (ART) (adjusted odds ratio: 1.27, 95% CI: 0.84 to 1.91). Factors associated with semen bacterial concentration included insertive anal sex (adjusted beta 0.92, 95% CI: 0.12 to 1.73) and ART use (adjusted beta: −0.77, 95% CI: −1.50 to 0.04). Among 13 samples with pyrosequencing data, Corynebacterium spp., Staphylococcus spp., and Streptococcus spp. were most frequently detected. Conclusion: Most of these HIV-1–infected men had bacteria in their semen. ART use was associated with undetectable semen HIV-1 RNA and lower semen bacterial concentrations, whereas insertive anal sex was associated with higher bacterial concentrations. Additional studies evaluating the relationship between semen bacteria, inflammation, mucosal immunity, and HIV-1 shedding are needed to understand implications for HIV-1 transmission. PMID:27861240

  4. Sequence alignment reveals possible MAPK docking motifs on HIV proteins.

    Directory of Open Access Journals (Sweden)

    Perry Evans

    Full Text Available Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs. MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.

  5. Increased Risk of HIV-1 Transmission in Pregnancy: A Prospective Study among African HIV-1 Serodiscordant Couples

    Science.gov (United States)

    MUGO, Nelly R.; HEFFRON, Renee; DONNELL, Deborah; WALD, Anna; WERE, Edwin O.; REES, Helen; CELUM, Connie; KIARIE, James N.; COHEN, Craig R.; KAYINTEKORE, Kayitesi; BAETEN, Jared M.

    2011-01-01

    Background Physiologic and behavioral changes during pregnancy may alter HIV-1 susceptibility and infectiousness. Prospective studies exploring pregnancy and HIV-1 acquisition risk in women have found inconsistent results. No study has explored the effect of pregnancy on HIV-1 transmission risk from HIV-1 infected women to male partners. Methods In a prospective study of African HIV-1 serodiscordant couples, we evaluated the relationship between pregnancy and the risk of 1) HIV-1 acquisition among women and 2) HIV-1 transmission from women to men. Results 3321 HIV-1 serodiscordant couples were enrolled, 1085 (32.7%) with HIV-1 susceptible female partners and 2236 (67.3%) with susceptible male partners. HIV-1 incidence in women was 7.35 versus 3.01 per 100 person-years during pregnant and non-pregnant periods (hazard ratio [HR] 2.34, 95% confidence interval [CI] 1.33–4.09). This effect was attenuated and not statistically significant after adjusting for sexual behavior and other confounding factors (adjusted HR 1.71, 95% CI 0.93–3.12). HIV-1 incidence in male partners of infected women was 3.46 versus 1.58 per 100 person-years when their partners were pregnant versus not pregnant (HR 2.31, 95% CI 1.22–4.39). This effect was not attenuated in adjusted analysis (adjusted HR 2.47, 95% CI 1.26–4.85). Conclusions HIV-1 risk increased two-fold during pregnancy. Elevated risk of HIV-1 acquisition in pregnant women appeared in part to be explained by behavioral and other factors. This is the first study to show pregnancy increased the risk of female-to-male HIV-1 transmission, which may reflect biological changes of pregnancy that could increase HIV-1 infectiousness. PMID:21785321

  6. Trade-Space Analysis Tool for Constellations (TAT-C)

    Science.gov (United States)

    Le Moigne, Jacqueline; Dabney, Philip; de Weck, Olivier; Foreman, Veronica; Grogan, Paul; Holland, Matthew; Hughes, Steven; Nag, Sreeja

    2016-01-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: How many spacecraft should be included in the constellation? Which design has the best costrisk value? The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time.This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit Coverage, Reduction Metrics, and Cost Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance.TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model consisting of

  7. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection*

    Science.gov (United States)

    LoRicco, Josephine G.; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C.; Roan, Nadia R.; Makhatadze, George I.

    2016-01-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248–286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86–107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection. PMID:27226574

  8. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection.

    Science.gov (United States)

    LoRicco, Josephine G; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C; Roan, Nadia R; Makhatadze, George I

    2016-07-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248-286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86-107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Dendritic cells exposed to MVA-based HIV-1 vaccine induce highly functional HIV-1-specific CD8(+ T cell responses in HIV-1-infected individuals.

    Directory of Open Access Journals (Sweden)

    Núria Climent

    Full Text Available Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B in human monocyte-derived dendritic cells (MDDC and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α. MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8(+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8(+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4(+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

  10. Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands.

    Science.gov (United States)

    Sancineto, Luca; Iraci, Nunzio; Barreca, Maria Letizia; Massari, Serena; Manfroni, Giuseppe; Corazza, Gianmarco; Cecchetti, Violetta; Marcello, Alessandro; Daelemans, Dirk; Pannecouque, Christophe; Tabarrini, Oriana

    2014-09-01

    It is getting clearer that many drugs effective in different therapeutic areas act on multiple rather than single targets. The application of polypharmacology concepts might have numerous advantages especially for disease such as HIV/AIDS, where the rapid emergence of resistance requires a complex combination of more than one drug. In this paper, we have designed three hybrid molecules combining WM5, a quinolone derivative we previously identified as HIV Tat-mediated transcription (TMT) inhibitor, with the tricyclic core of nevirapine and BILR 355BS (BILR) non-nucleoside reverse transcriptase inhibitors (NNRTIs) to investigate whether it could be possible to obtain molecules acting on both transcription steps of the HIV replicative cycle. One among the three designed multiple ligands, reached this goal. Indeed, compound 1 inhibited both TMT and reverse transcriptase (RT) activity. Unexpectedly, while the anti-TMT activity exerted by compound 1 resulted into a selective inhibition of HIV-1 reactivation from latently infected OM10.1 cells, the anti-RT properties shown by all of the synthesized compounds did not translate into an anti-HIV activity in acutely infected cells. Thus, we have herein produced the proof of concept that the design of dual TMT-RT inhibitors is indeed possible, but optimization efforts are needed to obtain more potent derivatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Intelligent tit-for-tat in the iterated prisoner's dilemma game

    Science.gov (United States)

    Baek, Seung Ki; Kim, Beom Jun

    2008-07-01

    We seek a route to the equilibrium where all the agents cooperate in the iterated prisoner’s dilemma game on a two-dimensional plane, focusing on the role of tit-for-tat strategy. When a time horizon, within which a strategy can recall the past, is one time step, an equilibrium can be achieved as cooperating strategies dominate the whole population via proliferation of tit-for-tat. Extending the time horizon, we filter out poor strategies by simplified replicator dynamics and observe a similar evolutionary pattern to reach the cooperating equilibrium. In particular, the rise of a modified tit-for-tat strategy plays a central role, which implies how a robust strategy is adopted when provided with an enhanced memory capacity.

  12. HIV-1 Control by NK Cells via Reduced Interaction between KIR2DL2 and HLA-C∗12:02/C∗14:03.

    Science.gov (United States)

    Lin, Zhansong; Kuroki, Kimiko; Kuse, Nozomi; Sun, Xiaoming; Akahoshi, Tomohiro; Qi, Ying; Chikata, Takayuki; Naruto, Takuya; Koyanagi, Madoka; Murakoshi, Hayato; Gatanaga, Hiroyuki; Oka, Shinichi; Carrington, Mary; Maenaka, Katsumi; Takiguchi, Masafumi

    2016-11-22

    Natural killer (NK) cells control viral infection in part through the interaction between killer cell immunoglobulin-like receptors (KIRs) and their human leukocyte antigen (HLA) ligands. We investigated 504 anti-retroviral (ART)-free Japanese patients chronically infected with HIV-1 and identified two KIR/HLA combinations, KIR2DL2/HLA-C ∗ 12:02 and KIR2DL2/HLA-C ∗ 14:03, that impact suppression of HIV-1 replication. KIR2DL2 + NK cells suppressed viral replication in HLA-C ∗ 14:03 + or HLA-C ∗ 12:02 + cells to a significantly greater extent than did KIR2DL2 - NK cells in vitro. Functional analysis showed that the binding between HIV-1-derived peptide and HLA-C ∗ 14:03 or HLA-C ∗ 12:02 influenced KIR2DL2 + NK cell activity through reduced expression of the peptide-HLA (pHLA) complex on the cell surface (i.e., reduced KIR2DL2 ligand expression), rather than through reduced binding affinity of KIR2DL2 to the respective pHLA complexes. Thus, KIR2DL2/HLA-C ∗ 12:02 and KIR2DL2/HLA-C ∗ 14:03 compound genotypes have protective effects on control of HIV-1 through a mechanism involving KIR2DL2-mediated NK cell recognition of virus-infected cells, providing additional understanding of NK cells in HIV-1 infection. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Characterization of Gag and Nef-specific ELISpot-based CTL responses in HIV-1 infected Indian individuals.

    Science.gov (United States)

    Mendiratta, Sanjay; Vajpayee, Madhu; Malhotra, Uma; Kaushik, Shweta; Dar, Lalit; Mojumdar, Kamalika; Chauhan, Neeraj Kumar; Sreenivas, Vishnubhatla

    2009-02-01

    Cytotoxic T lymphocyte (CTL) responses to Gag have been most frequently linked to control of viremia whereas CTL responses to Nef have direct relationship with viral load. IFN-gamma ELISpot assay was used to screen CTL responses at single peptide level directed at HIV-1 subtype C Gag and Nef proteins in 30 antiretroviral therapy naive HIV-1 infected Indian individuals. PBMCs from 73.3% and 90% of the study population showed response to Gag and Nef antigens, respectively. The magnitude of Gag-specific CTL responses was inversely correlated with plasma viral load (r = -0.45, P = 0.001), whereas magnitude of Nef-specific responses was directly correlated (r = 0.115). Thirteen immunodominant regions (6 in Gag, 7 in Nef) were identified in the current study. The identification of Gag and Nef-specific responses across HIV-1 infected Indian population and targeting epitopes from multiple immunodominant regions may provide useful insight into the designing of new immunotherapy and vaccines.

  14. Insights into pathogenic events of HIV-associated Kaposi sarcoma and immune reconstitution syndrome related Kaposi sarcoma

    Directory of Open Access Journals (Sweden)

    Lemmer Johan

    2008-01-01

    Full Text Available Abstract A decrease in the incidence of human immune deficiency virus-associated Kaposi sarcoma (HIV-KS and regression of some established HIV-KS lesions is evident after the introduction of highly active anti-retroviral treatment (HAART, and is attributed to generalized immune restoration, to the reconstitution of human herpesvirus (HHV-8 specific cellular immune responses, and to the decrease in HIV Tat protein and HHV-8 loads following HAART. However, a small subset of HIV-seropositive subjects with a low CD4+ T cell count at the time of introduction of HAART, may develop HIV-KS as immune reconstitution inflammatory syndrome (IRIS within 8 weeks thereafter.

  15. Acyclovir and Transmission of HIV-1 from Persons Infected with HIV-1 and HSV-2

    Science.gov (United States)

    Celum, Connie; Wald, Anna; Lingappa, Jairam R.; Magaret, Amalia S.; Wang, Richard S.; Mugo, Nelly; Mujugira, Andrew; Baeten, Jared M.; Mullins, James I.; Hughes, James P.; Bukusi, Elizabeth A.; Cohen, Craig R.; Katabira, Elly; Ronald, Allan; Kiarie, James; Farquhar, Carey; Stewart, Grace John; Makhema, Joseph; Essex, Myron; Were, Edwin; Fife, Kenneth H.; de Bruyn, Guy; Gray, Glenda E.; McIntyre, James A.; Manongi, Rachel; Kapiga, Saidi; Coetzee, David; Allen, Susan; Inambao, Mubiana; Kayitenkore, Kayitesi; Karita, Etienne; Kanweka, William; Delany, Sinead; Rees, Helen; Vwalika, Bellington; Stevens, Wendy; Campbell, Mary S.; Thomas, Katherine K.; Coombs, Robert W.; Morrow, Rhoda; Whittington, William L.H.; McElrath, M. Juliana; Barnes, Linda; Ridzon, Renee; Corey, Lawrence

    2010-01-01

    BACKGROUND Most persons who are infected with human immunodeficiency virus type 1 (HIV-1) are also infected with herpes simplex virus type 2 (HSV-2), which is frequently reactivated and is associated with increased plasma and genital levels of HIV-1. Therapy to suppress HSV-2 reduces the frequency of reactivation of HSV-2 as well as HIV-1 levels, suggesting that suppression of HSV-2 may reduce the risk of transmission of HIV-1. METHODS We conducted a randomized, placebo-controlled trial of suppressive therapy for HSV-2 (acyclovir at a dose of 400 mg orally twice daily) in couples in which only one of the partners was seropositive for HIV-1 (CD4 count, ≥250 cells per cubic millimeter) and that partner was also infected with HSV-2 and was not taking antiretroviral therapy at the time of enrollment. The primary end point was transmission of HIV-1 to the partner who was not initially infected with HIV-1; linkage of transmissions was assessed by means of genetic sequencing of viruses. RESULTS A total of 3408 couples were enrolled at 14 sites in Africa. Of the partners who were infected with HIV-1, 68% were women, and the baseline median CD4 count was 462 cells per cubic millimeter. Of 132 HIV-1 seroconversions that occurred after randomization (an incidence of 2.7 per 100 person-years), 84 were linked within couples by viral sequencing: 41 in the acyclovir group and 43 in the placebo group (hazard ratio with acyclovir, 0.92, 95% confidence interval [CI], 0.60 to 1.41; P = 0.69). Suppression with acyclovir reduced the mean plasma concentration of HIV-1 by 0.25 log10 copies per milliliter (95% CI, 0.22 to 0.29; P<0.001) and the occurrence of HSV-2–positive genital ulcers by 73% (risk ratio, 0.27; 95% CI, 0.20 to 0.36; P<0.001). A total of 92% of the partners infected with HIV-1 and 84% of the partners not infected with HIV-1 remained in the study for 24 months. The level of adherence to the dispensed study drug was 96%. No serious adverse events related to acyclovir

  16. Methamphetamine inhibits HIV-1 replication in CD4+ T cells by modulating anti-HIV-1 miRNA expression.

    Science.gov (United States)

    Mantri, Chinmay K; Mantri, Jyoti V; Pandhare, Jui; Dash, Chandravanu

    2014-01-01

    Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamphetamine on HIV-1 replication in human CD4(+) T cells that serve as the primary targets of infection in vivo are not clearly understood. Therefore, we examined HIV-1 replication in primary CD4(+) T cells in the presence of methamphetamine in a dose-dependent manner. Our results demonstrate that methamphetamine had a minimal effect on HIV-1 replication at concentrations of 1 to 50 μmol/L. However, at concentrations >100 μmol/L, it inhibited HIV-1 replication in a dose-dependent manner. We also discovered that methamphetamine up-regulated the cellular anti-HIV-1 microRNAs (miR-125b, miR-150, and miR-28-5p) in CD4(+) T cells. Knockdown experiments illustrated that up-regulation of the anti-HIV miRNAs inhibited HIV-1 replication. These results are contrary to the paradigm that methamphetamine accentuates HIV-1 pathogenesis by increasing HIV-1 replication. Therefore, our findings underline the complex interaction between drug use and HIV-1 and necessitate comprehensive understanding of the effects of methamphetamine on HIV-1 pathogenesis. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. HIV-1 genetic diversity and its distribution characteristics among newly diagnosed HIV-1 individuals in Hebei province, China.

    Science.gov (United States)

    Lu, Xinli; Zhao, Cuiying; Wang, Wei; Nie, Chenxi; Zhang, Yuqi; Zhao, Hongru; Chen, Suliang; Cui, Ze

    2016-01-01

    Since the first HIV-1 case in 1989, Hebei province has presented a clearly rising trend of HIV-1 prevalence, and HIV-1 genetic diversity has become the vital barrier to HIV prevention and control in this area. To obtain detailed information of HIV-1 spread in different populations and in different areas of Hebei, a cross-sectional HIV-1 molecular epidemiological investigation was performed across the province. Blood samples of 154 newly diagnosed HIV-1 individuals were collected from ten prefectures in Hebei using stratified sampling. Partial gag and env genes were amplified and sequenced. HIV-1 genotypes were identified by phylogenetic tree analyses. Among the 139 subjects genotyped, six HIV-1 subtypes were identified successfully, including subtype B (41.0 %), CRF01_AE (40.3 %), CRF07_BC (11.5 %), CRF08_BC (4.3 %), unique recombinant forms (URFs) (1.4 %) and subtype C (1.4 %). Subtype B was identified as the most frequent subtype. Two URF recombination patterns were the same as CRF01_AE/B. HIV-1 genotype distribution showed a significant statistical difference in different demographic characteristics, such as source (P  0.05). The differences in HIV-1 genotype distribution were closely associated with transmission routes. Particularly, all six subtype strains were found in heterosexuals, showing that HIV-1 has spread from the high-risk populations to the general populations in Hebei, China. In addition, CRF01_AE instead of subtype B has become the major strain of HIV-1 infection among homosexuals. Our study revealed HIV-1 evolution and genotype distribution by investigating newly diagnosed HIV-1 individuals in Hebei, China. This study provides important information to enhance the strategic plan for HIV prevention and control in China.

  18. Entry inhibitor-based microbicides are active in vitro against HIV-1 isolates from multiple genetic subtypes

    International Nuclear Information System (INIS)

    Ketas, Thomas J.; Schader, Susan M.; Zurita, Juan; Teo, Esther; Polonis, Victoria; Lu Min; Klasse, Per Johan; Moore, John P.

    2007-01-01

    Inhibitors of viral entry are under consideration as topical microbicides to prevent HIV-1 sexual transmission. Small molecules targeting HIV-1 gp120 (BMS-378806) or CCR5 (CMPD167), and a peptide fusion inhibitor (C52L), each blocks vaginal infection of macaques by a SHIV. A microbicide, however, must be active against multiple HIV-1 variants. We therefore tested BMS-C (a BMS-378806 derivative), CMPD167, C52L and the CXCR4 ligand AMD3465, alone and in combination, against 25 primary R5, 12 X4 and 7 R5X4 isolates from subtypes A-G. At high concentrations (0.1-1 μM), the replication of most R5 isolates in human donor lymphocytes was inhibited by > 90%. At lower concentrations, double and triple combinations were more effective than individual inhibitors. Similar results were obtained with X4 viruses when AMD3465 was substituted for CMPD167. The R5X4 viruses were inhibited by combining AMD3465 with CMPD167, or by the coreceptor-independent compounds. Thus, combining entry inhibitors may improve microbicide effectiveness

  19. Host-specific adaptation of HIV-1 subtype B in the Japanese population.

    Science.gov (United States)

    Chikata, Takayuki; Carlson, Jonathan M; Tamura, Yoshiko; Borghan, Mohamed Ali; Naruto, Takuya; Hashimoto, Masao; Murakoshi, Hayato; Le, Anh Q; Mallal, Simon; John, Mina; Gatanaga, Hiroyuki; Oka, Shinichi; Brumme, Zabrina L; Takiguchi, Masafumi

    2014-05-01

    The extent to which HIV-1 clade B strains exhibit population-specific adaptations to host HLA alleles remains incompletely known, in part due to incomplete characterization of HLA-associated HIV-1 polymorphisms (HLA-APs) in different global populations. Moreover, it remains unknown to what extent the same HLA alleles may drive significantly different escape pathways across populations. As the Japanese population exhibits distinctive HLA class I allele distributions, comparative analysis of HLA-APs between HIV-1 clade B-infected Japanese and non-Asian cohorts could shed light on these questions. However, HLA-APs remain incompletely mapped in Japan. In a cohort of 430 treatment-naive Japanese with chronic HIV-1 clade B infection, we identified 284 HLA-APs in Gag, Pol, and Nef using phylogenetically corrected methods. The number of HLA-associated substitutions in Pol, notably those restricted by HLA-B*52:01, was weakly inversely correlated with the plasma viral load (pVL), suggesting that the transmission and persistence of B*52:01-driven Pol mutations could modulate the pVL. Differential selection of HLA-APs between HLA subtype members, including those differing only with respect to substitutions outside the peptide-binding groove, was observed, meriting further investigation as to their mechanisms of selection. Notably, two-thirds of HLA-APs identified in Japan had not been reported in previous studies of predominantly Caucasian cohorts and were attributable to HLA alleles unique to, or enriched in, Japan. We also identified 71 cases where the same HLA allele drove significantly different escape pathways in Japan versus predominantly Caucasian cohorts. Our results underscore the distinct global evolution of HIV-1 clade B as a result of host population-specific cellular immune pressures. Cytotoxic T lymphocyte (CTL) escape mutations in HIV-1 are broadly predictable based on the HLA class I alleles expressed by the host. Because HLA allele distributions differ among

  20. Towards novel therapeutics for HIV through fragment-based screening and drug design.

    Science.gov (United States)

    Tiefendbrunn, Theresa; Stout, C David

    2014-01-01

    Fragment-based drug discovery has been applied with varying levels of success to a number of proteins involved in the HIV (Human Immunodeficiency Virus) life cycle. Fragment-based approaches have led to the discovery of novel binding sites within protease, reverse transcriptase, integrase, and gp41. Novel compounds that bind to known pockets within CCR5 have also been identified via fragment screening, and a fragment-based approach to target the TAR-Tat interaction was explored. In the context of HIV-1 reverse transcriptase (RT), fragment-based approaches have yielded fragment hits with mid-μM activity in an in vitro activity assay, as well as fragment hits that are active against drug-resistant variants of RT. Fragment-based drug discovery is a powerful method to elucidate novel binding sites within proteins, and the method has had significant success in the context of HIV proteins.

  1. Selective elimination of HIV-1-infected cells by Env-directed, HIV-1-based virus-like particles

    International Nuclear Information System (INIS)

    Peretti, Silvia; Schiavoni, Ilaria; Pugliese, Katherina; Federico, Maurizio

    2006-01-01

    We recently showed that both replicating and resting cells cultivated with ganciclovir (GCV) were killed when challenged with vesicular stomatitis virus G glycoprotein pseudotyped HIV-1-based virus-like particles (VLPs) carrying the Nef7 (i.e., an HIV-1 Nef mutant incorporating in virions at high levels)/herpes simplex virus-1 thymidine kinase (HSV-TK) fusion product. On this basis, a novel anti-HIV therapeutic approach based on Nef7/TK VLPs expressing X4 or R5 HIV cell receptor complexes has been attempted. We here report that (CD4-CXCR4) and (CD4-CCR5) Nef7-based VLPs efficiently enter cells infected by X4- or R5-tropic HIV-1 strains, respectively. Importantly, the delivery of the VLP-associated Nef7/TK led to cell death upon GCV treatment. Of interest, VLPs were effective also against non-replicating, HIV-1-infected primary human monocyte-derived macrophages. HIV-targeted VLPs represent a promising candidate for the treatment of persistently HIV-1-infected cells that are part of virus reservoirs resistant to HAART therapies

  2. Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA.

    Science.gov (United States)

    Darlix, J L; Vincent, A; Gabus, C; de Rocquigny, H; Roques, B

    1993-08-01

    Two DNA strand transfer reactions take place during reverse transcription of the retroviral genome. The first transfer, that of the minus-strand strong stop DNA from the 5' end of the viral RNA to the 3' end, has been studied in vitro with two RNAs mimicking the 5' and 3' regions of the HIV1 genome and with nucleocapsid protein, NCp7, and reverse transcriptase. The results show that NCp7 strongly activates the 5' to 3' DNA strand transfer during reverse transcription while a basic peptide resembling NCp7 is inactive. Activation of the first transfer by several NCp7 derived peptides and the influence of the terminal redundancies (R) present at the 5' and 3' ends of HIV1 RNA were also examined. The first transfer is optimal in the presence of intact NCp7 and necessitates R on both the 5' and 3' RNAs. Sequencing of full length viral DNA products reveals approximately 40% misincorporations at the first nucleotide beyond the transfer point. If such base misincorporations occur during proviral DNA synthesis with possible homologous recombinations it may well contribute to the high level of genetic variability of HIV.

  3. HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis

    Science.gov (United States)

    2018-01-01

    ABSTRACT Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the

  4. Engineering of a novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Yainoy, Sakda; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Ayudhya, Chartchalerm Isarankura Na; Prachayasittikul, Virapong

    2016-04-01

    Cooperative function of superoxide dismutase (SOD) and catalase (CAT), in protection against oxidative stress, is known to be more effective than the action of either single enzyme. Chemical conjugation of the two enzymes resulted in molecules with higher antioxidant activity and therapeutic efficacy. However, chemical methods holds several drawbacks; e.g., loss of enzymatic activity, low homogeneity, time-consuming, and the need of chemical residues removal. Yet, the conjugated enzymes have never been proven to internalize into target cells. In this study, by employing genetic and protein engineering technologies, we reported designing and production of a bi-functional protein with SOD and CAT activities for the first time. To enable cellular internalization, cell penetrating peptide from HIV-1 Tat (TAT) was incorporated. Co-expression of CAT-MnSOD and MnSOD-TAT fusion genes allowed simultaneous self-assembly of the protein sequences into a large protein complex, which is expected to contained one tetrameric structure of CAT, four tetrameric structures of MnSOD and twelve units of TAT. The protein showed cellular internalization and superior protection against paraquat-induced cell death as compared to either complex bi-functional protein without TAT or to native enzymes fused with TAT. This study not only provided an alternative strategy to produce multifunctional protein complex, but also gained an insight into the development of therapeutic agent against oxidative stress-related conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Identifying HIV-1 dual infections

    Directory of Open Access Journals (Sweden)

    Cornelissen Marion

    2007-09-01

    Full Text Available Abstract Transmission of human immunodeficiency virus (HIV is no exception to the phenomenon that a second, productive infection with another strain of the same virus is feasible. Experiments with RNA viruses have suggested that both coinfections (simultaneous infection with two strains of a virus and superinfections (second infection after a specific immune response to the first infecting strain has developed can result in increased fitness of the viral population. Concerns about dual infections with HIV are increasing. First, the frequent detection of superinfections seems to indicate that it will be difficult to develop a prophylactic vaccine. Second, HIV-1 superinfections have been associated with accelerated disease progression, although this is not true for all persons. In fact, superinfections have even been detected in persons controlling their HIV infections without antiretroviral therapy. Third, dual infections can give rise to recombinant viruses, which are increasingly found in the HIV-1 epidemic. Recombinants could have increased fitness over the parental strains, as in vitro models suggest, and could exhibit increased pathogenicity. Multiple drug resistant (MDR strains could recombine to produce a pan-resistant, transmittable virus. We will describe in this review what is presently known about super- and re-infection among ambient viral infections, as well as the first cases of HIV-1 superinfection, including HIV-1 triple infections. The clinical implications, the impact of the immune system, and the effect of anti-retroviral therapy will be covered, as will as the timing of HIV superinfection. The methods used to detect HIV-1 dual infections will be discussed in detail. To increase the likelihood of detecting a dual HIV-1 infection, pre-selection of patients can be done by serotyping, heteroduplex mobility assays (HMA, counting the degenerate base codes in the HIV-1 genotyping sequence, or surveying unexpected increases in the

  6. A novel strategy for efficient production of anti-V3 human scFvs against HIV-1 clade C

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2012-11-01

    Full Text Available Abstract Background Production of human monoclonal antibodies that exhibit broadly neutralizing activity is needed for preventing HIV-1 infection, however only a few such antibodies have been generated till date. Isolation of antibodies by the hybridoma technology is a cumbersome process with fewer yields. Further, the loss of unstable or slowly growing clones which may have unique binding specificities often occurs during cloning and propagation and the strongly positive clones are often lost. This has been avoided by the process described in this paper, wherein, by combining the strategy of EBV transformation and recombinant DNA technology, we constructed human single chain variable fragments (scFvs against the third variable region (V3 of the clade C HIV-1 envelope. Results An antigen specific phage library of 7000 clones was constructed from the enriched V3- positive antibody secreting EBV transformed cells. By ligation of the digested scFv DNA into phagemid vector and bio panning against the HIV-1 consensus C and B V3 peptides followed by random selection of 40 clones, we identified 15 clones that showed V3 reactivity in phage ELISA. DNA fingerprinting analysis and sequencing showed that 13 out of the 15 clones were distinct. Expression of the positive clones was tested by SDS-PAGE and Western blot. All the 13 anti-V3 scFvs showed cross-reactivity against both the clade C and B V3 peptides and did not show any reactivity against other unrelated peptides in ELISA. Preliminary neutralization assays indicated varying degrees of neutralization of clade C and B viruses. EBV transformation, followed by antigen selection of lines to identify specific binders, enabled the selection of phage from un-cloned lines for scFv generation, thus avoiding the problems of hybridoma technology. Moreover, as the clones were pretested for antigen binding, a comparatively small library sufficed for the selection of a considerable number of unique antigen binding

  7. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  8. Reducing turnaround time for laboratory test results does not improve retention of stable HIV-infected adults on POV program: experience from Uganda.

    Science.gov (United States)

    Maselle, Edna; Muhanguzi, Asaph; Muhumuza, Simon; Nansubuga, Jeniffer; Nawavvu, Cecilia; Namusobya, Jeniffer; Kamya, Moses R; Semitala, Fred C

    2014-01-01

    HIV/ AIDS clinics in resource limited settings (RLS) face increasing numbers of patients and workforce shortage [1, 2]. To address these challenges, efficient models of care like pharmacy only visits (POV) and nurse only visits (NOV) are recommended [3]. The Makerere University Joint AIDS Program (MJAP), a PEPFAR funded program providing care to over 42,000 HIV infected adults has implemented the POV model since 2009. In this model, stable patients on antiretroviral therapy (ART) with adherence to ART >95% and Karnofsky score >90% are reviewed by a doctor every four months but visit pharmacy for ART re-fills every two months. A study conducted in August 2011 showed low retention on the POV program with symptomatic diseases, pending CD4 count, complete blood count results, and poor adherence to ART as the major reasons for the non-retention in the POV program. To improve retention on POV, the TAT (Turnaround Time) for laboratory results (the main reason for non-retention in the previous study) was reduced from one month to one week. In August 2012, the study was repeated to assess the effect of reducing TAT on improving retention one year after patients were placed on POV. A cohort analysis of data from patients in August 2011 and in August 2012 on POV was done. We compared retention of POV before and after reducing the TAT for laboratory results. Retention on POV was 12.0% (95% CI 9.50-14.7) among 619 patients in 2011, (70% Females), mean age was 33 years, Standard Deviation (SD) 8.5 compared to 11.1% (95% CI 9.15-13.4) among 888 patients (70% Females), mean age 38.3 years, SD 8.9 in 2012 (p=0.59). The main reasons for non-retention on the POV program in 2012 were poor adherence to ART (23%) and missed clinic appointments (14%). Reducing TAT for laboratory test results did not improve retention of stable HIV-infected adults on POV in our clinic. Strategies for improving adherence to ART and keeping clinic appointments need to be employed to balance workload and

  9. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    Science.gov (United States)

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  10. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    Science.gov (United States)

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Enquête internationale sur l'état de l'art et l'état de la pratique en géotechnique

    Science.gov (United States)

    Acosta-Martinez, Hugo; Delage, Pierre; Nicks, Jennifer; Day, Peter

    2018-05-01

    Cet article présente une synthèse des résultats de l'enquête internationale sur l'état de l'art et l'état de la pratique en ingénierie géotechnique lancée par le Groupe présidentiel des entreprises associées et le Comité de supervision technique de la Société internationale de mécanique des sols et de géotechnique en mars 2017. Il résume également les discussions qui ont eu lieu sur le sujet durant le 19e CIMSG à Séoul, le 20 septembre 2017.

  12. The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation

    OpenAIRE

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J.; Telenti, Amalio; de Bakker, Paul I.W.; Walker, Bruce D.; Jia, Xiaoming; McLaren, Paul J.; Ripke, Stephan; Brumme, Chanson J.; Pulit, Sara L.; Telenti, Amalio; Carrington, Mary; Kadie, Carl M.; Carlson, Jonathan M.

    2010-01-01

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. W...

  13. Evolution of inhibitor-resistant natural mutant forms of HIV-1 protease probed by pre-steady state kinetic analysis.

    Science.gov (United States)

    Zakharova, Maria Yu; Kuznetsova, Alexandra A; Kaliberda, Elena N; Dronina, Maria A; Kolesnikov, Alexander V; Kozyr, Arina V; Smirnov, Ivan V; Rumsh, Lev D; Fedorova, Olga S; Knorre, Dmitry G; Gabibov, Alexander G; Kuznetsov, Nikita A

    2017-11-01

    Pre-steady state kinetic analysis of mechanistic features of substrate binding and processing is crucial for insight into the evolution of inhibitor-resistant forms of HIV-1 protease. These data may provide a correct vector for rational drug design assuming possible intrinsic dynamic effects. These data should also give some clues to the molecular mechanism of protease action and resistance to inhibitors. Here we report pre-steady state kinetics of the interaction of wild type or mutant forms of HIV-1 protease with a FRET-labeled peptide. The three-stage "minimal" kinetic scheme with first and second reversible steps of substrate binding and with following irreversible peptide cleavage step adequately described experimental data. For the first time, a set of "elementary" kinetic parameters of wild type HIV-1 protease and its natural mutant inhibitor-resistant forms MDR-HM, ANAM-11 and prDRV4 were compared. Inhibitors of the first and second generation were used to estimate the inhibitory effects on HIV-1 protease activity. The resulting set of kinetic data supported that the mutant forms are kinetically unaffected by inhibitors of the first generation, proving their functional resistance to these compounds. The second generation inhibitor darunavir inhibited mutant forms MDR-HM and ANAM-11, but was ineffective against prDRV4. Our kinetic data revealed that these inhibitors induced different conformational changes in the enzyme and, thereby they have different mode of binding in the enzyme active site. These data confirmed hypothesis that the driving force of the inhibitor-resistance evolution is disruption of enzyme-inhibitor complex by changing of the contact network in the inhibitor binding site. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. The effect of cholecalciferol and calcitriol on biochemical bone markers in HIV type 1-infected males: results of a clinical trial.

    Science.gov (United States)

    Bang, Ulrich Christian; Kolte, Lilian; Hitz, Mette; Schierbeck, Louise Lind; Nielsen, Susanne Dam; Benfield, Thomas; Jensen, Jens-Erik Beck

    2013-04-01

    HIV-1-infected patients have an increased risk of osteoporosis and fractures. The main objective of this study was to evaluate the bone metabolism in HIV-1-infected patients exposed to calcitriol and cholecalciferol. We also investigated the relationship between T cells and bone markers. We conducted a placebo-controlled randomized study running for 16 weeks including 61 HIV-1-infected males, of whom 51 completed the protocol. Nineteen participants were randomized to daily treatment with (A) 0.5-1.0 μg calcitriol and 1,200 IU (30 μg) cholecalciferol, 17 participants to (B) 1,200 IU cholecalciferol, and 15 participants to (C) placebo. At baseline and after 16 weeks, we determined collagen type 1 trimeric cross-linked peptide (CTx), procollagen type 1 N-terminal peptide (P1NP), parathyroid hormone (PTH), ionized calcium, 25-hydroxyvitamin D (25OHD), and 1,25-dihydroxyvitamin D [1,25(OH)2D]. We determined naive CD4(+) and CD8(+), activated CD4(+) and CD8(+), and regulatory CD4(+)CD25(+)CD127(low) T lymphocytes. Baseline levels of P1NP and CTx correlated (coefficient 0.5, p<0.001) with each other but not with PTH, 25OHD, or 1,25(OH)2D. In patients receiving calcitriol and cholecalciferol, the mean levels of P1NP (p<0.001) and CTx (p= 0.002) declined significantly compared to our placebo group. Based on changes in P1NP and CTx, we estimated that net bone formation occurred more frequently in group A compared to groups B and C. PTH correlated inversely with naive CD4(+) and CD8(+) cells. Otherwise, no relationships between bone markers and T lymphocytes were demonstrated. Supplementation with calcitriol and cholecalciferol induced biochemical indications of bone formation in HIV-1 patients.

  15. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity.

    Science.gov (United States)

    Faroux-Corlay, B; Clary, L; Gadras, C; Hammache, D; Greiner, J; Santaella, C; Aubertin, A M; Vierling, P; Fantini, J

    2000-07-24

    Galactosylceramide (GalCer) is an alternative receptor allowing HIV-1 entry into CD4(-)/GalCer(+) cells. This glycosphingolipid recognizes the V3 loop of HIV gp120, which plays a key role in the fusion of the HIV envelope and cellular membrane. To inhibit HIV uptake and infection, we designed and synthesized analogs of GalCer. These amphiphiles and bolaamphiphiles consist of single and double hydrocarbon and/or fluorocarbon chain beta-linked to galactose and galactosamine. They derive from serine (GalSer), cysteine (GalCys), and ethanolamine (GalAE). The anti-HIV activity and cytotoxicity of these galactolipids were evaluated in vitro on CEM-SS (a CD4(+) cell line), HT-29, a CD4(-) cell line expressing high levels of GalCer receptor, and/or HT29 genetically modified to express CD4. GalSer and GalAE derivatives, tested in aqueous medium or as part of liposome preparation, showed moderate anti-HIV-1 activities (IC50 in the 20-220 microM range), whereas none of the GalCys derivatives was found to be active. Moreover, only some of these anti-HIV active analogs inhibited the binding of [3H]suramin (a polysulfonyl compound which displays a high affinity for the V3 loop) to SPC3, a synthetic peptide which contains the conserved GPGRAF region of the V3 loop. Our results most likely indicate that the neutralization of the virion through masking of this conserved V3 loop region is not the only mechanism involved in the HIV-1 antiviral activity of our GalCer analogs.

  16. États financiers 2015–2016

    International Development Research Centre (IDRC) Digital Library (Canada)

    une assurance raisonnable qu'il pourra réaliser ses objectifs. .... les employés et leur procure des services de santé avant ...... indépendance, à un audit des états financiers annuels, conformément aux normes d'audit généralement reconnues.

  17. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    Energy Technology Data Exchange (ETDEWEB)

    Di Nunzio, Francesca, E-mail: francesca.di-nunzio@pasteur.fr [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Fricke, Thomas [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States); Miccio, Annarita [University of Modena e Reggio Emilia, Centro di Medicina Rigenerativa, Modena (Italy); Valle-Casuso, Jose Carlos; Perez, Patricio [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States); Souque, Philippe [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Rizzi, Ermanno; Severgnini, Marco [Institute of Biomedical Technologies, CNR, Milano (Italy); Mavilio, Fulvio [University of Modena e Reggio Emilia, Centro di Medicina Rigenerativa, Modena (Italy); Genethon, Evry (France); Charneau, Pierre [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Diaz-Griffero, Felipe, E-mail: felipe.diaz-griffero@einstein.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States)

    2013-05-25

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites.

  18. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    International Nuclear Information System (INIS)

    Di Nunzio, Francesca; Fricke, Thomas; Miccio, Annarita; Valle-Casuso, Jose Carlos; Perez, Patricio; Souque, Philippe; Rizzi, Ermanno; Severgnini, Marco; Mavilio, Fulvio; Charneau, Pierre; Diaz-Griffero, Felipe

    2013-01-01

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites

  19. Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model.

    Directory of Open Access Journals (Sweden)

    Silvana Pasetto

    Full Text Available HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01-100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic, H9 and PBMC cells plus HIV-1 MN (X4 tropic, and the dual tropic (X4R5 HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research.

  20. L'état de plasma le feu de l'Univers

    CERN Document Server

    Lehner, Thierry

    2004-01-01

    Dans l'Antiquité, les Grecs considéraient que les constituants du monde dérivaient de quatre éléments essentiels : la terre, l'eau, l'air et le feu. Il n'est pas difficile de voir dans les trois premiers l'équivalent de nos états solide, liquide et gazeux. Mais l'état physique le plus répandu dans l'Univers - correspondant au feu des Anciens - n'est apparu que récemment et n'a été reconnu par la communauté des physiciens qu'en 1928 : c'est le plasma. Cet état très étrange - gazeux, électrique, lumineux, impalpable - reste le plus exotique et le plus inattendu. Il a donné naissance aux trois autres états puisque, à l'exception des éléments ultra-légers que sont l'hydrogène et l'hélium, tous ceux qui constituent notre monde (carbone, oxygène, fer, etc.) sont apparus dans ces fourneaux gigantesques, ces monstres de plasma, qu'étaient les premières étoiles. La vie elle-même en découle par ricochet, ce qui a permis de dire que nous ne sommes que des " poussières d'étoiles ". Décou...

  1. Variable processing and cross-presentation of HIV by dendritic cells and macrophages shapes CTL immunodominance and immune escape.

    Directory of Open Access Journals (Sweden)

    Jens Dinter

    2015-03-01

    Full Text Available Dendritic cells (DCs and macrophages (Møs internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8⁺ T cells (CTL. However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation.

  2. Cytoplasmic Dynein Promotes HIV-1 Uncoating

    Directory of Open Access Journals (Sweden)

    Paulina Pawlica

    2014-11-01

    Full Text Available Retroviral capsid (CA cores undergo uncoating during their retrograde transport (toward the nucleus, and/or after reaching the nuclear membrane. However, whether HIV-1 CA core uncoating is dependent upon its transport is not understood. There is some evidence that HIV-1 cores retrograde transport involves cytoplasmic dynein complexes translocating on microtubules. Here we investigate the role of dynein-dependent transport in HIV-1 uncoating. To interfere with dynein function, we depleted dynein heavy chain (DHC using RNA interference, and we over-expressed p50/dynamitin. In immunofluorescence microscopy experiments, DHC depletion caused an accumulation of CA foci in HIV-1 infected cells. Using a biochemical assay to monitor HIV-1 CA core disassembly in infected cells, we observed an increase in amounts of intact (pelletable CA cores upon DHC depletion or p50 over-expression. Results from these two complementary assays suggest that inhibiting dynein-mediated transport interferes with HIV-1 uncoating in infected cells, indicating the existence of a functional link between HIV-1 transport and uncoating.

  3. Induction of a protein-targeted catalytic response in autoimmune prone mice: antibody-mediated cleavage of HIV-1 glycoprotein GP120.

    Science.gov (United States)

    Ponomarenko, Natalia A; Vorobiev, Ivan I; Alexandrova, Elena S; Reshetnyak, Andrew V; Telegin, Georgy B; Khaidukov, Sergey V; Avalle, Bérangère; Karavanov, Alexander; Morse, Herbert C; Thomas, Daniel; Friboulet, Alain; Gabibov, Alexander G

    2006-01-10

    We have induced a polyclonal IgG that degrades the HIV-1 surface antigen, glycoprotein gp120, by taking advantage of the susceptibility of SJL mice to a peptide-induced autoimmune disorder, experimental autoimmune encephalomyelitis (EAE). Specific pathogen-free SJL mice were immunized with structural fragments of gp120, fused in-frame with encephalitogenic peptide MBP(85-101). It has resulted in a pronounced disease-associated immune response against antigens. A dramatic increase of gp120 degradation level by purified polyclonal IgG from immunized versus nonimmunized mice has been demonstrated by a newly developed fluorescence-based assay. This activity was inhibited by anti-mouse immunoglobulin antibodies as well as by Ser- and His-reactive covalent inhibitors. A dominant proteolysis site in recombinant gp120 incubated with purified polyclonal IgG from immunized mice was shown by SDS-PAGE. The SELDI-based mass spectrometry revealed that these antibodies exhibited significant specificity toward the Pro484-Leu485 peptide bond. The sequence surrounding this site is present in nearly half of the HIV-I variants. This novel strategy can be generalized for creating a catalytic vaccine against viral pathogens.

  4. Synergistic activity profile of griffithsin in combination with tenofovir, maraviroc and enfuvirtide against HIV-1 clade C

    International Nuclear Information System (INIS)

    Ferir, Geoffrey; Palmer, Kenneth E.; Schols, Dominique

    2011-01-01

    Griffithsin (GRFT) is possibly the most potent anti-HIV peptide found in natural sources. Due to its potent and broad-spectrum antiviral activity and unique safety profile it has great potential as topical microbicide component. Here, we evaluated various combinations of GRFT against HIV-1 clade B and clade C isolates in primary peripheral blood mononuclear cells (PBMCs) and in CD4 + MT-4 cells. In all combinations tested, GRFT showed synergistic activity profile with tenofovir, maraviroc and enfuvirtide based on the median effect principle with combination indices (CI) varying between 0.34 and 0.79 at the calculated EC 95 level. Furthermore, the different glycosylation patterns on the viral envelope of clade B and clade C gp120 had no observable effect on the synergistic interactions. Overall, we can conclude that the evaluated two-drug combination increases their antiviral potency and supports further clinical investigations in pre-exposure prophylaxis for GRFT combinations in the context of HIV-1 clade C infection.

  5. In vitro assessment of TAT — Ciliary Neurotrophic Factor therapeutic potential for peripheral nerve regeneration

    International Nuclear Information System (INIS)

    Barbon, Silvia; Stocco, Elena; Negro, Alessandro; Dalzoppo, Daniele; Borgio, Luca; Rajendran, Senthilkumar; Grandi, Francesca; Porzionato, Andrea; Macchi, Veronica; De Caro, Raffaele

    2016-01-01

    In regenerative neurobiology, Ciliary Neurotrophic Factor (CNTF) is raising high interest as a multifunctional neurocytokine, playing a key role in the regeneration of injured peripheral nerves. Despite its promising trophic and regulatory activity, its clinical application is limited by the onset of severe side effects, due to the lack of efficient intracellular trafficking after administration. In this study, recombinant CNTF linked to the transactivator transduction domain (TAT) was investigated in vitro and found to be an optimized fusion protein which preserves neurotrophic activity, besides enhancing cellular uptake for therapeutic advantage. Moreover, a compelling protein delivery method was defined, in the future perspective of improving nerve regeneration strategies. Following determination of TAT-CNTF molecular weight and concentration, its specific effect on neural SH-SY5Y and PC12 cultures was assessed. Cell proliferation assay demonstrated that the fusion protein triggers PC12 cell growth within 6 h of stimulation. At the same time, the activation of signal transduction pathway and enhancement of cellular trafficking were found to be accomplished in both neural cell lines after specific treatment with TAT-CNTF. Finally, the recombinant growth factor was successfully loaded on oxidized polyvinyl alcohol (PVA) scaffolds, and more efficiently released when polymer oxidation rate increased. Taken together, our results highlight that the TAT domain addiction to the protein sequence preserves CNTF specific neurotrophic activity in vitro, besides improving cellular uptake. Moreover, oxidized PVA could represent an ideal biomaterial for the development of nerve conduits loaded with the fusion protein to be delivered to the site of nerve injury. - Highlights: • TAT-CNTF is an optimized fusion protein that preserves neurotrophic activity. • In neural cell lines, TAT-CNTF triggers the activation of signal transduction. • Fast cellular uptake of TAT-CNTF was

  6. In vitro assessment of TAT — Ciliary Neurotrophic Factor therapeutic potential for peripheral nerve regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Barbon, Silvia, E-mail: silvia.barbon@yahoo.it [Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua (Italy); Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) ONLUS, Via De Sanctis 10, Caselle di Selvazzano Dentro, 35030 Padua (Italy); Stocco, Elena, E-mail: elena.stocco@gmail.com [Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua (Italy); Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) ONLUS, Via De Sanctis 10, Caselle di Selvazzano Dentro, 35030 Padua (Italy); Negro, Alessandro, E-mail: alessandro.negro@unipd.it [Department of Biomedical Sciences, University of Padova, Via Colombo 3, 35121 Padua (Italy); Dalzoppo, Daniele, E-mail: daniele.dalzoppo@unipd.it [Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua (Italy); Borgio, Luca, E-mail: borgio.luca@gmail.com [Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua (Italy); Rajendran, Senthilkumar, E-mail: senthilstem@gmail.com [Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua (Italy); Grandi, Francesca, E-mail: francesca.grandi7825@gmail.com [Department of Women' s and Children' s Health, Pediatric Surgery, University of Padua, Via Giustiniani 3, 35121 Padua (Italy); Porzionato, Andrea, E-mail: andrea.porzionato@unipd.it [Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Via Gabelli 65, 35121 Padua (Italy); Macchi, Veronica, E-mail: veronica.macchi@unipd.it [Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Via Gabelli 65, 35121 Padua (Italy); De Caro, Raffaele, E-mail: raffaele.decaro@unipd.it [Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Via Gabelli 65, 35121 Padua (Italy); and others

    2016-10-15

    In regenerative neurobiology, Ciliary Neurotrophic Factor (CNTF) is raising high interest as a multifunctional neurocytokine, playing a key role in the regeneration of injured peripheral nerves. Despite its promising trophic and regulatory activity, its clinical application is limited by the onset of severe side effects, due to the lack of efficient intracellular trafficking after administration. In this study, recombinant CNTF linked to the transactivator transduction domain (TAT) was investigated in vitro and found to be an optimized fusion protein which preserves neurotrophic activity, besides enhancing cellular uptake for therapeutic advantage. Moreover, a compelling protein delivery method was defined, in the future perspective of improving nerve regeneration strategies. Following determination of TAT-CNTF molecular weight and concentration, its specific effect on neural SH-SY5Y and PC12 cultures was assessed. Cell proliferation assay demonstrated that the fusion protein triggers PC12 cell growth within 6 h of stimulation. At the same time, the activation of signal transduction pathway and enhancement of cellular trafficking were found to be accomplished in both neural cell lines after specific treatment with TAT-CNTF. Finally, the recombinant growth factor was successfully loaded on oxidized polyvinyl alcohol (PVA) scaffolds, and more efficiently released when polymer oxidation rate increased. Taken together, our results highlight that the TAT domain addiction to the protein sequence preserves CNTF specific neurotrophic activity in vitro, besides improving cellular uptake. Moreover, oxidized PVA could represent an ideal biomaterial for the development of nerve conduits loaded with the fusion protein to be delivered to the site of nerve injury. - Highlights: • TAT-CNTF is an optimized fusion protein that preserves neurotrophic activity. • In neural cell lines, TAT-CNTF triggers the activation of signal transduction. • Fast cellular uptake of TAT-CNTF was

  7. Poor functional immune recovery in aged HIV-1-infected patients following successfully treatment with antiretroviral therapy.

    Science.gov (United States)

    Kasahara, Taissa M; Hygino, Joana; Andrade, Regis M; Monteiro, Clarice; Sacramento, Priscila M; Andrade, Arnaldo F B; Bento, Cleonice A M

    2015-10-01

    Aging is now a well-recognized characteristic of the HIV-infected population and both AIDS and aging are characterized by a deficiency of the T-cell compartment. The objective of the present study was to evaluate the impact of antiretroviral (ARV) therapy in recovering functional response of T cells to both HIV-1-specific ENV peptides (ENV) and tetanus toxoid (TT), in young and aged AIDS patients who responded to ARV therapy by controlling virus replication and elevating CD4(+) T cell counts. Here, we observed that proliferative response of T-cells to either HIV-1-specific Env peptides or tetanus toxoid (TT) was significantly lower in older antiretroviral (ARV)-treated patients. With regard to cytokine profile, lower levels of IFN-γ, IL-17 and IL-21, associated with elevated IL-10 release, were produced by Env- or TT-stimulated T-cells from older patients. The IL-10 neutralization by anti-IL-10 mAb did not elevate IFN-γ and IL-21 release in older patients. Finally, even after a booster dose of TT, reduced anti-TT IgG titers were quantified in older AIDS patients and it was related to both lower IL-21 and IFN-γ production and reduced frequency of central memory T-cells. Our results reveal that ARV therapy, despite the adequate recovery of CD4(+) T cell counts and suppression of viremia, was less efficient in recovering adequate immune response in older AIDS patients. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  8. No evidence of association between HIV-1 and malaria in populations with low HIV-1 prevalence.

    Directory of Open Access Journals (Sweden)

    Diego F Cuadros

    Full Text Available The geographic overlap between HIV-1 and malaria has generated much interest in their potential interactions. A variety of studies have evidenced a complex HIV-malaria interaction within individuals and populations that may have dramatic effects, but the causes and implications of this co-infection at the population level are still unclear. In a previous publication, we showed that the prevalence of malaria caused by the parasite Plasmodium falciparum is associated with HIV infection in eastern sub-Saharan Africa. To complement our knowledge of the HIV-malaria co-infection, the objective of this work was to assess the relationship between malaria and HIV prevalence in the western region of sub-Saharan Africa.Population-based cross-sectional data were obtained from the HIV/AIDS Demographic and Health Surveys conducted in Burkina Faso, Ghana, Guinea, Mali, Liberia and Cameroon, and the malaria atlas project. Using generalized linear mixed models, we assessed the relationship between HIV-1 and Plasmodium falciparum parasite rate (PfPR adjusting for important socio-economic and biological cofactors. We found no evidence that individuals living in areas with stable malaria transmission (PfPR>0.46 have higher odds of being HIV-positive than individuals who live in areas with PfPR≤0.46 in western sub-Saharan Africa (estimated odds ratio 1.14, 95% confidence interval 0.86-1.50. In contrast, the results suggested that PfPR was associated with being infected with HIV in Cameroon (estimated odds ratio 1.56, 95% confidence interval 1.23-2.00.Contrary to our previous research on eastern sub-Saharan Africa, this study did not identify an association between PfPR and infection with HIV in western sub-Saharan Africa, which suggests that malaria might not play an important role in the spread of HIV in populations where the HIV prevalence is low. Our work highlights the importance of understanding the epidemiologic effect of co-infection and the relevant

  9. Involvement of Phosphatidylinositol 3-Kinase-Mediated Up-Regulation of IκBα in Anti-Inflammatory Effect of Gemfibrozil in Microglia1

    Science.gov (United States)

    Jana, Malabendu; Jana, Arundhati; Liu, Xiaojuan; Ghosh, Sankar; Pahan, Kalipada

    2008-01-01

    The present study underlines the importance of PI3K in mediating the anti-inflammatory effect of gemfibrozil, a prescribed lipid-lowering drug for humans, in mouse microglia. Gemfibrozil inhibited LPS-induced expression of inducible NO synthase (iNOS) and proinflammatory cytokines in mouse BV-2 microglial cells and primary microglia. By overexpressing wild-type and dominant-negative constructs of peroxisome proliferator-activated receptor-α (PPAR-α) in microglial cells and isolating primary microglia from PPAR-α−/− mice, we have demonstrated that gemfibrozil inhibits the activation of microglia independent of PPAR-α. Interestingly, gemfibrozil induced the activation of p85α-associated PI3K (p110β but not p110α) and inhibition of that PI3K by either chemical inhibitors or dominant-negative mutants abrogated the inhibitory effect of gemfibrozil. Conversely, overexpression of the constitutively active mutant of p110 enhanced the inhibitory effect of gemfibrozil on LPS-induced expression of proinflammatory molecules. Similarly, gemfibrozil also inhibited fibrillar amyloid β (Aβ)-, prion peptide (PrP)-, dsRNA (poly IC)-, HIV-1 Tat-, and 1-methyl-4-phenylpyridinium (MPP+)-, but not IFN-γ-, induced microglial expression of iNOS. Inhibition of PI3K also abolished the inhibitory effect of gemfibrozil on Aβ-, PrP-, poly IC-, Tat-, and MPP+-induced microglial expression of iNOS. Involvement of NF-κB activation in LPS-, Aβ-, PrP-, poly IC-, Tat-, and MPP+-, but not IFN-γ-, induced microglial expression of iNOS and stimulation of IκBα expression and inhibition of NF-κB activation by gemfibrozil via the PI3K pathway suggests that gemfibrozil inhibits the activation of NF-κB and the expression of proinflammatory molecules in microglia via PI3K-mediated up-regulation of IκBα. PMID:17785853

  10. Characteristics of HIV-1 serodiscordant couples enrolled in a clinical trial of antiretroviral pre-exposure prophylaxis for HIV-1 prevention.

    Directory of Open Access Journals (Sweden)

    Andrew Mujugira

    Full Text Available Stable heterosexual HIV-1 serodiscordant couples in Africa have high HIV-1 transmission rates and are a critical population for evaluation of new HIV-1 prevention strategies. The Partners PrEP Study is a randomized, double-blind, placebo-controlled trial of tenofovir and emtricitabine-tenofovir pre-exposure prophylaxis to decrease HIV-1 acquisition within heterosexual HIV-1 serodiscordant couples. We describe the trial design and characteristics of the study cohort.HIV-1 serodiscordant couples, in which the HIV-1 infected partner did not meet national guidelines for initiation of antiretroviral therapy, were enrolled at 9 research sites in Kenya and Uganda. The HIV-1 susceptible partner was randomized to daily oral tenofovir, emtricitabine-tenofovir, or matching placebo with monthly follow-up for 24-36 months.From July 2008 to November 2010, 7920 HIV-1 serodiscordant couples were screened and 4758 enrolled. For 62% (2966/4758 of enrolled couples, the HIV-1 susceptible partner was male. Median age was 33 years for HIV-1 susceptible and HIV-1 infected partners [IQR (28-40 and (26-39 respectively]. Most couples (98% were married, with a median duration of partnership of 7.0 years (IQR 3.0-14.0 and recent knowledge of their serodiscordant status [median 0.4 years (IQR 0.1-2.0]. During the month prior to enrollment, couples reported a median of 4 sex acts (IQR 2-8; 27% reported unprotected sex and 14% of male and 1% of female HIV-1 susceptible partners reported sex with outside partners. Among HIV-1 infected partners, the median plasma HIV-1 level was 3.94 log(10 copies/mL (IQR 3.31-4.53 and median CD4 count was 496 cells/µL (IQR 375-662; the majority (64% had WHO stage 1 HIV-1 disease.Couples at high risk of HIV-1 transmission were rapidly recruited into the Partners PrEP Study, the largest efficacy trial of oral PrEP. (ClinicalTrials.gov NCT00557245.

  11. Human CNS cultures exposed to HIV-1 gp120 reproduce dendritic injuries of HIV-1-associated dementia

    Directory of Open Access Journals (Sweden)

    Hammond Robert R

    2004-05-01

    Full Text Available Abstract HIV-1-associated dementia remains a common subacute to chronic central nervous system degeneration in adult and pediatric HIV-1 infected populations. A number of viral and host factors have been implicated including the HIV-1 120 kDa envelope glycoprotein (gp120. In human post-mortem studies using confocal scanning laser microscopy for microtubule-associated protein 2 and synaptophysin, neuronal dendritic pathology correlated with dementia. In the present study, primary human CNS cultures exposed to HIV-1 gp120 at 4 weeks in vitro suffered gliosis and dendritic damage analogous to that described in association with HIV-1-associated dementia.

  12. Human endogenous retrovirus K Gag coassembles with HIV-1 Gag and reduces the release efficiency and infectivity of HIV-1.

    Science.gov (United States)

    Monde, Kazuaki; Contreras-Galindo, Rafael; Kaplan, Mark H; Markovitz, David M; Ono, Akira

    2012-10-01

    Human endogenous retroviruses (HERVs), which are remnants of ancestral retroviruses integrated into the human genome, are defective in viral replication. Because activation of HERV-K and coexpression of this virus with HIV-1 have been observed during HIV-1 infection, it is conceivable that HERV-K could affect HIV-1 replication, either by competition or by cooperation, in cells expressing both viruses. In this study, we found that the release efficiency of HIV-1 Gag was 3-fold reduced upon overexpression of HERV-K(CON) Gag. In addition, we observed that in cells expressing Gag proteins of both viruses, HERV-K(CON) Gag colocalized with HIV-1 Gag at the plasma membrane. Furthermore, HERV-K(CON) Gag was found to coassemble with HIV-1 Gag, as demonstrated by (i) processing of HERV-K(CON) Gag by HIV-1 protease in virions, (ii) coimmunoprecipitation of virion-associated HERV-K(CON) Gag with HIV-1 Gag, and (iii) rescue of a late-domain-defective HERV-K(CON) Gag by wild-type (WT) HIV-1 Gag. Myristylation-deficient HERV-K(CON) Gag localized to nuclei, suggesting cryptic nuclear trafficking of HERV-K Gag. Notably, unlike WT HERV-K(CON) Gag, HIV-1 Gag failed to rescue myristylation-deficient HERV-K(CON) Gag to the plasma membrane. Efficient colocalization and coassembly of HIV-1 Gag and HERV-K Gag also required nucleocapsid (NC). These results provide evidence that HIV-1 Gag heteromultimerizes with HERV-K Gag at the plasma membrane, presumably through NC-RNA interaction. Intriguingly, HERV-K Gag overexpression reduced not only HIV-1 release efficiency but also HIV-1 infectivity in a myristylation- and NC-dependent manner. Altogether, these results indicate that Gag proteins of endogenous retroviruses can coassemble with HIV-1 Gag and modulate the late phase of HIV-1 replication.

  13. Cell-penetrating peptide-driven Cre recombination in porcine primary cells and generation of marker-free pigs.

    Science.gov (United States)

    Kang, Qianqian; Sun, Zhaolin; Zou, Zhiyuan; Wang, Ming; Li, Qiuyan; Hu, Xiaoxiang; Li, Ning

    2018-01-01

    Cell-penetrating peptides (CPPs) have been increasingly used to deliver various molecules, both in vitro and in vivo. However, there are no reports of CPPs being used in porcine fetal fibroblasts (PFFs). The increased use of transgenic pigs for basic research and biomedical applications depends on the availability of technologies for efficient genetic-modification of PFFs. Here, we report that three CPPs (CPP5, TAT, and R9) can efficiently deliver active Cre recombinase protein into PFFs via an energy-dependent endocytosis pathway. The three CPP-Cre proteins can enter PFFs and subsequently perform recombination with different efficiencies. The recombination efficacy of CPP5-Cre was found to be nearly 90%. The rate-limiting step for CPP-Cre-mediated recombination was the step of endosome escape. HA2 and chloroquine were found to improve the recombination efficiency of TAT-Cre. Furthermore, we successfully obtained marker-free transgenic pigs using TAT-Cre and CPP5-Cre. We provide a framework for the development of CPP-based farm animal transgenic technologies that would be beneficial to agriculture and biomedicine.

  14. The anti-HIV-1 effect of scutellarin

    International Nuclear Information System (INIS)

    Zhang Gaohong; Wang Qian; Chen Jijun; Zhang Xuemei; Tam, S.-C.; Zheng Yongtang

    2005-01-01

    Scutellarin was purified from the plant Erigeron breviscapus (Vant.) Hand.-Mazz. The activity against 3 strains of human immunodeficiency virus (HIV) was determined in vitro in this study. These were laboratory-derived virus (HIV-1 IIIB ), drug-resistant virus (HIV-1 74V ), and low-passage clinical isolated virus (HIV-1 KM018 ). From syncytia inhibition study, the EC 50 of scutellarin against HIV-1 IIIB direct infection in C8166 cells was 26 μM with a therapeutic index of 36. When the mode of infection changed from acute infection to cell-to-cell infection, this compound became even more potent and the EC 50 reduced to 15 μM. This suggested that cell fusion might be affected by this compound. By comparing the inhibitory effects on p24 antigen, scutellarin was also found to be active against HIV-1 74V (EC 50 253 μM) and HIV-1 KM018 (EC 50 136 μM) infection with significant difference in potency. The mechanism of its action was also explored in this study. At a concentration of 433 μM, scutellarin inhibited 48% of the cell free recombinant HIV-1 RT activity. It also caused 82% inhibition of HIV-1 particle attachment and 45% inhibition of fusion at the concentrations of 54 μM. In summary, scutellarin was found to inhibit several strains of HIV-1 replication with different potencies. It appeared to inhibit HIV-1 RT activity, HIV-1 particle attachment and cell fusion. These are essential activities for viral transmission and replication

  15. The Oncolytic Virus MG1 Targets and Eliminates Cells Latently Infected With HIV-1: Implications for an HIV Cure.

    Science.gov (United States)

    Ranganath, Nischal; Sandstrom, Teslin S; Burke Schinkel, Stephanie C; Côté, Sandra C; Angel, Jonathan B

    2018-02-14

    Cells latently infected with human immunodeficiency virus (HIV) evade immune- and drug-mediated clearance. These cells harbor intracellular signaling defects, including impairment of the antiviral type I interferon response. Such defects have also been observed in several cancers and have been exploited for the development of therapeutic oncolytic viruses, including the recombinant Maraba virus (MG1). We therefore hypothesized that MG1 would infect and eliminate cells latently infected with HIV-1, while sparing healthy uninfected cells. Preferential infection and elimination by MG1 was first demonstrated in cell lines latently infected with HIV-1. Following this, a reduction in HIV-1 DNA and inducible HIV-1 replication was observed following MG1 infection of latently infected, resting CD4+ T cells generated using an in vitro model of latency. Last, MG1 infection resulted in a reduction in HIV-1 DNA and inducible HIV-1 replication in memory CD4+ T cells isolated from effectively treated, HIV-1-infected individuals. Our results therefore highlight a novel approach to eliminate the latent HIV-1 reservoir. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  16. Induction of Apoptosis by Targeting the Microtubule Network: Using HIV Tat as a Model System

    National Research Council Canada - National Science Library

    Chen, Dan

    2003-01-01

    Depletion of CD4+ T cells is the hallmark of HIV Infection and AIDS progression. In addition to the direct killing of the viral-infected cells, HIV infection also leads to increased apoptosis of predominantly uninfected bystander cells...

  17. Viral linkage in HIV-1 seroconverters and their partners in an HIV-1 prevention clinical trial.

    Directory of Open Access Journals (Sweden)

    Mary S Campbell

    2011-03-01

    Full Text Available Characterization of viruses in HIV-1 transmission pairs will help identify biological determinants of infectiousness and evaluate candidate interventions to reduce transmission. Although HIV-1 sequencing is frequently used to substantiate linkage between newly HIV-1 infected individuals and their sexual partners in epidemiologic and forensic studies, viral sequencing is seldom applied in HIV-1 prevention trials. The Partners in Prevention HSV/HIV Transmission Study (ClinicalTrials.gov #NCT00194519 was a prospective randomized placebo-controlled trial that enrolled serodiscordant heterosexual couples to determine the efficacy of genital herpes suppression in reducing HIV-1 transmission; as part of the study analysis, HIV-1 sequences were examined for genetic linkage between seroconverters and their enrolled partners.We obtained partial consensus HIV-1 env and gag sequences from blood plasma for 151 transmission pairs and performed deep sequencing of env in some cases. We analyzed sequences with phylogenetic techniques and developed a Bayesian algorithm to evaluate the probability of linkage. For linkage, we required monophyletic clustering between enrolled partners' sequences and a Bayesian posterior probability of ≥ 50%. Adjudicators classified each seroconversion, finding 108 (71.5% linked, 40 (26.5% unlinked, and 3 (2.0% indeterminate transmissions, with linkage determined by consensus env sequencing in 91 (84%. Male seroconverters had a higher frequency of unlinked transmissions than female seroconverters. The likelihood of transmission from the enrolled partner was related to time on study, with increasing numbers of unlinked transmissions occurring after longer observation periods. Finally, baseline viral load was found to be significantly higher among linked transmitters.In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner

  18. Platelet-derived growth factor (PDGF-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation

    Directory of Open Access Journals (Sweden)

    Bethel-Brown Crystal

    2012-12-01

    Full Text Available Abstract Chemokine (C-C motif ligand 2, also known as monocyte chemoattractant protein 1 (MCP-1 is an important factor for the pathogenesis of HIV-associated neurocognitive disorders (HAND. The mechanisms of MCP-1-mediated neuropathogenesis, in part, revolve around its neuroinflammatory role and the recruitment of monocytes into the central nervous system (CNS via the disrupted blood-brain barrier (BBB. We have previously demonstrated that HIV-1/HIV-1 Tat upregulate platelet-derived growth factor (PDGF-BB, a known cerebrovascular permeant; subsequently, the present study was aimed at exploring the regulation of MCP-1 by PDGF-BB in astrocytes with implications in HAND. Specifically, the data herein demonstrate that exposure of human astrocytes to HIV-1 LAI elevated PDGF-B and MCP-1 levels. Furthermore, treating astrocytes with the human recombinant PDGF-BB protein significantly increased the production and release of MCP-1 at both the RNA and protein levels. MCP-1 induction was regulated by activation of extracellular-signal-regulated kinase (ERK1/2, c-Jun N-terminal kinase (JNK and p38 mitogen-activated protein (MAP kinases and phosphatidylinositol 3-kinase (PI3K/Akt pathways and the downstream transcription factor, nuclear factor κB (NFκB. Chromatin immunoprecipitation (ChIP assays demonstrated increased binding of NFκB to the human MCP-1 promoter following PDGF-BB exposure. Conditioned media from PDGF-BB-treated astrocytes increased monocyte transmigration through human brain microvascular endothelial cells (HBMECs, an effect that was blocked by STI-571, a tyrosine kinase inhibitor (PDGF receptor (PDGF-R blocker. PDGF-BB-mediated release of MCP-1 was critical for increased permeability in an in vitro BBB model as evidenced by blocking antibody assays. Since MCP-1 is linked to disease severity, understanding its modulation by PDGF-BB could aid in understanding the proinflammatory responses in HAND. These results suggest that astrocyte

  19. E-Peptides Control Bioavailability of IGF-1

    Science.gov (United States)

    Piszczek, Agnieszka; Perlas, Emarald; Winn, Nadine; Nastasi, Tommaso; Rosenthal, Nadia

    2012-01-01

    Insulin-like growth factor 1 (IGF-1) is a potent cytoprotective growth factor that has attracted considerable attention as a promising therapeutic agent. Transgenic over-expression of IGF-1 propeptides facilitates protection and repair in a broad range of tissues, although transgenic mice over-expressing IGF-1 propeptides display little or no increase in IGF-1 serum levels, even with high levels of transgene expression. IGF-1 propeptides are encoded by multiple alternatively spliced transcripts including C-terminal extension (E) peptides, which are highly positively charged. In the present study, we use decellularized mouse tissue to show that the E-peptides facilitate in vitro binding of murine IGF-1 to the extracellular matrix (ECM) with varying affinities. This property is independent of IGF-1, since proteins consisting of the E-peptides fused to relaxin, a related member of the insulin superfamily, bound equally avidly to decellularized ECM. Thus, the E-peptides control IGF-1 bioavailability by preventing systemic circulation, offering a potentially powerful way to tether IGF-1 and other therapeutic proteins to the site of synthesis and/or administration. PMID:23251442

  20. Targeting Virus-host Interactions of HIV Replication.

    Science.gov (United States)

    Weydert, Caroline; De Rijck, Jan; Christ, Frauke; Debyser, Zeger

    2016-01-01

    Cellular proteins that are hijacked by HIV in order to complete its replication cycle, form attractive new targets for antiretroviral therapy. In particular, the protein-protein interactions between these cellular proteins (cofactors) and viral proteins are of great interest to develop new therapies. Research efforts have led to the validation of different cofactors and some successes in therapeutic applications. Maraviroc, the first cofactor inhibitor approved for human medicinal use, provided a proof of concept. Furthermore, compounds developed as Integrase-LEDGF/p75 interaction inhibitors (LEDGINs) have advanced to early clinical trials. Other compounds targeting cofactors and cofactor-viral protein interactions are currently under development. Likewise, interactions between cellular restriction factors and their counteracting HIV protein might serve as interesting targets in order to impair HIV replication. In this respect, compounds targeting the Vif-APOBEC3G interaction have been described. In this review, we focus on compounds targeting the Integrase- LEDGF/p75 interaction, the Tat-P-TEFb interaction and the Vif-APOBEC3G interaction. Additionally we give an overview of currently discovered compounds presumably targeting cellular cofactor-HIV protein interactions.

  1. Induction of novel CD8+ T-cell responses during chronic untreated HIV-1 infection by immunization with subdominant cytotoxic T-lymphocyte epitopes

    DEFF Research Database (Denmark)

    Kloverpris, Henrik; Karlsson, Ingrid; Bonde, Jesper

    2009-01-01

    OBJECTIVE:: To investigate the potential to induce additional cytotoxic T-lymphocyte (CTL) immunity during chronic HIV-1 infection. DESIGN:: We selected infrequently targeted or subdominant but conserved HLA-A*0201-binding epitopes in Gag, Pol, Env, Vpu and Vif. These relatively immune silent...... epitopes were modified as anchor-optimized peptides to improve immunogenicity and delivered on autologous monocyte-derived dendritic cells (MDDCs). METHODS:: Twelve treatment-naïve HLA-A*0201 HIV-1-infected Danish individuals received 1 x 10 MDDCs subcutaneously (s.c.) (weeks 0, 2, 4 and 8), pulsed......-cell counts was observed. CONCLUSION:: These data show that it is possible to generate new T-cell responses in treatment-naive HIV-1-infected individuals despite high viral loads, and thereby redirect immunity to target new multiple and rationally selected subdominant CTL epitopes. Further optimization could...

  2. Production and characterization of human anti-V3 monoclonal antibodies from the cells of HIV-1 infected Indian donors

    Directory of Open Access Journals (Sweden)

    Andrabi Raiees

    2012-09-01

    Full Text Available Abstract Background Analysis of human monoclonal antibodies (mAbs developed from HIV-1 infected donors have enormously contributed to the identification of neutralization sensitive epitopes on the HIV-1 envelope glycoprotein. The third variable region (V3 is a crucial target on gp120, primarily due to its involvement in co-receptor (CXCR4 or CCR5 binding and presence of epitopes recognized by broadly neutralizing antibodies. Methods Thirty-three HIV-1 seropositive drug naive patients (18 males and 15 females within the age range of 20–57 years (median = 33 years were recruited in this study for mAb production. The mAbs were selected from EBV transformed cultures with conformationally constrained Cholera-toxin-B containing V3C (V3C-CTB fusion protein. We tested the mAbs for their binding with HIV-1 derived proteins and peptides by ELISA and for neutralization against HIV-1 viruses by TZM-bl assays. Results We isolated three anti-V3 mAbs, 277, 903 and 904 from the cells of different individuals. The ELISA binding revealed a subtype-C and subtype-A specific binding of antibody 277 and 903 while mAb 904 exhibited cross reactivity also with subtype-B V3. Epitope mapping of mAbs with overlapping V3 peptides showed exclusive binding to V3 crown. The antibodies displayed high and low neutralizing activity against 2/5 tier 1 and 1/6 tier 2 viruses respectively. Overall, we observed a resistance of the tier 2 viruses to neutralization by the anti-V3 mAbs, despite the exposure of the epitopes recognized by these antibodies on two representative native viruses (Du156.12 and JRFL, suggesting that the affinity of mAb might equally be crucial for neutralization, as the epitope recognition. Conclusions Our study suggests that the anti-V3 antibodies derived from subtype-C infected Indian patients display neutralization potential against tier 1 viruses while such activity may be limited against more resistant tier 2 viruses. Defining the fine epitope

  3. Potential elucidation of a novel CTL epitope in HIV-1 protease by the protease inhibitor resistance mutation L90M.

    Directory of Open Access Journals (Sweden)

    Werner Smidt

    Full Text Available The combination of host immune responses and use of antiretrovirals facilitate partial control of human immunodeficiency virus type 1 (HIV-1 infection and result in delayed progression to Acquired Immunodeficiency Syndrome (AIDS. Both treatment and host immunity impose selection pressures on the highly mutable HIV-1 genome resulting in antiretroviral resistance and immune escape. Researchers have shown that antiretroviral resistance mutations can shape cytotoxic T-lymphocyte immunity by altering the epitope repertoire of HIV infected cells. Here it was discovered that an important antiretroviral resistance mutation, L90M in HIV protease, occurs at lower frequencies in hosts that harbor the B*15, B*48 or A*32 human leukocyte antigen subtypes. A likely reason is the elucidation of novel epitopes by L90M. NetMHCPan predictions reveal increased affinity of the peptide spanning the HIV protease region, PR 89-97 and PR 90-99 to HLA-B*15/B*48 and HLA-A*32 respectively due to the L90M substitution. The higher affinity could increase the chance of the epitope being presented and recognized by Cytotoxic T-lymphocytes and perhaps provide additional immunological pressures in the presence of antiretroviral attenuating mutations. This evidence supports the notion that knowledge of HLA allotypes in HIV infected individuals could augment antiretroviral treatment by the elucidation of epitopes due to antiretroviral resistance mutations in HIV protease.

  4. Potential elucidation of a novel CTL epitope in HIV-1 protease by the protease inhibitor resistance mutation L90M.

    Science.gov (United States)

    Smidt, Werner

    2013-01-01

    The combination of host immune responses and use of antiretrovirals facilitate partial control of human immunodeficiency virus type 1 (HIV-1) infection and result in delayed progression to Acquired Immunodeficiency Syndrome (AIDS). Both treatment and host immunity impose selection pressures on the highly mutable HIV-1 genome resulting in antiretroviral resistance and immune escape. Researchers have shown that antiretroviral resistance mutations can shape cytotoxic T-lymphocyte immunity by altering the epitope repertoire of HIV infected cells. Here it was discovered that an important antiretroviral resistance mutation, L90M in HIV protease, occurs at lower frequencies in hosts that harbor the B*15, B*48 or A*32 human leukocyte antigen subtypes. A likely reason is the elucidation of novel epitopes by L90M. NetMHCPan predictions reveal increased affinity of the peptide spanning the HIV protease region, PR 89-97 and PR 90-99 to HLA-B*15/B*48 and HLA-A*32 respectively due to the L90M substitution. The higher affinity could increase the chance of the epitope being presented and recognized by Cytotoxic T-lymphocytes and perhaps provide additional immunological pressures in the presence of antiretroviral attenuating mutations. This evidence supports the notion that knowledge of HLA allotypes in HIV infected individuals could augment antiretroviral treatment by the elucidation of epitopes due to antiretroviral resistance mutations in HIV protease.

  5. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    Science.gov (United States)

    Sayeh, Naser Ali

    conjugates although one limitation lies in the effort of controlling the rate of drug release. The encapsulated or complexed drugs tend to be released rapidly (before reaching the target site) and in the dendrimer--drug conjugates, it is the chemical linkage that controls the drug release. Thus, future studies in this field are urgently required to create more efficient and stable biomaterials. Peptides are considered as efficient vectors for achieving optimal cellular uptake. The potential use of peptides as drug delivery vectors received much attention by the discovery of several cell-penetrating peptides (CPPs). The first CPPs discovered in 1988, that were sequences from HIV-1 encoded TAT protein, TAT (48--60), and penetrated very efficiently through cell membranes of cultured mammalian cells. CPPs are a class of diverse peptides, typically with 8--25 amino acids, and unlike most peptides, they can cross the cellular membrane with more efficiency. CPPs have also shown to undergo self-assembly and generate nanostructures. The generation of self-assembled peptides and nanostructures occur through various types of interactions between functional groups of amino acid residues, such as electrostatic, hydrophobic, and hydrogen bonding. Appropriate design and functionalization of peptides are critical for generating nanostructures. Chemically CPPs are classified into two major groups: linear and cyclic peptides. It has been previously reported that linear peptides containing hydrophilic and hydrophobic amino acids could act as membrane protein stabilizers. These compounds are short hydrophilic or amphiphilic peptides that have positively charged amino acids, such as arginine, lysine or histidine, which can interact with the negative charge phospholipids layer on the cell membrane and translocate the cargo into the cells. Conjugation to cationic linear CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the

  6. Comparative analysis of internalisation, haemolytic, cytotoxic and antibacterial effect of membrane-active cationic peptides: aspects of experimental setup.

    Science.gov (United States)

    Horváti, Kata; Bacsa, Bernadett; Mlinkó, Tamás; Szabó, Nóra; Hudecz, Ferenc; Zsila, Ferenc; Bősze, Szilvia

    2017-06-01

    Cationic peptides proved fundamental importance as pharmaceutical agents and/or drug carrier moieties functioning in cellular processes. The comparison of the in vitro activity of these peptides is an experimental challenge and a combination of different methods, such as cytotoxicity, internalisation rate, haemolytic and antibacterial effect, is necessary. At the same time, several issues need to be addressed as the assay conditions have a great influence on the measured biological effects and the experimental setup needs to be optimised. Therefore, critical comparison of results from different assays using representative examples of cell penetrating and antimicrobial peptides was performed and optimal test conditions were suggested. Our main goal was to identify carrier peptides for drug delivery systems of antimicrobial drug candidates. Based on the results of internalisation, haemolytic, cytotoxic and antibacterial activity assays, a classification of cationic peptides is advocated. We found eight promising carrier peptides with good penetration ability of which Penetratin, Tat, Buforin and Dhvar4 peptides showed low adverse haemolytic effect. Penetratin, Transportan, Dhvar4 and the hybrid CM15 peptide had the most potent antibacterial activity on Streptococcus pneumoniae (MIC lower than 1.2 μM) and Transportan was effective against Mycobacterium tuberculosis as well. The most selective peptide was the Penetratin, where the effective antimicrobial concentration on pneumococcus was more than 250 times lower than the HC 50 value. Therefore, these peptides and their analogues will be further investigated as drug delivery systems for antimicrobial agents.

  7. Inhibition of human immunodeficiency virus type 1 (HIV-1) nuclear import via Vpr-Importin α interactions as a novel HIV-1 therapy

    International Nuclear Information System (INIS)

    Suzuki, Tatsunori; Yamamoto, Norio; Nonaka, Mizuho; Hashimoto, Yoshie; Matsuda, Go; Takeshima, Shin-nosuke; Matsuyama, Megumi; Igarashi, Tatsuhiko; Miura, Tomoyuki; Tanaka, Rie; Kato, Shingo; Aida, Yoko

    2009-01-01

    The development of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus (HIV) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. One such target is the interaction between Vpr, one of the accessory gene products of HIV-1 and Importin α, which is crucial, not only for the nuclear import of Vpr, but also for HIV-1 replication in macrophages. We have identified a potential parent compound, hematoxylin, which suppresses Vpr-Importin α interaction, thereby inhibiting HIV-1 replication in a Vpr-dependent manner. Analysis by real-time PCR demonstrated that hematoxylin specifically inhibited nuclear import step of pre-integration complex. Thus, hematoxylin is a new anti-HIV-1 inhibitor that targets the nuclear import of HIV-1 via the Vpr-Importin α interaction, suggesting that a specific inhibitor of the interaction between viral protein and the cellular factor may provide a new strategy for HIV-1 therapy.

  8. Picomolar dichotomous activity of gnidimacrin against HIV-1.

    Directory of Open Access Journals (Sweden)

    Li Huang

    Full Text Available Highly active antiretroviral therapy (HAART has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.

  9. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation

    Science.gov (United States)

    Granelli-Piperno, Angela; Golebiowska, Angelika; Trumpfheller, Christine; Siegal, Frederick P.; Steinman, Ralph M.

    2004-05-01

    Dendritic cells (DCs) undergo maturation during virus infection and thereby become potent stimulators of cell-mediated immunity. HIV-1 replicates in immature DCs, but we now find that infection is not accompanied by many components of maturation in either infected cells or uninfected bystanders. The infected cultures do not develop potent stimulating activity for the mixed leukocyte reaction (MLR), and the DCs producing HIV-1 gag p24 do not express CD83 and DC-lysosome-associated membrane protein maturation markers. If different maturation stimuli are applied to DCs infected with HIV-1, the infected cells selectively fail to mature. When DCs from HIV-1-infected patients are infected and cultured with autologous T cells, IL-10 was produced in 6 of 10 patients. These DC-T cell cocultures could suppress another immune response, the MLR. The regulation was partially IL-10-dependent and correlated in extent with the level of IL-10 produced. Suppressor cells only developed from infected patients, rather than healthy controls, and the DCs had to be exposed to live virus rather than HIV-1 gag peptides or protein. These results indicate that HIV-1-infected DCs have two previously unrecognized means to evade immune responses: maturation can be blocked reducing the efficacy of antigen presentation from infected cells, and T cell-dependent suppression can be induced.

  10. HIV-1 envelope glycoprotein

    Science.gov (United States)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  11. Highly conserved serine residue 40 in HIV-1 p6 regulates capsid processing and virus core assembly

    Directory of Open Access Journals (Sweden)

    Solbak Sara MØ

    2011-02-01

    Full Text Available Abstract Background The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L- domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX, is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6. Results Consistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site. Conclusions Overall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively

  12. Absorbed dose at subcellular level by Monte Carlo simulation for a {sup 99m}Tc-peptide with nuclear internalization

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L.; Ferro F, G. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Santos C, C. L., E-mail: leticia.rojas@inin.gob.m [Universidad Autonoma del Estado de Mexico, Paseo Tollocan esquina Paseo Colon s/n, Toluca 50120, Estado de Mexico (Mexico)

    2010-10-15

    The utility of radiolabeled peptides for the early and specific diagnosis of cancer is being investigated around the world. Recent investigations have demonstrated the specificity of {sup 99m}Tc-bombesin conjugates to target breast and prostate cancer cells. The novel idea of adding the Tat (49-57) peptide to the radiopharmaceutical in order to penetrate the cell nucleus is a new proposal for therapy at cellular level. {sup 99m}Tc radionuclide produces Auger energy of 0.9 keV/decay and internal conversion electron energy of 15.4 keV/decay, which represent 11.4% of the total {sup 99m}Tc energy released per decay. It is expected that the dose delivered at specific microscopic levels in cancer cells induce a therapeutic effect. The aim of this research was to assess in vitro internalization kinetics in breast and prostate cancer cells of {sup 99m}Tc-Tat(49-57)-bombesin and to evaluate the radiation absorbed dose at subcellular level simulating the electron transport. The pen main program from the 2006 version of the Penelope code was used to simulate and calculate the absorbed dose by Auger and internal conversion electron contribution in the membrane, cytoplasm and nucleus of Pc-3 prostate cancer and MCF7 and MDA human breast cancer cell lines. Nuclear data were obtained from the 2002 BNM-LNHB {sup 99m}Tc decay scheme. The spatial distribution of the absorbed doses to the membrane, cytoplasm and nucleus were calculated using a geometric model built from real images of cancer cells. The elemental cell composition was taken from the literature. The biokinetic data were obtained evaluating total disintegrations in each subcellular compartment by integration of the time-activity curves acquired from experimental data. Results showed that 61, 63 and 46% of total disintegrations per cell-bound {sup 99m}Tc-Tat-Bn activity unit occurred in the nucleus of Pc-3, MCF7 and MDA-MB231 respectively. {sup 99m}Tc--Tat-Bn absorbed doses were 1.78, 5.76 and 2.59 Gy/Bq in the nucleus of

  13. Mimotopes selected by biopanning with high-titer HIV-neutralizing antibodies in plasma from Chinese slow progressors

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    Full Text Available OBJECTIVE: One approach to identifying HIV-1 vaccine candidates is to dissect the natural antiviral immune response in treatment-naïve individuals infected for over ten years, considered slow progressor patients (SPs. It is suspected that SP plasma has strongly neutralizing antibodies (NAb targeting specific HIV viral epitopes. METHODS: NAbs levels of 11 HIV-1-infected SPs were detected by PBMC-based neutralization assays. To investigate SP NAb epitope, this study used a biopanning approach to obtain mimotopes of HIV-1 that were recognized by SP plasma NAbs. IgG was purified from hightiter NAb SP plasma, and used as the ligand for three rounds of biopanning to select HIV-specific mimotopes from a phage-displayed random peptide library. Double-antibody sandwich ELISA, competitive inhibition assays, and peptide sequence analysis were used to evaluate the characteristics of phage-borne mimotopes. RESULTS: SPs had significantly more plasma neutralizing activity than typical progressors (TPs (p = 0.04. P2 and P9 plasma, which have highest-titer HIV-NAb, were selected as ligands for biopanning. After three rounds of biopanning, 48 phage clones were obtained, of which 22 clones were consistent with requirement, binding with HIV-1 positive plasma and unbinding with HIV-1 negative plasma. Compared with linear HIV-1 protein sequence and HIV-1 protein structure files, only 12 clones were possible linear mimotopes of NAbs. In addition, the C40 clone located in gp41 CHR was found to be a neutralizing epitope, which could inhibit pooled HIV-1 positive plasma reaction. CONCLUSION: Biopanning of serum IgG can yield mimotopes of HIV-1-related antigen epitopes. This methodology provides a basis for exploration into HIV-1-related antigen-antibody interactions and furthers NAb immunotherapy and vaccine design.

  14. BI-2 destabilizes HIV-1 cores during infection and Prevents Binding of CPSF6 to the HIV-1 Capsid.

    Science.gov (United States)

    Fricke, Thomas; Buffone, Cindy; Opp, Silvana; Valle-Casuso, Jose; Diaz-Griffero, Felipe

    2014-12-11

    The recently discovered small-molecule BI-2 potently blocks HIV-1 infection. BI-2 binds to the N-terminal domain of HIV-1 capsid. BI-2 utilizes the same capsid pocket used by the small molecule PF74. Although both drugs bind to the same pocket, it has been proposed that BI-2 uses a different mechanism to block HIV-1 infection when compared to PF74. This work demonstrates that BI-2 destabilizes the HIV-1 core during infection, and prevents the binding of the cellular factor CPSF6 to the HIV-1 core. Overall this short-form paper suggests that BI-2 is using a similar mechanism to the one used by PF74 to block HIV-1 infection.

  15. [New strategy for RNA vectorization in mammalian cells. Use of a peptide vector].

    Science.gov (United States)

    Vidal, P; Morris, M C; Chaloin, L; Heitz, F; Divita, G

    1997-04-01

    A major barrier for gene delivery is the low permeability of nucleic acids to cellular membranes. The development of antisenses and gene therapy has focused mainly on improving methods of oligonucleotide or gene delivery to the cell. In this report we described a new strategy for RNA cell delivery, based on a short single peptide. This peptide vector is derived from both the fusion domain of the gp41 protein of HIV and the nuclear localization sequence of the SV40 large T antigen. This peptide vector localizes rapidly to the cytoplasm then to the nucleus of human fibroblasts (HS-68) within a few minutes and exhibits a high affinity for a single-stranded mRNA encoding the p66 subunit of the HIV-1 reverse transcriptase (in a 100 nM range). The peptide/RNA complex formation involves mainly electrostatic interactions between the basic residues of the peptide and the charges on the phosphate group of the RNA. In the presence of the peptide-vector fluorescently-labelled mRNA is delivered into the cytoplasm of mammalian cells (HS68 human fibroblasts) in less than 1 h with a relatively high efficiency (80%). This new concept based on a peptide-derived vector offers several advantages compared to other compounds commonly used in gene delivery. This vector is highly soluble and exhibits no cytotoxicity at the concentrations used for optimal gene delivery. This result clearly supports the fact that this peptide vector is a powerful tool and that it can be used widely, as much for laboratory research as for new applications and development in gene and/or antisense therapy.

  16. Predicting Bevirimat resistance of HIV-1 from genotype

    Directory of Open Access Journals (Sweden)

    Hoffmann Daniel

    2010-01-01

    Full Text Available Abstract Background Maturation inhibitors are a new class of antiretroviral drugs. Bevirimat (BVM was the first substance in this class of inhibitors entering clinical trials. While the inhibitory function of BVM is well established, the molecular mechanisms of action and resistance are not well understood. It is known that mutations in the regions CS p24/p2 and p2 can cause phenotypic resistance to BVM. We have investigated a set of p24/p2 sequences of HIV-1 of known phenotypic resistance to BVM to test whether BVM resistance can be predicted from sequence, and to identify possible molecular mechanisms of BVM resistance in HIV-1. Results We used artificial neural networks and random forests with different descriptors for the prediction of BVM resistance. Random forests with hydrophobicity as descriptor performed best and classified the sequences with an area under the Receiver Operating Characteristics (ROC curve of 0.93 ± 0.001. For the collected data we find that p2 sequence positions 369 to 376 have the highest impact on resistance, with positions 370 and 372 being particularly important. These findings are in partial agreement with other recent studies. Apart from the complex machine learning models we derived a number of simple rules that predict BVM resistance from sequence with surprising accuracy. According to computational predictions based on the data set used, cleavage sites are usually not shifted by resistance mutations. However, we found that resistance mutations could shorten and weaken the α-helix in p2, which hints at a possible resistance mechanism. Conclusions We found that BVM resistance of HIV-1 can be predicted well from the sequence of the p2 peptide, which may prove useful for personalized therapy if maturation inhibitors reach clinical practice. Results of secondary structure analysis are compatible with a possible route to BVM resistance in which mutations weaken a six-helix bundle discovered in recent experiments

  17. Phylogenetic analysis of HIV-1 pol gene: first subgenomic evidence of CRF29-BF among Iranian HIV-1 patients

    Directory of Open Access Journals (Sweden)

    Kazem Baesi

    2014-09-01

    Full Text Available Objective: To identify the dominant subtype among the HIV-1 strains circulation in Iran. Methods: In this cross sectional study 100 HIV positive patients participated. HIV-1 RNA was extracted from plasma. RT nested-PCR was performed and the final products were sequenced and phylogenetically analyzed; reference sequences were downloaded from Los Alamos, aligned with Iranian pol sequences in the study and analyzed by neighbor-joining method. Results: The results of the phylogenetic analysis showed that HIV-1 subtype CRF-35AD was the dominant subtype among HIV-1 infected patients in Iran; this analysis also suggested a new circulating recombinant form that had not previously been identified in Iran: CRF-29BF. Conclusions: The impact of HIV diversity on pathogenesis, transmission and clinical management have been discussed in different studies; therefore, analyses of HIV genetic diversity is required to design effective antiretroviral strategies for different HIV subtypes.

  18. Prime-boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: efficacy against repeated mucosal R5 clade C SHIV challenges.

    Science.gov (United States)

    Lakhashe, Samir K; Velu, Vijayakumar; Sciaranghella, Gaia; Siddappa, Nagadenahalli B; Dipasquale, Janet M; Hemashettar, Girish; Yoon, John K; Rasmussen, Robert A; Yang, Feng; Lee, Sandra J; Montefiori, David C; Novembre, Francis J; Villinger, François; Amara, Rama Rao; Kahn, Maria; Hu, Shiu-Lok; Li, Sufen; Li, Zhongxia; Frankel, Fred R; Robert-Guroff, Marjorie; Johnson, Welkin E; Lieberman, Judy; Ruprecht, Ruth M

    2011-08-05

    We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus > 90%; these RM also had strong SIV Gag-specific proliferation of CD8⁺ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4⁺ T cells; the latter have been implicated as preferential virus targets in vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. German-austrian recommendations for HIV1-therapy in pregnancy and in HIV1-exposed newborn - update 2008

    Directory of Open Access Journals (Sweden)

    Buchholz Bernd

    2009-11-01

    Full Text Available Abstract German-Austrian recommendations for HIV1-therapy in pregnancy - Update 2008 Bernd Buchholz (University Medical Centre Mannheim, Pediatric Clinic, Matthias Beichert (Mannheim, Gynecology and Obstetrics Practice, Ulrich Marcus (Robert Koch Institute, Berlin, Thomas Grubert, Andrea Gingelmaier (Gynecology Clinic of the Ludwig Maximilians University of Munich, Dr. med. Annette Haberl (HIV-Department, J. W. Goethe-University Hospital, Frankfurt, Dr. med. Brigitte Schmied (Otto-Wagner Spital, Wien. In Germany during the last years about 200-250 HIV1-infected pregnant women delivered a baby each year, a number that is currently increasing. To determine the HIV-status early in pregnancy voluntary HIV-testing of all pregnant women is recommended in Germany and Austria as part of prenatal care. In those cases, where HIV1-infection was known during pregnancy, since 1995 the rate of vertical transmission of HIV1 was reduced to 1-2%. This low transmission rate has been achieved by the combination of anti-retroviral therapy of pregnant women, caesarean section scheduled before onset of labour, anti-retroviral post exposition prophylaxis in the newborn and refraining from breast-feeding by the HIV1-infected mother. To keep pace with new results in research, approval of new anti-retroviral drugs and changes in the general treatment recommendations for HIV1-infected adults, in 1998, 2001, 2003 and 2005 an interdisciplinary consensus meeting was held. Gynaecologists, infectious disease specialists, paediatricians, pharmacologists, virologists and members of the German AIDS Hilfe (NGO were participating in this conference to update the prevention strategies. A fifth update became necessary in 2008. The updating process was started in January 2008 and was terminated in September 2008. The guidelines provide new recommendations on the indication and the starting point for HIV-therapy in pregnancies without complications, drugs and drug combinations to be

  20. DBR1 siRNA inhibition of HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Naidu Yathi

    2005-10-01

    Full Text Available Abstract Background HIV-1 and all retroviruses are related to retroelements of simpler organisms such as the yeast Ty elements. Recent work has suggested that the yeast retroelement Ty1 replicates via an unexpected RNA lariat intermediate in cDNA synthesis. The putative genomic RNA lariat intermediate is formed by a 2'-5' phosphodiester bond, like that found in pre-mRNA intron lariats and it facilitates the minus-strand template switch during cDNA synthesis. We hypothesized that HIV-1 might also form a genomic RNA lariat and therefore that siRNA-mediated inhibition of expression of the human RNA lariat de-branching enzyme (DBR1 expression would specifically inhibit HIV-1 replication. Results We designed three short interfering RNA (siRNA molecules targeting DBR1, which were capable of reducing DBR1 mRNA expression by 80% and did not significantly affect cell viability. We assessed HIV-1 replication in the presence of DBR1 siRNA and found that DBR1 knockdown led to decreases in viral cDNA and protein production. These effects could be reversed by cotransfection of a DBR1 cDNA indicating that the inhibition of HIV-1 replication was a specific effect of DBR1 underexpression. Conclusion These data suggest that DBR1 function may be needed to debranch a putative HIV-1 genomic RNA lariat prior to completion of reverse transcription.

  1. HLA Class I-Mediated HIV-1 Control in Vietnamese Infected with HIV-1 Subtype A/E.

    Science.gov (United States)

    Chikata, Takayuki; Tran, Giang Van; Murakoshi, Hayato; Akahoshi, Tomohiro; Qi, Ying; Naranbhai, Vivek; Kuse, Nozomi; Tamura, Yoshiko; Koyanagi, Madoka; Sakai, Sachiko; Nguyen, Dung Hoai; Nguyen, Dung Thi; Nguyen, Ha Thu; Nguyen, Trung Vu; Oka, Shinichi; Martin, Maureen P; Carrington, Mary; Sakai, Keiko; Nguyen, Kinh Van; Takiguchi, Masafumi

    2018-03-01

    HIV-1-specific cytotoxic T cells (CTLs) play an important role in the control of HIV-1 subtype B or C infection. However, the role of CTLs in HIV-1 subtype A/E infection still remains unclear. Here we investigated the association of HLA class I alleles with clinical outcomes in treatment-naive Vietnamese infected with subtype A/E virus. We found that HLA-C*12:02 was significantly associated with lower plasma viral loads (pVL) and higher CD4 counts and that the HLA-A*29:01-B*07:05-C*15:05 haplotype was significantly associated with higher pVL and lower CD4 counts than those for individuals without these respective genotypes. Nine Pol and three Nef mutations were associated with at least one HLA allele in the HLA-A*29:01-B*07:05-C*15:05 haplotype, with a strong negative correlation between the number of HLA-associated Pol mutations and CD4 count as well as a positive correlation with pVL for individuals with these HLA alleles. The results suggest that the accumulation of mutations selected by CTLs restricted by these HLA alleles affects HIV control. IMPORTANCE Most previous studies on HLA association with disease progression after HIV-1 infection have been performed on cohorts infected with HIV-1 subtypes B and C, whereas few such population-based studies have been reported for cohorts infected with the Asian subtype A/E virus. In this study, we analyzed the association of HLA class I alleles with clinical outcomes for 536 HIV-1 subtype A/E-infected Vietnamese individuals. We found that HLA-C*12:02 is protective, while the HLA haplotype HLA-A*29:01-B*07:05-C*15:05 is deleterious. The individuals with HIV-1 mutations associated with at least one of the HLA alleles in the deleterious HLA haplotype had higher plasma viral loads and lower CD4 counts than those of individuals without the mutations, suggesting that viral adaptation and escape from HLA-mediated immune control occurred. The present study identifies a protective allele and a deleterious haplotype for HIV-1

  2. Differential effects of sex in a West African cohort of HIV-1, HIV-2 and HIV-1/2 dually infected patients: men are worse off.

    Science.gov (United States)

    Jespersen, Sanne; Hønge, Bo Langhoff; Esbjörnsson, Joakim; Medina, Candida; da Silva Té, David; Correira, Faustino Gomes; Laursen, Alex Lund; Østergaard, Lars; Andersen, Andreas; Aaby, Peter; Erikstrup, Christian; Wejse, Christian

    2016-02-01

    Several studies have reported conflicting effects of sex on HIV-1 infection. We describe differences in baseline characteristics and assess the impact of sex on HIV progression among patients at a clinic with many HIV-2 and HIV-1/2 dually infected patients. This study utilised a retrospective cohort of treatment-naïve adults at the largest HIV clinic in Guinea-Bissau from 6 June 2005 to 1 December 2013. Baseline characteristics were assessed and the patients followed until death, transfer, loss to follow-up, or 1 June 2014. We estimated the time from the first clinic visit until initiation of ART, death or loss to follow-up using Cox proportional hazard models. A total of 5694 patients were included in the study, 3702 women (65%) and 1992 men (35%). Women were more likely than men to be infected with HIV-2 (19% vs. 15%, P < 0.01) or dually infected with HIV-1/2 (11% vs. 9%, P = 0.02). For all HIV types, women were younger (median 35 vs. 40 years), less likely to have schooling (55% vs. 77%) or to be married (46% vs. 67%), and had higher baseline CD4 cell counts (median 214 vs. 178 cells/μl). Men had a higher age-adjusted mortality rate (hazard rate ratio (HRR) 1.29, 95% confidence interval (CI) 1.09-1.52) and were more often lost to follow-up (HRR 1.27, 95% CI 1.17-1.39). Significant differences exist between HIV-infected men and women regardless of HIV type. Men seek treatment at a later stage and, despite better socio-economic status, have higher mortality and loss to follow-up than women. © 2015 John Wiley & Sons Ltd.

  3. Multi-functional system of radiotherapy and thermal phototherapy for tumors that over-express receptors of the gastrin releasing peptide

    International Nuclear Information System (INIS)

    Jimenez M, N. P.

    2014-01-01

    The aim of this research was to prepare and characterize a multifunctional system of 177 Lu and 99m Tc-labelled gold nanoparticles conjugated to Tat(49 57)-Lys 3 bombesin ( 177 Lu/ 99m Tc- AuNP-Tat-Bn) and to evaluate the radiation absorbed dose in GRP receptor positive PC3 tumours induced in mice (human prostate cancer cells), as well as to evaluate the thermal effect produced by the multifunctional system in PC3 cancer cells. The preparation of the system involved the conjugation of Bn-Tat, DOTA-GGC and HYNICTOC peptides to AuNP of 20 nm or 5 nm in diameter. The radiolabeling of the system with 99m Tc was carried out through the ligand HYNIC-TOC and with the 177 Lu through DOTA-GGC. The functionalization of peptides to AuNP, was accomplished through a spontaneous reaction of thiol groups. The system was characterized by spectroscopic techniques while radiochemical purity was determined by size-exclusion molecular chromatography and ultrafiltration. Various internalization trials and non-specific binding were tested to demonstrate the affinity of the system to PC3 cells. The thermal effect was evaluated incubating the system into PC3 cells and irradiating it with a Nd:YAG pulsed laser beam and monitoring the temperature; after irradiation, cell viability was measured. In the evaluation of absorbed dose in mice with induced tumours, the system was administered intratumorally and later, mice were sacrificed, relevant organs and tumor were extracted, activity was quantified and radiopharmaceutical models were obtained for each organ and tumor to be used in the accumulated activity and absorbed dose calculation by the MIRD methodology. Finally, to establish the system location at cellular level, fluorescent images of the system incubated in PC3 cells were acquired with an epi fluorescent microscope. Tem, UV-Vis, XP S and Far-IR spectroscopy techniques demonstrated that AuNPs were functionalized with peptides through interactions with the -Sh groups. The radiochemical

  4. An assay to monitor HIV-1 protease activity for the identification of novel inhibitors in T-cells.

    Directory of Open Access Journals (Sweden)

    Brett J Hilton

    Full Text Available The emergence of resistant HIV strains, together with the severe side-effects of existing drugs and lack of development of effective anti-HIV vaccines highlight the need for novel antivirals, as well as innovative methods to facilitate their discovery. Here, we have developed an assay in T-cells to monitor the proteolytic activity of the HIV-1 protease (PR. The assay is based on the inducible expression of HIV-1 PR fused within the Gal4 DNA-binding and transactivation domains. The fusion protein binds to the Gal4 responsive element and activates the downstream reporter, enhanced green fluorescent protein (eGFP gene only in the presence of an effective PR Inhibitor (PI. Thus, in this assay, eGFP acts as a biosensor of PR activity, making it ideal for flow cytometry based screening. Furthermore, the assay was developed using retroviral technology in T-cells, thus providing an ideal environment for the screening of potential novel PIs in a cell-type that represents the natural milieu of HIV infection. Clones with the highest sensitivity, and robust, reliable and reproducible reporter activity, were selected. The assay is easily adaptable to other PR variants, a multiplex platform, as well as to high-throughput plate reader based assays and will greatly facilitate the search for novel peptide and chemical compound based PIs in T-cells.

  5. Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term non-progressors.

    Science.gov (United States)

    González, Nuria; McKee, Krisha; Lynch, Rebecca M; Georgiev, Ivelin S; Jimenez, Laura; Grau, Eulalia; Yuste, Eloísa; Kwong, Peter D; Mascola, John R; Alcamí, José

    2018-01-01

    Only a small fraction of HIV-1-infected patients develop broadly neutralizing antibodies (bNAbs), a process generally associated to chronic antigen stimulation. It has been described that rare aviremic HIV-1-infected patients can generate bNAbs but this issue remains controversial. To address this matter we have assessed bNAb responses in a large cohort of long-term non-progressors (LTNPs) with low or undetectable viremia. Samples from the LTNP cohort of the Spanish AIDS Research Network (87 elite and 42 viremic controllers) and a control population of 176 viremic typical-progressors (TPs) were screened for bNAbs using Env-recombinant viruses. bNAb specificities were studied by ELISA using mutated gp120, neutralization assays with mutated viruses, and peptide competition. Epitope specificities were also elucidated from the serum pattern of neutralization against a panel of diverse HIV-1 isolates. Broadly neutralizing sera were found among 9.3% LTNPs, both elite (7%) and viremic controllers (14%). Within the broadly neutralizing sera, CD4 binding site antibodies were detected by ELISA in 4/12 LTNPs (33%), and 16/33 of TPs (48%). Anti-MPER antibodies were detected in 6/12 LTNPs (50%) and 14/33 TPs (42%) whereas glycan-dependent HIV-1 bNAbs were more frequent in LTNPs (11/12, 92%) as compared to TPs (12/33, 36%). A good concordance between standard serum mapping and neutralization-based mapping was observed. LTNPs, both viremic and elite controllers, showed broad humoral immune responses against HIV-1, including activity against many major epitopes involved in bNAbs-mediated protection.

  6. Differences in serum IgA responses to HIV-1 gp41 in elite controllers compared to viral suppressors on highly active antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Rafiq Nabi

    Full Text Available Mechanisms responsible for natural control of human immunodeficiency type 1 (HIV replication in elite controllers (EC remain incompletely defined. To determine if EC generate high quality HIV-specific IgA responses, we used Western blotting to compare the specificities and frequencies of IgA to HIV antigens in serum of gender-, age- and race-matched EC and aviremic controllers (HC and viremic noncontrollers (HN on highly active antiretroviral therapy (HAART. Concentrations and avidity of IgA to HIV antigens were measured using ELISA or multiplex assays. Measurements for IgG were performed in parallel. EC were found to have stronger p24- and V1V2-specific IgG responses than HN, but there were no IgG differences for EC and HC. In contrast, IgA in EC serum bound more frequently to gp160 and gag proteins than IgA in HC or HN. The avidity of anti-gp41 IgA was also greater in EC, and these subjects had stronger IgA responses to the gp41 heptad repeat region 1 (HR1, a reported target of anti-bacterial RNA polymerase antibodies that cross react with gp41. However, EC did not demonstrate greater IgA responses to E. coli RNA polymerase or to peptides containing the shared LRAI sequence, suggesting that most of their HR1-specific IgA antibodies were not induced by intestinal microbiota. In both EC and HAART recipients, the concentrations of HIV-specific IgG were greater than HIV-specific IgA, but their avidities were comparable, implying that they could compete for antigen. Exceptions were C1 peptides and V1V2 loops. IgG and IgA responses to these antigens were discordant, with IgG reacting to V1V2, and IgA reacting to C1, especially in EC. Interestingly, EC with IgG hypergammaglobulinemia had greater HIV-specific IgA and IgG responses than EC with normal total IgG levels. Heterogeneity in EC antibody responses may therefore be due to a more focused HIV-specific B cell response in some of these individuals. Overall, these data suggest that development of

  7. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility

    International Nuclear Information System (INIS)

    White, Tommy E.; Brandariz-Nuñez, Alberto; Valle-Casuso, Jose Carlos; Knowlton, Caitlin; Kim, Baek; Sawyer, Sara L.; Diaz-Griffero, Felipe

    2014-01-01

    SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition. - Highlights: • Human SAMHD1 single-nucleotide polymorphisms block HIV-1 and HIV-2 infection. • SAMHD1 polymorphisms do not affect its ability to block LINE-1 retrotransposition. • SAMHD1 polymorphisms decrease the cellular levels of dNTPs

  8. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommy E.; Brandariz-Nuñez, Alberto; Valle-Casuso, Jose Carlos [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park – Price Center 501, New York, NY 10461 (United States); Knowlton, Caitlin; Kim, Baek [Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Sawyer, Sara L. [Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712 (United States); Diaz-Griffero, Felipe, E-mail: Felipe.Diaz-Griffero@einstein.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park – Price Center 501, New York, NY 10461 (United States)

    2014-07-15

    SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition. - Highlights: • Human SAMHD1 single-nucleotide polymorphisms block HIV-1 and HIV-2 infection. • SAMHD1 polymorphisms do not affect its ability to block LINE-1 retrotransposition. • SAMHD1 polymorphisms decrease the cellular levels of dNTPs.

  9. Cyclophilin B enhances HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    DeBoer, Jason; Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln, NE (United States)

    2016-02-15

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.

  10. Cyclophilin B enhances HIV-1 infection

    International Nuclear Information System (INIS)

    DeBoer, Jason; Madson, Christian J.; Belshan, Michael

    2016-01-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.

  11. Enrichment of intersubtype HIV-1 recombinants in a dual infection system using HIV-1 strain-specific siRNAs

    Science.gov (United States)

    2011-01-01

    Background Intersubtype HIV-1 recombinants in the form of unique or stable circulating recombinants forms (CRFs) are responsible for over 20% of infections in the worldwide epidemic. Mechanisms controlling the generation, selection, and transmission of these intersubtype HIV-1 recombinants still require further investigation. All intersubtype HIV-1 recombinants are generated and evolve from initial dual infections, but are difficult to identify in the human population. In vitro studies provide the most practical system to study mechanisms, but the recombination rates are usually very low in dual infections with primary HIV-1 isolates. This study describes the use of HIV-1 isolate-specific siRNAs to enrich intersubtype HIV-1 recombinants and inhibit the parental HIV-1 isolates from a dual infection. Results Following a dual infection with subtype A and D primary HIV-1 isolates and two rounds of siRNA treatment, nearly 100% of replicative virus was resistant to a siRNA specific for an upstream target sequence in the subtype A envelope (env) gene as well as a siRNA specific for a downstream target sequence in the subtype D env gene. Only 20% (10/50) of the replicating virus had nucleotide substitutions in the siRNA-target sequence whereas the remaining 78% (39/50) harbored a recombination breakpoint that removed both siRNA target sequences, and rendered the intersubtype D/A recombinant virus resistant to the dual siRNA treatment. Since siRNAs target the newly transcribed HIV-1 mRNA, the siRNAs only enrich intersubtype env recombinants and do not influence the recombination process during reverse transcription. Using this system, a strong bias is selected for recombination breakpoints in the C2 region, whereas other HIV-1 env regions, most notably the hypervariable regions, were nearly devoid of intersubtype recombination breakpoints. Sequence conservation plays an important role in selecting for recombination breakpoints, but the lack of breakpoints in many conserved

  12. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    Science.gov (United States)

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-01

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.

  13. Characteristics of HIV-1 discordant couples enrolled in a trial of HSV-2 suppression to reduce HIV-1 transmission: the partners study.

    Directory of Open Access Journals (Sweden)

    Jairam R Lingappa

    Full Text Available The Partners HSV-2/HIV-1 Transmission Study (Partners Study is a phase III, placebo-controlled trial of daily acyclovir for genital herpes (HSV-2 suppression among HIV-1/HSV-2 co-infected persons to reduce HIV-1 transmission to their HIV-1 susceptible partners, which requires recruitment of HIV-1 serodiscordant heterosexual couples. We describe the baseline characteristics of this cohort.HIV-1 serodiscordant heterosexual couples, in which the HIV-1 infected partner was HSV-2 seropositive, had a CD4 count >or=250 cells/mcL and was not on antiretroviral therapy, were enrolled at 14 sites in East and Southern Africa. Demographic, behavioral, clinical and laboratory characteristics were assessed.Of the 3408 HIV-1 serodiscordant couples enrolled, 67% of the HIV-1 infected partners were women. Couples had cohabitated for a median of 5 years (range 2-9 with 28% reporting unprotected sex in the month prior to enrollment. Among HIV-1 susceptible participants, 86% of women and 59% of men were HSV-2 seropositive. Other laboratory-diagnosed sexually transmitted infections were uncommon (500 relative to <350, respectively, p<0.001.The Partners Study successfully enrolled a cohort of 3408 heterosexual HIV-1 serodiscordant couples in Africa at high risk for HIV-1 transmission. Follow-up of this cohort will evaluate the efficacy of acyclovir for HSV-2 suppression in preventing HIV-1 transmission and provide insights into biological and behavioral factors determining heterosexual HIV-1 transmission.ClinicalTrials.gov NCT00194519.

  14. The Ebola virus VP35 protein is a suppressor of RNA silencing.

    Directory of Open Access Journals (Sweden)

    Joost Haasnoot

    2007-06-01

    Full Text Available RNA silencing or interference (RNAi is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication.

  15. Mother-to-Child HIV-1 Transmission Events Are Differentially Impacted by Breast Milk and Its Components from HIV-1-Infected Women.

    Directory of Open Access Journals (Sweden)

    Ruizhong Shen

    Full Text Available Breast milk is a vehicle of infection and source of protection in post-natal mother-to-child HIV-1 transmission (MTCT. Understanding the mechanism by which breast milk limits vertical transmission will provide critical insight into the design of preventive and therapeutic approaches to interrupt HIV-1 mucosal transmission. However, characterization of the inhibitory activity of breast milk in human intestinal mucosa, the portal of entry in postnatal MTCT, has been constrained by the limited availability of primary mucosal target cells and tissues to recapitulate mucosal transmission ex vivo. Here, we characterized the impact of skimmed breast milk, breast milk antibodies (Igs and non-Ig components from HIV-1-infected Ugandan women on the major events of HIV-1 mucosal transmission using primary human intestinal cells and tissues. HIV-1-specific IgG antibodies and non-Ig components in breast milk inhibited the uptake of Ugandan HIV-1 isolates by primary human intestinal epithelial cells, viral replication in and transport of HIV-1- bearing dendritic cells through the human intestinal mucosa. Breast milk HIV-1-specific IgG and IgA, as well as innate factors, blocked the uptake and transport of HIV-1 through intestinal mucosa. Thus, breast milk components have distinct and complementary effects in reducing HIV-1 uptake, transport through and replication in the intestinal mucosa and, therefore, likely contribute to preventing postnatal HIV-1 transmission. Our data suggests that a successful preventive or therapeutic approach would require multiple immune factors acting at multiple steps in the HIV-1 mucosal transmission process.

  16. HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors

    DEFF Research Database (Denmark)

    Vanangamudi, Murugesan; Poongavanam, Vasanthanathan; Namasivayam, Vigneshwaran

    2017-01-01

    BACKGROUND: Design of inhibitors for HIV-1 reverse transcriptase inhibition (HIV-1 RT) is one of the successful chemotherapies for the treatment of HIV infection. Among the inhibitors available for HIV-1 RT, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have shown to be very promising......: The conformation dependent-alignment based (CoMFA and CoMSIA) methods have been proven very successful ligand based strategy in the drug design. Here, CoMFA and CoMSIA studies reported for structurally distinct NNRTIs including thiazolobenzimidazole, dipyridodiazepinone, 1,1,3-trioxo [1,2,4]-thiadiazine...

  17. TAT-Gap19 and Carbenoxolone Alleviate Liver Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Sara Crespo Yanguas

    2018-03-01

    Full Text Available Although a plethora of signaling pathways are known to drive the activation of hepatic stellate cells in liver fibrosis, the involvement of connexin-based communication in this process remains elusive. Connexin43 expression is enhanced in activated hepatic stellate cells and constitutes the molecular building stone of hemichannels and gap junctions. While gap junctions support intercellular communication, and hence the maintenance of liver homeostasis, hemichannels provide a circuit for extracellular communication and are typically opened by pathological stimuli, such as oxidative stress and inflammation. The present study was set up to investigate the effects of inhibition of connexin43-based hemichannels and gap junctions on liver fibrosis in mice. Liver fibrosis was induced by administration of thioacetamide to Balb/c mice for eight weeks. Thereafter, mice were treated for two weeks with TAT-Gap19, a specific connexin43 hemichannel inhibitor, or carbenoxolone, a general hemichannel and gap junction inhibitor. Subsequently, histopathological analysis was performed and markers of hepatic damage and functionality, oxidative stress, hepatic stellate cell activation and inflammation were evaluated. Connexin43 hemichannel specificity of TAT-Gap19 was confirmed in vitro by fluorescence recovery after photobleaching analysis and the measurement of extracellular release of adenosine-5′-triphosphate. Upon administration to animals, both TAT-Gap19 and carbenoxolone lowered the degree of liver fibrosis accompanied by superoxide dismutase overactivation and reduced production of inflammatory proteins, respectively. These results support a role of connexin-based signaling in the resolution of liver fibrosis, and simultaneously demonstrate the therapeutic potential of TAT-Gap19 and carbenoxolone in the treatment of this type of chronic liver disease.

  18. Identification of Immunogenic Cytotoxic T Lymphocyte Epitopes Containing Drug Resistance Mutations in Antiretroviral Treatment-Naïve HIV-Infected Individuals.

    Directory of Open Access Journals (Sweden)

    Juan Blanco-Heredia

    Full Text Available Therapeutic HIV vaccines may prove helpful to intensify antiretroviral treatment (ART efficacy and may be an integral part of future cure strategies.We examined IFN-gamma ELISpot responses to a panel of 218 HIV clade B consensus-based HIV protease-reverse transcriptase peptides, designed to mimic previously described and predicted cytotoxic T lymphocyte epitopes overlapping drug resistance (DR positions, that either included the consensus sequence or the DR variant sequence, in 49 ART-naïve HIV-infected individuals. Next generation sequencing was used to assess the presence of minority DR variants in circulating viral populations.Although a wide spectrum of differential magnitudes of response to DR vs. WT peptide pairs was observed, responses to DR peptides were frequent and strong in the study cohort. No difference between the median magnitudes of response to DR vs. WT peptides was observed. Interestingly, of the 22 peptides that were recognized by >15% of the participants, two-thirds (64% corresponded to DR peptides. When analysing responses per peptide pair per individual, responses to only WT (median 4 pairs/individual or DR (median 6 pairs/individual were more common than responses to both WT and DR (median 2 pairs/individual; p<0.001. While the presence of ELISpot responses to WT peptides was frequently associated with the presence of the corresponding peptide sequence in the patient's virus (mean 68% of cases, responses to DR peptides were generally not associated with the presence of DR mutations in the viral population, even at low frequencies (mean 1.4% of cases; p = 0.0002.Our data suggests that DR peptides are frequently immunogenic and raises the potential benefit of broadening the antigens included in a therapeutic vaccine approach to immunogenic epitopes containing common DR sequences. Further studies are needed to assess the quality of responses elicited by DR peptides.

  19. Estrogen protects against the synergistic toxicity by HIV proteins, methamphetamine and cocaine

    Directory of Open Access Journals (Sweden)

    Wise Phyllis M

    2001-03-01

    Full Text Available Abstract Background Human immunodeficiency virus (HIV infection continues to increase at alarming rates in drug abusers, especially in women. Drugs of abuse can cause long-lasting damage to the brain and HIV infection frequently leads to a dementing illness.To determine how these drugs interact with HIV to cause CNS damage, we used an in vitro human neuronal culture characterized for the presence of dopaminergic receptors, transporters and estrogen receptors. We determined the combined effects of dopaminergic drugs, methamphetamine, or cocaine with neurotoxic HIV proteins, gp120 and Tat. Results Acute exposure to these substances resulted in synergistic neurotoxic responses as measured by changes in mitochondrial membrane potential and neuronal cell death. Neurotoxicity occurred in a sub-population of neurons. Importantly, the presence of 17beta-estradiol prevented these synergistic neurotoxicities and the neuroprotective effects were partly mediated by estrogen receptors. Conclusion Our observations suggest that methamphetamine and cocaine may affect the course of HIV dementia, and additionally suggest that estrogens modify the HIV-drug interactions.

  20. Tit-For-Tat Strategy for Increasing Medical Student Evaluation Response Rates

    Directory of Open Access Journals (Sweden)

    Matthew G. Malone

    2017-12-01

    Full Text Available Introducation It is essential for faculty to receive feedback on their teaching for the purpose of improvement as well as promotion. It can be challenging to motivate students to provide feedback to preceptors and fill out evaluation forms when not a clerkship requirement. Furthermore, there is concern that making the evaluations a requirement can compromise the quality of the feedback. The objective of this study was to identify an increase in the number of faculty and resident evaluations completed by students rotating through their Emergency Medicine clerkship following the implementation of a tit-for-tat incentive strategy. Method Prior to the implementation of Tit-for-Tat, students rotating through their emergency medicine clerkship were asked to fill out evaluations of residents and faculty members with whom they worked. These were encouraged but voluntary. Beginning in the 2014–2015 academic year, a tit-for-tat strategy was employed whereby students had to complete a resident or faculty evaluation in order to view the student assessment completed by that resident or faculty preceptor. Results Students submitted 1101 evaluations in the control, with a mean of 3.60 evaluations completed per student and 3.77 evaluations received per preceptor. Following the implementation of tit-for-tat, students submitted 2736 evaluations, with a mean of 8.19 evaluations completed per student and 7.52 evaluations received per preceptor. Both the increase in evaluations completed per student and evaluations received per preceptor were statistically significant with p-value <0.001. Conclusion The tit-for-tat strategy significantly increased the number of evaluations submitted by students rotating through their emergency medicine clerkship. This has served as an effective tool to increase the overall number of evaluations completed, the number of evaluations each instructor received on average and the proportion of students that completed evaluations

  1. Influence of maternal depression on children's brooding rumination: Moderation by CRHR1 TAT haplotype.

    Science.gov (United States)

    Woody, Mary L; Kudinova, Anastacia Y; McGeary, John E; Knopik, Valerie S; Palmer, Rohan H C; Gibb, Brandon E

    2016-01-01

    There is growing evidence that brooding rumination plays a key role in the intergenerational transmission of major depressive disorder (MDD) and may be an endophenotype for depression risk. However, less is known about the mechanisms underlying this role. Therefore, the goal of the current study was to examine levels of brooding in children of mothers with a history of MDD (n = 129) compared to children of never depressed mothers (n = 126) and to determine whether the variation in a gene known to influence hypothalamic-pituitary-adrenal axis functioning--corticotropin-releasing hormone receptor 1 (CRHR1)--would moderate the link between maternal MDD and children's levels of brooding. We predicted children of mothers with a history of MDD would exhibit higher levels of brooding than children of mothers with no lifetime depression history but that this link would be stronger among children carrying no copies of the protective CRHR1 TAT haplotype. Our results supported these hypotheses and suggest that the development of brooding among children of depressed mothers, particularly children without the protective CRHR1 haplotype, may serve as an important mechanism of risk for the intergenerational transmission of depression.

  2. Translocation of Cell Penetrating Peptide Engrafted Nanoparticles Across Skin Layers

    Science.gov (United States)

    Patlolla, Ram R; Desai, Pinaki; Belay, Kalayu; Singh, Mandip

    2010-01-01

    The objective of the current study was to evaluate the ability of cell penetrating peptides (CPP) to translocate the lipid payload into the skin layers. Fluorescent dye (DID-oil) encapsulated nano lipid crystal nanoparticles (FNLCN) were prepared using Compritol, Miglyol and DOGS-NTA-Ni lipids by hot melt homogenization technique. The FNLCN surface was coated with TAT peptide (FNLCNT) or control YKA peptide (FNLCNY) and in vitro rat skin permeation studies were performed using Franz diffusion cells. Observation of lateral skin sections obtained using cryotome with a confocal microscope demonstrated that skin permeation of FNLCNT was time dependent and after 24 h, fluorescence was observed upto a depth of 120 µm which was localized in the hair follicles and epidermis. In case of FNLCN and FNLCNY formulations fluorescence was mainly observed in the hair follicles. This observation was further supported by confocal Raman spectroscopy where higher fluorescence signal intensity was observed at 80 and 120 µm depth with FNLCNT treated skin and intensity of fluorescence peaks was in the ratio of 2:1:1 and 5:3:1 for FNLCNT, FNLCN, and FNLCNY treated skin sections, respectively. Furthermore, replacement of DID-oil with celecoxib (Cxb), a model lipophilic drug showed similar results and after 24 h, the CXBNT formulation increased the Cxb concentration in SC by 3 and 6 fold and in epidermis by 2 and 3 fold as compared to CXBN and CXBNY formulations respectively. Our results strongly suggest that CPP can translocate nanoparticles with their payloads into deeper skin layers. PMID:20413152

  3. Effect of glucagon-like peptide-1 on alpha- and beta-cell function in C-peptide-negative type 1 diabetic patients

    DEFF Research Database (Denmark)

    Kielgast, Urd; Asmar, Meena; Madsbad, Sten

    2010-01-01

    The mechanism by which glucagon-like peptide-1 (GLP-1) suppresses glucagon secretion is uncertain, and it is not determined whether endogenous insulin is a necessary factor for this effect.......The mechanism by which glucagon-like peptide-1 (GLP-1) suppresses glucagon secretion is uncertain, and it is not determined whether endogenous insulin is a necessary factor for this effect....

  4. Structural and functional characterization of EIAV gp45 fusion peptide proximal region and asparagine-rich layer

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Liangwei; Du, Jiansen [State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China); Wang, Xuefeng; Zhou, Jianhua; Wang, Xiaojun [State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Liu, Xinqi, E-mail: liu2008@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2016-04-15

    Equine infectious anaemia virus (EIAV) and human immunodeficiency virus (HIV) are members of the lentiviral genus. Similar to HIV gp41, EIAV gp45 is a fusogenic protein that mediates fusion between the viral particle and the host cell membrane. The crystal structure of gp45 reported reveals a different conformation in the here that includes the fusion peptide proximal region (FPPR) and neighboring asparagine-rich layer compared with previous HIV-1 gp41 structures. A complicated hydrogen-bond network containing a cluster of solvent molecules appears to be critical for the stability of the gp45 helical bundle. Interestingly, viral replication was relatively unaffected by site-directed mutagenesis of EIAV, in striking contrast to that of HIV-1. Based on these observations, we speculate that EIAV is more adaptable to emergent mutations, which might be important for the evolution of EIAV as a quasi-species, and could potentially contribute to the success of the EIAV vaccine. - Highlights: • The crystal structure of EIAV gp45 was determined. • The fusion peptide proximal region adopts a novel conformation different to HIV-1. • The asparagine-rich layer includes an extensive hydrogen-bond network. • These regions of EIAV are highly tolerant to mutations. • The results provide insight into the mechanism of gp41/gp45-mediated membrane fusion.

  5. The cytosolic exonuclease TREX1 inhibits the innate immune response to HIV-1

    Science.gov (United States)

    Yan, Nan; Regalado-Magdos, Ashton D.; Stiggelbout, Bart; Lee-Kirsch, Min Ae; Lieberman, Judy

    2010-01-01

    Viral infection triggers innate immune sensors to produce type I interferons (IFN). However, HIV infection of T cells and macrophages does not trip these alarms. How HIV avoids activating nucleic acid sensors is unknown. The cytosolic exonuclease TREX1 suppressed IFN triggered by HIV. In Trex1−/− mouse cells and human CD4+ T cells and macrophages in which TREX1 was inhibited by RNA interference, cytosolic HIV DNA accumulated, and HIV infection induced type I IFN that inhibited HIV replication and spreading. TREX1 bound to cytosolic HIV DNA and digested excess HIV DNA that would otherwise activate IFN expression via a TBK1, STING and IRF3 dependent pathway. HIV-stimulated IFN production in cells deficient in TREX1 did not involve known nucleic acid sensors. PMID:20871604

  6. Cocaine modulates HIV-1 integration in primary CD4+ T cells: implications in HIV-1 pathogenesis in drug-abusing patients

    Science.gov (United States)

    Addai, Amma B.; Pandhare, Jui; Paromov, Victor; Mantri, Chinmay K.; Pratap, Siddharth; Dash, Chandravanu

    2015-01-01

    Epidemiologic studies suggest that cocaine abuse worsens HIV-1 disease progression. Increased viral load has been suggested to play a key role for the accelerated HIV disease among cocaine-abusing patients. The goal of this study was to investigate whether cocaine enhances proviral DNA integration as a mechanism to increase viral load. We infected CD4+ T cells that are the primary targets of HIV-1 in vivo and treated the cells with physiologically relevant concentrations of cocaine (1 µM–100 µM). Proviral DNA integration in the host genome was measured by nested qPCR. Our results illustrated that cocaine from 1 µM through 50 µM increased HIV-1 integration in CD4+ T cells in a dose-dependent manner. As integration can be modulated by several early postentry steps of HIV-1 infection, we examined the direct effects of cocaine on viral integration by in vitro integration assays by use of HIV-1 PICs. Our data illustrated that cocaine directly increases viral DNA integration. Furthermore, our MS analysis showed that cocaine is able to enter CD4+ T cells and localize to the nucleus-. In summary, our data provide strong evidence that cocaine can increase HIV-1 integration in CD4+ T cells. Therefore, we hypothesize that increased HIV-1 integration is a novel mechanism by which cocaine enhances viral load and worsens disease progression in drug-abusing HIV-1 patients. PMID:25691383

  7. Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1

    Directory of Open Access Journals (Sweden)

    XingChun Wang

    2015-01-01

    Full Text Available The glucagon-like peptide-1 is secreted by intestinal L cells in response to nutrient ingestion. It regulates the secretion and sensitivity of insulin while suppressing glucagon secretion and decreasing postprandial glucose levels. It also improves beta-cell proliferation and prevents beta-cell apoptosis induced by cytotoxic agents. Additionally, glucagon-like peptide-1 delays gastric emptying and suppresses appetite. The impaired secretion of glucagon-like peptide-1 has negative influence on diabetes, hyperlipidemia, and insulin resistance related diseases. Thus, glucagon-like peptide-1-based therapies (glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors are now well accepted in the management of type 2 diabetes. The levels of glucagon-like peptide-1 are influenced by multiple factors including a variety of nutrients. The component of a meal acts as potent stimulants of glucagon-like peptide-1 secretion. The levels of its secretion change with the intake of different nutrients. Some drugs also have influence on GLP-1 secretion. Bariatric surgery may improve metabolism through the action on GLP-1 levels. In recent years, there has been a great interest in developing effective methods to regulate glucagon-like peptide-1 secretion. This review summarizes the literature on glucagon-like peptide-1 and related factors affecting its levels.

  8. Development of an HIV-1 Subtype Panel in China: Isolation and Characterization of 30 HIV-1 Primary Strains Circulating in China.

    Directory of Open Access Journals (Sweden)

    Jingwan Han

    Full Text Available The complex epidemic and significant diversity of HIV-1 strains in China pose serious challenges for surveillance and diagnostic assays, vaccine development and clinical management. There is a lack of HIV-1 isolates in current canonical HIV-1 subtype panels that can represent HIV-1 diversity in China; an HIV-1 subtype panel for China is urgently needed.Blood samples were collected from HIV-1 infected patients participating in the drug-resistance surveillance program in China. The samples were isolated, cultured and stored as neat culture supernatant. The HIV-1 isolates were fully characterized. The panel was used to compare 2 viral load assays and 2 p24 assays as the examples of how this panel could be used.An HIV-1 subtype panel for China composed of 30 HIV-1 primary strains of four subtypes (B [including Thai-B], CRF01_AE, CRF07_BC and G was established. The samples were isolated and cultured to a high-titer (10(6-10(9 copies/ml/high-volume (40 ml. The HIV-1 isolates were fully characterized by the final viral load, p24 concentration, gag-pol and envC2V3 sequencing, co-receptor prediction, determination of the four amino acids at the tip of the env V3-loop, glycosylation sites in the V3 loop and the drug-resistance mutations. The comparison of two p24 assays and two viral load assays on the isolates illustrated how this panel may be used for the evaluation of diagnostic assay performance. The Pearson value between p24 assays were 0.938. The viral load results showed excellent concordance and agreement for samples of Thai-B, but lower correlations for samples of CRF01_AE.The current panel of 30 HIV-1 isolates served as a basis for the development of a comprehensive panel of fully characterized viral isolates, which could reflect the current dynamic and complex HIV-1 epidemic in China. This panel will be available to support HIV-1 research, assay evaluation, vaccine and drug development.

  9. Cyclic Dipeptide Shuttles as a Novel Skin Penetration Enhancement Approach: Preliminary Evaluation with Diclofenac

    Science.gov (United States)

    Namjoshi, Sarika; Giralt, Ernest; Benson, Heather

    2016-01-01

    This study demonstrates the effectiveness of a peptide shuttle in delivering diclofenac into and through human epidermis. Diclofenac was conjugated to a novel phenylalanyl-N-methyl-naphthalenylalanine-derived diketopiperazine (DKP) shuttle and to TAT (a classical cell penetrating peptide), and topically applied to human epidermis in vitro. DKP and TAT effectively permeated into and through human epidermis. When conjugated to diclofenac, both DKP and TAT enhanced delivery into and through human epidermis, though DKP was significantly more effective. Penetration of diclofenac through human epidermis (to receptor) was increased by conjugation to the peptide shuttle and cell penetrating peptide with enhancement of 6x by DKP-diclofenac and 3x by TAT-diclofenac. In addition, the amount of diclofenac retained within the epidermis was significantly increased by peptide conjugation. COX-2 inhibition activity of diclofenac was retained when conjugated to DKP. Our study suggests that the peptide shuttle approach may offer a new strategy for targeted delivery of small therapeutic and diagnostic molecules to the skin. PMID:27548780

  10. HIV-1 Reservoir Association with Immune Activation

    Directory of Open Access Journals (Sweden)

    Alejandro Vallejo

    2015-09-01

    Full Text Available In this issue of EBioMedicine, Ruggiero and colleagues describe immune activation biomarkers associated with the size of the HIV reservoir in a carefully designed cross-sectional study. The cohort consists of a homogeneous sample of HIV-1-infected patients with long-term plasma HIV-1 RNA suppression under antiretroviral treatment (ART. It is crucial to explore the potential utility of biomarkers that are easier (less labor intensive, less expensive to measure than integrated HIV DNA load, in order to quickly and accurately quantify cellular reservoirs of HIV.

  11. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Science.gov (United States)

    Bekele, Yonas; Graham, Rebecka Lantto; Soeria-Atmadja, Sandra; Nasi, Aikaterini; Zazzi, Maurizio; Vicenti, Ilaria; Naver, Lars; Nilsson, Anna; Chiodi, Francesca

    2017-01-01

    During anti-retroviral therapy (ART) HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction) of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV) and hepatitis B virus (HBV) vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory) and CD8+ (central memory) T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced frequency of

  12. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Directory of Open Access Journals (Sweden)

    Yonas Bekele

    2018-01-01

    Full Text Available During anti-retroviral therapy (ART HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV and hepatitis B virus (HBV vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory and CD8+ (central memory T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced

  13. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Science.gov (United States)

    Bekele, Yonas; Graham, Rebecka Lantto; Soeria-Atmadja, Sandra; Nasi, Aikaterini; Zazzi, Maurizio; Vicenti, Ilaria; Naver, Lars; Nilsson, Anna; Chiodi, Francesca

    2018-01-01

    During anti-retroviral therapy (ART) HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction) of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV) and hepatitis B virus (HBV) vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory) and CD8+ (central memory) T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced frequency of

  14. Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression

    International Nuclear Information System (INIS)

    Nguyen, Kim-Lien; Llano, Manuel; Akari, Hirofumi; Miyagi, Eri; Poeschla, Eric M.; Strebel, Klaus; Bour, Stephan

    2004-01-01

    Two HIV-1 accessory proteins, Vpu and Vif, are notoriously difficult to express autonomously in the absence of the viral Tat and Rev proteins. We examined whether the codon bias observed in the vpu and vif genes relative to highly expressed human genes contributes to the Rev dependence and low expression level outside the context of the viral genome. The entire vpu gene as well as the 5' half of the vif gene were codon optimized and the resulting open reading frames (ORFs) (vphu and hvif, respectively) were cloned in autonomous expression vectors under the transcriptional control of the CMV promoter. Codon optimization efficiently removed the expression block observed in the native genes and allowed high levels of Rev- and Tat-independent expression of Vpu and Vif. Most of the higher protein levels detected are accounted for by enhanced steady-state levels of the mRNA encoding the optimized species. Nuclear run-on experiments show for the first time that codon optimization has no effect on the rate of transcriptional initiation or elongation of the vphu mRNA. Instead, optimization of the vpu gene was found to stabilize the vphu mRNA in the nucleus and enhance its export to the cytoplasm. This was achieved by allowing the optimized mRNA to use a new CRM1-independent nuclear export pathway. This work provides a better understanding of the molecular mechanisms underlying the process of codon optimization and introduces novel tools to study the biological functions of the Vpu and Vif proteins independently of other viral proteins

  15. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  16. Homology-guided mutational analysis reveals the functional requirements for antinociceptive specificity of collapsin response mediator protein 2-derived peptides.

    Science.gov (United States)

    Moutal, Aubin; Li, Wennan; Wang, Yue; Ju, Weina; Luo, Shizhen; Cai, Song; François-Moutal, Liberty; Perez-Miller, Samantha; Hu, Jackie; Dustrude, Erik T; Vanderah, Todd W; Gokhale, Vijay; Khanna, May; Khanna, Rajesh

    2017-02-05

    N-type voltage-gated calcium (Ca v 2.2) channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Although Ca v 2.2 channel antagonists are recommended as first-line treatment for neuropathic pain, calcium-current blocking gabapentinoids inadequately alleviate chronic pain symptoms and often exhibit numerous side effects. Collapsin response mediator protein 2 (CRMP2) targets Ca v 2.2 channels to the sensory neuron membrane and allosterically modulates their function. A 15-amino-acid peptide (CBD3), derived from CRMP2, disrupts the functional protein-protein interaction between CRMP2 and Ca v 2.2 channels to inhibit calcium influx, transmitter release and acute, inflammatory and neuropathic pain. Here, we have mapped the minimal domain of CBD3 necessary for its antinociceptive potential. Truncated as well as homology-guided mutant versions of CBD3 were generated and assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons, binding between CRMP2 and Ca v 2.2 channels, whole-cell voltage clamp electrophysiology and behavioural effects in two models of experimental pain: post-surgical pain and HIV-induced sensory neuropathy induced by the viral glycoprotein 120. The first six amino acids within CBD3 accounted for all in vitro activity and antinociception. Spinal administration of a prototypical peptide (TAT-CBD3-L5M) reversed pain behaviours. Homology-guided mutational analyses of these six amino acids identified at least two residues, Ala1 and Arg4, as being critical for antinociception in two pain models. These results identify an antinociceptive scaffold core in CBD3 that can be used for development of low MW mimetics of CBD3. © 2017 The British Pharmacological Society.

  17. Accumulation of MxB/Mx2-resistant HIV-1 Capsid Variants During Expansion of the HIV-1 Epidemic in Human Populations.

    Science.gov (United States)

    Wei, Wei; Guo, Haoran; Ma, Min; Markham, Richard; Yu, Xiao-Fang

    2016-06-01

    Recent studies have identified human myxovirus resistance protein 2 (MxB or Mx2) as an interferon induced inhibitor of HIV-1 replication. However, whether HIV-1 can overcome MxB restriction without compromise of viral fitness has been undefined. Here, we have discovered that naturally occurring capsid (CA) variants can render HIV-1 resistant to the activity of MxB without losing viral infectivity or the ability to escape from interferon induction. Moreover, these MxB resistant HIV-1 variants do not lose MxB recognition. Surprisingly, MxB resistant CA variants are most commonly found in the Clade C HIV-1 that is the most rapidly expanding Clade throughout the world. Accumulation of MxB resistant mutations is also observed during HIV-1 spreading in human populations. These findings support a potential role for MxB as a selective force during HIV-1 transmission and evolution. Copyright © 2016. Published by Elsevier B.V.

  18. Reducing mother-to-child transmission of HIV: findings from an early infant diagnosis program in south-south region of Nigeria

    Directory of Open Access Journals (Sweden)

    Anoje Chukwuemeka

    2012-03-01

    Full Text Available Abstract Background Early diagnosis of HIV in infants provides a critical opportunity to strengthen follow-up of HIV-exposed children and assure early access to antiretroviral (ARV treatment for infected children. This study describes findings from an Early Infant Diagnosis (EID program and the effectiveness of a prevention of mother-to-child transmission (PMTCT intervention in six health facilities in Cross-River and Akwa-Ibom states, south-south Nigeria. Methods This was a retrospective study. Records of 702 perinatally exposed babies aged six weeks to 18 months who had a DNA PCR test between November 2007 and July 2009 were reviewed. Details of the ARV regimen received to prevent mother-to-child transmission (MTCT, breastfeeding choices, HIV test results, turn around time (TAT for results and post test ART enrolment status of the babies were analysed. Results Two-thirds of mother-baby pairs received ARVs and 560 (80% babies had ever been breastfed. Transmission rates for mother-baby pairs who received ARVs for PMTCT was 4.8% (CI 1.3, 8.3 at zero to six weeks of age compared to 19.5% (CI 3.0, 35.5 when neither baby nor mother received an intervention. Regardless of intervention, the transmission rates for babies aged six weeks to six months who had mixed feeding was 25.6% (CI 29.5, 47.1 whereas the transmission rates for those who were exclusively breastfed was 11.8% (CI 5.4, 18.1. Vertical transmission of HIV was eight times (AOR 7.8, CI: 4.52-13.19 more likely in the sub-group of mother-baby pairs who did not receive ARVS compared with mother-baby pairs that did receive ARVs. The median TAT for test results was 47 days (IQR: 35-58. A follow-up of 125 HIV positive babies found that 31 (25% were enrolled into a paediatric ART program, nine (7% were known to have died before the return of their DNA PCR results, and 85 (67% could not be traced and were presumed to be lost-to-follow-up. Conclusion Reduction of MTCT of HIV is possible with

  19. The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles

    Directory of Open Access Journals (Sweden)

    Ma Hong

    2011-06-01

    Full Text Available Abstract Background The process of HIV-1 genomic RNA (gRNA encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ. Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site from the 5' untranslated region (UTR. Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. Results We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ. Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons; however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Conclusions Premised on encapsidation of a heterologous RNA into

  20. Site-specific Isopeptide Bridge Tethering of Chimeric gp41 N-terminal Heptad Repeat Helical Trimers for the Treatment of HIV-1 Infection

    Science.gov (United States)

    Wang, Chao; Li, Xue; Yu, Fei; Lu, Lu; Jiang, Xifeng; Xu, Xiaoyu; Wang, Huixin; Lai, Wenqing; Zhang, Tianhong; Zhang, Zhenqing; Ye, Ling; Jiang, Shibo; Liu, Keliang

    2016-01-01

    Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection. PMID:27562370

  1. Variable fitness impact of HIV-1 escape mutations to cytotoxic T lymphocyte (CTL response.

    Directory of Open Access Journals (Sweden)

    Ryan M Troyer

    2009-04-01

    Full Text Available Human lymphocyte antigen (HLA-restricted CD8(+ cytotoxic T lymphocytes (CTL target and kill HIV-infected cells expressing cognate viral epitopes. This response selects for escape mutations within CTL epitopes that can diminish viral replication fitness. Here, we assess the fitness impact of escape mutations emerging in seven CTL epitopes in the gp120 Env and p24 Gag coding regions of an individual followed longitudinally from the time of acute HIV-1 infection, as well as some of these same epitopes recognized in other HIV-1-infected individuals. Nine dominant mutations appeared in five gp120 epitopes within the first year of infection, whereas all four mutations found in two p24 epitopes emerged after nearly two years of infection. These mutations were introduced individually into the autologous gene found in acute infection and then placed into a full-length, infectious viral genome. When competed against virus expressing the parental protein, fitness loss was observed with only one of the nine gp120 mutations, whereas four had no effect and three conferred a slight increase in fitness. In contrast, mutations conferring CTL escape in the p24 epitopes significantly decreased viral fitness. One particular escape mutation within a p24 epitope was associated with reduced peptide recognition and high viral fitness costs but was replaced by a fitness-neutral mutation. This mutation appeared to alter epitope processing concomitant with a reduced CTL response. In conclusion, CTL escape mutations in HIV-1 Gag p24 were associated with significant fitness costs, whereas most escape mutations in the Env gene were fitness neutral, suggesting a balance between immunologic escape and replicative fitness costs.

  2. [HIV-1 genetic variability in non Spaniard infected children].

    Science.gov (United States)

    Piñeiro Pérez, R; Mellado Peña, M J; Holguín, A; Cilleruelo, M J; García Hortelano, M; Villota, J; Martín Fontelos, P

    2009-01-01

    The prevalence of HIV-1 non-B subtypes (HIV-NBS) is increasing in Europe, because of emigration from countries where genetic variants are endemic. Although HIV-NBS could have a different clinical evolution and could respond differently to antiretrovirals (AR) than B-subtypes, these variant's response remain undocumented. To identify HIV-1 genetic variants and to determine clinical evolution in a non-Spaniard children infected with HIV-1. Children with HIV-1 infection from endemic countries were tested for HIV-1 subtypes between 1-1-1988 and 31-12-2006. Twelve children less than 18 years old and born abroad were selected. HIV-NBS were isolated in 5 children (42%): CRF2_AG recombinant in 3 cases (Equatorial Guinea), Subtype C in one (Equatorial Guinea) and CRF13_cpx in last one (India). Because of the increasing frequency of patients with HIV-NBS and their unknown long-term evolution, all children from endemic countries should be tested for HIV subtypes. We believe new studies with more patients during longer times could reveal differences in these patient's clinical, immunological and virological evolution.

  3. Comparison of the RealTime HIV-1, COBAS TaqMan 48 v1.0, Easy Q v1.2, and Versant v3.0 assays for Determination of HIV-1 Viral Loads in a Cohort of Canadian Patients with Diverse HIV Subtype Infections▿

    OpenAIRE

    Church, Deirdre; Gregson, Daniel; Lloyd, Tracie; Klein, Marina; Beckthold, Brenda; Laupland, Kevin; Gill, M. John

    2010-01-01

    HIV clinics in Canada provide care to an increasing number of patients born outside of Canada with HIV-1 non-B subtype infections. Because the Easy Q HIV-1 v1.2 assay (EQ; bioMérieux) failed to detect some non-B subtype infections, a multiassay HIV-1 viral load (VL) study was conducted with patients with diverse HIV subtype infections. Patients were enrolled from the Southern Alberta HIV Clinic (SAC), Calgary, Alberta, Canada (n = 349) and the McGill HIV Clinic (MHC), Montreal, Quebec, Canada...

  4. TERBİNAFİNE KULLANIMINA BAĞLI TAT DUYUSU BOZUKLUĞU: BİR OLGU SUNUMU

    OpenAIRE

    Bayar, Özlem Filiz; Şenol Güven, Gamze; Ak, Gülsüm

    2015-01-01

    Amaç: Terbinafine Alilamin grubunda yer alan bir antifungal ajandır. 1991 yılında üretilmiş olup, topikal ve sistemik olarak geniş bir kullanıma sahiptir. Oral formunun kullanımıyla % 0.6 ile 2.8 oranlarında nadir görülen bir yan etki olan tat duyusu bozukluğu meydana gelmektedir. Bu olgu sunumunda, nadir görülen oral Terbinafine kullanımına bağlı tat duyusu bozukluğu gelişen bir hastayı sunmaktayız.Gereç ve yöntem: 43 yaşında erkek hasta oral Terbinafine kullanımı sonucu gelişen tat duyusu b...

  5. Molding a peptide into an RNA site by in vivo peptide evolution

    OpenAIRE

    Harada, Kazuo; Martin, Shelley S.; Tan, Ruoying; Frankel, Alan D.

    1997-01-01

    Short peptides corresponding to the arginine-rich domains of several RNA-binding proteins are able to bind to their specific RNA sites with high affinities and specificities. In the case of the HIV-1 Rev-Rev response element (RRE) complex, the peptide forms a single α-helix that binds deeply in a widened, distorted RNA major groove and makes a substantial set of base-specific and backbone contacts. Using a reporter system based on antitermination by the bacteriophage λ N protein, it has been ...

  6. HIV-1 viral load measurement in venous blood and fingerprick blood using Abbott RealTime HIV-1 DBS assay.

    Science.gov (United States)

    Tang, Ning; Pahalawatta, Vihanga; Frank, Andrea; Bagley, Zowie; Viana, Raquel; Lampinen, John; Leckie, Gregor; Huang, Shihai; Abravaya, Klara; Wallis, Carole L

    2017-07-01

    HIV RNA suppression is a key indicator for monitoring success of antiretroviral therapy. From a logistical perspective, viral load (VL) testing using Dried Blood Spots (DBS) is a promising alternative to plasma based VL testing in resource-limited settings. To evaluate the analytical and clinical performance of the Abbott RealTime HIV-1 assay using a fully automated one-spot DBS sample protocol. Limit of detection (LOD), linearity, lower limit of quantitation (LLQ), upper limit of quantitation (ULQ), and precision were determined using serial dilutions of HIV-1 Virology Quality Assurance stock (VQA Rush University), or HIV-1-containing armored RNA, made in venous blood. To evaluate correlation, bias, and agreement, 497 HIV-1 positive adult clinical samples were collected from Ivory Coast, Uganda and South Africa. For each HIV-1 participant, DBS-fingerprick, DBS-venous and plasma sample results were compared. Correlation and bias values were obtained. The sensitivity and specificity were analyzed at a threshold of 1000 HIV-1 copies/mL generated using the standard plasma protocol. The Abbott HIV-1 DBS protocol had an LOD of 839 copies/mL, a linear range from 500 to 1×10 7 copies/mL, an LLQ of 839 copies/mL, a ULQ of 1×10 7 copies/mL, and an inter-assay SD of ≤0.30 log copies/mL for all tested levels within this range. With clinical samples, the correlation coefficient (r value) was 0.896 between DBS-fingerprick and plasma and 0.901 between DBS-venous and plasma, and the bias was -0.07 log copies/mL between DBS-fingerprick and plasma and -0.02 log copies/mL between DBS-venous and plasma. The sensitivity of DBS-fingerprick and DBS-venous was 93%, while the specificity of both DBS methods was 95%. The results demonstrated that the Abbott RealTime HIV-1 assay with DBS sample protocol is highly sensitive, specific and precise across a wide dynamic range and correlates well with plasma values. The Abbott RealTime HIV-1 assay with DBS sample protocol provides an

  7. Sexually transmitted infections among HIV-1-discordant couples.

    Directory of Open Access Journals (Sweden)

    Brandon L Guthrie

    2009-12-01

    Full Text Available More new HIV-1 infections occur within stable HIV-1-discordant couples than in any other group in Africa, and sexually transmitted infections (STIs may increase transmission risk among discordant couples, accounting for a large proportion of new HIV-1 infections. Understanding correlates of STIs among discordant couples will aid in optimizing interventions to prevent HIV-1 transmission in these couples.HIV-1-discordant couples in which HIV-1-infected partners were HSV-2-seropositive were tested for syphilis, chlamydia, gonorrhea, and trichomoniasis, and HIV-1-uninfected partners were tested for HSV-2. We assessed sociodemographic, behavioral, and biological correlates of a current STI.Of 416 couples enrolled, 16% were affected by a treatable STI, and among these both partners were infected in 17% of couples. A treatable STI was found in 46 (11% females and 30 (7% males. The most prevalent infections were trichomoniasis (5.9% and syphilis (2.6%. Participants were 5.9-fold more likely to have an STI if their partner had an STI (P<0.01, and STIs were more common among those reporting any unprotected sex (OR = 2.43; P<0.01 and those with low education (OR = 3.00; P<0.01. Among HIV-1-uninfected participants with an HSV-2-seropositive partner, females were significantly more likely to be HSV-2-seropositive than males (78% versus 50%, P<0.01.Treatable STIs were common among HIV-1-discordant couples and the majority of couples affected by an STI were discordant for the STI, with relatively high HSV-2 discordance. Awareness of STI correlates and treatment of both partners may reduce HIV-1 transmission.ClinicalTrials.gov NCT00194519.

  8. Community study of the relative impact of HIV-1 and HIV-2 on intrathoracic tuberculosis

    DEFF Research Database (Denmark)

    Seng, R; Gustafson, P; Gomes, VF

    2002-01-01

    BACKGROUND: HIV-1 infection is associated with an increased incidence of and mortality from tuberculosis. Few community studies have examined the effect of HIV-2 on tuberculosis. METHODS: We investigated the association between HIV-1, HIV-2 and active tuberculosis in four districts (population 42...

  9. Correlation between HIV-1 genotype and clinical progression in HIV/AIDS patients in Surabaya, Indonesia

    Science.gov (United States)

    Rachman, B. E.; Khairunisa, S. Q.; Witaningrum, A. M.; Yunifiar, M. Q.; Nasronudin

    2018-03-01

    Several factors such as host and viral factors can affect the progression of HIV/AIDS. This study aims to identify the correlation viral factors, especially the HIV-1 subtype with HIV/AIDS progression. Inpatient HIV/AIDS during the period March to September 2017 and willing to participate are included in the study. Historical data of disease and treatment was taken by medical record. Blood samples were amplified, sequenced and undergone phylogenetic analysis. Linear regression analysis was used to estimate beta coefficient (β) and 95%CI of HIV/AIDS progression (measured by the CD4 change rate, ΔCD4 cell count/time span in months).This study has 17 samples. The HIV-1 subtype was dominated by CRF01_AE (81.8%) followed by subtype B (18.2%). There was significant correlation between subtype HIV-1 (p = 0.04) and body mass index (p = 0.038) with HIV/AIDS clinical stage. Many factors were assumed to be correlated with increased rate of CD4, but we only subtype HIV-1 had a significant correlation (p = 0.024) with it. From multivariate analysis, we also found that subtype HIV-1 had a significant correlation (β = 0.788, 95%CI: 17.5-38.6, p = 0.004).

  10. Characterization of natural polymorphic sites of the HIV-1 integrase before the introduction of HIV-1 integrase inhibitors in Germany

    Science.gov (United States)

    Meixenberger, Karolin; Pouran Yousef, Kaveh; Somogyi, Sybille; Fiedler, Stefan; Bartmeyer, Barbara; von Kleist, Max; Kücherer, Claudia

    2014-01-01

    Introduction The aim of our study was to analyze the occurrence and evolution of HIV-1 integrase polymorphisms during the HIV-1 epidemic in Germany prior to the introduction of the first integrase inhibitor raltegravir in 2007. Materials and Methods Plasma samples from drug-naïve HIV-1 infected individuals newly diagnosed between 1986 and 2006 were used to determine PCR-based population sequences of the HIV-1 integrase (amino acids 1–278). The HIV-1 subtype was determined using the REGA HIV-1 subtyping tool. We calculated the frequency of amino acids at each position of the HIV-1 integrase in 337 subtype B strains for the time periods 1986–1989, 1991–1994, 1995–1998, 1999–2002, and 2003–2006. Positions were defined as polymorphic if amino acid variation was >1% in any period. Logistic regression was used to identify trends in amino acid variation over time. Resistance-associated mutations were identified according to the IAS 2013 list and the HIVdb, ANRS and GRADE algorithms. Results Overall, 56.8% (158/278) amino acid positions were polymorphic and 15.8% (25/158) of these positions exhibited a significant trend in amino acid variation over time. Proportionately, most polymorphic positions (63.3%, 31/49) were detected in the N-terminal zinc finger domain of the HIV-1 integrase. Motifs and residues essential for HIV-1 integrase activity were little polymorphic, but within the minimal non-specific DNA binding region I220-D270 up to 18.1% amino acid variation was noticed, including four positions with significant amino acid variation over time (S230, D232, D256, A265). No major resistance mutations were identified, and minor resistance mutations were rarely observed without trend over time. E157Q considered by HIVdb, ANRS, and GRADE algorithms was the most frequent resistance-associated polymorphism with an overall prevalence of 2.4%. Conclusions Detailed knowledge of the evolutionary variation of HIV-1 integrase polymorphisms is important to understand

  11. Architectural Insight into Inovirus-Associated Vectors (IAVs and Development of IAV-Based Vaccines Inducing Humoral and Cellular Responses: Implications in HIV-1 Vaccines

    Directory of Open Access Journals (Sweden)

    Kyriakos A. Hassapis

    2014-12-01

    Full Text Available Inovirus-associated vectors (IAVs are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.

  12. Cyclophilin B enhances HIV-1 infection.

    Science.gov (United States)

    DeBoer, Jason; Madson, Christian J; Belshan, Michael

    2016-02-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A novel and exploitable antifungal peptide from kale (Brassica alboglabra) seeds.

    Science.gov (United States)

    Lin, Peng; Ng, Tzi Bun

    2008-10-01

    The aim of this study was to purify and characterize antifungal peptides from kale seeds in view of the paucity of information on antifungal peptides from the family Brassicaceae, and to compare its characteristics with those of published Brassica antifungal peptides. A 5907-Da antifungal peptide was isolated from kale seeds. The isolation procedure comprised affinity chromatography on Affi-gel blue gel, ion exchange chromatography on SP-Sepharose and Mono S, and gel filtration on Superdex Peptide. The peptide was adsorbed on the first three chromatographic media. It inhibited mycelial growth in a number of fungal species including Fusarium oxysporum, Helminthosporium maydis, Mycosphaerella arachidicola and Valsa mali, with an IC(50) of 4.3microM, 2.1microM, 2.4microM, and 0.15microM, respectively and exhibited pronounced thermostability and pH stability. It inhibited proliferation of hepatoma (HepG2) and breast cancer (MCF7) cells with an IC(50) of 2.7microM and 3.4microM, and the activity of HIV-1 reverse transcriptase with an IC(50) of 4.9microM. Its N-terminal sequence differed from those of antifungal proteins which have been reported to date.

  14. Glycotriazole-peptides derived from the peptide HSP1: synergistic effect of triazole and saccharide rings on the antifungal activity.

    Science.gov (United States)

    Junior, Eduardo F C; Guimarães, Carlos F R C; Franco, Lucas L; Alves, Ricardo J; Kato, Kelly C; Martins, Helen R; de Souza Filho, José D; Bemquerer, Marcelo P; Munhoz, Victor H O; Resende, Jarbas M; Verly, Rodrigo M

    2017-08-01

    This work proposes a strategy that uses solid-phase peptide synthesis associated with copper(I)-catalyzed azide alkyne cycloaddition reaction to promote the glycosylation of an antimicrobial peptide (HSP1) containing a carboxyamidated C-terminus (HSP1-NH 2 ). Two glycotriazole-peptides, namely [p-Glc-trz-G 1 ]HSP1-NH 2 and [p-GlcNAc-trz-G 1 ]HSP1-NH 2 , were prepared using per-O-acetylated azide derivatives of glucose and N-acetylglucosamine in the presence of copper(II) sulfate pentahydrate (CuSO 4 ·5H 2 O) and sodium ascorbate as a reducing agent. In order to investigate the synergistic action of the carbohydrate motif linked to the triazole-peptide structure, a triazole derivative [trz-G 1 ]HSP1-NH 2 was also prepared. A set of biophysical approaches such as DLS, Zeta Potential, SPR and carboxyfluorescein leakage from phospholipid vesicles confirmed higher membrane disruption and lytic activities as well as stronger peptide-LUVs interactions for the glycotriazole-peptides when compared to HSP1-NH 2 and to its triazole derivative, which is in accordance with the performed biological assays: whereas HSP1-NH 2 presents relatively low and [trz-G 1 ]HSP1-NH 2 just moderate fungicidal activity, the glycotriazole-peptides are significantly more effective antifungal agents. In addition, the glycotriazole-peptides and the triazole derivative present strong inhibition effects on ergosterol biosynthesis in Candida albicans, when compared to HSP1-NH 2 alone. In conclusion, the increased fungicidal activity of the glycotriazole-peptides seems to be the result of (A) more pronounced membrane-disruptive properties, which is related to the presence of a saccharide ring, together with (B) the inhibition of ergosterol biosynthesis, which seems to be related to the presence of both the monosaccharide and the triazole rings.

  15. Field evaluation of an open and polyvalent universal HIV-1/SIVcpz/SIVgor quantitative RT-PCR assay for HIV-1 viral load monitoring in comparison to Abbott RealTime HIV-1 in Cameroon.

    Science.gov (United States)

    Guichet, Emilande; Aghokeng, Avelin; Eymard-Duvernay, Sabrina; Vidal, Nicole; Ayouba, Ahidjo; Mpoudi Ngole, Eitel; Delaporte, Eric; Ciaffi, Laura; Peeters, Martine

    2016-11-01

    With the increasing demand of HIV viral load (VL) tests in resource-limited countries (RLCs) there is a need for assays at affordable cost and able to quantify all known HIV-1 variants. VLs obtained with a recently developed open and polyvalent universal HIV-1/SIVcpz/SIVgor RT-qPCR were compared to Abbott RealTime HIV-1 assay in Cameroon. On 474 plasma samples, characterized by a wide range of VLs and a broad HIV-1 group M genetic diversity, 97.5% concordance was observed when using the lower detection limit of each assay. When using the threshold of 3.00 log 10 copies/mL, according to WHO guidelines to define virological failure (VF) in RLCs, the concordance was 94.7%, 360/474 versus 339/474 patients were identified with VF with the new assay and Abbott RealTime HIV-1, respectively. Higher VLs were measured with the new assay, +0.47 log 10 copies/mL (95% CI; 0.42-0.52) as shown with Bland-Altman analysis. Eleven samples from patients on VF with drug resistance were not detected by Abbott RealTime HIV-1 versus two only with the new assay. Overall, our study showed that the new assay can be easily implemented in a laboratory in RLCs with VL experience and showed good performance on a wide diversity of HIV-1 group M variants. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The global transmission network of HIV-1.

    Science.gov (United States)

    Wertheim, Joel O; Leigh Brown, Andrew J; Hepler, N Lance; Mehta, Sanjay R; Richman, Douglas D; Smith, Davey M; Kosakovsky Pond, Sergei L

    2014-01-15

    Human immunodeficiency virus type 1 (HIV-1) is pandemic, but its contemporary global transmission network has not been characterized. A better understanding of the properties and dynamics of this network is essential for surveillance, prevention, and eventual eradication of HIV. Here, we apply a simple and computationally efficient network-based approach to all publicly available HIV polymerase sequences in the global database, revealing a contemporary picture of the spread of HIV-1 within and between countries. This approach automatically recovered well-characterized transmission clusters and extended other clusters thought to be contained within a single country across international borders. In addition, previously undescribed transmission clusters were discovered. Together, these clusters represent all known modes of HIV transmission. The extent of international linkage revealed by our comprehensive approach demonstrates the need to consider the global diversity of HIV, even when describing local epidemics. Finally, the speed of this method allows for near-real-time surveillance of the pandemic's progression.

  17. Evaluation of four rapid tests for diagnosis and differentiation of HIV-1 and HIV-2 infections in Guinea-Conakry, West Africa.

    Science.gov (United States)

    Chaillet, Pascale; Tayler-Smith, Katie; Zachariah, Rony; Duclos, Nanfack; Moctar, Diallo; Beelaert, Greet; Fransen, Katrien

    2010-09-01

    With both HIV-1 and HV-2 prevalent in Guinea-Conakry, accurate diagnosis and differentiation is crucial for treatment purposes. Thus, four rapid HIV tests were evaluated for their HIV-1 and HIV-2 diagnostic and discriminative capacity for use in Guinea-Conakry. These included SD Bioline HIV 1/2 3.0 (Standard Diagnostics Inc.), Genie II HIV1/HIV2 (Bio-Rad), First Response HIV Card Test 1-2.0 (PMC Medical) and Immunoflow HIV1-HIV2 (Core Diagnostics). Results were compared with gold standard tests (INNO-LIA HIV-I/II Score) and NEW LAV BLOT II (Bio-Rad). Four hundred and forty three sequential stored HIV-positive serum samples, of known HIV-type, were evaluated. Genie II HIV1/HIV2, Immunoflow HIV1-HIV2 and SD Bioline HIV 1/2 3.0 had 100% sensitivity (95% CI, 98.9-100%) while for First Response HIV Card Test 1-2.0 this was 99.5% (95% CI, 98.2%-99.9%). In terms of discriminatory capacity, Genie II HIV1/HIV2 identified 382/ 384(99.5%) HIV-1 samples, 49/ 52(95%) HIV-2 and 7/7(100%) HIV-positive untypable samples. Immunoflow HIV1-HIV2 identified 99% HIV-1, 67% HIV-2 and all HIV-positive untypable samples. First Response HIV Card Test 1-2.0 identified 94% HIV-1, 64% HIV-2 and 57% HIV-positive untypable samples. SD-Bioline HIV 1/2 3.0 was the worst overall performer identifying 65% HIV-1, 69% HIV-2 and all HIV-positive untypable samples. The use of SD Bioline HIV 1/2 3.0 (the current standard in Guinea-Conakry) as a discriminatory HIV test is poor and may be best replaced by Immunoflow HIV1-HIV2. Copyright 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  18. Building Capacity in Using Earth Observations Under the GOFC-GOLD and TAT Programs

    Science.gov (United States)

    Gutman, G.

    2015-12-01

    The Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) is a coordinated international effort to provide ongoing space-based and in-situ observations of forests and other vegetation cover. The main goal of GOFC/GOLD is to support a forum for international information exchange, observation and data coordination, and a framework for establishing the necessary long-term monitoring systems. GOFC-GOLD has two Implementation Teams: Land Cover Characteristics and Change, and Fire Monitoring and Mapping. Additionally, it includes two working groups: the Working Group on Biomass Monitoring and the Working group on Reducing Emissions from Deforestation and Forest Degradation (REDD), the latter being aligned with the United Nations Framework Convention on Climate Change. Regional networks are an integral part of the GOFC-GOLD program, with some networks fully developed and some still emerging. GOFC-GOLD provides training workshops to build capacity in the regions. Capacity building in using Earth Observation techniques and applications is also promoted by cooperation of NASA and ESA under the Trans-Atlantic Training (TAT) program. The main objective of TAT is training of early career scientists and students in East European and Baltic countries emphasizing outstanding technical issues in remote sensing of land-cover/land-use change and ecosystems processes. TAT promotes data sharing and advanced research methods and technologies through series of training sessions. Three TAT sessions have been held until now, each session consisting of 5-10 tutors and about 30 early career scientists and students from Eastern Europe. The sessions include lectures on remote sensing covering the full solar spectrum and hands-on practice. The experience obtained in capacity building activities under GOFC-GOLD and TAT will be shared with the audience.

  19. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers

    Science.gov (United States)

    Anand, Prachi; O'Neil, Alison; Lin, Emily; Douglas, Trevor; Holford, Mandë

    2015-08-01

    The blood brain barrier (BBB) is often an insurmountable obstacle for a large number of candidate drugs, including peptides, antibiotics, and chemotherapeutic agents. Devising an adroit delivery method to cross the BBB is essential to unlocking widespread application of peptide therapeutics. Presented here is an engineered nanocontainer for delivering peptidic drugs across the BBB encapsulating the analgesic marine snail peptide ziconotide (Prialt®). We developed a bi-functional viral nanocontainer based on the Salmonella typhimurium bacteriophage P22 capsid, genetically incorporating ziconotide in the interior cavity, and chemically attaching cell penetrating HIV-Tat peptide on the exterior of the capsid. Virus like particles (VLPs) of P22 containing ziconotide were successfully transported in several BBB models of rat and human brain microvascular endothelial cells (BMVEC) using a recyclable noncytotoxic endocytic pathway. This work demonstrates proof in principle for developing a possible alternative to intrathecal injection of ziconotide using a tunable VLP drug delivery nanocontainer to cross the BBB.

  20. HIV-1 proteins dysregulate motivational processes and dopamine circuitry.

    Science.gov (United States)

    Bertrand, Sarah J; Mactutus, Charles F; Harrod, Steven B; Moran, Landhing M; Booze, Rosemarie M

    2018-05-18

    Motivational alterations, such as apathy, in HIV-1+ individuals are associated with decreased performance on tasks involving frontal-subcortical circuitry. We used the HIV-1 transgenic (Tg) rat to assess effect of long-term HIV-1 protein exposure on motivated behavior using sucrose (1-30%, w/v) and cocaine (0.01-1.0 mg/kg/infusion) maintained responding with fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement. For sucrose-reinforced responding, HIV-1 Tg rats displayed no change in EC 50 relative to controls, suggesting no change in sucrose reinforcement but had a downward shifted concentration-response curves, suggesting a decrease in response vigor. Cocaine-maintained responding was attenuated in HIV-1 Tg rats (FR1 0.33 mg/kg/infusion and PR 1.0 mg/kg/infusion). Dose-response tests (PR) revealed that HIV-1 Tg animals responded significantly less than F344 control rats and failed to earn significantly more infusions of cocaine as the unit dose increased. When choosing between cocaine and sucrose, control rats initially chose sucrose but with time shifted to a cocaine preference. In contrast, HIV-1 disrupted choice behaviors. DAT function was altered in the striatum of HIV-1 Tg rats; however, prior cocaine self-administration produced a unique effect on dopamine homeostasis in the HIV-1 Tg striatum. These findings of altered goal directed behaviors may determine neurobiological mechanisms of apathy in HIV-1+ patients.