WorldWideScience

Sample records for highly weathered soils

  1. Retention of phosphorus in highly weathered soils under a lowland Amazonian forest ecosystem

    Science.gov (United States)

    M. E. McGroddy; W. L. Silver; Jr. de Oliveira; W. Z. de Mello; M. Keller

    2008-01-01

    The low available phosphorus (P) pools typical of highly weathered tropical forest soils are thought to result from a combination of export of phosphorus via erosion and leaching as well as chemical reactions resulting in physically and chemically protected P compounds. Despite the low apparent P availability, these soils support some of the highest terrestrial net...

  2. Electrochemical soil remediation - accelerated soil weathering?

    Energy Technology Data Exchange (ETDEWEB)

    Ottosen, L.M.; Villumsen, A.; Hansen, H.K.; Jensen, P.E.; Pedersen, A.J. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Environmental Sciences and Engineering, New Univ. of Lisbon, Monte da Caparica (Portugal)

    2001-07-01

    In electrochemical soil remediation systems, where enhancement solutions and complexing agents are not used, a developing acidic front is mobilizing the heavy metals and the electric current is removing the mobilized elements from the soil. The hypotheses investigated in this paper is whether this process may be comparable to the chemical soil weathering that occurs in the environment due to the acidic rain, where the mobilized elements are removed from the soil by the penetrating water. Even through the weathering process is highly accelerated in the electrochemical cell. This paper shows results from electrodialytic remediation experiments performed with four different Danish heavy metal polluted soils. The main emphasis is laid on the relation between the developing acidic front and electromigration of Cu, Zn, Mn, Mg, Fe and Ca. (orig.)

  3. Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils.

    Science.gov (United States)

    Sui, Hong; Hua, Zhengtao; Li, Xingang; Li, Hong; Wu, Guozhong

    2014-05-01

    Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76-94 % of the total petroleum hydrocarbons including 25 alkanes (C11-C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol-water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 10(5) mg kg(-1) in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix.

  4. Phosphorus content as a function of soil aggregate size and paddy cultivation in highly weathered soils.

    Science.gov (United States)

    Li, Baozhen; Ge, Tida; Xiao, Heai; Zhu, Zhenke; Li, Yong; Shibistova, Olga; Liu, Shoulong; Wu, Jinshui; Inubushi, Kazuyuki; Guggenberger, Georg

    2016-04-01

    Red soils are the major land resource in subtropical and tropical areas and are characterized by low phosphorus (P) availability. To assess the availability of P for plants and the potential stability of P in soil, two pairs of subtropical red soil samples from a paddy field and an adjacent uncultivated upland were collected from Hunan Province, China. Analysis of total P and Olsen P and sequential extraction was used to determine the inorganic and organic P fractions in different aggregate size classes. Our results showed that the soil under paddy cultivation had lower proportions of small aggregates and higher proportions of large aggregates than those from the uncultivated upland soil. The portion of >2-mm-sized aggregates increased by 31 and 20 % at Taoyuan and Guiyang, respectively. The total P and Olsen P contents were 50-150 and 50-300 % higher, respectively, in the paddy soil than those in the upland soil. Higher inorganic and organic P fractions tended to be enriched in both the smallest and largest aggregate size classes compared to the middle size class (0.02-0.2 mm). Furthermore, the proportion of P fractions was higher in smaller aggregate sizes (2 mm). In conclusion, soils under paddy cultivation displayed improved soil aggregate structure, altered distribution patterns of P fractions in different aggregate size classes, and to some extent had enhanced labile P pools.

  5. Changes in Soil Chemical Properties and Lettuce Yield Response Following Incorporation of Biochar and Cow Dung to Highly Weathered Acidic Soils

    DEFF Research Database (Denmark)

    Agyei Frimpong, Kwame; Amoakwah, Emmanuel; Osei, Benjamin A

    2016-01-01

    imposed on two highly weathered, acidic soils from the coastal savanna and tropical rainforest agroecological zones of Ghana, respectively, to elucidate their effect on yield of lettuce. The study showed that application of biochar solely or in combination with cow dung increased soil pH, total organic...... carbon, and cation exchange capacity, and temporarily increased soil respiration and microbial biomass carbon. Further, incorporation of combined application of cow dung and biochar increased lettuce yield more than sole incorporation of either amendment. The study demonstrated that corn cob biochar can...... improve soil chemical properties and lettuce yield if applied solely or in combination with cow dung....

  6. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    Science.gov (United States)

    Eykelbosh, Angela Joy; Johnson, Mark S; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions.

  7. Biochar from Sugarcane Filtercake Reduces Soil CO2 Emissions Relative to Raw Residue and Improves Water Retention and Nutrient Availability in a Highly-Weathered Tropical Soil

    Science.gov (United States)

    Eykelbosh, Angela Joy; Johnson, Mark S.; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522

  8. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    Directory of Open Access Journals (Sweden)

    Angela Joy Eykelbosh

    Full Text Available In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w. were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w. raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w. in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions.

  9. Sorption study and contribution of ion exchange in the dynamics of 137Cs n highly weathered soils

    International Nuclear Information System (INIS)

    Nascimento Sobrinho, Guilherme Augusto

    2014-01-01

    The present study investigated the sorption kinetics and the reversibility of 137 Cs within highly weathered soils, by means of sorption isotherms and desorption with three concentrations of silver thiourea (AgTU). For this purpose, four soils were selected based on their mineralogy and pedogenetics and sampled from lysimeters placed within the experimental area of the Tropical Radioecology Laboratory of the Institute for Radioprotection and Dosimetry. Three of them were tropical soils, belonging to the Argissolo (ARG), Latossolo vermelho (LV) and Latossolo vermelho amarelo (LVA) classes, and one subtropical, belonging to the Nitossolo (NIT) class. The 'goodness-of-fit' of the constant partition, Langmuir and Freundlich isotherms to the experimental data were assessed by means of a 'traditional' approach, i.e. correlation (R) and determination (R 2 ) coefficients, and a 'theoretic-informative' one, based upon the Corrected Akaike Information Criteria (AICc). In this work became clear that even presenting high affinity for the soil surface, once the sorption equilibrium was reached within 24 h (66 to 97% of sorbed 137 Cs), quite a lot of this radionuclide remains easily mobile (40 to 73% of desorbed 137 Cs), by means of a single extraction with AgTU 0,05 mol.L-1, and that such reversibility relates in an inverse manner to the sorption capacity of the studied soils for 137 Cs. This work pointed also that the constant partition model, mostly known as Kdi, does not fit at all for the sorption data gathered for four highly weathered soils from four mineralogical groups, and for a very dilute solution of 137 Cs. The mathematical model that most adequately described the sorption data for the four studied soils was the Langmuir equation (R 2 > 0,95). The multi model analysis was not able to support generalizations for the four soils. The three models considered in this study provided good predictions of the sorbed 137 Cs for the ARG, LVA and NIT samples (ΔAICc AICc = 0

  10. Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado

    Science.gov (United States)

    Lawrence, Corey R.; Reynolds, Richard L.; Kettterer, Michael E.; Neff, Jason C.

    2013-01-01

    When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50–80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.

  11. Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado

    Science.gov (United States)

    Lawrence, Corey R.; Reynolds, Richard L.; Ketterer, Michael E.; Neff, Jason C.

    2013-04-01

    When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50-80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.

  12. Organic solvents improve hydrocarbon desorption and biodegradation in highly contaminated weathered soils

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rivero, M. [Tecnologico de Estudios Superiores de Ecatepec, Mexico City (Mexico); Saucedo-Casteneda, G.; Gutierrez-Rojas, M. [Autonoma Metropolitan Univ., Mexico City (Mexico). Dept. of Biotechnology

    2007-07-15

    A toluene-based microbial slurry phase system was used to remediate hydrocarbons (HC) in highly contaminated soil samples collected from a site next to a working refinery in Mexico. Initial HC concentrations of the samples were 237.2 {+-} 16,6 g kg{sup -1} in dry soil. The microbial consortium consisted of 10 different strains in a mineral solution. Non-polar solvents used in the phase system included hexane, benzene, and toluene. Polar solvents included n-butanol, acetone, and methanol. The bioavailability of the HCs was increased using both polar and nonpolar solvents in order to promote desorption from the soil and to enhance overall HC biodegradation. HC desorption was analyzed in an abiotic system. Respiration and residual HCs were examined after a period of 30 days in order to compare the effects of the 2 solvents. The biodegradation extracts were then fractionated in a silica gel column to determine if the solvents actually enhanced the biodegradation of specific HC fractions. The study showed that induced dipole interactions forces resulted when nonpolar molecules were dissolved into a nonpolar solvent. Results for desorption and solubility varied among the 6 solvents. Higher dielectric constants resulted in higher solubility and desorption of HCs for nonpolar solvents, while the opposite effect was observed for polar solvents. It was concluded that toluene produced better biodegradation results than any of the milder solvents. 34 refs., 4 tabs., 1 fig.

  13. Effects of flooding on phosphorus and iron mobilization in highly weathered soils: Short-term effects and mechanisms

    Science.gov (United States)

    Maranguit, Deejay

    2017-04-01

    The strong affinity of phosphorus (P) to iron (Fe) oxides and hydroxides in highly weathered tropical soils limits P availability and therefore plant productivity. In flooded soils, however, P fixed by Fe oxides and hydroxides can be released and transformed to a more available form because of Fe3+ reduction to Fe2+. These P dynamics in flooded soils are well documented for rice paddies. Such effects are much less studied in other land-use types under the influence of seasonal flooding, especially in the tropics during heavy monsoon rains. The aim of this study was to investigate the mobilization of P during flooding leading to anaerobic conditions in topsoil and subsoil horizons depending on land-use type. Samples were collected in highly weathered soils from four replicate sites under natural rainforest, jungle rubber, rubber and oil palm plantations in Sumatra, Indonesia. Topsoil and subsoil were taken to ensure a wide range of soil organic matter (SOM) and P contents. Soils were incubated under anaerobic, flooded conditions at 30 ± 1 oC for 60 days. Our results confirmed the hypothesis that soil flooding mobilizes P and increases P availability. Two distinct and opposite phases, however, were observed upon flooding. During the first three weeks of flooding, the dissolved P (DP) concentration peaked, simultaneously with a peak of dissolved Fe2+ (DFe2+) and dissolved organic carbon (DOC) in the soil solution. After three weeks, P availability in soils decreased, although Fe-P and available P did not reach initial, pre-flooding levels. Accordingly, Fe dissolution and P mobilization were reversible processes. Furthermore, land-use type influenced the impacts of flooding on P and Fe forms mainly in the topsoil, where P dissolution and availability were generally higher under forest and, to a lesser extent, under jungle rubber. A positive correlation between DOC and DFe2+ (R2 = 0.42) in topsoil indicates that the intensity of microbially-mediated Fe3+ reduction is

  14. Effect of Soil Water Content on the Distribution of Diuron into Organomineral Aggregates of Highly Weathered Tropical Soils.

    Science.gov (United States)

    Regitano, Jussara B; Rocha, Wadson S D; Bonfleur, Eloana J; Milori, Debora; Alleoni, Luís R F

    2016-05-25

    We evaluated the effects of soil water content on the retention of diuron and its residual distribution into organomineral aggregates in four Brazilian oxisols. (14)C-Diuron was incubated for days at 25, 50, and 75% of maximum water-holding capacity for each soil. After 42 days, the physical fractionation method was used to obtain >150, 53-150, 20-53, 2-20, and retention increased with increasing soil water content for all soils. At lower soil water content, diuron's retention was higher in the sandier soil. It was mostly retained in the fine (retention was higher in the coarse aggregates (>53 μm). The sorption coefficients (Kd and Koc) generated by batch studies should be carefully used because they do not provide information about aggregation and diffusion effects on pesticides soil sorption.

  15. Macroaggregation and soil organic carbon restoration in a highly weathered Brazilian Oxisol after two decades under no-till.

    Science.gov (United States)

    de Oliveira Ferreira, Ademir; de Moraes Sá, João Carlos; Lal, Rattan; Tivet, Florent; Briedis, Clever; Inagaki, Thiago Massao; Gonçalves, Daniel Ruiz Potma; Romaniw, Jucimare

    2018-04-15

    Conclusions based on studies of the impacts of soil organic carbon (SOC) fractions and soil texture on macroaggregation and SOC stabilization in long-term (>20years) no-till (NT) fields remain debatable. This study was based on the hypothesis that the amount and frequency of biomass-C input associated with NT can be a pathway to formation of macroaggregates and to SOC buildup. The objectives were to: 1) assess the macroaggregate distribution (proportional mass, class mass) and the SOC and particulate organic carbon (POC) stocks of extra-large (8-19mm), large (2-8mm) and small (0.25-2mm) macroaggregate size classes managed for two decades by NT, and 2) assess the recovery of SOC stocks in extra-large macroaggregates compared to adjacent native vegetation (Andropogon sp., Aristida sp., Paspalum sp., and Panicum sp.). The crop rotation systems were: soybean (Glycine max L.), maize (Zea mays L.) and beans (Phaseolus vulgaris L.) in summer; and black oat (Avena strigosa Schreb), white oat (Avena sativa), vetch (Vicia sativa L.), black oat.+vetch (Avena strigosa Schreb+vetch) and wheat (Triticum aestivum L.) in winter. The experimental was laid out as 2×2 randomized block factorial with 12 replicates of a NT experiment established in 1997 on two highly weathered Oxisols. The factors comprised of: (a) two soil textural types: clay loam and sandy clay, and (b) two sampling depths: 0-5 and 5-20cm. The three classes of macroaggregates were obtained by wet sieving, and the SOC content was determined by the dry combustion method. The extra-large macroaggregate classes in 0-20cm depth for sandy clay (SdC) and clay loam (CL) Oxisol represented 75.2 and 72.4% of proportional mass, respectively. The SOC and POC stocks among macroaggregate classes in 0-5 and 5-20cm depths decreased in the order: 8-19mm>2-8mm ≈ 0.25-2mm. The SdC plots under soybean/maize at 3:1 ratio recovered 58.3%, while those at 1:1 ratio (high maize frequency) in CL recovered 73.1% of SOC stock in the extra

  16. Zinc adsorption in highly weathered soils Adsorção de zinco em solos altamente intemperizados

    Directory of Open Access Journals (Sweden)

    José Carlos Casagrande

    2008-01-01

    Full Text Available The objective of this work was to assess the effects of pH and ionic strength upon zinc adsorption, in three highly weathered variable charge soils. Adsorption isotherms were elaborated from batch adsorption experiments, with increasing Zn concentrations (0-80 mg L-1, and adsorption envelopes were constructed through soil samples reactions with 0.01, 0.1 and 1 mol L-1 Ca(NO32 solutions containing 5 mg L-1 of Zn, with an increasing pH value from 3 to 8. Driving force of reaction was quantified by Gibbs free energy and separation factor. Isotherms were C-, H- and L-type and experimental results were fitted to nonlinear Langmuir model. Maximum adsorption ranged from 59-810 mg kg-1, and Zn affinity was greater in subsoil (0.13-0.81 L kg-1 than in the topsoil samples (0.01-0.34 L kg-1. Zinc adsorption was favorable and spontaneous, and showed sharply increase (20-90% in the 4-6 pH range. No effect of ionic strength was observed at pH values below 5, because specific adsorption mechanisms predominated in the 3-5 pH range. Above pH 5, and in subsoil samples, Zn was adsorbed by electrostatic mechanisms, since ionic strength effect was observed. Despite depth and ionic strength effects, Zn adsorption depends mainly on the pH.O objetivo deste trabalho foi avaliar o efeito do pH e da força iônica sobre a adsorção de zinco, em três solos altamente intemperizados, com predomínio de cargas variáveis. A partir de experimentos tipo " batch" , foram elaboradas isotermas de adsorção, com quantidades crescentes de Zn (0-80 mg L-1, e envelopes de adsorção foram feitos pela reação de amostras de terra com soluções de Ca(NO32 0,01, 0,1 e 1 mol L-1 e 5 mg L-1 de Zn, submetidas a variações de pH (3-8. A força direcional da reação de adsorção de Zn foi estimada pela energia livre de Gibbs e pelo fator de separação. As isotermas foram do tipo C, H e L, e os resultados experimentais ajustaram-se ao modelo de Langmuir. A adsorção máxima variou de

  17. Wireless sensor network for monitoring soil moisture and weather conditions

    Science.gov (United States)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  18. Spatial Prediction of Soil Classes by Using Soil Weathering Parameters Derived from vis-NIR Spectroscopy

    Science.gov (United States)

    Ramirez-Lopez, Leonardo; Alexandre Dematte, Jose

    2010-05-01

    There is consensus in the scientific community about the great need of spatial soil information. Conventional mapping methods are time consuming and involve high costs. Digital soil mapping has emerged as an area in which the soil mapping is optimized by the application of mathematical and statistical approaches, as well as the application of expert knowledge in pedology. In this sense, the objective of the study was to develop a methodology for the spatial prediction of soil classes by using soil spectroscopy methodologies related with fieldwork, spectral data from satellite image and terrain attributes in simultaneous. The studied area is located in São Paulo State, and comprised an area of 473 ha, which was covered by a regular grid (100 x 100 m). In each grid node was collected soil samples at two depths (layers A and B). There were extracted 206 samples from transect sections and submitted to soil analysis (clay, Al2O3, Fe2O3, SiO2 TiO2, and weathering index). The first analog soil class map (ASC-N) contains only soil information regarding from orders to subgroups of the USDA Soil Taxonomy System. The second (ASC-H) map contains some additional information related to some soil attributes like color, ferric levels and base sum. For the elaboration of the digital soil maps the data was divided into three groups: i) Predicted soil attributes of the layer B (related to the soil weathering) which were obtained by using a local soil spectral library; ii) Spectral bands data extracted from a Landsat image; and iii) Terrain parameters. This information was summarized by a principal component analysis (PCA) in each group. Digital soil maps were generated by supervised classification using a maximum likelihood method. The trainee information for this classification was extracted from five toposequences based on the analog soil class maps. The spectral models of weathering soil attributes shown a high predictive performance with low error (R2 0.71 to 0.90). The spatial

  19. Topographic imprint on chemical weathering in deeply weathered soil-mantled landscapes (southern Brazil)

    Science.gov (United States)

    Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean

    2017-04-01

    The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle

  20. Characterisation of weathered clayey soils responsible for shallow landslides

    Directory of Open Access Journals (Sweden)

    C. Meisina

    2006-01-01

    Full Text Available Shallow earth translational slides and earth flows, affecting colluvial soils derived by the weathering of the clayey bedrock, are a recurrent problem causing damage to buildings and roads in many areas of Apennines. The susceptibility assessment, e.g. slope stability models, requires the preliminary characterization of these superficial covers (lithology, geotechnical and hydraulic parameters. The aim of the work is to develop and test a methodology for the identification and mapping of weathered clayey soils responsible for shallow landslides. A test site in Northern Apennines (Province of Pavia was selected. Argillaceous and marly successions characterize the area. Shallow landslides occurred periodically due to high intensity rainfalls. Trench pits were used for the soil profile description (lithology, structure, grade of weathering, thickness and sampling. The main geological, topographic and geomorphologic parameters of shallow landslides were analysed. Field surveys were integrated with some geotechnical laboratory tests (index properties, suction and volumetric characteristic determination, methylene blue adsorption test, linear shrinkage, swell strain. Engineering geological zoning was carried out by grouping the superficial soils on the basis of the following attributes: topographic conditions (slope angle, landslide occurrence, lithology (grain size, geometry (thickness, lithology of the bedrock, hydrogeological and geotechnical characteristics. The resulting engineering-geological units (areas that may be regarded as homogeneous from the geomorphologic and engineering – geological point of view were analysed in terms of shallow slope instability.

  1. Why does carbon increase in highly weathered soil under no-till upon lime and gypsum use?

    Science.gov (United States)

    Inagaki, Thiago Massao; de Moraes Sá, João Carlos; Caires, Eduardo Fávero; Gonçalves, Daniel Ruiz Potma

    2017-12-01

    Field experiments have been used to explain how soil organic carbon (SOC) dynamics is affected by lime and gypsum applications, however, how SOC storage occurs is still debatable. We hypothesized that although many studies conclude that Ca-based soil amendments such as lime and gypsum may lead to SOC depletion due to the enhancement of microbial activity, the same does not occur under conservation agriculture conditions. Thus, the objective of this study was to elucidate the effects of lime and gypsum applications on soil microbial activity and SOC stocks in a no-till field and in a laboratory incubation study simulating no-till conditions. The field experiment was established in 1998 in a clayey Oxisol in southern Brazil following a completely randomized blocks design with a split-plot arrangement and three replications. Lime and gypsum were surface applied in 1998 and reapplied in 2013. Undisturbed soil samples were collected before the treatments reapplications, and one year after. The incubation experiment was carried out during 16months using these samples adding crop residues on the soil surface to simulate no-till field conditions. Lime and gypsum applications significantly increased the labile SOC stocks, microbial activity and soil fertility attributes in both field and laboratory experiments. Although the microbial activity was increased, no depletion of SOC stocks was observed in both experiments. Positive correlations were observed between microbial activity increase and SOC gains. Labile SOC and Ca 2+ content increase leads to forming complex with mineral soil fractions. Gypsum applications performed a higher influence on labile SOC pools in the field than in the laboratory experiment, which may be related to the presence of active root system in the soil profile. We conclude that incubation experiments using lime and gypsum in undisturbed samples confirm that soil microbial activity increase does not deplete SOC stocks under conservation agriculture

  2. Imaging and Analytical Approaches for Characterization of Soil Mineral Weathering

    Energy Technology Data Exchange (ETDEWEB)

    Dohnalkova, Alice; Arey, Bruce; Varga, Tamas; Miller, Micah; Kovarik, Libor

    2017-07-01

    Soil minerals weathering is the primary natural source of nutrients necessary to sustain productivity in terrestrial ecosystems. Soil microbial communities increase soil mineral weathering and mineral-derived nutrient availability through physical and chemical processes. Rhizosphere, the zone immediately surrounding plant roots, is a biogeochemical hotspot with microbial activity, soil organic matter production, mineral weathering, and secondary phase formation all happening in a small temporally ephemeral zone of steep geochemical gradients. The detailed exploration of the micro-scale rhizosphere is essential to our better understanding of large-scale processes in soils, such as nutrient cycling, transport and fate of soil components, microbial-mineral interactions, soil erosion, soil organic matter turnover and its molecular-level characterization, and predictive modeling.

  3. Root-driven Weathering Impacts on Mineral-Organic Associations in Deep Soil

    Science.gov (United States)

    Keiluweit, M.; Garcia Arredondo, M.; Tfaily, M. M.; Kukkadapu, R. K.; Schulz, M. S.; Lawrence, C. R.

    2017-12-01

    Plant roots dramatically reshape the soil environments through the release of organic compounds. While root-derived organic compounds are recognized as an important source of soil C, their role in promoting weathering reactions has largely been overlooked. On the one hand, root-driven weathering may generate mineral-organic associations, which can protect soil C for centuries to millennia. On the other hand, root-driven weathering also transforms minerals, potentially disrupting protective mineral-organic associations in the process. Hence root-derived C may not only initiate C accumulation, but also diminish C stocks through disruption of mineral-organic associations. Here we determined the impact of rhizogenic weathering on mineral-organic associations, and associated changes in C storage, across the Santa Cruz Marine Terrace chronosequence (65ka-226ka). Using a combination of high-resolution mass spectrometry, Mössbauer, and X-ray (micro)spectroscopy, we examined mineral-organic associations of deep soil horizons characterized by intense rhizogenic weathering gradients. Initial rhizogenic weathering dramatically increased C stocks, which is directly linked to an increase of microbially-derived C bound to monomeric Fe and Al and nano-goethite. As weathering proceeded, the soil C stocks declined concurrent with an increasingly plant-derived C signature and decreasing crystallinity. X-ray spectromicroscopic analyses revealed strong spatial associations between C and Fe during initial weathering stages, indicative of protective mineral-organic associations. In contrast, later weathering stages showed weaker spatial relationships between C and Fe. We conclude that rhizogenic weathering enhance C storage by creating protective mineral-organic associations in the initial weathering stages. As root-driven weathering proceeds, minerals are transformed into more crystalline phases that retain lower amounts of C. Our results demonstrate that root-induced weathering

  4. Weathering and genesis of Soils from Ellsworth Mountains, East Antarctica

    Science.gov (United States)

    Karoline Delpupo Souza, Katia; Schaefer, Carlos Ernesto; Michel, Roberto; Monari, Julia; Machado, Vania

    2015-04-01

    salt crusts beneath the rock fragments. Despite of the low weathering stage of the soil, they have yellowish hue and high chroma values from influence by sulfide material. Boulders on moraines show staining, pitting, spalling, and some striations. All soil are alkaline in reaction, with pHs at the range between 7.5-9.2. Cryptogamic (lichens or mosses) crusts are absent, and the organic matter contents were invariably very low, ranging between 0.13 and 0.38%. Permafrost is continuous and occurs close to the surface, at between 5-15 cm down the top. The available P background is also very low (limestone influence in the moraine parent materials. The main salts present are Ca and Na-sulphate forms, and less cloride forms, and clay sized materials are dominated by salts in all soils, especially below 5 cm depth.

  5. SIGWX Charts - High Level Significant Weather

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High level significant weather (SIGWX) forecasts are provided for the en-route portion of international flights. NOAA's National Weather Service Aviation Center...

  6. Cargas elétricas estruturais e variáveis de solos tropicais altamente intemperizados Structural and variable electric charges of highly weathered tropical soils

    Directory of Open Access Journals (Sweden)

    Oscarlina Lucia dos Santos Weber

    2005-12-01

    Full Text Available Os solos tropicais altamente intemperizados apresentam teor significativo de colóides com carga elétrica variável. Entretanto, são poucas as referências em relação à quantificação destas cargas, principalmente em solos ácricos, que representam o extremo na escala de intemperismo. Neste estudo, foram determinadas as cargas permanentes e as variáveis de dois Latossolos Vermelhos acriférricos, um Latossolo Amarelo ácrico e um Latossolo Amarelo acriférrico, que foram comparados a um Nitossolo Vermelho eutroférrico, com carga predominantemente permanente. As amostras foram investigadas pelo método da adsorção do íon césio (Cs+, que mede a carga estrutural permanente (sigmao e baseia-se na preferência do Cs+ sobre o Li+ na superfície da siloxana de grupos de superfície ionizáveis de menor seletividade ao íon Cs+. A carga variável representou mais que 50 % da carga total dos solos estudados. Dois dos quatro Latossolos com propriedades ácricas exibiram quantidade significativa de carga permanente, provavelmente em razão da presença de vermiculita com hidróxi entrecamadas e clorita. A quantidade de carga permanente apresentada pelo Nitossolo foi até cinco vezes maior se comparada à dos Latossolos, o que pode ser atribuído à diferença na constituição mineralógica. O método da adsorção de Cs foi capaz de identificar teores significativos de carga permanente estrutural, mesmo em solos com baixo teor de minerais 2:1.Highly weathered tropical soils present high amount of colloids with variable electrical charge. However, there are few references related to the quantification of such charges, mainly in soils with acric attributes, which represent one of the extremes in the weathering scale. In this study permanent and variable charges were determined in four Oxisols and compared to an Alfisol with predominantly permanent charge. Samples were investigated using the Cs+ adsorption method, which measures the structural

  7. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  8. Availability of high quality weather data measurements

    DEFF Research Database (Denmark)

    Andersen, Elsa; Johansen, Jakob Berg; Furbo, Simon

    In the period 2016-2017 the project “Availability of high quality weather data measurements” is carried out at Department of Civil Engineering at the Technical University of Denmark. The aim of the project is to establish measured high quality weather data which will be easily available...... for the building energy branch and the solar energy branch in their efforts to achieve energy savings and for researchers and students carrying out projects where measured high quality weather data are needed....

  9. Adsorção de cádmio e chumbo em solos tropicais altamente intemperizados Cadmium and lead adsorption in highly weathered tropical soils

    Directory of Open Access Journals (Sweden)

    Lucília Alves Linhares

    2009-03-01

    Full Text Available O objetivo deste trabalho foi determinar a capacidade de adsorção de cádmio e de chumbo e avaliar a influência das propriedades dos solos sobre os parâmetros de adsorção desses elementos em solos tropicais altamente intemperizados. Foram utilizados quatro Latossolos e um Argissolo. Amostras de 1 g de solo foram agitadas por 16 horas, com soluções de CaCl2 0,01 mol L-1, às quais foram adicionadas 0, 10, 20, 30, 40, 60 e 80 µg mL-1 de cádmio e 0, 10, 20, 40, 60, 80, 100 e 120 µg mL-1 de chumbo na forma de nitrato. As quantidades adsorvidas foram determinadas mediante análise dos elementos no sobrenadante, e os dados foram ajustados às isotermas de Langmuir e de Freundlich. Os resultados experimentais ajustaram-se aos modelos estudados. A adsorção máxima de cádmio variou de 136 a 1.604 µg g-1 e a de chumbo, de 988 a 1.660 µg g-1. As energias de ligação variaram de 0,0036 a 0,0403 µg mL-1 e de 0,0282 a 1,0425 µg mL-1 para cádmio e chumbo, respectivamente. Os atributos dos solos correlacionados à adsorção de cádmio foram o pH e a capacidade de troca de cátions, e à adsorção de chumbo foram o pH e os níveis de óxidos de ferro e de alumínio.The aims of this work were to characterize the adsorption of cadmium and lead and to evaluate the influence of soil properties on adsorption parameters of these elements in highly weathered tropical soils. The experiment was performed in four Oxisols and one Ultisol. Soil samples (1 g were mixed by shaking for 16 hours with 0.01 mol L-1 CaCl2 solutions, to which the following doses were added: 0, 10, 20, 30, 40, 60, and 80 µg mL-1 cadmium, and 0, 10, 20, 40, 60, 80, 100, and 120 µg mL-1 lead in the form of nitrates. The elements in the supernatant were analyzed to determine the adsorbed amounts, and the data were fitted to the isotherms of Langmuir and Freundlich. The experimental results were fitted well to the studied model. Maximum adsorption capacity values were between 136

  10. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  11. Sorption of Cu and Zn in low organic matter-soils as influenced by soil properties and by the degree of soil weathering.

    Science.gov (United States)

    Antoniadis, V; Golia, E E

    2015-11-01

    Copper and Zn sorption and desorption, among other factors, depend on soil pH, but in soils with different degree of weathering the role of other soil properties (e.g., oxides content and the level of their crystallinity) has not been thoroughly examined. We conducted batch sorption and desorption tests using 21 low-organic C soils that belonged to the soil orders of Entisols, newly developed soils, Inceptisols, and Alfisols, the most weathered soils. Zinc sorption was lower than that of Cu, and its desorption faster, confirming that it is a highly mobile metal. Alfisols had the weaker affinity for metals, due to the lower soil pH typical of this soil order, but also due to the low reactivity colloids they contained. Correlation analyses showed that Fe oxides in Alfisols increased metal release from soils, while they decreased metal desorption from Entisols. We conclude that in low organic matter-content soils, where the protective role of organic colloids is not to be expected, high soil pH alone is not sufficient to protect against metal contamination, but the degree of soil weathering is also important, due to the dominant role of other mineral phases (here, Fe oxides). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of long-term electrodialytic soil remediation on Pb removal and soil weathering

    DEFF Research Database (Denmark)

    Skibsted, Gry; Ottosen, Lisbeth M.; Elektorowicz, Maria

    2017-01-01

    Weathering of soil minerals during long-term electrochemical soil remediation was evaluated for two different soils: an industrially Pb contaminated soil with high carbonate content and an unpolluted soil with low carbonate content. A constant current of 5 mA was applied for 842 days, and sampling...... was made 22 times during the treatment. The overall qualitative mineral composition was unaffected by electrodialysis, except for calcite removal which was complete. However, dissolution and removal of Al, Fe, Si, Mg, Ca and Pb from the soil during the treatment exceeded the fraction extractable by...... digestion in 7 M HNO3, and provided evidence of enhanced mineral dissolution induced by the current. Nevertheless, the total dissolved Si and Al only constituted 0.2-0.3 % and 1.1-3.5 % of the total content, while the Pb overall removal from the contaminated soil was only 8.1 %. An observed reduction in the...

  13. Forest soil mineral weathering rates: use of multiple approaches

    Science.gov (United States)

    Randy K. Kolka; D.F. Grigal; E.A. Nater

    1996-01-01

    Knowledge of rates of release of base cations from mineral dissolution (weathering) is essential to understand ecosystem elemental cycling. Although much studied, rates remain enigmatic. We compared the results of four methods to determine cation (Ca + Mg + K) release rates at five forested soils/sites in the northcentral U.S.A. Our premise was that multiple...

  14. [Use of Leersia hexandra (Poaceae) for soil phytoremediation in soils contaminated with fresh and weathered oil].

    Science.gov (United States)

    Arias-Trinidad, Alfredo; Rivera-Cruz, María del Carmen; Roldán-Garrigós, Antonio; Aceves-Navarro, Lorenzo Armando; Quintero-Lizaola, Roberto; Hernández-Guzmán, Javier

    2017-03-01

    The oil industry has generated chronic oil spills and their accumulation in wetlands of the state of Tabasco, in Southeastern Mexico. Waterlogging is a factor that limits the use of remediation technologies because of its high cost and low levels of oil degradation. However, Leersia hexandra is a grass that grows in these contaminated areas with weathered oil. The aim of the study was to evaluate the bacteria density, plant biomass production and phytoremediation of L. hexandra in contaminated soil. For this, two experiments in plastic tunnel were performed with fresh (E1) and weathered petroleum (E2) under waterlogging experimental conditions. The E1 was based on eight doses: 6 000, 10 000, 30 000, 60 000, 90 000, 120 000, 150 000 and 180 000 mg.kg-1 dry basis (d. b.) of total petroleum hydrocarbons fresh (TPH-F), and the E2, that evaluated five doses: 14 173, 28 400, 50 598, 75 492 and 112 142 mg. kg-1 d. b. of total petroleum hydrocarbons weathered (TPH-W); a control treatment with 2 607 mg.kg-1 d. b. was used. Each experiment, with eight replicates per treatment, evaluated after three and six months: a) microbial density of total free-living nitrogen-fixing bacteria (NFB) of Azospirillum (AZP) and Azotobacter group (AZT), for viable count in serial plate; b) dry matter production (DMP), quantified gravimetrically as dry weight of L. hexandra; and c) the decontamination percentage of hydrocarbons (PDH) by Soxhlet extraction. In soil with TPH-F, the NFB, AZP y AZT populations were stimulated five times more than the control both at the three and six months; however, concentrations of 150 000 and 180 000 mg.kg-1 d. b. inhibited the bacterial density between 70 and 89 %. Likewise, in soil with TPH-W, the FNB, AZP and AZT inhibitions were 90 %, with the exception of the 14 173 mg.kg-1 d. b. treatment, which stimulated the NFB and AZT in 2 and 0.10 times more than the control, respectively. The DMP was continued at the six months in the experiments, with values of 63

  15. Biogeochemical weathering of serpentinites: An examination of incipient dissolution affecting serpentine soil formation

    International Nuclear Information System (INIS)

    Baumeister, Julie L.; Hausrath, Elisabeth M.; Olsen, Amanda A.; Tschauner, Oliver; Adcock, Christopher T.; Metcalf, Rodney V.

    2015-01-01

    Highlights: • Dissolution of primary minerals is important to porosity generation in serpentinites. • Mineral weathering extent in serpentinites follows the order Fe > Mg > Al rich minerals. • Fe-oxidizing bacteria may mediate Fe-rich primary and serpentine mineral alteration. • Serpentinite weathering is strongly impacted by degree of serpentinization. - Abstract: Serpentinite rocks, high in Mg and trace elements including Ni, Cr, Cd, Co, Cu, and Mn and low in nutrients such as Ca, K, and P, form serpentine soils with similar chemical properties resulting in chemically extreme environments for the biota that grow upon them. The impact of parent material on soil characteristics is most important in young soils, and therefore the incipient weathering of serpentinite rock likely has a strong effect on the development of serpentine soils and ecosystems. Additionally, porosity generation is a crucial process in converting rock into a soil that can support vegetation. Here, the important factors affecting the incipient weathering of serpentinite rock are examined at two sites in the Klamath Mountains, California. Serpentinite-derived soils and serpentinite rock cores were collected in depth profiles from each sampling location. Mineral dissolution in weathered serpentinite samples, determined by scanning electron microscopy, energy dispersive spectrometry, electron microprobe analyses, and synchrotron microXRD, is consistent with the order, from most weathered to least weathered: Fe-rich pyroxene > antigorite > Mg-rich lizardite > Al-rich lizardite. These results suggest that the initial porosity formation within serpentinite rock, impacting the formation of serpentine soil on which vegetation can exist, is strongly affected both by the presence of non-serpentine primary minerals as well as the composition of the serpentine minerals. In particular, the presence of ferrous Fe appears to contribute to greater dissolution, whereas the presence of Al within the

  16. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering

    International Nuclear Information System (INIS)

    Robson, T.C.; Braungardt, C.B.; Rieuwerts, J.; Worsfold, P.

    2014-01-01

    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite ( −1 ). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg −1 ) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg −1 ) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. -- Highlights: • Sphalerite containing cadmium presents a hazard when present in agricultural soils. • Sphalerite dissolution was slow (0.6–1.2% y −1 ) but constant in contrasting soils. • Cadmium was released during dissolution and was bioavailable to wheat and rice. • Wheat grains accumulated potentially harmful cadmium concentrations. • Flooded paddy (reducing) soils reduced cadmium bioavailability to rice. -- Sphalerite dissolves steadily in oxic agricultural soils and can release highly bioavailable Cd, which may contaminate food crops destined for human consumption

  17. Calcium weathering in forested soils and the effedt of different tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Breemen, van N.; Jongmans, A.G.; Davies, G.R.; Likens, G.E.

    2003-01-01

    Soil weathering can be an important mechanism to neutralize acidity in forest soils. Tree species may differ in their effect on or response to soil weathering. We used soil mineral data and the natural strontium isotope ratio Sr-87/Sr-86 as a tracer to identify the effect of tree species on the Ca

  18. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.: a pot experiment.

    Directory of Open Access Journals (Sweden)

    Hein F M ten Berge

    Full Text Available Mineral carbonation of basic silicate minerals regulates atmospheric CO(2 on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2 sequestration ('enhanced weathering'. While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L., weathering during 32 weeks was inferred from bioavailability of magnesium (Mg in soil and plant. Olivine doses were equivalent to 1630 (OLIV1, 8150, 40700 and 204000 (OLIV4 kg ha(-1. Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6% and plant K concentration (+16.5% in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1 (14.8% of dose, OLIV1 to 2240 kg ha(-1 (1.1%, OLIV4. This corresponds to gross CO(2 sequestration of 290 to 2690 kg ha(-1 (29 10(3 to 269 10(3 kg km(-2. Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop.

  19. Iron and silicon isotope behaviour accompanying weathering in Icelandic soils, and the implications for iron export from peatlands

    Science.gov (United States)

    Opfergelt, S.; Williams, H. M.; Cornelis, J. T.; Guicharnaud, R. A.; Georg, R. B.; Siebert, C.; Gislason, S. R.; Halliday, A. N.; Burton, K. W.

    2017-11-01

    Incipient warming of peatlands at high latitudes is expected to modify soil drainage and hence the redox conditions, which has implications for Fe export from soils. This study uses Fe isotopes to assess the processes controlling Fe export in a range of Icelandic soils including peat soils derived from the same parent basalt, where Fe isotope variations principally reflect differences in weathering and drainage. In poorly weathered, well-drained soils (non-peat soils), the limited Fe isotope fractionation in soil solutions relative to the bulk soil (Δ57Fesolution-soil = -0.11 ± 0.12‰) is attributed to proton-promoted mineral dissolution. In the more weathered poorly drained soils (peat soils), the soil solutions are usually lighter than the bulk soil (Δ57Fesolution-soil = -0.41 ± 0.32‰), which indicates that Fe has been mobilised by reductive mineral dissolution and/or ligand-controlled dissolution. The results highlight the presence of Fe-organic complexes in solution in anoxic conditions. An additional constraint on soil weathering is provided by Si isotopes. The Si isotope composition of the soil solutions relative to the soil (Δ30Sisolution-soil = 0.92 ± 0.26‰) generally reflects the incorporation of light Si isotopes in secondary aluminosilicates. Under anoxic conditions in peat soils, the largest Si isotope fractionation in soil solutions relative to the bulk soil is observed (Δ30Sisolution-soil = 1.63 ± 0.40‰) and attributed to the cumulative contribution of secondary clay minerals and amorphous silica precipitation. Si supersaturation in solution with respect to amorphous silica is reached upon freezing when Al availability to form aluminosilicates is limited by the affinity of Al for metal-organic complexes. Therefore, the precipitation of amorphous silica in peat soils indirectly supports the formation of metal-organic complexes in poorly drained soils. These observations highlight that in a scenario of decreasing soil drainage with

  20. Soil Chemical Weathering and Nutrient Budgets along an Earthworm Invasion Chronosequence in a Northern Minnesota Forest

    Science.gov (United States)

    Resner, K. E.; Yoo, K.; Sebestyen, S. D.; Aufdenkampe, A. K.; Lyttle, A.; Weinman, B. A.; Blum, A.; Hale, C. M.

    2011-12-01

    We are investigating the impact of exotic earthworms on the rate of nutrient and ion release from soil chemical weathering along an ~200 m invasion chronosequence in a northern Minnesota sugar maple forest. The earthworms belong to three ecological groups that represent different feeding and burrowing behaviors, all of which were introduced from Europe to the previously earthworm-free Great Lakes Region through fishing and agricultural activities. As earthworms digest and mix the soil, we hypothesize that they significantly alter chemical weathering processes by incorporating mineral surfaces to new geochemical environments in their intestines and at different soil depths. The effect of mixing on soil morphology is dramatic, but biogeochemical changes remain largely unknown and therefore are poorly coupled to the current and potential changes in forest ecosystems under the threat of exotic earthworms. We analyze the activities of short-lived isotopes 137-Cs and 210-Pb along with the inorganic chemistry of soil, water, and leaf litter across an invasion transect and link these measurements to the biomass and species composition of exotic earthworms. Earthworms vertically relocate minerals and organic matter largely within the top ~10 cm, which is reflected in the depth profiles of the short-lived isotopes. Among the inorganic nutrients analyzed, Ca is of particular interest due to sugar maple's aptitude for recycling Ca. Fractional mass loss values (tau) of Ca, relative to the soil's parent material, show an enrichment factor of 14 in the least invaded A horizon soils. However, such a high enrichment factor declines dramatically in the heavily invaded soils, suggesting that earthworm activities contribute to leaching Ca. In contrast, the enrichment factor of Fe increases with greater degrees of earthworm invasion, which is consistent with the extraction chemistry data showing greater quantities of pedogenic crystalline iron oxides and greater mineral specific

  1. Método da adsorção de césio para determinação da carga estrutural em solos altamente intemperizados Method of cesium adsorption for determination of structural charge in highly weathered soils

    Directory of Open Access Journals (Sweden)

    Oscarlina Lúcia dos Santos Weber

    2005-01-01

    Full Text Available O conhecimento das cargas elétricas, permanente e variável, é fundamental para a compreensão e previsão do destino de elementos químicos no solo. Foram investigadas propriedades de carga de superfície de dois Latossolos Vermelhos acriférricos, dois Latossolos Amarelos ácricos e um Nitossolo Vermelho eutroférrico, usado como referência, por apresentar carga predominantemente permanente. Essas amostras foram investigadas pelo método da adsorção do íon césio (Cs+, que mede a carga estrutural permanente (sigmaO. O método baseia-se na preferência de sítios siloxanos de superfície para Cs+ sobre Li+ e de grupos de superfície ionizáveis de menor seletividade ao íon Cs+. Nos Latossolos acriférricos, a carga permanente diminuiu à medida que o índice de intemperização (Ki diminuiu. O método da adsorção de césio quantificou significativa carga permanente, mesmo em solos altamente intemperizados.The knowledge of permanent and variable charge is of high importance to a better understanding of the fate of chemical elements in soil. Four Brazilian Oxisols presenting acric character were investigated by an ion adsorption method that measures the structural charge density (sigmaO and were compared to an Alfisol (NV, which had predominantly permanent charge. The method is based on the preference of siloxane surface sites for cesium over lithium and on the lower selectivity of ionizable surface group for the ion cesium. In the Acrudoxes, the permanent charge decreased as the weathering index (Ki decreased. The cesium adsorption method quantified significant amounts of structural charge, even in highly weathered soils.

  2. The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)

    Science.gov (United States)

    Maher, K.; Chamberlain, C. P.

    2010-12-01

    Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and

  3. Direct soil contact values for ecological receptors exposed to weathered petroleum hydrocarbon (PHC) fraction 2.

    Science.gov (United States)

    Angell, Robin A; Kullman, Steve; Shrive, Emma; Stephenson, Gladys L; Tindal, Miles

    2012-11-01

    Ecological tier 1 Canada-wide standards (CWS) for petroleum hydrocarbon (PHC) fraction 2 (F2; >nC10-C16) in soil were derived using ecotoxicological assessment endpoints (effective concentrations [ECs]/lethal concentrations [LCs]/inhibitory concentrations, 25% [IC25s]) with freshly spiked (fresh) fine- and coarse-grained soils. These soil standards might be needlessly conservative when applied to field samples with weathered hydrocarbons. The purpose of the present study was to assess the degradation and toxicity of weathered PHC F2 in a fine-grained soil and to derive direct soil contact values for ecological receptors. Fine-grained reference soils were spiked with distilled F2 and weathered for 183 d. Toxicity tests using plants and invertebrates were conducted with the weathered F2-spiked soils. Endpoint EC/IC25s were calculated and used to derive soil standards for weathered F2 in fine-grained soil protective of ecological receptors exposed via direct soil contact. The values derived for weathered F2 were less restrictive than current ecological tier 1 CWS for F2 in soil. Copyright © 2012 SETAC.

  4. Tectonic uplift and denudation rate influence soil chemical weathering intensity in a semi-arid environment, southeast Spain: physico-chemical and mineralogical evidence

    Science.gov (United States)

    Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Schoonejans, Jérôme; Vanacker, Veerle; Sonnet, Philippe; Delmelle, Pierre

    2015-04-01

    Tectonic uplift is known to influence denudation rates. Denudation, including chemical weathering and physical erosion, affects soil production rates and weathering intensities. At topographic steady state, weathering can be transport- or weathering-limited. In the transport-limited regime, low denudation rates should lead to comparatively high weathering intensities, while in the weathering-limited case high denudation rates are associated with lower weathering intensities. Here, we test if this relationship applies to semi-arid environments where chemical weathering is generally slow. Three catchments (EST, FIL and CAB) were studied in the Internal Zone of the Betic Cordillera in southeast Spain, spanning a range of increasing uplift rates (10-170 mm/kyr) and increasing denudation rates (20-250 mm/kyr) from EST to CAB. In each catchment, two ridgetop soil profiles were sampled down to the bedrock. The three catchments have similar vegetation and climatic conditions, with precipitation of 250- 315 mm/yr and mean annual temperature of 15-17 °C. The mineralogy of the bedrock, as determined by XRD, is similar across the three catchments and is characterized by the presence of quartz, muscovite, clinochlore, biotite and plagioclase. This primary mineral assemblage is also found in the catchment soils, indicating that the soils studied derive from the same parent material. The soil clay-size fraction is dominated by kaolinite, vermiculite and illite. However, the proportions of the soil primary and secondary minerals vary between the catchment sites. The abundance of biotite decreases from CAB (14%) to EST (4%), whereas the quartz and clay contents show an opposite tendency (from 30 to 69% and 9.9 to 14.3%, respectively). Further, the abundance of vermiculite increases from CAB to EST. The results are interpreted in terms of increasing weathering intensity from CAB to EST by weathering of biotite into vermiculite and enrichment of soils on more weathering resistant

  5. Appalachian mine soil morphology and properties: Effects of weathering and mining method

    Energy Technology Data Exchange (ETDEWEB)

    Haering, K.C.; Daniels, W.L.; Galbraith, J.M. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2004-08-01

    Surface coal mining and reclamation methods in the Appalachians have changed dramatically since the passage of the Surface Mining Control and Reclamation Act (SMCRA) of 1977 and subsequent improvements in mining and reclamation technology. In this study, 30 pre-SMCRA mine soil profiles (4-20 yr old) were examined and sampled in 1980 and compared with 20 mine soil profiles (8-13 yr old) described in the same area in 2002 after it had been completely remined by modern deep cut methods. Mine soils in both sampling years had high rock fragment content (42-81%), relatively well-developed A horizons, and generally exhibited A-C or A-AC-C horizonation. Although six Bw horizons were described in 1980, only two met all requirements for cambic horizons. The 1980 mine soils developed in overburden dominated by oxidized, preweathered material due to relatively shallow mining cuts. The 1980 mine soils had lower rock fragment content, finer textures, lower pH, and tended to be more heterogeneous in horizonation, morphology, and texture than soils observed in 2002, which had formed primarily in unweathered overburden from deeper cuts. Half the pedons sampled in both years had densic materials within 70 cm of the surface. Four poorly to very poorly drained soil profiles were described in each sampling year containing distinct hydric soil indicators in surface horizons. While older pre-SMCRA mine soils do have many properties in common with newer mine soils, their properties are highly influenced by the fact that they generally have formed in more weathered overburden from higher in the geologic column. Overall, Appalachian mine soils are much more complex in subsoil morphology than commonly assumed, and differential compaction greatly complicates their internal drainage and limits their overall productivity potential.

  6. Spatial patterns and controls of soil chemical weathering rates along a transient hillslope

    Science.gov (United States)

    Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.

    2009-01-01

    Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable

  7. Controls on carbon storage and weathering in volcanic ash soils across a climate gradient on Mauna Kea, Hawaii

    Science.gov (United States)

    Kramer, M. G.; Chadwick, O.

    2017-12-01

    Volcanic ash soils retain the largest and most persistent soil carbon pools of any ecosystem. However, the mechanisms governing soil carbon accumulation and weathering during initial phases of weathering are not well understood. We examined soil organic matter dynamics and weathering across a high altitude (3563 - 3013 m) 20 ky climate gradient on Mauna Kea in Hawaii. Four elevation sites were selected ( 250-500 mm rainfall) which range from arid-periglacial to sites which contain a mix of shrubs and grasses. At each site, between 2-3 pits were dug and major diagnostic horizons down to bedrock (in-tact lava) were sampled. Soils were analyzed for particle size, organic C and N, soil pH, exchangeable cations, base saturation, NaF pH, phosphorous sorption and bulk elements. Mass loss and pedogenic metal accumulation (hydroxlamine Fe, Al and Si extractions) were used to measure extent of weathering, leaching, changes in soil mineralogy and carbon accumulation with the short-range-ordered (SRO) minerals. Reactive-phase (SRO) minerals show a general trend of increasing abundance through the soil depth profile with increasing rainfall. However carbon accumulation patterns across the climate gradient are largely decoupled from these trends. The results suggest that after 20ky, pedogenic processes have altered the nature and composition of the volcanic ash such that it is capable of retaining soil C even where organic acid influences from plant material and leaching from rainfall is severely limited. Comparisons with lower elevation soils on Mauna Kea and other moist mesic (2500mm rainfall) sites on Hawaii suggest that these soils have reached only between 1-15 % of their capacity to retain carbon. Our results suggest that in low rainfall and a cold climate, after 20ky, weathering has advanced but is decoupled from soil carbon accumulation patterns and the associated influence of vegetation on soil development. Changes in soil carbon composition and amount across the entire

  8. Effect of soil-rock system on speleothems weathering in Bailong Cave, Yunnan Province, China*

    Science.gov (United States)

    Wang, Jing; Song, Lin-hua

    2005-01-01

    Bailong Cave with its well-developed Middle Triassic calcareous dolomite’s system was opened as a show cave for visitors in 1988. The speleothem scenery has been strongly weathered as white powder on the outer layers. Study of the cave winds, permeability of soil-rock system and the chemical compositions of the dripping water indicated: (1) The cave dimension structure distinctively affects the cave winds, which were stronger at narrow places. (2) Based on the different soil grain size distribution, clay was the highest in composition in the soil. The response sense of dripping water to the rainwater percolation was slow. The density of joints and other openings in dolomite make the dolomite as mesh seepage body forming piles of thin and high columns and stalactites. (3) Study of 9 dripping water samples by HYDROWIN computer program showed that the major mineral in the water was dolomite. PMID:15682505

  9. Naturally Occurring Radionuclides and Rare Earth Elements Pattern in Weathered Japanese Soil Samples

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Hosoda, M.; Takahashi, H.; Sorimachi, A.; Ishikawa, T.; Tokonami, S.; Uchida, S.

    2011-01-01

    From the viewpoint of radiation protection, determination of natural radionuclides e.g. thorium and uranium in soil samples are important. Accurate methods for determination of Th and U is gaining importance. The geochemical behavior of Th, U and rare earth elements (REEs) are relatively close to one another while compared to other elements in geological environment. Radioactive elements like 232 Th and 238 U along with their decay products (e.g. 226 Ra) are present in most of the environmental matrices and can be transferred to living bodies by different pathways that can lead to sources of exposure of man. Therefore, it is necessary to monitor these natural radionuclides in weathered soil samples to assess the possible hazards. The activity concentrations of 226 Ra, 228 Th, and 40 K in soils have been measured using a g γ-ray spectroscopy system with high purity germanium detector. The thorium, uranium and REEs were determined from the same sample using inductively coupled plasma mass spectrometry (ICP-MS). Granitic rocks contain higher amounts of Th, U and light REEs compared to other igneous rocks such as basalt and andesites. Therefore, it is necessary to understand the interaction between REEs and nature of soils, as soils are complex heterogeneous mixture of organic and inorganic solids, water and gases. In this paper, we have discussed about distribution pattern of 226 Ra, 232 Th and 238 U along with REEs in soil samples of weathered acid rock (granite and ryolite) collected from two prefectures in Japan: 1. Gifu and 2. Okinawa. (author)

  10. Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Jeffrey L., E-mail: jhoward@wayne.edu [Department of Geology, Wayne State University, Detroit, MI 48202 (United States); Olszewska, Dorota [Department of Geology, Wayne State University, Detroit, MI 48202 (United States)

    2011-03-15

    An urban soil chronosequence in downtown Detroit, MI was studied to determine the effects of time on pedogenesis and heavy metal sequestration. The soils developed in fill derived from mixed sandy and clayey diamicton parent materials on a level late Pleistocene lakebed plain under grass vegetation in a humid-temperate (mesic) climate. The chronosequence is comprised of soils in vacant lots (12 and 44 years old) and parks (96 and 120 years old), all located within 100 m of a roadway. An A-horizon 16 cm thick with 2% organic matter has developed after only 12 years of pedogenesis. The 12 year-old soil shows accelerated weathering of iron (e.g. nails) and cement artifacts attributed to corrosion by excess soluble salts of uncertain origin. Carbonate and Fe-oxide are immobilizing agents for heavy metals, hence it is recommended that drywall, plaster, cement and iron artifacts be left in soils at brownfield sites for their ameliorating effects. - Research highlights: > An A horizon has developed in these urban soils after only 12 years of pedogenesis. > Iron and cement artifacts have undergone accelerated weathering due to deicing salts. > One soil is contaminated by lead derived from weathered paint. > Artifact weathering can have ameliorating effects on urban soils contaminated by heavy metals. - Weathering of artifacts can have ameliorating effects on heavy metal-polluted soils at brownfield sites.

  11. Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan

    International Nuclear Information System (INIS)

    Howard, Jeffrey L.; Olszewska, Dorota

    2011-01-01

    An urban soil chronosequence in downtown Detroit, MI was studied to determine the effects of time on pedogenesis and heavy metal sequestration. The soils developed in fill derived from mixed sandy and clayey diamicton parent materials on a level late Pleistocene lakebed plain under grass vegetation in a humid-temperate (mesic) climate. The chronosequence is comprised of soils in vacant lots (12 and 44 years old) and parks (96 and 120 years old), all located within 100 m of a roadway. An A-horizon 16 cm thick with 2% organic matter has developed after only 12 years of pedogenesis. The 12 year-old soil shows accelerated weathering of iron (e.g. nails) and cement artifacts attributed to corrosion by excess soluble salts of uncertain origin. Carbonate and Fe-oxide are immobilizing agents for heavy metals, hence it is recommended that drywall, plaster, cement and iron artifacts be left in soils at brownfield sites for their ameliorating effects. - Research highlights: → An A horizon has developed in these urban soils after only 12 years of pedogenesis. → Iron and cement artifacts have undergone accelerated weathering due to deicing salts. → One soil is contaminated by lead derived from weathered paint. → Artifact weathering can have ameliorating effects on urban soils contaminated by heavy metals. - Weathering of artifacts can have ameliorating effects on heavy metal-polluted soils at brownfield sites.

  12. Predicting soil formation on the basis of transport-limited chemical weathering

    Science.gov (United States)

    Yu, Fang; Hunt, Allen Gerhard

    2018-01-01

    Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.

  13. Chemical weathering and loess inputs to soils in New Zealand's Wairarapa region

    Science.gov (United States)

    Lukens, C. E.; Norton, K. P.

    2017-12-01

    Geochemical mass-balance approaches are commonly used in soils to evaluate patterns in chemical weathering. In conjuction with cosmogenic nuclide measurements of total denudation or soil production, mass-balance approaches have been used to constrain rates of chemical weathering across a variety of landscapes. Here we present geochemical data from a series of soil pits in the Wairarapa region of New Zealand's North Island, where rates of soil production equal rates of total denudation measured using 10Be at sites nearby (i.e., the landscape is in steady state). Soil density increases with depth, consistent with steady weathering over the average soil residence time. However, soil geochemistry indicates very little chemical weathering has occurred, and immobile elements (Zr, Ti, and V) are depleted in soils relative to bedrock. This is contrary to the expected observation, wherein immobile elements should be enriched in soils relative to parent bedrock as weathered mobile solutes are progressively removed from soil. Our geochemical measurements suggest contributions from an exernal source, which has a different chemical composition than the underlying bedrock. We hypothesize that loess constitutes a substantial influx of additional material, and use a mixing model to predict geochemical patterns within soil columns. We evaluate the relative contributions of several likely loess sources, including tephra from the nearby Taupo Volcanic Center, local loess deposits formed during glacial-interglacial transitions, and far-travelling Australian dust. Using an established mass-balance approach with multiple immobile elements, we calculate the fraction of mass in soils contributed by loess to be as much as 25%. Combined with 10Be-derived estimates of soil production, we calculate average loess fluxes up to 320 t/km2/yr, which are consistent with previous estimates of loess acculumation over the late Holocene. Accounting for loess input, we find that chemical weathering

  14. The importance of non-carbonate mineral weathering as a soil formation mechanism within a karst weathering profile in the SPECTRA Critical Zone Observatory, Guizhou Province, China

    Institute of Scientific and Technical Information of China (English)

    Oliver W.Moore; Heather L.Buss; Sophie M.Green; Man Liu; Zhaoliang Song

    2017-01-01

    Soil degradation,including rocky desertification,of the karst regions in China is severe.Karst landscapes are especially sensitive to soil degradation as carbonate rocks are nutrient-poor and easily eroded.Understanding the balance between soil formation and soil erosion is critical for long-term soil sustainability,yet little is known about the initial soil forming processes on karst terrain.Herein we examine the initial weathering processes of several types of carbonate bedrock containing varying amounts of non-carbonate minerals in the SPECTRA Critical Zone Observatory,Guizhou Province,Southwest China.We compared the weathering mechanisms of the bedrock to the mass transfer of mineral nutrients in a soil profile developed on these rocks and found that soil formation and nutrient contents are strongly dependent upon the weathering of interbedded layers of more silicate-rich bedrock (marls).Atmospheric inputs from dust were also detected.

  15. Study on Mineral Weathering induced by Soil Ecosystem Engineers

    OpenAIRE

    阿部, 進

    2016-01-01

    研究成果の概要(和文):本研究ではまず、土壌動物による鉱物風化作用に関する研究の現状と課題を明らかにするため、既往の研究のレビューを行った。また、ナイジェリア産のシロアリ塚土壌の試料を用いて、対照土壌との鉱物組成の比較を行なった結果、土壌動物が鉱物風化に及ぼす影響は小さいため、野外調査でその影響を定量的に調査することが難しいことを確認した。他方、熱帯の強風下土壌におけるシロアリの営巣活動に起因する遊離酸化鉱物の移動・集積が土壌生成過程で無視できない影響を及ぼすことを示唆した。この他、インドネシアの火山灰土壌地帯において、土地利用や管理主方が土壌動物相の変遷と非晶質鉱物の含有量に変化をもたらすことを明らかにした。研究成果の概要(英文):First of all, the present study reviewed the literature on mineral weathering by soil fauna to highlight the current status and future challenges in this study topic. Then, the...

  16. Assesment of a soil moisture retrieval with numerical weather prediction model temperature

    Science.gov (United States)

    The effect of using a Numerical Weather Prediction (NWP) soil temperature product instead of estimates provided by concurrent 37 GHz data on satellite-based passive microwave retrieval of soil moisture retrieval was evaluated. This was prompted by the change in system configuration of preceding mult...

  17. Toxicity Determinations for Five Energetic Materials, Weathered and Aged in Soil, to the Collembolan Folsomia Candida

    Science.gov (United States)

    2015-03-01

    obtained from the Soil Fauna and Ecotoxicology Research Unit, Department of Terrestrial Ecology, National Environmental Research Institute (Silkeborg...AND AGED IN SOIL , TO THE COLLEMBOLAN FOLSOMIA CANDIDA ECBC-TR-1273 Carlton T. Phillips Ronald T. Checkai Roman G. Kuperman Michael Simini...for Five Energetic Materials, Weathered and Aged in Soil , to the Collembolan Folsomia candida 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  18. Filamentous fungi remove weathered hydrocarbons from polluted soil of tropical Mexico

    OpenAIRE

    PÉREZ-ARMENDÁRIZ, Beatriz; MARTÍNEZ-CARRERA, Daniel; CALIXTO-MOSQUEDA, María; ALBA, Joel; RODRÍGUEZ-VÁZQUEZ, Refugio

    2010-01-01

    Weathered hydrocarbons from worldwide petrolic activities become more recalcitrant over time. The removal of petroleum hydrocarbons from a polluted soil [65,000 mg total petroleum hydrocarbons (TPH)/kg soil], which had been exposed to tropical environmental conditions for more than 20 years in southeast Mexico, was studied using filamentous fungi. Experiments were carried out in batch reactors (60 mL) containing a substrate consisting of polluted soil and sugar cane bagasse pith as bulk agent...

  19. On the assimilation of satellite derived soil moisture in numerical weather prediction models

    Science.gov (United States)

    Drusch, M.

    2006-12-01

    Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.

  20. Mineralogical characterization of a highly-weathered soil by the Rietveld Method Caracterização mineralógica de um solo altamente intemperizado pelo Método de Rietveld

    Directory of Open Access Journals (Sweden)

    André Maurício Brinatti

    2010-08-01

    Full Text Available The mineralogical characterization through mineral quantification of Brazilian soils by X-ray diffraction data using the Rietveld Method is not common. A mineralogical quantification of an Acric Ferralsol from the Ponta Grossa region, state of Paraná, Brazil, was carried out using this Method with X-Ray Diffraction data to verify if this method was suitable for mineral quantification of a highly-weathered soil. The A, AB and B3 horizons were fractioned to separate the different particle sizes: clay, silt, fine sand (by Stokes Law and coarse sand fractions (by sieving, with the procedure free of chemical treatments. X-ray Fluorescence, Inductively Coupled Plasma Atomic Emission Spectrometry, Infrared Spectroscopy and Mössbauer Spectroscopy were used in order to assist the mineral identification and quantification. The Rietveld Method enabled the quantification of the present minerals. In a general way, the quantitative mineralogical characterization by the Rietveld Method revealed that quartz, gibbsite, rutile, hematite, goethite, kaolinite and halloysite were present in the clay and silt fractions of all horizons. The silt fractions of the deeper horizons were different from the more superficial ones due to the presence of large amounts of quartz. The fine and the coarse sand fractions are constituted mainly by quartz. Therefore, a mineralogical quantification of the finer fraction (clay and silt by the Rietveld Method was successful.A caracterização mineralógica por meio da quantificação dos minerais presentes em solos brasileiros por difração de raios X usando o Método de Rietveld é, ainda, pouco comum. Neste trabalho foi realizada a quantificação mineralógica de um Latossolo Vermelho ácrico da região de Ponta Grossa, Paraná, Brasil, utilizando o Método de Rietveld com dados de Difração de Raios X e também verificado se o método foi adequado na quantificação mineral de um solo altamente intemperizado. Os horizontes A

  1. Effects of space weather on high-latitude ground systems

    Science.gov (United States)

    Pirjola, Risto

    Geomagnetically induced currents (GIC) in technological systems, such as power grids, pipelines, cables and railways, are a ground manifestation of space weather. The first GIC observations were already made in early telegraph equipment more than 150 years ago. In power networks, GIC may saturate transformers with possible harmful consequences extending even to a collapse of the whole system or to permanent damage of transformers. In pipelines, GIC and the associated pipe-to-soil voltages may enhance corrosion or disturb surveys associated with corrosion control. GIC are driven by the geoelectric field induced by a geomagnetic variation at the Earth’s surface. The electric and magnetic fields are primarily produced by ionospheric currents and secondarily affected by the ground conductivity. Of great importance is the auroral electrojet with other rapidly varying currents indicating that GIC are a particular high-latitude problem. In this paper, we summarize the GIC research done in Finland during about 25 years, and discuss the calculation of GIC in a given network. Special attention is paid to modelling a power system. It is shown that, when considering GIC at a site, it is usually sufficient to take account for a smaller grid in the vicinity of the particular site. Modelling GIC also provides a basis for developing forecasting and warning methods of GIC.

  2. Weathering controls on mechanisms of carbon storage in grassland soils

    Science.gov (United States)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-01-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought. Copyright 2004 by the American Geophysical Union.

  3. Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings

    International Nuclear Information System (INIS)

    Chaillan, F.; Chaineau, C.H.; Point, V.; Saliot, A.; Oudot, J.

    2006-01-01

    Oily drill cuttings and a soil contaminated with weathered crude oils were treated by enhanced biodegradation under tropical conditions in industrial scaled experiments. Oil contaminants were characterized by gas chromatography and mass spectrometry. This allowed for the identification of a mixture of two crude oils in the contaminated soil. After 12 months of bioremediation process, the removal of hydrocarbons reached by biodegradation an extent of 60% although nutrient amendment with elevated concentration of N-urea had highly detrimental effects on the hydrocarbon degrading fungal populations due to the production of toxic concentration of ammonia gas by nitrification. The saturated hydrocarbons were extensively assimilated, though n-alkanes were not completely removed. Aromatic hydrocarbons were less degraded than saturated whereas resin and asphaltene fractions were, surprisingly, partly assimilated. In laboratory conditions, the residual hydrocarbons in the field-treated materials were 15-20% further degraded when metabolic byproducts resulting from biodegradation were diluted or removed. - Bioremediation of oil-polluted soils can be impaired if urea is used as nitrogen source, and metabolic byproducts can limit biodegradation rates in industrial scaled experiments

  4. Improving soil enzyme activities and related quality properties of reclaimed soil by applying weathered coal in opencast-mining areas of the Chinese loess plateau

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua [College of Environment and Resources, Shanxi University, Taiyuan (China); CAS/Shandong Provincial Key Laboratory of Coastal Environmental Process, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai (China); Shao, Hongbo [CAS/Shandong Provincial Key Laboratory of Coastal Environmental Process, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai (China); Institute for Life Sciences, Qingdao University of Science and Technology (QUST), Qingdao (China); Li, Weixiang; Bi, Rutian [Shanxi Agricultural University, Taigu (China); Bai, Zhongke [Department of Land Science Technology, University of Geosciences, Beijing (China)

    2012-03-15

    There are many problems for the reclaimed soil in opencast-mining areas of the Loess Plateau of China such as poor soil structure and extreme poverty in soil nutrients and so on. For the sake of finding a better way to improve soil quality, the current study was to apply the weathered coal for repairing soil media and investigate the physicochemical properties of the reclaimed soil and the changes in enzyme activities after planting Robinia pseucdoacacia. The results showed that the application of the weathered coal significantly improved the quality of soil aggregates, increased the content of water stable aggregates, and the organic matter, humus, and the cation exchange capacity of topsoil were significantly improved, but it did not have a significant effect on soil pH. Planting R. pseucdoacacia significantly enhanced the activities of soil catalase, urease, and invertase, but the application of the weathered coal inhibited the activity of catalase. Although the application of appropriate weathered coal was able to significantly increase urease activity, the activities of catalase, urease, or invertase had a close link with the soil profile levels and time. This study suggests that applying weathered coals could improve the physicochemical properties and soil enzyme activities of the reclaimed soil in opencast-mining areas of the Loess Plateau of China and the optimum applied amount of the weathered coal for reclaimed soil remediation is about 27 000 kg hm{sup -2}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Atmospheric weathering and silica-coated feldspar: analogy with zeolite molecular sieves, granite weathering, soil formation, ornamental slabs, and ceramics.

    Science.gov (United States)

    Smith, J V

    1998-03-31

    Feldspar surfaces respond to chemical, biological, and mechanical weathering. The simplest termination is hydroxyl (OH), which interacts with any adsorption layer. Acid leaching of alkalis and aluminum generated a silica-rich, nanometers-thick skin on certain feldspars. Natural K, Na-feldspars develop fragile surfaces as etch pits expand into micrometer honeycombs, possibly colonized by lichens. Most crystals have various irregular coats. Based on surface-catalytic processes in molecular sieve zeolites, I proposed that some natural feldspars lose weakly bonded Al-OH (aluminol) to yield surfaces terminated by strongly bonded Si-OH (silanol). This might explain why some old feldspar-bearing rocks weather slower than predicted from brief laboratory dissolution. Lack of an Al-OH infrared frequency from a feldspar surface is consistent with such a silanol-dominated surface. Raman spectra of altered patches on acid-leached albite correspond with amorphous silica rather than hydroxylated silica-feldspar, but natural feldspar may respond differently. The crystal structure of H-exchanged feldspar provides atomic positions for computer modeling of complex ideas for silica-terminated feldspar surfaces. Natural weathering also depends on swings of temperature and hydration, plus transport of particles, molecules, and ionic complexes by rain and wind. Soil formation might be enhanced by crushing granitic outcrops to generate new Al-rich surfaces favorable for chemical and biological weathering. Ornamental slabs used by architects and monumental masons might last longer by minimizing mechanical abrasion during sawing and polishing and by silicifying the surface. Silica-terminated feldspar might be a promising ceramic surface.

  6. Impact of Soil Moisture Initialization on Seasonal Weather Prediction

    Science.gov (United States)

    Koster, Randal D.; Suarez, Max J.; Houser, Paul (Technical Monitor)

    2002-01-01

    The potential role of soil moisture initialization in seasonal forecasting is illustrated through ensembles of simulations with the NASA Seasonal-to-Interannual Prediction Project (NSIPP) model. For each boreal summer during 1997-2001, we generated two 16-member ensembles of 3-month simulations. The first, "AMIP-style" ensemble establishes the degree to which a perfect prediction of SSTs would contribute to the seasonal prediction of precipitation and temperature over continents. The second ensemble is identical to the first, except that the land surface is also initialized with "realistic" soil moisture contents through the continuous prior application (within GCM simulations leading up to the start of the forecast period) of a daily observational precipitation data set and the associated avoidance of model drift through the scaling of all surface prognostic variables. A comparison of the two ensembles shows that soil moisture initialization has a statistically significant impact on summertime precipitation and temperature over only a handful of continental regions. These regions agree, to first order, with regions that satisfy three conditions: (1) a tendency toward large initial soil moisture anomalies, (2) a strong sensitivity of evaporation to soil moisture, and (3) a strong sensitivity of precipitation to evaporation. The degree to which the initialization improves forecasts relative to observations is mixed, reflecting a critical need for the continued development of model parameterizations and data analysis strategies.

  7. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    Science.gov (United States)

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Can conservation agriculture improve phosphorus (P) availability in weathered soils? Effects of tillage and residue management on soil P status after 9 years in a Kenyan Oxisol

    NARCIS (Netherlands)

    Margenot, Andrew; Paul, B.K.; Pulleman, M.M.; Parikh, Sanjai; Fonte, Steven J.

    2017-01-01

    The widespread promotion of conservation agriculture (CA) in regions with weathered soils prone to phosphorus (P) deficiency merits explicit consideration of its effect on P availability. A long-term CA field trial located on an acid, weathered soil in western Kenya was evaluated for effects of

  9. Soils and climate: redness and weathering as indicators of mean annual precipitation

    Science.gov (United States)

    Lucke, Bernhard

    2016-04-01

    Paleosols can be used as archives of past changes of climate and landscapes, but their interpretation has to be based on modern analogies such as Budyko's law of soil zonality. These can be very useful if the respective processes of soil formation are sufficiently well understood. However, some soils such as the Terra Rossa or Red Mediterranean Soils, that are widespread at the fringes of the steppes and deserts, are still disputed with regard to their genesis and environmental significance. In particular, there is no agreement whether they resemble current environmental conditions, or are inherited from climates or sediments of the past. In this context, a remarkable change of the color of surface soils can be observed when driving from the city of Irbid in Jordan towards the east. Soil color apparently changes slowly, but steadily from dark red to yellow colors. However, attempting to express these color changes in numerical form is challenging, and it seemed questionable whether color is indeed connected with soil weathering intensity, or an optical illusion. However, a systematic comparison of different approaches of calculating soil redness found that the CIELAB-color system is suited for numerical expressions of soil redness and performs better than the Munsell charts. Along the investigated transect in Jordan, soil color seems strongly connected with weathering intensity, since various weathering indicators point to a steady increase of soil development with moisture. This suggests that such indices can well be used in semi-arid areas of 250-600 mm of mean annual precipitation. A very strong correlation of magnetic enhancement and rainfall indicates that the investigated soils are forming in equilibrium with current climatic conditions, and regressions based on this gradient might be suited for estimating paleorainfalls recorded by buried paelosols. It seems therefore that surface Terra Rossa soils in Jordan can be in equilibrium with current climate

  10. Activated carbon immobilizes residual polychlorinated biphenyls in weathered contaminated soil.

    Science.gov (United States)

    Langlois, Valérie S; Rutter, Allison; Zeeb, Barbara A

    2011-01-01

    Activated carbon (AC) has recently been shown to be effective in sequestering persistent organic pollutants (POPs) from aquatic sediments. Most studies have demonstrated significant reductions of POP concentrations in water and in aquatic organisms; however, limited data exist on the possibility of using AC to immobilize remaining POPs at terrestrial contaminated sites. Under greenhouse conditions, pumpkin ssp cv. Howden) were grown, and red wiggler worms () were exposed to an industrial contaminated soil containing a mixture of polychlorinated biphenyls (PCBs), i.e., Aroclors 1254 and 1260) treated with one of four concentrations of AC (0.2, 0.8, 3.1, and 12.5%) for 2 mo. The addition of AC to contaminated soils virtually eliminated the bioavailability of PCBs to the plant and invertebrate species. There were reductions in PCB concentrations of more than 67% in ssp and 95% in . These data suggest that AC could be included as part of comprehensive site closure strategy at PCB-contaminated sites. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Impact of hydrocarbon type, concentration and weathering on its biodegradability in soil.

    Science.gov (United States)

    Maletić, Snežana P; Dalmacija, Božo D; Rončević, Srđan D; Agbaba, Jasmina R; Perović, Svetlana D Ugarčina

    2011-01-01

    The objective of this research was to investigate the impact of the hydrocarbon type and concentration, as well as the total effect of the natural weathering process to hydrocarbon biodegradability in sandy soil and the environment. In this experiment, sandy soil was separately contaminated with 0.5%, 1.0%, 2.0% and 3.5% of diesel and crude oils. Oil contaminated soil was taken from the Oil Refinery dumping sites after 9 years of weathering, and its concentration was adjusted to the above-mentioned levels. The biodegradation process was monitored by measuring CO(2), evolution rate, hydrocarbon degradation rate and dehydrogenase activity. The favourable concentration ranges for the soil contaminated with diesel oil were 1.0%, with concentrations at about 2.0% causing slightly adverse effects to CO(2) production which was overcome after 2 weeks, and with 3.5% diesel oil causing significant toxicity. For soil contaminated with crude oil, 2.0% was found to be optimum for effective biodegradation, with 3.5% crude oil also causing adverse effects to CO(2) production, although less so than the same concentration of diesel oil. No adverse effect was obtained for any concentration of the weathered oil, as after the weathering process, the remaining contaminants in the soil were mostly poorly degradable constituents like asphaltenes, resins etc. It has been proposed that such residual material from oil degradation is analogous to, and can even be regarded as, humic material. Due to its inert characteristics, insolubility and similarity to humic materials it is unlikely to be environmentally hazardous.

  12. Quantifying Heterogeneities in Soil Cover and Weathering in the Bitterroot and Sapphire Mountains, Montana: Implications for Glacial Legacies and their Morphologic Control on Soil Formation

    Science.gov (United States)

    Benjaram, S. S.; Dixon, J. L.

    2017-12-01

    To what extent is chemical weathering governed by a landscape's topography? Quantifying chemical weathering in both steep rocky landscapes and soil-mantled landscapes requires describing heterogeneity in soil and rock cover at local and landscape scales. Two neighboring mountain ranges in the northern Rockies of western Montana, USA, provide an ideal natural laboratory in which to investigate the relationship between soil chemical weathering, persistence of soil cover, and topography. We focus our work in the previously glaciated Bitterroot Mountains, which consist of steep, rock-dominated hillslopes, and the neighboring unglaciated Sapphire Mountains, which display convex, soil-mantled hillslopes. Soil thickness measurements, soil and rock geochemistry, and digital terrain analysis reveal that soils in the rock-dominated Bitterroot Mountains are only slightly less weathered than those in the Sapphire Mountains. However, these differences are magnified when adjusted for rock fragments at a local scale and bedrock cover at a landscape scale, using our newly developed metric, the rock-adjusted chemical depletion fraction (RACDF) and rock-adjusted mass transfer coefficient (RA τ). The Bitterroots overall are 30% less weathered than the Sapphires despite higher mean annual precipitation in the former, with an average rock-adjusted CDF of 0.38 in the postglacial Bitterroots catchment and 0.61 in the nonglacial Sapphire catchment, suggesting that 38% of rock mass is lost in the conversion to soil in the Bitterroots, whereas 61% of rock mass is lost in the nonglaciated Sapphires. Because the previously glaciated Bitterroots are less weathered despite being wetter, we conclude that the glacial history of this landscape exerts more influence on soil chemical weathering than does modern climate. However, while previous studies have correlated weathering intensity with topographic parameters such as slope gradient, we find little topographic indication of specific controls

  13. Terrain and subsurface influences on runoff generation in a steep, deep, highly weathered system

    Science.gov (United States)

    Mallard, J. M.; McGlynn, B. L.; Richter, D. D., Jr.

    2017-12-01

    Our understanding of runoff generation in regions characterized by deep, highly weathered soils is incomplete, despite the prevalence occupation of these landscapes worldwide. To address this, we instrumented a first-order watershed in the Piedmont of South Carolina, USA, a region that extends east of the Appalachians from Maryland to Alabama, and home to some of the most rapid population growth in the country. Although regionally the relief is modest, the landscape is often highly dissected and local slopes can be steep and highly varied. The typical soils of the region are kaolinite dominated ultisols, with hydrologic properties controlled by argillic Bt horizons, often with >50% clay-size fraction. The humid subtropical climate creates relatively consistent precipitation intra-annually and seasonally variable energy availability. Consequently, the mixed deciduous and coniferous tree cover creates a strong evapotranspiration-mediated hydrologic dynamic. While moist soils and extended stream networks are typical from late fall through spring, relatively dry soils and contracting stream networks emerge in the summer and early fall. Here, we seek to elucidate the relative influence of the vertical soil and spatial terrain structure of this region on watershed hillslope hydrology and subsequent runoff generation. We installed a network of nested, shallow groundwater wells and soil water content probes within an ephemeral to first-order watershed to continuously measure soil and groundwater dynamics across soil horizons and landscape position. We also recorded local precipitation and discharge from this watershed. Most landscape positions exhibited minimal water table response to precipitation throughout dry summer periods, with infrequently observed responses rarely coincident with streamflow generation. In contrast, during the wetter late fall through early spring period, streamflow was driven by the interaction between transient perched water tables and

  14. Determination of soil weathering rates with U-Th series disequilibria: approach on bulk soil and selected mineral phases

    International Nuclear Information System (INIS)

    Gontier, Adrien

    2014-01-01

    The aim of the present study was to evaluate weathering and soil formation rates using U-Th disequilibria in bulk soil or separated minerals. The specific objectives of this work were to evaluate the use of U-Th chronometric tools 1) regarding the impact of a land cover change and the bedrock characteristics 2) in selected secondary mineral phases and 3) in primary minerals. On the Breuil-Chenue (Morvan) site, no vegetation effect neither a grain size effect was observed on the U-Th series in the deepest soil layers (≤ 40 cm). The low soil production rate (1-2 mm/ka) is therefore more affected by regional geomorphology than by the underlying bedrock texture. In the second part of this work, based on a thorough evaluation of different techniques, a procedure was retained to extract Fe-oxides without chemical fractionation. Finally, the analysis of biotites hand-picked from one of the studied soil profile showed that U-series disequilibria allow to independently determinate the field-weathering-rate of minerals. (author)

  15. Final Report: Caustic Waste-Soil Weathering Reactions and Their Impacts on Trace Contaminant Migration and Sequestration

    International Nuclear Information System (INIS)

    O'Day, Peggy A.; Chorover, J.; Mueller, K.T.; Serne, R.J.

    2006-01-01

    The principal goal of this project was to assess the molecular nature and stability of radionuclide (137-Cs, 90-Sr, and 129-I) immobilization during weathering reactions in bulk Hanford sediments and their high surface area clay mineral constituents. We focused on the unique aqueous geochemical conditions that are representative of waste-impacted locations in the Hanford site vadose zone: high ionic strength, high pH and high Al concentrations. The specific objectives of the work were to (i) measure the coupling of clay mineral weathering and contaminant uptake kinetics of Cs+, Sr2+ and I-; (ii) determine the molecular structure of contaminant binding sites and their change with weathering time during and after exposure to synthetic tank waste leachate (STWL); (iii) establish the stability of neoformed weathering products and their sequestered contaminants upon exposure of the solids to more ''natural'' soil solutions (i.e., after removal of the caustic waste source); and (iv) integrate macroscopic, microscopic and spectroscopic data to distinguish labile from non-labile contaminant binding environments, including their dependence on system composition and weathering time. During this funding period, we completed a large set of bench-scale collaborative experiments and product characterization aimed at elucidating the coupling between mineral transformation reactions and contaminant sequestration/stabilization. Our experiments included three representative Hanford sediments: course and fine sediments collected from the Hanford Formation and Ringold Silt, in addition to investigations with specimen clay minerals illite, vermiculite, smectite and kaolinite. These experiments combined macroscopic measurements of element release, contaminant uptake and subsequent neoformed mineral dissolution behavior, with detailed studies of solid phase products using SEM and TEM microscopy, NMR, XAS and FTIR spectroscopy. Our studies have shown direct coupling between mineral

  16. Caustic Waste-Soil Weathering Reactions and Their Impacts on Trace Contaminant Migration and Sequestration

    International Nuclear Information System (INIS)

    Dr. Jon Chorover; Dr. Karl T. Mueller; Dr. Peggy O'Day; R. Jeff Serne

    2006-01-01

    The principal goal of this project was to assess the molecular nature and stability of radionuclide immobilization during weathering reactions in bulk Hanford sediments and their high surface area clay mineral constituents

  17. Phase-dependent space weathering effects and spectroscopic identification of retained helium in a lunar soil grain

    Science.gov (United States)

    Burgess, K. D.; Stroud, R. M.

    2018-03-01

    The solar wind is an important driver of space weathering on airless bodies. Over time, solar wind exposure alters the physical, chemical, and optical properties of exposed materials and can also impart a significant amount of helium into the surfaces of these bodies. However, common materials on the surface of the Moon, such as glass, crystalline silicates, and oxides, have highly variable responses to solar wind irradiation. We used scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS) to examine the morphology and chemistry of a single grain of lunar soil that includes silicate glass, chromite and ilmenite, all present and exposed along the same surface. The exposure of the silicate glass and oxides to the same space weathering conditions allows for direct comparisons of the responses of natural materials to the complex lunar surface environment. The silicate glass shows minimal effects of solar wind irradiation, whereas both the chromite and ilmenite exhibit defect-rich rims that currently contain trapped helium. Only the weathered rim in ilmenite is rich in nanophase metallic iron (npFe0) and larger vesicles that retain helium at a range of internal pressures. The multiple exposed surfaces of the single grain of ilmenite demonstrate strong crystallographic controls of planar defects and non-spherical npFe0. The direct spectroscopic identification of helium in the vesicles and planar defects in the oxides provides additional evidence of the central role of solar wind irradiation in the formation of some common space weathering features.

  18. Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.R.T.; Koskinen, P.E.P.; Tuhkanen, T.A.; Puhakka, J.A. [Inst. of Environmental Engineering and Biotechnology, Tampere Univ. of Tech., Tampere (Finland); Pichtel, J. [Natural Resources and Environmental Management, Ball State Univ., Muncie, IN (United States); Vaajasaari, K. [Pirkanmaa Regional Environment Centre, Tampere (Finland); Joutti, A. [Finnish Environment Inst., Helsinki (Finland)

    2006-08-15

    Background, Aims, and Scope. Phytoremediation is remediation method which uses plants to remove, contain or detoxify environmental contaminants. Phytoremediation has successfully been applied for the removal of fresh hydrocarbon contamination, but removal of aged hydrocarbons has proven more difficult. Biodegradation of hydrocarbons in the subsurface can be enhanced by the presence of plant roots, i.e. the rhizosphere effect. Phytostabilization reduces heavy metal availability via immobilization in the rhizosphere. Soils contaminated by both hydrocarbons and heavy metals are abundant and may be difficult to treat. Heavy metal toxicity can inhibit the activity of hydrocarbon-degrading micro-organisms and decrease the metabolic diversity of soil bacteria. In this experiment, weathered hydrocarbon- and heavy metal-contaminated soil was treated using phytoremediation in a 39-month field study in attempts to achieve both hydrocarbon removal and heavy metal stabilization. Methods. A combination of hydrocarbon degradation and heavy metal stabilization was evaluated in a field-scale phytoremediation study of weathered contaminants. Soil had been contaminated over several years with hydrocarbons (11,400{+-}4,300 mg kg dry soil){sup -1} and heavy metals from bus maintenance activities and was geologically characterized as till. Concentrations of soil copper, lead and zinc were 170{+-}50 mgkg{sup -1}, 1,100{+-}1,500 mg kg{sup -1} and 390{+-} 340 mg kg{sup -1}, respectively. The effect of contaminants, plant species and soil amendment (NPK fertilizer or biowaste compost) on metabolic activity of soil microbiota was determined. Phytostabilization performance was investigated by analyses of metal concentrations in plants, soil and site leachate as well as acute toxicity to Vibrio fischeri and Enchtraeus albidus. Results. Over 39 months hydrocarbon concentrations did not decrease significantly (P=0.05) in non-amended soil, although 30% of initial hydrocarbon concentrations were

  19. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation.

    Science.gov (United States)

    Jiang, Ying; Brassington, Kirsty J; Prpich, George; Paton, Graeme I; Semple, Kirk T; Pollard, Simon J T; Coulon, Frédéric

    2016-10-01

    The potential for biotransformation of weathered hydrocarbon residues in soils collected from two commercial oil refinery sites (Soil A and B) was studied in microcosm experiments. Soil A has previously been subjected to on-site bioremediation and it was believed that no further degradation was possible while soil B has not been subjected to any treatment. A number of amendment strategies including bioaugmentation with hydrocarbon degrader, biostimulation with nutrients and soil grinding, were applied to the microcosms as putative biodegradation improvement strategies. The hydrocarbon concentrations in each amendment group were monitored throughout 112 days incubation. Microcosms treated with biostimulation (BS) and biostimulation/bioaugmentation (BS + BA) showed the most significant reductions in the aliphatic and aromatic hydrocarbon fractions. However, soil grinding was shown to reduce the effectiveness of a nutrient treatment on the extent of biotransformation by up to 25% and 20% for the aliphatic and aromatic hydrocarbon fractions, respectively. This is likely due to the disruption to the indigenous microbial community in the soil caused by grinding. Further, ecotoxicological responses (mustard seed germination and Microtox assays) showed that a reduction of total petroleum hydrocarbon (TPH) concentration in soil was not directly correlable to reduction in toxicity; thus monitoring TPH alone is not sufficient for assessing the environmental risk of a contaminated site after remediation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Denudational slope processes on weathered basalt in northern California: 130 ka history of soil development, periods of slope stability and colluviation, and climate change

    Science.gov (United States)

    McDonald, Eric; Harrison, Bruce; Baldwin, John; Page, William; Rood, Dylan

    2017-04-01

    The geomorphic history of hillslope evolution is controlled by multiple types of denudational processes. Detailed analysis of hillslope soil-stratigraphy provides a means to identify the timing of periods of slope stability and non-stability, evidence of the types of denudational processes, and possible links to climatic drivers. Moreover, the degree of soil formation and the presence of buried or truncated soils provide evidence of the relative age of alternating periods of colluviation and stability. We use evaluation of soil stratigraphy, for a small forested hillslope (soils and slope colluvium are derived from highly weathered basalt. Stratigraphic interpretation is reinforced with soil profile development index (PDI) derived age estimates, tephrochronology, luminescence ages on colluvium, and He3 nuclide exposure dates. Soils formed along hilltop ridges are well developed and reflect deep (>2-3 m) in-situ weathering of the basalt bedrock. PDI age estimates and He3 exposure dates indicate that these hilltop soils had been in place for 100-130 ka, implying a long period of relative surface stability. At about 40-30 ka, soil stratigraphy indicates the onset of 3 distinct cycles of denudation of the hilltop and slopes. Evidence for changes in stability and onset of soil erosion is the presence of several buried soils formed in colluvium downslope of the hilltop. These buried soils have formed in sediment derived from erosion of the hilltop soils (i.e. soil parent material of previously weathered soil matrix and basalt cobbles). The oldest buried soil indicates that slope stability was re-established between 32-23 ka, with stability and soil formation lasting to about 10 ka. Soil-stratigraphy indicates that two additional intervals of downslope transport of sediment between 6-10 ka, and 2-5 ka. Soil properties indicate that the primary method of downslope transport is largely due to tree throw and faunal burrowing. Onset of slope instability at 40-30 ka appears to

  1. Use of Imaging Spectroscopy for Mapping and Quantifying the Weathering Degree of Tropical Soils in Central Brazil

    International Nuclear Information System (INIS)

    Baptista, G.M.M.; Meneses, P.R.; Correa, R.S.; Dos Santos, P.F.; Correa, R.S.; Jose, S.; Dos Santos, P.F.; Netto, M.

    2011-01-01

    The purpose of this study was to test the feasibility of applying AVIRIS sensor (Airborne Visible/Infra Red Imaging Spectrometer) for mapping and quantifying mineralogical components of three Brazilian soils, a reddish Oxisol in Sao Joao D'Alianca area (SJA) and a dark reddish brown Oxisol and Ultisol in Niquelandia (NIQ) counties, Goias State. The study applied the spectral index RCGb [kaolinite/(kaolinite + gibbsite) ratio] and was based on spectral absorption features of these two minerals.The RCGb index was developed for the evaluation of weathering degrees of various Brazilian soils and was validated by the analysis of soil samples spectra imaged by AVIRIS and checked against laboratory mineralogical quantification (TGA:Thermal Gravimetric Analysis). Results showed to be possible mapping and quantifying the weathering degree of the studied soils and that the two selected areas presented different weathering degrees of their soils even for a same soil type.

  2. Improving canopy sensor algorithms with soil and weather information

    Science.gov (United States)

    Nitrogen (N) need to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of ...

  3. Dermal absorption of benzo[a]pyrene into human skin from soil: Effect of artificial weathering, concentration, and exposure duration.

    Science.gov (United States)

    Peckham, Trevor K; Shirai, Jeffry H; Bunge, Annette L; Lowney, Yvette W; Ruby, Michael V; Kissel, John C

    2017-11-01

    In vitro assessments of 14 C-benzo[a]pyrene (BaP) absorption through human epidermis were conducted with the sub-63-μm fraction of four test soils containing different amounts of organic and black carbon. Soils were artificially weathered for eight weeks and applied to epidermis at nominal BaP concentrations of 3 and 10 mg/kg for 8 or 24 h. Experiments were also conducted at 24 h with unweathered soils and with BaP deposited onto skin from acetone at a comparable chemical load. For the weathered soils, absorption was independent of the amount of organic or black carbon, the mass in the receptor fluid was proportional to exposure duration but independent of concentration, and the mass recovered in the skin after washing was proportional to concentration and independent of exposure time. Results from the weathered and unweathered soils were similar except for the mass recovered in the washed skin, which was lower for the weathered soil only at the higher concentration. We hypothesize that chemical concentrations exceeded the BaP sorption capacity accessible within the artificial weathering timeframe for all soils tested, and that BaP mass in the washed skin was dominated by particles that were not removed by washing. Fluxes into and through skin from soils were lower by an order of magnitude than from acetone-deposited BaP.

  4. Thorium, uranium and rare earth elements concentration in weathered Japanese soil samples

    International Nuclear Information System (INIS)

    Sahoo, Sarata Kumar; Hosoda, Masahiro; Kamagata, Sadatoshi; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Uchida, Shigeo

    2011-01-01

    The geochemical behavior of thorium, uranium and rare earth elements (REEs) are relatively close to one another while compared to other elements in a geological environment. Radioactive elements like 232 Th and 238 U along with their decay products (e.g. 226 Ra) are present in most environmental matrices and can be transferred to living bodies by different pathways which can lead to the sources of exposure to man. For these reasons, it has been necessary to monitor those natural radionuclides in weathered soil samples to assess the possible hazards. It has been observed that granitic rocks contain higher amounts of U, Th and light REEs compared to other igneous rocks such as basalt and andesites. To better understand the interaction between REEs and soils, the nature of soils must be considered. In this paper, we discussed the distribution pattern of 232 Th and 238 U along with REEs in soil samples of weathered acid rock (granite and ryolite) collected from two prefectures of Japan: (1) Kobe city in Hyogo prefecture and (2) Mutsu city and Higashidori village in Aomori prefecture. (author)

  5. Nonlinear estimation of weathering rate parameters for uranium in surface soil near a nuclear facility

    International Nuclear Information System (INIS)

    Killough, G.G.; Rope, S.K.; Shleien, B.; Voilleque, P.G.

    1999-01-01

    A dynamic mass-balance model has been calibrated by a nonlinear parameter estimation method, using time-series measurements of uranium in surface soil near the former Feed Materials Production Center (FMPC) near Fernald, Ohio, USA. The time-series data, taken at six locations near the site boundary since 1971, show a statistically significant downtrend of above-background uranium concentration in surface soil for all six locations. The dynamic model is based on first-order kinetics in a surface-soil compartment 10 cm in depth. Median estimates of weathering rate coefficients for insoluble uranium in this soil compartment range from about 0.065-0.14 year -1 , corresponding to mean transit times of about 7-15 years, depending on the location sampled. The model, calibrated by methods similar to those discussed in this paper, has been used to simulate surface soil kinetics of uranium for a dose reconstruction study. It was also applied, along with other data, to make confirmatory estimates of airborne releases of uranium from the FMPC between 1951 and 1988. Two soil-column models (one diffusive and one advective, the latter similar to a catenary first-order kinetic box model) were calibrated to profile data taken at one of the six locations in 1976. The temporal predictions of the advective model approximate the trend of the time series data for that location. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. FUZZY LOGIC BASED HYBRID RECOMMENDER OF MAXIMUM YIELD CROP USING SOIL, WEATHER AND COST

    Directory of Open Access Journals (Sweden)

    U Aadithya

    2016-07-01

    Full Text Available Our system is designed to predict best suitable crops for the region of farmer. It also suggests farming strategies for the crops such as mixed cropping, spacing, irrigation, seed treatment, etc. along with fertilizer and pesticide suggestions. This is done based on the historic soil parameters of the region and by predicting cost of crops and weather. The system is based on fuzzy logic which gets input from an Artificial Neural Network (ANN based weather prediction module. An Agricultural Named Entity Recognition (NER module is developed using Conditional Random Field (CRF to extract crop conditions data. Further, cost prediction is done based on Linear Regression equation to aid in ranking the crops recommended. Using this approach we achieved an F-Score of 54% with a precision of 77% thus accounting for the correctness of crop production.

  7. Intensity and duration of chemical weathering: An example from soil clays of the southeastern Koolau Mountains, Oahu, Hawaii

    Science.gov (United States)

    Johnsson, Mark J.; Ellen, Stephen D.; McKittrick, Mary Anne

    1993-01-01

    Orographic precipitation on the southern flank of the southeastern Koolau Mountains produces a pronounced precipitation gradient. The corresponding gradient in the intensity of the chemical weathering environment provides an opportunity to address the effects of varying chemical weathering intensity on the composition of clay-size weathering products in soils developed on basalt. In addition, little-modified remnants of the constructional surface of the Koolau Volcano, isolated by stream dissection, remain as facets on the southern ends of the parallel ridges of the study area. By comparing clay mineralogy of soils developed on these older geomorphic surfaces with those developed on the younger sharp-crested ridges and steep side slopes, the effects of weathering duration on clay mineralogy can also be addressed.Soil clays in this part of the Koolau Mountains are mineralogically complex; principal phases include smectite, kaolinite, and halloysite, but pure end member phases are uncommon. Rather, most phases contain some amount of mixed layering. Smectite may contain small (Volcano are markedly more leached than those from younger landscapes in the same precipitation regime. Although smectite may be present, kaolinite is the dominant phase, and accumulations of Fe and Ti occur in the uppermost soil levels. Enrichment of Zr and Ti in these soils, as compared to concentrations in the original basaltic parent material, indicates that as much as 75% of the parent material has been lost. Thus weathering duration may affect soil clay composition in the same way as weathering intensity.Because smectite and halloysite are expandable clay minerals, their presence in soils may decrease slope stability and influence the nature of slope processes. Soil avalanches occur on steep slopes throughout the study area, whereas slow-moving landslides appear to be restricted to gentler slopes in drier parts of the study area where smectite is abundant. The clay mineralogy of soils thus

  8. Preliminary results of an attempt to provide soil moisture datasets in order to verify numerical weather prediction models

    International Nuclear Information System (INIS)

    Cassardo, C.; Loglisci, N.

    2005-01-01

    In the recent years, there has been a significant growth in the recognition of the soil moisture importance in large-scale hydrology and climate modelling. Soil moisture is a lower boundary condition, which rules the partitioning of energy in terms of sensible and latent heat flux. Wrong estimations of soil moisture lead to wrong simulation of the surface layer evolution and hence precipitations and cloud cover forecasts could be consequently affected. This is true for large scale medium-range weather forecasts as well as for local-scale short range weather forecasts, particularly in those situations in which local convection is well developed. Unfortunately; despite the importance of this physical parameter there are only few soil moisture data sets sparse in time and in space around in the world. Due to this scarcity of soil moisture observations, we developed an alternative method to provide soil moisture datasets in order to verify numerical weather prediction models. In this paper are presented the preliminary results of an attempt to verify soil moisture fields predicted by a mesoscale model. The data for the comparison were provided by the simulations of the diagnostic land surface scheme LSPM (Land Surface Process Model), widely used at the Piedmont Regional Weather Service for agro-meteorological purposes. To this end, LSPM was initialized and driven by Synop observations, while the surface (vegetation and soil) parameter values were initialized by ECOCLIMAP global dataset at 1km 2 resolution

  9. Phyllosilicate weathering pathways in chlorite-talc bearing soil parent materials, D.R. Congo: early findings.

    Science.gov (United States)

    Dumon, Mathijs; Oostermeyer, Fran; Timmermans, Els; De Meulemeester, Aschwin; Mees, Florias; Van Driessche, Isabel; Erens, Hans; Bazirake Mujinya, Basile; Van Ranst, Eric

    2015-04-01

    The study of the formation and transformation of clay minerals is of the upmost importance to understand soil formation and to adjust land-use management to the land surface conditions. These clay minerals determine to a large extent the soil physical and chemical properties. It is commonly observed that over time the mineralogy of any parent material is transformed to a simple assemblage composed mostly of Al and Fe oxides and low-activity clays, e.g. kaolinite. This is especially obvious in the humid tropics, which have been protected from glacial erosion, allowing deep, highly weathered soils to form. Despite the abundant presence of kaolinite in these soils, its formation pathways are still under debate: either neoformation by dissolution-crystallisation reactions or solid-state transformation of 2:1 phyllosilicates. To elucidate this, weathering sequences in a unique 40 m core taken below a termite mound, reaching a talc-chlorite bearing substrate in the Lubumbashi area, Katanga, DR Congo are being investigated in detail using a.o. quantitative X-ray diffraction analysis, chemical characterization, micromorphology and µXRF-scanning with the main objective to improve the understanding of the formation pathways of kaolinite subgroup minerals in humid tropical environments. Based on an initial characterization of the core, two zones of interest were selected for more detailed analysis, for which the early findings will be presented. The first zone extends from ca. 9 m to 11 m below the surface is dominated by kaolinite but shows early traces of primary talc and micas. The second zone extends from 34 to 36 m below the surface and contains large amounts of chlorite, with smaller amounts of talc, micas and kaolinite.

  10. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes

    Science.gov (United States)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun

    2018-03-01

    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant

  11. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    Science.gov (United States)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  12. Adjustment of corn nitrogen in-season fertilization based on soil texture and weather conditions: a Meta-analysis of North American trials

    Science.gov (United States)

    Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series o...

  13. Weatherization Beyond the Numbers: Case Studies of Fifteen High-performing Weatherization Agencies - Conducted May 2011 through July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rose, Erin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    The report presents fifteen individual case studies of high-performing and unique local weatherization agencies. This research was one component of the retrospective evaluation of the U.S. Department of Energy s Weatherization Assistance Program. The agencies were chosen to represent a range of contexts and approaches to weatherization. For example, the set of agencies includes a mix of urban and rural agencies, those that mainly use in-house crews to weatherize homes versus those that use contractor crews, and a mix of locations, from very cold climates to moderate to hot humid and dry climates. The case studies were mainly based on site visits to the agencies that encompassed interviews with program directors, weatherization crews, and recipients of weatherization. This information was supplemented by secondary materials. The cases document the diversity of contexts and challenges faced by the agencies and how they operate on a day-by-day basis. The cases also high common themes found throughout the agencies, such as their focus on mission and respect for their clients.

  14. Using Resistivity Measurements to Determine Anisotropy in Soil and Weathered Rock

    Directory of Open Access Journals (Sweden)

    S. Soto-Caban

    2013-08-01

    Full Text Available This study uses electrical resistivity measurements of soils and weathered rock to perform a fast and reliable evaluation of field anisotropy. Two test sites at New Concord, Ohio were used for the study. These sites are characterized by different landform and slightly east dipping limestone and siltstone formations of Pennsylvanian age. The measured resistivity ranged from 19 Ω∙m to 100 ��∙m, and varied with depth, landform, and season. The anisotropy was determined by a comparison of resistance values along the directions of strike and the dip. Measurements showed that the orientation of electrical anisotropy in the shallow ground may vary due to fluid connection, which is determined by the pore geometry in soil and rock, as well as by the direction of fluid movement. Results from this study indicated that a portable electrical resistivity meter is sensitive and reliable enough to be used for shallow ground fluid monitoring.

  15. Behavior of uranium and thorium isotopes in soils of the Boreon area, Mercantour Massif (S.E. France). Leaching and weathering rate modeling

    International Nuclear Information System (INIS)

    Rezzoug, S.; Michel, H.; Barci-Funel, G.; Barci, V.; Fernex, F.

    2009-01-01

    Four cores were collected in weathered rocks and soils in the Boreon forest area (1765 m, Mercantour Massif, France). The samples were analyzed for the isotopes 230 Th, 232 Th, 234 U and 238 U. The activity and isotopic ratio profiles suggest that uranium was mobilized (leaching and precipitation) during the weathering process, as well as thorium but in a much less proportion. A model was drawn up to evaluate the U leaching rate and the time that some levels of the weathered rocks have been subjected to weathering. It utilizes LATHAM and SCHWARCZ's two equations,15 expressed as 234 U/ 238 U and 230 Th/ 238 U activity ratios, which assume that the alpha recoil effect allows easier leaching for 234 U than 238 U and no Th mobility. But this last assumption does not correspond to the observations made in the Boreon area, since it appears that in some soil deeper layers 230 Th and 228 Th are in radioactive deficit relatively to their parents. As there are four unknown quantities (the time, the leaching rates of 238 U, 234 U, 230 Th), the problem to be solved requires two more equations; these can be obtained utilizing the U activity ratio in water, and taking into account the 232 Th behavior. In some sites the 238 U leaching rate is high in deeper soil levels (near the fresh rocks); this would correspond to a loss of half the U amount in less than 24 000 years. (author)

  16. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan

    Science.gov (United States)

    Meyer, Kevin J.; Carey, Anne E.; You, Chen-Feng

    2017-10-01

    Chemical weathering source provenance changes associated with Typhoon Mindulle (2004) were identified for the Choshui River Watershed in west-central Taiwan using radiogenic Sr isotope (87Sr/86Sr) and major ion chemistry analysis of water samples collected before, during, and following the storm event. Storm water sampling over 72 h was conducted in 3 h intervals, allowing for novel insight into weathering regime changes in response to intense rainfall events. Chemical weathering sources were determined to be bulk silicate and disseminated carbonate minerals at the surface and silicate contributions from deep thermal waters. Loss on ignition analysis of collected rock samples indicate disseminated carbonate can compose over 25% by weight of surface mineralogy, but typically makes up ∼2-3% of watershed rock. 87Sr/86Sr and major element molar ratios indicate that Typhoon Mindulle caused a weathering regime switch from normal flow incorporating a deep thermal signature to that of a system dominated by surface weathering. The data suggest release of silicate solute rich soil pore waters during storm events, creating a greater relative contribution of silicate weathering to the solute load during periods of increased precipitation and runoff. Partial depletion of this soil solute reservoir and possible erosion enhanced carbonate weathering lead to increased importance of carbonates to the weathering regime as the storm continues. Major ion data indicate that complex mica weathering (muscovite, biotite, illite, chlorite) may represent an important silicate weathering pathway in the watershed. Deep thermal waters represent an important contribution to river solutes during normal non-storm flow conditions. Sulfuric acid sourced from pyrite weathering is likely a major weathering agent in the Choshui River watershed.

  17. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    Science.gov (United States)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  18. Matrix effects in applying mono- and polyclonal ELISA systems to the analysis of weathered oils in contaminated soil.

    Science.gov (United States)

    Pollard, S J T; Farmer, J G; Knight, D M; Young, P J

    2002-01-01

    Commercial mono- and polyclonal enzyme-linked immunosorbent assay (ELISA) systems were applied to the on-site analysis of weathered hydrocarbon-contaminated soils at a former integrated steelworks. Comparisons were made between concentrations of solvent extractable matter (SEM) determined gravimetrically by Soxhlet (dichloromethane) extraction and those estimated immunologically by ELISA determination over a concentration range of 2000-330,000 mg SEM/kg soil dry weight. Both ELISA systems tinder-reported for the more weathered soil samples. Results suggest this is due to matrix effects in the sample rather than any inherent bias in the ELISA systems and it is concluded that, for weathered hydrocarbons typical of steelworks and coke production sites, the use of ELISA requires careful consideration as a field technique. Consideration of the target analyte relative to the composition of the hydrocarbon waste encountered appears critical.

  19. Deep Soil Carbon in the Critical Zone: Amount and Nature of Carbon in Weathered Bedrock, and its Implication for Soil Carbon Inventory

    Science.gov (United States)

    Moreland, K. C.; Tian, Z.; Berhe, A. A.; O'Geen, A. T.

    2017-12-01

    Globally, soils store more carbon (C) than the vegetation and the atmosphere combined. Up to 60-80% of the C stored in soils is found in below 30cm soil depth, but there is little data on C storage in weathered bedrock or saprolite. Deep soil organic matter (SOM) can be a mixture of new and old SOM; that is rendered relatively stable due to burial, aggregation, its disconnection from decomposers, and chemical association that organic matter forms with soil minerals. The limited data available on deep SOM dynamics suggests that stock, distribution, and composition of deep SOM are strongly correlated to climate. The overall objective of this research is to investigate how climate regulates OM storage, composition, stability, and stabilization mechanisms. Expecting that the amount of OM stored in deep soil and the stability are a function of soil thickness and availability of weathering products (i.e. reactive minerals), the stock and stability of deep SOM is expected to follow a similar relationship with climate, as does the intensity of weathering. This research is conducted in the NSF funded Southern Sierra Critical Zone Observatories that is located along a climosequence, the western slopes of the Sierra Naevada Mountains of California. Here we will present results derived from characterization of soils and weathered bedrock using elemental and stable isotope elemental analysis, and Fourier Transformed Infrared Spectroscopy to determine OM concentration and functional group level composition of bulk SOM. Our findings show that adding in subsoil and weathered bedrock C stocks increases estimates of soil C stock by 1/3rd to 2/3rd.

  20. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set

    Science.gov (United States)

    Drusch, M.

    2007-02-01

    Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.

  1. A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data

    Science.gov (United States)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Gao, Mao-Fang; Huo, Hong-Yuan

    2017-09-01

    Soil moisture has long been recognized as one of the essential variables in the water cycle and energy budget between Earth's surface and atmosphere. The present study develops a practical approach for deriving all-weather soil moisture using combined satellite images and gridded meteorological products. In this approach, soil moisture over the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky pixels are estimated from the Vegetation Index/Temperature (VIT) trapezoid scheme in which theoretical dry and wet edges were determined pixel to pixel by China Meteorological Administration Land Data Assimilation System (CLDAS) meteorological products, including air temperature, solar radiation, wind speed and specific humidity. For cloudy pixels, soil moisture values are derived by the calculation of surface and aerodynamic resistances from wind speed. The approach is capable of filling the soil moisture gaps over remaining cloudy pixels by traditional optical/thermal infrared methods, allowing for a spatially complete soil moisture map over large areas. Evaluation over agricultural fields indicates that the proposed approach can produce an overall generally reasonable distribution of all-weather soil moisture. An acceptable accuracy between the estimated all-weather soil moisture and in-situ measurements at different depths could be found with an Root Mean Square Error (RMSE) varying from 0.067 m3/m3 to 0.079 m3/m3 and a slight bias ranging from 0.004 m3/m3 to -0.011 m3/m3. The proposed approach reveals significant potential to derive all-weather soil moisture using currently available satellite images and meteorological products at a regional or global scale in future developments.

  2. Weather or Not To Teach Junior High Meteorology.

    Science.gov (United States)

    Knorr, Thomas P.

    1984-01-01

    Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…

  3. The use of automatic weather stations to measure the soil temperature in the Mordovia State Nature Reserve (Russia) in 2016

    OpenAIRE

    Oleg G. Grishutkin

    2017-01-01

    The article presents the soil temperature data obtained using two automatic weather stations located in the Mordovia State Nature Reserve (Russia). Measurements were carried out at the soil surface and at depths of 20 cm, 40 cm and 60 cm. The meteorological stations are located 15 km apart, in general, in similar landscapes. This caused similar results of meteorological measurements. Differences in the average of the daily temperature at corresponding depths are less than 2°C. The average ann...

  4. Behaviour of elements in soils developed from nephelinites at Mount Etinde (Cameroon): Impact of hydrothermal versus weathering processes

    Science.gov (United States)

    Etame, J.; Gerard, M.; Bilong, P.; Suh, C. E.

    2009-05-01

    The progressive weathering of 0.65 Ma nephelinites from Mount Etinde (South Western Cameroon) in a humid tropical setting has resulted in the formation of a 150 cm thick weathering crust. The soil profiles consist of three horizons: Ah/Bw/C. A major differentiation of the chemical and mineralogical parameters is related to the complexity of the saprolites, some of which were hydrothermally altered. Bulk geochemical and microgeochemical analyses were performed on selected minerals from the different horizons of two reference profiles, of which one (E 4) was developed from unaltered nephelinite (nephelinite U) while the other (BO 1) formed from hydrothermally altered nephelinite (nephelinite H). The results show that the primary minerals (clinopyroxene, nepheline, leucite, haüyne, titanomagnetite, perovskite, apatite and sphene) experienced differential weathering rates with primary minerals rich in rare earth elements (titanomagnetite, perovskite, apatite and sphene) surviving in the saprolite and the Bw horizons. The weathering of the primary minerals is reflected in the leaching of alkaline and alkaline-earth elements, except for Ba and Rb in the hydrothermalised nephelinite soil. The order of mobility is influenced by hydrothermal processes: Na > K > Rb > Ca > Cs > Sr in nephelinite U soil , Na > K > Sr > Ca > Mg in nephelinite H soil; Rb/Sr and Sr/Mg can be used as indicators of the kinetic of the weathering on nephelinite U and on nephelinite H. Barium enrichment is related to variable concentrations in the nephelinites, to the formation of crandallites and the leaching of surface horizons. The content of metallic elements is higher in nephelinite H soil than in the nephelinite U soil. Results show that hydrothermal alteration leads to an enrichment of light (La, Ce, Nd) and intermediate (Sm, Eu, Dy) rare earth elements. The enrichment in Cr and Pb in the surface horizons is discussed in relation to organic matter activity, the dissolution of magnetites, and

  5. Spatial variability in mycorrhizal hyphae and nutrient and water availability in a soil-weathered bedrock profile

    Science.gov (United States)

    L.M. Egerton-Warburton; R.C. Graham; K.R. Hubbert

    2003-01-01

    We documented the spatial distribution, abundance and molecular diversity of mycorrhizal hyphae and physical and chemical properties of soil-weathered bedrock in a chaparral community that experiences seasonal drought. Because plants in this community were known to rely on bedrock-stored water during the summer, the data were used to evaluate the potential role of...

  6. The application of U-isotopes to assess weathering in contrasted soil-water regime in Brazil.

    Science.gov (United States)

    Rosolen, Vania; Bueno, Guilherme Taitson; Bonotto, Daniel Marcos

    2018-02-01

    This paper presents the use of U-series radionuclides 238 U and 234 U to evaluate the biogeochemical disequilibrium in soil cover under a contrasted soil-water regime. The approach was applied in three profiles located in distinct topographical positions, from upslope ferralitic to downslope hydromorphic domain. The U fractionation data was obtained in the samples representing the saprolite and the superficial and subsuperficial soil horizons. The results showed a significant and positive correlation between U and the Total Organic Carbon (TOC). Soil organic matter has accumulated in soil due to hydromorphy. There is no evidence of positive correlation between U and Fe, as expected in lateritic soils. The advance of the hydromorphy on Ferralsol changes the weathering rates, and the ages of weathering are discussed as a function of the advance of waterlogged soil conditions from downslope. Also, the bioturbation could represent the other factor responsible to construct a more recent soil horizon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Soil weathering agents are limited where deep tree roots are removed, even after decades of forest regeneration

    Science.gov (United States)

    Billings, S. A.; Richter, D. D., Jr.; Hirmas, D.; Lehmeier, C.; Bagchi, S.; Brecheisen, Z.; Sullivan, P. L.; Min, K.; Hauser, E.; Stair, R.; Flournoy, R.

    2017-12-01

    Deep roots pump reduced C deep into Earth's critical zone (CZ) as they grow and function. This action generates acid-forming CO2 and organic acids (OA) and fosters microbes that also produce these weathering agents. This phenomenon results in a regolith-weathering reaction front that propagates down with vertical root extension and water infiltration. Across old-growth hardwood, younger pine, and annual crop plots at the Calhoun Critical Zone Observatory, we tested the hypothesis that persistent absence of deep roots, a widespread anthropogenic phenomenon, reduces root- and microbially-mediated biogeochemical pools and fluxes important for weathering, even well below maximum root density. We also hypothesized that land use effects on deep soil biogeochemistry is evident even after decades of forest regeneration. Root abundance to 2 m declined with depth, and was greater in old-growth and regenerating forests than in crop plots at most depths. Old-growth soils also contain more roots than younger pine soils: between 30-45 and 70-80 cm depth, old-growth root abundances were greater than in regenerating forests, and old-growth soils exhibited root distributions with less severe declines with depth and harbored more root-associated bacteria than younger forests. Changing root abundances influenced concentrations of weathering agents. At 3 m, in situ soil [CO2] reached 6%, 4%, and 2% in old-growth, regenerating, and crop soils, respectively. Soil organic C (SOC) and extractable OC (EOC, an OA proxy) did not differ across land use, but at 4-5 m EOC/SOC was higher in old-growth compared to regenerating forests and crop soils (20.0±2.6 vs. 2.0±1.0%). We suggest that biogeochemistry deep beneath old-growth forests reflects greater root prevalence and propensity for generation of weathering agents, and that disturbance regimes inducing deep root mortality impose top-down signals relevant to weathering processes deep in Earth's CZ even after decades of forest regeneration.

  8. Regionalization of soil base cation weathering for evaluating stream water acidification in the Appalachian Mountains, USA

    International Nuclear Information System (INIS)

    McDonnell, T.C.; Cosby, B.J.; Sullivan, T.J.

    2012-01-01

    Estimation of base cation supply from mineral weathering (BC w ) is useful for watershed research and management. Existing regional approaches for estimating BC w require generalized assumptions and availability of stream chemistry data. We developed an approach for estimating BC w using regionally specific empirical relationships. The dynamic model MAGIC was used to calibrate BC w in 92 watersheds distributed across three ecoregions. Empirical relationships between MAGIC-simulated BC w and watershed characteristics were developed to provide the basis for regionalization of BC w throughout the entire study region. BC w estimates extracted from MAGIC calibrations compared reasonably well with BC w estimated by regression based on landscape characteristics. Approximately one-third of the study region was predicted to exhibit BC w rates less than 100 meq/m 2 /yr. Estimates were especially low for some locations within national park and wilderness areas. The regional BC w results are discussed in the context of critical loads (CLs) of acidic deposition for aquatic ecosystem protection. - Highlights: ► Base cation weathering (BC w ) estimates are needed to model critical load of acidity. ► Estimating BC w formerly required generalized assumptions and stream chemistry data. ► We describe a high-resolution approach for estimating BC w for regional application. - A new approach is described for deriving regional estimates of effective base cation weathering using empirical relationships with landscape characteristics.

  9. Spatial gradient of chemical weathering and its coupling with physical erosion in the soils of the Betic Cordillera (SE Spain)

    Science.gov (United States)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Kubik, Peter

    2015-04-01

    The production and denudation of soil material are controlled by chemical weathering and physical erosion which influence one another. Better understanding and quantification of this relationship is critical to understand biogeochemical cycles in the critical zone. The intense silicate weathering that is taking place in young mountain ranges is often cited to be a negative feedback that involves a long-term reduction of the atmospheric CO2 and the temperature cooling. However the possible (de)coupling between weathering and erosion is not fully understood for the moment and could reduce the effect of the feedback. This study is conducted in the eastern Betic Cordillera located in southeast Spain. The Betic Cordillera is composed by several mountains ranges or so-called Sierras that are oriented E-W to SE-NW and rise to 2000m.a.s.l. The Sierras differ in topographic setting, tectonic activity, and slightly in climate and vegetation. The mountain ranges located in the northwest, such as the Sierra Estancias, have the lowest uplift rates ( ~20-30 mm/kyr); while those in the southeast, such as the Sierra Cabrera, have the highest uplift rates ( >150mm/kyr). The sampling was realised into four small catchments located in three different Sierras. In each of them, two to three soil profiles were excavated on exposed ridgetops, and samples were taken by depth slices. The long-term denudation rate at the sites is inferred from in-situ 10Be CRN measurements. The chemical weathering intensity is constrained using a mass balance approach that is based on the concentration of immobile elements throughout the soil profile (CDF). Our results show that the soil depth decreases with an increase of the denudation rates. Chemical weathering accounts for 5 to 35% of the total mass lost due to denudation. Higher chemical weathering intensities (CDFs) are observed in sites with lower denudation rates (and vice versa). The data suggest that chemical weathering intensities are strongly

  10. Use of Sr isotopes as a tool to decipher the soil weathering processes in a tropical river catchment, southwestern India

    International Nuclear Information System (INIS)

    Gurumurthy, G.P.; Balakrishna, K.; Tripti, M.; Riotte, Jean; Audry, Stéphane; Braun, Jean-Jacques; Udaya Shankar, H.N.

    2015-01-01

    River water composition (major ion and "8"7Sr/"8"6Sr ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L"−"1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L"−"1), with radiogenic "8"7Sr/"8"6Sr isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and "8"7Sr/"8"6Sr and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO_2/Ca and "8"7Sr/"8"6Sr isotopic ratio show strong seasonal variation in the river water, i.e., low SiO_2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO_2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO_2/Ca and "8"7Sr/"8"6Sr isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin. - Highlights: • Systematic monthly geochemical monitoring of a mountainous tropical river. • Soil weathering has dominant control on the surface water chemistry in the basin. • Soil redox process plays a dominant role in leaching of soil minerals. • Soil mineral weathering in

  11. Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants.

    Science.gov (United States)

    Ramadass, Kavitha; Palanisami, Thavamani; Smith, Euan; Mayilswami, Srinithi; Megharaj, Mallavarapu; Naidu, Ravi

    2016-11-01

    Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg -1 soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate's Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm -1 . Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.

  12. Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals.

    Science.gov (United States)

    Palmroth, Marja R T; Koskinen, Perttu E P; Kaksonen, Anna H; Münster, Uwe; Pichtel, John; Puhakka, Jaakko A

    2007-12-01

    In the current study, the microbial ecology of weathered hydrocarbon and heavy metal contaminated soil undergoing phytoremediation was studied. The relationship of functional diversity, measured as carbon source utilisation in Biolog plates and extracellular enzymatic activities, and genetic diversity of bacteria was evaluated. Denaturing gradient gel electrophoresis was used for community analyses at the species level. Bulk soil and rhizosphere soil from pine and poplar plantations were analysed separately to determine if the plant rhizosphere impacted hydrocarbon degradation. Prevailing microbial communities in the field site were both genetically and metabolically diverse. Furthermore, both tree rhizosphere and fertilisation affected the compositions of these communities and increased activities of extracellular aminopeptidases. In addition, the abundance of alkane hydroxylase and naphthalene dioxygenase genes in the communities was low, but the prevalence of these genes was increased by the addition of bioavailable hydrocarbons. Tree rhizosphere communities had greater hydrocarbon degradation potential than those of bulk soil. Hydrocarbon utilising communities were dominated generally by the species Ralstonia eutropha and bacteria belonging to the genus Burkholderia. Despite the presence of viable hydrocarbon-degrading microbiota, decomposition of hydrocarbons from weathered hydrocarbon contaminated soil over four years, regardless of the presence of vegetation, was low in unfertilised soil. Compost addition enhanced the removal of hydrocarbons.

  13. Potential of glycerol and soybean oil for bioremediation of weathered oily-sludge contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, T.C.F.; Franca, F.P. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica], E-mail: fpfranca@eq.ufrj.br; Oliveira, F.J.S. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-04-15

    The bioremediation of petroleum-contaminated soil was investigated on laboratory scale. This work evaluated the effect of co-substrate addition in tropical climate soil highly contaminated with oily residue. Glycerol and soybean oil were used as auxiliary co-substrates for contaminant degradation. Three different concentrations of co-substrate were tested, and the experiments were carried out over 60 days. The following parameters were monitored: humidity, pH, total heterotrophic bacteria, total fungi, total petroleum hydrocarbons (TPH), and the concentrations of benzo[a]pyrene and chrysene. The soil supplementation with renewable co-substrates improved the efficiency of the biodegradation TPH, with removals of 85% and 83% for glycerol and soybean oil, respectively, compared to a 55% removal yielded by the biodegradation process without supplementation. The use of glycerol increased Chrysene and Benzo[a]pyrene biodegradation by 50%, while soybean oil supplementation increased their removal by 36%. (author)

  14. The Impact of Extreme Weather Events on Dissolved Organic Matter and Microbial Biomass of chernozem soils

    Science.gov (United States)

    Müller, Ann-Christin; Blagodatskaya, Evgenia

    2017-04-01

    The aim of this experiment was to study the impact of the extreme weather events freezing-thawing and drying-rewetting on C-, N- and P-dynamics in dissolved organic matter and microbial biomass. The three variants of a chernozem soil (Voronezh region, Russia) are (1) fertilized maize cropping, (2) unfertilized maize cropping and (3) a bare fallow. After both abiotic perturbations the respiration rates were generally lower in the freezing-thawing than in the drying-rewetting treatment, due to the lower temperature. The elevated respiration came along with the decay of organic matter, which was also manifested in increased mineralization of C, N and P immediately after rewetting. However, freezing-thawing had significantly less impact on C-, N- and P-mobilization. We conclude that drying-rewetting leads to an initially increased mobilization of C, N and P, which becomes obvious as increased amounts of DOM immediately after rewetting. Freezing-thawing does not affect mobilization in the same way. There, only an increased mobilization of C can be observed. Especially concerning N and P, the reaction is dependent on the form of use/cropping in both treatments.

  15. The use of automatic weather stations to measure the soil temperature in the Mordovia State Nature Reserve (Russia in 2016

    Directory of Open Access Journals (Sweden)

    Oleg G. Grishutkin

    2017-10-01

    Full Text Available The article presents the soil temperature data obtained using two automatic weather stations located in the Mordovia State Nature Reserve (Russia. Measurements were carried out at the soil surface and at depths of 20 cm, 40 cm and 60 cm. The meteorological stations are located 15 km apart, in general, in similar landscapes. This caused similar results of meteorological measurements. Differences in the average of the daily temperature at corresponding depths are less than 2°C. The average annual temperature differs less than 0.5°C, i.е. within a sensor's error. The annual temperature trend is typical for Central Russia. And it is characterised by well warming in summer and stagnation in winter. The diurnal amplitudes are small. This can be explained by the location of both weather stations under the forest canopy and a well-developed ground vegetation cover.

  16. Deformation of high performance concrete plate under humid tropical weather

    Science.gov (United States)

    Niken, C.; Elly, T.; Supartono, FX; Laksmi, I.

    2018-03-01

    This paper presents the relationship between surrounding relative humidity and temperature on deformation behavior of one sample concrete plate with compressive strength of 60MPa. This research was done in Indonesia that is in humid tropical weather. A specimens measuring 3000 mm × 1600 mm × 150 mm were used. The behavior was obtained by using four embedded vibrating wire strain gauges (VWESG). As a result there is a very strong relationship between humidity and deformation at the age range of 7 until 21 days. The largest deformation occurs in the corner and the fluctuation of deformation in side position is larger than in the corner and in the middle. The peaks of surrounding relative humidity were fully followed by the deepest valley of deformation on time in the corner, while in another position the range delay time was 8 - 11 hours. There is a strong relationship between surrounding temperature and deformation at the range of 7 until 14 days. The influenced of surrounding relative humidity to concrete behavior is faster and longer than surrounding temperature. The influence of surrounding temperature in humid tropical weather was shorter than in non-humid tropical weather.

  17. Reference Evapotranspiration Retrievals from a Mesoscale Model Based Weather Variables for Soil Moisture Deficit Estimation

    Directory of Open Access Journals (Sweden)

    Prashant K. Srivastava

    2017-10-01

    Full Text Available Reference Evapotranspiration (ETo and soil moisture deficit (SMD are vital for understanding the hydrological processes, particularly in the context of sustainable water use efficiency in the globe. Precise estimation of ETo and SMD are required for developing appropriate forecasting systems, in hydrological modeling and also in precision agriculture. In this study, the surface temperature downscaled from Weather Research and Forecasting (WRF model is used to estimate ETo using the boundary conditions that are provided by the European Center for Medium Range Weather Forecast (ECMWF. In order to understand the performance, the Hamon’s method is employed to estimate the ETo using the temperature from meteorological station and WRF derived variables. After estimating the ETo, a range of linear and non-linear models is utilized to retrieve SMD. The performance statistics such as RMSE, %Bias, and Nash Sutcliffe Efficiency (NSE indicates that the exponential model (RMSE = 0.226; %Bias = −0.077; NSE = 0.616 is efficient for SMD estimation by using the Observed ETo in comparison to the other linear and non-linear models (RMSE range = 0.019–0.667; %Bias range = 2.821–6.894; NSE = 0.013–0.419 used in this study. On the other hand, in the scenario where SMD is estimated using WRF downscaled meteorological variables based ETo, the linear model is found promising (RMSE = 0.017; %Bias = 5.280; NSE = 0.448 as compared to the non-linear models (RMSE range = 0.022–0.707; %Bias range = −0.207–−6.088; NSE range = 0.013–0.149. Our findings also suggest that all the models are performing better during the growing season (RMSE range = 0.024–0.025; %Bias range = −4.982–−3.431; r = 0.245–0.281 than the non−growing season (RMSE range = 0.011–0.12; %Bias range = 33.073–32.701; r = 0.161–0.244 for SMD estimation.

  18. Weather Regime-Dependent Predictability: Sequentially Linked High-Impact Weather Events over the United States during March 2016

    Science.gov (United States)

    Bosart, L. F.; Winters, A. C.; Keyser, D.

    2016-12-01

    High-impact weather events (HWEs), defined by episodes of excessive precipitation or periods of well above or well below normal temperatures, can pose important predictability challenges on medium-range (8-16 day) time scales. Furthermore, HWEs can contribute disproportionately to temperature and precipitation anomaly statistics for a particular season. This disproportionate contribution suggests that HWEs need to be considered in describing and understanding the dynamical and thermodynamic processes that operate at the weather-climate intersection. HWEs typically develop in conjunction with highly amplified flow patterns that permit an extensive latitudinal exchange of polar and tropical air masses. Highly amplified flow patterns over North America often occur in response to a reconfiguration of the large-scale upstream flow pattern over the North Pacific Ocean. The large-scale flow pattern over the North Pacific, North America, and western North Atlantic during the latter half of March 2016 was characterized by frequent cyclonic wave breaking (CWB). This large-scale flow pattern enabled three sequentially linked HWEs to develop over the continental United States. The first HWE was a challenging-to-predict cyclogenesis event on 23-24 March in the central Plains that resulted in both a major snowstorm along the Colorado Front Range and a severe weather outbreak over the central and southern Plains. The second HWE was a severe weather outbreak that occurred over the Tennessee and Ohio River Valleys on 27-28 March. The third HWE was the development of well below normal temperatures over the eastern United States that followed the formation of a high-latitude omega block over northwestern North America during 28 March-1 April. This study will examine (1) the role that CWB over the North Pacific and North America played in the evolution of the flow pattern during late-March 2016 and the development of the three HWEs and (2) the skill of GFS operational and ensemble

  19. Chemical Alteration of Soils on Earth as a Function of Precipitation: Insights Into Weathering Processes Relevant to Mars

    Science.gov (United States)

    Amundson, R.; Chadwick, O.; Ewing, S.; Sutter, B.; Owen, J.; McKay, C.

    2004-12-01

    Soils lie at the interface of the atmosphere and lithosphere, and the rates of chemical and physical processes that form them hinge on the availability of water. Here we quantify the effect of these processes on soil volume and mass in different rainfall regimes. We then use the results of this synthesis to compare with the growing chemical dataset for soils on Mars in order to identify moisture regimes on Earth that may provide crude analogues for past Martian weathering conditions. In this synthesis, the rates of elemental gains/losses, and corresponding volumetric changes, were compared for soils in nine soil chronosequences (sequences of soils of differing ages) - sequences formed in climates ranging from ~1 to ~4500 mm mean annual precipitation (MAP). Total elemental chemistry of soils and parent materials were determined via XRF, ICP-MS, and/or ICP-OES, and the absolute elemental gains or losses (and volume changes) were determined by normalizing data to an immobile index element. For the chronosequences examined, the initial stages of soil formation (103^ to 104^ yr), regardless of climate, generally show volumetric expansion due to (1) reduction in bulk density by biological/physical turbation, (2) addition of organic matter, (3) accumulation of water during clay mineral synthesis, and/or (4) accumulation of atmospheric salts and dust. Despite large differences in parent materials (basalt, sandstone, granitic alluvium), there was a systematic relationship between long-term (105^ to 106^ yr) volumetric change and rainfall, with an approximate cross-over point between net expansion (and accumulation of atmospheric solutes and dust) and net collapse (net losses of Si, Al, and alkaline earths and alkali metals) between approximately 20 and 100 mm MAP. Recently published geochemical data of soils at Gusev Crater (Gellert et al. 2004. Science 305:829), when normalized to Ti, show apparent net losses of Si and Al that range between 5 and 50% of values relative to

  20. Thallium contamination of soils/vegetation as affected by sphalerite weathering: a model rhizospheric experiment.

    Science.gov (United States)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Ettler, Vojtěch; Chrastný, Vladislav; Komárek, Michael; Tejnecký, Václav; Drábek, Ondřej; Penížek, Vít; Galušková, Ivana; Vaněčková, Barbora; Pavlů, Lenka; Ash, Christopher

    2015-01-01

    The environmental stability of Tl-rich sphalerite in two contrasting soils was studied. Rhizospheric conditions were simulated to assess the risk associated with sulfide microparticles entering agricultural (top)soils. The data presented here clearly demonstrate a significant effect of 500 μM citric acid, a model rhizospheric solution, on ZnS alteration followed by enhanced Tl and Zn release. The relative ZnS mass loss after 28 days of citrate incubation reached 0.05 and 0.03 wt.% in Cambisol and Leptosol samples respectively, and was up to 4 times higher, compared to H2O treatments. Incongruent (i.e., substantially increased) mobilization of Tl from ZnS was observed during the incubation time. Generally higher (long-term) stability of ZnS with lower Tl release is predicted for soils enriched in carbonates. Furthermore, the important role of silicates (mainly illite) in the stabilization of mobilized Tl, linked with structural (inter)layer Tl-K exchange, is suggested. Thallium was highly bioavailable, as indicated by its uptake by white mustard; maximum Tl amounts were detected in biomass grown on the acidic Cambisol. Despite the fact that sulfides are thought as relatively stable phases in soil environments, enhanced sulfide dissolution and Tl/trace element release (and bioaccumulation) can be assumed in rhizosphere systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Simulation and Prediction of Weather Radar Clutter Using a Wave Propagator on High Resolution NWP Data

    DEFF Research Database (Denmark)

    Benzon, Hans-Henrik; Bovith, Thomas

    2008-01-01

    for prediction of this type of weather radar clutter is presented. The method uses a wave propagator to identify areas of potential non-standard propagation. The wave propagator uses a three dimensional refractivity field derived from the geophysical parameters: temperature, humidity, and pressure obtained from......Weather radars are essential sensors for observation of precipitation in the troposphere and play a major part in weather forecasting and hydrological modelling. Clutter caused by non-standard wave propagation is a common problem in weather radar applications, and in this paper a method...... a high-resolution Numerical Weather Prediction (NWP) model. The wave propagator is based on the parabolic equation approximation to the electromagnetic wave equation. The parabolic equation is solved using the well-known Fourier split-step method. Finally, the radar clutter prediction technique is used...

  2. Dynamics and role of sphingomonas/mycobacterium populations during bio-remediation of weathered PAH-contaminated soils

    International Nuclear Information System (INIS)

    Bastiaens, L.; Ryngaert, A.; Leys, N.; Van Houtven, D.; Gemoets, J.; Goethals, L.; Springael, D.

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are major soil pollutants in many industrialized countries. During the last decades, a diversity of PAH-degrading micro-organisms has been isolated, suggesting possibilities for bio-remediation. However, biodegradation of PAHs in contaminated soils is not always successful. The low bio-availability of the PAHs is the major problem, especially in weathered soils. In these soils a tightly sorbed PAH-fraction is present which is in general hardly accessible for microorganisms. In order to bio-remedy PAHs also in weathered soils, stimulation of bacteria which have special strategies to access sorbed organics may be a solution. Sphingomonas and Mycobacterium strains may represent such bacteria as (I) they are often isolated as PAH degraders, (II) they are ubiquitously present in PAH-contaminated soils, and (III) they display features which might promote bioavailability. Lab- and pilot-scale experiments were set up in order (A) to study the dynamics of indigenous Sphingomonas and Mycobacterium populations during bio-remediation, and (B) to evaluate their role in the biodegradation of the less bio-available PAH-fraction during treatment of an historic PAH polluted soil. The soil was treated under natural soil moisture conditions and slurry conditions. The experimental set-ups ranged from 2 g lab-scale test to pilot experiments in 1 ton bio-piles and dry solid reactors (50 kg 70% dry matter soil). Different additives were evaluated for stimulation of the Sphingomonas and Mycobacterium population as a strategy to improve bio-remediation of PAHs. The evolution of this microbial population was followed using culture-independent general and genus-specific PCR-based detection methods targeting the 16S rRNA genes of the eu-bacterial community, Mycobacterium or the Sphingomonas populations, respectively. During the different bio-remediation experiments that were conducted, the Mycobacterium population remained very stable, only minor

  3. Dynamics and role of sphingomonas/mycobacterium populations during bio-remediation of weathered PAH-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bastiaens, L.; Ryngaert, A.; Leys, N.; Van Houtven, D.; Gemoets, J. [Flemish Institute for Technological Research-Vito, Mol (Belgium); Goethals, L. [ENVISAN, Aalst, (Belgium); Springael, D. [Catholic University of Leuven-KUL, Leuven (Belgium)

    2005-07-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are major soil pollutants in many industrialized countries. During the last decades, a diversity of PAH-degrading micro-organisms has been isolated, suggesting possibilities for bio-remediation. However, biodegradation of PAHs in contaminated soils is not always successful. The low bio-availability of the PAHs is the major problem, especially in weathered soils. In these soils a tightly sorbed PAH-fraction is present which is in general hardly accessible for microorganisms. In order to bio-remedy PAHs also in weathered soils, stimulation of bacteria which have special strategies to access sorbed organics may be a solution. Sphingomonas and Mycobacterium strains may represent such bacteria as (I) they are often isolated as PAH degraders, (II) they are ubiquitously present in PAH-contaminated soils, and (III) they display features which might promote bioavailability. Lab- and pilot-scale experiments were set up in order (A) to study the dynamics of indigenous Sphingomonas and Mycobacterium populations during bio-remediation, and (B) to evaluate their role in the biodegradation of the less bio-available PAH-fraction during treatment of an historic PAH polluted soil. The soil was treated under natural soil moisture conditions and slurry conditions. The experimental set-ups ranged from 2 g lab-scale test to pilot experiments in 1 ton bio-piles and dry solid reactors (50 kg 70% dry matter soil). Different additives were evaluated for stimulation of the Sphingomonas and Mycobacterium population as a strategy to improve bio-remediation of PAHs. The evolution of this microbial population was followed using culture-independent general and genus-specific PCR-based detection methods targeting the 16S rRNA genes of the eu-bacterial community, Mycobacterium or the Sphingomonas populations, respectively. During the different bio-remediation experiments that were conducted, the Mycobacterium population remained very stable, only minor

  4. Relation of runoff and soil erosion to weather types in the Mediterranean basin

    Science.gov (United States)

    Nadal-Romero, Estela; Peña-Angulo, Dhais

    2017-04-01

    Mediterrània, Departamento de Geografia Física i AGR, Universitat de Barcelona, Spain (30) Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Campus de A Coruña, Spain (31) Departamento de Geografía, Universidad de Murcia, Murcia, Spain (32) French National Research Institut for Sustainable Development (IRD), CESBIO Laboratory, Toulouse, France. (33) Escuela Técnica Superior de Ingeniería Agronómica e I. de Montes, Departamento de Ingeniería Rural, Universidad de Córdoba, Córdoba, Spain (34) Departament of Environmental and Agricultural Sciences, Università degli Studi di Perugia, Perugia, Italy (35) Technical University of Crete, School of Environmental Engineering, Chania, Greece (36) Departamento de Geodinámica, Universidad del País Vasco UPV/EHU, Leioa, Spain (37) Geographical Institute, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia Erosion processes and land degradation are recognized as one of the most significant environmental problems worldwide. In the Mediterranean region, intense erosion processes occur as a consequence of complex interactions between environmental conditions (e.g. climate, lithology) and human-related factors (e.g. history of human activity, land use changes) (García-Ruiz et al., 2013). Precipitation has been recognized as one of the main factors driving soil erosion. In climatology, one of the most common approaches in analyzing spatial and temporal precipitation variability is the circulation of weather types (WTs), which categorize the continuum of atmospheric circulation into a small number of classes or types. Flood generation and soil erosion are associated with specific weather conditions. Previous research in the Iberian Peninsula has analyzed the relationship between precipitation and specific WTs, demonstrating that specific WTs are the main drivers of precipitation and soil erosion in the different areas (Cortesi et al., 2014

  5. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    Energy Technology Data Exchange (ETDEWEB)

    Maher, K.; Steefel, C. I.; White, A.F.; Stonestrom, D.A.

    2009-02-25

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total

  6. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Science.gov (United States)

    Porada, Philipp; Lenton, Tim; Pohl, Alexandre; Weber, Bettina; Mander, Luke; Donnadieu, Yannick; Beer, Christian; Pöschl, Ulrich; Kleidon, Axel

    2017-04-01

    Early non-vascular vegetation in the Late Ordovician may have strongly increased chemical weathering rates of surface rocks at the global scale. This could have led to a drawdown of atmospheric CO2 and, consequently, a decrease in global temperature and an interval of glaciations. Under current climatic conditions, usually field or laboratory experiments are used to quantify enhancement of chemical weathering rates by non-vascular vegetation. However, these experiments are constrained to a small spatial scale and a limited number of species. This complicates the extrapolation to the global scale, even more so for the geological past, where physiological properties of non-vascular vegetation may have differed from current species. Here we present a spatially explicit modelling approach to simulate large-scale chemical weathering by non-vascular vegetation in the Late Ordovician. For this purpose, we use a process-based model of lichens and bryophytes, since these organisms are probably the closest living analogue to Late Ordovician vegetation. The model explicitly represents multiple physiological strategies, which enables the simulated vegetation to adapt to Ordovician climatic conditions. We estimate productivity of Ordovician vegetation with the model, and relate it to chemical weathering by assuming that the organisms dissolve rocks to extract phosphorus for the production of new biomass. Thereby we account for limits on weathering due to reduced supply of unweathered rock material in shallow regions, as well as decreased transport capacity of runoff for dissolved weathered material in dry areas. We simulate a potential global weathering flux of 2.8 km3 (rock) per year, which we define as volume of primary minerals affected by chemical transformation. Our estimate is around 3 times larger than today's global chemical weathering flux. Furthermore, chemical weathering rates simulated by our model are highly sensitive to atmospheric CO2 concentration, which implies

  7. Relationships between nuclear magnetic resonance parameters used to characterize weathering spilled oil and soil toxicity in central Patagonia.

    Science.gov (United States)

    Ríos, Stella Maris; Barquin, Mercedes; Katusich, Ofelia; Nudelman, Norma

    2014-01-01

    Oil spill in the Central Patagonian zone was studied to evaluate if any relationship exists between the parameters used to characterize weathering spilled oil and soil toxicity for two plant species and to evaluate if the phytotoxicity to local species would be a good index for the soil contamination. Nuclear magnetic resonance (NMR) structural indexes and column chromatography compositional indexes were determined to characterize the oil spill in the soil samples. Bioassays were also carried out using Lactuca sativa L (reference) and Atriplex lampa (native species) as test organisms. Measurements of the total petroleum hydrocarbon (TPH) and the electrical conductivity (EC) of the soil were carried out to evaluate the effect on the bioassays. The principal components analysis of the parameters determined by NMR, compositional indexes, EC, TPH, and toxicology data shows that the first three principal components accounted for the 78% of the total variance (40%, 25%, and 13% for the first, second, and third PC, respectively). A good agreement was found between information obtained by compositional indexes and NMR structural indexes. Soil toxicity increases with the increase of EC and TPH. Other factors, such as, the presence of branched and aromatic hydrocarbons is also significant. The statistical evaluation showed that the Euclidean distances (3D) between the background and each one of the samples might be a better indicator of the soil contamination, compared with chemical criterion of TPH.

  8. Atmospheric propagation of high power laser radiation at different weather conditions

    OpenAIRE

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-01-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long fr...

  9. Mechanical properties of low alloy high phosphorus weathering steel

    Directory of Open Access Journals (Sweden)

    Jena B.K.

    2015-01-01

    Full Text Available Mechanical behaviour of two low alloy steels (G11 and G12 was studied with respect to different phosphorus contents. Tensile strength and yield strength increased while percentage elongation at fracture decreased on increasing phosphorus content. The SEM and light optical photomicrograph of low phosphorus steel (G11 revealed ferrite and pearlite microstructure. On increasing phosphorus content from 0.25 wt.% to 0.42 wt.%, the morphology of grain changed from equiaxed shape to pan-cake shape and grain size also increased. The Charpy V notch (CVN impact energy of G11 and G12 steel at room temperature was 32 J and 4 J respectively and their fractographs revealed brittle rupture with cleavage facets for both the steels. However, the fractograph of G11 steel after tensile test exhibited ductile mode of fracture with conical equiaxed dimple while that of G12 steel containing 0.42 wt. % P exhibited transgranular cleavage fracture. Based on this study, G11 steel containing 0.25 wt. % P could be explored as a candidate material for weathering application purpose where the 20°C toughness requirement is 27 J as per CSN EN10025-2:2004 specification.

  10. Effect of Hydrograph Separation on Suspended Sediment Concentration Predictions in a Forested Headwater with Thick Soil and Weathered Gneiss Layers

    Directory of Open Access Journals (Sweden)

    Naoki Kabeya

    2014-06-01

    Full Text Available Two-component hydrograph separation using oxygen-18 concentrations was conducted at a sediment runoff observation weir installed in a small subcatchment of a forested gneiss catchment in Japan. The mean soil thickness of this catchment is 7.27 m, which comprises 3.29 m of brown forest soil (A and B layers and a 3.98-m layer of heavily weathered gneiss. Data were collected for a storm on 20–21 May 2003, and the percentage of event water separated by the stable isotope ratio in comparison with the total rainfall amount was about 1%. This value is within the ratio of a riparian zone in a drainage area. Temporal variation of suspended sediment concentration exhibited higher correlation with the event water component than with the total runoff or pre-event water component. This shows that the riparian zone causes rainwater to flow out quickly during a rain event, and that this is an important area of sediment production and transportation in a forested headwater with thick soil and weathered gneiss layers.

  11. How bioavailable is highly weathered Deepwater Horizon oil?

    Science.gov (United States)

    Bostic, J.; Ziolkowski, L. A.; Reddy, C. M.; Aeppli, C.; Swarthout, B.

    2016-02-01

    Oiled sand patties continue to be deposited on northern Gulf of Mexico beaches five years after the Deepwater Horizon (DwH) oil spill. It is known that during the first 18 months post-spill, sand patties from DwH were chemically transformed, both biotically and abiotically, from wellhead release to beach deposition. However, the chemically transformed oil, which appears to become more polar over time, is not well understood in regards to its biodegradation potential. Biodegradation exerts a large control on the fate of spilled oil, representing a major conduit for its removal from the environment. To assess the bioavailability of this weathered oil, sand patties were collected from intertidal and supratidal zones of beaches in Florida, Alabama, and Mississippi in July 2015. Microbial biomarkers of the viable community, phospholipid fatty acids (PLFA), were detected on all samples collected. The PLFA distributions (mostly saturated and branched structures) and abundances (2 - 9 x 1013 cells/g sand patty) were similar across sampling locations. The positive correlation between PLFA abundance and surface area to volume ratios of sand patties indicates that microbes are preferentially inhabiting outside surfaces of the patties. We will present data on the radiocarbon (14C) content of PLFA to assess carbon (C) sources assimilated by microbes. 14C of PLFA is a powerful tool for assessing C sources assimilated in this setting. Oil has no 14C (Δ14C= -1000‰) while modern organic matter has relatively abundant 14C (Δ14C= 0‰). Fingerprinting analysis of biomarker ratios using comprehensive two-dimensional gas chromatography will be presented to ascertain if oil originated from DwH. The extent of the chemical transformation of the oil into more polar compounds will also be measured using thin layer chromatography. Results of this investigation aim to determine the bioavailability and ultimate fate of oiled sand patties that continue to wash ashore on Gulf of Mexico

  12. Contributions of water supply from the weathered bedrock zone to forest soil quality

    Science.gov (United States)

    James H. Witty; Robert C. Graham; Kenneth R. Hubbert; James A. Doolittle; Jonathan A. Wald

    2003-01-01

    One measure of forest soil quality is the ability of the soil to support tree growth. In mediterranean-type ecosystems, such as most of California's forests, there is virtually no rainfall during the summer growing season, so trees must rely on water stored within the substrate. Water is the primary limitation to productivity in these forests. Many forest soils in...

  13. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    Science.gov (United States)

    Maher, K.; Steefel, Carl; White, A.F.; Stonestrom, David A.

    2009-01-01

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta 72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta 70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at

  14. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    Science.gov (United States)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  15. Initiation of soil formation in weathered sulfidic Cu-Pb-Zn tailings under subtropical and semi-arid climatic conditions.

    Science.gov (United States)

    You, Fang; Dalal, Ram; Huang, Longbin

    2018-08-01

    Field evidence has been scarce about soil (or technosol) formation and direct phytostabilization of base metal mine tailings under field conditions. The present study evaluated key attributes of soil formation in weathered and neutral Cu-Pb-Zn tailings subject to organic amendment (WC: woodchips) and colonization of pioneer native plant species (mixed native woody and grass plant species) in a 2.5-year field trial under subtropical and semi-arid climatic conditions. Key soil indicators of engineered soil formation process were characterized, including organic carbon fractions, aggregation, microbial community and key enzymatic activities. The majority (64-87%) of the OC was stabilized in microaggregate or organo-mineral complexes in the amended tailings. The levels of OC and water soluble OC were elevated by 2-3 folds across the treatments, with the highest level in the treatment of WC and plant colonization (WC+P). Specifically, the WC+P treatment increased the proportion of water stable macroaggregates. Plants further contributed to the N rich organic matter in the tailings, favouring organo-mineral interactions and organic stabilization. Besides, the plants played a major role in boosting microbial biomass and activities in the treated tailings. WC and plants enhanced the contents of organic carbon (OC) associated with aggregates (e.g., physically protected OC), formation of water-stable aggregates (e.g., micro and macroaggregates), chemical buffering capacity (e.g., cation exchange capacity). Microbial community and enzymatic activities were also stimulated in the amended tailings. The present results showed that the formation of functional technosol was initiated in the eco-engineered and weathered Cu-Pb-Zn tailings under field conditions for direct phytostabilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Soil mixing design methods and construction techniques for use in high organic soils.

    Science.gov (United States)

    2015-06-01

    Organic soils present a difficult challenge for roadway designers and construction due to the high : compressibility of the soil structure and the often associated high water table and moisture content. For : other soft or loose inorganic soils, stab...

  17. Impact of bacterial and fungal processes on {sup 14}C-hexadecane mineralisation in weathered hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Adetutu, Eric M.; Ball, Andy S. [School of Biological Sciences, Flinders University, Adelaide, South Australia, 5001 (Australia); Weber, John; Aleer, Samuel; Dandie, Catherine E. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia, 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia, 5095 (Australia); Juhasz, Albert L., E-mail: Albert.Juhasz@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia, 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia, 5095 (Australia)

    2012-01-01

    In this study, the impact of bacterial and fungal processes on {sup 14}C-hexadecane mineralisation was investigated in weathered hydrocarbon contaminated soil. The extent of {sup 14}C-hexadecane mineralisation varied depending on the bioremediation strategy employed. Under enhanced natural attenuation conditions, {sup 14}C-hexadecane mineralisation after 98 days was 8.5 {+-} 3.7% compared to < 1.2% without nitrogen and phosphorus additions. {sup 14}C-hexadecane mineralisation was further enhanced through Tween 80 amendments (28.9 {+-} 2.4%) which also promoted the growth of a Phanerochaete chyrsosporium fungal mat. Although fungal growth in weathered hydrocarbon contaminated soil could be promoted through supplementing additional carbon sources (Tween 80, sawdust, compost, pea straw), fungal {sup 14}C-hexadecane mineralisation was negligible when sodium azide was added to soil microcosms to inhibit bacterial activity. In contrast, when fungal activity was inhibited through nystatin additions, {sup 14}C-hexadecane mineralisation ranged from 6.5 {+-} 0.2 to 35.8 {+-} 3.8% after 98 days depending on the supplied amendment. Bacteria inhibition with sodium azide resulted in a reduction in bacterial diversity (33-37%) compared to microcosms supplemented with nystatin or microcosms without inhibitory supplements. However, alkB bacterial groups were undetected in sodium azide supplemented microcosms, highlighting the important role of this bacterial group in {sup 14}C-hexadecane mineralisation. - Highlights: Black-Right-Pointing-Pointer The roles of different microbial groups in hydrocarbon mineralisation was assessed. Black-Right-Pointing-Pointer Inhibiting fungal growth did not affect {sup 14}C-hexadecane mineralisation. Black-Right-Pointing-Pointer Inhibiting bacterial growth resulted in negligible {sup 14}C-hexadecane mineralisation. Black-Right-Pointing-Pointer alkB bacterial groups were undetected in sodium azide supplemented microcosms. Black

  18. Impact of bacterial and fungal processes on 14C-hexadecane mineralisation in weathered hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Adetutu, Eric M.; Ball, Andy S.; Weber, John; Aleer, Samuel; Dandie, Catherine E.; Juhasz, Albert L.

    2012-01-01

    In this study, the impact of bacterial and fungal processes on 14 C-hexadecane mineralisation was investigated in weathered hydrocarbon contaminated soil. The extent of 14 C-hexadecane mineralisation varied depending on the bioremediation strategy employed. Under enhanced natural attenuation conditions, 14 C-hexadecane mineralisation after 98 days was 8.5 ± 3.7% compared to 14 C-hexadecane mineralisation was further enhanced through Tween 80 amendments (28.9 ± 2.4%) which also promoted the growth of a Phanerochaete chyrsosporium fungal mat. Although fungal growth in weathered hydrocarbon contaminated soil could be promoted through supplementing additional carbon sources (Tween 80, sawdust, compost, pea straw), fungal 14 C-hexadecane mineralisation was negligible when sodium azide was added to soil microcosms to inhibit bacterial activity. In contrast, when fungal activity was inhibited through nystatin additions, 14 C-hexadecane mineralisation ranged from 6.5 ± 0.2 to 35.8 ± 3.8% after 98 days depending on the supplied amendment. Bacteria inhibition with sodium azide resulted in a reduction in bacterial diversity (33–37%) compared to microcosms supplemented with nystatin or microcosms without inhibitory supplements. However, alkB bacterial groups were undetected in sodium azide supplemented microcosms, highlighting the important role of this bacterial group in 14 C-hexadecane mineralisation. - Highlights: ► The roles of different microbial groups in hydrocarbon mineralisation was assessed. ► Inhibiting fungal growth did not affect 14 C-hexadecane mineralisation. ► Inhibiting bacterial growth resulted in negligible 14 C-hexadecane mineralisation. ► alkB bacterial groups were undetected in sodium azide supplemented microcosms. ► The importance of alkB groups in 14 C-hexadecane mineralisation was highlighted.

  19. Modeling fire behavior on tropical islands with high-resolution weather data

    Science.gov (United States)

    John W. Benoit; Francis M. Fujioka; David R. Weise

    2009-01-01

    In this study, we consider fire behavior simulation in tropical island scenarios such as Hawaii and Puerto Rico. The development of a system to provide real-time fire behavior prediction in Hawaii is discussed. This involves obtaining fuels and topography information at a fine scale, as well as supplying daily high-resolution weather forecast data for the area of...

  20. Toxicity of Selenium, Weathered and Aged in Soil, to the Collembolan Folsomia candida

    Science.gov (United States)

    2016-07-01

    Roman G. Kuperman Ronald T. Checkai Michael Simini Carlton T. Phillips RESEARCH AND TECHNOLOGY DIRECTORATE Richard M. Higashi Teresa W...ecotoxicological benchmarks for developing the ecological soil screening levels ( Eco -SSLs) for risk assessments of contaminated soils. For this study, we...benchmarks established in this study were submitted to the U.S. Environmental Protection Agency Eco -SSL Workgroup, and the EC20 value was used in

  1. Fostering research aptitude among high school students through space weather competition

    Science.gov (United States)

    Abdullah, M.; Majid, R. A.; Bais, B.; Bahri, N. S.; Asillam, M. F.

    2018-01-01

    Cultivating research culture at an early stage is important for capacity building in a community. The high school level is the appropriate stage for research to be introduced because of students' competitive nature. Participation in the space weather competition is one of the ways in which research aptitude can be fostered in high school students in Malaysia. Accordingly, this paper presents how research elements were introduced to the students at the high school level through their participation in the space weather competition. The competition required the students to build a system to detect the presence of solar flares by utilizing VLF signals reflected from the ionosphere. The space weather competition started off with proposal writing for the space weather related project where the students were required to execute extensive literature review on the given topic. Additionally, the students were also required to conduct the experiments and analyse the data. Results obtained from data analysis were then validated by the students through various other observations that they had to carry out. At the end of the competition, students were expected to write a comprehensive technical report. Through this competition, the students learnt how to conduct research in accordance to the guidelines provided through the step by step approach exposed to them. Ultimately, this project revealed that the students were able to conduct research on their own with minimal guidance and that participation in the competition not only generated enjoyment in learning but also their interest in science and research.

  2. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    Science.gov (United States)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  3. EFFECT OF ACCELERATED WEATHERING ON TENSILE PROPERTIES OF KENAF REINFORCED HIGH-DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Umar A.H.

    2012-06-01

    Full Text Available Umar A.H1, Zainudin E.S1,2 and Sapuan S.M.1,21Department of Mechanical and Manufacturing EngineeringFaculty of Engineering, Universiti Putra MalaysiaSelangor, Malaysia.2Biocomposite LaboratoryInstitute of Tropical Forestry and Forest Product (INTROPUniversiti Putra Malaysia, Selangor, Malaysia.Email: umarhanan@yahoo.com ABSTRACTIn this study, a high-density polyethylene composite reinforced with kenaf (Hibiscus Cannabinus L. bast fibres (K-HDPE was fabricated and tested for durability with regard to weather elements. The material consists of 40% (by weight fibres and 60% matrix. Other additives, such as ultraviolet (UV stabiliser and maleic anhydride grafted polyethylene (MaPE as a coupling agent were added to the composite material. The biocomposite was subjected to 1000 hours (h of accelerated weathering tests, which consisted of heat, moisture and UV light, intended to imitate the outdoor environment. The tensile properties of the K-HDPE composite were recorded after 0, 200, 400, 600, 800 and 1000 h of exposure to the accelerated weathering. Compared with neat high-density polyethylene (HDPE, the K-HDPE composite has 22.7% lower tensile strength when produced but displays a less rapid rate of strength deterioration under weathering (After 1000 h of exposure the tensile strength of K-HDPE drops 29.4%, whereas, for neat HDPE, it falls rapidly by 36%. Due to better stiffness, the Young’s modulus of the K-HDPE composite is much higher than that of neat HDPE. The fibres on the surface of the K-HDPE composite gradually start to whiten after 200 h of exposure and become completely white after 600 h of exposure. For neat HDPE, micro-cracking on the surface can be observed after 200 h of exposure and the stress-strain curve obtained from the tensile test indicates its increase in brittleness proportional to the amount of weathering time.

  4. Waterspout Forecasting Method Over the Eastern Adriatic Using a High-Resolution Numerical Weather Model

    Science.gov (United States)

    Renko, Tanja; Ivušić, Sarah; Telišman Prtenjak, Maja; Šoljan, Vinko; Horvat, Igor

    2018-03-01

    In this study, a synoptic and mesoscale analysis was performed and Szilagyi's waterspout forecasting method was tested on ten waterspout events in the period of 2013-2016. Data regarding waterspout occurrences were collected from weather stations, an online survey at the official website of the National Meteorological and Hydrological Service of Croatia and eyewitness reports from newspapers and the internet. Synoptic weather conditions were analyzed using surface pressure fields, 500 hPa level synoptic charts, SYNOP reports and atmospheric soundings. For all observed waterspout events, a synoptic type was determined using the 500 hPa geopotential height chart. The occurrence of lightning activity was determined from the LINET lightning database, and waterspouts were divided into thunderstorm-related and "fair weather" ones. Mesoscale characteristics (with a focus on thermodynamic instability indices) were determined using the high-resolution (500 m grid length) mesoscale numerical weather model and model results were compared with the available observations. Because thermodynamic instability indices are usually insufficient for forecasting waterspout activity, the performance of the Szilagyi Waterspout Index (SWI) was tested using vertical atmospheric profiles provided by the mesoscale numerical model. The SWI successfully forecasted all waterspout events, even the winter events. This indicates that the Szilagyi's waterspout prognostic method could be used as a valid prognostic tool for the eastern Adriatic.

  5. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    Science.gov (United States)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  6. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  7. Confronting Weather and Climate Models with Observational Data from Soil Moisture Networks over the United States

    Science.gov (United States)

    Dirmeyer, Paul A.; Wu, Jiexia; Norton, Holly E.; Dorigo, Wouter A.; Quiring, Steven M.; Ford, Trenton W.; Santanello, Joseph A., Jr.; Bosilovich, Michael G.; Ek, Michael B.; Koster, Randal Dean; hide

    2016-01-01

    Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses out perform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

  8. Synthetic weather generator SYNTOR: Implementing improvements in precipitation generation

    Science.gov (United States)

    Infrequent high precipitation events produce a disproportionally large amount of the annual surface runoff, soil erosion, nutrient movement, and watershed sediment yield. Numerical simulation of these watershed processes often lack sufficiently long weather data records to adequately capture the sto...

  9. Development of an Objective High Spatial Resolution Soil Moisture Index

    Science.gov (United States)

    Zavodsky, B.; Case, J.; White, K.; Bell, J. R.

    2015-12-01

    Drought detection, analysis, and mitigation has become a key challenge for a diverse set of decision makers, including but not limited to operational weather forecasters, climatologists, agricultural interests, and water resource management. One tool that is heavily used is the United States Drought Monitor (USDM), which is derived from a complex blend of objective data and subjective analysis on a state-by-state basis using a variety of modeled and observed precipitation, soil moisture, hydrologic, and vegetation and crop health data. The NASA Short-term Prediction Research and Transition (SPoRT) Center currently runs a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework. The LIS-Noah is run at 3-km resolution for local numerical weather prediction (NWP) and situational awareness applications at select NOAA/National Weather Service (NWS) forecast offices over the Continental U.S. (CONUS). To enhance the practicality of the LIS-Noah output for drought monitoring and assessing flood potential, a 30+-year soil moisture climatology has been developed in an attempt to place near real-time soil moisture values in historical context at county- and/or watershed-scale resolutions. This LIS-Noah soil moisture climatology and accompanying anomalies is intended to complement the current suite of operational products, such as the North American Land Data Assimilation System phase 2 (NLDAS-2), which are generated on a coarser-resolution grid that may not capture localized, yet important soil moisture features. Daily soil moisture histograms are used to identify the real-time soil moisture percentiles at each grid point according to the county or watershed in which the grid point resides. Spatial plots are then produced that map the percentiles as proxies to the different USDM categories. This presentation will highlight recent developments of this gridded, objective soil moisture index, comparison to subjective

  10. High resolution solar observations in the context of space weather prediction

    Science.gov (United States)

    Yang, Guo

    Space weather has a great impact on the Earth and human life. It is important to study and monitor active regions on the solar surface and ultimately to predict space weather based on the Sun's activity. In this study, a system that uses the full power of speckle masking imaging by parallel processing to obtain high-spatial resolution images of the solar surface in near real-time has been developed and built. The application of this system greatly improves the ability to monitor the evolution of solar active regions and to predict the adverse effects of space weather. The data obtained by this system have also been used to study fine structures on the solar surface and their effects on the upper solar atmosphere. A solar active region has been studied using high resolution data obtained by speckle masking imaging. Evolution of a pore in an active region presented. Formation of a rudimentary penumbra is studied. The effects of the change of the magnetic fields on the upper level atmosphere is discussed. Coronal Mass Ejections (CMEs) have a great impact on space weather. To study the relationship between CMEs and filament disappearance, a list of 431 filament and prominence disappearance events has been compiled. Comparison of this list with CME data obtained by satellite has shown that most filament disappearances seem to have no corresponding CME events. Even for the limb events, only thirty percent of filament disappearances are associated with CMEs. A CME event that was observed on March 20, 2000 has been studied in detail. This event did not show the three-parts structure of typical CMEs. The kinematical and morphological properties of this event were examined.

  11. Performance of the operational high-resolution numerical weather predictions of the Daphne project

    Science.gov (United States)

    Tegoulias, Ioannis; Pytharoulis, Ioannis; Karacostas, Theodore; Kartsios, Stergios; Kotsopoulos, Stelios; Bampzelis, Dimitrios

    2015-04-01

    In the framework of the DAPHNE project, the Department of Meteorology and Climatology (http://meteo.geo.auth.gr) of the Aristotle University of Thessaloniki, Greece, utilizes the nonhydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW) in order to produce high-resolution weather forecasts over Thessaly in central Greece. The aim of the DAPHNE project is to tackle the problem of drought in this area by means of Weather Modification. Cloud seeding assists the convective clouds to produce rain more efficiently or reduce hailstone size in favour of raindrops. The most favourable conditions for such a weather modification program in Thessaly occur in the period from March to October when convective clouds are triggered more frequently. Three model domains, using 2-way telescoping nesting, cover: i) Europe, the Mediterranean sea and northern Africa (D01), ii) Greece (D02) and iii) the wider region of Thessaly (D03; at selected periods) at horizontal grid-spacings of 15km, 5km and 1km, respectively. This research work intents to describe the atmospheric model setup and analyse its performance during a selected period of the operational phase of the project. The statistical evaluation of the high-resolution operational forecasts is performed using surface observations, gridded fields and radar data. Well established point verification methods combined with novel object based upon these methods, provide in depth analysis of the model skill. Spatial characteristics are adequately captured but a variable time lag between forecast and observation is noted. Acknowledgments: This research work has been co-financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness

  12. The benefit of high-resolution operational weather forecasts for flash flood warning

    Directory of Open Access Journals (Sweden)

    J. Younis

    2008-07-01

    Full Text Available In Mediterranean Europe, flash flooding is one of the most devastating hazards in terms of loss of human life and infrastructures. Over the last two decades, flash floods have caused damage costing a billion Euros in France alone. One of the problems of flash floods is that warning times are very short, leaving typically only a few hours for civil protection services to act. This study investigates if operationally available short-range numerical weather forecasts together with a rainfall-runoff model can be used for early indication of the occurrence of flash floods.

    One of the challenges in flash flood forecasting is that the watersheds are typically small, and good observational networks of both rainfall and discharge are rare. Therefore, hydrological models are difficult to calibrate and the simulated river discharges cannot always be compared with ground measurements. The lack of observations in most flash flood prone basins, therefore, necessitates the development of a method where the excess of the simulated discharge above a critical threshold can provide the forecaster with an indication of potential flood hazard in the area, with lead times of the order of weather forecasts.

    This study is focused on the Cévennes-Vivarais region in the Southeast of the Massif Central in France, a region known for devastating flash floods. This paper describes the main aspects of using numerical weather forecasting for flash flood forecasting, together with a threshold – exceedance. As a case study the severe flash flood event which took place on 8–9 September 2002 has been chosen.

    Short-range weather forecasts, from the Lokalmodell of the German national weather service, are used as input for the LISFLOOD model, a hybrid between a conceptual and physically based rainfall-runoff model. Results of the study indicate that high resolution operational weather forecasting combined with a rainfall-runoff model could be useful to

  13. Tailored high-resolution numerical weather forecasts for energy efficient predictive building control

    Science.gov (United States)

    Stauch, V. J.; Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Schubiger, F.; Steiner, P.

    2010-09-01

    The high proportion of the total primary energy consumption by buildings has increased the public interest in the optimisation of buildings' operation and is also driving the development of novel control approaches for the indoor climate. In this context, the use of weather forecasts presents an interesting and - thanks to advances in information and predictive control technologies and the continuous improvement of numerical weather prediction (NWP) models - an increasingly attractive option for improved building control. Within the research project OptiControl (www.opticontrol.ethz.ch) predictive control strategies for a wide range of buildings, heating, ventilation and air conditioning (HVAC) systems, and representative locations in Europe are being investigated with the aid of newly developed modelling and simulation tools. Grid point predictions for radiation, temperature and humidity of the high-resolution limited area NWP model COSMO-7 (see www.cosmo-model.org) and local measurements are used as disturbances and inputs into the building system. The control task considered consists in minimizing energy consumption whilst maintaining occupant comfort. In this presentation, we use the simulation-based OptiControl methodology to investigate the impact of COSMO-7 forecasts on the performance of predictive building control and the resulting energy savings. For this, we have selected building cases that were shown to benefit from a prediction horizon of up to 3 days and therefore, are particularly suitable for the use of numerical weather forecasts. We show that the controller performance is sensitive to the quality of the weather predictions, most importantly of the incident radiation on differently oriented façades. However, radiation is characterised by a high temporal and spatial variability in part caused by small scale and fast changing cloud formation and dissolution processes being only partially represented in the COSMO-7 grid point predictions. On the

  14. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Science.gov (United States)

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  15. Soil 4 Youth: Charting New Territory in Canadian High School Soil Science Education

    Science.gov (United States)

    Krzic, Maja; Wilson, Julie; Basiliko, Nathan; Bedard-Haughn, Angela; Humphreys, Elyn; Dyanatkar, Saeed; Hazlett, Paul; Strivelli, Rachel; Crowley, Chris; Dampier, Lesley

    2014-01-01

    As global issues continue to place increasing demands on soil resources, the need to provide soil science education to the next generation of soil scientists and the general public is becoming more imminent. In many countries around the world, including Canada, soil is either not included in the high school curriculum or it is not covered in…

  16. Molybdenum, vanadium, and uranium weathering in small mountainous rivers and rivers draining high-standing islands

    Science.gov (United States)

    Gardner, Christopher B.; Carey, Anne E.; Lyons, W. Berry; Goldsmith, Steven T.; McAdams, Brandon C.; Trierweiler, Annette M.

    2017-12-01

    Rivers draining high standing islands (HSIs) and small mountainous rivers (SMRs) are known to have extremely high sediment fluxes, and can also have high chemical weathering yields, which makes them potentially important contributors to the global riverine elemental flux to the ocean. This work reports on the riverine concentrations, ocean flux, and weathering yields of Molybdenum (Mo), Vanadium (V), and Uranium (U) in a large number of small but geochemically important rivers using 338 river samples from ten lithologically-diverse regions. These redox-sensitive elements are used extensively to infer paleo-redox conditions in the ocean, and Mo and V are also important rock-derived micronutrients used by microorganisms in nitrogen fixation. Unlike in large river systems, in which dissolved Mo has been attributed predominately to pyrite dissolution, Mo concentrations in these rivers did not correlate with sulfate concentrations. V was found to correlate strongly with Si in terrains dominated by silicate rocks, but this trend was not observed in primarily sedimentary regions. Many rivers exhibited much higher V/Si ratios than larger rivers, and rivers draining young Quaternary volcanic rocks in Nicaragua had much higher dissolved V concentrations (mean = 1306 nM) than previously-studied rivers. U concentrations were generally well below the global average with the exception of rivers draining primarily sedimentary lithologies containing carbonates and shales. Fluxes of U and Mo from igneous terrains of intermediate composition are lower than the global average, while fluxes of V from these regions are higher, and up to two orders of magnitude higher in the Nicaragua rivers. Weathering yields of Mo and V in most regions are above the global mean, despite lower than average concentrations measured in some of those systems, indicating that the chemical weathering of these elements are higher in these SMR watersheds than larger drainages. In regions of active boundaries

  17. Properties Evaluation of High Density Polyethylene Composite Filled with Bagasse after Accelerated Weathered

    Directory of Open Access Journals (Sweden)

    Peyvand Darabi

    2013-06-01

    Full Text Available Wood plastic composites (WPCs are produced from a mixture of wood (in different sizes and resin (thermoset or thermoplastic. This product has many applications as structural and non-structural materials and since its emerge in market its use received an increasing trend. Adding wood flour to polymer not only improves its mechanical properties compared to net polymer, but also leads to products with moldability characteristics. With increasing demand of WPCs and reduction in forest harvest according to new protecting law of forestry, and lack of raw materials for producers, other lignocelluloses materials replace wood flour. Agricultural by-products such as hemp, coir, rice husk and bagasse (residual from sugar cane extraction are the examples that can be used in WPCs. As the outdoor application of Wood Plastic Composites (WPCs becomes more widespread, the resistance of its products against weathering, particularly ultraviolet (UV light becomes more concerned. When WPCs are exposed to outdoor, ultraviolet (UV light, rain, snow and atmospheric pollution, they will be degraded which is marked by color fade and loss in mechanical properties. Nowadays many manufactures of WPCs use bagasse as a raw material. Their production in different color and shapes are used as arbors and pergolas and also as decorative applications for outdoor uses. However, so far there has been no research done on the effects of weathering on composites made from bagasse. In present study, composites from bagasse and high density polyethylene, with and without pigments in master batch, have been made through extrusion. Then samples were exposed to accelerated weathering for 1440h. After this period of time samples were removed and their chemical, mechanical and surface qualities were studied. The results have shown that using bagasse as filler can relatively reduce the discoloration of weathered samples. Moreover, adding pigments to WPCs can increase colorstability, while it

  18. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...... were also assessed. Collembolans were found in highest densities in dry heath soil, about 130,000 individuals m-2, more than twice as high as in mesic heath soils. Enchytraeids, diptera larvae and nematodes were also more abundant in the dry heath soil than in mesic heath soils, whereas protozoan...

  19. Laboratory investigation on streaming potential for sandy soil and weathered rock; Shitsunai jikken ni yoru sashitsu jiban oyobi fuka ganban no ryudo den`i no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H; Shima, H [OYO Corp., Tokyo (Japan)

    1996-10-01

    Laboratory experiment on sandy soil and weathered rock was conducted to clarify the generation mechanism of streaming potential due to underground fluid. Streaming potential is caused by underground fluid flow, namely by fluid flow in porous substances as electrokinetic phenomenon. In experiment, Inagi sand, Toyoura sand and strongly decomposed weathered granite were used. In Inagi and Toyoura sands, positive streaming potential was observed downstream in fluid flow. Streaming potential could be nearly determined as primary function of fluid velocity, and generated streaming potential increased with fluid resistivity. Streaming potential was higher in Inagi sand than Toyoura sand, probably depending on hydraulic radius, size of bleeding channel, and conductivity of sand surface. In weathered granite, negative streaming potential was measured. In the case of positive {zeta} potential, negative streaming potential is theoretically generated downstream in fluid flow. This experiment suggested possible generation of negative streaming potential in some kinds of ground. 2 refs., 6 figs., 1 tab.

  20. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    International Nuclear Information System (INIS)

    Klaminder, J.; Grip, H.; Moerth, C.-M.; Laudon, H.

    2011-01-01

    Research highlights: → Organic compounds is mineralized during later transport in deep groundwater aquifers. → Carbonic acid generated by this process stimulates dissolution of silicate minerals. → Protons derived from pyrite oxidation also affects weathering in deep groundwater. → The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H 2 CO 3 , produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and δ 18 O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H 2 CO 3 generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO 4 2- in the groundwater during lateral transport and a δ 34 S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km 2 ) as evident by δ 18 O signatures and base cation concentrations that overlap with that of the groundwater.

  1. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klaminder, J., E-mail: jonatan.klaminder@emg.umu.se [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden)] [Department of Ecology and Environmental Science, Umea University, SE-901 87 (Sweden); Grip, H. [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden); Moerth, C.-M. [Department of Geological Sciences, Stockholm University, 106 91 Stockholm (Sweden); Laudon, H. [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden)

    2011-03-15

    Research highlights: {yields} Organic compounds is mineralized during later transport in deep groundwater aquifers. {yields} Carbonic acid generated by this process stimulates dissolution of silicate minerals. {yields} Protons derived from pyrite oxidation also affects weathering in deep groundwater. {yields} The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H{sub 2}CO{sub 3}, produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and {delta}{sup 18}O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H{sub 2}CO{sub 3} generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO{sub 4}{sup 2-} in the groundwater during lateral transport and a {delta}{sup 34}S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km{sup 2}) as evident by {delta}{sup 18}O signatures and base cation concentrations that overlap with that of the groundwater.

  2. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California I: Interpreting rates and controls based on soil concentration-depth profiles

    Science.gov (United States)

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, David A.; Anderson, S.P.

    2008-01-01

    The spatial and temporal changes in element and mineral concentrations in regolith profiles in a chronosequence developed on marine terraces along coastal California are interpreted in terms of chemical weathering rates and processes. In regoliths up to 15 m deep and 226 kyrs old, quartz-normalized mass transfer coefficients indicate non-stoichiometric preferential release of Sr > Ca > Na from plagioclase along with lesser amounts of K, Rb and Ba derived from K-feldspar. Smectite weathering results in the loss of Mg and concurrent incorporation of Al and Fe into secondary kaolinite and Fe-oxides in shallow argillic horizons. Elemental losses from weathering of the Santa Cruz terraces fall within the range of those for other marine terraces along the Pacific Coast of North America. Residual amounts of plagioclase and K-feldspar decrease with terrace depth and increasing age. The gradient of the weathering profile bs is defined by the ratio of the weathering rate, R to the velocity at which the profile penetrates into the protolith. A spreadsheet calculator further refines profile geometries, demonstrating that the non-linear regions at low residual feldspar concentrations at shallow depth are dominated by exponential changes in mineral surface-to-volume ratios and at high residual feldspar concentrations, at greater depth, by the approach to thermodynamic saturation. These parameters are of secondary importance to the fluid flux qh, which in thermodynamically saturated pore water, controls the weathering velocity and mineral losses from the profiles. Long-term fluid fluxes required to reproduce the feldspar weathering profiles are in agreement with contemporary values based on solute Cl balances (qh = 0.025-0.17 m yr-1). During saturation-controlled and solute-limited weathering, the greater loss of plagioclase relative to K-feldspar is dependent on the large difference in their respective solubilities instead of the small difference between their respective

  3. The effect of natural weathering on the mechanical, morphological and thermal properties of high impact polystyrene (HIPS)

    International Nuclear Information System (INIS)

    Sahin, Tuelin; Sinmazcelik, Tamer; Sahin, Senol

    2007-01-01

    The effect of natural weathering on the mechanical, morphological and thermal properties on the high impact polystyrene (HIPS) and cold drawn HIPS are investigated. After natural weathering period of 8760 h, under known meteorological parameters, the changes in mechanical properties are investigated by using tensile, instrumented impact and hardness tests. Thermo-mechanical properties are characterized by using thermomechanical analysis (TMA) and melt flow index (MFI). Fractured surfaces of the materials are investigated by scanning electron microscope (SEM). Natural weathering effects on fracture mechanisms are discussed by means of fractographical analysis. Remarkable morphological changes were observed especially at the surface of the material. This results in dramatic loss in mechanical properties

  4. Detecting Anthropogenic Disturbance on Weathering and Erosion Processes

    Science.gov (United States)

    Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.

    2014-12-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.

  5. Drying shrinkage problems in high PI subgrade soils.

    Science.gov (United States)

    2014-01-01

    The main objective of this study was to investigate the longitudinal cracking in pavements due to drying : shrinkage of high PI subgrade soils. The study involved laboartory soil testing and modeling. The : shrinkage cracks usually occur within the v...

  6. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  7. Space Weather effects on airline communications in the high latitude regions

    Science.gov (United States)

    Honary, Farideh

    2014-05-01

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres at all times. At high latitudes, and especially on polar routing, VHF ground infrastructure does not exist and the aircraft have to rely on HF radio for communications. HF relies on reflections from the ionosphere to achieve long distance communications. Unfortunately the high latitude ionosphere is affected by space weather events. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. This presentation describes a new research programme at the University of Lancaster in collaboration with the University of Leicester, Solar Metrics Ltd and Natural Resources Canada for the development of a nowcasting and forecasting HF communications tool designed for the particular needs of civilian airlines. This project funded by EPSRC will access a wide variety of solar and interplanetary measurements to derive a complete picture of space weather disturbances affecting radio absorption and reflection

  8. Space Weather Impacts on Spacecraft Operations: Identifying and Establishing High-Priority Operational Services

    Science.gov (United States)

    Lawrence, G.; Reid, S.; Tranquille, C.; Evans, H.

    2013-12-01

    Space Weather is a multi-disciplinary and cross-domain system defined as, 'The physical and phenomenological state of natural space environments. The associated discipline aims, through observation, monitoring, analysis and modelling, at understanding and predicting the state of the Sun, the interplanetary and planetary environments, and the solar and non-solar driven perturbations that affect them, and also at forecasting and nowcasting the potential impacts on biological and technological systems'. National and Agency-level efforts to provide services addressing the myriad problems, such as ESA's SSA programme are therefore typically complex and ambitious undertakings to introduce a comprehensive suite of services aimed at a large number and broad range of end users. We focus on some of the particular threats and risks that Space Weather events pose to the Spacecraft Operations community, and the resulting implications in terms of User Requirements. We describe some of the highest-priority service elements identified as being needed by the Operations community, and outline some service components that are presently available, or under development. The particular threats and risks often vary according to orbit, so the particular User Needs for Operators at LEO, MEO and GEO are elaborated. The inter-relationship between these needed service elements and existing service components within the broader Space Weather domain is explored. Some high-priority service elements and potential correlation with Space Weather drivers include: solar array degradation and energetic proton storms; single event upsets at GEO and solar proton events and galactic cosmic rays; surface charging and deep dielectric charging at MEO and radiation belt dynamics; SEUs at LEO and the South Atlantic Anomaly and its variability. We examine the current capability to provide operational services addressing such threats and identify some advances that the Operations community can expect to benefit

  9. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...

  10. Effect of Simulated Weathering and Aging of TNT in Amended Sandy Loam Soil on Toxicity to the Enchytraeid Worm, Enchytreaeus Crypticus

    Science.gov (United States)

    2006-05-01

    high bioavailability of organic compounds. However, amended SSL soil was analyzed for presence of metabolic transformation products from nitroaromatic...Phillips, C.; Checkai, R. 1999. Comparison of malathion toxicity using enchytraeid reproduction test and earthworm toxicity test in different soil ...OF TNT IN AMENDED SANDY LOAM SOIL ON TOXICITY TO THE ENCHYTRAEID WORM, ENCHYTRAEUS CRYPTICUS Roman G. Kuperman Ronald T. Checkai Michael Simini

  11. Creep behavior of soil nail walls in high plasticity index (PI) soils : technical report.

    Science.gov (United States)

    2017-04-01

    An aspect of particular concern in the Geotechnical Engineering Circular No. 7: Soil Nail Walls (i.e., the soil : nail wall manual and construction guidelines) is the creep behavior of soil nail systems in high-plasticity : clays. This research proje...

  12. High resolution weather data for urban hydrological modelling and impact assessment, ICT requirements and future challenges

    Science.gov (United States)

    ten Veldhuis, Marie-claire; van Riemsdijk, Birna

    2013-04-01

    Hydrological analysis of urban catchments requires high resolution rainfall and catchment information because of the small size of these catchments, high spatial variability of the urban fabric, fast runoff processes and related short response times. Rainfall information available from traditional radar and rain gauge networks does no not meet the relevant scales of urban hydrology. A new type of weather radars, based on X-band frequency and equipped with Doppler and dual polarimetry capabilities, promises to provide more accurate rainfall estimates at the spatial and temporal scales that are required for urban hydrological analysis. Recently, the RAINGAIN project was started to analyse the applicability of this new type of radars in the context of urban hydrological modelling. In this project, meteorologists and hydrologists work closely together in several stages of urban hydrological analysis: from the acquisition procedure of novel and high-end radar products to data acquisition and processing, rainfall data retrieval, hydrological event analysis and forecasting. The project comprises of four pilot locations with various characteristics of weather radar equipment, ground stations, urban hydrological systems, modelling approaches and requirements. Access to data processing and modelling software is handled in different ways in the pilots, depending on ownership and user context. Sharing of data and software among pilots and with the outside world is an ongoing topic of discussion. The availability of high resolution weather data augments requirements with respect to the resolution of hydrological models and input data. This has led to the development of fully distributed hydrological models, the implementation of which remains limited by the unavailability of hydrological input data. On the other hand, if models are to be used in flood forecasting, hydrological models need to be computationally efficient to enable fast responses to extreme event conditions. This

  13. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    International Nuclear Information System (INIS)

    Hansen, Brage B; Isaksen, Ketil; Benestad, Rasmus E; Kohler, Jack; Pedersen, Åshild Ø; Loe, Leif E; Coulson, Stephen J; Larsen, Jan Otto; Varpe, Øystein

    2014-01-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January–February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (∼5–20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties. (letter)

  14. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  15. Western US high June 2015 temperatures and their relation to global warming and soil moisture

    Science.gov (United States)

    Philip, Sjoukje Y.; Kew, Sarah F.; Hauser, Mathias; Guillod, Benoit P.; Teuling, Adriaan J.; Whan, Kirien; Uhe, Peter; Oldenborgh, Geert Jan van

    2018-04-01

    The Western US states Washington (WA), Oregon (OR) and California (CA) experienced extremely high temperatures in June 2015. The temperature anomalies were so extreme that they cannot be explained with global warming alone. We investigate the hypothesis that soil moisture played an important role as well. We use a land surface model and a large ensemble from the weather@home modelling effort to investigate the coupling between soil moisture and temperature in a warming world. Both models show that May was anomalously dry, satisfying a prerequisite for the extreme heat wave, and they indicate that WA and OR are in a wet-to-dry transitional soil moisture regime. We use two different land surface-atmosphere coupling metrics to show that there was strong coupling between temperature, latent heat flux and the effect of soil moisture deficits on the energy balance in June 2015 in WA and OR. June temperature anomalies conditioned on wet/dry conditions show that both the mean and extreme temperatures become hotter for dry soils, especially in WA and OR. Fitting a Gaussian model to temperatures using soil moisture as a covariate shows that the June 2015 temperature values fit well in the extrapolated empirical temperature/drought lines. The high temperature anomalies in WA and OR are thus to be expected, given the dry soil moisture conditions and that those regions are in the transition from a wet to a dry regime. CA is already in the dry regime and therefore the necessity of taking soil moisture into account is of lower importance.

  16. High resolution reconstruction of monthly precipitation of Iberian Peninsula using circulation weather types

    Science.gov (United States)

    Cortesi, N.; Trigo, R.; Gonzalez-Hidalgo, J. C.; Ramos, A. M.

    2012-06-01

    Precipitation over the Iberian Peninsula (IP) is highly variable and shows large spatial contrasts between wet mountainous regions, to the north, and dry regions in the inland plains and southern areas. In this work, a high-density monthly precipitation dataset for the IP was coupled with a set of 26 atmospheric circulation weather types (Trigo and DaCamara, 2000) to reconstruct Iberian monthly precipitation from October to May with a very high resolution of 3030 precipitation series (overall mean density one station each 200 km2). A stepwise linear regression model with forward selection was used to develop monthly reconstructed precipitation series calibrated and validated over 1948-2003 period. Validation was conducted by means of a leave-one-out cross-validation over the calibration period. The results show a good model performance for selected months, with a mean coefficient of variation (CV) around 0.6 for validation period, being particularly robust over the western and central sectors of IP, while the predicted values in the Mediterranean and northern coastal areas are less acute. We show for three long stations (Lisbon, Madrid and Valencia) the comparison between model and original data as an example to how these models can be used in order to obtain monthly precipitation fields since the 1850s over most of IP for this very high density network.

  17. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils

    International Nuclear Information System (INIS)

    Conte, Pellegrino; Agretto, Anna; Spaccini, Riccardo; Piccolo, Alessandro

    2005-01-01

    The remediation of the highly contaminated site around the former chemical plant of ACNA (near Savona) in Northern Italy is a top priority in Italy. The aim of the present work was to contribute in finding innovative and environmental-friendly technology to remediate soils from the ACNA contaminated site. Two soils sampled from the ACNA site (A and B), differing in texture and amount and type of organic contaminants, were subjected to soil washings by comparing the removal efficiency of water, two synthetic surfactants, sodium dodecylsulphate (SDS) and Triton X-100 (TX100), and a solution of a natural surfactant, a humic acid (HA) at its critical micelle concentration (CMC). The extraction of pollutants by sonication and soxhlet was conducted before and after the soil washings. Soil A was richer in polycyclic aromatic hydrocarbons, whereas soil B had a larger content of thiophenes. Sonication resulted more analytically efficient in the fine-textured soil B. The coarse-textured soil A was extracted with a general equal efficiency also by soxhlet. Clean-up by water was unable to exhaustively remove contaminants from the two soils, whereas all the organic surfactants revealed very similar efficiencies (up to 90%) in the removal of the contaminants from the soils. Hence, the use of solutions of natural HAs appears as a better choice for soil washings of highly polluted soils due to their additional capacity to promote microbial activity, in contrast to synthetic surfactants, for a further natural attenuation in washed soils. - Solutions of natural humic acids appear to be a better choice for washing highly polluted soils

  18. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Nebula Cloud Computing Environment

    Science.gov (United States)

    Molthan, Andrew L.; Case, Jonathan L.; Venner, Jason; Moreno-Madrinan, Max. J.; Delgado, Francisco

    2012-01-01

    Over the past two years, scientists in the Earth Science Office at NASA fs Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real ]time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA fs Short ]term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface ] and satellite ]based observations.

  19. In-soil radon anomalies as precursors of earthquakes: a case study in the SE slope of Mt. Etna in a period of quite stable weather conditions

    International Nuclear Information System (INIS)

    Vizzini, Fabio; Brai, Maria

    2012-01-01

    In-soil radon concentrations as well as climatic parameters (temperature, atmospheric pressure and relative humidity) were collected in St. Venerina (Eastern Sicily – Italy) from March 19th to May 22nd 2009, close to an active fault system called Timpe Fault System (TFS), which is strictly linked to the geodynamics of Mt. Etna. During the monitoring period no drastic climatic variations were observed and, on the other hand, important seismic events were recorded close to the monitoring site. A seismic swarm composed of 5 earthquakes was observed in the Milo area on March 25th (M max = 2.7) at just 5.1 km from the site, and on May 13th an earthquake of 3.6 magnitude was recorded in the territory of St. Venerina, at just 3.2 km from the site; the earthquake was felt by the population and reported by all local and regional media. The in-soil radon concentrations have shown anomalous increases possibly linked to the earthquakes recorded, but certainly not attributable to local meteorology. To verify this assumption the average radon concentration and the standard deviation (σ) have been calculated and the regions of ±1.5σ and ±2σ deviation from the average concentration have been investigated. Moreover, to further minimise the contribution of the meteorological parameters on the in-soil radon fluctuations, a multiple regressions method has been used. To distinguish those earthquakes which could generate in-soil radon anomalies as precursors, the Dobrovolsky radius has been applied. The results obtained suggests that a clear correlation between earthquakes and in-soil radon increases exist, and that the detection of the in-soil radon anomalies becomes surely simpler in particular favourable conditions: weather stability, earthquakes within the Dobrovolsky radius and close to the monitoring area. Moreover, the absence of large variations of the climatic parameters, which could generate incoherent noise components to the radon signal, has made the radon

  20. Nurturing Soft Skills Among High School Students Through Space Weather Competition

    Science.gov (United States)

    Abdullah, Mardina; Abd Majid, Rosadah; Bais, Badariah; Syaidah Bahri, Nor

    2016-07-01

    Soft skills fulfill an important role in shaping an individual's personality. It is of high importance for every student to acquire adequate skills beyond academic or technical knowledge. The objective of this project was to foster students' enthusiasm in space science and develop their soft skills such as; interpersonal communication, critical thinking and problem-solving, team work, lifelong learning and information management, and leadership skills. This is a qualitative study and the data was collected via group interviews. Soft skills development among high school students were nurtured through space weather competition in solar flare detection. High school students (16 to 17 years old) were guided by mentors consisting of science teachers to carry out this project based on a module developed by UKM's researchers. Students had to acquire knowledge on antenna development and construct the antenna with recyclable materials. They had to capture graphs and identify peaks that indicate solar flare. Their findings were compared to satellite data for verification. They also presented their work and their findings to the panel of judges. After observation, it can be seen that students' soft skills and interest in learning space science had become more positive after being involved in this project.

  1. Employing Tropospheric Numerical Weather Prediction Model for High-Precision GNSS Positioning

    Science.gov (United States)

    Alves, Daniele; Gouveia, Tayna; Abreu, Pedro; Magário, Jackes

    2014-05-01

    In the past few years is increasing the necessity of realizing high accuracy positioning. In this sense, the spatial technologies have being widely used. The GNSS (Global Navigation Satellite System) has revolutionized the geodetic positioning activities. Among the existent methods one can emphasize the Precise Point Positioning (PPP) and network-based positioning. But, to get high accuracy employing these methods, mainly in real time, is indispensable to realize the atmospheric modeling (ionosphere and troposphere) accordingly. Related to troposphere, there are the empirical models (for example Saastamoinen and Hopfield). But when highly accuracy results (error of few centimeters) are desired, maybe these models are not appropriated to the Brazilian reality. In order to minimize this limitation arises the NWP (Numerical Weather Prediction) models. In Brazil the CPTEC/INPE (Center for Weather Prediction and Climate Studies / Brazilian Institute for Spatial Researches) provides a regional NWP model, currently used to produce Zenithal Tropospheric Delay (ZTD) predictions (http://satelite.cptec.inpe.br/zenital/). The actual version, called eta15km model, has a spatial resolution of 15 km and temporal resolution of 3 hours. In this paper the main goal is to accomplish experiments and analysis concerning the use of troposphere NWP model (eta15km model) in PPP and network-based positioning. Concerning PPP it was used data from dozens of stations over the Brazilian territory, including Amazon forest. The results obtained with NWP model were compared with Hopfield one. NWP model presented the best results in all experiments. Related to network-based positioning it was used data from GNSS/SP Network in São Paulo State, Brazil. This network presents the best configuration in the country to realize this kind of positioning. Actually the network is composed by twenty stations (http://www.fct.unesp.br/#!/pesquisa/grupos-de-estudo-e-pesquisa/gege//gnss-sp-network2789/). The

  2. Weather Avoidance Guidelines for NASA Global Hawk High-Altitude UAS

    Science.gov (United States)

    Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris; Monette, Sarah; Heymsfield, Gerry; Braun, Scott; Newman, Paul; Black, Pete; Black, Michael; Dunion, Jason

    2014-01-01

    NASA operates two Global Hawk unmanned aircraft systems for Earth Science research projects. In particular, they are used in the Hurricane and Severe Storm Sentinel (HS3) project during 2012, 2013, and 2014 to take measurements from the environment around tropical cyclones, and from directly above tropical cyclones. There is concern that strict adherence to the weather avoidance rules used in 2012 may sacrifice the ability to observe important science targets. We have proposed modifications to these weather avoidance rules that we believe will improve the ability to observe science targets without compromising aircraft safety. The previous guidelines, used in 2012, specified: Do not approach thunderstorms within 25 nm during flight at FL500 or below. When flying above FL500: Do not approach reported lightning within 25NM in areas where cloud tops are reported at FL500 or higher. Aircraft should maintain at least 10000 ft vertical separation from reported lightning if cloud tops are below FL500. No over-flight of cumulus tops higher than FL500. No flight into forecast or reported icing conditions. No flight into forecast or reported moderate or severe turbulence Based on past experience with high-altitude flights over tropical cyclones, we have recommended changing this guidance to: Do not approach thunderstorms within 25 nm during flight at FL500 or below. Aircraft should maintain at least 5000 ft vertical separation from significant convective cloud tops except: a) When cloud tops above FL500: In the event of reported significant lightning activity or indicators of significant overshooting tops, do not approach within 10-25 nm, depending on pilot discretion and advice from Mission Scientist. b) When cloud tops are below FL500, maintain 10000 ft separation from reported significant lightning or indicators of significant overshooting tops. No flight into forecasted or reported icing conditions. No flight into forecasted or reported moderate or severe turbulence The

  3. Global distribution of urban parameters derived from high-resolution global datasets for weather modelling

    Science.gov (United States)

    Kawano, N.; Varquez, A. C. G.; Dong, Y.; Kanda, M.

    2016-12-01

    Numerical model such as Weather Research and Forecasting model coupled with single-layer Urban Canopy Model (WRF-UCM) is one of the powerful tools to investigate urban heat island. Urban parameters such as average building height (Have), plain area index (λp) and frontal area index (λf), are necessary inputs for the model. In general, these parameters are uniformly assumed in WRF-UCM but this leads to unrealistic urban representation. Distributed urban parameters can also be incorporated into WRF-UCM to consider a detail urban effect. The problem is that distributed building information is not readily available for most megacities especially in developing countries. Furthermore, acquiring real building parameters often require huge amount of time and money. In this study, we investigated the potential of using globally available satellite-captured datasets for the estimation of the parameters, Have, λp, and λf. Global datasets comprised of high spatial resolution population dataset (LandScan by Oak Ridge National Laboratory), nighttime lights (NOAA), and vegetation fraction (NASA). True samples of Have, λp, and λf were acquired from actual building footprints from satellite images and 3D building database of Tokyo, New York, Paris, Melbourne, Istanbul, Jakarta and so on. Regression equations were then derived from the block-averaging of spatial pairs of real parameters and global datasets. Results show that two regression curves to estimate Have and λf from the combination of population and nightlight are necessary depending on the city's level of development. An index which can be used to decide which equation to use for a city is the Gross Domestic Product (GDP). On the other hand, λphas less dependence on GDP but indicated a negative relationship to vegetation fraction. Finally, a simplified but precise approximation of urban parameters through readily-available, high-resolution global datasets and our derived regressions can be utilized to estimate a

  4. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    Science.gov (United States)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  5. A Numerical Method to Generate High Temporal Resolution Precipitation Time Series by Combining Weather Radar Measurements with a Nowcast Model

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    The topic of this paper is temporal interpolation of precipitation observed by weather radars. Precipitation measurements with high spatial and temporal resolution are, in general, desired for urban drainage applications. An advection-based interpolation method is developed which uses methods...

  6. Study of the weathering of high melt strength polypropylene (HMS-PP)

    Energy Technology Data Exchange (ETDEWEB)

    Oliani, Washington L.; Parra, Duclerc F.; Otaguro, Harumi; Lima, Luis F.C.P.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: dfparra@ipen.br

    2007-07-01

    One of the reasons for the good acceptance of the commercial PP is the fact that market requires products with features of 'engineering plastics' with prices in the range of commodities. High melt strength polypropylene (HMSPP) grades are produced by radiation process and have improved rheology for melt blow processes. The melt strength (MS) properties of a polymer increase with molecular weight and with long chain branching due to the increase in the entanglement level. The main scope of this study was to evaluate the stability of HMS-PP prepared by gamma radiation with doses of 12.5, 20 kGy in comparison with virgin PP. Many variables influence the rate of degradation of polymers by photo-oxidation. The irradiance and permeability to oxygen are the most important factors but other factors such as temperature and moisture have also influenced the degradation rates. Polypropylenes are sensitive to oxidation due to the presence of the tertiary carbon atom. Therefore, effective stabilization against oxidation (thermo and photo oxidation) is required. The samples submitted to the natural aging for a period of six months were characterized by: tensile test, thermogravimetry analysis (TGA), optical microscopy, scanning electronic microscopy (SEM) and infrared spectroscopy (FTIR). SEM analysis showed particular aspects of cracks on the surface. The loss of tensile strength is associated to the presence of fractures. The results showed that pronounced oxidation followed by chain scission occur at the initial periods of weathering exposition of the HMS-PP. (author)

  7. Study of the weathering of high melt strength polypropylene (HMS-PP)

    International Nuclear Information System (INIS)

    Oliani, Washington L.; Parra, Duclerc F.; Otaguro, Harumi; Lima, Luis F.C.P.; Lugao, Ademar B.

    2007-01-01

    One of the reasons for the good acceptance of the commercial PP is the fact that market requires products with features of 'engineering plastics' with prices in the range of commodities. High melt strength polypropylene (HMSPP) grades are produced by radiation process and have improved rheology for melt blow processes. The melt strength (MS) properties of a polymer increase with molecular weight and with long chain branching due to the increase in the entanglement level. The main scope of this study was to evaluate the stability of HMS-PP prepared by gamma radiation with doses of 12.5, 20 kGy in comparison with virgin PP. Many variables influence the rate of degradation of polymers by photo-oxidation. The irradiance and permeability to oxygen are the most important factors but other factors such as temperature and moisture have also influenced the degradation rates. Polypropylenes are sensitive to oxidation due to the presence of the tertiary carbon atom. Therefore, effective stabilization against oxidation (thermo and photo oxidation) is required. The samples submitted to the natural aging for a period of six months were characterized by: tensile test, thermogravimetry analysis (TGA), optical microscopy, scanning electronic microscopy (SEM) and infrared spectroscopy (FTIR). SEM analysis showed particular aspects of cracks on the surface. The loss of tensile strength is associated to the presence of fractures. The results showed that pronounced oxidation followed by chain scission occur at the initial periods of weathering exposition of the HMS-PP. (author)

  8. Pleasure Boatyard Soils are Often Highly Contaminated

    Science.gov (United States)

    Eklund, Britta; Eklund, David

    2014-05-01

    The contamination in pleasure boatyards has been investigated. Measured concentrations of copper, zinc, lead, mercury, cadmium, tributyltin (TBT), the 16 most common polycyclic aromatic hydrocarbons (∑16 PAHs), and the seven most common polychlorinated biphenyls (∑7 PCBs) from investigations at 34 boatyards along the Swedish coast have been compiled. The maximum concentrations were 7,700 for Cu, 10,200, for Zn, 40,100 for Pb, 188 for Hg, 18 for Cd, 107 for TBT, 630 for carcinogenic PAHs, 1,480 for ∑16 PAHs, and 3.8 mg/kg DW for ∑7 PCB; all 10-2,000 higher than the Swedish environmental qualitative guidelines. In addition, the mean of the median values found at the 34 places shows that the lower guidance value for sensitive use of land was exceeded for the ∑7 PCBs, carcinogenic PAHs, TBT, Pb, Hg, and Cu by a factor of 380, 6.8, 3.6, 2.9, 2.2 and 1.7, respectively. The even higher guideline value for industrial use was exceeded for the ∑7 PCBs and TBT by a factor of 15 and 1.8, respectively. TBT, PAHs, Pb, Cd, and Hg are prioritized substances in the European Water Framework Directive and should be phased out as quickly as possible. Because of the risk of leakage from boatyards, precautions should be taken. The high concentrations measured are considered to be dangerous for the environment and human health and highlight the urgent need for developing and enforcing pleasure boat maintenance guidelines to minimize further soil and nearby water contamination.

  9. VIS/NIR Spectroscopy to determine the spatial variation of the weathering degree in Paleogene clay soil - London Clay Formation

    Science.gov (United States)

    Nasser, Mohammed; Gibson, Andy, ,, Dr; Koor, Nick, ,, Dr; Gale, Professor Andy; Huggett, Jenny, ,, Dr; Branch, Steve

    2017-04-01

    The London Clay Formation (LCF) which underlies much of South-East England is hugely important as a construction medium. However, its geotechnical performance (shear strength, compressive strength, shrink-swell behaviour, etc. ) is greatly affected by its degree of weathering. Despite this importance, little attention has been focussed on a robust method to define and measure its degree of weathering. This is perhaps a result of a well-known colour change from bluish-grey to brown that accompanies 'weathering' and considered to be the result of oxidisation (Chandler and Apted 1988). Through wide experience, this definition is normally effective, but it is perhaps subjective and reliant on the experience of the investigator and the ability to observe samples or exposures. More objective investigation, typically using SEM is not normally economically feasible or expedient for construction works. We propose a simple, robust method to characterise the degree of weathering in the LCF using reflective or Visible-Near-InfraRed-Spectroscopy (VNIRS). 24 samples were extracted from 2 boreholes drilled in the Hampstead area of London to depths of 12 m within the uppermost Claygate Member of the LCF. VNIRS spectra (350-2500 nm) were measured from all samples and compared with XRD, XRF, SEM and PSD results on the same samples. Results show increased magnitude of absorption features related to clay mineralogy around 1400, 1900 and 2200 nm to a depth of 5 m beneath ground level. Beneath this depth, the absorption features show little variation. SEM analyses show corresponding changes in the degradation of pyrite crystals and individual clay (illite/smectite). These preliminary results show that there is a good potential for VNIRS spectroscopy to determine the variation of weathering in the LCF.

  10. Stabilization of Highway Expansive Soils with High Loss on Ignition ...

    African Journals Online (AJOL)

    This study was carried out to evaluate the effect of high loss on ignition content cement kiln dust on the stabilization of highway expansive soils. Laboratory tests were performed on the natural and stabilized soil samples in accordance with BS 1377 (1990) and BS 1924 (1990), respectively. The preliminary investigation ...

  11. Space weather effects on airline communications in the high latitude regions

    Science.gov (United States)

    Stocker, Alan; Siddle, Dave; Warrington, Mike; Honary, Farideh; Zaalov, Nikolay; Homam, Mariyam; Boteler, David; Danskin, Donald; de Franceschi, Georgiana; Ascaneus, Svend

    2013-04-01

    In the polar regions, ground-based VHF facilities for air-traffic control are lacking (and non-existent on the Russian side of the pole) and satellite communication systems either not available or expensive to retrofit to current aircraft and hence there remains a need for HF communication systems. Unfortunately, at these latitudes space weather can significantly affect the propagation of HF radio signals and the forecasting techniques currently employed by the airline industry are somewhat crude. In this paper, a new project that aims to provide forecasting of HF propagation characteristics for use by civilian airlines operating over polar routes will be described and preliminary results presented. Previous work in this area [e.g. Stocker et al., 2007] has focussed on taking HF signal measurements (e.g. SNR, delay and Doppler spread, and direction of arrival) on a limited number of propagation paths and developing an ionospheric model that incorporates high latitude features (e.g. polar patches and arcs) which, when combined with raytracing, allows the broad characteristics of the observations to be reproduced [Warrington et al., 2012]. The new project will greatly extend this work and consists of a number of stages. Firstly, HF measurements from an extensive network of purpose built transmitters and receivers spanning the Arctic regions will be collected and analysed. In order to test a wide variety of scenarios, the propagation paths will have different characteristics, e.g. different lengths and covering different parts of the northern ionosphere (i.e. polar cap paths where both terminals are in the polar cap, trans-auroral paths, and sub-auroral paths) and observations will be taken at a range of HF frequencies for a period covering the current (so far weak) solar maximum and part of the declining phase. Simultaneously, high latitude absorption measurements utilising the Global Riometer Array (GLORIA) will be collected and analysed. Next, the observations of

  12. Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance

    Science.gov (United States)

    Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.

    2011-01-01

    In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.

  13. Influence of Mascarene High and Indian Ocean dipole on East African extreme weather events

    Directory of Open Access Journals (Sweden)

    Ogwang Bob Alex

    2015-01-01

    Full Text Available Extreme weather and climate events such as floods and droughts are common in East Africa, causing huge socio-economic losses. This study links the east African October-December (OND rainfall, Indian Ocean Dipole (IOD and Mascarene High (MH.Correlation analysis is applied to quantify the relationship between the index of IOD (Dipole Mode Index (DMI and OND rainfall. Results show that there exists a significant correlation between OND rainfall and DMI, with a correlation coefficient of 0.6. During dry years, MH is observed to intensify and align itself in the southeast-northwest orientation, stretching up to the continent, which in turn inhibits the influx of moisture from Indian Ocean into East Africa. During wet years, MH weakens, shifts to the east and aligns itself in the zonal orientation. Moisture from Indian Ocean is freely transported into east Africa during wet years. Analysis of the drought and flood years with respect to the different variables including wind, velocity potential and divergence/ convergence revealed that the drought (flood years were characterized by divergence (convergence in the lower troposphere and convergence (divergence at the upper level, implying sinking (rising motion, especially over the western Indian Ocean and the study area. Convergence at low level gives rise to vertical stretching, whereas divergence results in vertical shrinking, which suppresses convection due to subsidence. Positive IOD (Negative IOD event results into flood (drought in the region. The evolution of these phenomena can thus be keenly observed for utilization in the update of seasonal forecasts.

  14. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    Science.gov (United States)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for

  15. A new-old approach for shallow landslide analysis and susceptibility zoning in fine-grained weathered soils of southern Italy

    Science.gov (United States)

    Cascini, Leonardo; Ciurleo, Mariantonietta; Di Nocera, Silvio; Gullà, Giovanni

    2015-07-01

    Rainfall-induced shallow landslides involve several geo-environmental contexts and different types of soils. In clayey soils, they affect the most superficial layer, which is generally constituted by physically weathered soils characterised by a diffuse pattern of cracks. This type of landslide most commonly occurs in the form of multiple-occurrence landslide phenomena simultaneously involving large areas and thus has several consequences in terms of environmental and economic damage. Indeed, landslide susceptibility zoning is a relevant issue for land use planning and/or design purposes. This study proposes a multi-scale approach to reach this goal. The proposed approach is tested and validated over an area in southern Italy affected by widespread shallow landslides that can be classified as earth slides and earth slide-flows. Specifically, by moving from a small (1:100,000) to a medium scale (1:25,000), with the aid of heuristic and statistical methods, the approach identifies the main factors leading to landslide occurrence and effectively detects the areas potentially affected by these phenomena. Finally, at a larger scale (1:5000), deterministic methods, i.e., physically based models (TRIGRS and TRIGRS-unsaturated), allow quantitative landslide susceptibility assessment, starting from sample areas representative of those that can be affected by shallow landslides. Considering the reliability of the obtained results, the proposed approach seems useful for analysing other case studies in similar geological contexts.

  16. Weathering of rock 'Ginger'

    Science.gov (United States)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  17. Casebook on application for weather

    International Nuclear Information System (INIS)

    2009-11-01

    This book introduces the excellent cases on application using weather at the industry, research center and public office. It lists the names and application cases in 2008 and 2009, which includes research on decease in risk by weather in the industry by Sam sung institute of safety and environment, service on weather information for people by KT, application with weather information in the flight by Korean air, use on weather information for prevention of disasters by Masan city hall, upgrade for business with weather marketing, center for river forecast in NOAA and the case using weather management for high profit margins.

  18. Evaluation of the NOAA CAREERS Weather Camp's Effectiveness in Promoting Atmospheric Science amongst High School Students

    Science.gov (United States)

    Olgin, J. G.; Fitzgerald, R. M.; Morris, V. R.

    2013-12-01

    The NOAA Center for Atmospheric Science (NCAS) sponsors the Channeling Atmospheric Research into Educational Experiences Reaching Students program (CAREERS); a program that manages a network of weather camps for students in secondary education with particular focus on increasing access for students from traditionally underrepresented backgrounds. Hosted by a college or university, the primary mission goals of the program are to engage students in discussions, lectures and interactive projects to better learn and comprehend a suite of atmospheric science disciplines (i.e. weather forecasting, environmental modeling, atmospheric data acquisition), and guide talented students towards higher education to pursue careers in atmospheric science primarily, or toward other STEM field professions. The need to evaluate and analyze the program's efficacy is crucial for continued growth and sustainability. Therefore a means to identify and measure the success of the program's initiatives will be addressed. Two Hispanic serving institutions, the University of Texas at El Paso (UTEP) and the University of Puerto Rico in Mayaguez (UPRM), both hosted the CAREER weather camps during the summers of 2012 and 2013, and provide the basis of this initial analysis. Participants performed entrance surveys of their knowledge of atmospheric science prior to the course. They were then re-evaluated through exit surveys over the topics covered during the weather camp. These data will be analyzed to correlate which program activities worked best in increasing participant awareness (i.e. geology tours of the local area, discussion on local climate variations, geophysical and geochemical demonstrations), and comprehension of atmospheric science. A comparison between the two universities on their uniqueness in program design and execution will also highlight those activities that best progressed CAREERS' program goals. Results from this analysis, along with possible new strategies for improved

  19. Distinguishing high and low flow domains in urban drainage systems 2 days ahead using numerical weather prediction ensembles

    DEFF Research Database (Denmark)

    Courdent, Vianney Augustin Thomas; Grum, Morten; Mikkelsen, Peter Steen

    2018-01-01

    Precipitation constitutes a major contribution to the flow in urban storm- and wastewater systems. Forecasts of the anticipated runoff flows, created from radar extrapolation and/or numerical weather predictions, can potentially be used to optimize operation in both wet and dry weather periods...... to transform the forecasted rainfall into forecasted flow series and evaluate three different approaches to establishing the relative operating characteristics (ROC) diagram of the forecast, which is a plot of POD against POFD for each fraction of concordant ensemble members and can be used to select...... itself from earlier research in being the first application to urban hydrology, with fast runoff and small catchments that are highly sensitive to local extremes. Furthermore, no earlier reference has been found on the highly efficient third approach using only neighbouring cells with the highest threat...

  20. Strontium stable isotope behaviour accompanying basalt weathering

    Science.gov (United States)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  1. High-Speed Monitoring of Multiple Grid-Connected Photovoltaic Array Configurations and Supplementary Weather Station.

    Science.gov (United States)

    Boyd, Matthew T

    2017-06-01

    Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation.

  2. Soil physical properties of high mountain fields under bauxite mining

    Directory of Open Access Journals (Sweden)

    Dalmo Arantes de Barros

    2013-10-01

    Full Text Available Mining contributes to the life quality of contemporary society, but can generate significant impacts, these being mitigated due to environmental controls adopted. This study aimed to characterize soil physical properties in high-altitude areas affected by bauxite mining, and to edaphic factors responses to restoration techniques used to recover mined areas in Poços de Caldas plateau, MG, Brazil. The experiment used 3 randomized block design involving within 2 treatments (before mining intervention and after environmental recovery, and 4 replicates (N=24. In each treatment, soil samples with deformed structures were determined: granulometry, water-dispersible clay content, flocculation index, particle density, stoniness level, water aggregate stability, and organic matter contend. Soil samples with preserved structures were used to determine soil density and the total volume of pores, macropores, and micropores. Homogenization of stoniness between soil layers as a result of soil mobilization was observed after the mined area recovery. Stoniness decreased in 0.10-0.20 m layer after recovery, but was similar in the 0-0.10 m layer in before and after samples. The recovery techniques restored organic matter levels to pre-mining levels. However, changes in soil, including an increase in soil flocculation degree and a decrease in water-dispersible clays, were still apparent post-recovery. Furthermore, mining operations caused structural changes to the superficial layer of soil, as demonstrated by an increase in soil density and a decrease in total porosity and macroporosity. Decreases in the water stability of aggregates were observed after mining operations.

  3. In-soil radon anomalies as precursors of earthquakes: a case study in the SE slope of Mt. Etna in a period of quite stable weather conditions.

    Science.gov (United States)

    Vizzini, Fabio; Brai, Maria

    2012-11-01

    In-soil radon concentrations as well as climatic parameters (temperature, atmospheric pressure and relative humidity) were collected in St. Venerina (Eastern Sicily - Italy) from March 19th to May 22nd 2009, close to an active fault system called Timpe Fault System (TFS), which is strictly linked to the geodynamics of Mt. Etna. During the monitoring period no drastic climatic variations were observed and, on the other hand, important seismic events were recorded close to the monitoring site. A seismic swarm composed of 5 earthquakes was observed in the Milo area on March 25th (M(max) = 2.7) at just 5.1 km from the site, and on May 13th an earthquake of 3.6 magnitude was recorded in the territory of St. Venerina, at just 3.2 km from the site; the earthquake was felt by the population and reported by all local and regional media. The in-soil radon concentrations have shown anomalous increases possibly linked to the earthquakes recorded, but certainly not attributable to local meteorology. To verify this assumption the average radon concentration and the standard deviation (σ) have been calculated and the regions of ±1.5σ and ±2σ deviation from the average concentration have been investigated. Moreover, to further minimise the contribution of the meteorological parameters on the in-soil radon fluctuations, a multiple regressions method has been used. To distinguish those earthquakes which could generate in-soil radon anomalies as precursors, the Dobrovolsky radius has been applied. The results obtained suggests that a clear correlation between earthquakes and in-soil radon increases exist, and that the detection of the in-soil radon anomalies becomes surely simpler in particular favourable conditions: weather stability, earthquakes within the Dobrovolsky radius and close to the monitoring area. Moreover, the absence of large variations of the climatic parameters, which could generate incoherent noise components to the radon signal, has made the radon fluctuations

  4. From AWE-GEN to AWE-GEN-2d: a high spatial and temporal resolution weather generator

    Science.gov (United States)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2016-04-01

    A new weather generator, AWE-GEN-2d (Advanced WEather GENerator for 2-Dimension grid) is developed following the philosophy of combining physical and stochastic approaches to simulate meteorological variables at high spatial and temporal resolution (e.g. 2 km x 2 km and 5 min for precipitation and cloud cover and 100 m x 100 m and 1 h for other variables variable (temperature, solar radiation, vapor pressure, atmospheric pressure and near-surface wind). The model is suitable to investigate the impacts of climate variability, temporal and spatial resolutions of forcing on hydrological, ecological, agricultural and geomorphological impacts studies. Using appropriate parameterization the model can be used in the context of climate change. Here we present the model technical structure of AWE-GEN-2d, which is a substantial evolution of four preceding models (i) the hourly-point scale Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.) (ii) the Space-Time Realizations of Areal Precipitation (STREAP) model introduced by Paschalis et al. (2013, Water Resour. Res.), (iii) the High-Resolution Synoptically conditioned Weather Generator developed by Peleg and Morin (2014, Water Resour. Res.), and (iv) the Wind-field Interpolation by Non Divergent Schemes presented by Burlando et al. (2007, Boundary-Layer Meteorol.). The AWE-GEN-2d is relatively parsimonious in terms of computational demand and allows generating many stochastic realizations of current and projected climates in an efficient way. An example of model application and testing is presented with reference to a case study in the Wallis region, a complex orography terrain in the Swiss Alps.

  5. Performance evaluation of solar heating system with thermal core type soil heat storage. Part 5. Performance prediction and evaluation of the system considered of the weather condition; Taiyonetsu riyo netsu kakushiki dojo chikunetsu system no seino hyoka. 5. Kisho joken wo koryoshita system no seino yosoku to hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, N [Nishimatsu Construction Co. Ltd., Tokyo (Japan); Nakajima, Y [Kogakuin University, Tokyo (Japan)

    1997-11-25

    The paper studied a solar heating system with thermal core type soil heat storage (combining a thermal core composing of a water tank and an underground pebble tank and the soil around the heat storage tank and also using solar energy). Solar energy is stored by temperature level in the high temperature water tank, the low temperature pebble heat storage tank and the soil around the heat storage tank. Heat is recovered according to temperature as direct ventilation space heating (utilization of pebble tank air), floor heating (utilization of hot water of the heat storage water tank) and heat pump heat source (utilization of pebble tank air). A study was made of performance and regional effectiveness of the system under different weather conditions. A study was also made of effects of the water tank for short term heat storage by changing the water volume. Using the same structure, etc. for the system, the system was evaluated using weather data of Sapporo, Tokyo and Kagoshima. In terms of efficiency of the system, the system structure was found to be most suitable for weather conditions in Tokyo. However, the air heat source heat pump which cannot be usually used in the cold area has come to be used. Such effect except efficiency is also considered, and the amount of performance to be targeted in each region changes. 2 refs., 14 figs., 1 tab.

  6. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    Science.gov (United States)

    Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi

    2010-01-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  7. Multi-species interactions impact the accumulation of weathered 2,2-bis (p-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE) from soil

    International Nuclear Information System (INIS)

    Kelsey, Jason W.; White, Jason C.

    2005-01-01

    The impact of interactions between the earthworms Eisenia foetida and Lumbricus terrestris and the plants Cucurbita pepo and Cucurbita maxima on the uptake of weathered p,p'-DDE from soil was determined. Although some combinations of earthworm and plant species caused significant changes in the p,p'-DDE burden in both organisms, the effects were species specific. Contaminant bioconcentration in C. pepo was increased slightly by E. foetida and by 3-fold when the plant was grown with L. terrestris. E. foetida had no effect on the contaminant BCF by C. maxima, but L. terrestris caused a 2-fold reduction in p,p'-DDE uptake by the plant. Contaminant levels in E. foetida and L. terrestris were unaffected by C. pepo. When grown with C. maxima, the concentration of p,p'-DDE decreased by approximately 4-fold and 7-fold in E. foetida and L. terrestris, respectively. The data suggest that the prediction of contaminant bioavailability should consider interactions among species. - Interactions between earthworms and plants affect both the phytoextraction and bioaccumulation of p,p'-DDE in soil

  8. Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical Weather Prediction

    Science.gov (United States)

    Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.

    2017-12-01

    This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4

  9. North America Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Series of Synoptic Weather Maps. Maps contains a surface analysis comprised of plotted weather station observations, isobars indicating low and high-pressure...

  10. Carbonate dissolution rates in high salinity brines: Implications for post-Noachian chemical weathering on Mars

    Science.gov (United States)

    Phillips-Lander, Charity M.; Parnell, S. R.; McGraw, L. E.; Elwood Madden, M. E.

    2018-06-01

    concentration of MgSO4 and NaCl. However, all of the carbonate rates vary by less than 0.5 log units and are within or near the standard deviation observed for each set of replicate experiments. Carbonate mineral lifetimes in high salinity brines indicate magnesite may be preferentially preserved compared to calcite on Mars. Therefore, Mg-carbonates that have experienced post-depositional aqueous alteration are more likely to preserve paleoenvironmental indicators and potential biosignatures. Rapid weathering of carbonates in circum-neutral pH sulfate brines may provide a potential source of cations for abundant sulfate minerals observed on Mars, Ceres, and other planetary bodies.

  11. Effects of Using High-Density Rain Gauge Networks and Weather Radar Data on Urban Hydrological Analyses

    Directory of Open Access Journals (Sweden)

    Seong-Sim Yoon

    2017-11-01

    Full Text Available Flood prediction is difficult in urban areas because only sparse gauge data and radar data of low accuracy are usually used to analyze flooding and inundation. Sub-basins of urban areas are extremely small, so rainfall data of high spatial resolution are required for analyzing complex drainage systems with high spatial variability. This study aimed to produce three types of quantitative precipitation estimation (QPE products using rainfall data that was derived from 190 gauges, including the new high-density rain-gauge network operated by the SK Planet company, and the automated weather stations of the Korea Meteorological Administration, along with weather radar data. This study also simulated urban runoff for the Gangnam District of Seoul, South Korea, using the obtained QPE products to evaluate hydraulic and hydrologic impacts according to three rainfall fields. The accuracy of this approach was assessed in terms of the amount and spatial distribution of rainfall in an urban area. The QPE products provided highly accurate results and simulations of peak runoff and overflow phenomena. They also accurately described the spatial variability of the rainfall fields. Overall, the integration of high-density gauge data with radar data proved beneficial for quantitative rainfall estimation.

  12. Linking carbon and hydrologic fluxes in the critical zone: Observations from high-frequency monitoring of a weathered bedrock vadose zone

    Science.gov (United States)

    Tune, A. K.; Druhan, J. L.; Wang, J.; Cargill, S.; Murphy, C.; Rempe, D. M.

    2017-12-01

    A principle challenge in quantifying feedbacks between continental weathering and atmospheric CO2 is to improve understanding of how biogeochemical processes in the critical zone influence the distribution and mobility of organic and inorganic carbon. In particular, in landscapes characterized by thin soils and heterogeneous weathered and fractured bedrock, little data exist to inform and constrain predictive models for carbon dynamics. Here, we present the results of an intensive water and gas sampling campaign across an 18 m thick, variably saturated argillite weathering profile in the Eel River CZO. We monitor water content in situ and regularly collect samples of freely-draining water, tightly-held water, and gas through wet and dry seasons using a novel Vadose-zone Monitoring System (VMS) consisting of sensors and samplers distributed across a 20 m long inclined borehole. This novel approach facilitates the interception of gas and water during transport across the entire variably saturated weathering profile. The data demonstrate that seasonal changes in saturation control the vertical distribution and mobility of carbon in the fractured critical zone. Concentrations of gaseous CO2, O2, and dissolved organic and inorganic carbon fluctuate significantly and repeatably with seasonal additions of water infiltrating the weathered bedrock. A persistent vertical structure in the concentrations of dissolved phases and gas concentrations broadly corresponds to depths associated with unsaturated, seasonally saturated, and chronically saturated zones. Associated variations in the vertical structure of mineralogy and elemental composition, including solid phase organic carbon content, are observed in core obtained during drilling. Together, our observations indicate significant respiration of organic carbon at depths greater than the base of the soil, and thus motivate further investigation of the role of heterogeneous weathered, bedrock environments, which are needed to

  13. Wacky Weather

    Science.gov (United States)

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  14. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  15. High Energy Moisture Characteristics: Linking Between Soil Physical Processes and Structure Stability

    Science.gov (United States)

    Water storage and flow in soils is usually complicated by the intricate nature of and changes in soil pore size distribution (PSD) due to modifications in soil structure following changes in agricultural management. The paper presents the Soil High Energy Moisture Characteristic (Soil-HEMC) method f...

  16. High plant uptake of radiocesium from organic soils due to Cs mobility and low soil K content

    International Nuclear Information System (INIS)

    Sanchez, A.L.; Wright, S.M.; Naylor, C.; Kennedy, V.H.; Dodd, B.A.; Singleton, D.L.; Barnett, C.L.; Stevens, P.A.

    1999-01-01

    Post-Chernobyl experience has demonstrated that persistently high plant transfer of 137 Cs occurs from organic soils in upland and seminatural ecosystems. The soil properties influencing this transfer have been known for some time but have not been quantified. A pot experiment was conducted using 23 soils collected from selected areas of Great Britain, which were spiked with 134 Cs, and Agrostis capillaris grown for 19--45 days. The plant-to-soil 134 Cs concentration ratio (CR) varied from 0.06 to 44; log CR positively correlated to soil organic matter content (R 2 = 0.84), and CR values were highest for soils with low distribution coefficients (K d ) of 134 Cs. Soils with high organic matter contents and high concentrations of NH 4 + in solution showed high 134 Cs mobility (low K d ). The plant-to-soil solution 134 Cs ratio decreased sharply with increasing soil solution K + . A two parameter linear model, used to predict log CR from soil solution K + and K d , explained 94% of the variability in CR values. In conclusion, the high transfer of 134 Cs in organic soils is related to both the high 134 Cs mobility (low clay content and high NH 4 + concentrations) and low K availability

  17. Modelling impacts of atmospheric deposition, nutrient cycling and soil weathering on the sustainability of nine forest ecosystems

    DEFF Research Database (Denmark)

    Salm, C. van der; Vries, W.de; Olsson, M.

    1999-01-01

    used: a business as usual scenario (BAU) and a restrictive critical load scenario (CL). The BAU scenario leads to a strong decrease in both Al concentrations and pH in the topsoil of the Dutch and the Danish sites due to a decrease in the amount of amorphous Al compounds. The decline in pH leads...... is predicted for northern Sweden as deposition levels are below critical loads. Soil chemistry at the recently replanted Swedish sites is dominated by changes in N cycling instead of by deposition. The CL scenario leads, especially after 2010, to a stronger decline in Al concentration compared with the BAU...... are still declining on the Danish and Dutch sites in 2090. It is concluded that deposition levels above critical loads lead to exhaustion of the pool of amorphous Al compounds and a decline in pH. Base saturation does not decline due to an increase in mineralization with stand age and an increase...

  18. A Simple Ensemble Simulation Technique for Assessment of Future Variations in Specific High-Impact Weather Events

    Science.gov (United States)

    Taniguchi, Kenji

    2018-04-01

    To investigate future variations in high-impact weather events, numerous samples are required. For the detailed assessment in a specific region, a high spatial resolution is also required. A simple ensemble simulation technique is proposed in this paper. In the proposed technique, new ensemble members were generated from one basic state vector and two perturbation vectors, which were obtained by lagged average forecasting simulations. Sensitivity experiments with different numbers of ensemble members, different simulation lengths, and different perturbation magnitudes were performed. Experimental application to a global warming study was also implemented for a typhoon event. Ensemble-mean results and ensemble spreads of total precipitation, atmospheric conditions showed similar characteristics across the sensitivity experiments. The frequencies of the maximum total and hourly precipitation also showed similar distributions. These results indicate the robustness of the proposed technique. On the other hand, considerable ensemble spread was found in each ensemble experiment. In addition, the results of the application to a global warming study showed possible variations in the future. These results indicate that the proposed technique is useful for investigating various meteorological phenomena and the impacts of global warming. The results of the ensemble simulations also enable the stochastic evaluation of differences in high-impact weather events. In addition, the impacts of a spectral nudging technique were also examined. The tracks of a typhoon were quite different between cases with and without spectral nudging; however, the ranges of the tracks among ensemble members were comparable. It indicates that spectral nudging does not necessarily suppress ensemble spread.

  19. Location-Related Differences in Weathering Behaviors and Populations of Culturable Rock-Weathering Bacteria Along a Hillside of a Rock Mountain.

    Science.gov (United States)

    Wang, Qi; Wang, Rongrong; He, Linyan; Sheng, Xiafang

    2017-05-01

    Bacteria play important roles in rock weathering, elemental cycling, and soil formation. However, little is known about the weathering potential and population of bacteria inhabiting surfaces of rocks. In this study, we isolated bacteria from the top, middle, and bottom rock samples along a hillside of a rock (trachyte) mountain as well as adjacent soils and characterized rock-weathering behaviors and populations of the bacteria. Per gram of rock or surface soil, 10 6 -10 7 colony forming units were obtained and total 192 bacteria were isolated. Laboratory rock dissolution experiments indicated that the proportions of the highly effective Fe (ranging from 67 to 92 %), Al (ranging from 40 to 48 %), and Cu (ranging from 54 to 81 %) solubilizers were significantly higher in the top rock and soil samples, while the proportion of the highly effective Si (56 %) solubilizers was significantly higher in the middle rock samples. Furthermore, 78, 96, and 6 % of bacteria from the top rocks, soils, and middle rocks, respectively, significantly acidified the culture medium (pH bacteria (79 %) from the rocks were different to those from the soils and most of them (species level) have not been previously reported. Furthermore, location-specific rock-weathering bacterial populations were found and Bacillus species were the most (66 %) frequently isolated rock-weathering bacteria in the rocks based on cultivation methods. Notably, the top rocks and soils had the highest and lowest diversity of rock-weathering bacterial populations, respectively. The results suggested location-related differences in element (Si, Al, Fe, and Cu) releasing effectiveness and communities of rock-weathering bacteria along the hillside of the rock mountain.

  20. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Alshawabkeh, Akram N.; Chen Haifeng

    2007-01-01

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary

  1. High Resolution Mesoscale Weather Data Improvement to Spatial Effects for Dose-Rate Contour Plot Predictions

    Science.gov (United States)

    2007-03-01

    radiation with diurnal cycle and interaction with clouds, shallow convection, an interactive surface hydrology , and horizontal and vertical diffusion...file (New Surface.txt) which was created ! by saving an Excel File as a tab- delimited text file. The data for this file comes from Google ! Earth, and...Mississippi River Basin to the Spatial Distribution of Initial Soil Moisture,” Journal of Geophysical Research, Vol. 108, NO. D22. (31 OCT 2002) 15

  2. L-band HIgh Spatial Resolution Soil Moisture Mapping using SMALL UnManned Aerial Systems

    Science.gov (United States)

    Dai, E.; Venkitasubramony, A.; Gasiewski, A. J.; Stachura, M.; Elston, J. S.; Walter, B.; Lankford, D.; Corey, C.

    2017-12-01

    Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 provided new passive global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions of 36 km. However, there exists a need for measurements of soil moisture on much smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters. Compared with other methods of validation based on either in-situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed ( km scale) coverage at very high spatial resolution ( 15 m) suitable for scaling studies, and at comparatively low operator cost. To demonstrate the LDCR several flights had been performed during field experiments at the Canton Oklahoma Soilscape site and Yuma Colorado Irrigation Research Foundation (IRF) site in 2015 and 2016, respectively, using LDCR Revision A and Tempest sUAS. The scientific intercomparisons of LDCR retrieved soil moisture and in-situ measurements will be presented. LDCR Revision B has been built and integrated into SuperSwift sUAS and additional field experiments will be performed at IRF in 2017. In Revision B the IF signal is sampled at 80 MS/s to enable digital correlation and RFI mitigation capabilities, in addition to analog correlation. [1] McIntyre, E.M., A.J. Gasiewski, and D. Manda D, "Near Real-Time Passive C

  3. Water Intake by Soil, Experiments for High School Students.

    Science.gov (United States)

    1969

    Presented are a variety of surface run-off experiments for high school students. The experiments are analogies to basic concepts about water intake, as related to water delivery, soil properties and management, floods, and conservation measures. The materials needed to perform the experiments are easily obtainable. The experiments are followed by…

  4. Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system

    International Nuclear Information System (INIS)

    Gao, Y; Fu, J S; Drake, J B; Liu, Y; Lamarque, J-F

    2012-01-01

    This study is the first evaluation of dynamical downscaling using the Weather Research and Forecasting (WRF) Model on a 4 km × 4 km high resolution scale in the eastern US driven by the new Community Earth System Model version 1.0 (CESM v1.0). First we examined the global and regional climate model results, and corrected an inconsistency in skin temperature during the downscaling process by modifying the land/sea mask. In comparison with observations, WRF shows statistically significant improvement over CESM in reproducing extreme weather events, with improvement for heat wave frequency estimation as high as 98%. The fossil fuel intensive scenario Representative Concentration Pathway (RCP) 8.5 was used to study a possible future mid-century climate extreme in 2057–9. Both the heat waves and the extreme precipitation in 2057–9 are more severe than the present climate in the Eastern US. The Northeastern US shows large increases in both heat wave intensity (3.05 °C higher) and annual extreme precipitation (107.3 mm more per year). (letter)

  5. Soil carbon content and relative abundance of high affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition

    NARCIS (Netherlands)

    Khdhiri, Mondher; Hesse, Laura; Popa, Maria Elena; Quiza, Liliana; Lalonde, Isabelle; Meredith, Laura K.; Röckmann, Thomas; Constant, Philippe

    2015-01-01

    Soil-atmosphere exchange of H2 is controlled by gas diffusion and the microbial production and oxidation activities in soil. Among these parameters, the H2 oxidation activity catalyzed by soil microorganisms harboring high affinity hydrogenase is the most difficult variable to parameterize because

  6. Bioindicator demonstrates high persistence of sulfentrazone in dry soil

    Directory of Open Access Journals (Sweden)

    Renato Coradello Lourenço

    2015-09-01

    Full Text Available In sugarcane crop areas, the application of preemergence herbicides with long residual effect in the soil has been frequently necessary. The herbicide persistence in the soil must be high especially because of applications during the dry season of the year, after sugarcane harvest. This study aimed at estimating the sulfentrazone persistence and dissipation in dry soil using bioindicator. Five experiments were carried out, divided into two phases. In the first phase, three dose-response curves were adjusted to select the best bioindicator to be adopted in the second phase. Niger was adopted due to its lower sensibility to sulfentrazone. In the second phase, a new dose-response curve was carried out, with six doses of sulfentrazone, in order to standardize the bioindicator sensibility to sulfentrazone. At the end, another experiment with six periods of sulfentrazone persistence in dry clay soil was developed. Persistence periods were: 182, 154, 125, 98 and 30 days. The bioindicator was seeded at the application day in treated plots and control. In this experiment, the sulfentrazone dose applied was 800 g ha-1. Niger was considered a good species to estimate the sulfentrazone persistence in dry soil. The sulfentrazone phytotoxic activity was identified up to 182 days after application, and its average dissipation rate was 2.15 g ha-1 day-1, with half-life higher than 182 days.

  7. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Science.gov (United States)

    Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed

    2017-01-01

    Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16) to longer chain n-alkanes (n-C21–n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time. PMID:28243605

  8. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Zulfa Al Disi

    2017-01-01

    Full Text Available Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16 to longer chain n-alkanes (n-C21–n-C25 and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time.

  9. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad; Attada, Raju; Knio, Omar; Hoteit, Ibrahim

    2017-01-01

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  10. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad

    2017-08-10

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  11. Isotopic chemical weathering behaviour of Pb derived from a high-Alpine Holocene lake-sediment record

    Science.gov (United States)

    Gutjahr, Marcus; Süfke, Finn; Gilli, Adrian; Anselmetti, Flavio; Glur, Lukas; Eisenhauer, Anton

    2017-04-01

    Several studies assessing the chemical weathering systematics of Pb isotopes provided evidence for the incongruent release of Pb from source rocks during early stages of chemical weathering, resulting in runoff compositions more radiogenic (higher) than the bulk source-rock composition [e.g. 1]. Deep NW Atlantic seawater Pb isotope records covering the last glacial-interglacial transition further support these findings. Clear excursions towards highly radiogenic Pb isotopic input in the deep NW Atlantic seen during the early Holocene, hence after the large-scale retreat of the Laurentide Ice Sheet in North America, are interpreted to be controlled by preferential release of radiogenic Pb from U- and Th-rich mineral phases during early stages of chemical weathering that are less resistant to chemical dissolution than other rock-forming mineral phases [2-4]. To date, however, no terrestrial Pb isotope record exists that could corroborate the evidence from deep marine sites for efficient late deglacial weathering and washout of radiogenic Pb. We present a high-resolution adsorbed Pb isotope record from a sediment core retrieved from Alpine Lake Grimsel (1908 m.a.s.l.) in Switzerland, consisting of 117 Pb compositions over the past 10 kyr. This high-Alpine study area is ideally located for incipient and prolonged chemical weathering studies. The method used to extract the adsorbed lake Pb isotope signal is identical to previous marine approaches targeting the authigenic Fe-Mn oxyhydroxides fraction within the lake sediments [5, 6]. The Pb isotope compositions are further accompanied by various elemental ratios derived from the same samples that equally trace climatic boundary conditions in the Grimsel Lake area. The Pb isotopic composition recorded in Lake Grimsel is remarkably constant throughout the majority of the Holocene until ˜2.5 ka BP, despite variable sediment composition and -age, and isotopically relatively close to the signature of the granitic source rock

  12. The role and production of polar/subtropical jet superpositions in two high-impact weather events over North America

    Science.gov (United States)

    Winters, Andrew C.

    Careful observational work has demonstrated that the tropopause is typically characterized by a three-step pole-to-equator structure, with each break between steps in the tropopause height associated with a jet stream. While the two jet streams, the polar and subtropical jets, typically occupy different latitude bands, their separation can occasionally vanish, resulting in a vertical superposition of the two jets. A cursory examination of a number of historical and recent high-impact weather events over North America and the North Atlantic indicates that superposed jets can be an important component of their evolution. Consequently, this dissertation examines two recent jet superposition cases, the 18--20 December 2009 Mid-Atlantic Blizzard and the 1--3 May 2010 Nashville Flood, in an effort (1) to determine the specific influence that a superposed jet can have on the development of a high-impact weather event and (2) to illuminate the processes that facilitated the production of a superposition in each case. An examination of these cases from a basic-state variable and PV inversion perspective demonstrates that elements of both the remote and local synoptic environment are important to consider while diagnosing the development of a jet superposition. Specifically, the process of jet superposition begins with the remote production of a cyclonic (anticyclonic) tropopause disturbance at high (low) latitudes. The cyclonic circulation typically originates at polar latitudes, while organized tropical convection can encourage the development of an anticyclonic circulation anomaly within the tropical upper-troposphere. The concurrent advection of both anomalies towards middle latitudes subsequently allows their individual circulations to laterally displace the location of the individual tropopause breaks. Once the two circulation anomalies position the polar and subtropical tropopause breaks in close proximity to one another, elements within the local environment, such as

  13. A high-fidelity weather time series generator using the Markov Chain process on a piecewise level

    Science.gov (United States)

    Hersvik, K.; Endrerud, O.-E. V.

    2017-12-01

    A method is developed for generating a set of unique weather time-series based on an existing weather series. The method allows statistically valid weather variations to take place within repeated simulations of offshore operations. The numerous generated time series need to share the same statistical qualities as the original time series. Statistical qualities here refer mainly to the distribution of weather windows available for work, including durations and frequencies of such weather windows, and seasonal characteristics. The method is based on the Markov chain process. The core new development lies in how the Markov Process is used, specifically by joining small pieces of random length time series together rather than joining individual weather states, each from a single time step, which is a common solution found in the literature. This new Markov model shows favorable characteristics with respect to the requirements set forth and all aspects of the validation performed.

  14. Will algorithms modified with soil and weather information improve in-field reflectance-sensing corn nitrogen applications?

    Science.gov (United States)

    Nitrogen (N) needs to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of...

  15. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  16. Soil-structure interaction effects on high level waste tanks

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; Heymsfeld, E.

    1991-01-01

    High Level Waste Tanks consist of steel tanks located in concrete vaults which are usually completely embedded in the soil. Many of these tanks are old and were designed to seismic standards which are not compatible with current requirements. The objective if this paper is to develop simple methods of modeling SSI effects for such structures and to obtain solutions for a range of parameters that can be used to identify significant aspects of the problem

  17. Soil mixing design methods and construction techniques for use in high organic soils : [summary].

    Science.gov (United States)

    2015-10-01

    The soils which serve as foundations for construction projects may be roughly classified as : inorganic or organic. Inorganic soils vary in firmness and suitability for construction. Soft : or loose inorganic soils may be stabilized using cement or s...

  18. Improving high impact weather and climate prediction for societal resilience in Subtropical South America: Proyecto RELAMPAGO-CACTI

    Science.gov (United States)

    Nesbitt, S. W.; Salio, P. V.; Varble, A.; Trapp, R. J.; Roberts, R. R.; Dominguez, F.; Machado, L.; Saulo, C.

    2017-12-01

    ógico Nacional (SMN) of Argentina and Brazil's Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), as well as related international and local societal impacts projects such as the World Meteorological Organization's High-Impact Weather project will enable improved end-to-end impacts predictions in this vulnerable region.

  19. Production of solar radiation bankable datasets from high-resolution solar irradiance derived with dynamical downscaling Numerical Weather prediction model

    Directory of Open Access Journals (Sweden)

    Yassine Charabi

    2016-11-01

    Full Text Available A bankable solar radiation database is required for the financial viability of solar energy project. Accurate estimation of solar energy resources in a country is very important for proper siting, sizing and life cycle cost analysis of solar energy systems. During the last decade an important progress has been made to develop multiple solar irradiance database (Global Horizontal Irradiance (GHI and Direct Normal Irradiance (DNI, using satellite of different resolution and sophisticated models. This paper assesses the performance of High-resolution solar irradiance derived with dynamical downscaling Numerical Weather Prediction model with, GIS topographical solar radiation model, satellite data and ground measurements, for the production of bankable solar radiation datasets. For this investigation, NWP model namely Consortium for Small-scale Modeling (COSMO is used for the dynamical downscaling of solar radiation. The obtained results increase confidence in solar radiation data base obtained from dynamical downscaled NWP model. The mean bias of dynamical downscaled NWP model is small, on the order of a few percents for GHI, and it could be ranked as a bankable datasets. Fortunately, these data are usually archived in the meteorological department and gives a good idea of the hourly, monthly, and annual incident energy. Such short time-interval data are valuable in designing and operating the solar energy facility. The advantage of the NWP model is that it can be used for solar radiation forecast since it can estimate the weather condition within the next 72–120 hours. This gives a reasonable estimation of the solar radiation that in turns can be used to forecast the electric power generation by the solar power plant.

  20. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  1. On nutrients and trace metals: Effects from Enhanced Weathering

    Science.gov (United States)

    Amann, T.; Hartmann, J.

    2015-12-01

    The application of rock flour on suitable land ("Enhanced Weathering") is one proposed strategy to reduce the increase of atmospheric CO2 concentrations. At the same time it is an old and established method to add fertiliser and influence soil properties. Investigations of this method focused on the impact on the carbonate system, as well as on engineering aspects of a large-scale application, but potential side effects were never discussed quantitatively. We analysed about 120,000 geochemically characterised volcanic rock samples from the literature. Applying basic statistics, theoretical release rates of nutrients and potential contaminants by Enhanced Weathering were evaluated for typical rock types. Applied rock material can contain significant amounts of essential or beneficial nutrients (potassium, phosphorus, micronutrients). Their release can partly cover the demand of major crops like wheat, rice or corn, thereby increasing crop yield on degraded soils. However, the concentrations of considered elements are variable within a specific rock type, depending on the geological setting. High heavy metal concentrations are found in (ultra-) basic rocks, the class with the highest CO2 drawdown potential. More acidic rocks contain less or no critical amounts, but sequester less CO2. Findings show that the rock selection determines the capability to supply significant amounts of nutrients, which could partly substitute industrial mineral fertiliser usage. At the same time, the release of harmful trace element has to be considered. Through careful selection of regionally available rocks, benefits could be maximised and drawbacks reduced. The deployment of Enhanced Weathering to sequester CO2 and to ameliorate soils necessitates an ecosystem management, considering the release and fate of weathered elements in plants, soils and water. Cropland with degraded soils would benefit while having a net negative CO2 effect, while other carbon dioxide removal strategies, like

  2. High-power ultrasonic treatment of contaminated soils and sediments

    International Nuclear Information System (INIS)

    Collings, A.F.; Gwan, P.B.; Sosa Pintos, A.P.

    2004-01-01

    Full text: The propagation of high-power ultrasound through a liquid can initiate the phenomenon of cavitation. This occurs with the collapse of gas bubbles formed during the rarefaction phase of the ultrasonic wave either from the dissolution of air or vaporisation of the liquid. Bubble collapse can generate localised temperatures up to 5,000 K and pressures up to 1,000 atmospheres. Solid particles in slurry have been shown to act as foci for the nucleation and collapse of bubbles. Theory and experiment have confirmed that the rupture of a bubble on a solid surface generates a high speed jet directed towards the surface. In this case, the extreme conditions generated by the non-linear shock wave produced by bubble collapse are localised on the solid surface. Since Persistent Organic Pollutants (POPs) are hydrophobic and are also readily absorbed on the surface of soil particles, the energy released by cavitation in a soil or sediment slurry is selectively directed towards them. The temperatures are sufficient to decompose these molecules. However, the extreme conditions are highly localised and the bulk solution temperature is essentially unaffected. Any decomposition products are immediately quenched and recombination reactions are avoided. Recent advances in ultrasound technology have produced commercial equipment capable of high power which has enabled us to remediate soils and sediments containing Organochlorine Pesticides (OCPs), Polyaromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs). With reductions greater than 80% within minutes, this technique shows great promise with advantages of on-site treatment and reduced operating and capital costs compared with conventional methods

  3. Terra Pretas: Charcoal Amendments Influence on Relict Soils and Modern Agriculture

    Science.gov (United States)

    Ricigliano, Kristin

    2011-01-01

    Most soils found in the Amazon region are characterized by highly weathered profiles that are incapable of longterm agricultural production. However, small patches of highly fertile relict soil referred to as Terra Pretas, are also found in the Amazon region, and have maintained their integrity for thousands of years. These soils were…

  4. WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY

    International Nuclear Information System (INIS)

    Heinze, Aren N.; Metchev, Stanimir; Kellogg, Kendra

    2015-01-01

    We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution

  5. WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Aren N.; Metchev, Stanimir [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Kellogg, Kendra, E-mail: aren.heinze@stonybrook.edu, E-mail: smetchev@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 (Canada)

    2015-03-10

    We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.

  6. Distinguishing high and low flow domains in urban drainage systems 2 days ahead using numerical weather prediction ensembles

    Science.gov (United States)

    Courdent, Vianney; Grum, Morten; Mikkelsen, Peter Steen

    2018-01-01

    Precipitation constitutes a major contribution to the flow in urban storm- and wastewater systems. Forecasts of the anticipated runoff flows, created from radar extrapolation and/or numerical weather predictions, can potentially be used to optimize operation in both wet and dry weather periods. However, flow forecasts are inevitably uncertain and their use will ultimately require a trade-off between the value of knowing what will happen in the future and the probability and consequence of being wrong. In this study we examine how ensemble forecasts from the HIRLAM-DMI-S05 numerical weather prediction (NWP) model subject to three different ensemble post-processing approaches can be used to forecast flow exceedance in a combined sewer for a wide range of ratios between the probability of detection (POD) and the probability of false detection (POFD). We use a hydrological rainfall-runoff model to transform the forecasted rainfall into forecasted flow series and evaluate three different approaches to establishing the relative operating characteristics (ROC) diagram of the forecast, which is a plot of POD against POFD for each fraction of concordant ensemble members and can be used to select the weight of evidence that matches the desired trade-off between POD and POFD. In the first approach, the rainfall input to the model is calculated for each of 25 ensemble members as a weighted average of rainfall from the NWP cells over the catchment where the weights are proportional to the areal intersection between the catchment and the NWP cells. In the second approach, a total of 2825 flow ensembles are generated using rainfall input from the neighbouring NWP cells up to approximately 6 cells in all directions from the catchment. In the third approach, the first approach is extended spatially by successively increasing the area covered and for each spatial increase and each time step selecting only the cell with the highest intensity resulting in a total of 175 ensemble

  7. Reduction of Cadmium Uptake of Rice Plants Using Soil Amendments in High Cadmium Contaminated Soil: A Pot Experiment

    Directory of Open Access Journals (Sweden)

    Dian Siswanto

    2013-05-01

    Full Text Available The aims of this study were to investigate the effect of agricultural residues on reducing cadmium uptake in rice plants. The rice plants growing on no cadmium/free cadmium soils (N, Cd soils (Cds, and Cd soils each amended with 1% w/w of coir pith (CP, coir pith modified with sodium hydroxide (CPm and corncob (CC under high cadmium contaminated soil with an average 145 mg Cd kg-1 soil were investigated. The results showed that the cumulative transpiration of rice grown in various treatments under high cadmium contaminated soil followed the order: Cds > CPm ≥ CP ≥ CC. These transpirations directly influenced cadmium accumulation in shoots and husks of rice plants. The CC and CP seemed to work to reduce the cadmium uptake by rice plants indicated by accumulated cadmium in the husk that were 2.47 and 7.38 mg Cd kg-1 dry weight, respectively. Overall, transpiration tended to drive cadmium accumulation in plants for rice grown in high cadmium contaminated soil. The more that plants uptake cadmium, the lower cadmium that remains in the soil.

  8. Wind Resource Assessment in Complex Terrain with a High-Resolution Numerical Weather Prediction Model

    Science.gov (United States)

    Gruber, Karin; Serafin, Stefano; Grubišić, Vanda; Dorninger, Manfred; Zauner, Rudolf; Fink, Martin

    2014-05-01

    A crucial step in planning new wind farms is the estimation of the amount of wind energy that can be harvested in possible target sites. Wind resource assessment traditionally entails deployment of masts equipped for wind speed measurements at several heights for a reasonably long period of time. Simplified linear models of atmospheric flow are then used for a spatial extrapolation of point measurements to a wide area. While linear models have been successfully applied in the wind resource assessment in plains and offshore, their reliability in complex terrain is generally poor. This represents a major limitation to wind resource assessment in Austria, where high-altitude locations are being considered for new plant sites, given the higher frequency of sustained winds at such sites. The limitations of linear models stem from two key assumptions in their formulation, the neutral stratification and attached boundary-layer flow, both of which often break down in complex terrain. Consequently, an accurate modeling of near-surface flow over mountains requires the adoption of a NWP model with high horizontal and vertical resolution. This study explores the wind potential of a site in Styria in the North-Eastern Alps. The WRF model is used for simulations with a maximum horizontal resolution of 800 m. Three nested computational domains are defined, with the innermost one encompassing a stretch of the relatively broad Enns Valley, flanked by the main crest of the Alps in the south and the Nördliche Kalkalpen of similar height in the north. In addition to the simulation results, we use data from fourteen 10-m wind measurement sites (of which 7 are located within valleys and 5 near mountain tops) and from 2 masts with anemometers at several heights (at hillside locations) in an area of 1600 km2 around the target site. The potential for wind energy production is assessed using the mean wind speed and turbulence intensity at hub height. The capacity factor is also evaluated

  9. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    Science.gov (United States)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  10. Assessing High-Resolution Weather Research and Forecasting (WRF) Forecasts Using an Object-Based Diagnostic Evaluation

    Science.gov (United States)

    2014-02-01

    Operational Model Archive and Distribution System ( NOMADS ). The RTMA product was generated using a 2-D variational method to assimilate point weather...observations and satellite-derived measurements (National Weather Service, 2013). The products were downloaded using the NOMADS General Regularly...of the completed WRF run" read Start_Date echo $Start_Date echo " " echo "Enter 2- digit , zulu, observation hour (HH) for remapping" read oHH

  11. Integration of Weather Avoidance and Traffic Separation

    Science.gov (United States)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.

    2011-01-01

    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  12. Modeling rock weathering in small watersheds

    NARCIS (Netherlands)

    Pacheco, F.A.L.; van der Weijden, C.H.

    2014-01-01

    Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and

  13. National Weather Service

    Science.gov (United States)

    ... GIS International Weather Cooperative Observers Storm Spotters Tsunami Facts and Figures National Water Center WEATHER SAFETY NOAA Weather Radio StormReady Heat Lightning Hurricanes Thunderstorms Tornadoes Rip Currents Floods Winter Weather ...

  14. Environmental Forensics: Molecular Insight into Oil Spill Weathering Helps Advance High Magnetic Field FT-ICR Mass Spectrometry

    Science.gov (United States)

    McKenna, Amy

    2013-03-01

    events in the FT-ICR experiment. For example, the high density of peaks at each nominal mass unit provides unprecedented insight into how excitation conditions affect ion motion during detection. Aggregated oil (i.e., tar balls, tar mats) that reached the surface exhibits a more than two-fold increase in the total number of detected species, with an increased number of oxygenated species. Principal component analysis (PCA) applied to two possible source oils (contained within the same ship) and weathered samples provide the first application of FT-ICR MS for source identification. Molecular formulae from parent and weathered oil indicate that the lightest petroleum fractions (saturated hydrocarbons) are the most readily oxidized components, and can serve as a template to determine chemical transformations that occur throughout the water column. The ability to differentiate and catalogue compositional changes that occur to oil after its release into the environment relies heavily on gains achieved in nearly all steps in the FT-ICR mass spectral experiment required to accommodate larger ion populations inherent to heavily weathered crude oil. Here, we present the requirement for FT-ICR MS for comprehensive oil spill characterization, and highlight advances made to FT-ICR MS experimental conditions developed from petroleum characterization. Work supported by DMR-06-54118, NSF CHE-10-49753 (RAPID), BP/The Gulf of Mexico Research Initiative, and the State of Florida

  15. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  16. MicroRadarNet: A network of weather micro radars for the identification of local high resolution precipitation patterns

    Science.gov (United States)

    Turso, S.; Paolella, S.; Gabella, M.; Perona, G.

    2013-01-01

    In this paper, MicroRadarNet, a novel micro radar network for continuous, unattended meteorological monitoring is presented. Key aspects and constraints are introduced. Specific design strategies are highlighted, leading to the technological implementations of this wireless, low-cost, low power consumption sensor network. Raw spatial and temporal datasets are processed on-board in real-time, featuring a consistent evaluation of the signals from the sensors and optimizing the data loads to be transmitted. Network servers perform the final post-elaboration steps on the data streams coming from each unit. Final network products are meteorological mappings of weather events, monitored with high spatial and temporal resolution, and lastly served to the end user through any Web browser. This networked approach is shown to imply a sensible reduction of the overall operational costs, including management and maintenance aspects, if compared to the traditional long range monitoring strategy. Adoption of the TITAN storm identification and nowcasting engine is also here evaluated for in-loop integration within the MicroRadarNet data processing chain. A brief description of the engine workflow is provided, to present preliminary feasibility results and performance estimates. The outcomes were not so predictable, taking into account relevant operational differences between a Western Alps micro radar scenario and the long range radar context in the Denver region of Colorado. Finally, positive results from a set of case studies are discussed, motivating further refinements and integration activities.

  17. Soil erodibility in Europe: a high-resolution dataset based on LUCAS.

    Science.gov (United States)

    Panagos, Panos; Meusburger, Katrin; Ballabio, Cristiano; Borrelli, Pasqualle; Alewell, Christine

    2014-05-01

    The greatest obstacle to soil erosion modelling at larger spatial scales is the lack of data on soil characteristics. One key parameter for modelling soil erosion is the soil erodibility, expressed as the K-factor in the widely used soil erosion model, the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). The K-factor, which expresses the susceptibility of a soil to erode, is related to soil properties such as organic matter content, soil texture, soil structure and permeability. With the Land Use/Cover Area frame Survey (LUCAS) soil survey in 2009 a pan-European soil dataset is available for the first time, consisting of around 20,000 points across 25 Member States of the European Union. The aim of this study is the generation of a harmonised high-resolution soil erodibility map (with a grid cell size of 500 m) for the 25 EU Member States. Soil erodibility was calculated for the LUCAS survey points using the nomograph of Wischmeier and Smith (1978). A Cubist regression model was applied to correlate spatial data such as latitude, longitude, remotely sensed and terrain features in order to develop a high-resolution soil erodibility map. The mean K-factor for Europe was estimated at 0.032 thahha(-1)MJ(-1)mm(-1) with a standard deviation of 0.009 thahha(-1)MJ(-1)mm(-1). The yielded soil erodibility dataset compared well with the published local and regional soil erodibility data. However, the incorporation of the protective effect of surface stone cover, which is usually not considered for the soil erodibility calculations, resulted in an average 15% decrease of the K-factor. The exclusion of this effect in K-factor calculations is likely to result in an overestimation of soil erosion, particularly for the Mediterranean countries, where highest percentages of surface stone cover were observed. Copyright © 2014. Published by Elsevier B.V.

  18. Synoptic weather types associated with critical fire weather

    Science.gov (United States)

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson

    1964-01-01

    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  19. IBM Demonstrates a General-Purpose, High-Performance, High-Availability Cloud-Hosted Data Distribution System With Live GOES-16 Weather Satellite Data

    Science.gov (United States)

    Snyder, P. L.; Brown, V. W.

    2017-12-01

    IBM has created a general purpose, data-agnostic solution that provides high performance, low data latency, high availability, scalability, and persistent access to the captured data, regardless of source or type. This capability is hosted on commercially available cloud environments and uses much faster, more efficient, reliable, and secure data transfer protocols than the more typically used FTP. The design incorporates completely redundant data paths at every level, including at the cloud data center level, in order to provide the highest assurance of data availability to the data consumers. IBM has been successful in building and testing a Proof of Concept instance on our IBM Cloud platform to receive and disseminate actual GOES-16 data as it is being downlinked. This solution leverages the inherent benefits of a cloud infrastructure configured and tuned for continuous, stable, high-speed data dissemination to data consumers worldwide at the downlink rate. It also is designed to ingest data from multiple simultaneous sources and disseminate data to multiple consumers. Nearly linear scalability is achieved by adding servers and storage.The IBM Proof of Concept system has been tested with our partners to achieve in excess of 5 Gigabits/second over public internet infrastructure. In tests with live GOES-16 data, the system routinely achieved 2.5 Gigabits/second pass-through to The Weather Company from the University of Wisconsin-Madison SSEC. Simulated data was also transferred from the Cooperative Institute for Climate and Satellites — North Carolina to The Weather Company, as well. The storage node allocated to our Proof of Concept system as tested was sized at 480 Terabytes of RAID protected disk as a worst case sizing to accommodate the data from four GOES-16 class satellites for 30 days in a circular buffer. This shows that an abundance of performance and capacity headroom exists in the IBM design that can be applied to additional missions.

  20. Application of wastewater with high organic load for saline-sodic soil reclamation focusing on soil purification ability

    Directory of Open Access Journals (Sweden)

    M.A. Kameli

    2017-04-01

    Full Text Available Fresh water source scarcity in arid and semiarid area is limitation factor for saline-sodic soil reclamation. The reusing of agricultural drainage and industrial wastewater are preferred strategies for combating with this concern. The objective of current study was evaluation in application of industrial sugar manufacture wastewater due to high soluble organic compounds in saline-sodic and sodic soil. Also soil ability in wastewater organic compounds removal was second aim of present study. Saline-sodic and sodic soil sample was leached in soil column by diluted wastewater of amirkabir sugar manufacture in Khuzestan Province of Iran at constant water head. Sodium, electric conductivity and chemical oxygen demand of soil column leachate were measured per each pore volume. The experimental kinetics of wastewater organic compounds on two saline-sodic and sodic soil were also investigated by three pseudo second order, intra particle diffusion and elovich model. The results of current study showed that electric conductivity of saline-sodic soil was decreased to 90% during 3 initial pore volumes, from other side exchangeable sodium percent of saline-sodic and sodic soil decreased 30 and 71 percent, respectively. There were no significant different between wastewater chemical oxygen demand removal by saline-sodic and sodic soil in both batch and column studies. Wastewater chemical oxygen demand was decreased to 35% during pass through soil column. The results showed that the adsorption kinetics of wastewater organic compounds were best fitted by the pseudo-second order model with 99 percent correlation coefficient (r2=0.99%.

  1. GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth.

    Science.gov (United States)

    Mulder, V L; Lacoste, M; Richer-de-Forges, A C; Arrouays, D

    2016-12-15

    This work presents the first GlobalSoilMap (GSM) products for France. We developed an automatic procedure for mapping the primary soil properties (clay, silt, sand, coarse elements, pH, soil organic carbon (SOC), cation exchange capacity (CEC) and soil depth). The procedure employed a data-mining technique and a straightforward method for estimating the 90% confidence intervals (CIs). The most accurate models were obtained for pH, sand and silt. Next, CEC, clay and SOC were found reasonably accurate predicted. Coarse elements and soil depth were the least accurate of all models. Overall, all models were considered robust; important indicators for this were 1) the small difference in model diagnostics between the calibration and cross-validation set, 2) the unbiased mean predictions, 3) the smaller spatial structure of the prediction residuals in comparison to the observations and 4) the similar performance compared to other developed GlobalSoilMap products. Nevertheless, the confidence intervals (CIs) were rather wide for all soil properties. The median predictions became less reliable with increasing depth, as indicated by the increase of CIs with depth. In addition, model accuracy and the corresponding CIs varied depending on the soil variable of interest, soil depth and geographic location. These findings indicated that the CIs are as informative as the model diagnostics. In conclusion, the presented method resulted in reasonably accurate predictions for the majority of the soil properties. End users can employ the products for different purposes, as was demonstrated with some practical examples. The mapping routine is flexible for cloud-computing and provides ample opportunity to be further developed when desired by its users. This allows regional and international GSM partners with fewer resources to develop their own products or, otherwise, to improve the current routine and work together towards a robust high-resolution digital soil map of the world

  2. Heavy metal levels in soil samples from highly industrialized Lagos ...

    African Journals Online (AJOL)

    Anyakora

    2013-09-05

    Sep 5, 2013 ... The effect of heavy metals on the environment is of serious concern and threatens life in all forms. Environmental ... have affected the quality of soil due to contamination of soil with heavy metals and the consequent effects on the ..... tested for remediation of chromium-contaminated soils. (Collen, 2003).

  3. Altitudinal patterns and controls of trace metal distribution in soils of a remote high mountain, Southwest China.

    Science.gov (United States)

    Li, Rui; Bing, Haijian; Wu, Yanhong; Zhou, Jun; Xiang, Zhongxiang

    2018-02-01

    The aim of this study is to reveal the effects of regional human activity on trace metal accumulation in remote alpine ecosystems under long-distance atmospheric transport. Trace metals (Cd, Pb, and Zn) in soils of the Mt. Luoji, Southwest China, were investigated along a large altitudinal gradient [2200-3850 m above sea level (a.s.l.)] to elaborate the key factors controlling their distribution by Pb isotopic composition and statistical models. The concentrations of Cd, Pb, and Zn in the surface soils (O and A horizons) were relatively low at the altitudes of 3500-3700 m a.s.l. The enrichment factors of trace metals in the surface soils increased with altitude. After normalization for soil organic matter, the concentrations of Cd still increased with altitude, whereas those of Pb and Zn did not show a clear altitudinal trend. The effects of vegetation and cold trapping (CTE) (pollutant enrichment by decreasing temperature with increasing altitude) mainly determined the distribution of Cd and Pb in the O horizon, whereas CTE and bedrock weathering (BW) controlled that of Zn. In the A horizon, the distribution of Cd and Pb depended on the vegetation regulation, whereas that of Zn was mainly related to BW. Human activity, including ores mining and fossil fuels combustion, increased the trace metal deposition in the surface soils. The anthropogenic percentage of Cd, Pb, and Zn quantified 92.4, 67.8, and 42.9% in the O horizon, and 74.5, 33.9, and 24.9% in the A horizon, respectively. The anthropogenic metals deposited at the high altitudes of Mt. Luoji reflected the impact of long-range atmospheric transport on this remote alpine ecosystem from southern and southwestern regions.

  4. Climatology of the Iberia coastal low-level wind jet: weather research forecasting model high-resolution results

    Directory of Open Access Journals (Sweden)

    Pedro M. M. Soares

    2013-01-01

    Full Text Available Coastal low-level jets (CLLJ are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind. This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9 km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989–2007. The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.

  5. High resolution gamma spectrometry of size-separated soils from high background areas of Kerala

    International Nuclear Information System (INIS)

    Menon, M.R.; Sadasivan, S.; Nambi, K.S.V.

    1992-01-01

    Soil samples from a high background area of Kerala were analysed for their natural radionuclide content and distribution with particle size. The samples exhibited inhomogeneity in activity distribution. The smaller size particles had higher activity. The open air dose estimates are also presented. (author). 5 refs., 2 tabs

  6. Phytoremediation of high phosphorus soil by annual ryegrass and common bermudagrass harvest

    Science.gov (United States)

    Removal of soil phosphorus (P) in crop harvest is a remediation option for soils high in P. This four-year field-plot study determined P uptake by annual ryegrass (ARG, Lolium multiflorum Lam.) and common bermudagrass (CB, Cynodon dactylon (L.) Pers.) from Ruston soil (fine-loamy, siliceous, thermic...

  7. Nitrogen fixation in lichens is important for improved rock weathering

    Indian Academy of Sciences (India)

    MADU

    1996), suggesting that fungal acid production is altered in the lichen. Weathering .... 5019 biofilm, (vii) S. recemosum + B. elkanii SEMIA 5019 biofilm, and (viii) the .... chemical factors in soil mineral wethering; in Interactions of soil minerals with ...

  8. Recovery of a soil under different vegetation one year after a high intensity wildfire

    Directory of Open Access Journals (Sweden)

    A. Martín

    2013-05-01

    Full Text Available Studies on soil recovery in fragile ecosystems following high intensity wildfires are scarce. The aim of the present investigation is to evaluate the impact of a high intensity wildfire in an ecosystem under different vegetation (shrubland and pinewood located at Vilardevós (Galicia, NW Spain and highly susceptible to suffer soil erosion due to the steep relief and high erositivity of the rainfall. Soil samples were collected from the A horizon (0-5 cm 1 year after the fire and soil quality was evaluated by analysis of several physical, chemical and biochemical properties measured in the fraction chemical properties > physical properties. The data also showed that the fire impact was different depending on the soil vegetation considered (shrubland and pinewood. Moreover, the data confirmed the slow soil recovery in this fragile ecosystem and, therefore, the need of adopting post-fire stabilisation and rehabilitation treatments in order to minimize the post-fire erosion and soil degradation.

  9. Chemical weathering in response to tectonic uplift and denudation rate in a semi-arid environment, southeast Spain

    Science.gov (United States)

    Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Schoonejans, Jérôme; Vanacker, Veerle; Sonnet, Philippe; Delmelle, Pierre

    2014-05-01

    Soil thickness reflects the balance between soil production and denudation by chemical weathering and physical erosion. At topographic steady state, the soil weathering intensity is expected to be higher at low denudation rate (transport-limited) than at high denudation rate (weathering-limited). We tested this hypothesis for the first time in a semi-arid environment where chemical weathering processes are generally slow. The study site is the Internal Zone of the Betic Cordillera in Southeast Spain, Almeria province. The lithology is mainly mica-schist and quartzite with local presence of phyllite. Three catchments (EST, FIL, CAB) were selected upstream local faults along a gradient of increasing uplift rates (10-170 mm/kyr) and increasing denudation rates (20-250 mm/kyr), following the sequence ESTsoil profiles were sampled down to the bedrock. The presence of secondary pedogenic carbonates (in the CAB catchment) was taken into account to estimate soil weathering intensity. Three independent indices were used to compare soil weathering intensity across the EST, FIL and CAB catchments: the Total Reserve in Bases (TRB = [Ca2+] + [Na+] + [K+] + [Mg2+]); the soil Fed/Fet ratio that reflects the formation of secondary Fe-oxides, and the Cation Exchange Capacity (CEC) that varies with the amount of secondary clay minerals and organic matter. The difference in TRB between the soil and the bedrock (ΔTRB = TRB soil - TRB bedrock) should be more negative as weathering increases, whereas the Fed/Fet ratio is expected to augment with the intensity of weathering. Since these soils have low organic carbon content, the CEC should increase with weathering degree. Our results indicate that the ΔTRB (cmolc.kg-1) is -8±14 (n=8), -79±2 (n=8) and -51±38 (n=9) for CAB, FIL and EST, respectively. The Fed/Fet ratio for CAB, FIL and EST is 0.20±0.05 (n=8), 0.20±0.03 (n=8) and 0.29±0.05 (n=9), respectively. The CEC (cmolc.kg-1) increases from 3.3

  10. Genesis and classification of soils developed on gabbro in the high reliefs of Maroua region, North Cameroon

    Directory of Open Access Journals (Sweden)

    Désiré Tsozué

    2017-04-01

    Full Text Available The purpose of this work was to examine the genesis, properties and classification of soils resulting from the weathering of gabbro rock in the high reliefs of Maroua in the Far North Region of Cameroon. The studied soils were ~ 2 m thick, made of four horizons which consisted of coarse saprolite, fine saprolite, loose loamy clayey horizon and humiferous horizon. From petrographical view point, at the bottom of the soil profile, the preservation of the bedrock structure was marked by numerous remnants of altered plagioclases shapes. The groundmass was characterized by a double spaced fine, ranging to equal, enaulic c/f related distribution pattern. It was yellowish, characterized by weakly separated granular microstructure in the fine saprolite and had a speckled and cloudy limpidity in the loose loamy clayey horizon. Secondary minerals consisted of montmorilonite, kaolinite, goethite, quartz, gibbsite, lepidocrocite, sepiolite, feldspar and calcite. Globally, Si/Al ratio ranged between 2.85 and 3.24. The chemical index of alteration ranged from 50.95 to 55.27 % while the mineralogical index of alteration values were between 1.90 and 10.54 %. Physicochemically, soil pH varied from slightly acidic to slightly above neutral. Soil organic carbon contents were low to very low. Exchangeable bases contents were high, mostly represented by Ca2+ and Mg2+. The CEC of soils and the CEC of clay were also high, ranging respectively between 53.68 and 82.88 cmol(+.kg-1, and 116.80 and 181.38 cmol(+.kg-1. The studied soils were classified as dystric haplustepts clayey isohyperthermic. They were developed in situ by the collapse of primary mineral structures from the bottom of the coarse saprolite, due to leaching as a result of bisiallitisation and monosiallitisation. This is accompanied by a progressive ferruginization of materials, confirmed by the densification under the microscope of goethitic brown veil from the base to the loamy clay horizon and the

  11. The Decline of Soil Infiltration Capacity Due To High Elevation Groundwater

    OpenAIRE

    Isri Ronald Mangangka

    2008-01-01

    Infiltration capacity of soil mainly depends on two factors; the particle size and the moisture content of the soil. Groundwater increases the soil moisture, not only below the water table but also within the capillary zone, above the water table. Field experiment in a high groundwater area was conducted to understand the relationship among the groundwater, soil moisture and infiltration capacity. Using a single ring infiltrometer, the effect of groundwater in the infiltration rate was observ...

  12. Integrating Sphere-based Weathering Device

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In the artificial ultraviolet (UV) weathering of materials, a need exists for weathering devices that can uniformly illuminate test specimens with a high...

  13. Effects of plastic mulches and high tunnel raspberry production systems on soil physicochemical quality indicators

    Science.gov (United States)

    Domagała-Świątkiewicz, Iwona; Siwek, Piotr

    2018-01-01

    In horticulture, degradable materials are desirable alternatives to plastic films. Our aim was to study the impact of soil plastic mulching on the soil properties in the high tunnel and open field production systems of raspberry. The raised beds were mulched with a polypropylene non-woven and two degradable mulches: polypropylene with a photodegradant and non-woven polylactide. The results indicated that the system of raspberry production, as well as the type of mulching had significant impact on soil organic carbon stock, moisture content and water stable aggregate amount. Soils taken from the open field system had a lower bulk density and water stability aggregation index, but higher organic carbon and capillary water content as compared to soils collected from high tunnel conditions. In comparison with the open field system, soil salinity was also found to be higher in high tunnel, as well as with higher P, Mg, Ca, S, Na and B content. Furthermore, mulch covered soils had more organic carbon amount than the bare soils. Soil mulching also enhanced the water capacity expressed as a volume of capillary water content. In addition, mulching improved the soil structure in relation to the bare soil, in particular, in open field conditions. The impact of the compared mulches on soil quality indicators was similar.

  14. Chemical Modification of Uniform Soils and Soils with High/Low Plasticity Index

    OpenAIRE

    Li, Xuanchi; Tao, Fei; Bobet, Antonio

    2015-01-01

    Lime and/or cement are used to treat weak subgrade soils during construction of highways. These chemicals are mixed with the soil to improve its workability, compactability and engineering properties. INDOT (Indiana Department of Transportation) has been using chemical modification of native soils for the past 20 years. In fact, 90% of current subgrade is treated, typically with quick lime, lime byproducts or cement. For pavement design, it is customary to not include any improvement of the s...

  15. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake

    Science.gov (United States)

    Li, Yanhong; Zhao, Mingliang; Li, Fadong

    2018-03-01

    Soil respiration in wetlands surrounding lakes is a vital component of the soil carbon cycle in arid regions. However, information remains limited on the soil respiration around highly saline lakes during the plant growing season. Here, we aimed to evaluate diurnal and seasonal variation in soil respiration to elucidate the controlling factors in the wetland of Ebinur Lake, Xinjiang Uygur Autonomous Region, western China. We used a soil carbon flux automatic analyzer (LI-840A) to measure soil respiration rates during the growing season (April to November) in two fields covered by reeds and tamarisk and one field with no vegetation (bare soil) from 2015 to 2016. The results showed a single peak in the diurnal pattern of soil respiration from 11:00 to 17:00 for plots covered in reeds, tamarisk, and bare soil, with minimum values being detected from 03:00 to 07:00. During the growing season, the soil respiration of reeds and tamarisk peaked during the thriving period (4.16 and 3.75 mmol•m-2•s-1, respectively), while that of bare soil peaked during the intermediate growth period (0.74 mmol•m-2•s-1). The soil respiration in all three plots was lowest during the wintering period (0.08, 0.09, and-0.87 mmol•m-2•s-1, respectively). Air temperature and relative humidity significantly influenced soil respiration. A significant linear relationship was detected between soil respiration and soil temperature for reeds, tamarisk, and bare soil. The average Q10 of reeds and tamarisk were larger than that of bare soil. However, soil moisture content was not the main factor controlling soil respiration. Soil respiration was negatively correlated with soil pH and soil salinity in all three plot types. In contrast, soil respiration was positively correlated with organic carbon. Overall, CO2 emissions and greenhouse gases had a relatively weak effect on the wetlands surrounding the highly saline Ebinur Lake.

  16. Effect of growing plants on denitrification at high soil nitrate concentrations

    International Nuclear Information System (INIS)

    Haider, K.; Mosier, A.; Heinemeyer, O.

    1987-01-01

    The availability of plant rhizosphere C deposits and its influence on microbial denitrification is not clearly defined. Conflicting reports as to the influence of plants and root exudation on denitrification continue to appear in the literature. The results of the authors earlier phytotron study indicated that denitrification was not stimulated in soils planted with corn or wheat compared to unplanted soils. Lower nitrate concentrations in the planted soils, however, may have led to misinterpretation of this data. A second study was conducted, to evaluate the effect of actively growing plants on denitrification where the NO 3 7 content of planted soils was maintained similar to unplanted soils. Simultaneously the C fixed by corn (Zea mays) and the fate of fertilizer N applied to the soil during the growing season were quantified. The corn was grown in a phytotron under a continuous supply of 14 CO 2 in 15 N fertilized soils to which 15 N-NO 3 - was added periodically during the growing season. The results of these studies showed that denitrification was not stimulated in soils planted with corn during active plant growth phase even when soil NO 3 - was relatively high. Denitrification was, however, greater in corn planted than unplanted soil when the recoverable root biomass began to decrease. Less N was immobilized and net 15 N immobilization was lower in planted soils than in unplanted soils. As denitrification was lower in planted soils during the time of active plant growth, the study suggests that root exudates did not stimulate either process

  17. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence.

    Science.gov (United States)

    Mapelli, Francesca; Marasco, Ramona; Fusi, Marco; Scaglia, Barbara; Tsiamis, George; Rolli, Eleonora; Fodelianakis, Stilianos; Bourtzis, Kostas; Ventura, Stefano; Tambone, Fulvia; Adani, Fabrizio; Borin, Sara; Daffonchio, Daniele

    2018-05-01

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  18. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence

    KAUST Repository

    Mapelli, Francesca

    2018-01-09

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  19. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence

    KAUST Repository

    Mapelli, Francesca; Marasco, Ramona; Fusi, Marco; Scaglia, Barbara; Tsiamis, George; Rolli, Eleonora; Fodelianakis, Stylianos; Bourtzis, Kostas; Ventura, Stefano; Tambone, Fulvia; Adani, Fabrizio; Borin, Sara; Daffonchio, Daniele

    2018-01-01

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  20. High resolution digital soil mapping as a future instrument for developing sustainable landuse strategies

    Science.gov (United States)

    Gries, Philipp; Funke, Lisa-Marie; Baumann, Frank; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas

    2016-04-01

    Climate change, increase in population and intensification of land use pose a great challenge for sustainable handling of soils. Intelligent landuse systems are able to minimize and/or avoid soil erosion and loss of soil fertility. A successful application of such systems requires area-wide soil information with high resolution. Containing three consecutive steps, the project INE-2-H („innovative sustainable landuse") at the University of Tuebingen is about creating high-resolution soil information using Digital Soil Mapping (DSM) techniques to develop sustainable landuse strategies. Input data includes soil data from fieldwork (texture and carbon content), the official digital soil and geological map (1:50.000) as well as a wide selection of local, complex and combined terrain parameters. First, soil maps have been created using the DSM approach and Random Forest (RF). Due to high resolution (10x10 m pixels), those maps show a more detailed spatial variability of soil information compared to the official maps used. Root mean square errors (RMSE) of the modelled maps vary from 2.11 % to 6.87 % and the coefficients of determination (R²) go from 0.42 to 0.68. Second, soil erosion potentials have been estimated according to the Universal Soil Loss Equation (USLE). Long-term average annual soil loss ranges from 0.56 to 24.23 [t/ha/a]. Third, combining high-resolution erosion potentials with expert-knowledge of local farmers will result in a landuse system adapted to local conditions. This system will include sustainable strategies reducing soil erosion and conserving soil fertility.

  1. Physical weathering and regolith behaviour in a high erosion rate badland area at the Pyrenees: research design and first results

    Directory of Open Access Journals (Sweden)

    Regües, D.

    1993-12-01

    Full Text Available Previous studies on badland areas in the Vallcebre basin (High Llobregat suggested that the erosion rates are controlled by weathering rate of mudrocks. The present work was started to characterize the physical weathering processes and rates in relationship with thermal and moisture conditions.
    The method used consists of the continuous monitoring of regolith temperatures at different conditions of aspect, depth and lithology (color, and the periodical sampling of regolith moisture and bulk density, the last taken as an indicator of the weathering status. Besides this quantitative information, the changes of the surface of the regolith have been monitored with the help of photographic techniques, using a especially designed tripod. To complete the field observations, a laboratory experiment is being performed, analyzing the volumetric changes suffered by undisturbed rock samples subject to thermal and moisture oscillations.
    The results obtained emphasize the role of frost action, especially during wet conditions. Aspect and lithologic differences introduce significant nuances in thermal regime and volumetric changes respectively.

    [es] Estudios anteriores en zonas acarcavadas de la cuenca de Vallcebre (Alto Llobregat sugieren que las tasas de erosión están limitadas por la meteorización de las rocas arcillosas que las constituyen. El presente trabajo ha sido planteado para caracterizar y evaluar los procesos de meteorización física en relación con los regímenes térmico e hídrico.
    El método empleado consiste en la monitorización continua de temperaturas del aire y del regolito en diversas condiciones de profundidad, exposición y litología (color, así como el muestreo periódico de humedad y densidad aparente, considerada ésta última como indicadora del grado de meteorización. Además de esta información cuantitativa, se ha realizado un seguimiento de los cambios en la micromorfología superficial, mediante

  2. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  3. Condições meteorológicas e tipo de solo na composição da uva 'Cabernet Sauvignon' Weather and soil effects on the composition of 'Cabernet Sauvignon' grape

    Directory of Open Access Journals (Sweden)

    Rodrigo Vieira Luciano

    2013-01-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos das condições meteorológicas e do tipo de solo sobre características físico-químicas e compostos fenólicos da uva 'Cabernet Sauvignon' (Vitis vinifera. O experimento foi realizado em vinhedo implantado em 2003, enxertado sobre o porta-enxerto 'Paulsen 1103' e conduzido no sistema espaldeira. No vinhedo, foram selecionados dois solos: Cambissolo Háplico e Cambissolo Húmico. O efeito das condições meteorológicas (precipitação e temperatura mínima e máxima do ar foi avaliado nas safras 2008/2009, 2009/2010 e 2010/2011. Foram determinados os atributos físicos e químicos dos solos, os teores de sólidos solúveis, a acidez titulável e o pH do mosto, bem como o índice de polifenóis totais e dos teores de antocianinas e de taninos da uva. Os fatores solo e as condições meteorológicas (safras foram arranjados em esquema fatorial 2x3. Com exceção do teor de polifenóis totais, as condições meteorológicas e o tipo de solo afetam as características físico-químicas da uva 'Cabernet Sauvignon', com efeito mais pronunciado das condições meteorológicas do que do tipo de solo. Menores precipitações e maiores amplitudes térmicas favorecem o acúmulo de sólidos solúveis na uva 'Cabernet Sauvignon'. Maiores precipitações favorecem o aumento da acidez do mosto.The objective of this work was to evaluate the effects of weather and soil type on the physicochemical characteristics and phenolic compounds of the 'Cabernet Sauvignon' grape (Vitis vinifera. The experiment was carried out in a vineyard established in 2003, grafted onto 'Paulsen 1103', and conducted in the cordon system. Two soils were selected in the vineyard: Typic Dystrudepts and Pachic Humudepts. The effect of weather (rainfall, and minimum and maximum temperature was evaluated in the seasons 2008/2009, 2009/2010, and 2010/2011. Soil physical and chemical properties, soluble solids, titratable acidity and pH of the

  4. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  5. Physicochemical Characteristics and Heavy Metal Levels in Soil ...

    African Journals Online (AJOL)

    ADOWIE PERE

    weathering of mineral; the anthropogenic sources are associated mainly with ... al., 2013 reported high levels of Cd, Zn, Ni, Cr and. Pb from soil .... Determination of trace elements (Zn and Mn): 5 g of the dried ..... vehicles constitute principal source of Pb. Lead ..... Interaction between metals and soil organic matter in various.

  6. S-World: A high resolution global soil database for simulation modelling (Invited)

    Science.gov (United States)

    Stoorvogel, J. J.

    2013-12-01

    There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property

  7. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  8. Surface Weather, Signal Service and Weather Bureau

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather, Signal Service and Weather Bureau (SWSSWB) Records primarily created by the United States Army Signal Service from 1819 until the paid and voluntary...

  9. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  10. Using high-resolution radar images to determine vegetation cover for soil erosion assessments.

    Science.gov (United States)

    Bargiel, D; Herrmann, S; Jadczyszyn, J

    2013-07-30

    Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Uptake of endogenous and exogenous 226Ra by vegetables from soils of a highly radioactive region

    International Nuclear Information System (INIS)

    Lima, V.T.; Penna-Franca, E.

    1988-01-01

    The Pocos de Caldas Plateau is a weathered alkaline igneous intrusion where several radioactive anomalies (U and Th series) exist. Not only the local soils but also the edible vegetables produced in the region can present 226 Ra concentrations up to 10 times higher than those from areas of normal radioactivity. The aim of this work is to evaluate through greenhouse experiments, the uptake of endogenous and exogenous 226 Ra by carrots, brown beans and kale grown from four paired local natural and contaminated farm soils. Simultaneously, sequential selective extractions were performed to estimate the partitioning of 226 Ra among six geochemical fractions. The results showed that concentration ratios (CRs), related to plant dry weight, for endogenous and exogenous 226 Ra in soils, were of the order of 10 -2 -10 -1 and 10 -2 -10 0 respectively. The averages of 226 Ra exchangeable and residual fractions in soils were: 3.2% and 50.2% for endogenous and 15.4% and 6.0% for exogenous radium. The CRs calculated either in relation to total 226 Ra or to the exchangeable fraction in soils showed about the same variability. (author)

  12. The impact of weather on women's tendency to wear red or pink when at high risk for conception.

    Directory of Open Access Journals (Sweden)

    Jessica L Tracy

    Full Text Available Women are particularly motivated to enhance their sexual attractiveness during their most fertile period, and men perceive shades of red, when associated with women, as sexually attractive. Building on this research, we recently found that women are more likely to wear reddish clothing when at peak fertility (Beall & Tracy, 2013, presumably as a way of increasing their attractiveness. Here, we first report results from a methodological replication, conducted during warmer weather, which produced a null effect. Investigating this discrepancy, we considered the impact of a potentially relevant contextual difference between previous research and the replication: current weather. If the red-dress effect is driven by a desire to increase one's sexual appeal, then it should emerge most reliably when peak-fertility women have few alternative options for accomplishing this goal (e.g., wearing minimal clothing. Results from re-analyses of our previously collected data and a new experiment support this account, by demonstrating that the link between fertility and red/pink dress emerges robustly in cold, but not warm, weather. Together, these findings suggest that the previously documented red-dress effect is moderated by current climate concerns, and provide further evidence that under certain circumstances red/pink dress is reliably associated with female fertility.

  13. Soil gas measurements at high permeabilities and below foundation depth

    International Nuclear Information System (INIS)

    Johner, H.U; Surbeck, H.

    2000-01-01

    We started a project of soil gas measurements beneath houses. Since the foundations of houses often lie deeper than 0.5 to 1 m - the depth where soil gas measurements are often made - the first approach was to apply the method developed previously to deeper soil layers. The radon availability index (RAI), which was defined empirically, proved to be a reliable indicator for radon problems in nearby houses. The extreme values of permeability, non-Darcy flow and scale dependence of permeability stimulated the development of a multi-probe method. A hydrological model was applied to model the soil gas transport. The soil gas measurements below foundation depth provided a wealth of new information. A good classification of soil properties could be achieved. If soil gas measurements are to be made, the low permeability layer has to be traversed. A minimum depth of 1 .5 m is suggested, profiles to below the foundation depth are preferable. There are also implications for mitigation works. A sub-slab suction system should reach the permeable layer to function well. This also holds for radon wells. If a house is located on a slope, it is most convenient to install the sub-slab suction system on the hillside, as the foundation reaches the deepest levels there

  14. High heterogeneity in soil composition and quality in different mangrove forests of Venezuela.

    Science.gov (United States)

    Otero, X L; Méndez, A; Nóbrega, G N; Ferreira, T O; Meléndez, W; Macías, F

    2017-09-18

    Mangrove forests play an important role in biogeochemical cycles of metals, nutrients, and C in coastal ecosystems. However, these functions could be strongly affected by the mangrove soil degradation. In this study, we performed an intensive sampling characterizing mangrove soils under different types of environment (lagoon/gulf) and vegetation (Rhizophora/Avicennia/dead mangrove) in the Venezuelan coast. To better understand the spatial heterogeneity of the composition and characteristics of the soils, a wide range of the soil attributes were analyzed. In general, the soils were anoxic (Eh mangroves presented a low Fe Pyrite content due to a limitation in the Fe oxyhydroxide contents, especially in soils with higher organic C content (TOC > 15%). Finally, the dead mangrove showed significantly lower amounts of TOC and fibers (in comparison to the well-preserved mangrove forest), which indicates that the C pools in mangrove soils are highly sensitive also to natural impact, such as ENSO.

  15. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    Science.gov (United States)

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  16. Effect of Simulated Weathering and Aging of TNT in Amended Sandy Loam Soil on Toxicity to the Enchytraeid Worm, Enchytreaeus Crypticus

    National Research Council Canada - National Science Library

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Phillips, Carlton T; Kolakowski, Jan E; Kurnas, Carl W

    2006-01-01

    ...) for the ecological risk assessment of contaminants at Superfund sites. Insufficient information for TNT to generate Eco-SSL for soil invertebrates has necessitated standardized toxicity testing to fill the data gap...

  17. Zeolite Formation and Weathering Processes in Dry Valleys of Antartica: Martian Analogs

    Science.gov (United States)

    Gibson, E. K., Jr.; Wentworth, S. J.; McKay, D. S.; Socki, R. A.

    2004-01-01

    Terrestrial weathering processes in cold-desert climates such as the Dry Valleys of Antarctica may provide an excellent analog to chemical weathering and diagenesis of soils on Mars. Detailed studies of soil development and the chemical and mineralogical alterations occurring within soil columns in Wright Valley, Antarctica show incredible complexity in the upper meter of soil. Previous workers noted the ice-free Dry Valleys are the best terrestrial approximations to contemporary Mars. Images returned from the Pathfinder and Spirit landers show similarities to surfaces observed within the Dry Valleys. Similarities to Mars that exist in these valleys are: mean temperatures always below freezing (-20 C), no rainfall, sparse snowfall-rapidly removed by sublimation, desiccating winds, diurnal freeze-thaw cycles (even during daylight hours), low humidity, oxidative environment, relatively high solar radiation and low magnetic fields . The Dry Valley soils contain irregular distributions and low abundances of soil microorganisms that are somewhat unusual on Earth. Physical processes-such as sand abrasion-are dominant mechanisms of rock weathering in Antarctica. However, chemical weathering is also an important process even in such extreme climates. For example, ionic migration occurs even in frozen soils along liquid films on individual soil particles. It has also been shown that water with liquid-like properties is present in soils at temperatures on the order of approx.-80 C and it has been observed that the percentage of oxidized iron increases with increasing soil age and enrichments in oxidized iron occurs toward the surface. The presence of evaporates is evident and appear similar to "evaporite sites" within the Pathfinder and Spirit sites. Evaporites indicate ionic migration and chemical activity even in the permanently frozen zone. The presence of evaporates indicates that chemical weathering of rocks and possibly soils has been active. Authogenic zeolites have

  18. Creep behavior of soil nail walls in high plasticity index (PI) soils : project summary.

    Science.gov (United States)

    2015-08-31

    Soil nailing is a convenient and economic : stabilization method for the reinforcement of existing : excavations by installing threaded steel bars into cuts : or slopes as wall construction progresses from top : down (Figure 1). An aspect of particul...

  19. Weathering and landscape evolution

    Science.gov (United States)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.

  20. SLiM : an improved soil moisture balance method to simulate runoff and potential groundwater recharge processes using spatio-temporal weather and catchment characteristics

    OpenAIRE

    Wang, Lei; Barkwith, Andrew; Jackson, Christopher; Ellis, Michael

    2012-01-01

    The numerical modelling of runoff and groundwater recharge plays an important role in water resource management. The methodologies developed for these simulations should represent the key physical processes, and be applicable in a wide variety of climates for routine simulations using readily available field information. This paper describes the development of a Soil and Landuse based rainfall-runoff and recharge Model (SLiM) based on Rushton’s method – a single soil layer groundwater recharg...

  1. Polyhydroxyalkanoate biosynthesis by oxalotrophic bacteria from high Andean soil

    Directory of Open Access Journals (Sweden)

    Roger David Castillo-Arteaga

    2018-02-01

    Full Text Available Oxalate is a highly oxidized organic acid anion used as a carbon and energy source by oxalotrophic bacteria. Oxalogenic plants convert atmospheric CO2 into oxalic acid and oxalic salts. Oxalate-salt formation acts as a carbon sink in terrestrial ecosystems via the oxalate-carbonate pathway (OCP. Oxalotrophic bacteria might be implicated in other carbon-storage processes, including the synthesis of polyhydroxyalkanoates (PHAs. More recently, a variety of bacteria from the Andean region of Colombia in Nariño have been reported for their PHA-producing abilities. These species can degrade oxalate and participate in the oxalate-carbonate pathway. The aim of this study was to isolate and characterize oxalotrophic bacteria with the capacity to accumulate PHA biopolymers. Plants of the genus Oxalis were collected and bacteria were isolated from the soil adhering to the roots. The isolated bacterial strains were characterized using biochemical and molecular biological methods. The consumption of oxalate in culture was quantified, and PHA production was monitored in batch fermentation. The polymeric composition was characterized using gas chromatography. Finally, a biosynthetic pathway based on our findings and on those from published sources is proposed. Strains of Bacillus spp. and Serratia sp. were found to metabolize calcium oxalate and synthesize PHA.

  2. Characterization and remediation of highly radioactive contaminated soil at Hanford

    International Nuclear Information System (INIS)

    Buckmaster, M.A.; Erickson, J.K.

    1993-09-01

    The Hanford Site, Richland, Washington, contains over 1,500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy (DOE) has initiated a remedial investigation/feasibility study (RI/FS) at the 200-BP-1 operable unit. The 200-BP-1 RI/FS is the first Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) investigation on the Hanford Site that involves highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste sites within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling, chemical and physical analysis of samples, and development of a conceptual vadose zone model. These data were then used. to develop remedial alternatives during the FS evaluation. The preferred alternative resulting from the RI/FS process for the 200-BP-1 operable unit is to construct a surface isolation barrier. The multi-layered earthen barrier will be designed to prevent migration of contaminants resulting from water infiltration, biointrusion, and wind and water erosion

  3. CO2 consumption and bicarbonate fluxes by chemical weathering in North America.

    Science.gov (United States)

    Jansen, Nils; Hartmann, Jens; Lauerwald, Ronny

    2010-05-01

    Cations released by chemical weathering are mainly counterbalanced by atmospheric/soil CO2 dissolved in water. Existing approaches to quantify CO2 consumption by chemical weathering are mostly based on the parameters runoff and lithology. Land cover is not implemented as predictor in existing regional or global scale models for atmospheric/soil CO2 consumption. Here, bicarbonate fluxes in North American rivers are quantified by an empirical forward model using the predictors runoff, lithology and land cover. The model was calibrated on chemical data from 338 river monitoring stations throughout North America. It was extrapolated to the entire North American continent by applying the model equation spatially explicitly to the geodata used for model calibration. Because silicate mineral weathering derived bicarbonate in rivers originates entirely from atmospheric/soil CO2, but carbonate mineral weathering additionally releases lithogenic bicarbonate, those source minerals are distinguished to quantify the CO2 consumption by chemical weathering. Extrapolation of the model results in a total bicarbonate flux of 51 Mt C a-1 in North America; 70% of which originate from atmospheric/soil CO2. On average, chemical weathering consumes 2.64 t atmospheric/soil C km-2 a-1 (~ 30%-40% above published world average values). For a given runoff and land cover, carbonate-rich sedimentary rocks export the most bicarbonate. However, half of this is assumed to be of lithogenic origin. Thus, the most atmospheric/soil CO2 per runoff is modeled to be consumed by basic plutonics. The least bicarbonate is exported and the least CO2 is consumed per runoff by weathering of metamorphic rocks. Of the distinguished different land cover classes of which urban areas export the most bicarbonate for a given lithology and runoff, followed by shrubs, grasslands and managed lands. For a given runoff and lithology, the least bicarbonate is exported from areas with forested land cover. The model shows 1

  4. Design phase identification of high pile rebound soils : final report

    Science.gov (United States)

    2010-12-15

    An engineering problem has occurred when installing displacement piles in certain soils. During driving, piles are rebounding excessively during each hammer blow, causing delay and as a result may not achieve the required design capacities. Piles dri...

  5. Migration characteristics of cobalt-60 through sandy soil in high pH solution

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko

    1992-01-01

    Migration characteristics of 60 Co through sandy soil in high pH solution has been investigated by both column and batch techniques. The association of 60 Co with the sandy soil and its components were studied by sequential extraction techniques. The concentration profile of 60 Co in the sandy soil column was composed of two exponential curves showing that 60 Co would consist of immobile and mobile fractions. The immobile 60 Co was retained by the sandy soil and was distributed near the top. Though the mobile 60 Co was little sorbed by soil and migrated through the soil column, maximum concentration of 60 Co in the effluents decreased slightly with increasing path length of the soil column. The sequential extraction of 60 Co from the sandy soil and from its components showed that 60 Co was sorbed by both manganese oxide and clay minerals. And manganese oxide is one of the responsible soil components for the observed decrease in the maximum concentration of 60 Co in the effluents. Although the content of manganese oxide in the sandy soil was 0.13%, manganese oxide is the important component to prevent from the migration of 60 Co in the high pH solution. (author)

  6. Experimental Study on the Utilization of Fine Steel Slag on Stabilizing High Plastic Subgrade Soil

    OpenAIRE

    Hussien Aldeeky; Omar Al Hattamleh

    2017-01-01

    The three major steel manufacturing factories in Jordan dump their byproduct, steel slag, randomly in open areas, which causes many environmental hazardous problems. This study intended to explore the effectiveness of using fine steel slag aggregate (FSSA) in improving the geotechnical properties of high plastic subgrade soil. First soil and fine steel slag mechanical and engineering properties were evaluating. Then 0%, 5%, 10%, 15%, 20%, and 25% dry weight of soil of fine steel slag (FSSA) w...

  7. [Dynamic changes of soil microbial populations and enzyme activities in super-high yielding summer maize farmland soil].

    Science.gov (United States)

    Hou, Peng; Wang, Yong-jun; Wang, Kong-jun; Yang, Jin-sheng; Li, Deng-hai; Dong, Shu-ting; Liu, Jing-guo

    2008-08-01

    To reveal the characteristics of the dynamic changes of soil microbial populations and enzyme activities in super-high yielding ( > 15,000 kg x hm(-2)) summer maize farmland soil, a comparative study was conducted in the experimental fields in National Maize Engineering Research Center (Shandong). On the fields with an annual yield of >15,000 kg x hm(-2) in continuous three years, a plot with the yield of 20 322 kg x hm(-2) (HF) was chosen to make comparison with the conventional farmland (CF) whose maize yield was 8920. 1 kg x hm(-2). The numbers of bacteria, fungi, and actinomycetes as well as the activities of urease and invertase in 0-20 cm soil layer were determined. The results showed that in the growth period of maize, the numbers of bacteria, fungi, and actinomycetes in the two farmland soils increased first and declined then. At the later growth stages of maize, the numbers of soil microbes, especially those of bacteria and actinomycetes, were lower in HF than those in CF. At harvest stage, the ratio of the number of soil bacteria to fungi (B/ F) in HF was 2.03 times higher than that at sowing stage, and 3.02 times higher than that in CF. The B/F in CF had less difference at harvest and sowing stages. The soil urease activity in HF was significantly lower than that in CF at jointing stage, and the invertase activity in HF decreased rapidly after blooming stage, being significantly lower than that in CF.

  8. Experimental research on the structural characteristics of high organic soft soil in different deposition ages

    Science.gov (United States)

    Liu, Fei; Lin, Guo-he

    2018-03-01

    High organic soft soil, which is distributed at Ji Lin province in China, has been studied by a lot of scholars. In the paper, structural characteristics with different deposition ages have been researched by experimental tests. Firstly, the characteristics of deposition age, degree of decompositon, high-pressure consolidation and microstructure have been measured by a series of tests. Secondly, structural strengths which were deposited in different ages, have been carried out to test the significant differences of stress-strain relations between remoulded and undisturbed high organic soft soil samples. Results showed that high organic soft soil which is deposited at different ages will influence its structural characteristics.

  9. Analysis the configuration of earthing system based on high-low and low-high soil structure

    International Nuclear Information System (INIS)

    Ramani, A. N.; Ahmad, Abdul Rahman; Sulaima, M. F.; Nasir, M. N. M.; Ahmad, Arfah

    2015-01-01

    Each TNB transmission tower requires a tower footing resistance (TFR) with a lower grounding resistance value that depends on the transmission line voltage. For 132kV and 275kV tower, the TFR must less than 10Ω and 500kV tower must less than 5Ω. The TFR is changeable with variable factors such as soil resistivity. Low TFR provides essential protection to the fault such as lightning strike that may occur at any time. The fault current flow to the lowest resistance path and easily disperses to earth. Back flashover voltage across the insulator of transmission lines may occur when the TFR is high. The TFR is influenced by soil resistivity. There are three parameters affecting the soil resistivity; moisture content, salt content and temperature of the soil. High moisture content in soil will reduce the soil resistivity and resultant low TFR. Small scale moisture control by using Micro Reservoir (MR) irrigation with semi-permeable membranes have the power to offer the stable moisture in soil. By using osmosis concept, it is the process of net movement of water molecules from high potential water to lower potential water though a semi permeable membrane. The MR can withstand for 3 to 5 days without continuous water supply. The MR installed in the centre of the tower that contains a multiple parallel of electrode rods. The concentrated of electrode rods grounding configuration with a combination of MR will improve the TFR even at multilayer soil. As a result, MR gives a little improvement to TFR. The MR in area of concentrated electrode rod configuration to ensure the soil always wet and moist at all times. The changes in soil affect the tower-footing-resistance. The tower-footing-resistance measurement at afternoon is higher than at evening because of the temperature and moisture content in soil is change due to sun radiation

  10. Analysis the configuration of earthing system based on high-low and low-high soil structure

    Energy Technology Data Exchange (ETDEWEB)

    Ramani, A. N.; Ahmad, Abdul Rahman; Sulaima, M. F.; Nasir, M. N. M.; Ahmad, Arfah [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2015-05-15

    Each TNB transmission tower requires a tower footing resistance (TFR) with a lower grounding resistance value that depends on the transmission line voltage. For 132kV and 275kV tower, the TFR must less than 10Ω and 500kV tower must less than 5Ω. The TFR is changeable with variable factors such as soil resistivity. Low TFR provides essential protection to the fault such as lightning strike that may occur at any time. The fault current flow to the lowest resistance path and easily disperses to earth. Back flashover voltage across the insulator of transmission lines may occur when the TFR is high. The TFR is influenced by soil resistivity. There are three parameters affecting the soil resistivity; moisture content, salt content and temperature of the soil. High moisture content in soil will reduce the soil resistivity and resultant low TFR. Small scale moisture control by using Micro Reservoir (MR) irrigation with semi-permeable membranes have the power to offer the stable moisture in soil. By using osmosis concept, it is the process of net movement of water molecules from high potential water to lower potential water though a semi permeable membrane. The MR can withstand for 3 to 5 days without continuous water supply. The MR installed in the centre of the tower that contains a multiple parallel of electrode rods. The concentrated of electrode rods grounding configuration with a combination of MR will improve the TFR even at multilayer soil. As a result, MR gives a little improvement to TFR. The MR in area of concentrated electrode rod configuration to ensure the soil always wet and moist at all times. The changes in soil affect the tower-footing-resistance. The tower-footing-resistance measurement at afternoon is higher than at evening because of the temperature and moisture content in soil is change due to sun radiation.

  11. Development of an Urban High-Resolution Air Temperature Forecast System for Local Weather Information Services Based on Statistical Downscaling

    Directory of Open Access Journals (Sweden)

    Chaeyeon Yi

    2018-04-01

    Full Text Available The Korean peninsula has complex and diverse weather phenomena, and the Korea Meteorological Administration has been working on various numerical models to produce better forecasting data. The Unified Model Local Data Assimilation and Prediction System is a limited-area working model with a horizontal resolution of 1.5 km for estimating local-scale weather forecasts on the Korean peninsula. However, in order to numerically predict the detailed temperature characteristics of the urban space, in which surface characteristics change rapidly in a small spatial area, a city temperature prediction model with higher resolution spatial decomposition capabilities is required. As an alternative to this, a building-scale temperature model was developed, and a 25 m air temperature resolution was determined for the Seoul area. The spatial information was processed using statistical methods, such as linear regression models and machine learning. By comparing the accuracy of the estimated air temperatures with observational data during the summer, the machine learning was improved. In addition, horizontal and vertical characteristics of the urban space were better represented, and the air temperature was better resolved spatially. Air temperature information can be used to manage the response to heat-waves and tropical nights in administrative districts of urban areas.

  12. Evaluating new SMAP soil moisture for drought monitoring in the rangelands of the US High Plains

    Science.gov (United States)

    Velpuri, Naga Manohar; Senay, Gabriel B.; Morisette, Jeffrey T.

    2016-01-01

    Level 3 soil moisture datasets from the recently launched Soil Moisture Active Passive (SMAP) satellite are evaluated for drought monitoring in rangelands.Validation of SMAP soil moisture (SSM) with in situ and modeled estimates showed high level of agreement.SSM showed the highest correlation with surface soil moisture (0-5 cm) and a strong correlation to depths up to 20 cm.SSM showed a reliable and expected response of capturing seasonal dynamics in relation to precipitation, land surface temperature, and evapotranspiration.Further evaluation using multi-year SMAP datasets is necessary to quantify the full benefits and limitations for drought monitoring in rangelands.

  13. Soil biological shield exposed to high energy neutrons; Zemlja kao bioloski stit od neutrona visokih energija

    Energy Technology Data Exchange (ETDEWEB)

    Simovic, R; Marinkovic, N [Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1993-04-15

    Shielding efficiency of soil biological shield exposed to high energy neutrons was investigated. Dose rate equivalents for neutrons, secondary gamma and gamma radiation were computed on the surface of soil slabs having different thicknesses. Yields of primary and secondary nuclear radiation in the total dose were evaluated. Influence of the incident neutron spectrum, water content and chemical composition of the material on its shielding efficiency was examined. It was found that the soil density and the water content determine the quality of biological shield, the influence of other factors being less important. Comparison of shielding efficiencies for soil with sand, brick and ordinary concrete shields was done.

  14. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product

    Science.gov (United States)

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  15. Changing spatial patterns of evapotranspiration and deep drainage in response to the interactions among impervious surface arrangement, soil characteristics, and weather on a residential parcel.

    Science.gov (United States)

    Voter, C. B.; Steven, L. I.

    2015-12-01

    The introduction impervious surfaces in urban areas is a key driver of hydrologic change. It is now well understood that the amount of "effective" impervious area directly connected to the storm sewer network is a better indicator of hydrologic behavior than the total amount of impervious area. Most studies in urban hydrology have focused on the relationship between impervious connectivity and stormwater runoff or other surface water flows, with the result that the effect on subsurface flow is not as well understood. In the field, we observe differences in soil moisture availability that are dependent on proximity to impervious features and significant from a root water uptake perspective, which indicates that parcel-scale subsurface and plant water fluxes may also be sensitive to fine-scaled heterogeneity in impervious surface arrangement and connectivity. We use ParFlow with CLM, a watershed model with fully integrated variably-saturated subsurface flow, overland flow, and land-surface processes, to explore the extent to which soil moisture, evapotranspiration, and deep drainage vary under various impervious surface arrangement and soil condition scenarios, as well as under a range of precipitation regimes. We investigate the effect of several impervious surface and soil characteristics, including general lot layout, downspout disconnect, and direction of driveway/sidewalk slope, and soil compaction. We show that that some impervious connectivity schemes transfer more water from impervious areas to pervious ones and promote localized recharge by developing well-defined, fast-moving wetting fronts that are able to penetrate the root zone. Enhanced infiltration is translated more directly to recharge in normal to wet years but partitioned more often to transpiration in dry years, leading to a nonlinear relationship among precipitation, runoff and recharge.

  16. High resolution soil moisture radiometer. [large space structures

    Science.gov (United States)

    Wilheit, T. T.

    1978-01-01

    An electrically scanned pushbroom phased antenna array is described for a microwave radiometer which can provide agriculturally meaningful measurements of soil moisture. The antenna size of 100 meters at 1400 MHz or 230 meters at 611 MHz requires several shuttle launches and orbital assembly. Problems inherent to the size of the structure and specific instrument problems are discussed as well as the preliminary design.

  17. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    classification and use a range of different techniques and input data. The first method uses external information from multispectral satellite images to detect clutter. The information in the visual, near-infrared, and infrared parts of the spectrum can be used to distinguish between cloud and cloud-free areas......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...

  18. Chromium isotope fractionation during oxidative weathering of a modern basaltic weathering profile

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Døssing, Lasse Nørbye; Frei, Robert

    Chromium can be used as a tracer of redox sensitive environmental processes. In soils Cr (III) is inert, immobile and resides predominantly in minerals, clays and oxides. Cr (VI) is toxic, soluble and mobile and is usually lost from the soil to local run off. Chromium isotopes have been shown...... to fractionate under both reducing and oxidizing conditions [1, 2]. Recent studies on d53Cr isotopes in laterite soils show that oxidative weathering of Cr-bearing rocks is accompanied by an isotopic fractionation, where by the lighter isotopes are retained in the residual soil and the heavier isotope...... is enriched in local runoff [1]. This study aims to quantify the stable Cr isotope composition of two modern basaltic weathering profiles, to help better understand the processes that oxidize inert Cr (III) to toxic Cr (VI). We sampled basaltic weathering profiles and associated river waters from areas of two...

  19. Influence of copper high-tension lines on plants and soils

    Energy Technology Data Exchange (ETDEWEB)

    Kraal, H.; Ernst, W.

    1976-09-01

    The copper contents of plants and soils were determined in relation to the distance from copper high-tension lines. In the vicinity of the cables clayey and fenny soils had demonstrably higher copper contents, due to corrosion of the cables, than regions 20 m and more outside the high-tension lines. On these soils, however, copper accumulation in the plants was low in comparison with those from a sandy soil, although this soil itself showed no copper increase in relation to the cables. The contaminated plants may present a risk of poisoning for sheep within a 20 m distance on both sides of the cables. No changes in plant species composition and in the copper tolerance of Agrostis tenuis were observed.

  20. Kinetically limited weathering at low denudation rates in semiarid climatic conditions

    Science.gov (United States)

    Schoonejans, Jérôme; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Christl, Marcus

    2016-02-01

    Biogeochemical cycling within the Critical Zone depends on the interactions between minerals and fluids controlling chemical weathering and physical erosion rates. In this study, we explore the role of water availability in controlling soil chemical weathering in semiarid climatic conditions. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We combine a geochemical mass balance with 10Be cosmogenic nuclides to constrain chemical weathering intensities and long-term denudation rates. As such, this study presents new data on chemical weathering and 10Be-derived denudation for understudied semiarid climate systems. In the Betic Cordillera, chemical weathering intensities are relatively low (~5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Chemical mass losses are inversely related to denudation rates (14-109 mm/kyr) and positively to soil thickness (14-58 cm); these results are consistent with kinetic limitation of chemical weathering rates. A worldwide compilation of chemical weathering data suggests that soil water balance may regulate the coupling between chemical weathering and physical erosion by modulating soil solute fluxes. Therefore, future landscape evolution models that seek to link chemical weathering and physical erosion should include soil water flux as an essential driver of weathering.

  1. Scots pine litter decomposition along drainage succession and soil nutrient gradients in peatland forests, and the effects of inter-annual weather variation

    Science.gov (United States)

    Raija Laiho; Jukka Laine; Carl C. Trettin; Leena Finér

    2004-01-01

    Peatlands form a large carbon (C) pool but their C sink is labile and susceptible to changes in climate and land-use. Some pristine peatlands are forested, and others have the potential: the amount of arboreal vegetation is likely to increase if soil water levels are lowered as a consequence of climate change. On those sites tree litter dynamics may be crucial for the...

  2. Feasibility of High-Resolution Soil Erosion Measurements by Means of Rainfall Simulations and SfM Photogrammetry

    Directory of Open Access Journals (Sweden)

    Phoebe Hänsel

    2016-11-01

    Full Text Available The silty soils of the intensively used agricultural landscape of the Saxon loess province, eastern Germany, are very prone to soil erosion, mainly caused by water erosion. Rainfall simulations, and also increasingly structure-from-motion (SfM photogrammetry, are used as methods in soil erosion research not only to assess soil erosion by water, but also to quantify soil loss. This study aims to validate SfM photogrammetry determined soil loss estimations with rainfall simulations measurements. Rainfall simulations were performed at three agricultural sites in central Saxony. Besides the measured data runoff and soil loss by sampling (in mm, terrestrial images were taken from the plots with digital cameras before and after the rainfall simulation. Subsequently, SfM photogrammetry was used to reconstruct soil surface changes due to soil erosion in terms of high resolution digital elevation models (DEMs for the pre- and post-event (resolution 1 × 1 mm. By multi-temporal change detection, the digital elevation model of difference (DoD and an averaged soil loss (in mm is received, which was compared to the soil loss by sampling. Soil loss by DoD was higher than soil loss by sampling. The method of SfM photogrammetry-determined soil loss estimations also include a comparison of three different ground control point (GCP approaches, revealing that the most complex one delivers the most reliable soil loss by DoD. Additionally, soil bulk density changes and splash erosion beyond the plot were measured during the rainfall simulation experiments in order to separate these processes and associated surface changes from the soil loss by DoD. Furthermore, splash was negligibly small, whereas higher soil densities after the rainfall simulations indicated soil compaction. By means of calculated soil surface changes due to soil compaction, the soil loss by DoD achieved approximately the same value as the soil loss by rainfall simulation.

  3. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    Science.gov (United States)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon

  4. Distribution of Quercus agrifolia mycorrhizae deep within weathered bedrock: a potential mechanism for transport of stored water

    Science.gov (United States)

    M. Bornyasz; R. Graham; M. Allen

    2002-01-01

    In southwestern California, Quercus agrifolia distribution closely matches regions of granitic regolith. High annual evapotranspiration demand and inherent shallow soil conditions lead to a dependence on a deep rooting system and an ability to access water from deep within the regolith. Most of the plant available water in weathered granitic rock is...

  5. Clemson final report: High temperature formulations for SRS soils

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    1997-01-01

    This study was undertaken to demonstrate the application of a DC arc melter to in-situ vitrification of SRS soils. The melter that was available at the DOE/Industrial Vitrification Laboratory at Clemson University was equipped with opposing solid electrodes. To simulate field conditions, two hollow electrode configurations were evaluated which allowed fluxes to be injected into the melter while the soils were being vitrified. the first 4 runs utilized pre-blended flux (two runs) and attempted flux injection (two runs). These runs were terminated prematurely due to offgas sampling problems and melt freezing. The remaining four runs utilized a different electrode geometry, and the runs were not interrupted to change out the offgas sampling apparatus. These runs were conducted successfully

  6. Drying shrinkage problems in high-plastic clay soils in Oklahoma.

    Science.gov (United States)

    2013-08-01

    Longitudinal cracking in pavements due to drying shrinkage of high-plastic subgrade soils has been a major : problem in Oklahoma. Annual maintenance to seal and repair these distress problems costs significant amount of : money to the state. The long...

  7. Radiogenic Isotopes in Weathering and Hydrology

    Science.gov (United States)

    Blum, J. D.; Erel, Y.

    2003-12-01

    cycling of calcium. The decay of 235U to 207Pb, 238U to 206Pb, and 232Th to 208Pb have half-lives of 0.704 Gyr, 4.47 Gyr, and 14.0 Gyr, respectively, and result in variations in the 207Pb/204Pb, 206Pb/204Pb, and 208Pb/204Pb ratios (e.g., Blum, 1995). Uranium-234 has a half-life of 0.25 Myr and the ratio 234U/238U approaches a constant secular equilibrium value in rocks and minerals if undisturbed for ˜1 Myr. Differences in this ratio are often observed in solutions following rock-water interaction and have been used in studies of weathering and hydrology. Uranium and thorium tend to be highly concentrated in the trace accessory minerals such as zircon, monazite, apatite, and sphene, which therefore develop high 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios. Once released into the hydrosphere, lead retains its isotopic composition without significant geochemical or biological fractionation and tends to generally follow the chemistry of iron in soils and aqueous systems (Erel and Morgan, 1992). The use of the U-Th disequilibrium series as a dating tool falls outside the scope of this chapter and is reviewed in Chapters 6.14 and 6.17 as well as Chapter 3.15. The decay of 147Sm to 143Nd, 176Lu to 176Hf, and 187Re to 187Os have half-lives of 106 Gyr, 35.7 Gyr, and 42.3 Gyr, respectively, and result in natural variability in the 144Nd/143Nd, 176Hf/177Hf, and 187Os/188Os ratios (e.g., Blum, 1995). Neodymium is a rare earth element (REE), hafnium is a transition metal with chemical similarities to zirconium, and osmium is a platinum group element. The geochemical behaviors of these elements in the hydrosphere are largely determined by these chemical affinities.

  8. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  9. Using Haines Index coupled with fire weather model predicted from high resolution LAM forecasts to asses wildfire extreme behaviour in Southern Europe.

    Science.gov (United States)

    Gaetani, Francesco; Baptiste Filippi, Jean; Simeoni, Albert; D'Andrea, Mirko

    2010-05-01

    Haines Index (HI) was developed by USDA Forest Service to measure the atmosphere's contribution to the growth potential of a wildfire. The Haines Index combines two atmospheric factors that are known to have an effect on wildfires: Stability and Dryness. As operational tools, HI proved its ability to predict plume dominated high intensity wildfires. However, since HI does not take into account the fuel continuity, composition and moisture conditions and the effects of wind and topography on fire behaviour, its use as forecasting tool should be carefully considered. In this work we propose the use of HI, predicted from HR Limited Area Model forecasts, coupled with a Fire Weather model (i.e., RISICO system) fully operational in Italy since 2003. RISICO is based on dynamic models able to represent in space and in time the effects that environment and vegetal physiology have on fuels and, in turn, on the potential behaviour of wildfires. The system automatically acquires from remote databases a thorough data-set of input information both of in situ and spatial nature. Meteorological observations, radar data, Limited Area Model weather forecasts, EO data, and fuel data are managed by a Unified Interface able to process a wide set of different data. Specific semi-physical models are used in the system to simulate the dynamics of the fuels (load and moisture contents of dead and live fuel) and the potential fire behaviour (rate of spread and linear intensity). A preliminary validation of this approach will be provided with reference to Sardinia and Corsica Islands, two major islands of the Mediterranean See frequently affected by extreme plume dominated wildfires. A time series of about 3000 wildfires burnt in Sardinia and Corsica in 2007 and 2008 will be used to evaluate the capability of HI coupled with the outputs of the Fire Weather model to forecast the actual risk in time and in space.

  10. Mapping Soil Age at Continental Scales

    Science.gov (United States)

    Slessarev, E.; Feng, X.

    2017-12-01

    Soil age controls the balance between weathered and unweathered minerals in soil, and thus strongly influences many of the biological, geochemical, and hydrological functions of the critical zone. However, most quantitative models of soil development do not represent soil age. Instead, they rely on a steady-state assumption: physical erosion controls the residence time of unweathered minerals in soil, and thus fixes the chemical weathering rate. This assumption may hold true in mountainous landscapes, where physical erosion rates are high. However, the steady-state assumption may fail in low-relief landscapes, where physical erosion rates have been insufficient to remove unweathered minerals left by glaciation and dust deposition since the Last Glacial Maximum (LGM). To test the applicability of the steady-state assumption at continental scales, we developed an empirical predictor for physical erosion, and then simulated soil development since LGM with a numerical model. We calibrated the physical erosion predictor using a compilation of watershed-scale sediment yield data, and in-situ 10Be denudation measurements corrected for weathering by Zr/Ti mass-balance. Physical erosion rates can be predicted using a power-law function of local relief and peak ground acceleration, a proxy for tectonic activity. Coupling physical erosion rates with the numerical model reveals that extensive low-relief areas of North America may depart from steady-state because they were glaciated, or received high dust fluxes during LGM. These LGM legacy effects are reflected in topsoil Ca:Al and Quartz:Feldspar ratios derived from United States Geological Survey data, and in a global compilation of soil pH measurements. Our results quantitatively support the classic idea that soils in the mid-high latitudes of the Northern Hemisphere are "young", in the sense that they are undergoing transient response to LGM conditions. Where they occur, such departures from steady-state likely increase

  11. Soil mechanical stresses in high wheel load agricultural field traffic: a case study

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2017-01-01

    highly skewed. Across tyres, the maximum stress in the contact area correlated linearly with, but was much higher than, the mean ground pressure. For each of the three soil depths, the maximum stresses under the tyres were significantly correlated with the wheel load, but not with other loading......Subsoil compaction is a serious long-term threat to soil functions. Only a few studies have quantified the mechanical stresses reaching deep subsoil layers for modern high wheel load machinery. In the present study we measured the vertical stresses in the tyre–soil contact area and at 0.3, 0...

  12. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils.

    Science.gov (United States)

    Ali, M A; Louche, J; Legname, E; Duchemin, M; Plassard, C

    2009-12-01

    Young seedlings of maritime pine (Pinus pinaster Soland in Aït.) were grown in rhizoboxes using intact spodosol soil samples from the southwest of France, in Landes of Gascogne, presenting a large variation of phosphorus (P) availability. Soils were collected from a 93-year-old unfertilized stand and a 13-year-old P. pinaster stand with regular annual fertilization of either only P or P and nitrogen (N). After 6 months of culture in controlled conditions, different morphotypes of ectomycorrhiza (ECM) were used for the measurements of acid phosphatase activity and molecular identification of fungal species using amplification of the ITS region. Total biomass, N and P contents were measured in roots and shoots of plants. Bicarbonate- and NaOH-available inorganic P (Pi), organic P (Po) and ergosterol concentrations were measured in bulk and rhizosphere soil. The results showed that bulk soil from the 93-year-old forest stand presented the highest Po levels, but relatively higher bicarbonate-extractable Pi levels compared to 13-year-old unfertilized stand. Fertilizers significantly increased the concentrations of inorganic P fractions in bulk soil. Ergosterol contents in rhizosphere soil were increased by fertilizer application. The dominant fungal species was Rhizopogon luteolus forming 66.6% of analysed ECM tips. Acid phosphatase activity was highly variable and varied inversely with bicarbonate-extractable Pi levels in the rhizosphere soil. Total P or total N in plants was linearly correlated with total plant biomass, but the slope was steep only between total P and biomass in fertilized soil samples. In spite of high phosphatase activity in ECM tips, P availability remained a limiting nutrient in soil samples from unfertilized stands. Nevertheless young P. pinaster seedlings showed a high plasticity for biomass production at low P availability in soils.

  13. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  14. Modeling interactions of soil hydrological dynamics and soil thermal and permafrost dynamics and their effects on carbon cycling in northern high latitudes

    Science.gov (United States)

    Zhuang, Q.; Tang, J.

    2008-12-01

    Large areas of northern high latitude ecosystems are underlain with permafrost. The warming temperature and fires deteriorate the stability of those permafrost, altering hydrological cycle, and consequently soil temperature and active layer depth. These changes will determine the fate of large carbon pools in soils and permafrost over the region. We developed a modeling framework of hydrology, permafrost, and biogeochemical dynamics based on our existing modules of these components. The framework was incorporated with a new snow dynamics module and the effects of soil moisture on soil thermal properties. The framework was tested for tundra and boreal forest ecosystems at field sites with respect to soil thermal and hydrological regimes in Alaska and was then applied to the whole Alaskan ecosystems for the period of 1923-2000 at a daily time step. Our two sets of simulations with and without considering soil moisture effects indicated that the soil temperature profile and active layer depth between two simulations are significant different. The differences of soil thermal regime would expect to result in different carbon dynamics. Next, we will verify the framework with the observed data of soil moisture and soil temperature at poor-drain, moderate-drain, and well-drain boreal forest sites in Alaska. With the verified framework, we will evaluate the effects of interactions of soil thermal and hydrological dynamics on carbon dynamics for the whole northern high latitudes.

  15. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    Science.gov (United States)

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  16. The Weather in Richmond

    OpenAIRE

    Harless, William Edwin

    2014-01-01

    ABSTRACT: The Weather in Richmond is a short documentary about the Oilers, the football team at Richmond High School in downtown Richmond, California, as they struggle in 2012 with the legacy of winning no games, with the exception of a forfeit, in two years. The video documents the city of Richmond’s poverty and violence, but it also is an account of the city’s cultural diversity, of the city’s industrial history and of the hopes of some of the people who grow up there. The...

  17. WEATHER INDEX- THE BASIS OF WEATHER DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Botos Horia Mircea

    2011-07-01

    Full Text Available This paper approaches the subject of Weather Derivatives, more exactly their basic element the weather index. The weather index has two forms, the Heating Degree Day (HDD and the Cooling Degree Day (CDD. We will try to explain their origin, use and the relationship between the two forms of the index. In our research we started from the analysis of the weather derivatives and what they are based on. After finding out about weather index, we were interested in understanding exactly how they work and how they influence the value of the contract. On the national level the research in the field is scares, but foreign materials available. The study for this paper was based firstly on reading about Weather Derivative, and then going in the meteorogical field and determining the way by which the indices were determined. After this, we went to the field with interest in the indices, such as the energy and gas industries, and figured out how they determined the weather index. For the examples we obtained data from the weather index database, and calculated the value for the period. The study is made on a period of five years, in 8 cities of the European Union. The result of this research is that we can now understand better the importance of the way the indices work and how they influence the value of the Weather Derivatives. This research has an implication on the field of insurance, because of the fact that weather derivative are at the convergence point of the stock markets and the insurance market. The originality of the paper comes from the personal touch given to the theoretical aspect and through the analysis of the HDD and CDD index in order to show their general behaviour and relationship.

  18. Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Weather Observation Collection consists primarily of hourly, synoptic, daily, and monthly forms submitted to the archive by the National Weather Service...

  19. Mariners Weather Log

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  20. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  1. Pilot Weather Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviation weather reports relayed from pilots to FAA air traffic controllers or National Weather Service personnel. Elements include sky cover, turbulence, wind...

  2. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  3. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  4. Daily Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  5. Surface Weather Observations Hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard hourly observations taken at Weather Bureau/National Weather Service offices and airports throughout the United States. Hourly observations began during the...

  6. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  7. Land Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is the international standard code format for hourly surface weather observations. The acronym roughly translates from French as Aviation Routine Weather...

  8. Internet Weather Source

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (NWS) National Telecommunications Gateway provides weather, hydrologic, and climate forecasts and warnings for the United States, its...

  9. Natural Weathering Exposure Station

    Data.gov (United States)

    Federal Laboratory Consortium — The Corps of Engineers' Treat Island Natural Weathering Exposure Station is a long-term natural weathering facility used to study concrete durability. Located on the...

  10. Space Weather in Operation

    Data.gov (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  11. Multi-Year Lags between Forest Browning and Soil Respiration at High Northern Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Bunn, Andrew G.; Thomson, Allison M.

    2012-11-26

    High-latitude northern ecosystems are experiencing rapid climate changes, and represent a large potential climate feedback because of their high soil carbon densities and shifting disturbance regimes. A significant carbon flow from these ecosystems is soil respiration (RS, the flow of carbon dioxide, generated by plant roots and soil fauna, from the soil surface to atmosphere), and any change in the high-latitude carbon cycle might thus be reflected in RS observed in the field. This study used two variants of a machine-learning algorithm and least squares regression to examine how remotely-sensed canopy greenness (NDVI), climate, and other variables are coupled to annual RS based on 105 observations from 64 circumpolar sites in a global database. The addition of NDVI roughly doubled model performance, with the best-performing models explaining ~62% of observed RS variability

  12. A highly efficient nonchemical method for isolating live nematodes (Caenorhabditis elegans) from soil during toxicity assays.

    Science.gov (United States)

    Kim, Shin Woong; Moon, Jongmin; An, Youn-Joo

    2015-01-01

    The success of soil toxicity tests using Caenorhabditis elegans may depend in large part on recovering the organisms from the soil. However, it can be difficult to learn the International Organization for Standardization/ASTM International recovery process that uses the colloidal silica flotation method. The present study determined that a soil-agar isolation method provides a highly efficient and less technically demanding alternative to the colloidal silica flotation method. Test soil containing C. elegans was arranged on an agar plate in a donut shape, a linear shape, or a C curve; and microbial food was placed outside the soil to encourage the nematodes to leave the soil. The effects of ventilation and the presence of food on nematode recovery were tested to determine the optimal conditions for recovery. A linear arrangement of soil on an agar plate that was sprinkled with microbial food produced nearly 83% and 90% recovery of live nematodes over a 3-h and a 24-h period, respectively, without subjecting the nematodes to chemical stress. The method was tested using copper (II) chloride dihydrate, and the resulting recovery rate was comparable to that obtained using colloidal silica flotation. The soil-agar isolation method portrayed in the present study enables live nematodes to be isolated with minimal additional physicochemical stress, making it a valuable option for use in subsequent sublethal tests where live nematodes are required. © 2014 SETAC.

  13. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  14. Impact of weather variability on nitrate leaching

    Science.gov (United States)

    Richards, Karl; Premrov, Alina; Hackett, Richard; Coxon, Catherine

    2016-04-01

    The loss of nitrate (NO3 - N) to water via leaching and overland flow contributes to eutrophication of freshwaters, transitional and near coastal waters with agriculture contributing significantly to nitrogen (N) loading to these water. Environmental regulations, such as the Nitrates and Water Framework Directives, have increased constraints on farmers to improve N management in regions at risk of NO3--N loss to water. In addition, farmers also have to manage their systems within a changing climate as the imapcts of climate change begin to impact resulting in more frequent extreme events such as floods and droughts. The objective of this study was to investigate the link between weather volatility and the concentration of leached NO3--N spring barley. Leaching was quantified under spring barley grown on a well-drained, gravelly sandy soil using ceramic cup samplers over 6 drainage years under the same farming practices and treatments. Soil solution NO3--N concentrations under spring barley grown by conventional inversion ploughing and reduced tillage were compared to weather parameters over the period. Weather was recorded at a national Met Eireann weather station on site. Soil solution NO3--N varied significantly between years. Within individual years NO3--N concentrations varied over the drainage season, with peak concentrations generally observed in the autumn time, decreasing thereafter. Under both treatments there was a three-fold difference in mean annual soil solution NO3--N concentration over the 6 years with no change in the agronomic practices (crop type, tillage type and fertiliser input). Soil solution nitrate concentrations were significantly influenced by weather parameters such as rainfall, effective drainage and soil moisture deficit. The impact of climate change in Ireland could lead to increased NO3--N loss to water further exacerbating eutrophication of sensitive estuaries. The increased impact on eutrophication of waters, related to climatic

  15. Evaluation of Enhanced High Resolution MODIS/AMSR-E SSTs and the Impact on Regional Weather Forecast

    Science.gov (United States)

    Schiferl, Luke D.; Fuell, Kevin K.; Case, Jonathan L.; Jedlovec, Gary J.

    2010-01-01

    Over the last few years, the NASA Short-term Prediction Research and Transition (SPoRT) Center has been generating a 1-km sea surface temperature (SST) composite derived from retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for use in operational diagnostics and regional model initialization. With the assumption that the day-to-day variation in the SST is nominal, individual MODIS passes aboard the Earth Observing System (EOS) Aqua and Terra satellites are used to create and update four composite SST products each day at 0400, 0700, 1600, and 1900 UTC, valid over the western Atlantic and Caribbean waters. A six month study from February to August 2007 over the marine areas surrounding southern Florida was conducted to compare the use of the MODIS SST composite versus the Real-Time Global SST analysis to initialize the Weather Research and Forecasting (WRF) model. Substantial changes in the forecast heat fluxes were seen at times in the marine boundary layer, but relatively little overall improvement was measured in the sensible weather elements. The limited improvement in the WRF model forecasts could be attributed to the diurnal changes in SST seen in the MODIS SST composites but not accounted for by the model. Furthermore, cloud contamination caused extended periods when individual passes of MODIS were unable to update the SSTs, leading to substantial SST latency and a cool bias during the early summer months. In order to alleviate the latency problems, the SPoRT Center recently enhanced its MODIS SST composite by incorporating information from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) instruments as well as the Operational Sea Surface Temperature and Sea Ice Analysis. These enhancements substantially decreased the latency due to cloud cover and improved the bias and correlation of the composites at available marine point observations. While these enhancements improved upon the modeled cold bias using the original MODIS SSTs

  16. Absorption and distribution of Zn by spring wheat in high zinc soil and effect of rhizosphere soil

    International Nuclear Information System (INIS)

    Bai Lingyu; Wei Dongpu; Hua Luo; Chen Shibao

    1999-01-01

    The isotope tracer technique was used to study the absorption and distribution of 65 Zn by spring wheat in high zinc soil. The results showed that the distribution of 65 Zn in the organs of spring wheat was in the order as stem leaf>grain>root>wheat husk; the specific activity of 65 Zn and the transfer factor of 65 Zn in the organs of spring wheat were in the order as root>grain>wheat husk>stem leaf. With added 65 Zn increased, the absorption amount of 65 Zn by spring wheat and the distribution of 65 Zn in root increased. The 65 Zn applied was enriched by rhizosphere soil of spring wheat

  17. Quantitative precipitation estimation based on high-resolution numerical weather prediction and data assimilation with WRF – a performance test

    Directory of Open Access Journals (Sweden)

    Hans-Stefan Bauer

    2015-04-01

    Full Text Available Quantitative precipitation estimation and forecasting (QPE and QPF are among the most challenging tasks in atmospheric sciences. In this work, QPE based on numerical modelling and data assimilation is investigated. Key components are the Weather Research and Forecasting (WRF model in combination with its 3D variational assimilation scheme, applied on the convection-permitting scale with sophisticated model physics over central Europe. The system is operated in a 1-hour rapid update cycle and processes a large set of in situ observations, data from French radar systems, the European GPS network and satellite sensors. Additionally, a free forecast driven by the ECMWF operational analysis is included as a reference run representing current operational precipitation forecasting. The verification is done both qualitatively and quantitatively by comparisons of reflectivity, accumulated precipitation fields and derived verification scores for a complex synoptic situation that developed on 26 and 27 September 2012. The investigation shows that even the downscaling from ECMWF represents the synoptic situation reasonably well. However, significant improvements are seen in the results of the WRF QPE setup, especially when the French radar data are assimilated. The frontal structure is more defined and the timing of the frontal movement is improved compared with observations. Even mesoscale band-like precipitation structures on the rear side of the cold front are reproduced, as seen by radar. The improvement in performance is also confirmed by a quantitative comparison of the 24-hourly accumulated precipitation over Germany. The mean correlation of the model simulations with observations improved from 0.2 in the downscaling experiment and 0.29 in the assimilation experiment without radar data to 0.56 in the WRF QPE experiment including the assimilation of French radar data.

  18. Study of Various Techniques for Improving Weak and Compressible Clay Soil under a High Earth Embankment

    Directory of Open Access Journals (Sweden)

    Zein A.K. M.

    2014-04-01

    Full Text Available This paper investigates the suitability of three soil improvement techniques for the construction of a high earth embankment on thick weak and highly compressible clay soil. The eastern approach embankment of Alhalfaya Bridge on the River Nile linking Khartoum North and Omdurman cities was chosen as a case study and a comprehensive site investigation program was carried out to determine the properties the subsurface soils. The study results showed that unless the subsurface soils have been improved they may fail or undergo excessively large settlements due to the embankment construction. Three ground improvement techniques based on the principles of the “staged construction method, SCM”, “vertical sand drain, VSD” and “sand compaction piles, SCP” of embankment foundation soil treatment are discussed and evaluated. Embankment design options based on applications of the above methods have been proposed for foundation treatment to adequately support embankment loads. A method performance evaluation based on the improvement of soil properties achieved; the time required for construction and compared estimated costs criteria was made to assess the effectiveness and expected overall performance. Adoption of any of the soil improvement techniques considered depends mainly on the most critical and decisive factor governing the embankment design. Based on the overall performance for the embankment case studied, the sand drains is considered as the most appropriate improvement method followed by the sand compaction piles technique whereas the staged construction method showed the poorest overall performance.

  19. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas

    International Nuclear Information System (INIS)

    Ko, T.-H.; Chu Hsin; Lin, H.-P.; Peng, C.-Y.

    2006-01-01

    In this study, hydrogen sulfide (H 2 S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773 K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H 2 S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl 2 O 4 was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency

  20. Illuminating pathways of forest nutrient provision: relative release from soil mineral and organic pools

    Science.gov (United States)

    Hauser, E.; Billings, S. A.

    2017-12-01

    Depletion of geogenic nutrients during soil weathering can prompt vegetation to rely on other sources, such as organic matter (OM) decay, to meet growth requirements. Weathered soils also tend to permit deep rooting, a phenomenon sometimes attributed to vegetation foraging for geogenic nutrients. This study examines the extent to which OM recycling provides nutrients to vegetation growing in soils with diverse weathering states. We thus address the fundamental problem of how forest vegetation obtains sufficient nutrition to support productivity despite wide variation in soils' nutrient contents. We hypothesized that vegetation growing on highly weathered soils relies on nutrients released from OM decay to a greater extent than vegetation growing on less weathered, more nutrient-rich substrates. For four mineralogically diverse Critical Zone Observatories (CZO) and Critical Zone Exploratory Network sites, we calculated weathering indices and approximated vegetation nutrient demand and nutrient release from OM decay. We also measured nutrient release rates from OM decay at each site. We then assessed the relationship between degree of soil weathering and the estimated fraction of nutrient demand satisfied by OM derived nutrients. Results are consistent with our hypothesis. The chemical index of alteration (CIA), a weathering index that increases in value with mineral depletion, varies predictably from 90 at the highly weathered Calhoun CZO to 60 at the Catalina CZO, where soils are more recently developed. Estimates of rates of K release from OM decay increase with CIA values. The highest release rate is 2.4 gK m-2 y-1 at Calhoun, accounting for 30% of annual vegetation K uptake; at Catalina, less than 0.5 gm-2 y-1 K is released, meeting 14% of vegetation demand. CIA also co-varies with rooting depth across sites: the deepest roots at the Calhoun sites are growing in soils with the highest CIA values, while the deepest roots at Catalina sites are growing in soils

  1. Uptake and Distribution of Soil Applied Zinc by Citrus Trees?Addressing Fertilizer Use Efficiency with 68Zn Labeling

    OpenAIRE

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, Jos? Ant?nio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citru...

  2. Estimative of the soil amount ingested by cattle in high natural radioactive region

    International Nuclear Information System (INIS)

    Rosa, Roosevelt; Silva, Lucia H.C.; Taddei, Maria H.T.

    1997-01-01

    Considering that Pocos de Caldas is a region of high natural radioactivity, where many environmental impacts have been studied, 27 samples of cattle faeces and 24 samples of local soil were collected and analyzed for Ti concentrations, during dry and rain periods. Using this element as an indicator, the percentage of soil ingestion by cattle were estimated for three management practices: confined, semi-confined and free. The results showed the management practices influence on the cattle soil ingestion percentage, and the importance of this pathway in the environmental impact assessment. (author). 7 refs., 1 tab

  3. Use of high throughput sequencing to study oomycete communities in soil and roots

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Nicolaisen, Mogens

    2015-01-01

    taxonomic units from symptomatic lesions in carrot resulted in 94% of the reads belonging to oomycetes with a dominance of species of Pythium that are known to be involved in causing cavity spot. Moreover, soil samples showed that 95% of the sequences could be assigned to oomycetes including Pythium......, Aphanomyces, Peronospora, Saprolegnia and Phytophthora. A high proportion of oomycete reads was consistently present in all symptomatic lesions and soil samples showing the versatility of the strategy and thus demonstrating the usefulness of the method in plant and soil DNA background....

  4. Some Like it High! Phylogenetic Diversity of High-Elevation Cyanobacterial Community from Biological Soil Crusts of Western Himalaya.

    Science.gov (United States)

    Čapková, Kateřina; Hauer, Tomáš; Řeháková, Klára; Doležal, Jiří

    2016-01-01

    The environment of high-altitudinal cold deserts of Western Himalaya is characterized by extensive development of biological soil crusts, with cyanobacteria as dominant component. The knowledge of their taxonomic composition and dependency on soil chemistry and elevation is still fragmentary. We studied the abundance and the phylogenetic diversity of the culturable cyanobacteria and eukaryotic microalgae in soil crusts along altitudinal gradients (4600-5900 m) at two sites in the dry mountains of Ladakh (SW Tibetan Plateau and Eastern Karakoram), using both microscopic and molecular approaches. The effects of environmental factors (altitude, mountain range, and soil physico-chemical parameters) on the composition and biovolume of phototrophs were tested by multivariate redundancy analysis and variance partitioning. Both phylogenetic diversity and composition of morphotypes were similar between Karakorum and Tibetan Plateau. Phylogenetic analysis of 16S rRNA gene revealed strains belonging to at least five genera. Besides clusters of common soil genera, e.g., Microcoleus, Nodosilinea, or Nostoc, two distinct clades of simple trichal taxa were newly discovered. The most abundant cyanobacterial orders were Oscillatoriales and Nostacales, whose biovolume increased with increasing elevation, while that of Chroococales decreased. Cyanobacterial species richness was low in that only 15 morphotypes were detected. The environmental factors accounted for 52 % of the total variability in microbial data, 38.7 % of which was explained solely by soil chemical properties, 14.5 % by altitude, and 8.4 % by mountain range. The elevation, soil phosphate, and magnesium were the most important predictors of soil phototrophic communities in both mountain ranges despite their different bedrocks and origin. The present investigation represents a first record on phylogenetic diversity of the cyanobacterial community of biological soil crusts from Western Himalayas and first record

  5. Weather Risk Management in Agriculture

    Directory of Open Access Journals (Sweden)

    Martina Bobriková

    2016-01-01

    Full Text Available The paper focuses on valuation of a weather derivative with payoffs depending on temperature. We use historical data from the weather station in the Slovak town Košice to obtain unique prices of option contracts in an incomplete market. Numerical examples of prices of some contracts are presented, using the Burn analysis. We provide an example of how a weather contract can be designed to hedge the financial risk of a suboptimal temperature condition. The comparative comparison of the selected option hedging strategies has shown the best results for the producers in agricultural industries who hedges against an unfavourable weather conditions. The results of analysis proved that by buying put option or call option, the farmer establishes the highest payoff in the case of temperature decrease or increase. The Long Straddle Strategy is the most expensive but is available to the farmer who hedges against a high volatility in temperature movement. We conclude with the findings that weather derivatives could be useful tools to diminish the financial losses for agricultural industries highly dependent for temperature.

  6. Soil Organic Carbon Variability in High-Andean Ecosystems: Bringing Together Machine Learning and Proximal Soil Sensing

    Science.gov (United States)

    Gavilan, C.; Grunwald, S.; Quiroz, R.

    2017-12-01

    The Andes represent the largest and highest mountain range in the tropics and is considered an important reserve of biodiversity, water provision and soil organic carbon (SOC) stocks. Nevertheless, limited attention has been given to estimate these stocks due to the lack of recent soil data, the poor accessibility and the wide range of coexistent ecosystems. In addition, conventional methods to determine SOC are usually time consuming and expensive to use in large-scale studies, hindering the possibility to have an accurate SOC assessment in the region. Proximal soil sensing techniques, such as visible near infrared (VNIR) and mid infrared (MIR) spectroscopy, have proven to be useful as an alternative to conventional methods for characterizing SOC but have not been tested in Andean soils. The aim of this study was to evaluate the potential of using VNIR and MIR spectroscopy to predict SOC content in the Central Andean region, using multivariate methods. Three study areas were selected across the Peruvian Central Andes. A total of 400 topsoil samples (0-30 cm) were collected and analyzed for SOC. The VNIR and MIR reflectance of the soil samples was measured in the laboratory. Three modeling approaches: Partial least squares regression (PLSR), random forest (RF) and support vector machine (SVM) were used to predict SOC from VNIR and MIR spectra in the study areas. The data was preprocessed in order to minimize the noise and optimize the accuracy of predictions. The models, for each study area, were assessed using 10-fold cross validation. Independent validation was implemented in the whole dataset (400 observations) by splitting it into calibration (70 %) and validation (30%) sets. Overall, the results indicate potential for both VNIR and MIR spectra to predict SOC content in the Andean soils. SOC content predictions from MIR spectra outperformed those from VNIR spectra. The evaluation of model performance shows that RF and SVM provide more accurate SOC predictions

  7. Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils.

    Science.gov (United States)

    Chen, Yongshan; Xu, Jinghua; Lv, Zhengyong; Xie, Ruijia; Huang, Liumei; Jiang, Jinping

    2018-07-01

    Soil contamination is a serious problem with deleterious impacts on global sustainability. Readily available, economic, and highly effective technologies are therefore urgently needed for the rehabilitation of contaminated sites. In this study, two readily available materials prepared from bio-wastes, namely biochar and oyster shell waste, were evaluated as soil amendments to immobilize arsenic in a highly As-contaminated soil (up to 15,000 mgAs/kg). Both biochar and oyster shell waste can effectively reduce arsenic leachability in acid soils. After application of the amendments (2-4% addition, w/w), the exchangeable arsenic fraction decreased from 105.8 to 54.0 mg/kg. The application of 2%biochar +2% oyster shell waste most effectively reduced As levels in the column leaching test by reducing the arsenic concentration in the porewater by 62.3% compared with the treatment without amendments. Biochar and oyster shell waste also reduced soluble As(III) from 374.9 ± 18.8 μg/L to 185.9 ± 16.8 μg/L and As(V) from 119.8 ± 13.0 μg/L to 56.4 ± 2.6 μg/L at a pH value of 4-5. The treatment using 4% (w/w) amendments did not result in sufficient As immobilization in highly contaminated soils; high soluble arsenic concentrations (upto193.0 μg/L)were found in the soil leachate, particularly in the form of As(III), indicating a significant potential to pollute shallow groundwater aquifers. This study provides valuable insights into the use of cost-effective and readily available materials for soil remediation and investigates the mechanisms underlying arsenic immobilization in acidic soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The water retention of a granite rock fragments in High Tatras stony soils

    OpenAIRE

    Novák, Viliam; Šurda, Peter

    2010-01-01

    The water retention capacity of coarse rock fragments is usually considered negligible. But the presence of rock fragments in a soil can play an important role in both water holding capacity and in hydraulic conductivity as well. This paper presents results of maximum water holding capacity measured in coarse rock fragments in the soil classified as cobbly sandy loam sampled at High Tatra mountains. It is shown, that those coarse rock (granite) fragments have the maximum retention capacity up...

  9. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  10. Geological and geotechnical characteristics of Metro Manila volcanic soils and their suitability for landfill soil liner

    Science.gov (United States)

    Mendoza, Edna Patricia; Catane, Sandra; Pascua, Chelo; Zarco, Mark Albert

    2010-05-01

    Due to the Philippines's island-arc setting, andesitic tuff and volcanic ash constitute two-thirds of the country's agricultural land. In situ weathering of these volcanic sediments produces volcanic soils. Metro Manila volcanic soils were studied to determine their suitability for landfill soil liner. The soils were analyzed using XRD and XRF, and were tested for geotechnical properties. The results show the presence of the smectite group, a swelling variety of clay. The smectite-type clays are weathering products of volcanic glasses which are dominant components of the parental rocks. The high amounts of Al2O3 indicate an Al-rich type of soil. The clay species is either di- or tri-octahedral type, which points to montmorillonite as the main clay species. Swelling clay lowers the permeability of soils and reduces the infiltration and lateral movement of leachates in the ground. Also, geotechnical tests revealed moderate to high plasticity indices and low hydraulic conductivity values. The study shows that the physicochemical characteristics of volcanic soils meet the criteria for a soil liner for future sanitary landfill projects as mandated by RA 9003, a recently ratified solid waste management act of the Philippines. Being widespread, volcanic soils can be viewed as an important resource of the country.

  11. Sample size choices for XRCT scanning of highly unsaturated soil mixtures

    Directory of Open Access Journals (Sweden)

    Smith Jonathan C.

    2016-01-01

    Full Text Available Highly unsaturated soil mixtures (clay, sand and gravel are used as building materials in many parts of the world, and there is increasing interest in understanding their mechanical and hydraulic behaviour. In the laboratory, x-ray computed tomography (XRCT is becoming more widely used to investigate the microstructures of soils, however a crucial issue for such investigations is the choice of sample size, especially concerning the scanning of soil mixtures where there will be a range of particle and void sizes. In this paper we present a discussion (centred around a new set of XRCT scans on sample sizing for scanning of samples comprising soil mixtures, where a balance has to be made between realistic representation of the soil components and the desire for high resolution scanning, We also comment on the appropriateness of differing sample sizes in comparison to sample sizes used for other geotechnical testing. Void size distributions for the samples are presented and from these some hypotheses are made as to the roles of inter- and intra-aggregate voids in the mechanical behaviour of highly unsaturated soils.

  12. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation.

    Science.gov (United States)

    Koebernick, Nicolai; Daly, Keith R; Keyes, Samuel D; George, Timothy S; Brown, Lawrie K; Raffan, Annette; Cooper, Laura J; Naveed, Muhammad; Bengough, Anthony G; Sinclair, Ian; Hallett, Paul D; Roose, Tiina

    2017-10-01

    In this paper, we provide direct evidence of the importance of root hairs on pore structure development at the root-soil interface during the early stage of crop establishment. This was achieved by use of high-resolution (c. 5 μm) synchrotron radiation computed tomography (SRCT) to visualise both the structure of root hairs and the soil pore structure in plant-soil microcosms. Two contrasting genotypes of barley (Hordeum vulgare), with and without root hairs, were grown for 8 d in microcosms packed with sandy loam soil at 1.2 g cm -3 dry bulk density. Root hairs were visualised within air-filled pore spaces, but not in the fine-textured soil regions. We found that the genotype with root hairs significantly altered the porosity and connectivity of the detectable pore space (> 5 μm) in the rhizosphere, as compared with the no-hair mutants. Both genotypes showed decreasing pore space between 0.8 and 0.1 mm from the root surface. Interestingly the root-hair-bearing genotype had a significantly greater soil pore volume-fraction at the root-soil interface. Effects of pore structure on diffusion and permeability were estimated to be functionally insignificant under saturated conditions when simulated using image-based modelling. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Five case studies of multifamily weatherization programs

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, L; Wilson, T.; Lewis, G. [Synertech Systems Corp. (United States); MacDonald, M. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  14. Experimental Simulation of Long Term Weathering in Alkaline Bauxite Residue Tailings

    Directory of Open Access Journals (Sweden)

    Talitha C. Santini

    2015-07-01

    Full Text Available Bauxite residue is an alkaline, saline tailings material generated as a byproduct of the Bayer process used for alumina refining. Developing effective plans for the long term management of potential environmental impacts associated with storage of these tailings is dependent on understanding how the chemical and mineralogical properties of the tailings will change during weathering and transformation into a soil-like material. Hydrothermal treatment of bauxite residue was used to compress geological weathering timescales and examine potential mineral transformations during weathering. Gibbsite was rapidly converted to boehmite; this transformation was examined with in situ synchrotron XRD. Goethite, hematite, and calcite all precipitated over longer weathering timeframes, while tricalcium aluminate dissolved. pH, total alkalinity, and salinity (electrical conductivity all decreased during weathering despite these experiments being performed under “closed” conditions (i.e., no leaching. This indicates the potential for auto-attenuation of the high alkalinity and salinity that presents challenges for long term environmental management, and suggests that management requirements will decrease during weathering as a result of these mineral transformations.

  15. Exploring the potential offered by legacy soil databases for ecosystem services mapping of Central African soils

    Science.gov (United States)

    Verdoodt, Ann; Baert, Geert; Van Ranst, Eric

    2014-05-01

    Central African soil resources are characterised by a large variability, ranging from stony, shallow or sandy soils with poor life-sustaining capabilities to highly weathered soils that recycle and support large amounts of biomass. Socio-economic drivers within this largely rural region foster inappropriate land use and management, threaten soil quality and finally culminate into a declining soil productivity and increasing food insecurity. For the development of sustainable land use strategies targeting development planning and natural hazard mitigation, decision makers often rely on legacy soil maps and soil profile databases. Recent development cooperation financed projects led to the design of soil information systems for Rwanda, D.R. Congo, and (ongoing) Burundi. A major challenge is to exploit these existing soil databases and convert them into soil inference systems through an optimal combination of digital soil mapping techniques, land evaluation tools, and biogeochemical models. This presentation aims at (1) highlighting some key characteristics of typical Central African soils, (2) assessing the positional, geographic and semantic quality of the soil information systems, and (3) revealing its potential impacts on the use of these datasets for thematic mapping of soil ecosystem services (e.g. organic carbon storage, pH buffering capacity). Soil map quality is assessed considering positional and semantic quality, as well as geographic completeness. Descriptive statistics, decision tree classification and linear regression techniques are used to mine the soil profile databases. Geo-matching as well as class-matching approaches are considered when developing thematic maps. Variability in inherent as well as dynamic soil properties within the soil taxonomic units is highlighted. It is hypothesized that within-unit variation in soil properties highly affects the use and interpretation of thematic maps for ecosystem services mapping. Results will mainly be based

  16. RUSLE2015: Modelling soil erosion at continental scale using high resolution input layers

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Poesen, Jean; Ballabio, Cristiano; Lugato, Emanuele; Montanarella, Luca; Alewell, Christine

    2016-04-01

    Soil erosion by water is one of the most widespread forms of soil degradation in the Europe. On the occasion of the 2015 celebration of the International Year of Soils, the European Commission's Joint Research Centre (JRC) published the RUSLE2015, a modified modelling approach for assessing soil erosion in Europe by using the best available input data layers. The objective of the recent assessment performed with RUSLE2015 was to improve our knowledge and understanding of soil erosion by water across the European Union and to accentuate the differences and similarities between different regions and countries beyond national borders and nationally adapted models. RUSLE2015 has maximized the use of available homogeneous, updated, pan-European datasets (LUCAS topsoil, LUCAS survey, GAEC, Eurostat crops, Eurostat Management Practices, REDES, DEM 25m, CORINE, European Soil Database) and have used the best suited approach at European scale for modelling soil erosion. The collaboration of JRC with many scientists around Europe and numerous prominent European universities and institutes resulted in an improved assessment of individual risk factors (rainfall erosivity, soil erodibility, cover-management, topography and support practices) and a final harmonized European soil erosion map at high resolution. The mean soil loss rate in the European Union's erosion-prone lands (agricultural, forests and semi-natural areas) was found to be 2.46 t ha-1 yr-1, resulting in a total soil loss of 970 Mt annually; equal to an area the size of Berlin (assuming a removal of 1 meter). According to the RUSLE2015 model approximately 12.7% of arable lands in the European Union is estimated to suffer from moderate to high erosion(>5 t ha-1 yr-1). This equates to an area of 140,373 km2 which equals to the surface area of Greece (Environmental Science & Policy, 54, 438-447; 2015). Even the mean erosion rate outstrips the mean formation rate (walls and contouring) through the common agricultural

  17. Culturable microbial groups and thallium-tolerant fungi in soils with high thallium contamination.

    Science.gov (United States)

    Sun, Jialong; Zou, Xiao; Ning, Zengping; Sun, Min; Peng, Jingquan; Xiao, Tangfu

    2012-12-15

    Thallium (Tl) contamination in soil exerts a significant threat to the ecosystem health due to its high toxicity. However, little is known about the effect of Tl on the microbial community in soil. The present study aimed at characterizing the culturable microbial groups in soils which experience for a long time high Tl contamination and elevated Hg and As. The contamination originates from As, Hg and Tl sulfide mineralization and the associated mining activities in the Guizhou Province, Southwest China. Our investigation showed the existence of culturable bacteria, filamentous fungi and actinomyces in long-term Tl-contaminated soils. Some fungal groups grow in the presence of high Tl level up to 1000 mg kg⁻¹. We have isolated and identified nine Tl-tolerant fungal strains based on the morphological traits and ITS analysis. The dominant genera identified were Trichoderma, Penicillium and Paecilomyces. Preliminary data obtained in this study suggested that certain microbes were able to face high Tl pollution in soil and maintain their metabolic activities and resistances. The highly Tl-tolerant fungi that we have isolated are potentially useful in the remediation of Tl-contaminated sites. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution.

    Science.gov (United States)

    Lugato, Emanuele; Paustian, Keith; Panagos, Panos; Jones, Arwyn; Borrelli, Pasquale

    2016-05-01

    The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the 'four per mil' initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km(2) resolution across the agricultural soils of the European Union (EU). Based on data-driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates 0.45 Mg C ha(-1) yr(-1). In comparison with a baseline without erosion, the model suggested an erosion-induced sink of atmospheric C consistent with previous empirical-based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of -2.28 and +0.79 Tg yr(-1) of CO2 eq, respectively, depending on the value for the short-term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  19. Use of high-dimensional spectral data to evaluate organic matter, reflectance relationships in soils

    Science.gov (United States)

    Henderson, T. L.; Baumgardner, M. F.; Coster, D. C.; Franzmeier, D. P.; Stott, D. E.

    1990-01-01

    Recent breakthroughs in remote sensing technology have led to the development of a spaceborne high spectral resolution imaging sensor, HIRIS, to be launched in the mid-1990s for observation of earth surface features. The effects of organic carbon content on soil reflectance over the spectral range of HIRIS, and to examine the contributions of humic and fulvic acid fractions to soil reflectance was evaluated. Organic matter from four Indiana agricultural soils was extracted, fractionated, and purified, and six individual components of each soil were isolated and prepared for spectral analysis. The four soils, ranging in organic carbon content from 0.99 percent, represented various combinations of genetic parameters such as parent material, age, drainage, and native vegetation. An experimental procedure was developed to measure reflectance of very small soil and organic component samples in the laboratory, simulating the spectral coverage and resolution of the HIRIS sensor. Reflectance in 210 narrow (10 nm) bands was measured using the CARY 17D spectrophotometer over the 400 to 2500 nm wavelength range. Reflectance data were analyzed statistically to determine the regions of the reflective spectrum which provided useful information about soil organic matter content and composition. Wavebands providing significant information about soil organic carbon content were located in all three major regions of the reflective spectrum: visible, near infrared, and middle infrared. The purified humic acid fractions of the four soils were separable in six bands in the 1600 to 2400 nm range, suggesting that longwave middle infrared reflectance may be useful as a non-destructive laboratory technique for humic acid characterization.

  20. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    Science.gov (United States)

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  1. Highly Organic Soil Stabilization by Using Sugarcane Bagasse Ash (SCBA

    Directory of Open Access Journals (Sweden)

    Abu Talib Mohd Khaidir

    2017-01-01

    Full Text Available The study objective is to develop alternative binders that are environment friendly by utilizing sugarcane bagasse ash (SCBA in the organic soil stabilization. Together with SCBA, Ordinary Portland Cement (OPC, calcium chloride (CaCl2 and silica sand (K7 were used as additives to stabilize the peat. In obtaining the optimal mix design, specimens of stabilized peat were tested in unconfined compression. It was found that stabilized peat comprising 20% and 5% (PCB1-20 and PCB2-5 partial replacement of OPC with SCBA 1 and SCBA 2 attain the maximum unconfined compressive strength (UCS and discovered greater than UCS of peat-cement (PC specimen. At the optimal mix design, the UCS of the stabilized peat specimens increased with increasing of curing time, preloading rate, OPC and K7 dosage. For PCB1-20 mixture, inclusion of a minimum OPC of 300kg/m3 and K7 of 500kg/m3 along with curing under 20kPa pressure is recommendable for the peat stabilization to be effective. However for PCB2-5, it suggested to use more OPC and K7 dosage or alternatively increase the preloading during curing to 40kPa in order to achieve target UCS. It can be concluded that SCBA 1 has better quality than SCBA 2 in peat stabilization especially the contribution made by its fine particle size.

  2. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic)

    Science.gov (United States)

    Zhang, Tao; Wang, Neng-Fei; Liu, Hong-Yu; Zhang, Yu-Qin; Yu, Li-Yan

    2016-01-01

    This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic). A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS) region. The following eight soil properties were analyzed: pH, organic carbon (C), organic nitrogen (N), ammonium nitrogen (NH4+-N), silicate silicon (SiO42--Si), nitrite nitrogen (NO2--N), phosphate phosphorus (PO43--P), and nitrate nitrogen (NO3--N). A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs) were found. of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>eight soil samples) were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda) and analysis of similarities (ANOSIM) revealed that soil pH (p = 0.001) was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8–9, whereas Sordariales predominated in soils of pH 7–8 and Coniochaetales predominated in soils of pH 6–7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic. PMID:26955371

  3. Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund Region, Svalbard (High Arctic

    Directory of Open Access Journals (Sweden)

    Tao eZhang

    2016-02-01

    Full Text Available This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic. A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS region. The following eight soil properties were analyzed: pH, organic carbon (C, organic nitrogen (N, ammonium nitrogen (NH4+-N, silicate silicon (SiO42--Si, nitrite nitrogen (NO2--N, phosphate phosphorus (PO43--P and nitrate nitrogen (NO3--N. A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs were found. Of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>8 soil samples were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda and analysis of similarities (ANOSIM revealed that soil pH (p=0.001 was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8-9, whereas Sordariales predominated in soils of pH 7-8 and Coniochaetales predominated in soil samples of pH 6-7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic.

  4. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    Science.gov (United States)

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    material, microbial biomass and dissolved organic matter by IRMS, 13C and 15N in plant roots cells and intraradical mycorrhizal hyphae by NanoSims). Our results show that (1) C assimilated by plants was delivered within 4 hours to the soil microbial community both via roots and the mycorrhizal network (2) N addition during the labeling period strongly and rapidly increased the 13C flux of recently assimilated carbohydrates to the soil microbial biomass (3) the effect of N addition was not as rapid but was of the same magnitude when N was delivered to the plant exclusively by mycorrhizal hyphae as compared to taken up by roots (4) soils which had been amended with biochar (which were characterized by an increased abundance of mycorrhizal fungi) also showed a significant increase of C flux from plants to the soil. We conclude that plant belowground C allocation is highly sensitive to alterations of microbial community structure and nutritional status in the soil. Moreover, our results indicate that plants respond rapidly (within hours) to changing soil N availability by altering the rate of C transported belowground. Our results emphasise the ecological significance of plant-belowground interactions for ecosystem C cycling.

  5. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    P. Kotas

    2018-03-01

    Full Text Available The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS, and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs. We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects, mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.

  6. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)

    Science.gov (United States)

    Kotas, Petr; Šantrůčková, Hana; Elster, Josef; Kaštovská, Eva

    2018-03-01

    The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS), and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level) were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs). We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects), mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.

  7. Dynamic Weather Routes Architecture Overview

    Science.gov (United States)

    Eslami, Hassan; Eshow, Michelle

    2014-01-01

    Dynamic Weather Routes Architecture Overview, presents the high level software architecture of DWR, based on the CTAS software framework and the Direct-To automation tool. The document also covers external and internal data flows, required dataset, changes to the Direct-To software for DWR, collection of software statistics, and the code structure.

  8. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks

    International Nuclear Information System (INIS)

    Bjerke, Jarle W; Jepsen, Jane U; Lovibond, Sarah; Tømmervik, Hans; Rune Karlsen, Stein; Arild Høgda, Kjell; Malnes, Eirik; Vikhamar-Schuler, Dagrun

    2014-01-01

    The release of cold temperature constraints on photosynthesis has led to increased productivity (greening) in significant parts (32–39%) of the Arctic, but much of the Arctic shows stable (57–64%) or reduced productivity (browning, <4%). Summer drought and wildfires are the best-documented drivers causing browning of continental areas, but factors dampening the greening effect of more maritime regions have remained elusive. Here we show how multiple anomalous weather events severely affected the terrestrial productivity during one water year (October 2011–September 2012) in a maritime region north of the Arctic Circle, the Nordic Arctic Region, and contributed to the lowest mean vegetation greenness (normalized difference vegetation index) recorded this century. Procedures for field data sampling were designed during or shortly after the events in order to assess both the variability in effects and the maximum effects of the stressors. Outbreaks of insect and fungal pests also contributed to low greenness. Vegetation greenness in 2012 was 6.8% lower than the 2000–11 average and 58% lower in the worst affected areas that were under multiple stressors. These results indicate the importance of events (some being mostly neglected in climate change effect studies and monitoring) for primary productivity in a high-latitude maritime region, and highlight the importance of monitoring plant damage in the field and including frequencies of stress events in models of carbon economy and ecosystem change in the Arctic. Fourteen weather events and anomalies and 32 hypothesized impacts on plant productivity are summarized as an aid for directing future research. (letter)

  9. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    Science.gov (United States)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  10. Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed

    Science.gov (United States)

    Wu, Yuyang; Ouyang, Wei; Hao, Zengchao; Yang, Bowen; Wang, Li

    2018-01-01

    The impacts of precipitation and temperature on soil erosion are pronounced in mid-high latitude areas, which lead to seasonal variations in soil erosion. Determining the critical erosion periods and the reasons behind the increased erosion loads are essential for soil management decisions. Hence, integrated approaches combining experiments and modelling based on field investigations were applied to investigate watershed soil erosion characteristics and the dynamics of water movement through soils. Long-term and continuous data for surface runoff and soil erosion variation characteristics of uplands in a watershed were observed via five simulations by the Soil and Water Assessment Tool (SWAT). In addition, laboratory experiments were performed to quantify the actual soil infiltrabilities in snowmelt seasons (thawed treatment) and rainy seasons (non-frozen treatment). The results showed that over the course of a year, average surface runoff and soil erosion reached peak values of 31.38 mm and 1.46 t ha-1 a-1, respectively, in the month of April. They also ranked high in July and August, falling in the ranges of 23.73 mm to 24.91 mm and 0.55 t ha-1 a-1 to 0.59 t ha-1 a-1, respectively. With the infiltration time extended, thawed soils showed lower infiltrabilities than non-frozen soils, and the differences in soil infiltration amounts between these two were considerable. These results highlighted that soil erosion was very closely and positively correlated with surface runoff. Soil loss was higher in snowmelt periods than in rainy periods due to the higher surface runoff in early spring, and the decreased soil infiltrability in snowmelt periods contributed much to this higher surface runoff. These findings are helpful for identification of critical soil erosion periods when making soil management before critical months, especially those before snowmelt periods.

  11. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhang, Guilong; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  12. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China)

    2015-03-21

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  13. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: new insight from U-series isotopes in weathering rinds

    Science.gov (United States)

    Engel, Jacqueline M.; May, Linda; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-01-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite.Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds

  14. Iron isotopic fractionation during continental weathering

    Energy Technology Data Exchange (ETDEWEB)

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  15. Weathering and transport of chromium and nickel from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California, USA

    Science.gov (United States)

    Morrison, Jean M.; Goldhaber, Martin B.; Mills, Christopher T.; Breit, George N.; Hooper, Robert L.; Holloway, JoAnn M.; Diehl, Sharon F.; Ranville, James F.

    2015-01-01

    A soil geochemical study in northern California was done to investigate the role that weathering and transport play in the regional distribution and mobility of geogenic Cr and Ni, which are both potentially toxic and carcinogenic. These elements are enriched in ultramafic rocks (primarily serpentinite) and the soils derived from them (1700–10,000 mg Cr per kg soil and 1300–3900 mg Ni per kg soil) in the Coast Range ophiolite. Chromium and Ni have been transported eastward from the Coast Range into the western Sacramento Valley and as a result, valley soil is enriched in Cr (80–1420 mg kg−1) and Ni (65–224 mg kg−1) compared to median values of U.S. soils of 50 and 15 mg kg−1, respectively. Nickel in ultramafic source rocks and soils is present in serpentine minerals (lizardite, antigorite, and chrysotile) and is more easily weathered compared to Cr, which primarily resides in highly refractory chromite ([Mg,Fe2+][Cr3+,Al,Fe3+]2O4). Although the majority of Cr and Ni in soils are in refractory chromite and serpentine minerals, the etching and dissolution of these minerals, presence of Cr- and Ni-enriched clay minerals and development of nanocrystalline Fe (hydr)oxides is evidence that a significant fractions of these elements have been transferred to potentially more labile phases.

  16. Chemical evolution of leaked high-level liquid wastes in Hanford soils

    International Nuclear Information System (INIS)

    NYMAN, MAY D.; KRUMHANSL, JAMES L.; ZHANG, PENGCHU; ANDERSON, HOWARD L.; NENOFF, TINA M.

    2000-01-01

    A number of Hanford tanks have leaked high level radioactive wastes (HLW) into the surrounding unconsolidated sediments. The disequilibrium between atmospheric C0 2 or silica-rich soils and the highly caustic (pH > 13) fluids is a driving force for numerous reactions. Hazardous dissolved components such as 133 Cs, 79 Se, 99 Tc may be adsorbed or sequestered by alteration phases, or released in the vadose zone for further transport by surface water. Additionally, it is likely that precipitation and alteration reactions will change the soil permeability and consequently the fluid flow path in the sediments. In order to ascertain the location and mobility/immobility of the radionuclides from leaked solutions within the vadose zone, the authors are currently studying the chemical reactions between: (1) tank simulant solutions and Hanford soil fill minerals; and (2) tank simulant solutions and C0 2 . The authors are investigating soil-solution reactions at: (1) elevated temperatures (60--200 C) to simulate reactions which occur immediately adjacent a radiogenically heated tank; and (2) ambient temperature (25 C) to simulate reactions which take place further from the tanks. The authors studies show that reactions at elevated temperature result in dissolution of silicate minerals and precipitation of zeolitic phases. At 25 C, silicate dissolution is not significant except where smectite clays are involved. However, at this temperature CO 2 uptake by the solution results in precipitation of Al(OH) 3 (bayerite). In these studies, radionuclide analogues (Cs, Se and Re--for Tc) were partially removed from the test solutions both during high-temperature fluid-soil interactions and during room temperature bayerite precipitation. Altered soils would permanently retain a fraction of the Cs but essentially all of the Se and Re would be released once the plume was past and normal groundwater came in contact with the contaminated soil. Bayerite, however, will retain significant

  17. Chemical evolution of leaked high-level liquid wastes in Hanford soils

    Energy Technology Data Exchange (ETDEWEB)

    NYMAN,MAY D.; KRUMHANSL,JAMES L.; ZHANG,PENGCHU; ANDERSON,HOWARD L.; NENOFF,TINA M.

    2000-05-19

    A number of Hanford tanks have leaked high level radioactive wastes (HLW) into the surrounding unconsolidated sediments. The disequilibrium between atmospheric C0{sub 2} or silica-rich soils and the highly caustic (pH > 13) fluids is a driving force for numerous reactions. Hazardous dissolved components such as {sup 133}Cs, {sup 79}Se, {sup 99}Tc may be adsorbed or sequestered by alteration phases, or released in the vadose zone for further transport by surface water. Additionally, it is likely that precipitation and alteration reactions will change the soil permeability and consequently the fluid flow path in the sediments. In order to ascertain the location and mobility/immobility of the radionuclides from leaked solutions within the vadose zone, the authors are currently studying the chemical reactions between: (1) tank simulant solutions and Hanford soil fill minerals; and (2) tank simulant solutions and C0{sub 2}. The authors are investigating soil-solution reactions at: (1) elevated temperatures (60--200 C) to simulate reactions which occur immediately adjacent a radiogenically heated tank; and (2) ambient temperature (25 C) to simulate reactions which take place further from the tanks. The authors studies show that reactions at elevated temperature result in dissolution of silicate minerals and precipitation of zeolitic phases. At 25 C, silicate dissolution is not significant except where smectite clays are involved. However, at this temperature CO{sub 2} uptake by the solution results in precipitation of Al(OH){sub 3} (bayerite). In these studies, radionuclide analogues (Cs, Se and Re--for Tc) were partially removed from the test solutions both during high-temperature fluid-soil interactions and during room temperature bayerite precipitation. Altered soils would permanently retain a fraction of the Cs but essentially all of the Se and Re would be released once the plume was past and normal groundwater came in contact with the contaminated soil. Bayerite

  18. Weathering characteristics of the Lower Paleozoic black shale in ...

    Indian Academy of Sciences (India)

    permeability show that porosity increases significantly after weathering but permeability changes little. Furthermore, the ... As such, black shales usually have a high content of ... in the accumulation of soluble weathering phases, providing ...

  19. Development and Evaluation of a City-Wide Wireless Weather Sensor Network

    Science.gov (United States)

    Chang, Ben; Wang, Hsue-Yie; Peng, Tian-Yin; Hsu, Ying-Shao

    2010-01-01

    This project analyzed the effectiveness of a city-wide wireless weather sensor network, the Taipei Weather Science Learning Network (TWIN), in facilitating elementary and junior high students' study of weather science. The network, composed of sixty school-based weather sensor nodes and a centralized weather data archive server, provides students…

  20. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  1. Cockpit weather information needs

    Science.gov (United States)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  2. Experimental Study on the Utilization of Fine Steel Slag on Stabilizing High Plastic Subgrade Soil

    Directory of Open Access Journals (Sweden)

    Hussien Aldeeky

    2017-01-01

    Full Text Available The three major steel manufacturing factories in Jordan dump their byproduct, steel slag, randomly in open areas, which causes many environmental hazardous problems. This study intended to explore the effectiveness of using fine steel slag aggregate (FSSA in improving the geotechnical properties of high plastic subgrade soil. First soil and fine steel slag mechanical and engineering properties were evaluating. Then 0%, 5%, 10%, 15%, 20%, and 25% dry weight of soil of fine steel slag (FSSA were added and mixed into the prepared soil samples. The effectiveness of the FSSA was judged by the improvement in consistency limits, compaction, free swell, unconfined compression strength, and California bearing ratio (CBR. From the test results, it is observed that 20% FSSA additives will reduce plasticity index and free swell by 26.3% and 58.3%, respectively. Furthermore, 20% FSSA additives will increase the unconfined compressive strength, maximum dry density, and CBR value by 100%, 6.9%, and 154%. By conclusion FSSA had a positive effect on the geotechnical properties of the soil and it can be used as admixture in proving geotechnical characteristics of subgrade soil, not only solving the waste disposal problem.

  3. Degradation of 2,4-DB in Argentinean agricultural soils with high humic matter content.

    Science.gov (United States)

    Cuadrado, Virginia; Merini, Luciano J; Flocco, Cecilia G; Giulietti, Ana M

    2008-01-01

    The dissipation of 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) in high-humic-matter-containing soils from agricultural fields of the Argentinean Humid Pampa region was studied, employing soil microcosms under different experimental conditions. The added herbicide was dissipated almost completely by soils with and without history of herbicide use by day 28. At 500 ppm, both soils showed the same degradation rates; but at 5-ppm concentration, the chronically exposed soil demonstrated a faster degradation of the herbicide. 2,4-DB addition produced increases in herbicide-degrading bacteria of three and 1.5 orders of magnitude in soils with and without history of herbicide use, respectively, in microcosms with 5 ppm. At 500-ppm concentration, the increase in 2,4-DB degraders was five orders of magnitude after 14 days, independent of the history of herbicide use. No differences were observed in either 2,4-DB degradation rates or in degrader bacteria numbers in the presence and absence of alfalfa plants, in spite of some differential characteristics in patterns of 2,4-DB metabolite accumulation. The main factor affecting 2,4-DB degradation rate would be the history of herbicide use, as a consequence of the adaptation of the indigenous microflora to the presence of herbicides in the field.

  4. Bioaccessible Porosity in Soil Aggregates and Implications for Biodegradation of High Molecular Weight Petroleum Compounds.

    Science.gov (United States)

    Akbari, Ali; Ghoshal, Subhasis

    2015-12-15

    We evaluated the role of soil aggregate pore size on biodegradation of essentially insoluble petroleum hydrocarbons that are biodegraded primarily at the oil-water interface. The size and spatial distribution of pores in aggregates sampled from biodegradation experiments of a clayey, aggregated, hydrocarbon-contaminated soil with relatively high bioremediation end point were characterized by image analyses of X-ray micro-CT scans and N2 adsorption. To determine the bioaccessible pore sizes, we performed separate experiments to assess the ability of hydrocarbon degrading bacteria isolated from the soil to pass through membranes with specific sized pores and to access hexadecane (model insoluble hydrocarbon). Hexadecane biodegradation occurred only when pores were 5 μm or larger, and did not occur when pores were 3 μm and smaller. In clayey aggregates, ∼ 25% of the aggregate volume was attributed to pores larger than 4 μm, which was comparable to that in aggregates from a sandy, hydrocarbon-contaminated soil (~23%) scanned for comparison. The ratio of volumes of inaccessible pores (4 μm) in the clayey aggregates was 0.32, whereas in the sandy aggregates it was approximately 10 times lower. The role of soil microstructure on attainable bioremediation end points could be qualitatively assessed in various soils by the aggregate characterization approach outlined herein.

  5. Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Stuckey, Jason W. [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Neaman, Alexander [Facultad de Agronomia, P. Universidad Catolica de Valparaiso, Centro Regional de Estudios en Alimentos Saludables (Chile); Ravella, Ramesh; Komarneni, Sridhar [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Martinez, Carmen Enid [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States)], E-mail: cem17@psu.edu

    2009-01-15

    This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg{sup -1} and Sector 3: pH 4.2, total Cu = 112 mg Cu kg{sup -1}) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg{sup -1} (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils. - In situ remediation of Cu-contaminated soils with a synthetic mica (Na-2-mica) will aid in re-vegetative efforts.

  6. Impact of weathering on slope stability in soft rock mass

    Directory of Open Access Journals (Sweden)

    Predrag Miščević

    2014-06-01

    Full Text Available Weathering of soft rocks is usually considered as an important factor in various fields such as geology, engineering geology, mineralogy, soil and rock mechanics, and geomorphology. The problem of stability over time should be considered for slopes excavated in soft rocks, in case they are not protected against weathering processes. In addition to disintegration of material on slope surface, the weathering also results in shear strength reduction in the interior of the slope. Principal processes in association with weathering are discussed with the examples of marl hosted on flysch formations near Split, Croatia.

  7. Thermopiles - a new thermal desorption technology for recycling highly organic contaminated soils down to natural levels

    International Nuclear Information System (INIS)

    Haemers, J.; Cardot, J.; Falcinelli, U.; Zwaan, H.

    2005-01-01

    The Thermopile R technology, developed by Deep Green, provides an implementation system allowing to treat hydrocarbon and PAH contaminated materials down to natural levels or down to levels where they are treatable with a traditional thermal desorption unit, in a controlled batch system. The materials are indirectly heated while a substantial part of the energy is reused to heat the pile of soil. The system differs from most of the indirect thermal desorption systems by its very high energetic efficiency as well as its ability to be set -up remotely. The system does not face preferential path problems, since the heating medium is only conduction, which is very indifferent with regard to soil type (clay, sand, silt, etc.). That property is critical to an in-depth clean-up with a batch system. Other systems, based on heat, are mostly sending heat vectors (gases, hot air, steam, etc.) through the soil, which implies preferential paths, which are the main cause for not completely cleaning the soil with most batch technologies (down to natural levels). The soil to treat is placed in a pile or in a modular container in which perforated steel pipes are installed along a hexagonal pattern. During treatment those pipes are heated by hot gases (about 600 deg. C) coming from the afterburner. Consequently the soil reaches the contaminant's desorption temperature. The desorbed pollutants are then drawn by convection and diffusion into the heating pipes via the perforations. Once in the pipes the desorbed gases are mixed with the heating gases. They are sucked by the ID fan and sent to the afterburner. The hydrocarbons in gaseous phase are then oxidized in the afterburner. In this manner, they provide a part of the energy needed to heat the soil itself. The pilot unit is also equipped with a purge that allows the evacuation of a part of the gases circulating in the system; Different additional gas treatments can be applied as required by the type of contaminants and the

  8. The contribution of mulches to control high soil erosion rates in vineyards in Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; Jordán, Antonio; Zavala, Lorena; José Marqués, María; Novara, Agata

    2014-05-01

    Soil erosion take place in degraded ecosystem where the lack of vegetation, drought, erodible parent material and deforestation take place (Borelli et al., 2013; Haregeweyn et al., 2013; Zhao et al., 2013). Agriculture management developed new landscapes (Ore and Bruins, 2012) and use to trigger non-sustainable soil erosion rates (Zema et al., 2012). High erosion rates were measured in agriculture land (Cerdà et al., 2009), but it is also possible to develop managements that will control the soil and water losses, such as organic amendments (Marqués et al., 2005), plant cover (Marqués et al., 2007) and geotextiles (Giménez Morera et al., 2010). The most successful management to restore the structural stability and the biological activity of the agriculture soil has been the organic mulches (García Orenes et al; 2009; 2010; 2012). The straw mulch is also very successful on bare fire affected soil (Robichaud et al., 2013a; 2013b), which also contributes to a more stable soil moisture content (García-Moreno et al., 2013). The objective of this research is to determine the impact of two mulches: wheat straw and chipped branches, on the soil erosion rates in a rainfed vineyard in Eastern Spain. The research site is located in the Les Alcusses Valley within the Moixent municipality. The Mean annual temperature is 13 ºC, and the mean annual rainfall 455 mm. Soil are sandy loam, and are developed at the foot-slope of a Cretaceous limestone range, the Serra Grossa range. The soils use to be ploughed and the features of soil erosion are found after each thunderstorm. Rills are removed by ploughing. Thirty rainfall simulation experiments were carried out in summer 2011 during the summer drought period. The simulated rainfall lasted during 1 hour at a 45 mmh-1 intensity on 1 m2 plots (Cerdà and Doerr, 2010; Cerdà and Jurgensen 2011). Ten experiments were carried out on the control plots (ploughed), 10 on straw mulch covered plots, and 10 on chipped branches covered

  9. The Effects of Different Tillage Methods on Available Soil Potassium Measured by Various Extractors in a Soil with High Specific Surface Area

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2016-02-01

    Full Text Available Introduction: The effects of any tillage method on soil properties, depends on location (soil, water and air and the number of (years their implementation. Soil compaction reduces yield through increased soil mechanical resistance against root growth and lower water and nutrient use efficiency (Gamda et al. 18 & Ishagh et al 23. Soil surface and sub surface compaction both reduce yield due to limited root growth and plant potassium uptake (Doulan et al. 14. Sabt et al. (50 reported that in the study area, which the lands are mostly illite clay (high specific surface area with sufficient nitrogen, soil potassium is the most important limiting factor for the growth of wheat.Considering the point that loess soils in Golestan Province have a high specific surface area,they can provide potassium for plants to produce crop, but for a higher production, potassium fertilizers should be used. Previous studies indicated that production of wheat is limited due to potassium deficiency (4, 49, 54 and 57. In these soils with a high specific surface area, the speed of movement of potassium from the soil solution is low, and doing solimits wheat yield.In loess soils containing high illite and high specific surface area (eg, soilsin the series of Rahmat Abad of Gorgan, ammonium acetate measured potassium on exchange and solution surfaces, which is highly correlated with grain yield (54 . There is a high correlation between grain yield with overload of potassium and Na TPB extraction (57. The aim of this study was to absorb potassium (limiting factor for plant growth with different tillage systemsat different depths. International recommendations towards reducing the depth and intensity of tillage (from minimum tillage to no-tillage in order to reduce erosion and oxidation of organic substances plays an important role in determining the amount of greenhouse gases. If potassium absorption does not reduceafter reducing tillage intensity,low or no-tillage methods

  10. Application of chemical tools to evaluate phytoremediation of weathered hydrocarbons

    International Nuclear Information System (INIS)

    Camp, H.; Kulakow, P.; Smart, D.R.; O'Reilly, K.

    2002-01-01

    The effectiveness of using phytoremediation methods to treat soils contaminated with hydrocarbons was tested in a three-year study at a site in northern California at a treatment pond for refinery process water. The treatment pond was drained several years ago and is targeted for cleanup. The petroleum hydrocarbons from the refinery waste were already highly degraded from natural weathering processes by the time the study began. The soil consists of about 23 per cent sand, 38 per cent silt, and 39 per cent clay. The study followed the Environmental Protection Agency's standardized field protocol and analytical approach. During the study, chemical data for several hydrocarbon parameters was gathered. Soil samples were Soxhlet-extracted in organic solvent and measured for oil and grease and total petroleum hydrocarbons using gravimetric techniques. One of the objectives was to develop an accurate quantitative way to identify sites and conditions where phytoremediation will be effective to supplement decision-tree-type approaches. The focus of the study is the application of chemical data in evaluating the effectiveness of the treatment process. Phytoremediation uses living plants for in situ remediation of polluted soils. The basic benefits of the techniques is that it is aesthetically pleasing, natural and passive. In addition, it is effective in cleaning up sites with low to moderate levels of pollution at shallow depths. A particular form of phytoremediation called rhizodegradation or enhanced rhizosphere biodegradation was the treatment used in this study. It is a treatment in which microorganisms digest organic substances and beak them down by biodegradation while being supported in the plant root structure. Test results indicate that the effects of phytoremediation treatments are subtle for highly weathered source material. It was noted that more statistical analysis will be performed with the data to determine compositional changes due to phytoremediation

  11. Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire

    Science.gov (United States)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2015-05-01

    Biomass burning produces black carbon (BC), effectively transferring a fraction of the biomass C from an actively cycling pool to a passive C pool, which may be stored in the soil. Yet the timescales and mechanisms for incorporation of BC into the soil profile are not well understood. The High Park fire (HPF), which occurred in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire severity and geomorphology on properties of carbon (C), nitrogen (N) and BC in the Cache La Poudre River drainage. We sampled montane ponderosa pine forest floor (litter plus O-horizon) and soils at 0-5 and 5-15 cm depth 4 months post-fire in order to examine the effects of slope and burn severity on %C, C stocks, %N and BC. We used the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes but that there was no difference in BPCA-C content or stocks. BC content was greatest in the forest floor at burned sites (19 g BPCA-C kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g BPCA-C m-2). At the time of sampling, unburned and burned soils had equivalent BC content, indicating none of the BC deposited on the land surface post-fire had been incorporated into either the 0-5 or 5-15 cm soil layers. The ratio of B6CA : total BPCAs, an index of the degree of aromatic C condensation, suggested that BC in the 5-15 cm soil layer may have been formed at higher temperatures or experienced selective degradation relative to the forest floor and 0-5 cm soils. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely lost, either through erosion events, degradation or translocation to deeper soils. Future work examining mechanisms for BC losses from forest soils will be required for understanding the role BC plays in the global

  12. Impact of slurry application method on phosphorus loss in runoff from grassland soils during periods of high soil moisture content

    Directory of Open Access Journals (Sweden)

    McConnell D.A.

    2016-06-01

    Full Text Available Previous studies have reported that the trailing shoe application technique reduces phosphorus (P in the runoff postslurry application when compared to the traditional splash-plate application technique. However, the effectiveness of the trailing-shoe technique as a means of reducing P losses has not been evaluated when slurry is applied during periods of high soil moisture levels and lower herbage covers. To address this issue, three treatments were examined in a 3 × 4 factorial design split-plot experiment, with treatments comprising three slurry treatments: control (no slurry, splashplate and trailing-shoe, and four slurry application dates: 7 December, 18 January, 1 March and 10 April. Dairy cow slurry was applied at a rate of 20 m3/ha, while simulated runoff was generated 2, 9 and 16 days later and analysed for a range of P fractions. Dissolved reactive P concentrations in runoff at day two was 41% lower when slurry was applied using the trailing-shoe technique, compared to the splash-plate technique (P < 0.05. In addition, P concentrations in runoff were higher (P < 0.05 from slurry applied in December and March compared to slurry applied in January or April, coinciding with periods of higher soil moisture contents. While the latter highlights that ‘calendar’-based non-spreading periods might not always achieve the desired consequences, the study demonstrated that further field-scale investigations into the trailing shoe as a mitigation measure to reduced P loss from agricultural soils is warranted.

  13. Some like it high! Phylogenetic diversity of high-elevation cyanobacterial community from biological soil crusts of Western Himalaya.

    Czech Academy of Sciences Publication Activity Database

    Čapková, K.; Hauer, T.; Řeháková, Klára; Doležal, J.

    2016-01-01

    Roč. 71, č. 1 (2016), s. 113-123 ISSN 0095-3628 Institutional support: RVO:60077344 Keywords : soil crusts * cyanobacterial diversity * Western Himalayas * high-elevation * desert * phosphorus Subject RIV: EH - Ecology, Behaviour Impact factor: 3.630, year: 2016

  14. Land agroecological quality assessment in conditions of high spatial soil cover variability at the Pereslavskoye Opolye.

    Science.gov (United States)

    Morev, Dmitriy; Vasenev, Ivan

    2015-04-01

    The essential spatial variability is mutual feature for most natural and man-changed soils at the Central region of European territory of Russia. The original spatial heterogeneity of forest soils has been further complicated by a specific land-use history and human impacts. For demand-driven land-use planning and decision making the quantitative analysis and agroecological interpretation of representative soil cover spatial variability is an important and challenging task that receives increasing attention from private companies, governmental and environmental bodies. Pereslavskoye Opolye is traditionally actively used in agriculture due to dominated high-quality cultivated soddy-podzoluvisols which are relatively reached in organic matter (especially for conditions of the North part at the European territory of Russia). However, the soil cover patterns are often very complicated even within the field that significantly influences on crop yield variability and have to be considered in farming system development and land agroecological quality evaluation. The detailed investigations of soil regimes and mapping of the winter rye yield have been carried in conditions of two representative fields with slopes sharply contrasted both in aspects and degrees. Rye biological productivity and weed infestation have been measured in elementary plots of 0.25 m2 with the following analysis the quality of the yield. In the same plot soil temperature and moisture have been measured by portable devices. Soil sampling was provided from three upper layers by drilling. The results of ray yield detailed mapping shown high differences both in average values and within-field variability on different slopes. In case of low-gradient slope (field 1) there is variability of ray yield from 39.4 to 44.8 dt/ha. In case of expressed slope (field 2) the same species of winter rye grown with the same technology has essentially lower yield and within-field variability from 20 to 29.6 dt/ha. The

  15. Weather and emotional state

    Science.gov (United States)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  16. Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils

    DEFF Research Database (Denmark)

    Christiansen, Karen Søgaard; Borggaard, Ole K.; Holm, Peter Engelund

    2015-01-01

    Accurate knowledge about factors and conditions determining copper (Cu) toxicity in soil is needed for predicting plant growth in various Cu-contaminated soils. Therefore, effects of Cu on growth (biomass production) of lettuce (Lactuca sativa) were tested on seven selected, very different soils...

  17. Impact of bacterial ice nucleating particles on weather predicted by a numerical weather prediction model

    Science.gov (United States)

    Sahyoun, Maher; Korsholm, Ulrik S.; Sørensen, Jens H.; Šantl-Temkiv, Tina; Finster, Kai; Gosewinkel, Ulrich; Nielsen, Niels W.

    2017-12-01

    Bacterial ice-nucleating particles (INP) have the ability to facilitate ice nucleation from super-cooled cloud droplets at temperatures just below the melting point. Bacterial INP have been detected in cloud water, precipitation, and dry air, hence they may have an impact on weather and climate. In modeling studies, the potential impact of bacteria on ice nucleation and precipitation formation on global scale is still uncertain due to their small concentration compared to other types of INP, i.e. dust. Those earlier studies did not account for the yet undetected high concentration of nanoscale fragments of bacterial INP, which may be found free or attached to soil dust in the atmosphere. In this study, we investigate the sensitivity of modeled cloud ice, precipitation and global solar radiation in different weather scenarios to changes in the fraction of cloud droplets containing bacterial INP, regardless of their size. For this purpose, a module that calculates the probability of ice nucleation as a function of ice nucleation rate and bacterial INP fraction was developed and implemented in a numerical weather prediction model. The threshold value for the fraction of cloud droplets containing bacterial INP needed to produce a 1% increase in cloud ice was determined at 10-5 to 10-4. We also found that increasing this fraction causes a perturbation in the forecast, leading to significant differences in cloud ice and smaller differences in convective and total precipitation and in net solar radiation reaching the surface. These effects were most pronounced in local convective events. Our results show that bacterial INP can be considered as a trigger factor for precipitation, but not an enhancement factor.

  18. Modelling the response of soil and soil solution chemistry upon roofing a forest in an area with high nitrogen deposition

    Directory of Open Access Journals (Sweden)

    C. van der Salm

    1998-01-01

    Full Text Available In the Speuld forest, the Netherlands, the dynamic soil acidification model NuCSAM has been applied to a manipulation experiment in which part of the forest was roofed to control nitrogen (N and sulphur (S deposition. The roofed area was divided into two subplots watered artificially; one received ambient N and S deposition and one with pristine N and S deposition. Concentration measurements on each plots showed a high (time-dependent spatial variability. Statistical analyses of the concentrations on both subplots showed small but significant effects of the reduction in deposition on nitrate (NO3 sulphate (SO4 and aluminum (Al concentrations. The statistical significance of the effects was minimised by the large spatial variability within the plots. Despite these shortcomings, simulated concentrations were generally within the 95% confidence interval of the measurements although the effect of a reduction in N deposition on soil solution chemistry was underestimated due to a marked decline in N-uptake by the vegetation.

  19. Highly calcareous lacustrine soils in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Meester, de T.

    1971-01-01

    The Great Konya Basin is in the south of the Central Anatolian Plateau in Turkey. It is a depression without outlet to the sea. The central part of the Basin is the floor of a former Pleistocene lake, the Ancient Konya Lake. This area, called the Lacustrine
    Plain, has highly calcareous

  20. Fabulous Weather Day

    Science.gov (United States)

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  1. Designing a Weather Station

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  2. KSC Weather and Research

    Science.gov (United States)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  3. Weather and road capacity

    DEFF Research Database (Denmark)

    Jensen, Thomas Christian

    2014-01-01

    The paper presents estimations of the effect of bad weather on the observed speed on a Danish highway section; Køge Bugt Motorvejen. The paper concludes that weather, primarily precipitation and snow, has a clear negative effect on speed when the road is not in hypercongestion mode. Furthermore...

  4. Tales of future weather

    NARCIS (Netherlands)

    Hazeleger, W.; Van den Hurk, B.J.J.M.; Min, E.; Van Oldenborgh, G.J.; Petersen, A.C.; Stainforth, D.A.; Vasileiadou, E.; Smith, L.A.

    2015-01-01

    Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The

  5. Weathering and weathering rates of natural stone

    Science.gov (United States)

    Winkler, Erhard M.

    1987-06-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the rocks' permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of the causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between disolution, crack-corrosion, and expansion-contraction cycies triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  6. Differential rates of feldspar weathering in granitic regoliths

    Science.gov (United States)

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetic and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations, coupled with elemental balances and 87Sr/86Sr ratios, indicate that plagioclase is being converted to kaolinite at depths > 6 m in the granitic bedrock. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast, both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province, such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating, are 7 m/106 yr for the Panola regolith and 4 m/106 yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths are factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However, the range for plagioclase and K-feldspar rates (kr = 1.5 x 10-17 to 2.8 x 10-16 mol m-2 s-1) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths, implying that mineral surface reactivity decreases significantly with

  7. Soil Production and Erosion Rates and Processes in Mountainous Landscapes

    Science.gov (United States)

    Heimsath, A. M.; DiBiase, R. A.; Whipple, K. X.

    2012-12-01

    We focus here on high-relief, steeply sloped landscapes from the Nepal Himalaya to the San Gabriels of California that are typically thought to be at a critical threshold of soil cover. Observations reveal that, instead, there are significant areas mantled with soil that fit the conceptual framework of a physically mobile layer derived from the underlying parent material with some locally-derived organic content. The extent and persistence of such soils depends on the long-term balance between soil production and erosion despite the perceived discrepancy between high erosion and low soil production rates. We present cosmogenic Be-10-derived soil production and erosion rates that show that soil production increases with catchment-averaged erosion, suggesting a feedback that enhances soil-cover persistence, even in threshold landscapes. Soil production rates do decline systematically with increasing soil thickness, but hint at the potential for separate soil production functions for different erosional regimes. We also show that a process transistion to landslide-dominated erosion results in thinner, patchier soils and rockier topography, but find that there is no sudden transition to bedrock landscapes. Our landslide modeling is combined with a detailed quantification of bedrock exposure for these steep, mountainous landscapes. We also draw an important conclusion connecting the physical processes producing and transporting soil and the chemical processes weathering the parent material by measuring parent material strength across three different field settings. We observe that parent material strength increases with overlying soil thickness and, therefore, the weathered extent of the saprolite. Soil production rates, thus, decrease with increasing parent material competence. These observation highlight the importance of quantifying hillslope hydrologic processes where such multi-facted measurements are made.

  8. Kinetically limited weathering at low denudation rates in semi-arid climates

    Science.gov (United States)

    Vanacker, V.; Schoonejans, J.; Opfergelt, S.; Ameijeiras-Marino, Y.; Christl, M.

    2016-12-01

    On Earth, the Critical Zone supports terrestrial life, being the near-surface environment where interactions between the atmosphere, lithosphere, hydrosphere, and biosphere take place Quantitative understanding of the interaction between mechanical rock breakdown, chemical weathering, and physical erosion is essential for unraveling Earth's biogeochemical cycles. In this study, we explore the role of soil water balance on regulating soil chemical weathering under water deficit regimes. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We present and compare quantitative information on soil weathering, chemical depletion and total denudation that were derived based on geochemical mass balance, 10Be cosmogenic nuclides and U-series disequilibria. Soil production rates determined based on U-series isotopes (238U, 234U, 230Th and 226Ra) are of the same order of magnitude as 10Be-derived denudation rates, suggesting steady state soil thickness, in two out of three sampling sites. The chemical weathering intensities are relatively low (˜5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Soil weathering extents increase (nonlinearly) with soil thickness and decrease with increasing surface denudation rates, consistent with kinetically limited or controlled weathering. Our study suggests that soil residence time and water availability limit weathering processes in semi-arid climates, which has not been validated previously with field data. An important implication of this finding is that climatic regimes may strongly regulate soil weathering by modulating soil solute fluxes.

  9. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  10. Evaluation of high-resolution forecasts with the non-hydrostaticnumerical weather prediction model Lokalmodell for urban air pollutionepisodes in Helsinki, Oslo and Valencia

    Directory of Open Access Journals (Sweden)

    B. Fay

    2006-01-01

    Full Text Available The operational numerical weather prediction model Lokalmodell LM with 7,km horizontal resolution was evaluated for forecasting meteorological conditions during observed urban air pollution episodes. The resolution was increased to experimental 2.8 km and 1.1 km resolution by one-way interactive nesting without introducing urbanisation of physiographic parameters or parameterisations. The episodes examined are two severe winter inversion-induced episodes in Helsinki in December 1995 and Oslo in January 2003, three suspended dust episodes in spring and autumn in Helsinki and Oslo, and a late-summer photochemical episode in the Valencia area. The evaluation was basically performed against observations and radiosoundings and focused on the LM skill at forecasting the key meteorological parameters characteristic for the specific episodes. These included temperature inversions, atmospheric stability and low wind speeds for the Scandinavian episodes and the development of mesoscale recirculations in the Valencia area. LM forecasts often improved due to higher model resolution especially in mountainous areas like Oslo and Valencia where features depending on topography like temperature, wind fields and mesoscale valley circulations were better described. At coastal stations especially in Helsinki, forecast gains were due to the improved physiographic parameters (land fraction, soil type, or roughness length. The Helsinki and Oslo winter inversions with extreme nocturnal inversion strengths of 18°C were not sufficiently predicted with all LM resolutions. In Helsinki, overprediction of surface temperatures and low-level wind speeds basically led to underpredicted inversion strength. In the Oslo episode, the situation was more complex involving erroneous temperature advection and mountain-induced effects for the higher resolutions. Possible explanations include the influence of the LM treatment of snow cover, sea ice and stability-dependence of transfer

  11. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient

    DEFF Research Database (Denmark)

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders

    2016-01-01

    emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil...

  12. Western US high June 2015 temperatures and their relation to global warming and soil moisture

    NARCIS (Netherlands)

    Philip, Sjoukje Y.; Kew, Sarah F.; Hauser, Mathias; Guillod, Benoit P.; Teuling, Adriaan J.; Whan, Kirien; Uhe, Peter; Oldenborgh, van Geert Jan

    2018-01-01

    The Western US states Washington (WA), Oregon (OR) and California (CA) experienced extremely high temperatures in June 2015. The temperature anomalies were so extreme that they cannot be explained with global warming alone. We investigate the hypothesis that soil moisture played an important role

  13. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)

    Czech Academy of Sciences Publication Activity Database

    Kotas, P.; Šantrůčková, H.; Elster, Josef; Kaštovská, E.

    2018-01-01

    Roč. 15, č. 6 (2018), s. 1879-1894 ISSN 1726-4170 R&D Projects: GA MŠk(CZ) LM2015075 Grant - others:GA MŠk LM2010009 Institutional support: RVO:67985939 Keywords : ecosystem * High Arctic * soil microbial biomass Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.851, year: 2016

  14. Transport of fallout radiocesium in the soil by bioturbation. A random walk model and application to a forest soil with a high abundance of earthworms

    International Nuclear Information System (INIS)

    Bunzl, K.

    2002-01-01

    It is well known that bioturbation can contribute significantly to the vertical transport of fallout radionuclides in grassland soils. To examine this effect also for a forest soil, activity-depth profiles of Chernobyl-derived 134Cs from a limed plot (soil, hapludalf under spruce) with a high abundance of earthworms (Lumbricus rubellus) in the Olu horizon (thickness=3.5 cm) were evaluated and compared with the corresponding depth profiles from an adjacent control plot. For this purpose, a random-walk based transport model was developed, which considers (1) the presence of an initial activity-depth distribution, (2) the deposition history of radiocesium at the soil surface, (3) individual diffusion/dispersion coefficients and convection rates for the different soil horizons, and (4) mixing by bioturbation within one soil horizon. With this model, the observed 134Cs-depth distribution at the control site (no bioturbation) and at the limed site could be simulated quite satisfactorily. It is shown that the observed, substantial long-term enrichment of 134Cs in the bioturbation horizon can be modeled by an exceptionally effective diffusion process, combined with a partial reflection of the randomly moving particles at the two borders of the bioturbation zone. The present model predicts significantly longer residence times of radiocesium in the organic soil layer of the forest soil than obtained from a first-order compartment model, which does not consider bioturbation explicitly

  15. Small scale tests on the progressive retreat of soil slopes

    Science.gov (United States)

    Voulgari, Chrysoula; Utili, Stefano; Castellanza, Riccardo

    2015-04-01

    In this paper, the influence due to the presence of cracks on the morphologic evolution of natural cliffs subject to progressive retreat induced by weathering is investigated through small scale laboratory tests. Weathering turns hard rocks into soft rocks that maintain the structure of the intact rocks, but are characterised by higher void ratios and reduced bond strengths; soft rocks are transformed into granular soils generally called residual soils. A number of landslides develop in slopes due to weathering which results in the progressive retrogression of the slope face and the further degradation within the weathering zone. Cracks, that are widely present, can be a result of weathering and they can cause a significant decrease in their stability, as they provide preferential flow channels which increase the soil permeability and decrease the soil strength. The geological models employed until now are mainly empirical. Several researchers have tried to study the stability of slopes through experimental procedures. Centrifuge modelling is widely used to investigate the failure of slopes. Small scale tests are also an important approach, in order to study the behaviour of a slope under certain conditions, such as the existence of water, as they allow the observation of the infiltration processes, the movement of the weathering front, deformation and failure. However, the deformation response of a slope subject to weathering is not yet thoroughly clarified. In this work, a set of experiments were conducted to investigate weathering induced successive landslides. Weathering was applied to the slope model by wetting the slope crest through a rainfall simulator device. The moisture content of the soil during the tests was monitored by soil moisture sensors that were buried inside the slope model. High resolution cameras were recording the behaviour of the slope model. GeoPIV was used to analyse the frames and obtain the deformations of the slope model during the

  16. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie

    2015-01-01

    season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic...... Svalbard in two vegetation types spanning three moisture regimes. We measured growing-season availability of ammonium (NH4 (+)), nitrate (NO3 (-)), total dissolved organic carbon (DOC) and nitrogen (TON) in soil; C, N, delta N-15 and chlorophyll content in Salix polaris leaves; and leaf sizes of Salix...

  17. Soil monitoring in agro-ecosystems of high mountain zone in Quindio

    International Nuclear Information System (INIS)

    Sadeghian, Siavosh; Orozco, O l; Murgueitio, E

    2001-01-01

    Were evaluated soil characteristics in 4 common agro-ecosystems of high mountain zone of Quindio department, soil forest exhibit better indicators that others systems. Low macro porosity and hydraulic conductivity were consequences more important of cattle ranching systems. In pinus plantations were registered lower value of organic matter, pH, interchanging bases, gravimetric moisture and microbial activity CO 2 . As a result of pinus establishment on pasture ground increase drainable porosity and hydraulic conductivity. In granadilla cultivation were lower organism diversity and structural stability

  18. Soil Structure Interaction Effect on High Rise and Low Rise Buildings

    OpenAIRE

    Divya Pathak; PAresh H. SHAH

    2000-01-01

    Effect of supporting soil on the response of structure has been analyzed in the present study. A low rise (G+ 5 storey) and a high rise (G+12 storey) building has been taken for the analysis. For both type of buildings, the response of building with and without consideration of soil structure interaction effect has been compared.Without interaction case is the case in which ends of the structure are assumed to be fixed while in interaction case, structure is assumed to be...

  19. Mass Transport within Soils

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated

  20. Element mobilization and redistribution under extreme tropical weathering of basalts from the Hainan Island, South China

    Science.gov (United States)

    Jiang, Ke; Qi, Hua-Wen; Hu, Rui-Zhong

    2018-06-01

    Chemical weathering of rocks has substantial influence on the global geochemical cycle. In this paper, the geochemical profile of a well-developed basalt weathering profile (>15 m thick, including soil, saprolite, semi-weathered rock and fresh basalt) on the Island of Hainan (South China) was presented. The soil and saprolite samples from this profile are characterized by high Al2O3 and Fe2O3 concentrations (up to 32.3% and 28.5%, respectively). The mineral assemblage is dominated by kaolinite, Fe-oxides/-hydroxides and gibbsite (or boehmite), indicating extensive desilicate and ferrallitic weathering. The acidic and organic-rich environment in the soil horizon may have promoted elemental remobilization and leaching. The strongest SiO2 depletion and Al2O3 enrichment at about 2.4 m deep indicate that the main kaolinite hydrolysis and gibbsite formation occurred near the soil-saprolite interface. The mild Sr reconcentration at about 3.9 m and 7.1 m deep may be attributed to secondary carbonate precipitation. Mn-oxides/-hydroxides precipitated at 6.1 m deep, accompanied by the strongest enrichment of Ba and Co. Uranium is mildly enriched in the middle part (about 7.1 m and 9.1 m deep) of the weathering profile, and the enrichment may have been caused by the decomposition of uranyl carbonates or the accumulation of zircon. Immobile element (i.e., Zr, Hf, Nb, Ta, Th and Ti) distributions at different depths are mainly controlled by secondary Fe-oxides/-hydroxides, and follow the stability sequence of Nb ≈ Ta ≈ Th > Zr ≈ Hf > Ti. The limited thickness (∼15 cm) of the semi-weathered basalt horizon at the rock-regolith interface (15.28 m deep) suggests that plagioclase and pyroxene are readily altered to kaolinite, smectite and Fe-oxides under tropical climate. The marked enrichment of transitional metals (such as Cu, Zn, Ni, and Sc) along the rock-regolith interface may have associated mainly with increasing pH values, as well as the dissolution of primary apatite

  1. Arsenic speciation in soil using high performance liquid chromatography/inductively coupled plasma/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bass, D.A.; Yaeger, J.S.; Parish, K.J.; Crain, J.S.; Kiely, J.T.; Gowdy, M.J. [Argonne National Lab., IL (United States); Mohrman, G.B.; Besmer, M.G. [Rocky Mountain Arsenal, Commerce City, CO (United States)

    1996-08-01

    A method has been developed to identify and quantify As(III), As(V), and organoarsenic compounds in soil samples from the Rocky Mountain Arsenal (RMA) by high performance liquid chromatography/inductively coupled plasma/mass spectrometry (HPLC/ICP/MS). The soils were extracted using tetrabutylammonium hydroxide (TBAH) and sonication. The percentages of As(III), As(V), and organoarsenic species extracted from soil samples were 30, 50, and 100 respectively. The arsenic species were not altered during the extraction process. They were separated by reversed-phase, ion-pairing, HPLC using a microbore Inertsil-ODS{trademark} column. The HPLC column effluent was introduced into an ICP/MS system using a direct injection nebulizer (DIN). Detection limits of less than 1 pg were readily obtained for each arsenic species. Internal standards are recommended to increase accuracy and precision. Soil samples spiked with arsenic oxide, sodium arsenate, dimethylarsinic acid (DMAA), and chlorovinyl arsenious acid (CVAA) were extracted, identified and quantified with the HPLC/ICP/MS system. The soil samples were analyzed in support of the analytical needs of a thermal desorption treatability study being conducted at the RMA.

  2. Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders?

    Directory of Open Access Journals (Sweden)

    Jan eJansa

    2013-05-01

    Full Text Available Mycorrhizal fungi interconnect two different kinds of environments, namely the plant roots with the surrounding soil. This widespread coexistence of plants and fungi has important consequences for plant mineral nutrition, water acquisition, carbon allocation, tolerance to abiotic and biotic stresses and interplant competition. Yet some current research indicates a number of important roles to be played by hyphae-associated microbes, in addition to the hyphae themselves, in foraging for and acquisition of soil resources and in transformation of organic carbon in the soil-plant systems. We critically review the available scientific evidence for the theory that the surface of mycorrhizal hyphae in soil is colonized by highly specialized microbial communities, and that these fulfill important functions in the ecology of mycorrhizal fungal hyphae such as accessing recalcitrant forms of mineral nutrients, and production of signaling and other compounds in the vicinity of the hyphae. The validity of another hypothesis will then be addressed, namely that the specific associative microbes are rewarded with exclusive access to fungal carbon, which would qualify them as hypersymbionts (i.e. symbionts of symbiotic mycorrhizal fungi. Thereafter, we ask whether recruitment of functionally different microbial assemblages by the hyphae is required under different soil conditions (questioning what evidence is available for such an effect, and we identify knowledge gaps requiring further attention.

  3. Patterns of volcanism, weathering, and climate history from high-resolution geochemistry of the BINGO core, Mono Lake, California, USA

    Science.gov (United States)

    Zimmerman, S. R.; Starratt, S.; Hemming, S. R.

    2012-12-01

    Mono Lake, California is a closed-basin lake on the east side of the Sierra Nevada, and inflow from snowmelt dominates the modern hydrology. Changes in wetness during the last glacial period (>12,000 years ago) and over the last 2,000 years have been extensively described, but are poorly known for the intervening period. We have recovered a 6.25 m-long core from ~3 m of water in the western embayment of Mono Lake, which is shown by initial radiocarbon dates to cover at least the last 10,000 years. The sediments of the core are variable, ranging from black to gray silts near the base, laminated olive-green silt through the center, to layers of peach-colored carbonate nodules interbedded with gray and olive silts and pea-green organic ooze. Volcanic tephras from Bodie and Adobe Hills to the north, east, and south. The rhyolitic tephras of the Mono-Inyo Craters are much lower in TiO2 than the bedrock (10,000 calibrated years before present (cal yr BP) higher in the core, and significant disruption of the fine layers, this interval likely indicates a relatively deep lake persisting into the early Holocene, after the initial dramatic regression from late Pleistocene levels. The finely laminated olive-green silt of the period ~10,700 to ~7500 cal yr BP is very homogenous chemically, probably indicating a stable, stratified lake and a relatively wet climate. This section merits mm-scale scanning and petrographic examination in the future. The upper boundary of the laminated section shows rising Ca/K and decreasing Ti and Si/K, marking the appearance of authigenic carbonate layers. After ~7500 cal yr BP, the sediment in BINGO becomes highly variable, with increased occurrence of tephra layers and carbonate, indicating a lower and more variable lake level. A short interval of olive-green, laminated fine sand/silt just above a radiocarbon date of 3870 ± 360 cal yr BP may record the Dechambeau Ranch highstand of Stine (1990; PPP v. 78 pp 333-381), and is marked by a distinct

  4. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

    Directory of Open Access Journals (Sweden)

    Krystal de Alcantara Notaro

    2014-04-01

    Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

  5. Verification of High Resolution Soil Moisture and Latent Heat in Germany

    Science.gov (United States)

    Samaniego, L. E.; Warrach-Sagi, K.; Zink, M.; Wulfmeyer, V.

    2012-12-01

    Improving our understanding of soil-land-surface-atmosphere feedbacks is fundamental to make reliable predictions of water and energy fluxes on land systems influenced by anthropogenic activities. Estimating, for instance, which would be the likely consequences of changing climatic regimes on water availability and crop yield, requires of high resolution soil moisture. Modeling it at large-scales, however, is difficult and uncertain because of the interplay between state variables and fluxes and the significant parameter uncertainty of the predicting models. At larger scales, the sub-grid variability of the variables involved and the nonlinearity of the processes complicate the modeling exercise even further because parametrization schemes might be scale dependent. Two contrasting modeling paradigms (WRF/Noah-MP and mHM) were employed to quantify the effects of model and data complexity on soil moisture and latent heat over Germany. WRF/Noah-MP was forced ERA-interim on the boundaries of the rotated CORDEX-Grid (www.meteo.unican.es/wiki/cordexwrf) with a spatial resolution of 0.11o covering Europe during the period from 1989 to 2009. Land cover and soil texture were represented in WRF/Noah-MP with 1×1~km MODIS images and a single horizon, coarse resolution European-wide soil map with 16 soil texture classes, respectively. To ease comparison, the process-based hydrological model mHM was forced with daily precipitation and temperature fields generated by WRF during the same period. The spatial resolution of mHM was fixed at 4×4~km. The multiscale parameter regionalization technique (MPR, Samaniego et al. 2010) was embedded in mHM to be able to estimate effective model parameters using hyper-resolution input data (100×100~km) obtained from Corine land cover and detailed soil texture fields for various horizons comprising 72 soil texture classes for Germany, among other physiographical variables. mHM global parameters, in contrast with those of Noah-MP, were

  6. Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs

    Directory of Open Access Journals (Sweden)

    Arun Mondal

    2017-05-01

    Full Text Available Digital Elevation Model (DEM is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universal Soil Loss Equation (RUSLE model has been applied to analysis the assessment of soil erosion uncertainty using open source DEMs (SRTM, ASTER and CARTOSAT and their increasing grid space (pixel size from the actual. The study area is a part of the Narmada river basin in Madhya Pradesh state, which is located in the central part of India and the area covered 20,558 km2. The actual resolution of DEMs is 30 m and their increasing grid spaces are taken as 90, 150, 210, 270 and 330 m for this study. Vertical accuracy of DEMs has been assessed using actual heights of the sample points that have been taken considering planimetric survey based map (toposheet. Elevations of DEMs are converted to the same vertical datum from WGS 84 to MSL (Mean Sea Level, before the accuracy assessment and modelling. Results indicate that the accuracy of the SRTM DEM with the RMSE of 13.31, 14.51, and 18.19 m in 30, 150 and 330 m resolution respectively, is better than the ASTER and the CARTOSAT DEMs. When the grid space of the DEMs increases, the accuracy of the elevation and calculated soil erosion decreases. This study presents a potential uncertainty introduced by open source high resolution DEMs in the accuracy of the soil erosion assessment models. The research provides an analysis of errors in selecting DEMs using the original and increased grid space for soil erosion modelling.

  7. Weather, transport mode choices and emotional travel experiences

    NARCIS (Netherlands)

    Böcker, L.; Dijst, M.J.; Faber, J.

    2016-01-01

    With climate change high on the political agenda, weather has emerged as an important issue in travel behavioral research and urban planning. While various studies demonstrate profound effects of weather on travel behaviors, limited attention has been paid to subjective weather experiences and the

  8. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  9. Baring high-albedo soils by overgrazing - A hypothesized desertification mechanism

    Science.gov (United States)

    Otterman, J.

    1974-01-01

    Observations are reported of high-albedo soils denuded by overgrazing which appear bright, in high contrast to regions covered by natural vegetation. Measurements and modeling show that the denuded surfaces are cooler, when compared under sunlit conditions. This observed 'thermal depression' effect should, on theoretical grounds, result in a decreased lifting of air necessary for cloud formation and precipitation, and thus lead to regional climatic desertification.

  10. A diagnostic Study of a High Impact Weather Episode in the Western Mediterranean Region: IOP8 a HyMeX case

    Science.gov (United States)

    Khodayar, Samiro; Kalthoff, Norbert; Raff, Fritz

    2013-04-01

    Fall season heavy rainfall in the western Mediterranean region is one of the most threatening phenomena in the area. Devastating flash floods occur every year somewhere in eastern Spain resulting in a large amount of property losses, destruction of infrastructures, enormous agricultural losses and human fatalities. The forecast of the underlying HIW is a subject of special concern for local meteorologist because of its catastrophic nature. Within the framework of HyMeX (Hydrological cycle in the Mediterranean eXperiment) a HIW (High Impact Weather) event took place on the south and eastern part of the Spanish coast, particularly in Andalusia, Murcia, Valencia, Catalonia and less pronouncedly in the Balearic Islands, moving afterwards towards France southern coast. During this event casualties and important economic damage were registered. The amounts of precipitation locally overpassed 200 mm in 24 hours and a tornado occurred in Gandia (Valencia). The main objective of this work is to provide a comprehensive description of the physical atmospheric processes giving rise to the intense precipitation in this event and its movement along the Spanish coast. High-resolution COSMO-CLM model simulations supported by the analysis of observational data sets will be presented. The model simulations and observational data sets, such as a dense network of global positioning systems (GPS), raingauges, surface measurements and radiosoundings are analyzed to document in detail the evolution of the warm and wet air masses which fed the high precipitation event (HPE) systems, as well as the low-level convergence to which the main convective systems were associated.

  11. Micromorphological characteristics of sandy forest soils recently impacted by wildfires in Russia

    Science.gov (United States)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2017-04-01

    Two fire-affected soils were studied using micromorphological methods. The objective of the paper is to assess and compare fire effects on the micropedological organisation of soils in a forest-steppe zone of central Russia (Volga Basin, Togliatti city). Samples were collected in the green zone of Togliatti city. The results showed that both soils were rich in quartz and feldspar. Mica was highly present in soils affected by surface fires, while calcium carbonates were identified in the soils affected by crown fires. The type of plasma is humus-clay, but the soil assemblage is plasma-silt with a prevalence of silt. Angular and subangular grains are the most dominant soil particulates. No evidence of intensive weathering was detected. There was a decrease in the porosity of soils affected by fires as a consequence of soil pores filled with ash and charcoal.

  12. Sun, weather, and climate

    International Nuclear Information System (INIS)

    Herman, J.R.; Goldberg, R.A.

    1985-01-01

    The general field of sun-weather/climate relationships that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown casual mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climate trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments. 300 references

  13. Bioavailability of caesium-137 from chernozem soils with high and low levels of radioactive contamination

    Science.gov (United States)

    Paramonova, Tatiana; Shamshurina, Eugenia; Machaeva, Ekaterina; Belyaev, Vladimir

    2014-05-01

    Bioavailability of Cs-137 in "soil-plant" system of radioactively contaminated terrestrial ecosystems is the most important factor in the understanding of ecological situation. There are many factors affecting the features of Cs-137 biogeochemical cycle: period since an accident, type and intensity of radioactive fallout, general properties of landscape and the specifics of soil and plant covers, etc. In order to evaluate the importance of soil contamination level for the process of Cs-137 translocation from soil to plant the research in forest-steppe areas of Russia with similar natural properties, but contrasting high (Tula region) and low (Kursk region) levels of radioactive Chernobyl fallout (about 25 years after accident) was conducted. Soil cover of both sites is presented by chernozems with bulk density 1.1-1.2 g/cm3, 6-7% humus and neutral pH 6.5-7.2; plant cover under investigation consist of dry and wet meadows with bioproductivity 1.6-2.5 kg/m2 and 85-90% of biomass concentrated underground, that is typical for Russian forest-steppe landscapes. At the same time levels of soil regional contamination with Cs-137 differ by an order - 620-710 Bq/kg (210-250 kBq/m2) in Tula region and 30-55 Bq/kg (10-20 kBq/m2) in Kursk region. At a higher level of soil radioactive contamination specific activity of Cs-137 in vegetation of meadows is noticeably increased (103-160 Bq/kg in Tula region versus 12-14 Bq/kg in Kursk region) with correlation coefficient r 0.87. Increasing of Cs-137 in the underground parts of plants plays a decisive role in this process, while the specific radionuclide's activity in the aboveground parts of different sites is almost invariant (and ubiquitously roots contain 2-5 times more Cs-137 than shoots). The values of transfer factors for Cs-137 (the ratio of the specific Cs-137 activities in the plant tissue and in the soil) at various levels of soil radioactive contamination vary within a relatively narrow range 0.1-0.4, that confirms the

  14. High-throughput diagnosis of potato cyst nematodes in soil samples.

    Science.gov (United States)

    Reid, Alex; Evans, Fiona; Mulholland, Vincent; Cole, Yvonne; Pickup, Jon

    2015-01-01

    Potato cyst nematode (PCN) is a damaging soilborne pest of potatoes which can cause major crop losses. In 2010, a new European Union directive (2007/33/EC) on the control of PCN came into force. Under the new directive, seed potatoes can only be planted on land which has been found to be free from PCN infestation following an official soil test. A major consequence of the new directive was the introduction of a new harmonized soil sampling rate resulting in a threefold increase in the number of samples requiring testing. To manage this increase with the same staffing resources, we have replaced the traditional diagnostic methods. A system has been developed for the processing of soil samples, extraction of DNA from float material, and detection of PCN by high-throughput real-time PCR. Approximately 17,000 samples are analyzed each year using this method. This chapter describes the high-throughput processes for the production of float material from soil samples, DNA extraction from the entire float, and subsequent detection and identification of PCN within these samples.

  15. Distribution of black carbon in Ponderosa pine litter and soils following the High Park wildfire

    Science.gov (United States)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2014-12-01

    Black carbon (BC), the heterogeneous product of burned biomass, is a critical component in the global carbon cycle, yet timescales and mechanisms for incorporation into the soil profile are not well understood. The High Park Fire, which took place in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire intenstiy and geomorphology on properties of carbon (C), nitrogen (N), and BC in the Cache La Poudre River drainage. We sampled montane Ponderosa pine litter, 0-5 cm soils, and 5-15 cm soils four months post-fire in order to examine the effects of slope and burn intensity on %C, C stocks, %N and black carbon (g kg-1 C, and g m-2). We developed and implemented the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes, but that there was no difference in black carbon content or stocks. BC content was greatest in the litter in burned sites (19 g kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g m-2). At the time of sampling, none of the BC deposited on the land surface post-fire had been incorporated into to either the 0-5 cm or 5-15 cm soil layers. The ratio of B5CA : B6CA (less condensed to more condensed BC) indicated there was significantly more older, more processed BC at depth. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely transported off the surface through erosion events. Future work examining mechanisms for BC transport will be required for understanding the role BC plays in the global carbon cycle.

  16. Convective Mode and Mesoscale Heavy Rainfall Forecast Challenges during a High-Impact Weather Period along the Gulf Coast and Florida from 17-20 May 2016

    Science.gov (United States)

    Bosart, L. F.; Wallac