WorldWideScience

Sample records for highly selective butanol

  1. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  2. Improvement of the butanol production selectivity and butanol to acetone ratio (B:A) by addition of electron carriers in the batch culture of a new local isolate of Clostridium acetobutylicum YM1.

    Science.gov (United States)

    Nasser Al-Shorgani, Najeeb Kaid; Kalil, Mohd Sahaid; Wan Yusoff, Wan Mohtar; Shukor, Hafiza; Hamid, Aidil Abdul

    2015-12-01

    Improvement in the butanol production selectivity or enhanced butanol:acetone ratio (B:A) is desirable in acetone-butanol-ethanol (ABE) fermentation by Clostridium strains. In this study, artificial electron carriers were added to the fermentation medium of a new isolate of Clostridium acetobutylicum YM1 in order to improve the butanol yield and B:A ratio. The results revealed that medium supplementation with electron carriers changed the metabolism flux of electron and carbon in ABE fermentation by YM1. A decrease in acetone production, which subsequently improved the B:A ratio, was observed. Further improvement in the butanol production and B:A ratios were obtained when the fermentation medium was supplemented with butyric acid. The maximum butanol production (18.20 ± 1.38 g/L) was gained when a combination of methyl red and butyric acid was added. Although the addition of benzyl viologen (0.1 mM) and butyric acid resulted in high a B:A ratio of 16:1 (800% increment compared with the conventional 2:1 ratio), the addition of benzyl viologen to the culture after 4 h resulted in the production of 18.05 g/L butanol. Manipulating the metabolic flux to butanol through the addition of electron carriers could become an alternative strategy to achieve higher butanol productivity and improve the B:A ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Development of a high temperature microbial fermentation process for butanol

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. St. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Transforming renewable biomass into cost-competitive high-performance biofuels and bioproducts is key to the U.S. future energy and chemical needs. Butanol production by microbial fermentation for chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process could decrease energy costs, capital cost, give higher butanol production, and allow for continuous fermentation. In this paper, we describe our approach to genetically transform Geobacillus caldoxylosiliticus, using a pUCG18 plasmid, for potential insertion of a butanol production pathway. Transformation methods tested were electroporation of electrocompetent cells, ternary conjugation with E. coli donor and helper strains, and protoplast fusion. These methods have not been successful using the current plasmid. Growth controls show cells survive the various methods tested, suggesting the possibility of transformation inhibition from a DNA restriction modification system in G. caldoxylosiliticus, as reported in the literature.

  4. pH-induced change in cell susceptibility to butanol in a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A.

    Science.gov (United States)

    Kanno, Manabu; Tamaki, Hideyuki; Mitani, Yasuo; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2015-01-01

    Though butanol is considered as a potential biofuel, its toxicity toward microorganisms is the main bottleneck for the biological butanol production. Recently, butanol-tolerant bacteria have been proposed as alternative butanol production hosts overcoming the end product inhibition. One remaining key issue to be addressed is how physicochemical properties such as pH and temperature affect microbial butanol tolerance during cultivation and fermentation. We investigated the pH effect on butanol tolerance of a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A. The strain grew over a broad pH range (pH 4.0 to 12.0) and preferred alkaline pH (pH 8.0 and 10.0) in the absence of butanol. However, in the presence of butanol, strain CM4A grew better under acidic and neutral pH conditions (pH 6.0 and 6.8). Membrane fatty acid analysis revealed that the cells exposed to butanol exhibited increased cyclopropane and saturated fatty acids, which contribute to butanol tolerance of the strain by decreasing membrane fluidity, more evidently at acidic and neutral pH than at alkaline pH. Meanwhile, the strain grown under alkaline pH without butanol increased short chain fatty acids, which is involved in increasing membrane fluidity for alkaline adaptation. Such a change was not observed in the cells grown under alkaline pH with butanol. These results suggested that strain CM4A simultaneously exposed to butanol and alkali stresses was not likely able to properly adjust membrane fluidity due to the opposite response to each stress and thereby showed low butanol tolerance under alkaline pH. Indeed, the cells exposed to butanol at alkaline pH showed an irregular shape with disrupted membrane structure under transmission electron microscopy observation, which also indicated the impact of butanol and alkali stresses on functioning of cellular membrane. The study clearly demonstrated the alkaline pH-induced increase of cell susceptibility to butanol in the tested strain

  5. Oxygen exchange in the selective oxidation of 2-butanol on oxygen precovered Au(111).

    Science.gov (United States)

    Yan, Ting; Gong, Jinlong; Mullins, C Buddie

    2009-11-11

    Direct evidence for C-O bond cleavage in the partial oxidation of 2-butanol on oxygen precovered Au(111) is provided using temperature programmed desorption (TPD) and molecular beam reactive scattering (MBRS) under ultrahigh vacuum (UHV) conditions. The oxygen precovered Au(111) surface can promote the partial oxidation of 2-butanol into 2-butanone with near 100% selectivity at low oxygen coverages, while 2-butanol adsorbs and desorbs molecularly on the clean Au(111) surface. Both C(2)H(5)C(16)OCH(3) and C(2)H(5)C(18)OCH(3) are observed in TPD after 2-butanol (C(2)H(5)CH(16)OHCH(3)) was dosed onto Au(111) precovered with (18)O(a). This oxygen exchange phenomenon serves as strong evidence for the C-O bond cleavage in 2-butanol partial oxidation to 2-butanone. Two surface intermediates are proposed for the selective oxidation of 2-butanol: 2-butoxide and eta(2)-aldehyde. As oxygen coverage increases, full oxidation is activated in addition to selective partial oxidation.

  6. Selectivity of Ni-Cu and Pt-Au alloys in reactions of butanol and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Burg, A.; Doornbos, J.; Kos, N.J.; Ultee, W.J.; Ponec, V.

    1978-09-01

    Experiments on the rates and product distributions of the reactions of cyclopentanone, 1-butanol, and 1-butanal with hydrogen on unsupported 0-100% nickel/copper alloys and silica-supported gold, platinum, 14% Pt/Au, and 98% Pt/Au showed that the addition of copper to nickel and gold to platinum had only a small effect on the hydrogenation and dehydrogenation activity of the catalyst but inhibited the intermolecular and intramolecular dehydration of 1-butanol to olefins and ethers. An analysis of these and available data suggested that the dehydration selectivity is controlled by the availability of ensembles of active sites. The surface mechanism is discussed.

  7. Butanol fermentation.

    Science.gov (United States)

    Schiel-Bengelsdorf, Bettina; Montoya, José; Linder, Sonja; Dürre, Peter

    2013-01-01

    This review provides an overview on bacterial butanol production and recent developments concerning strain improvement, newly built butanol production plants, and the importance of alternative substrates, especially lignocellulosic hydrolysates. The butanol fermentation using solventogenic clostridial strains, particularly Clostridium acetobutylicum, is a very old industrial process (acetone-butanol-ethanol-ABE fermentation). The genome of this organism has been sequenced and analysed, leading to important improvements in rational strain construction. As the traditional ABE fermentation process is economically unfavourable, novel butanol production strains are being developed. In this review, some newly engineered solvent-producing Clostridium strains are described and strains of which sequences are available are compared with C. acetobutylicum. Furthermore, the past and present of commercial butanol fermentation are presented, including active plants and companies. Finally, the use of biomass as substrate for butanol production is discussed. Some advances concerning processing of biomass in a biorefinery are highlighted, which would allow lowering the price of the butanol fermentation process at industrial scale.

  8. pH-induced change in cell susceptibility to butanol in a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A

    OpenAIRE

    Kanno, Manabu; Tamaki, Hideyuki; Mitani, Yasuo; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2015-01-01

    Background Though butanol is considered as a potential biofuel, its toxicity toward microorganisms is the main bottleneck for the biological butanol production. Recently, butanol-tolerant bacteria have been proposed as alternative butanol production hosts overcoming the end product inhibition. One remaining key issue to be addressed is how physicochemical properties such as pH and temperature affect microbial butanol tolerance during cultivation and fermentation. Results We investigated the p...

  9. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum.

    Science.gov (United States)

    Jang, Yu-Sin; Lee, Jin Young; Lee, Joungmin; Park, Jin Hwan; Im, Jung Ae; Eom, Moon-Ho; Lee, Julia; Lee, Sang-Hyun; Song, Hyohak; Cho, Jung-Hee; Seung, Do Young; Lee, Sang Yup

    2012-10-23

    the potential to replace gasoline. Due to the lack of efficient genetic manipulation tools, however, strain improvement has been rather slow. Furthermore, complex metabolic characteristics of acidogenesis followed by solventogenesis in this strain have hampered development of engineered clostridia having highly efficient and selective butanol production capability. Here we report for the first time the results of systems metabolic engineering studies of two butanol-forming routes and their relative importances in butanol production. Based on these findings, a metabolically engineered Clostridium acetobutylicum strain capable of producing butanol to a high titer with high yield and selectivity could be developed by reinforcing the direct butanol-forming flux.

  10. Implications of sterically constrained n-butane oxidation reactions on the reaction mechanism and selectivity to 1-butanol

    Science.gov (United States)

    Dix, Sean T.; Gómez-Gualdrón, Diego A.; Getman, Rachel B.

    2016-11-01

    Density functional theory (DFT) is used to analyze the reaction network in n-butane oxidation to 1-butanol over a Ag/Pd alloy catalyst under steric constraints, and the implications on the ability to produce 1-butanol selectively using MOF-encapsulated catalysts are discussed. MOFs are porous crystalline solids comprised of metal nodes linked by organic molecules. Recently, they have been successfully grown around metal nanoparticle catalysts. The resulting porous networks have been shown to promote regioselective chemistry, i.e., hydrogenation of trans-1,3-hexadiene to 3-hexene, presumably by forcing the linear alkene to stand "upright" on the catalyst surface and allowing only the terminal C-H bonds to be activated. In this work, we extend this concept to alkane oxidation. Our goal is to determine if a MOF-encapsulated catalyst could be used to selectively produce 1-butanol. Reaction energies and activation barriers are presented for more than 40 reactions in the pathway for n-butane oxidation. We find that C-H bond activation proceeds through an oxygen-assisted pathway and that butanal and 1-butanol are some of the possible products.

  11. Ethyl acetate-n-butanol gradient solvent system for high-speed countercurrent chromatography to screen bioactive substances in okra.

    Science.gov (United States)

    Ying, Hao; Jiang, Heyuan; Liu, Huan; Chen, Fangjuan; Du, Qizhen

    2014-09-12

    High-speed countercurrent chromatographic separation (HSCCC) possesses the property of zero-loss of sample, which is very useful for the screening of bioactive components. In the present study, the ethyl acetate-n-butanol gradient HSCCC solvent system composed of n-hexane-ethyl acetate-n-butanol-water was investigated for the screening of bioactive substances. To screen the antiproliferative compounds in okra extract, we used the stationary phase ethyl acetate-n-butanol-water (1:1:10) as the stationary phase, and eluted the antiproliferative components by 6-steps of gradient using mobile phases n-hexane-ethyl acetate (1:2), n-hexane-ethyl acetate (1:4), n-hexane-ethyl acetate (0:4), n-butanol-ethyl acetate (1:4) n-butanol-ethyl acetate (1:2), n-butanol-ethyl acetate (2:2), and n-butanol-ethyl acetate (2:1). The fractions collected from HSCCC separation with the gradient solvent system were assayed for antiproliferative activity against cancer cells. Bioactive components were identified: a major anti-cancer compound, 4'-hydroxy phenethyl trans-ferulate, with middle activity, and a minor anti-cancer compound, carolignan, with strong activity. The result shows that the gradient solvent system is potential for the screening of bioactive compounds from natural products. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Nanostructured composite TiO{sub 2}/carbon catalysts of high activity for dehydration of n-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Cyganiuk, Aleksandra [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland); Klimkiewicz, Roman [Institute of Low Temperature and Structure Research PAN, 50-422 Wroclaw (Poland); Bumajdad, Ali [Faculty of Science, Kuwait University, PO Box 5969 Safat, Kuwait 13060 (Kuwait); Ilnicka, Anna [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland); Lukaszewicz, Jerzy P., E-mail: jerzy_lukaszewicz@o2.pl [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland)

    2015-08-15

    Highlights: • New biotechnological method for fabrication of composite catalysts. • In situ synthesis of nanosized TiO{sub 2} clusters in the carbon matrix. • High dispersion of TiO{sub 2} in carbon matrix. • High catalytic activity achieved for very low active phase content. • Efficient dehydration of n-butanol to butane-1. - Abstract: A novel method of wood impregnation with titanium ions is presented. Titanium(IV) ions were complexed to peroxo/hydroxo complexes which were obtained by treating a TiCl{sub 4} water solution with H{sub 2}O{sub 2}. The solution of chelated titanium ions was used for the impregnation of living stems of Salix viminalis wood. Saturated stems were carbonized at 600–800 °C, yielding a microporous carbon matrix, in which nanoparticles of TiO{sub 2} were uniformly distributed. A series of composite TiO{sub 2}–carbon catalysts was manufactured and tested in the process of n-butanol conversion to butane-1. The composite catalysts exhibited very high selectivity (ca. 80%) and yield (ca. 30%) despite a low content of titanium (ca. 0.5% atomic). The research proved that the proposed functionalization led to high dispersion of the catalytic phase (TiO{sub 2}), which played a crucial role in the catalyst performance. High dispersion of TiO{sub 2} was achieved due to a natural transport of complexed titanium ions in living plant stems.

  13. High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose.

    Science.gov (United States)

    Gao, Ming; Tashiro, Yukihiro; Wang, Qunhui; Sakai, Kenji; Sonomoto, Kenji

    2016-08-01

    We previously reported the metabolic analysis of butanol and acetone production from exogenous acetate by (13)C tracer experiments (Gao et al., RSC Adv., 5, 8486-8495, 2015). To clarify the influence of acetate on acetone-butanol-ethanol (ABE) production, we first performed an enzyme assay in Clostridium saccharoperbutylacetonicum N1-4. Acetate addition was found to drastically increase the activities of key enzymes involved in the acetate uptake (phosphate acetyltransferase and CoA transferase), acetone formation (acetoacetate decarboxylase), and butanol formation (butanol dehydrogenase) pathways. Subsequently, supplementation of acetate during acidogenesis and early solventogenesis resulted in a significant increase in ABE production. To establish an efficient ABE production system using acetate as a co-substrate, several shot strategies were investigated in batch culture. Batch cultures with two substrate shots without pH control produced 14.20 g/L butanol and 23.27 g/L ABE with a maximum specific butanol production rate of 0.26 g/(g h). Furthermore, pH-controlled (at pH 5.5) batch cultures with two substrate shots resulted in not only improved acetate consumption but also a further increase in ABE production. Finally, we obtained 15.13 g/L butanol and 24.37 g/L ABE at the high specific butanol production rate of 0.34 g/(g h) using pH-stat co-feeding method. Thus, in this study, we established a high ABE production system using glucose and acetate as co-substrates in a pH-stat co-feeding system with C. saccharoperbutylacetonicum N1-4. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Effects of butanol on high value product production in Schizochytrium limacinum B4D1.

    Science.gov (United States)

    Zhang, Ke; Chen, Limei; Liu, Jianmin; Gao, Feng; He, Ronglin; Chen, Wuxi; Guo, Wei; Chen, Shulin; Li, Demao

    2017-07-01

    Schizochytrium is a microalgae-like fungus and is widely used for producing docosahexaenoic acid (DHA). It is also a promising source of squalene and carotenoids. However, few fermentation strategies are available in enhancing squalene and carotenoid content in Schizochytrium. This study showed that butanol addition had multiple effects on Schizochytrium limacinum B4D1. First, butanol addition altered the lipid content of cells. Second, 6g/L of butanol decreased the proportion of DHA by nearly 40%. Third, the squalene content increased 31-fold in the presence of 6g/L butanol. Finally, cells accumulated more carotenoids upon butanol addition. Specifically, when cells were treated with 8g/L butanol, the astaxanthin content increased to 245 times than that of the untreated control. These results are helpful for the commercial exploitation of Schizochytrium in producing squalene and carotenoids. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Catalytic properties of highly ordered crystalline nanoporous tungsten oxide in butanol dehydration.

    Science.gov (United States)

    Choi, Hyeonhee; Lee, Eunok; Jin, Mingshi; Park, Young-Kwon; Kim, Ji Man; Jeon, Jong-Ki

    2014-11-01

    Highly ordered mesoporous tungsten oxide (meso-WO3) was successfully synthesized using mesoporous silica KIT-6 as a hard template via the nanoreplication method. The physicochemical properties of meso-WO3 were characterized by X-ray diffraction, nitrogen adsorption-desorption, transmission electron microscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption of ammonia, and infra-red spectroscopy of adsorbed pyridine. No oxidation state other than WO3 was observed in the meso-WO3 sample. Lewis acid sites were dominant in meso-WO3, which could be confirmed by infra-red spectroscopy of pyridine and temperature-programmed desorption of ammonia. Its catalytic behavior in 2-butanol dehydration was investigated in a fixed bed reactor and compared with that of the WO3/MCM-41 catalyst prepared by the atomic layer deposition method. The meso-WO3 catalyst exhibited higher 2-butanol dehydration activity than that of the WO3/MCM-41 catalyst, which is ascribed to the stronger acidity as well as higher amount of acid sites that are mainly composed of Lewis acid sites in the meso-WO3 catalyst.

  16. On the high-temperature combustion of n-butanol: Shock tube data and an improved kinetic model

    KAUST Repository

    Vasu, Subith S.

    2013-11-21

    The combustion of n-butanol has received significant interest in recent years, because of its potential use in transportation applications. Researchers have extensively studied its combustion chemistry, using both experimental and theoretical methods; however, additional work is needed under specific conditions to improve our understanding of n-butanol combustion. In this study, we report new OH time-history data during the high-temperature oxidation of n-butanol behind reflected shock waves over the temperature range of 1300-1550 K and at pressures near 2 atm. These data were obtained at Stanford University, using narrow-line-width ring dye laser absorption of the R1(5) line of OH near 306.7 nm. Measured OH time histories were modeled using comprehensive n-butanol literature mechanisms. It was found that n-butanol unimolecular decomposition rate constants commonly used in chemical kinetic models, as well as those determined from theoretical studies, are unable to predict the data presented herein. Therefore, an improved high-temperature mechanism is presented here, which incorporates recently reported rate constants measured in a single pulse shock tube [C. M. Rosado-Reyes and W. Tsang, J. Phys. Chem. A 2012, 116, 9825-9831]. Discussions are presented on the validity of the proposed mechanism against other literature shock tube experiments. © 2013 American Chemical Society.

  17. Evaluation of hydrophobic micro-zeolite-mixed matrix membrane and integrated with acetone-butanol-ethanol fermentation for enhanced butanol production.

    Science.gov (United States)

    Xue, Chuang; Yang, Decai; Du, Guangqing; Chen, Lijie; Ren, Jiangang; Bai, Fengwu

    2015-01-01

    Butanol is regarded as an advanced biofuel that can be derived from renewable biomass. However, the main challenge for microbial butanol production is low butanol titer, yield and productivity, leading to intensive energy consumption in product recovery. Various alternative separation technologies such as extraction, adsorption and gas stripping, etc., could be integrated with acetone-butanol-ethanol (ABE) fermentation with improving butanol productivity, but their butanol selectivities are not satisfactory. The membrane-based pervaporation technology is recently attracting increasing attention since it has potentially desirable butanol selectivity. The performance of the zeolite-mixed polydimethylsiloxane (PDMS) membranes were evaluated to recover butanol from butanol/water binary solution as well as fermentation broth in the integrated ABE fermentation system. The separation factor and butanol titer in permeate of the zeolite-mixed PDMS membrane were up to 33.0 and 334.6 g/L at 80°C, respectively, which increased with increasing zeolite loading weight in the membrane as well as feed temperature. The enhanced butanol separation factor was attributed to the hydrophobic zeolites with large pore size providing selective routes preferable for butanol permeation. In fed-batch fermentation incorporated with pervaporation, 54.9 g/L ABE (34.5 g/L butanol, 17.0 g/L acetone and 3.4 g/L ethanol) were produced from 172.3 g/L glucose. The overall butanol productivity and yield increased by 16.0 and 11.1%, respectively, which was attributed to the alleviated butanol inhibition by pervaporation and reassimilation of acids for ABE production. The zeolite-mixed membrane produced a highly concentrated condensate containing 169.6 g/L butanol or 253.3 g/L ABE, which after phase separation easily gave the final product containing >600 g/L butanol. Zeolite loading in the PDMS matrix was attributed to improving the pervaporative performance of the membrane, showing great

  18. Integrated butanol recovery for an advanced biofuel: current state and prospects.

    Science.gov (United States)

    Xue, Chuang; Zhao, Jing-Bo; Chen, Li-Jie; Bai, Feng-Wu; Yang, Shang-Tian; Sun, Jian-Xin

    2014-04-01

    Butanol has recently gained increasing interest due to escalating prices in petroleum fuels and concerns on the energy crisis. However, the butanol production cost with conventional acetone-butanol-ethanol fermentation by Clostridium spp. was higher than that of petrochemical processes due to the low butanol titer, yield, and productivity in bioprocesses. In particular, a low butanol titer usually leads to an extremely high recovery cost. Conventional biobutanol recovery by distillation is an energy-intensive process, which has largely restricted the economic production of biobutanol. This article thus reviews the latest studies on butanol recovery techniques including gas stripping, liquid-liquid extraction, adsorption, and membrane-based techniques, which can be used for in situ recovery of inhibitory products to enhance butanol production. The productivity of the fermentation system is improved efficiently using the in situ recovery technology; however, the recovered butanol titer remains low due to the limitations from each one of these recovery technologies, especially when the feed butanol concentration is lower than 1 % (w/v). Therefore, several innovative multi-stage hybrid processes have been proposed and are discussed in this review. These hybrid processes including two-stage gas stripping and multi-stage pervaporation have high butanol selectivity, considerably higher energy and production efficiency, and should outperform the conventional processes using single separation step or method. The development of these new integrated processes will give a momentum for the sustainable production of industrial biobutanol.

  19. Butanol production by bioconversion of cheese whey in a continuous packed bed reactor.

    Science.gov (United States)

    Raganati, F; Olivieri, G; Procentese, A; Russo, M E; Salatino, P; Marzocchella, A

    2013-06-01

    Butanol production by Clostridium acetobutylicum DSM 792 fermentation was investigated. Unsupplemented cheese whey was adopted as renewable feedstock. The conversion was successfully carried out in a biofilm packed bed reactor (PBR) for more than 3 months. The PBR was a 4 cm ID, 16 cm high glass tube with a 8 cm bed of 3mm Tygon rings, as carriers. It was operated at the dilution rate between 0.4h(-1) and 0.94 h(-1). The cheese whey conversion process was characterized in terms of metabolites production (butanol included), lactose conversion and biofilm mass. Under optimized conditions, the performances were: butanol productivity 2.66 g/Lh, butanol concentration 4.93 g/L, butanol yield 0.26 g/g, butanol selectivity of the overall solvents production 82 wt%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Preparation of highly dispersed tungsten oxide on MCM-41 via atomic layer deposition and its application to butanol dehydration.

    Science.gov (United States)

    Kim, Hyeonjoo; Jeong, Soyeon; Kim, Do Heui; Park, Young-Kwon; Jeon, Jong-Ki

    2012-07-01

    Highly dispersed tungsten oxide on MCM-41 was synthesized using a novel atomic layer deposition (ALD) method. BET, XRD, XPS, NH3-TPD, and pyridine-IR were used to study the physicochemical properties of the supported tungsten oxides. In this study, the maximum loading of tungsten oxide on MCM-41 that could be prepared using the modified ALD method was 27.0 wt%. It was confirmed that the textural properties of the mesoporous silica were maintained after tungsten oxide loading. The NH3-TPD and Py-IR results indicated that weak acid sites, mainly Lewis acid sites, were produced over the WO3/MCM-41 samples. Moreover, 2-butanol dehydration was performed to demonstrate the potential advantages of the WO3/MCM-41 catalysts. The WO3/MCM-41 catalyst with 27.0 wt% tungsten oxide loading showed the highest activity in the dehydration of 2-butanol, which was attributed to the highest overall number of acid sites among the WO3/MCM-41 catalysts. The highly dispersed tungsten oxide on MCM-41 prepared via ALD can be an effective catalyst for producing butenes through 2-butanol dehydration.

  1. Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation

    Directory of Open Access Journals (Sweden)

    Dai Zongjie

    2012-06-01

    Full Text Available Abstract Background Previously we have developed a butanol tolerant mutant of Clostridium acetobutylicum Rh8, from the wild type strain DSM 1731. Strain Rh8 can tolerate up to 19 g/L butanol, with solvent titer improved accordingly, thus exhibiting industrial application potential. To test if strain Rh8 can be used for production of high level mixed alcohols, a single secondary alcohol dehydrogenase from Clostridium beijerinckii NRRL B593 was overexpressed in strain Rh8 under the control of thl promoter. Results The heterogenous gene sADH was functionally expressed in C. acetobutylicum Rh8. This simple, one-step engineering approach switched the traditional ABE (acetone-butanol-ethanol fermentation to IBE (isopropanol-butanol-ethanol fermentation. The total alcohol titer reached 23.88 g/l (7.6 g/l isopropanol, 15 g/l butanol, and 1.28 g/l ethanol with a yield to glucose of 31.42%. The acid (butyrate and acetate assimilation rate in isopropanol producing strain Rh8(psADH was increased. Conclusions The improved butanol tolerance and the enhanced solvent biosynthesis machinery in strain Rh8 is beneficial for production of high concentration of mixed alcohols. Strain Rh8 can thus be considered as a good host for further engineering of solvent/alcohol production.

  2. The influence of n-butanol blending on the ignition delay times of gasoline and its surrogate at high pressures

    KAUST Repository

    Agbro, Edirin

    2016-09-24

    The influence of blending n-butanol at 20% by volume on the ignition delay times for a reference gasoline was studied in a rapid compression machine (RCM) for stoichiometric fuel/air mixtures at 20 bar and 678-858 K. Delay times for the blend lay between those of stoichiometric gasoline and stoichiometric n-butanol across the temperature range studied. At lower temperatures, delays for the blend were however, much closer to those of n-butanol than gasoline despite n-butanol being only 20% of the mixture. Under these conditions n-butanol acted as an octane enhancer over and above what might be expected from a simple linear blending law. The ability of a gasoline surrogate, based on a toluene reference fuel (TRF), to capture the main trends of the gasoline/n-butanol blending behaviour was also tested within the RCM. The 3-component TRF based on a mixture of toluene, n-heptane and iso-octane was able to capture the trends well across the temperature range studied. Simulations of ignition delay times were also performed using a detailed blended n-butanol/TRF mechanism based on the adiabatic core assumption and volume histories from the experimental data. Overall, the model captured the main features of the blending behaviour, although at the lowest temperatures, predicted ignition delays for stoichiometric n-butanol were longer than those observed. A brute-force local sensitivity analysis was performed to evaluate the main chemical processes driving the ignition behaviour of the TRF, n-butanol and blended fuels. The reactions of fuel + OH dominated the sensitivities at lower temperatures, with H abstraction from n-butanol from a and 7 sites being key for both the n-butanol and the blend. At higher temperatures the decomposition of H2O2 and reactions of HO2 and that of formaldehyde with OH became critical, in common with the ignition behaviour of other fiiels. Remaining uncertainties in the rates of these key reactions are discussed. Crown Copyright (C) 2016 Published

  3. Enhanced Butanol Production Through Adding Organic Acids and Neutral Red by Newly Isolated Butanol-Tolerant Bacteria.

    Science.gov (United States)

    Jiang, Cheng; Cao, Guangli; Wang, Zhenyu; Li, Ying; Song, Jinzhu; Cong, Hua; Zhang, Junzheng; Yang, Qian

    2016-12-01

    As alternative microorganisms for butanol production with high butanol tolerant and productivity are in high demand, one excellent butanol-tolerant bacterium, S10, was isolated and identified as Clostridium acetobutylicum S10. In order to enhance the performance of butanol production, organic acids and neutral red were added during butanol fermentation. Synergistic effects were exhibited in the combinations of organic acids and neutral red to promote butanol production. Consequently, the optimal concentrations of combined acetate, butyrate, and neutral red were determined at sodium acetate 1.61 g/L, sodium butyrate 1.88 g/L, and neutral red 0.79 g/L, respectively, with the butanol yield of 6.09 g/L which was 20.89 % higher than that in control. These results indicated that combination of adding organic acid and neutral red is a potential effective measure to improve butanol production.

  4. Selective extraction of alkaline phosphatase and 5'-nucleotidase from milk fat globule membranes by a single phase n-butanol procedure.

    Science.gov (United States)

    Ahn, Y S; Snow, L D

    1993-08-01

    A single phase extraction procedure employing 8% (v/v) n-butanol at room temperature extracted over 90% of alkaline phosphatase activity and over 60% of 5'-nucleotidase activity from bovine milk fat globule membranes (MFGM). For 5'-nucleotidase, higher n-butanol concentrations lead to loss of activity, while lower concentrations were ineffective in extracting the enzyme. When extractions were performed at 0 degrees C, similar yields were obtained for alkaline phosphatase extraction with 8% (v/v) n-butanol, but 5'-nucleotidase extraction required 10% (v/v) n-butanol for similar yields. However, 5'-nucleotidase was less susceptible to denaturation during extraction at 0 degrees C. The Km values and substrate specificities for both alkaline phosphatase and 5'-nucleotidase were unchanged by extraction with 8% (v/v) n-butanol. The 8% (v/v) n-butanol extraction procedure provides a 3-fold purification step, and an enzyme preparation suitable for further purification.

  5. Experimental determination of the high-temperature rate constant for the reaction of OH with sec-butanol.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-10-04

    The overall rate constant for the reaction of OH with sec-butanol [CH(3)CH(OH)CH(2)CH(3)] was determined from measurements of the near-first-order OH decay in shock-heated mixtures of tert-butylhydroperoxide (as a fast source of OH) with sec-butanol in excess. Three kinetic mechanisms from the literature describing sec-butanol combustion were used to examine the sensitivity of the rate constant determination to secondary kinetics. The overall rate constant determined can be described by the Arrhenius expression 6.97 × 10(-11) exp(-1550/T[K]) cm(3) molecule(-1) s(-1), valid over the temperature range of 888-1178 K. Uncertainty bounds of ±30% were found to adequately account for the uncertainty in secondary kinetics. To our knowledge, the current data represent the first efforts toward an experimentally determined rate constant for the overall reaction of OH with sec-butanol at combustion-relevant temperatures. A rate constant predicted using a structure-activity relationship from the literature was compared to the current data and previous rate constant measurements for the title reaction at atmospheric-relevant temperatures. The structure-activity relationship was found to be unable to correctly predict the measured rate constant at all temperatures where experimental data exist. We found that the three-parameter fit of 4.95 × 10(-20)T(2.66) exp(+1123/T[K]) cm(3) molecule(-1) s(-1) better describes the overall rate constant for the reaction of OH with sec-butanol from 263 to 1178 K.

  6. Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer Clostridium saccharoperbutylacetonicum Strain N1-4.

    Science.gov (United States)

    Herman, Nicolaus A; Li, Jeffrey; Bedi, Ripika; Turchi, Barbara; Liu, Xiaoji; Miller, Michael J; Zhang, Wenjun

    2017-01-15

    While a majority of academic studies concerning acetone, butanol, and ethanol (ABE) production by Clostridium have focused on Clostridium acetobutylicum, other members of this genus have proven to be effective industrial workhorses despite the inability to perform genetic manipulations on many of these strains. To further improve the industrial performance of these strains in areas such as substrate usage, solvent production, and end product versatility, transformation methods and genetic tools are needed to overcome the genetic intractability displayed by these species. In this study, we present the development of a high-efficiency transformation method for the industrial butanol hyperproducer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT) ATCC 27021. Following initial failures, we found that the key to creating a successful transformation method was the identification of three distinct colony morphologies (types S, R, and I), which displayed significant differences in transformability. Working with the readily transformable type I cells (transformation efficiency, 1.1 × 10 6 CFU/μg DNA), we performed targeted gene deletions in C. saccharoperbutylacetonicum N1-4 using a homologous recombination-mediated allelic exchange method. Using plasmid-based gene overexpression and targeted knockouts of key genes in the native acetone-butanol-ethanol (ABE) metabolic pathway, we successfully implemented rational metabolic engineering strategies, yielding in the best case an engineered strain (Clostridium saccharoperbutylacetonicum strain N1-4/pWIS13) displaying an 18% increase in butanol titers and 30% increase in total ABE titer (0.35 g ABE/g sucrose) in batch fermentations. Additionally, two engineered strains overexpressing aldehyde/alcohol dehydrogenases (encoded by adh11 and adh5) displayed 8.5- and 11.8-fold increases (respectively) in batch ethanol production. This paper presents the first steps toward advanced genetic engineering of the industrial butanol

  7. Manganese-Catalyzed Upgrading of Ethanol into 1-Butanol.

    Science.gov (United States)

    Fu, Shaomin; Shao, Zhihui; Wang, Yujie; Liu, Qiang

    2017-08-30

    Biomass-derived ethanol is an important renewable feedstock. Its conversion into high-quality biofuels is a promising route to replace fossil resources. Herein, an efficient manganese-catalyzed Guerbet-type condensation reaction of ethanol to form 1-butanol was explored. This is the first example of upgrading ethanol into higher alcohols using a homogeneous non-noble-metal catalyst. This process proceeded selectively in the presence of a well-defined manganese pincer complex at the parts per million (ppm) level. The developed reaction represents a sustainable synthesis of 1-butanol with excellent turnover number (>110 000) and turnover frequency (>3000 h(-1)). Moreover, mechanistic studies including control experiments, NMR spectroscopy, and X-ray crystallography identified the essential role of the "N-H moiety" of the manganese catalysts and the major reaction intermediates related to the catalytic cycle.

  8. Butanol tolerance in microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Bramucci, Michael G.; Nagarajan, Vasantha

    2016-03-01

    Provided herein are recombinant yeast host cells and methods for their use for production of fermentation products from a pyruvate utilizing pathway. Yeast host cells provided herein comprise reduced pyruvate decarboxylase activity and modified adenylate cyclase activity. In embodiments, yeast host cells provided herein comprise resistance to butanol and increased biomass production.

  9. Separation of the potential G-quadruplex ligands from the butanol extract of Zanthoxylum ailanthoides Sieb. & Zucc. by countercurrent chromatography and preparative high performance liquid chromatography.

    Science.gov (United States)

    Han, Tian; Cao, Xueli; Xu, Jing; Pei, Hairun; Zhang, Hong; Tang, Yalin

    2017-07-21

    G-quadruplex DNA structure is considered to be a very attractive target for antitumor drug design due to its unique role in maintaining telomerase activities. Therefore, discovering ligands with high stability of G-quadruplex structure is of great interest. In this paper, pH-zone refining counter current chromatography (CCC) and preparative high performance liquid chromatography (HPLC) were employed for the separation of potent G-quadruplex ligands from the n-butanol fraction of the crude extract of Zanthoxylum ailanthoides, which is a traditional Chinese medicine recently found to display high inhibitory activity against several human cancer cells. The 75% aqueous ethanol extract of the stem bark of Z. ailanthoides and its fractions with petroleum ether, ethyl acetate and n-butanol displayed almost the same G-quadruplex stabilization ability. Here, pH-zone refining CCC was used for the separation of the alkaloids from the n-butanol fraction by a seldom used solvent system composed of dichloromethane-methanol-water (4:1:2.5) with 10mM TEA in the organic stationary phase as retainer and 10mM HCl in the aqueous mobile phase as eluter. Compounds I, II and III were obtained, with purity greater than 95%, in the quantities of 31.2, 94.0, and 26.4mg respectively from 300mg of lipophilic fraction within 80min, which were identified as three tetrahydroprotoberberines isolated for the first time in this plant. In addition, a phenylpropanoid glycoside compound IV (Syringin), an isoquinoline (Magnoflorine, V), and two lignin isomers (+)-lyoniresiol-3α-O-β-d-glucopyranoside (VI) and (-)-lyoniresinol -3α-O-β-D -glucopyranoside (VII) were isolated by traditional CCC together with preparative HPLC. Compounds IV, V, VI and VII were obtained, with purity greater than 95%, in the quantities of 4.0, 13.2, 6.7, and 6.5mg respectively from 960mg of hydrophilic fraction. Among the seven isolated compounds, tetrahydroprotoberberine I, II and III were found to display remarkable

  10. Eco-efficient butanol separation in the ABE fermentation process

    NARCIS (Netherlands)

    Patraşcu, Iulian; Bîldea, Costin Sorin; Kiss, Anton A.

    2017-01-01

    Butanol is considered a superior biofuel, as it is more energy dense and less hygroscopic than the more popular ethanol, resulting in higher possible blending ratios with gasoline. However, the production cost of the acetone-butanol-ethanol (ABE) fermentation process is still high, mainly due to the

  11. Butanol Production from Leftover Beverages and Sport Drinks

    NARCIS (Netherlands)

    Raganati, Francesca; Procentese, Alessandra; Montagnaro, Fabio; Olivieri, Giuseppe; Marzocchella, Antonio

    2015-01-01

    The aim of this paper is twofold: (1) to identify an alternative disposal process for the industry of high-sugar-content beverages (HSCBs) and (2) to contribute to the study of butanol production from non-edible feedstocks. HSCBs were used as a renewable feedstock to produce butanol by

  12. Fermentative production of butanol: Perspectives on synthetic biology.

    Science.gov (United States)

    Nanda, Sonil; Golemi-Kotra, Dasantila; McDermott, John C; Dalai, Ajay K; Gökalp, Iskender; Kozinski, Janusz A

    2017-07-25

    Apprehensions relating to global warming, climate change, pollution, rising energy demands as well as fluctuating crude oil prices and supply are leading to a shift in global interest to find suitable alternatives to fossil fuels. This review aims to highlight the many different facets of butanol as an advanced next-generation transportation biofuel. Butanol has fuel properties almost on a par with gasoline, such as high energy content, low vapor pressure, non-hygroscopic nature, less volatility, flexible fuel blends and high octane number. The paper reviews some recent advances in acetone-butanol-ethanol fermentation with special emphasis on the primary challenges encountered in butanol fermentation, including butanol toxicity, solvent intolerance and bacteriophage contamination. The mechanisms for butanol recovery techniques have been covered along with their benefits and limitations. A comprehensive discussion of genetic and metabolic engineering of butanol-producing microorganisms is made for the prospective development of industrially-relevant strains that can overcome the technical challenges involved in efficient butanol production. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, David E. [Environmental Energy Inc., Blacklick, OH (United States); Yang, Shang-Tian [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2005-08-25

    Butanol replaced gasoline gallon for gallon in a 10,000 miles trip across the United States without the need to highly modify a ’92 Buick (your existing car today). Butanol can now be made for less than ethanol and yields more Btu’s from the same corn, making the plow to tire equation positive – more energy out than it takes to make it and Butanol is much safer. Butanol when substituted for gasoline gives better gas mileage and does not pollute as tested in 10 states. Butanol should now receive the same recognition as ethanol in U.S. legislation “ethanol/butanol”. There is abundant plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry, which processes more than 13% of the ~9.5 billion bushels (~240 million metric tons) of corn annually produced in the U.S. to produce high-fructose-corn-syrup, dextrose, starch, and fuel alcohol, and generates more than 10 million metric tons of corn byproducts that are currently of limited use and pose significant environmental problems. The abundant inexpensive renewable resources as feedstock for fermentation, and recent advances in the fields of biotechnology and bioprocessing have resulted in a renewed interest in the fermentation production of chemicals and fuels, including n-butanol. The historic acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is one of the oldest known industrial fermentations. It was ranked second only to ethanol fermentation by yeast in its scale of production, and is one of the largest biotechnological processes ever known. However, since the 1950's industrial ABE fermentation has declined continuously, and almost all butanol is now produced via petrochemical routes (Chemical Marketing Reporter, 1993). Butanol is an important industrial solvent and is a better fuel for replacing gasoline – gallon for gallon than ethanol. Current butanol

  14. Antidiabetic, antioxidant and anti inflammatory properties of water and n-butanol soluble extracts from Saharian Anvillea radiata in high-fat-diet fed mice.

    Science.gov (United States)

    Kandouli, Chouaib; Cassien, Mathieu; Mercier, Anne; Delehedde, Caroline; Ricquebourg, Emilie; Stocker, Pierre; Mekaouche, Mourad; Leulmi, Zineb; Mechakra, Aicha; Thétiot-Laurent, Sophie; Culcasi, Marcel; Pietri, Sylvia

    2017-07-31

    According to Saharian traditional medicine, Anvillea radiata Coss. & Dur. (Asteraceae) has been valued for treating a variety of ailments such as gastro-intestinal, liver and pulmonary diseases, and has gained awareness for its beneficial effect on postprandial hyperglycemia. However, to best of our knowledge, no detailed study of the antidiabetic curative effects of this plant has been conducted yet. To determine the hypoglycemic and antidiabetic effect of dietary supplementation with Anvillea radiata extracts on high-fat-diet (HFD)-induced obesity and insulin resistance in C57BL/6J mice in relation with antioxidant, anti-inflammatory, pancreatic beta-cells and skeletal muscle protection, and digestive enzyme inhibiting properties. Six extracts (water soluble and organic) from aerial parts of the plant were analyzed phytochemically (total phenolic and flavonoid content) and screened for in vitro superoxide (by chemiluminescence) and hydroxyl radical (by electron paramagnetic resonance spin-trapping) scavenging, antioxidant (DPPH, TRAP and ORAC assays), xanthine oxidase, metal chelating, α-amylase and α-glucosidase inhibitory property, and protective effects on copper-induced lipoprotein oxidation. Then selected hydroalcoholic and aqueous extracts were assessed for toxicity in normal human lung fibroblasts and A549 cancer cells using FMCA and MTT assays. Two water-soluble extracts having the best overall properties were assessed for their (i) protective effect at 1-15µg/mL on metabolic activity of rat insulinoma-derived INS-1 cells exposed to hyperglycemic medium, and (ii) acute hypoglycemic effect on 16-weeks HFD-induced diabetic mice. Then diabetic mice were administered HFD supplemented by extracts (up to 150mg/kg/day) for 12 additional weeks using standard diet as control and the antidiabetic drug, metformin (150mg/kg), as positive control. Then the antidiabetic, anti-inflammatory and antioxidant activity of extracts were determined. Of the highly efficient

  15. Acetone-butanol Fermentation of Marine Macroalgae

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.; Gill, Gary A.; Roesijadi, Guritno

    2012-03-01

    Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.

  16. Metabolic responses to ethanol and butanol in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Jiang, Yongguang; Xiao, Peng; Shao, Qing; Qin, Huan; Hu, Zhangli; Lei, Anping; Wang, Jiangxin

    2017-01-01

    Microalgae have been demonstrated to be among the most promising phototrophic species for producing renewable biofuels and chemicals. Ethanol and butanol are clean energy sources with good chemical and physical properties as alternatives to gasoline. However, biosynthesis of these two biofuels has not been achieved due to low tolerance of algal cells to ethanol or butanol. With an eye to circumventing these problems in the future and engineering the robust alcohol-producing microalgal hosts, we investigated the metabolic responses of the model green alga Chlamydomonas reinhardtii to ethanol and butanol. Using a quantitative proteomics approach with iTRAQ-LC-MS/MS technologies, we detected the levels of 3077 proteins; 827 and 730 of which were differentially regulated by ethanol and butanol, respectively, at three time points. In particular, 41 and 59 proteins were consistently regulated during at least two sampling times. Multiple metabolic processes were affected by ethanol or butanol, and various stress-related proteins, transporters, cytoskeletal proteins, and regulators were induced as the major protection mechanisms against toxicity of the organic solvents. The most highly upregulated butanol response protein was Cre.770 peroxidase. The study is the first comprehensive view of the metabolic mechanisms employed by C. reinhardtii to defend against ethanol or butanol toxicity. Moreover, the proteomic analysis provides a resource for investigating potential gene targets for engineering microalgae to achieve efficient biofuel production.

  17. Strategies to Introduce n-Butanol in Gasoline Blends

    Directory of Open Access Journals (Sweden)

    Magín Lapuerta

    2017-04-01

    Full Text Available The use of oxygenated fuels in spark ignition engines (SIEs has gained increasing attention in the last few years, especially when coming from renewable sources, due to the shortage of fossil fuels and global warming concern. Currently, the main substitute of gasoline is ethanol, which helps to reduce CO and HC emissions but presents a series of drawbacks such as a low heating value and a high hygroscopic tendency, which cause higher fuel consumption and corrosion problems, respectively. This paper shows the most relevant properties when replacing ethanol by renewable n-butanol, which presents a higher heating value and a lower hygroscopic tendency compared to the former. The test matrix carried out for this experimental study includes, on the one hand, ethanol substitution by n-butanol in commercial blends and, on the other hand, either ethanol or gasoline substitution by n-butanol in E85 blends (85% ethanol-15% gasoline by volume. The results show that the substitution of n-butanol by ethanol presents a series of benefits such as a higher heating value and a greater interchangeability with gasoline compared to ethanol, which makes n-butanol a promising fuel for SIEs in commercial blends. However, the use of n-butanol in E85 blends substituting either gasoline or ethanol may cause cold-start problems due to the lower vapor pressure of n-butanol. For this reason, a combined substitution of n-butanol by both gasoline and ethanol is proposed so that n-butanol can be used without start problems.

  18. Catalytic Oxidative Dehydration of Butanol Isomers: 1-Butanol, 2-Butanol, and Isobutanol

    Science.gov (United States)

    2011-09-01

    such as n-octane, into mixtures of olefins (10). A rhodium/cerium catalyst has been proposed in the past to convert biodiesel into olefins (11). The...butanol, 2-butanol, and isobutanol using a millisecond contact time reactor. Both alumina foam and rhodium-alumina foam catalysts convert these four...olefins (6–8). The production of olefins from hydrocarbons, as well as other sources, such as biodiesel and C1- C3 alcohols, is well documented in

  19. Improved efficiency of butanol production by absorbent fermentation with a renewable carrier

    National Research Council Canada - National Science Library

    He, Qin; Chen, Hongzhang

    2013-01-01

    Biobutanol production is still not economically competitive because of some principal drawbacks including high cost in feedstock consumption, low butanol concentration in the fermentation broth caused...

  20. Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol.

    Science.gov (United States)

    Connor, Michael R; Liao, James C

    2008-09-01

    3-Methyl-1-butanol is a potential fuel additive or substitute. Previously this compound was identified in small quantities in yeast fermentation as one of the fusel alcohols. In this work, we engineered an Escherichia coli strain to produce 3-methyl-1-butanol from glucose via the host's amino acid biosynthetic pathways. Strain improvement with the removal of feedback inhibition and competing pathways increased the selectivity and productivity of 3-methyl-1-butanol. This work demonstrates the feasibility of production of 3-methyl-1-butanol as a biofuel and shows promise in using E. coli as a host for production.

  1. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  2. Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology.

    Science.gov (United States)

    Zheng, Jin; Tashiro, Yukihiro; Wang, Qunhui; Sonomoto, Kenji

    2015-01-01

    Butanol has recently attracted attention as an alternative biofuel because of its various advantages over other biofuels. Many researchers have focused on butanol fermentation with renewable and sustainable resources, especially lignocellulosic materials, which has provided significant progress in butanol fermentation. However, there are still some drawbacks in butanol fermentation in terms of low butanol concentration and productivity, high cost of feedstock and product inhibition, which makes butanol fermentation less competitive than the production of other biofuels. These hurdles are being resolved in several ways. Genetic engineering is now available for improving butanol yield and butanol ratio through overexpression, knock out/down, and insertion of genes encoding key enzymes in the metabolic pathway of butanol fermentation. In addition, there are also many strategies to improve fermentation technology, such as multi-stage continuous fermentation, continuous fermentation integrated with immobilization and cell recycling, and the inclusion of additional organic acids or electron carriers to change metabolic flux. This review focuses on the most recent advances in butanol fermentation especially from the perspectives of genetic engineering and fermentation technology. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.

    2015-10-01

    The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.

  4. Henry's law constants and infinite dilution activity coefficients of cis-2-butene, dimethylether, chloroethane, and 1,1-difluoroethane in methanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-methyl-2-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Miyano, Yoshimori [Department of Chemistry and Bioscience, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajimacho, Kurashiki 712-8505 (Japan)]. E-mail: miyano@chem.kusa.ac.jp; Kobashi, Takahiro [Department of Chemistry and Bioscience, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajimacho, Kurashiki 712-8505 (Japan); Shinjo, Hiroshi [Department of Chemistry and Bioscience, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajimacho, Kurashiki 712-8505 (Japan); Kumada, Shinya [Department of Chemistry and Bioscience, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajimacho, Kurashiki 712-8505 (Japan); Watanabe, Yusuke [Department of Chemistry and Bioscience, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajimacho, Kurashiki 712-8505 (Japan); Niya, Wataru [Department of Chemistry and Bioscience, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajimacho, Kurashiki 712-8505 (Japan); Tateishi, Yoko [Department of Chemistry and Bioscience, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajimacho, Kurashiki 712-8505 (Japan)

    2006-06-15

    Henry's law constants and infinite dilution activity coefficients of cis-2-butene, dimethylether, chloroethane, and 1,1-difluoroethane in methanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-methyl-2-butanol in the temperature range of 250 K to 330 K were measured by a gas stripping method and partial molar excess enthalpies were calculated from the activity coefficients. A rigorous formula for evaluating the Henry's law constants from the gas stripping measurements was used for the data reduction of these highly volatile mixtures. The uncertainty is about 2% for the Henry's law constants and 3% for the estimated infinite dilution activity coefficients. In the evaluation of the infinite dilution activity coefficients, the nonideality of the solute such as the fugacity coefficient and Poynting correction factor cannot be neglected, especially at higher temperatures. The estimated uncertainty of the infinite dilution activity coefficients includes 1% for nonideality.

  5. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation

    Science.gov (United States)

    Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...

  6. Adaptation of lactic acid bacteria to butanol

    Science.gov (United States)

    Butanol can be produced biologically through fermentation of various substrates by Gram-positive Clostridium species. However, to profitably produce butanol at industrial scales, new microbial biocatalysts with increased tolerance to butanol are needed. In this study we report the isolation and se...

  7. Butanol production by fermentation: efficient bioreactors

    Science.gov (United States)

    Energy security, environmental concerns, and business opportunities in the emerging bio-economy have generated strong interest in the production of n-butanol by fermentation. Acetone butanol ethanol (ABE or solvent) batch fermentation process is product limiting because butanol even at low concentra...

  8. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Arthur J. Ragauskas

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in

  9. A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production.

    Science.gov (United States)

    Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Zhao, Jingbo; Chen, Lijie; Ren, Jiangang; Bai, Fengwu; Yang, Shang-Tian

    2016-01-01

    Butanol is considered as an advanced biofuel, the development of which is restricted by the intensive energy consumption of product recovery. A novel two-stage gas stripping-pervaporation process integrated with acetone-butanol-ethanol (ABE) fermentation was developed for butanol recovery, with gas stripping as the first-stage and pervaporation as the second-stage using the carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) mixed matrix membrane (MMM). Compared to batch fermentation without butanol recovery, more ABE (27.5 g/L acetone, 75.5 g/L butanol, 7.0 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced in the fed-batch fermentation, with a higher butanol productivity (0.34 g/L · h vs. 0.30 g/L · h) due to reduced butanol inhibition by butanol recovery. The first-stage gas stripping produced a condensate containing 155.6 g/L butanol (199.9 g/L ABE), which after phase separation formed an organic phase containing 610.8 g/L butanol (656.1 g/L ABE) and an aqueous phase containing 85.6 g/L butanol (129.7 g/L ABE). Fed with the aqueous phase of the condensate from first-stage gas stripping, the second-stage pervaporation using the CNTs-PDMS MMM produced a condensate containing 441.7 g/L butanol (593.2 g/L ABE), which after mixing with the organic phase from gas stripping gave a highly concentrated product containing 521.3 g/L butanol (622.9 g/L ABE). The outstanding performance of CNTs-PDMS MMM can be attributed to the hydrophobic CNTs giving an alternative route for mass transport through the inner tubes or along the smooth surface of CNTs. This gas stripping-pervaporation process with less contaminated risk is thus effective in increasing butanol production and reducing energy consumption. © 2015 Wiley Periodicals, Inc.

  10. Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum.

    Science.gov (United States)

    Gong, Fuyu; Bao, Guanhui; Zhao, Chunhua; Zhang, Yanping; Li, Yin; Dong, Hongjun

    2016-02-01

    In typical acetone-butanol-ethanol (ABE) fermentation, acetone is the main by-product (50 % of butanol mass) of butanol production, resulting in a low yield of butanol. It is known that some Clostridium tetanomorphum strains are able to produce butanol without acetone in nature. Here, we described that C. tetanomorphum strain DSM665 can produce 4.16 g/L butanol and 4.98 g/L ethanol at pH 6.0, and 9.81 g/L butanol and 1.01 g/L ethanol when adding 1 mM methyl viologen. Butyrate and acetate could be reassimilated and no acetone was produced. Further analysis indicated that the activity of the acetate/butyrate:acetoacetyl-CoA transferase responsible for acetone production is lost in C. tetanomorphum DSM665. The genome of C. tetanomorphum DSM665 was sequenced and deposited in DDBJ, EMBL, and GenBank under the accession no. APJS00000000. Sequence analysis indicated that there are no typical genes (ctfA/B and adc) that are typically parts of an acetone synthesis pathway in C. tetanomorphum DSM665. This work provides new insights in the mechanism of clostridial butanol production and should prove useful for the design of a high-butanol-producing strain.

  11. Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery

    Energy Technology Data Exchange (ETDEWEB)

    Xue, C; Zhao, JB; Liu, FF; Lu, CC; Yang, ST; Bai, FW

    2013-05-01

    Two-stage gas stripping for butanol recovery from acetone-butanol-ethanol (ABE) fermentation with Clostridium acetobutylicum JB200 in a fibrous bed bioreactor was studied. Compared to fermentation without in situ gas stripping, more ABE (10.0 g/L acetone, 19.2 g/L butanol, 1.7 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced, with a higher butanol yield (0.25 g/g vs. 0.20 g/g) and productivity (0.40 g/L.h vs. 0.30 g/L-h) due to reduced butanol inhibition. The first-stage gas stripping produced a condensate containing 175.6 g/L butanol (227.0 g/L ABE), which after phase separation formed an organic phase containing 612.3 g/L butanol (660.7 g/L ABE) and an aqueous phase containing 101.3 g/L butanol (153.2 g/L ABE). After second-stage gas stripping, a highly concentrated product containing 420.3 g/L butanol (532.3 g/L ABE) was obtained. The process is thus effective in producing high-titer butanol that can be purified with much less energy. (C) 2012 Elsevier Ltd. All rights reserved.

  12. Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery.

    Science.gov (United States)

    Xue, Chuang; Zhao, Jingbo; Liu, Fangfang; Lu, Congcong; Yang, Shang-Tian; Bai, Feng-Wu

    2013-05-01

    Two-stage gas stripping for butanol recovery from acetone-butanol-ethanol (ABE) fermentation with Clostridium acetobutylicum JB200 in a fibrous bed bioreactor was studied. Compared to fermentation without in situ gas stripping, more ABE (10.0 g/L acetone, 19.2 g/L butanol, 1.7 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced, with a higher butanol yield (0.25 g/g vs. 0.20 g/g) and productivity (0.40 g/L·h vs. 0.30 g/L·h) due to reduced butanol inhibition. The first-stage gas stripping produced a condensate containing 175.6 g/L butanol (227.0 g/L ABE), which after phase separation formed an organic phase containing 612.3g/L butanol (660.7 g/L ABE) and an aqueous phase containing 101.3 g/L butanol (153.2 g/L ABE). After second-stage gas stripping, a highly concentrated product containing 420.3 g/L butanol (532.3 g/L ABE) was obtained. The process is thus effective in producing high-titer butanol that can be purified with much less energy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Biooxidation of n-butane to 1-butanol by engineered P450 monooxygenase under increased pressure.

    Science.gov (United States)

    Nebel, Bernd A; Scheps, Daniel; Honda Malca, Sumire; Nestl, Bettina M; Breuer, Michael; Wagner, Hans-Günter; Breitscheidel, Boris; Kratz, Detlef; Hauer, Bernhard

    2014-12-10

    In addition to the traditional 1-butanol production by hydroformylation of gaseous propene and by fermentation of biomass, the cytochrome P450-catalyzed direct terminal oxidation of n-butane into the primary alcohol 1-butanol constitutes an alternative route to provide the high demand of this basic chemical. Moreover the use of n-butane offers an unexploited ubiquitous feed stock available in large quantities. Based on protein engineering of CYP153A from Polaromonas sp. JS666 and the improvement of the native redox system, a highly ω-regioselective (>96%) fusion protein variant (CYP153AP.sp.(G254A)-CPRBM3) for the conversion of n-butane into 1-butanol was developed. Maximum yield of 3.12g/L butanol, of which 2.99g/L comprise for 1-butanol, has been obtained after 20h reaction time. Due to the poor solubility of n-butane in an aqueous system, a high pressure reaction assembly was applied to increase the conversion. After optimization a maximum product content of 4.35g/L 1-butanol from a total amount of 4.53g/L butanol catalyzed by the self-sufficient fusion monooxygenase has been obtained at 15bar pressure. In comparison to the CYP153A wild type the 1-butanol concentration was enhanced fivefold using the engineered monooxygenase whole cell system by using the high-pressure reaction assembly. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Characteristics of Butanol Isomers Oxidation in a Micro Flow Reactor

    KAUST Repository

    Bin Hamzah, Muhamad Firdaus

    2017-05-01

    Ignition and combustion characteristics of n-butanol/air, 2-butanol.air and isobutanol/air mixtures at stoichiometric (ϕ = 1) and lean (ϕ = 0.5) conditions were investigated in a micro flow reactor with a controlled temperature profile from 323 K to 1313 K, under atmospheric pressure. Sole distinctive weak flame was observed for each mixture, with inlet fuel/air mixture velocity set low at 2 cm/s. One-dimensional computation with comprehensive chemistry and transport was conducted. At low mixture velocities, one-stage oxidation was confirmed from heat release rate profiles, which was broadly in agreement with the experimental results. The weak flame positions were congruent with literature describing reactivity of the butanol isomers. These weak flame responses were also found to mirror the trend in Anti-Knock Indexes of the butanol isomers. Flux and sensitivity analyses were performed to investigate the fuel oxidation pathways at low and high temperatures. Further computational investigations on oxidation of butanol isomers at higher pressure of 5 atm indicated two-stage oxidation through the heat release rate profiles. Low temperature chemistry is accentuated in the region near the first weak cool flame for oxidation under higher pressure, and its impact on key species – such as hydroxyl radical, hydrogen peroxide and carbon monoxide – were considered. Both experimental and computational findings demonstrate the advantage of employing the micro flow reactor in investigating oxidation processes in the temperature region of interest along the reactor channel. By varying physical conditions such as pressure, the micro flow reactor system is proven to be highly beneficial in elucidating oxidation behavior of butanol isomers in conditions in engines such as those that mirror HCCI operations.

  15. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 1. Process Simulations

    Science.gov (United States)

    BACKGROUND: Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor-liquid equilibrium and parti...

  16. Evaluation of industrial dairy waste (milk dust powder) for acetone-butanol-ethanol production by solventogenic Clostridium species

    OpenAIRE

    Ujor, Victor; Bharathidasan, Ashok Kumar; Cornish, Katrina; Ezeji, Thaddeus Chukwuemeka

    2014-01-01

    Readily available inexpensive substrate with high product yield is the key to restoring acetone-butanol-ethanol (ABE) fermentation to economic competitiveness. Lactose-replete cheese whey tends to favor the production of butanol over acetone. In the current study, we investigated the fermentability of milk dust powder with high lactose content, for ABE production by Clostridium acetobutylicum and Clostridium beijerinckii. Both microorganisms produced 7.3 and 5.8 g/L of butanol respectively, w...

  17. Identification of butanol tolerant genes in Lactobacillus mucosae

    Science.gov (United States)

    Butanol, though in low concentrations, is produced biologically through fermentation of lignocellulosic biomass-derived substrates by Gram-positive Clostridium species. However, naturally available butanol fermenting microbes are sensitive to stress caused by increased production of butanol and the...

  18. Solvent (acetone-butanol: ab) production

    Science.gov (United States)

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities, such as corn and molasses, was an important historical fermentation. Unfortunately,...

  19. Butanol production from renewable biomass by clostridia.

    Science.gov (United States)

    Jang, Yu-Sin; Malaviya, Alok; Cho, Changhee; Lee, Joungmin; Lee, Sang Yup

    2012-11-01

    Global energy crisis and limited supply of petroleum fuels have rekindled the worldwide focus towards development of a sustainable technology for alternative fuel production. Utilization of abundant renewable biomass offers an excellent opportunity for the development of an economical biofuel production process at a scale sufficiently large to have an impact on sustainability and security objectives. Additionally, several environmental benefits have also been linked with the utilization of renewable biomass. Butanol is considered to be superior to ethanol due to its higher energy content and less hygroscopy. This has led to an increased research interest in butanol production from renewable biomass in recent years. In this paper, we review the various aspects of utilizing renewable biomass for clostridial butanol production. Focus is given on various alternative substrates that have been used for butanol production and on fermentation strategies recently reported to improve butanol production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Intermediate species measurement during iso-butanol auto-ignition

    KAUST Repository

    Ji, Weiqi

    2015-10-01

    © 2015 The Combustion Institute.Published by Elsevier Inc. All rights reserved. This work presents the time histories of intermediate species during the auto-ignition of iso-butanol at high pressure and intermediate temperature conditions obtained using a rapid compression machine and recently developed fast sampling system. Iso-butanol ignition delays were acquired for iso-butanol/O2 mixture with an inert/O2 ratio of 7.26, equivalence ratio of 0.4, in the temperature range of 840-950 K and at pressure of 25 bar. Fast sampling and gas chromatography were used to acquire and quantify the intermediate species during the ignition delay of the same mixture at P = 25.3 bar and T = 905 K. The ignition delay times and quantitative measurements of the mole fraction time histories of methane, ethene, propene, iso-butene, iso-butyraldehyde, iso-butanol, and carbon monoxide were compared with predictions from the detailed mechanisms developed by Sarathy et al., Merchant et al., and Cai et al. It is shown that while the Sarathy mechanism well predicts the overall ignition delay time, it overpredicts ethene by a factor of 6-10, underpredicts iso-butene by a factor of 2, and overpredicts iso-butyraldehyde by a factor of 2. Reaction path and sensitivity analyses were carried out to identify the reactions responsible for the observed inadequacy. The rates of iso-butanol hydrogen atom abstraction by OH radical and the beta-scission reactions of hydroxybutyl radicals were updated based on recently published quantum calculation results. Significant improvements were achieved in predicting ignition delay at high pressures (25 and 30 bar) and the species concentrations of ethene and iso-butene. However, the updated mechanism still overpredicts iso-butyraldehyde concentrations. Also, the updated mechanism degrades the prediction in ignition delay at lower pressure (15 bar) compared to the original mechanism developed by Sarathy et al.

  1. (Liquid + liquid) equilibrium of {l_brace}water + phenol + (1-butanol, or 2-butanol, or tert-butanol){r_brace} systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadlich de Oliveira, Leonardo [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Aznar, Martin, E-mail: maznar@feq.unicamp.b [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil)

    2010-11-15

    (Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.

  2. Butanol production from concentrated lactose/whey permeate: Use of pervaporation membrane to recover and concentrate product

    Science.gov (United States)

    In these studies butanol (acetone butanol ethanol, or ABE) was produced from concentrated lactose/whey permeate containing 211 gL-1 lactose. Fermentation of such a highly concentrated lactose solution was possible due to simultaneous product removal using a pervaporation membrane. In this system a p...

  3. Comparison of the performance of butanol and pentanol as modifiers in the micellar chromatographic determination of some phenethylamines.

    Science.gov (United States)

    Gil-Agustí, M; Torres-Lapasió, J R; García-Alvarez-Coque, M C; Esteve-Romero, J

    2000-01-07

    A procedure was developed for the determination of several phenethylamines (amphetamine, arterenol, ephedrine, phenylephrine, phenylpropanolamine, mephentermine, methoxyphenamine, pseudoephedrine and tyramine), using micellar mobile phases of sodium dodecyl sulfate (SDS), a C18 column and UV detection. The drugs were eluted at short retention times with conventional acetonitrile-water or methanol-water mobile phases. In contrast, in the micellar system, they were strongly retained due to association with the surfactant adsorbed on the stationary phase, and needed the addition of butanol or pentanol to be eluted from the column. These modifiers allowed a simple way of controlling the retention. The chromatographic efficiencies obtained with the hybrid mobile phases of SDS-butanol and SDS-pentanol were also very high, mostly in the N=3000-7000 range, significantly greater than those achieved with a conventional acetonitrile-methanol-water mobile phase. Butanol and pentanol yielded similar selectivities, but the latter modifier permitted significantly shorter retention times than butanol, and was preferred to expedite the analysis of the pharmaceuticals. Most binary combinations of the nine phenethylamines can be resolved with these mobile phases. A mobile phase of 0.15 M SDS-5% pentanol was used to assay five of the phenethylamines (amphetamine, ephedrine, phenylephrine, phenylpropanolamine and pseudoephedrine) in 22 pharmaceutical preparations, which contained diverse accompanying compounds. The results agreed with the declared compositions and with those obtained with a mobile phase of methanol-acetonitrile-0.05 M phosphate buffer (pH 3) 10:5:85, with no interferences and relative errors usually below 2%. However, with the aqueous-organic mobile phase, the retention time for phenylephrine was too low and could not be usually evaluated.

  4. Toxicological study of the butanol fractionated root extract of Asparagus africanus Lam., on some blood parameter and histopathology of liver and kidney in mice.

    Science.gov (United States)

    Kebede, Sintayehu; Afework, Mekbeb; Debella, Asfaw; Ergete, Wondwossen; Makonnen, Eyasu

    2016-01-27

    The butanol fractionated root extract of Asparagus africanus Lam., a traditional herb widely used to treat various ailments were analyzed for the presence of potential toxicity after single (acute) and repeated (subchronic) dose oral administration in adult swiss albino mice using gavages. For the acute study, butanol fractionated extract of the plant was administered in single doses of 1000, 3000 and 5000 mg/kg body weight. In the sub-chronic dose study, the extract was administered at doses of 300 and 600 mg/kg body weight/day for 42 days. Selected hematological and biochemical parameters of the blood followed by histopathological analysis were investigated after 42 days of daily administrations. The results were expressed as M ± SE, and differences at P parameters of the experimental groups. In the acute study, the extract did not caused dose-dependent general behavioral adverse effects, body weight change and mortality. The single dose toxicity studies therefore showed that the butanol fraction of the extract has high safety profile when given orally. After 42 days of daily dosing, in the sub-chronic study, no clinically significant changes were observed for hematological and biochemical parameters. Except an occasional small number of focal mononuclear lymphocytic cells infiltrations around the central and portal triad of the liver of a few mice, the histopathological parameters do not show significant change. It is concluded that, the butanol fractionated extract from A. africanus at the given dose does not show significant toxicity. The presence of focal inflammation on the liver of a few mice may be associated to the presence of flavonoid glycoside in the butanol fractionated extract.

  5. Hydrophobic Hyflon® AD/PVDF membranes for butanol dehydration via pervaporation

    KAUST Repository

    Jalal, Taghreed

    2015-10-21

    Novel hydrophobic Hyflon® AD /PVDF membranes were developed and investigated for n-butanol dehydration via pervaporation. The coating protocols for thin defect-free Hyflon® AD selective layer on the PVDF support was optimized. Water and n-butanol transport was measured, analyzing the effect of operating conditions. The water flux through the newly developed membranes was higher than 150 g/m2.h with selectivity for water higher than 99 wt %. The focus was on the use of Hyflon® AD as the selective layer for n-butanol dehydration. The membrane application can be extended to other solvents, supporting an effective and simple method for dehydration with hydrophobic membranes.

  6. Metabolic pathways of clostridia for producing butanol.

    Science.gov (United States)

    Gheshlaghi, R; Scharer, J M; Moo-Young, M; Chou, C P

    2009-01-01

    Worldwide demand for energy has been the impetus for research to produce alcohol biofuels from renewable resources. This review focuses on the biosynthesis of butanol, which is regarded to be superior to ethanol as a fuel. Although acetone/butanol fermentation is one of the oldest large-scale fermentation processes, butanol yield by anaerobic fermentation remains sub-optimal. Metabolic engineering provides a means for fermentation improvements. Consequently, a comprehensive assessment of the intermediary enzymes involved in butanol formation from carbohydrates by the saccharolytic bacterium, Clostridium acetobutylicum and other closely allied clostridia was performed to provide guidelines for potentially enhancing butanol productivity. The activity of the enzymes, their regulation and contribution to the metabolic pathways was reviewed. Published kinetic data for each important enzymatic reaction were assessed. For most enzymatic reactions, the systematic investigation of the kinetic data and the properties of the enzymes led to the development of rate equations that were able to describe activity as the function of the substrates, products, and allosteric effectors.

  7. ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production.

    Science.gov (United States)

    Gu, Chunkai; Wang, Genyu; Mai, Shuai; Wu, Pengfei; Wu, Jianrong; Wang, Gehua; Liu, Hongjuan; Zhang, Jianan

    2017-03-01

    Butanol is an ideal renewable biofuel which possesses superior fuel properties. Previously, butanol-producing symbiotic system TSH06 was isolated in our lab, with microoxygen tolerance ability. To boost butanol yield for large-scale industrial production, TSH06 was used as parental strain and subjected to atmospheric and room temperature plasma (ARTP) and four rounds of genome shuffling (GS). ARTP mutant and GS strain were co-cultured with facultative anaerobic Bacillus cereus TSH2 to form a symbiotic system with microoxygen tolerance, which was then subjected to fermentation. Relative messenger RNA (mRNA) level of key enzyme gene was measured by real-time PCR. The highest butanol titer of TS4-30 reached 15.63 g/L, which was 34% higher than TSH06 (12.19 g/L). Compared with parental strain, mRNA of acid-forming gene in TS4-30 decreased in acidogenesis phase, while solvent-forming gene increased in solventogenesis phase. This gene expression pattern was consistent with high butanol yield and low acid level in TS4-30. In summary, symbiotic system TS4-30 was obtained with butanol titer improvement and microoxygen tolerance.

  8. {alpha}-Sb{sub 2}O{sub 4}-induced improvements of the catalytic behavior of MoO{sub 3}-(010) in the oxygen-assisted dehydration of 2-butanol: implications in selective oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Gaigneaux, E.M. [Fonds National de la Recherche Scientifique of Belgium (Belgium); Naeye, M.L.; Dupont, O.; Ruiz, P.; Delmon, B. [Unite de Catalyse et Chimie des Materiaux Divises, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium); Callant, M.; Kartheuser, B. [CERTECH, Senefffe (Belgium)

    1998-12-31

    This article concerns the synergetic effects between an MoO{sub 3} sample composed of crystallites exposing preferentially the (010) basal faces and {alpha}-Sb{sub 2}O{sub 4} in the oxygen-assisted dehydration of 2-butanol at 220 C. The conversion of 2-butanol and the yield to butene improved when MoO{sub 3} was reacted in the presence of {alpha}-Sb{sub 2}O{sub 4}. The origin of the synergism is discussed. When reacted in the absence of {alpha}-Sb{sub 2}O{sub 4}, MoO{sub 3} got over-reduced and fragmented to MoO{sub 2}. MoO{sub 2} is intrinsically less active than MoO{sub 3} thus explaining that the deep reduction of MoO{sub 3} corresponds to its tendency to deactivate. In the presence of {alpha}-Sb{sub 2}O{sub 4}, the formation of MoO{sub 2} is inhibited with, as a consequence, the absence of deactivation. This leads to the synergetic effects obtained with the mechanical mixture of MoO{sub 3} with {alpha}-Sb{sub 2}O{sub 4}. (orig.)

  9. Integrated bioprocessing and simultaneous product recovery for butanol production

    Science.gov (United States)

    This chapter describes process integration for butanol fermentation and simultaneous recovery. In the control non-integrated butanol fermentation, the concentration of this biofuel in excess to 30 g/L is rarely achieved due to its toxic nature. Such a low butanol concentration results in low react...

  10. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.

    Science.gov (United States)

    Bellido, Carolina; Infante, Celia; Coca, Mónica; González-Benito, Gerardo; Lucas, Susana; García-Cubero, María Teresa

    2015-08-01

    Sugar beet pulp (SBP) has been investigated as a promising feedstock for ABE fermentation by Clostridium beijerinckii. Although lignin content in SBP is low, a pretreatment is needed to enhance enzymatic hydrolysis and fermentation yields. Autohydrolysis at pH 4 has been selected as the best pretreatment for SBP in terms of sugars release and acetone and butanol production. The best overall sugars release yields from raw SBP ranged from 66.2% to 70.6% for this pretreatment. The highest ABE yield achieved was 0.4g/g (5.1g/L of acetone and 6.6g/L butanol) and 143.2g ABE/kg SBP (62.3g acetone and 80.9g butanol) were obtained when pretreated SBP was enzymatically hydrolyzed at 7.5% (w/w) solid loading. Higher solid loadings (10%) offered higher acetone and butanol titers (5.8g/L of acetone and 7.8g/L butanol). All the experiments were carried out under not-controlling pH conditions reaching about 5.3 in the final samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition.

    Directory of Open Access Journals (Sweden)

    Hongzhen Luo

    Full Text Available In this study, an efficient acetone-butanol-ethanol (ABE fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1 extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2 enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3 direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology.

  12. Comparative Autoignition Trends in Butanol Isomers at Elevated Pressure

    KAUST Repository

    Weber, Bryan W.

    2013-03-21

    Autoignition experiments of stoichiometric mixtures of s-, t-, and i-butanol in air have been performed using a heated rapid compression machine (RCM). At compressed pressures of 15 and 30 bar and for compressed temperatures in the range 715-910 K, no evidence of a negative temperature coefficient region in terms of ignition delay response is found. The present experimental results are also compared with previously reported RCM data of n-butanol in air. The order of reactivity of the butanols is n-butanol > s-butanol ≈ i-butanol > t-butanol at the lower pressure but changes to n-butanol > t-butanol > s-butanol > i-butanol at higher pressure. In addition, t-butanol shows preignition heat release behavior, which is especially evident at higher pressures. To help identify the controlling chemistry leading to this preignition heat release, off-stoichiometric experiments are further performed at 30 bar compressed pressure, for t-butanol at φ = 0.5 and φ = 2.0 in air. For these experiments, higher fuel loading (i.e., φ = 2.0) causes greater preignition heat release (as indicated by greater pressure rise) than the stoichiometric or φ = 0.5 cases. Comparison of the experimental ignition delays with the simulated results using two literature kinetic mechanisms shows generally good agreement, and one mechanism is further used to explore and compare the fuel decomposition pathways of butanol isomers. Using this mechanism, the importance of peroxy chemistry in the autoignition of the butanol isomers is highlighted and discussed. © 2013 American Chemical Society.

  13. A Numerical Study of Spray Characteristics in Medium Speed Engine Fueled by Different HFO/n-Butanol Blends

    Directory of Open Access Journals (Sweden)

    Hashem Nowruzi

    2014-01-01

    Full Text Available In the present study, nonreacting and nonevaporating spray characteristics of heavy fuel oil (HFO/n-butanol blends are numerically investigated under two different high pressure injections in medium speed engines. An Eulerian-Lagrangian multiphase scheme is used to simulate blend of C14H30 as HFO and 0%, 10%, 15%, and 20% by volume of n-butanol. OpenFOAM CFD toolbox is modified and implemented to study the effect of different blends of HFO/n-butanol on the spray characteristics at 600 and 1000 bar. To validate the presented simulations, current numerical results are compared against existing experimental data and good compliance is achieved. Based on the numerical findings, addition of n-butanol to HFO increases the particles volume in parcels at 600 bar. It was also found that blend fuels increase the number of spray particles and the average velocity of spray compared to pure HFO. Moreover, under injection pressure of 1000 bar, HFO/n-butanol blends compared to pure HFO fuel decrease particles volume in parcels of spray. Another influence of HFO/n-butanol blends is the decrease in average of particles diameter in parcels. Meanwhile, the effect of HFO/n-butanol on spray length is proved to be negligible. Finally, it can be concluded that higher injection pressure improves the spray efficiency.

  14. Conversion of human placental alkaline phosphatase from a high Mr form to a low Mr form during butanol extraction. An investigation of the role of endogenous phosphoinositide-specific phospholipases.

    Science.gov (United States)

    Malik, A S; Low, M G

    1986-12-01

    Alkaline phosphatase in a wide range of tissues has been shown to be anchored in the membrane by a specific interaction with the polar head group of phosphatidylinositol. It has previously been suggested that the production of low Mr alkaline phosphatase during the commonly used butanol extraction procedure may result from the activation of an endogenous phosphoinositide-specific phospholipase C which removes the 1,2-diacylglycerol responsible for membrane anchoring. This conversion process was investigated in greater detail with human placenta used as the source of alkaline phosphatase. Mr and hydrophobicity of the alkaline phosphatase were determined by gel filtration on TSK-250 and partitioning in Triton X-114, respectively. Alkaline phosphatase extracted from human placental particulate fraction with butanol at pH 5.4 or released by incubation with Staphylococcus aureus phosphatidylinositol-specific phospholipase C produced a form of alkaline phosphatase of Mr approx. 170,000 and relatively low hydrophobicity. By contrast, the butanol extract prepared at pH 8.3 was an aggregated form of Mr approx. 600,000 and was relatively hydrophobic. The effect of a variety of inhibitors and activators on the amount of low Mr alkaline phosphatase produced during butanol extraction revealed that it was a Ca2+- and thiol-dependent process. Proteinase inhibitors had no effect. [3H]Phosphatidylinositol hydrolysis by the particulate fraction, unlike low Mr alkaline phosphatase production, was relatively sensitive to heat inactivation, indicating that the phosphoinositide-specific phospholipases C from cytosol and lysosomes were unlikely to be responsible for conversion. A butanol-stimulated activity which removed the [3H]myristic acid from the variant surface glycoprotein ( [3H]mfVSG) of Trypanosoma brucei was detectable in the human placental particulate fraction. Since this activity was acid active, Ca2+- and thiol-dependent and relatively heat stable, it may be the same as

  15. Butanol is cytotoxic to Lactococcus lactis while ethanol and hexanol are cytostatic

    DEFF Research Database (Denmark)

    Hviid, Anne-Mette Meisner; Jensen, Peter Ruhdal; Kilstrup, Mogens

    2017-01-01

    attention. In the present study the physiological alcohol stress response of Lactococcus lactis subsp. cremoris MG1363 towards the primary, even-chain alcohols; ethanol, butanol, and hexanol was characterized. The alcohol tolerance of L. lactis was found comparable to those reported for highly alcohol...... resistant lactic acid bacteria. Combined results from alcohol survival rate, live/dead staining, and a novel usage of the beta-galactosidase assay, revealed that while high concentrations of ethanol and hexanol were cytostatic to L. lactis, high concentrations of butanol were cytotoxic, causing irreparable...

  16. Enhanced butanol production by immobilized Clostridium beijerinckii TISTR 1461 using zeolite 13X as a carrier.

    Science.gov (United States)

    Vichuviwat, Rapeephat; Boonsombuti, Akarin; Luengnaruemitchai, Apanee; Wongkasemjit, Sujitra

    2014-11-01

    Butanol production by cell immobilization onto porous materials-brick and zeolite 13X-was investigated using Clostridium beijerinckii TISTR 1461. Characterization results of two materials were completed to evaluate their potential as an immobilization carrier. Although zeolite has greater porosity than brick, it cannot be used for cell aggregation without treating with chemical. After immobilization, both materials can enhance butanol titers from 5.29 to 5.80g/L and 8.58g/L using brick and zeolite, respectively. Butanol to glucose yield also improved from 0.14 to 0.16g/g after immobilization. It was found that butanol production significantly increased due to an increase in buffering capacity, strong bonding between the zeolite surface and cell, and butanol tolerance. In addition, repeated batch fermentation was performed, demonstrating that cells immobilized onto zeolite 13X have high stability and potential for long-term use in continuous fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Conversion of human placental alkaline phosphatase from a high Mr form to a low Mr form during butanol extraction. An investigation of the role of endogenous phosphoinositide-specific phospholipases.

    OpenAIRE

    Malik, A. S.; Low, M G

    1986-01-01

    Alkaline phosphatase in a wide range of tissues has been shown to be anchored in the membrane by a specific interaction with the polar head group of phosphatidylinositol. It has previously been suggested that the production of low Mr alkaline phosphatase during the commonly used butanol extraction procedure may result from the activation of an endogenous phosphoinositide-specific phospholipase C which removes the 1,2-diacylglycerol responsible for membrane anchoring. This conversion process w...

  18. O-15-butanol PET activation study on declarative memory; O-15-Butanol-PET-Aktivierungsstudie zur zerebralen Repraesentation deklarativer Gedaechtnisvorgaenge

    Energy Technology Data Exchange (ETDEWEB)

    Krause, B.J.; Schmidt, D.; Mottaghy, F.M.; Mueller-Gaertner, H.W. [Duesseldorf Univ. (Germany). Klinik fuer Nuklearmedizin]|[Forschungszentrum Juelich (Germany). Inst. fuer Medizin; Halsband, U. [Tuebingen Univ. (Germany). Inst. fuer Medizinische Psychologie; Tellmann, L.; Herzog, H. [Forschungszentrum Juelich (Germany). Inst. fuer Medizin

    1998-12-31

    Aim: In this study, neuroanatomical correlates of encoding and retrieval in paired associate learning were evaluated with positron emission tomography using auditorily presented highly imaginable words. Methods: Six right-handed normal male volunteers took part in the study. Each subject underwent six O-15-butanol PET scans. On each of the six trials the memory task began with the injection of a bolus of O-15-butanol. The subjects had to learn and retrieve twelve word pairs (highly imaginable words, not semantically related). The presentation of nonsense words served as reference condition. Results: Recall accuracy after 2-4 presentations was high during the PET measurement. In both encoding and retrieval we found anterior cingulate activation. We show bilateral dorsalateral prefrontal activation during the encoding of auditorily presented word pair associates, whereas retrieval led to left frontal activation. Furthermore, we demonstrate the importance of the precuneus in the retrieval of highly imaginable world-pair associates. Conclusion: Our results support the hypothesis of the presence of distributed widespread brain structures subserving episodic declarative memory. (orig.) [Deutsch] Ziel: Untersuchungen zur zerebralen Repraesentation deklarativer Gedaechtnisvorgaenge mit der Positronen-Emissions-Tomographie an gesunden rechtshaendigen Normalprobanden. Methoden: Bei sechs Probanden erfolgten sechs O-15-Butanol-PET-Untersuchungen (jeweils 1500 MBq) mit einer GE 4096+ PET-Kamera. Die Gedaechtnisaufgabe bestand darin, zwoelf Wortpaare hoch bildhaften Gehaltes zu lernen (auditorische Praesentation ueber Kopfhoerer). Bei der nachfolgenden Abfrage wurden randomisiert jeweils die ersten Worte praesentiert und die Probanden hatten dann die dazugehoerenden Worte zu assoziieren. Als Referenzbedingungen wurden Nichtworte dargeboten. Die Datenanalyse erfolgte mit `Statistischem Parametrischem Mapping` (SPM 96) unter MatLab (Version 4.2). Ergebnisse: Die

  19. Butanol is cytotoxic to Lactococcus lactis while ethanol and hexanol are cytostatic

    DEFF Research Database (Denmark)

    Hviid, Anne-Mette Meisner; Jensen, Peter Ruhdal; Kilstrup, Mogens

    2017-01-01

    resistant lactic acid bacteria. Combined results from alcohol survival rate, live/dead staining, and a novel usage of the beta-galactosidase assay, revealed that while high concentrations of ethanol and hexanol were cytostatic to L. lactis, high concentrations of butanol were cytotoxic, causing irreparable...

  20. Highly Selective Upgrading of Biomass-Derived Alcohol Mixtures for Jet/Diesel-Fuel Components.

    Science.gov (United States)

    Liu, Qiang; Xu, Guoqiang; Wang, Xicheng; Liu, Xiaoran; Mu, Xindong

    2016-12-20

    In light of the increasing concern about the energy and environmental problems caused by the combustion of petroleum-based fuels (e.g., jet and diesel fuels), the development of new procedures for their sustainable production from renewable biomass-derived platform compounds has attracted tremendous attention recently. Long-chain ketones/alcohols are promising fuel components owing to the fuel properties that closely resemble those of traditional fuels. The focus of this report is the production of long-chain ketones/alcohols by direct upgrading of biomass-derived short-chain alcohol mixtures (e.g., isopropanol-butanol-ethanol mixtures) in pure water. An efficient Pd catalyst system was developed for these highly selective transformations. Long-chain ketones/alcohols (C8 -C19 ), which can be used as precursors for renewable jet/diesel fuel, were obtained in good-to-high selectivity (>90 %) by using the developed Pd catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Butanol biorefineries: simultaneous product removal & process integration for conversion of biomass & food waste to biofuel

    Science.gov (United States)

    Butanol, a superior biofuel, packs 30% more energy than ethanol on a per gallon basis. It can be produced from various carbohydrates and lignocellulosic (biomass) feedstocks. For cost effective production of this renewable and high energy biofuel, inexpensive feedstocks and economical process techno...

  2. Butanol biorefineries: Use of novel technologies to produce biofuel butanol from sweet sorghum bagasse (SSB)

    Science.gov (United States)

    In order to produce butanol biofuel at a competitive price, agricultural residues such as SSB should be used. This feedstock was studied as a substitute to corn to lower feedstock costs and broaden beyond a food crop. In addition, cutting edge science & technology was applied. In these studies we us...

  3. Interaction between amylose and 1-butanol during 1-butanol-hydrochloric acid hydrolysis of normal rice starch.

    Science.gov (United States)

    Hu, Xiuting; Wei, Benxi; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-10-01

    The aim of this study was to examine the interaction between amylose and 1-butanol during the 1-butanol-hydrochloric acid (1-butanol-HCl) hydrolysis of normal rice starch. The interaction model between amylose and 1-butanol was proposed using gas chromatography-mass spectrometry (GC-MS), (13)C cross polarization and magic angle spinning NMR analysis ((13)C CP/MAS NMR), differential scanning calorimetry (DSC), and thermalgravimetric analysis (TGA). GC-MS data showed that another form of 1-butanol existed in 1-butanol-HCl-hydrolyzed normal rice starch, except in the form of free molecules absorbed on the starch granules. The signal of 1-butanol-HCl-hydrolyzed starch at 100.1 ppm appeared in the (13)C CP/MAS NMR spectrum, indicating that the amylose-1-butanol complex was formed. DSC and TGA data also demonstrated the formation of the complex, which significantly affected the thermal properties of normal rice starch. These findings revealed that less dextrin with low molecular weight formed might be attributed to resistance of this complex to acid during 1-butanol-HCl hydrolysis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. (Liquid + liquid) equilibria in {l_brace}water + acrylic acid + (1-butanol, or 2-butanol, or 1-pentanol){r_brace} systems at T = 293.2 K, T = 303.2 K, and T = 313.2 K and atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Batistell, Melissa C.; Alves, Thiago C.; Guadagnini, Talita R.; Hadlich de Oliveira, Leonardo [School of Chemical Engineering, University of Campinas, Av. Albert Einstein 500, 13083-852 Campinas-SP (Brazil); Aznar, Martin, E-mail: maznar@feq.unicamp.br [School of Chemical Engineering, University of Campinas, Av. Albert Einstein 500, 13083-852 Campinas-SP (Brazil)

    2011-09-15

    Highlights: > Acrylic acid solubilizes preferably in the studied solvents than in water. > Immiscibility region increases in the order: 2-butanol < 1-butanol < 1-pentanol. > Immiscibility region reduces little with an increase in temperature. > K and S values show that 1-pentanol is the best studied solvent. - Abstract: (Liquid + liquid) equilibrium (LLE) data for {l_brace}water + acrylic acid + (1-butanol, or 2-butanol, or 1-pentanol){r_brace} at T = 293.2 K, T = 303.2 K, and T = 313.2 K and atmospheric pressure ({approx}95 kPa) were determined by Karl Fischer titration and densimetry. All systems present type I binodal curves. The size of immiscibility region changes little with an increase in temperature, but increases according to the solvent, following the order: 2-butanol < 1-butanol < 1-pentanol. Values of solute distribution and solvent selectivities show that 1-pentanol is a better solvent than 1-butanol or 2-butanol for acrylic acid removal from water solutions. Quality of data was ascertain by Hand and Othmer-Tobias equations, giving R{sup 2} > 0.916, mass balance and accordance between tie lines and cloud points. The NRTL model was used to correlate experimental data, by estimating new energy parameters, with root mean square deviations below 0.0053 for all systems.

  5. Recovery of butanol from fermentation broth by pervaporation

    Science.gov (United States)

    Butanol can be produced by fermentation from corn, molasses or lignocellulosic biomass for use as a chemical or superior biofuel. However, butanol’s production is hampered by its toxicity to the microbial culture that produces it. In fermentation broths, final butanol concentrations typically range ...

  6. Biobutanol as Fuel for Direct Alcohol Fuel Cells-Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation.

    Science.gov (United States)

    Puthiyapura, Vinod Kumar; Brett, Dan J L; Russell, Andrea E; Lin, Wen-Feng; Hardacre, Christopher

    2016-05-25

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the

  7. Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus.

    Science.gov (United States)

    Wu, Pengfei; Wang, Genyu; Wang, Gehua; Børresen, Børre Tore; Liu, Hongjuan; Zhang, Jianan

    2016-01-14

    One major problem of ABE (acetone, butanol and ethanol) fermentation is high oxygen sensitivity of Clostridium acetobutylicum. Currently, no single strain has been isolated or genetically engineered to produce butanol effectively under aerobic conditions. In our previous work, a symbiotic system TSH06 has been developed successfully by our group, and two strains, C. acetobutylicum TSH1 and Bacillus cereus TSH2, were isolated from TSH06. Compared with single culture, TSH06 showed promotion on cell growth and solvent accumulation under microaerobic conditions. To simulate TSH06, a new symbiotic system was successfully re-constructed by adding living cells of B. cereus TSH2 into C. acetobutylicum TSH1 cultures. During the fermentation process, the function of B. cereus TSH2 was found to deplete oxygen and provide anaerobic environment for C. acetobutylicum TSH1. Furthermore, inoculation ratio of C. acetobutylicum TSH1 and B. cereus TSH2 affected butanol production. In a batch fermentation with optimized inoculation ratio of 5 % C. acetobutylicum TSH1 and 0.5 % B. cereus TSH2, 11.0 g/L butanol and 18.1 g/L ABE were produced under microaerobic static condition. In contrast to the single culture of C. acetobutylicum TSH1, the symbiotic system became more aerotolerant and was able to produce 11.2 g/L butanol in a 5 L bioreactor even with continuous 0.15 L/min air sparging. In addition, qPCR assay demonstrated that the abundance of B. cereus TSH2 increased quickly at first and then decreased sharply to lower than 1 %, whereas C. acetobutylicum TSH1 accounted for more than 99 % of the whole population in solventogenic phase. The characterization of a novel symbiotic system on butanol fermentation was studied. The new symbiotic system re-constructed by co-culture of C. acetobutylicum TSH1 and B. cereus TSH2 showed excellent performance on butanol production under microaerobic conditions. B. cereus TSH2 was a good partner for C. acetobutylicum TSH1 by providing an anaerobic

  8. Evaluation of substrates for butanol production

    Energy Technology Data Exchange (ETDEWEB)

    Compere, A.L.; Griffith, W.L.

    1979-01-01

    The production was evaluated of ethanol, acetone, and butanol from several different carbohydrate materials by five strains of Clostridia and two mixed cultures. The substrates, which were tested at concn ranging between 2.5 and 10% w/v, included pentoses, hexoses, disaccharides, and polysaccharides. The organisms used were Clostridium acetobutylicum strains NRRL B527 and NRRL B3179; Clostridium butylicum strains NRRL B592 and NRRL B593; and Clostridium pasteurianum strain NRRL B598. The mixed cultures contained all of these organisms. Mixed culture 1 contained in addition to the Clostridia, Klebsiella pneumoniae strain NRRL B427. Mixed culture 2 contained mixed culture 1 plus a yeast isolated from kefir culture. Where possible, maxima were found for the conversion of different substrates. 7 tables.

  9. A new process for the valorisation of a bio-alcohol. The oxidehydration of 1-butanol into maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Caldarelli, A.; Cavani, F.; Garone, O.; Pavarelli, G. [Bologna Univ. (Italy). Dipt. di Chimica Industriale e dei Materiali; Bologna Univ. (Italy). CIRCC, Research Unit; Dubois, J.L. [ARKEMA, Colombes (France); Mitsova, I.; Simeonova, L. [JSC, Russe (Bulgaria). Orgachim

    2012-07-01

    This paper deals with a study on the gas-phase transformation of 1-butanol into maleic anhydride, using different types of catalysts. Indeed, catalytic acid properties are needed to dehydrate 1-butanol into 1-butene, whereas redox-type properties are required for the oxidation of the olefin into maleic anhydride. The two types of active sites can be combined in bifunctional systems, showing both acid and redox-type properties. We found that vanadyl pyrophosphate catalyzes the one-pot reaction, giving a maximum selectivity to maleic anhydride of 28%. In fact, various side reactions contributed to the formation of by-products, eg, 1-butanol (oxidative) dehydrogenation into butyraldehyde, formation of light carboxylic acids and carbon oxides, and condensation of unsaturated C{sub 4} intermediates (butenes and butadiene) with the formed maleic anhydride to yield heavier compounds. (orig.)

  10. Improving butanol fermentation to enter the advanced biofuel market.

    Science.gov (United States)

    Tracy, Bryan P

    2012-12-11

    1-Butanol is a large-volume, intermediate chemical with favorable physical and chemical properties for blending with or directly substituting for gasoline. The per-volume value of butanol, as a chemical, is sufficient for investing into the recommercialization of the classical acetone-butanol-ethanol (ABE) (E. M. Green, Curr. Opin. Biotechnol. 22:337-343, 2011) fermentation process. Furthermore, with modest improvements in three areas of the ABE process, operating costs can be sufficiently decreased to make butanol an economically viable advanced biofuel. The three areas of greatest interest are (i) maximizing yields of butanol on any particular substrate, (ii) expanding substrate utilization capabilities of the host microorganism, and (iii) reducing the energy consumption of the overall production process, in particular the separation and purification operations. In their study in the September/October 2012 issue of mBio, Jang et al. [mBio 3(5):e00314-12, 2012] describe a comprehensive study on driving glucose metabolism in Clostridium acetobutylicum to the production of butanol. Moreover, they execute a metabolic engineering strategy to achieve the highest yet reported yields of butanol on glucose.

  11. DOMESTIC BUTANOL-PRODUCING STRAINS OF THE Clostridium GENUS

    Directory of Open Access Journals (Sweden)

    O. O. Tigunova

    2017-02-01

    Full Text Available The aim of the work was to summarize the results of own research concerning obtaining butanol producing strains of Clostridium genus, to identify them by physiological, morphological and genetic methods. Further study of characteristics and biological features of the strains, and various approaches in biotechnological process of butanol production are discussed. The work includes methods to increase butanol accumulation by producer strains. Perspectives of using chemical mutagenesis in Clostridia as a method of increasing butanol production are considered. The feasibility of using non-food raw material as a substrate for fermentation is discussed. Different methods of pretreatment and their impact on the accumulation of butanol in the liquid medium are compared. Butanol accumulation is shown to increase significantly if the synthesis precursors are added as components of enzymatic medium, and the “reverse bard” is used to reduce waste production without affecting the level of butanol synthesis. The problem of conservation of producing strains is given, and protective medium for microorganisms during the freeze-drying is defined.

  12. Metabolic responses to ethanol and butanol in Chlamydomonas reinhardtii

    OpenAIRE

    Jiang, Yongguang; Xiao, Peng; Shao, Qing; Qin, Huan; Hu, Zhangli; Lei, Anping; Wang, Jiangxin

    2017-01-01

    Background Microalgae have been demonstrated to be among the most promising phototrophic species for producing renewable biofuels and chemicals. Ethanol and butanol are clean energy sources with good chemical and physical properties as alternatives to gasoline. However, biosynthesis of these two biofuels has not been achieved due to low tolerance of algal cells to ethanol or butanol. Results With an eye to circumventing these problems in the future and engineering the robust alcohol-producing...

  13. Compressed liquid densities of 1-butanol and 2-butanol at temperatures from 313 K to 363 K and pressures up to 25 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Moreno, Abel [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Mexico, D.F. (Mexico); Galicia-Luna, Luis A. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Mexico, D.F. (Mexico)]. E-mail: lgalicial@ipn.mx; Camacho-Camacho, Luis E. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Mexico, D.F. (Mexico)

    2007-02-15

    (p, {rho}, T) properties were determined in liquid phase for 1-butanol and 2-butanol at temperatures from 313 K to 363 K and pressures up to 25 MPa using a vibrating tube densimeter. The uncertainty is estimated to be lower than {+-}0.2 kg . m{sup -3} for the experimental densities. Nitrogen and water were used as reference fluids for the calibration of the vibrating tube densimeter. Experimental densities of 1-butanol and 2-butanol were correlated with a short empirical equation and the 11-parameter Benedict-Webb-Rubin-Starling equation of state (BWRS EoS) using a least square optimization. Statistical values to evaluate the different correlations were reported. Published densities of 1-butanol and 2-butanol are compared with values calculated with the BWRS EoS using the parameters obtained in this work. The experimental data determined here are also compared with available correlations for 1-butanol and 2-butanol.

  14. Excess volumes of 1-butanol, 2-butanol, 2-methylpropan-1-ol, and 2-methylpropan-2-ol with xylenes at 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, U.; Maken, S.; Singh, K.C. [Maharshi Dayanand Univ., Rohtak (India). Dept. of Chemistry

    1996-09-01

    The excess volumes V{sup E} for 1-butanol or 2-butanol or 2-methylpropan-1-ol or 2-methylpropan-2-ol + o-xylene or m-xylene or p-xylene at 308.15 K have been measured over the whole range of composition. The V{sup E} vs composition curves are skewed toward the low concentration of butanol. For systems containing 1-butanol curves are sigmoids and V{sup E} values change sign in the 1-butanol (1) rich region (x{sub 1} > 0.8). For butanol + xylene systems V{sup E} values vary in the order 2-methylpropan-2-ol > 2-butanol > 2-methylpropan-1-ol > 1-butanol.

  15. Relationship between hydrogen gas and butanol production by Clostridium saccharoperbutylacetonicum

    Energy Technology Data Exchange (ETDEWEB)

    Brosseau, J.D.; Yan, J.Y.; Lo, K.V.

    1986-03-01

    Two simultaneous fermentations were performed at 26 degrees C with simultaneous inocula using Clostridium saccharoperbutylacetonicum. Fermentation 1 prevented the gas formed by the biomass from escaping the fermentor while 2 allowed the gas formed to escape. Fermentor 1 provided for the production of butanol, acetone, and ethanol, while when the H/sub 2/ formed was allowed to escape with fermentor 2, neither butanol nor acetone were produced. Ethanol was also formed in both fermentors and began along with the initial growth of biomass and continued until the fermentations were complete. Butanol and acetone production began after biomass growth had reached a maximum and began to subside. The butanol-acetone-ethanol millimolar yields and ratios were 38:1:14 respectively. The fermentor 2 results show that a yield of 2.1 l H/sub 2/, 93 or 370 mmol H/sub 2//mol glucose, was formed only during the growing stage of growth; neither butanol nor acetone were produced; ethanol was formed throughout the fermentation, reaching a yield of 15.2 mmolar. It appears that hydrogen gas is required for butanol production during the resting stage of growth. 16 references.

  16. Salt effect on (liquid + liquid) equilibrium of (water + tert-butanol + 1-butanol) system: Experimental data and correlation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Milton A.P. [School of Chemical Engineering, State University of Campinas, P.O. Box 6066, Campinas-SP 13081-970 (Brazil); Aznar, Martin [School of Chemical Engineering, State University of Campinas, P.O. Box 6066, Campinas-SP 13081-970 (Brazil)]. E-mail: maznar@feq.unicamp.br

    2006-01-15

    (Liquid + liquid) equilibrium data for the quaternary systems (water + tert-butanol + 1-butanol + KBr) and (water + tert-butanol + 1-butanol + MgCl{sub 2}) were experimentally determined at T = 293.15 K and T = 313.15 K. For mixtures with KBr, the overall salt concentrations were 5 and 10 mass percent; for mixtures with MgCl{sub 2}, the overall salt concentrations were 2 and 5 mass percent. The experimental results were used to estimate molecular interaction parameters for the NRTL activity coefficient model, using the Simplex minimization method and a concentration-based objective function. The correlation results are extremely satisfactory, with deviations in phase compositions below 1.7%.

  17. Investigation of uncertainties associated with the production of n-butanol through ethanol catalysis in sugarcane biorefineries.

    Science.gov (United States)

    Pereira, Lucas G; Dias, Marina O S; MacLean, Heather L; Bonomi, Antonio

    2015-08-01

    This study evaluated the viability of n-butanol production integrated within a first and second generation sugarcane biorefinery. The evaluation included a deterministic analysis as well as a stochastic approach, the latter using Monte Carlo simulation. Results were promising for n-butanol production in terms of revenues per tonne of processed sugarcane, but discouraging with respect to internal rate of return (IRR). The uncertainty analysis determined there was high risk involved in producing n-butanol and co-products from ethanol catalysis. It is unlikely that these products and associated production route will be financially attractive in the short term without lower investment costs, supportive public policies and tax incentives coupled with biofuels' production strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression.

    Science.gov (United States)

    Schadeweg, Virginia; Boles, Eckhard

    2016-01-01

    n-Butanol can serve as an excellent gasoline substitute. Naturally, it is produced by some Clostridia species which, however, exhibit only limited suitability for industrial n-butanol production. The yeast Saccharomyces cerevisiae would be an ideal host due to its high robustness in fermentation processes. Nevertheless, n-butanol yields and titers obtained so far with genetically engineered yeast strains are only low. In our recent work, we showed that n-butanol production via a clostridial acetoacetyl-CoA-derived pathway in engineered yeast was limited by the availability of coenzyme A (CoA) and cytosolic acetyl-CoA. Increasing their levels resulted in a strain producing up to 130 mg/L n-butanol under anaerobic conditions. Here, we show that under aerobic conditions. this strain can even produce up to 235 mg/L n-butanol probably due to a more efficient NADH re-oxidation. Nevertheless, expression of a bacterial water-forming NADH oxidase (nox) significantly reduced n-butanol production although it showed a positive effect on growth and glucose consumption. Screening for an improved version of an acetyl-CoA forming NAD(+)-dependent acetylating acetaldehyde dehydrogenase, adhE(A267T/E568K/R577S), and its integration into n-butanol-producing strain further improved n-butanol production. Moreover, deletion of the competing NADP(+)-dependent acetaldehyde dehydrogenase Ald6 had a superior effect on n-butanol formation. To increase the endogenous supply of CoA, amine oxidase Fms1 was overexpressed together with pantothenate kinase coaA from Escherichia coli, and could completely compensate the beneficial effect on n-butanol synthesis of addition of pantothenate to the medium. By overexpression of each of the enzymes of n-butanol pathway in the n-butanol-producing yeast strain, it turned out that trans-2-enoyl-CoA reductase (ter) was limiting n-butanol production. Additional overexpression of ter finally resulted in a yeast strain producing n-butanol up to a titer of 0

  19. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process

    Energy Technology Data Exchange (ETDEWEB)

    Lu, CC; Dong, J; Yang, ST

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. (C) 2013 Elsevier Ltd. All rights reserved.

  20. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process.

    Science.gov (United States)

    Lu, Congcong; Dong, Jie; Yang, Shang-Tian

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption.

    Science.gov (United States)

    Qureshi, N; Hughes, S; Maddox, I S; Cotta, M A

    2005-07-01

    This article discusses the separation of butanol from aqueous solutions and/or fermentation broth by adsorption. Butanol fermentation is also known as acetone butanol ethanol (ABE) or solvent fermentation. Adsorbents such as silicalite, resins (XAD-2, XAD-4, XAD-7, XAD-8, XAD-16), bone charcoal, activated charcoal, bonopore, and polyvinylpyridine have been studied. Use of silicalite appears to be the more attractive as it can be used to concentrate butanol from dilute solutions (5 to 790-810 g L(-1)) and results in complete desorption of butanol (or ABE). In addition, silicalite can be regenerated by heat treatment. The energy requirement for butanol recovery by adsorption-desorption processes has been calculated to be 1,948 kcal kg(-1) butanol as compared to 5,789 kcal kg(-1) butanol by steam stripping distillation. Other techniques such as gas stripping and pervaporation require 5,220 and 3,295 kcal kg(-1) butanol, respectively.

  2. Crystallization of Esomeprazole Magnesium Water/Butanol Solvate.

    Science.gov (United States)

    Skieneh, Jenna; Khalili Najafabadi, Bahareh; Horne, Stephen; Rohani, Sohrab

    2016-04-23

    The molecular structure of esomeprazole magnesium derivative in the solid-state is reported for the first time, along with a simplified crystallization pathway. The structure was determined using the single crystal X-ray diffraction technique to reveal the bonding relationships between esomeprazole heteroatoms and magnesium. The esomeprazole crystallization process was carried out in 1-butanol and water was utilized as anti-solvent. The product proved to be esomeprazole magnesium tetrahydrate with two 1-butanol molecules that crystallized in P6₃ space group, in a hexagonal unit cell. Complete characterization of a sample after drying was conducted by the use of powder X-ray diffraction (PXRD), ¹H-nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), infrared spectroscopy (IR), and dynamic vapor sorption (DVS). Investigation by ¹H-NMR and TGA has shown that the solvent content in the dried sample consists of two water molecules and 0.3 butanol molecules per esomeprazole magnesium molecule. This is different from the single crystal X-ray diffraction results and can be attributed to the loss of some water and 1-butanol molecules stabilized by intermolecular interactions. The title compound, after drying, is a true solvate in terms of water; conversely, 1-butanol fills the voids of the crystal lattice in non-stoichiometric amounts.

  3. Crystallization of Esomeprazole Magnesium Water/Butanol Solvate

    Directory of Open Access Journals (Sweden)

    Jenna Skieneh

    2016-04-01

    Full Text Available The molecular structure of esomeprazole magnesium derivative in the solid-state is reported for the first time, along with a simplified crystallization pathway. The structure was determined using the single crystal X-ray diffraction technique to reveal the bonding relationships between esomeprazole heteroatoms and magnesium. The esomeprazole crystallization process was carried out in 1-butanol and water was utilized as anti-solvent. The product proved to be esomeprazole magnesium tetrahydrate with two 1-butanol molecules that crystallized in P63 space group, in a hexagonal unit cell. Complete characterization of a sample after drying was conducted by the use of powder X-ray diffraction (PXRD, 1H-nuclear magnetic resonance (NMR, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, infrared spectroscopy (IR, and dynamic vapor sorption (DVS. Investigation by 1H-NMR and TGA has shown that the solvent content in the dried sample consists of two water molecules and 0.3 butanol molecules per esomeprazole magnesium molecule. This is different from the single crystal X-ray diffraction results and can be attributed to the loss of some water and 1-butanol molecules stabilized by intermolecular interactions. The title compound, after drying, is a true solvate in terms of water; conversely, 1-butanol fills the voids of the crystal lattice in non-stoichiometric amounts.

  4. Prospects and challenges for the recovery of 2-butanol produced by vacuum fermentation - a techno-economic analysis.

    Science.gov (United States)

    Pereira, Joana P C; Lopez-Gomez, Gustavo; Reyes, Noelia G; van der Wielen, Luuk A M; Straathof, Adrie J J

    2017-07-01

    The conceptual design of a bio-based process for 2-butanol production is presented for the first time. Considering a hypothetical efficient producing strain, a vacuum fermentation is proposed to alleviate product toxicity, but the main challenge is the energy-efficient product recovery from the vapor. Three downstream scenarios were examined for this purpose: 1) multi-stage vapor recompression; 2) temperature swing adsorption; and 3) vapor absorption. The processes were simulated using Aspen Plus, considering a production capacity of 101 kton/yr. Process optimization was performed targeting the minimum selling price of 2-butanol. The feasibility of the different configurations was analyzed based on the global energy requirements and capital expenditure. The use of integrated adsorption and absorption minimized the energy duty required for azeotrope purification, which represents 11% of the total operational expenditure in Scenario 1. The minimum selling price of 2-butanol as commodity chemical was estimated as 1.05 $/kg, 1.21 $/kg, and 1.03 $/kg regarding the fermentation integrated with downstream scenarios 1), 2), and 3), respectively. Significant savings in 2-butanol production could be achieved in the suggested integrated configurations if more efficient microbial strains were engineered, and more selective adsorption and absorption materials were found for product recovery. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Highly Selective Hydroformylation of the Cinchona Alkaloids

    NARCIS (Netherlands)

    Lambers, Marielle; Beijer, Felix H.; Padron, José M.; Toth, Imre; Vries, Johannes G. de

    2002-01-01

    The four naturally occurring cinchona alkaloids were subjected to hydroformylation to create an extra functional group that allows immobilization. Cinchonidine, quinine, and quinidine, could be hydroformylated with virtually complete terminal selectivity, using a rhodium/tetraphosphite catalyst. The

  6. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  7. Mitochondrial signaling in Saccharomyces cerevisiae pseudohyphae formation induced by butanol.

    Science.gov (United States)

    Starovoytova, Anna N; Sorokin, Maxim I; Sokolov, Svyatoslav S; Severin, Fedor F; Knorre, Dmitry A

    2013-06-01

    Yeasts growing limited for nitrogen source or treated with fusel alcohols form elongated cells--pseudohyphae. Absence of mitochondrial DNA or anaerobic conditions inhibits this process, but the precise role of mitochondria is not clear. We found that a significant percentage of pseudohyphal cells contained mitochondria with different levels of membrane potential within one cell. An uncoupler carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), but not the ATP-synthase inhibitor oligomycin D, prevented pseudohyphal growth. Interestingly, repression of the MIH1 gene encoding phosphatase activator of the G2/M transition partially restores the ability of yeast to form pseudohyphal cells in the presence of FCCP or in the absence of mitochondrial DNA. At the same time, retrograde signaling (the one triggered by dysfunctional mitochondria) appeared to be a positive regulator of butanol-induced pseudohyphae formation: the deletion of any of the retrograde signaling genes (RTG1, RTG2, or RTG3) partially suppressed pseudohyphal growth. Together, our data suggest that two subpopulations of mitochondria are required for filamentous growth: one with high and another with low transmembrane potential. These mitochondria-activated signaling pathways appear to converge at Mih1p level. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution.

    Science.gov (United States)

    Huang, Haibo; Singh, Vijay; Qureshi, Nasib

    2015-01-01

    Waste is currently a major problem in the world, both in the developing and the developed countries. Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. This study investigated using food waste to produce acetone, butanol, and ethanol (ABE) by Clostridium beijerinckii P260. In control fermentation, 40.5 g/L of glucose (initial glucose 56.7 g/L) was used to produce 14.2 g/L of ABE with a fermentation productivity and a yield of 0.22 g/L/h and 0.35 g/g, respectively. In a similar fermentation 81 g/L of food waste (containing equivalent glucose of 60.1 g/L) was used as substrate, and the culture produced 18.9 g/L ABE with a high ABE productivity of 0.46 g/L/h and a yield of 0.38 g/g. Fermentation of food waste at higher concentrations (129, 181 and 228 g/L) did not remarkably increase ABE production but resulted in high residual glucose due to the culture butanol inhibition. An integrated vacuum stripping system was designed and applied to recover butanol from the fermentation broth simultaneously to relieve the culture butanol inhibition, thereby allowing the fermentation of food waste at high concentrations. ABE fermentation integrated with vacuum stripping successfully recovered the ABE from the fermentation broth and controlled the ABE concentrations below 10 g/L during fermentation when 129 g/L food waste was used. The ABE productivity with vacuum fermentation was 0.49 g/L/h, which was 109 % higher than the control fermentation (glucose based). More importantly, ABE vacuum recovery and fermentation allowed near-complete utilization of the sugars (~98 %) in the broth. In these studies it was demonstrated that food waste is a superior feedstock for producing butanol using Clostridium beijerinckii. Compared to costly glucose, ABE fermentation of food waste has several advantages including lower feedstock cost, higher productivity, and less residual sugars.

  9. Evaluation of industrial dairy waste (milk dust powder) for acetone-butanol-ethanol production by solventogenic Clostridium species.

    Science.gov (United States)

    Ujor, Victor; Bharathidasan, Ashok Kumar; Cornish, Katrina; Ezeji, Thaddeus Chukwuemeka

    2014-01-01

    Readily available inexpensive substrate with high product yield is the key to restoring acetone-butanol-ethanol (ABE) fermentation to economic competitiveness. Lactose-replete cheese whey tends to favor the production of butanol over acetone. In the current study, we investigated the fermentability of milk dust powder with high lactose content, for ABE production by Clostridium acetobutylicum and Clostridium beijerinckii. Both microorganisms produced 7.3 and 5.8 g/L of butanol respectively, with total ABE concentrations of 10.3 and 8.2 g/L, respectively. Compared to fermentation with glucose, fermentation of milk dust powder increased butanol to acetone ratio by 16% and 36% for C. acetobutylicum and C. beijerinckii, respectively. While these results demonstrate the fermentability of milk dust powder, the physico-chemical properties of milk dust powder appeared to limit sugar utilization, growth and ABE production. Further work aimed at improving the texture of milk dust powder-based medium would likely improve lactose utilization and ABE production.

  10. A microbial platform for renewable propane synthesis based on a fermentative butanol pathway.

    Science.gov (United States)

    Menon, Navya; Pásztor, András; Menon, Binuraj Rk; Kallio, Pauli; Fisher, Karl; Akhtar, M Kalim; Leys, David; Jones, Patrik R; Scrutton, Nigel S

    2015-01-01

    Propane (C3H8) is a volatile hydrocarbon with highly favourable physicochemical properties as a fuel, in addition to existing global markets and infrastructure for storage, distribution and utilization in a wide range of applications. Consequently, propane is an attractive target product in research aimed at developing new renewable alternatives to complement currently used petroleum-derived fuels. This study focuses on the construction and evaluation of alternative microbial biosynthetic pathways for the production of renewable propane. The new pathways utilize CoA intermediates that are derived from clostridial-like fermentative butanol pathways and are therefore distinct from the first microbial propane pathways recently engineered in Escherichia coli. We report the assembly and evaluation of four different synthetic pathways for the production of propane and butanol, designated a) atoB-adhE2 route, b) atoB-TPC7 route, c) nphT7-adhE2 route and d) nphT7-TPC7 route. The highest butanol titres were achieved with the atoB-adhE2 (473 ± 3 mg/L) and atoB-TPC7 (163 ± 2 mg/L) routes. When aldehyde deformylating oxygenase (ADO) was co-expressed with these pathways, the engineered hosts also produced propane. The atoB-TPC7-ADO pathway was the most effective in producing propane (220 ± 3 μg/L). By (i) deleting competing pathways, (ii) including a previously designed ADOA134F variant with an enhanced specificity towards short-chain substrates and (iii) including a ferredoxin-based electron supply system, the propane titre was increased (3.40 ± 0.19 mg/L). This study expands the metabolic toolbox for renewable propane production and provides new insight and understanding for the development of next-generation biofuel platforms. In developing an alternative CoA-dependent fermentative butanol pathway, which includes an engineered ADO variant (ADOA134F), the study addresses known limitations, including the low bio-availability of butyraldehyde precursors

  11. Esterification of maleic acid and butanol using cationic exchange ...

    Indian Academy of Sciences (India)

    Dibutyl maleate is a perfumery ester used as an intermediate in the production of paints, adhesives, and copolymers. Esterification of maleic acid and butanol was studied in presence of acidic cation exchange resin as a catalyst. The objective of this work was to test the suitability and efficacy of heterogeneous catalystssuch ...

  12. Metabolic engineering toward 1-butanol derivatives in solvent producing clostridia

    NARCIS (Netherlands)

    Siemerink, M.A.J.

    2010-01-01

    Chapter 1 of this thesis gives an overview about the history of the acetone, butanol and ethanol (ABE) fermentation. The responsible solventogenic clostridia with their central metabolism are briefly discussed. Despite the fact that scientific research on the key organisms of the ABE process has

  13. Effects of n-butanol on barley microspore embryogenesis

    DEFF Research Database (Denmark)

    Castillo, Ana Maria; Nielsen, Nanna; Jensen, Anni

    2014-01-01

    Doubled haploid (DH) production is an efficient tool in barley breeding, but efficiency of DH methods is not consistent. Hence, the aim of this study was to study the effect of n-butanol application on DH barley plant production efficiency. Five elite cultivars of barley and thirteen breeding...

  14. Esterification of maleic acid and butanol using cationic exchange ...

    Indian Academy of Sciences (India)

    AARTI MULAY

    2017-11-15

    Nov 15, 2017 ... Abstract. Dibutyl maleate is a perfumery ester used as an intermediate in the production of paints, adhesives, and copolymers. Esterification of maleic acid and butanol was studied in presence of acidic cation exchange resin as a catalyst. The objective of this work was to test the suitability and efficacy of ...

  15. LYOPHILIZATION EFFECT ON PRODUCTIVITY OF BUTANOL-PRODUCING STRAINS

    Directory of Open Access Journals (Sweden)

    O. O. Tigunova

    2016-10-01

    Full Text Available Investigation of lyophilization effect on the productivity of butanol-producing strains was the aim of our research. For this purpose we used butanol-producing strains; technical glycerol; biomass of switchgrass Panicum virgatum L. Lyophilization was performed using a lyophilization-drying. The effect of the protective medium on residual moisture of freezedrying cultures suspensions depending on the concentration of glucose and sucrose was studed. It was shown that the lowest residual moisture was attained by using glucose and sucrose in amount of 10% and if the samples of freeze-drying bacteria had been saved for one month at 4 οC the productivity did not decrease. As temperature preservation was increased the productivity of the cultures was gradually decreased and it was greatly reduced at 30 οC. So the protective medium composition was optimized for lyophilization of butanol-producing strains as follows: sucrose 10.0%; gelatin 10.0%; agar 0.02%. It was shown that the preservation of samples of freeze-drying bacteria for six months at a temperature of 4 οC did not affect the productivity of strains. It was found that cultures could use glycerol as a carbon source for butanol accumulation before lyophilization.

  16. Optical Transmitter Terminal for Selective RF High Frequency Bans Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposal work is to investigate the highly innovative conceptual design of an optical communication selective frequency transmitter terminal...

  17. Performance, emission, and combustion characteristics of twin-cylinder common rail diesel engine fuelled with butanol-diesel blends.

    Science.gov (United States)

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Gottekere, Kumar Narayanappa

    2017-10-01

    Nitrogen oxides and smoke are the substantial emissions for the diesel engines. Fuels comprising high-level oxygen content can have low smoke emission due to better oxidation of soot. The objective of the paper is to assess the potential to employ oxygenated fuel, i.e., n-butanol and its blends with the neat diesel from 0 to 30% by volume. The experimental and computational fluid dynamic (CFD) simulation is carried out to estimate the performance, combustion, and exhaust emission characteristics of n-butanol-diesel blends for various injection timings (9°, 12°, 15°, and 18°) using modern twin-cylinder, four-stroke, common rail direct injection (CRDI) engine. Experimental results reveal the increase in brake thermal efficiency (BTE) by ~ 4.5, 6, and 8% for butanol-diesel blends of 10% (Bu10), 20% (Bu20), and 30% (Bu30), respectively, compared to neat diesel (Bu0). Maximum BTE for Bu0 is 38.4%, which is obtained at 12° BTDC; however, for Bu10, Bu20 and Bu30 are 40.19, 40.9, and 41.7%, which are obtained at 15° BTDC, respectively. Higher flame speed of n-butanol-diesel blends burn a large amount of fuel in the premixed phase, which improves the combustion as well as emission characteristics. CFD and experimental results are compared and validated for all fuel blends for in-cylinder pressure and nitrogen oxides (NO x ), and found to be in good agreement. Both experimental and simulation results witnessed in reduction of smoke opacity, NO x , and carbon monoxide emissions with the increasing n-butanol percentage in diesel fuel.

  18. Complementary vapor pressure data for 2-methyl-1-propanol and 3-methyl-1-butanol at a pressure range of (15 to 177) kPa

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Quezada, Nathalie [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile)], E-mail: juan.delafuente@usm.cl

    2009-09-15

    The vapor pressure of pure 2-methyl-1-propanol and 3-methyl-1-butanol, components called congeners that are present in aroma of wine, pisco, and other alcoholic beverages, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa with an estimated uncertainty <0.2%. The measurements were performed at temperature ranges of (337 to 392) K for 2-methyl-1-propanol and (358 to 422) K for 3-methyl-1-butanol. Data were correlated using a Wagner-type equation with standard deviations of 0.09 kPa for the vapor pressure of 2-methyl-1-propanol and 0.21 kPa for 3-methyl-1-butanol. The experimental data and correlation were compared with data selected from the literature.

  19. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... 15% ethanol tolerance. High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential application in .... Growth in media of osmotic pressure range 0 - 25% (w/v) sorbitol ..... Saccharomyces cerevisiae through soya flour supplementation. Biotechnol. Lett. 10(3): 217-220. Bechem ...

  20. Bioproduction of butanol in bioreactors: new insights from simultaneous in situ butanol recovery to eliminate product toxicity

    Science.gov (United States)

    Simultaneous acetone butanol ethanol (ABE) fermentation by Clostridium beijerinckii 260 and in situ product recovery was investigated using a vacuum process operated in two modes: continuous and intermittent. Integrated batch fermentations and ABE recovery were conducted at 37 deg C using a 14-L bio...

  1. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  2. Acetone-butanol fermentation of lignocellulosic hydrolysates for the butanol production

    Science.gov (United States)

    Morozova, Tatyana; Semyonov, Sergey

    2017-11-01

    It is known that the use of lignocellulosic hydrolysates reduces the production cost of biofuel such as biobutanol and bioethanol. But for the most successful application of the hydrolysates for the biofuel production, it is necessary to apply an inexpensive and effective detoxification method and to use of cost-effective growth factors. In the present study, we evaluated the use of an acid hydrolysate of spruce and an enzymatic hydrolysate of miscanthus cellulose for the biobutanol production. To remove inhibitors from the hydrolysates, we applied the traditional physicochemical method with overliming and the biodetoxification method based on the use of the specially adapted activated sludge. Calcium hydroxide (150 g/L) was used for the neutralization. The biological method of detoxification of lignocellulosic hydrolysates was carried out under non-sterile conditions at room temperature by the specially adapted activated sludge of the urban wastewater treatment plants. The acetone-butanol fermentation was carried out by a strain of bacteria Clostridium acetobutylicum ATCC 824. The treatment by overliming removed 84-85 % and 83-86% of 5-hydroxymethylfurfural (5-HMF) and furfural from the hydrolysates respectively. Using the method of biodetoxification the content of furfural decreased by 98% and concentration of 5-HMF - by 97-99%. In the present study as an inexpensive source of growth substances for the fermentation of the hydrolysates it has been suggested to use decantate of the brewer's spent grain. The obtained results showed that the brewer's spent grain can be used in the biofuel production as efficiently as the synthetic growth substances.

  3. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mingrui; Du, Yinming; Jiang, Wenyan; Chang, Wei-Lun; Yang, Shang-Tian [Ohio State Univ., Columbus, OH (United States). William G. Lowrie Dept. of Chemical and Biomolecular Engineering; Tang, I-Ching [Bioprocessing Innovative Company, Dublin, OH (United States)

    2012-01-15

    Clostridium tyrobutyricum ATCC 25755 can produce butyric acid, acetic acid, and hydrogen as the main products from various carbon sources. In this study, C. tyrobutyricum was used as a host to produce n-butanol by expressing adhE2 gene under the control of a native thiolase promoter using four different conjugative plasmids (pMTL82151, 83151, 84151, and 85151) each with a different replicon (pBP1 from C. botulinum NCTC2916, pCB102 from C. butyricum, pCD6 from Clostridium difficile, and pIM13 from Bacillus subtilis). The effects of different replicons on transformation efficiency, plasmid stability, adhE2 expression and aldehyde/alcohol dehydrogenase activities, and butanol production by different mutants of C. tyrobutyricum were investigated. Among the four plasmids and replicons studied, pMTL82151 with pBP1 gave the highest transformation efficiency, plasmid stability, gene expression, and butanol biosynthesis. Butanol production from various substrates, including glucose, xylose, mannose, and mannitol were then investigated with the best mutant strain harboring adhE2 in pMTL82151. A high butanol titer of 20.5 g/L with 0.33 g/g yield and 0.32 g/L h productivity was obtained with mannitol as the substrate in batch fermentation with pH controlled at {proportional_to}6.0. (orig.)

  4. Selection of Highly Expressed Gene Variants in Escherichia coli Using Translationally Coupled Antibiotic Selection Markers

    DEFF Research Database (Denmark)

    Rennig, Maja; Daley, Daniel O.; Nørholm, Morten H. H.

    2018-01-01

    Strategies to select highly expressed variants of a protein coding sequence are usually based on trial-and-error approaches, which are time-consuming and expensive. We address this problem using translationally coupled antibiotic resistance markers. The system requires that the target gene can...... be fused at the 3'-end with a translational coupling element and an antibiotic resistance gene. Highly expressed target genes can then be selected using a fast and simple whole cell survival assay in the presence of high antibiotic concentrations. Herein we show that the system can be used to select highly...

  5. Molecular dynamics insights into the structural and diffusive properties of ZIF-8/PDMS mixed matrix membranes in the n-butanol/water pervaporation process

    Science.gov (United States)

    Sun, Tao; Fang, Manquan; Wu, Zhen; Yu, Lixin; Li, Jiding

    2017-04-01

    Molecular dynamics (MD) simulation was used to study the structural and diffusive properties of zeolitic imidazolate framework-8 (ZIF-8)/polydimethylsiloxane (PDMS), a novel alcohol-permselective mixed matrix membrane (MMM). Simulation models of one pure PDMS membrane and three ZIF-8/PDMS MMMs with increasing loadings were successfully constructed. Non-bond energy turned out to be a strong attractive interaction between the PDMS matrix and ZIF-8 cells. The morphology and mobility of PDMS chains were characterized by mean square displacement (MSD). The fraction of free volume (FFV) of the pure membrane and MMMs was calculated and showed declining trends with increasing ZIF-8 loadings. The diffusion coefficients of n-butanol and water molecules were calculated by the Einstein relation. {D}n-\\text{butanol} first increased then decreased, while {D}{{water}} decreased with the increasing loadings. The mechanism of selective diffusion behaviour was investigated and it was found that the inner channels of ZIF-8 provided selective pathways for n-butanol. Diffusion coefficients were correlated with FFV and the results showed that the logarithm of {D}{{water}} demonstrated a good linear relation with the inverse FFV and was in agreement with the free volume theory, while {D}n-\\text{butanol} showed a significant deviation in the case of MMM-1 due to the selective diffusion channels provided by ZIF-8.

  6. Enzymology of acetone-butanol-isopropanol formation. Final technical report, June 1, 1985--July 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiann-Shin

    1998-03-01

    Several species of anaerobic bacteria within the genus Clostridium produce acetone, n-butanol, and isopropanol (solvents), which are important industrial chemicals and fuel additives. Commercial production of solvents by the clostridia is a classical example of largescale chemical production by bacterial fermentation. Although the fermentation has been in use for decades, it still faces problems that include strain degeneration, a relatively low final product concentration due to butanol toxicity, and a need to fine-tune the growth conditions to achieve a high yield. The long-term goal of this project was to understand the fundamental properties of bacterial solvent production for the purpose of achieving a positive control on the metabolic switch leading to solvent production and on the proportion of useful products formed as well as of developing strategies for preventing the degeneration of producing strains. The objectives for the project included those approved in 1985 for the initial project period and those approved in 1988, 1991, and 1994 when the project was renewed. The objectives for the entire project period may be summarized as (1) To purify and characterize the enzymes that are specifically required for the formation of acetone, butanol, and isopropanol by the clostridia, (2) To clone and characterize the genes that encode enzymes or regulatory proteins for the production of solvents, and the emphasis was to determine the control mechanism for the transcription of the solvent-production genes, (3) To characterize the onset of solvent production and the intra- and extra-cellular parameters surrounding the metabolic switch to solvent production, and (4) To determine the genetic identity of the strains of solvent-producing clostridia that are currently in use by investigators around the world.

  7. System-level modeling of acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Liao, Chen; Seo, Seung-Oh; Lu, Ting

    2016-05-01

    Acetone-butanol-ethanol (ABE) fermentation is a metabolic process of clostridia that produces bio-based solvents including butanol. It is enabled by an underlying metabolic reaction network and modulated by cellular gene regulation and environmental cues. Mathematical modeling has served as a valuable strategy to facilitate the understanding, characterization and optimization of this process. In this review, we highlight recent advances in system-level, quantitative modeling of ABE fermentation. We begin with an overview of integrative processes underlying the fermentation. Next we survey modeling efforts including early simple models, models with a systematic metabolic description, and those incorporating metabolism through simple gene regulation. Particular focus is given to a recent system-level model that integrates the metabolic reactions, gene regulation and environmental cues. We conclude by discussing the remaining challenges and future directions towards predictive understanding of ABE fermentation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Engineering Escherichia coli for autoinducible production of n-butanol

    OpenAIRE

    Qinglong Wang; Yi ding; Li Liu; Jiping Shi; Junsong Sun; Yongchang Xue

    2015-01-01

    Background: Escherichia coli does not produce n-butanol naturally, but can be butanologenic when related enzymes were expressed using inducible elements on plasmids. In this study we attempted to confer E. coli strain capability of automatic excretion of the chemical by employing a native anaerobic promoter. Also, a novel DNA kit was designed for PCR preparation of linear DNA fragments to perform strain modification. The kit is primarily composed of two mother vectors, co-transformation of li...

  9. Promoting the Synthesis of Ethanol and Butanol by Salicylic Acid

    OpenAIRE

    Jinxin Zou; Lei Wang; Peijun Ji

    2017-01-01

    Multiwalled carbon nanotubes (MWCNTs) were functionalized with salicylic acid (SA). The copper-cobalt catalyst was impregnated on the SA functionalized MWCNTs (SA-MWCNTs). The catalyst copper-cobalt/SA-MWCNTs was used to catalyze the synthesis of alcohols from synthesis gas. Salicylic acid can promote the synthesis of ethanol and butanol from synthesis gas, thus reducing the synthesis of methanol. This work demonstrated that salicylic acid not only can be used to functionalize carbon nanotube...

  10. LIGNOCELLULOSIC BIOMASS AFTER EXPLOSIVE AUTOHYDROLYSIS AS SUBSTRATE TO BUTANOL OBTAINING

    Directory of Open Access Journals (Sweden)

    Tigunova

    2016-08-01

    Full Text Available The aim of the work was investigation of the effect of the explosive autohydrolysis on lignocellulosic biomass (saving, switchgrass biomass for consequent use as a substrate to produce biofuels such as butanol. Butanol-producing strains, switchgrass Panicum virgatum L. biomass and its components after autohydrolysis were used in study. The thermobaric pressure pretreatment of lignocellulosic biomass was carried out using specially designed equipment. The effect of explosive autohydrolysis on lignocellulosic biomass for further use in producing biofuels using microbial conversion was studied. Components of lignocellulosic biomass were fractionated after undergoing thermobaric treatment. The possibility of using different raw material components after using explosive autohydrolysis processing to produce biobutanol was found. Products of switchgrass biomass autohydrolysis were shown to need further purification before fermentation from furfural formed by thermobaric pretreatment and inhibiting the growth of microorganisms. The ability of strains of the genus Clostridium to use cellulose as a substrate for fermentation was proved. It was found that using explosive autohydrolysis pretreatment to savings allowed boosting the butanol accumulation by 2 times.

  11. Industrial optimization of acetone-butanol fermentation: A study of the utilization of Jerusalem artichokes

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, R.; Blanchet, D.; Vandecasteele, J.P.

    1985-12-01

    Acetone-butanol fermentation of the Jerusalem artichoke has been studied as a case for systematic investigation of the industrial optimization of both strain selection and fermentation operation. Hydrolysis of the inulinic oligofructans of the substrate was found necessary for optimal performance but could be achieved with a selected strain using a moderate amount of inulinase added at the beginning of the fermentation. Apart from ammonia, no nutritrional supplementation of the medium was found necessary. The marked influence of pH in the fermentation performance prompted a detailed search for a method of controlling pH during fermentation. With an optimized procedure, solvent production of 23-24 g/l were obtained in 36 h. Detailed fermentation balances are presented. An industrial process for ABE production from Jerusalem artichoke or sugar beet has been defined and tested in the pilot plant. (orig.).

  12. Biocatalyzed processes for production of commodity chemicals: Assessment of future research advances for N-butanol production

    Science.gov (United States)

    Ingham, J. D.

    1984-01-01

    This report is a summary of assessments by Chem Systems Inc. and a further evaluation of the impacts of research advances on energy efficiency and the potential for future industrial production of acetone-butanol-ethanol (ABE) solvents and other products by biocatalyzed processes. Brief discussions of each of the assessments made by CSI, followed by estimates of minimum projected energy consumption and costs for production of solvents by ABE biocatalyzed processes are included. These assessments and further advances discussed in this report show that substantial decreases in energy consumption and costs are possible on the basis of specific research advances; therefore, it appears that a biocatalyzed process for ABE can be developed that will be competitive with conventional petrochemical processes for production of n-butanol and acetone. (In this work, the ABE process was selected and utilized only as an example for methodology development; other possible bioprocesses for production of commodity chemicals are not intended to be excluded.) It has been estimated that process energy consumption can be decreased by 50%, with a corresponding cost reduction of 15-30% (in comparison with a conventional petrochemical process) by increasing microorganism tolerance to n-butanol and efficient recovery of product solvents from the vapor phase.

  13. Bioproduction of butanol in bioreactors: new insights from simultaneous in situ butanol recovery to eliminate product toxicity.

    Science.gov (United States)

    Mariano, Adriano Pinto; Qureshi, Nasib; Filho, Rubens Maciel; Ezeji, Thaddeus Chukwuemeka

    2011-08-01

    Simultaneous acetone butanol ethanol (ABE) fermentation by Clostridium beijerinckii P260 and in situ product recovery was investigated using a vacuum process operated in two modes: continuous and intermittent. Integrated batch fermentations and ABE recovery were conducted at 37 °C using a 14-L bioreactor (7.0 L fermentation volume) containing initial substrate (glucose) concentration of 60 g/L. The bioreactor was connected in series with a condensation system and vacuum pump. Vacuum was applied continuously or intermittently with 1.5 h vacuum sessions separated by 4, 6, and 8 h intervals. A control ABE fermentation experiment was characterized by incomplete glucose utilization due to butanol toxicity to C. beijerinckii P260, while fermentation coupled with in situ recovery by both continuous and intermittent vacuum modes resulted in complete utilization of glucose, greater productivity, improved cell growth, and concentrated recovered ABE stream. These results demonstrate that vacuum technology can be applied to integrated ABE fermentation and recovery even though the boiling point of butanol is greater than that of water. Copyright © 2011 Wiley Periodicals, Inc.

  14. Acoustic and Volumetric Properties of Mixture of (N,N-Dimethylacetamide + Ethyl Acrylate) with 1-Butanol or iso-Butanol or t-Butanol at 308.15 K

    OpenAIRE

    M. Kondaiah; Sreekanth, K.; D. Sravana Kumar; Krishna Rao, D.

    2014-01-01

    Densities, ρ, and ultrasonic speeds, u of mixtures of 1-butanol or iso-butanol or t-butanol with equimolar mixture of (N,N-dimethylacetamide + Ethyl acrylate) over the entire composition range have been measured at T=308.15 K. Using the experimental results, deviation in ultrasonic speed, Δu, deviation in isentropic compressibility, Δks, excess molar volume, VmE, excess intermolecular free length, LfE, and excess acoustic impedance, ZE, have been calculated. The variation of these properties ...

  15. CBFS: high performance feature selection algorithm based on feature clearness.

    Directory of Open Access Journals (Sweden)

    Minseok Seo

    Full Text Available BACKGROUND: The goal of feature selection is to select useful features and simultaneously exclude garbage features from a given dataset for classification purposes. This is expected to bring reduction of processing time and improvement of classification accuracy. METHODOLOGY: In this study, we devised a new feature selection algorithm (CBFS based on clearness of features. Feature clearness expresses separability among classes in a feature. Highly clear features contribute towards obtaining high classification accuracy. CScore is a measure to score clearness of each feature and is based on clustered samples to centroid of classes in a feature. We also suggest combining CBFS and other algorithms to improve classification accuracy. CONCLUSIONS/SIGNIFICANCE: From the experiment we confirm that CBFS is more excellent than up-to-date feature selection algorithms including FeaLect. CBFS can be applied to microarray gene selection, text categorization, and image classification.

  16. Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway.

    Science.gov (United States)

    Sakuragi, Hiroshi; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2015-01-01

    Compared with ethanol, butanol has more advantageous physical properties as a fuel, and biobutanol is thus considered a promising biofuel material. Biobutanol has often been produced by Clostridium species; however, because they are strictly anaerobic microorganisms, these species are challenging to work with. We attempted to introduce the butanol production pathway into yeast Saccharomyces cerevisiae, which is a well-known microorganism that is tolerant to organic solvents. 1-Butanol was found to be produced at very low levels when the butanol production pathway of Clostridium acetobutylicum was simply introduced into S. cerevisiae. The elimination of glycerol production pathway in the yeast contributed to the enhancement of 1-butanol production. In addition, by the use of trans-enoyl-CoA reductase in the engineered pathway, 1-butanol production was markedly enhanced to yield 14.1 mg/L after 48 h of cultivation.

  17. Conceptual design of heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer

    OpenAIRE

    Paritta Prayoonyong

    2014-01-01

    The synthesis of a heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer is presented. The residue curve map of the ethanol/water/1-butanol mixture is computationally generated using non-random twoliquid thermodynamic model. It is found that 1-butanol leads to a residue curve map topological structure different from that generated by typical entrainers used in ethanol dehydration. Synthesis...

  18. Consolidating biofuel platforms through the fermentative bioconversion of crude glycerol to butanol.

    Science.gov (United States)

    Johnson, Erin; Sarchami, Tahereh; Kießlich, Sascha; Munch, Garret; Rehmann, Lars

    2016-06-01

    Economic realities for the rising industrial biofuel production have changed substantially during the low oil price period starting in the mid 2010's. Increased competition requires the sector to increase productivity through the reduction of low-value by-products and full utilization of all value and energy stored in their respective feedstock. Biodiesel is produced commercially from substrates such as animal fat and vegetable oil, generating approximately 10 wt% crude glycerol as its main, currently underutilized, by-product. This crude glycerol is contaminated with catalyst, soap, free fatty acids, glycerides and methyl esters; hence only a small fraction enters the existing glycerol markets, while the purification costs for the majority of crude glycerol are simply too high. However, this presents a unique opportunity to generate additional value. One technical possibility is to use crude glycerol as a carbon source for butanol production, a compound of higher value and energy, a potential additive for gasoline and diesel fuels and bulk chemical commodity. Conversion facilities could be co-located with biodiesel plants, utilizing established infrastructure and adding significant value and productivity to the existing biodiesel industry. This review focuses on the current activities geared towards the bioconversion of crude glycerol to butanol.

  19. [Performance optimization of property-improved biodiesel manufacturing process coupled with butanol extractive fermentation].

    Science.gov (United States)

    Zhang, Longyun; Yang, Ying; Shi, Zhongping

    2008-11-01

    The products concentrations in traditional acetone-butanol (AB) fermentation are too low that large amount of energy has to be consumed in the distillation and product recovery process. Aiming at direct utilization of the fermentation products, in this study, optimization of property-improved biodiesel manufacturing process coupled with AB extractive fermentation was conducted, under the condition of using the biodiesel originated from waste cooking oil as the extractant and high concentrated corn flour medium. The effect of biodiesel/broth volume ratio, waste supernatant recycle ratio, and electronic carrier addition on the major process performance index was carefully investigated. Under the optimized condition, the biodiesel quality was improved with the cetane value increased from 51.4 to 54.4; "actual butanol yield" reached to a level of 18%, and waste supernatant recycle ratio exceeded 50%. In this way, elimination of energy-consuming product recovery process and realization of "energy-saving & waste minimization" industrial production target advocated by the state government, could be potentially expected.

  20. Super-surface selective nanomembranes providing simultaneous high permeation flux and high selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Michael Z.; Simpson, John T.; Aytug, Tolga; Paranthaman, Mariappan Parans; Sturgeon, Matthew R.

    2016-04-12

    Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.

  1. Conceptual design of heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer

    Directory of Open Access Journals (Sweden)

    Paritta Prayoonyong

    2014-12-01

    Full Text Available The synthesis of a heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer is presented. The residue curve map of the ethanol/water/1-butanol mixture is computationally generated using non-random twoliquid thermodynamic model. It is found that 1-butanol leads to a residue curve map topological structure different from that generated by typical entrainers used in ethanol dehydration. Synthesised by residue curve map analysis, the distillation flowsheet for ethanol dehydration by 1-butanol comprises a double-feed column integrated with an overhead decanter and a simple column. The double-feed column is used to recover water as the top product, whereas the simple column is used for recovering ethanol and 1-butanol. The separation feasibility and the economically near-optimal designs of distillation columns in the flowsheet are evaluated and identified by using the boundary value design method. The distillation flowsheet using 1-butanol is compared with the conventional process using benzene as entrainer. Based on their total annualised costs, the ethanol dehydration process using 1-butanol is less economically attractive than the process using benzene. However, 1-butanol is less toxic than benzene.

  2. Recovery of butanol from Clostridium beijerinckii P260 fermentation broth by supercritical CO

    Science.gov (United States)

    Butanol is a superior biofuel to ethanol because of its blend properties and higher energy density. However, its recovery by distillation from the fermentation broth is energy intensive. For this reason, we studied butanol recovery by supercritical CO2 extraction from simulated and actual fermentati...

  3. Liquid-Liquid Extraction in Systems Containing Butanol and Ionic Liquids – A Review

    Directory of Open Access Journals (Sweden)

    Kubiczek Artur

    2017-03-01

    Full Text Available Room-temperature ionic liquids (RTILs are a moderately new class of liquid substances that are characterized by a great variety of possible anion-cation combinations giving each of them different properties. For this reason, they have been termed as designer solvents and, as such, they are particularly promising for liquid-liquid extraction, which has been quite intensely studied over the last decade. This paper concentrates on the recent liquid-liquid extraction studies involving ionic liquids, yet focusing strictly on the separation of n-butanol from model aqueous solutions. Such research is undertaken mainly with the intention of facilitating biological butanol production, which is usually carried out through the ABE fermentation process. So far, various sorts of RTILs have been tested for this purpose while mostly ternary liquid-liquid systems have been investigated. The industrial design of liquid-liquid extraction requires prior knowledge of the state of thermodynamic equilibrium and its relation to the process parameters. Such knowledge can be obtained by performing a series of extraction experiments and employing a certain mathematical model to approximate the equilibrium. There are at least a few models available but this paper concentrates primarily on the NRTL equation, which has proven to be one of the most accurate tools for correlating experimental equilibrium data. Thus, all the presented studies have been selected based on the accepted modeling method. The reader is also shown how the NRTL equation can be used to model liquid-liquid systems containing more than three components as it has been the authors’ recent area of expertise.

  4. Optimal Feature Selection in High-Dimensional Discriminant Analysis.

    Science.gov (United States)

    Kolar, Mladen; Liu, Han

    2015-02-01

    We consider the high-dimensional discriminant analysis problem. For this problem, different methods have been proposed and justified by establishing exact convergence rates for the classification risk, as well as the ℓ 2 convergence results to the discriminative rule. However, sharp theoretical analysis for the variable selection performance of these procedures have not been established, even though model interpretation is of fundamental importance in scientific data analysis. This paper bridges the gap by providing sharp sufficient conditions for consistent variable selection using the sparse discriminant analysis (Mai et al., 2012). Through careful analysis, we establish rates of convergence that are significantly faster than the best known results and admit an optimal scaling of the sample size n , dimensionality p , and sparsity level s in the high-dimensional setting. Sufficient conditions are complemented by the necessary information theoretic limits on the variable selection problem in the context of high-dimensional discriminant analysis. Exploiting a numerical equivalence result, our method also establish the optimal results for the ROAD estimator (Fan et al., 2012) and the sparse optimal scaling estimator (Clemmensen et al., 2011). Furthermore, we analyze an exhaustive search procedure, whose performance serves as a benchmark, and show that it is variable selection consistent under weaker conditions. Extensive simulations demonstrating the sharpness of the bounds are also provided.

  5. Techno-economic analysis of extraction-based separation systems for acetone, butanol, and ethanol recovery and purification.

    Science.gov (United States)

    Grisales Díaz, Víctor Hugo; Olivar Tost, Gerard

    2017-01-01

    Dual extraction, high-temperature extraction, mixture extraction, and oleyl alcohol extraction have been proposed in the literature for acetone, butanol, and ethanol (ABE) production. However, energy and economic evaluation under similar assumptions of extraction-based separation systems are necessary. Hence, the new process proposed in this work, direct steam distillation (DSD), for regeneration of high-boiling extractants was compared with several extraction-based separation systems. The evaluation was performed under similar assumptions through simulation in Aspen Plus V7.3 ® software. Two end distillation systems (number of non-ideal stages between 70 and 80) were studied. Heat integration and vacuum operation of some units were proposed reducing the energy requirements. Energy requirement of hybrid processes, substrate concentration of 200 g/l, was between 6.4 and 8.3 MJ-fuel/kg-ABE. The minimum energy requirements of extraction-based separation systems, feeding a water concentration in the substrate equivalent to extractant selectivity, and ideal assumptions were between 2.6 and 3.5 MJ-fuel/kg-ABE, respectively. The efficiencies of recovery systems for baseline case and ideal evaluation were 0.53-0.57 and 0.81-0.84, respectively. The main advantages of DSD were the operation of the regeneration column at atmospheric pressure, the utilization of low-pressure steam, and the low energy requirements of preheating. The in situ recovery processes, DSD, and mixture extraction with conventional regeneration were the approaches with the lowest energy requirements and total annualized costs.

  6. Design and Analysis of a High Speed Carry Select Adder

    OpenAIRE

    Simarpreet Singh Chawla; Swapnil Aggarwal; Anshika; Nidhi Goel

    2015-01-01

    An optimal high-speed and low-power VLSI architecture requires an efficient arithmetic processing unit that is optimized for speed and power consumption. Adders are one of the widely used in digital integrated circuit and system design. High speed adder is the necessary component in a data path, e.g. Microprocessors and a Digital signal processor. The present paper proposes a novel high-speed adder by combining the advantages of Carry Look Ahead Adder (CLAA) and Carry Select Adder (CSA), devi...

  7. Design and Analysis of a High Speed Carry Select Adder

    OpenAIRE

    Simarpreet Singh Chawla; Swapnil Aggarwal; Anshika; Nidhi Goel

    2015-01-01

    An optimal high-speed and low-power VLSI architecture requires an efficient arithmetic processing unit that is optimized for speed and power consumption. Adders are one of the widely used in digital integrated circuit and system design.High speed adder is the necessary component in a data path, e.g. Microprocessors and a Digital signal processor. The present paper proposes a novel high-speed adder by combining the advantages of Carry Look Ahead Adder (CLAA) and Carry Select Adder (CSA), devis...

  8. A Primer on High-Throughput Computing for Genomic Selection

    Directory of Open Access Journals (Sweden)

    Xiao-Lin eWu

    2011-02-01

    Full Text Available High-throughput computing (HTC uses computer clusters to solve advanced computational problems, with the goal of accomplishing high throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general purpose computation on a graphics processing unit (GPU provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin – Madison, which can be leveraged for genomic selection, in terms of central processing unit (CPU capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of

  9. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.

    Science.gov (United States)

    Liu, Zi-Yong; Yao, Xiu-Qing; Zhang, Quan; Liu, Zhen; Wang, Ze-Jie; Zhang, Yong-Yu; Li, Fu-Li

    2017-04-01

    stress and modulating electron flow as electron donors. Production of H 2 and acetone was stimulated, while butanol production remained unchanged, which led to a high A/B ratio during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source. These observations provide insight into utilizing C. beijerinckii to produce butanol from a lignocellulosic biomass. Copyright © 2017 American Society for Microbiology.

  10. High density transcriptional mapping of chromosome 21 by hybridization selection

    Energy Technology Data Exchange (ETDEWEB)

    Tassone, F.; Wade, H.; Gardiner, K. [Eleanor Roosevelt Institute, Denver, CO (United States)] [and others

    1994-09-01

    A transcriptional map of human chromosome 21 is important for the study of Down syndrome, development processes and genome organization. To construct a high density transcriptional map, the technique of cDNA hybrid selection is being applied to a minimal tiling path of YAC clones that span 21q. The cDNA used for selection represents a complex pool of sequences obtained from a variety of fetal and adult tissues and cell lines. Approximately 70-80 YAC clones are sufficient to span 21q; each is individually processed through the selection procedure to obtain a YAC-specific {open_quotes}selected cDNA library{close_quotes}. Survey analysis of each library includes determination of levels of ribosomal contamination, verification of enrichment of control genes, identification of a preliminary number of novel unique sequences, and verification that novel sequences map to the correct YAC and chromosomal regions. This analysis has been completed for 19 YACs that together comprise approximately 10 Mb of non-overlapping DNA, 25% of the long arm. Ribosomal cDNA contamination is low (<10%) and all known genes of appropriate tissue specificity of expression have been recovered, as well as new genes from each YAC. Libraries of expression have been recovered, as well as new genes from each YAC. Libraries from 8 of these YACs are now being subjected to exhaustive analysis to identify all novel genes contained within them and to obtain complete cDNAs and expression analysis for each. Not all regions of the chromosome, however, are equally amenable to these analyses. Selected cDNA libraries from the centromeric YACs are yielding apparently novel genes, but confirmation of map position is problematic. Also of interest is a region of several megabases within the Giemsa dark band, 21q21. Selected cDNA libraries from these YACs so far have yielded no novel genes and support the idea of a genuinely very gene-poor region.

  11. High-dimensional model estimation and model selection

    CERN Document Server

    CERN. Geneva

    2015-01-01

    I will review concepts and algorithms from high-dimensional statistics for linear model estimation and model selection. I will particularly focus on the so-called p>>n setting where the number of variables p is much larger than the number of samples n. I will focus mostly on regularized statistical estimators that produce sparse models. Important examples include the LASSO and its matrix extension, the Graphical LASSO, and more recent non-convex methods such as the TREX. I will show the applicability of these estimators in a diverse range of scientific applications, such as sparse interaction graph recovery and high-dimensional classification and regression problems in genomics.

  12. Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Chan, Kun-Chi; Chung, Man-Chien; Wu, Shu-Hsien; Liu, Cheng-Pin; Tien, Shih-Yuan; Chen, Shan-Yuan; Chang, Jo-Shu; Lee, Wen-Jhy

    2015-05-01

    This study conducted batch experiments to evaluate the potential of butanol production from microalgae biodiesel residues by Clostridium acetobutylicum. The results indicated that with 90 g/L of glucose as the sole substrate the highest butanol yield of 0.2 g/g-glucose was found, but the addition of butyrate significantly enhanced the butanol yield. The highest butanol yield of 0.4 g/g-glucose was found with 60 g/L of glucose and 18 g/L of butyrate. Using microalgae biodiesel residues as substrate, C. acetobutylicum produced 3.86 g/L of butanol and achieved butanol yield of 0.13 g/g-carbohydrate via ABE fermentation, but the results indicated that approximately one third of carbohydrate was not utilized by C. acetobutylicum. Biological butanol production from microalgae biodiesel residues can be possible, but further research on fermentation strategies are required to improve production yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Experimental investigation on CRDI engine using butanol-biodiesel-diesel blends as fuel

    Science.gov (United States)

    Divakar Shetty, A. S.; Dineshkumar, L.; Koundinya, Sandeep; Mane, Swetha K.

    2017-07-01

    In this research work an experimental investigation of butanol-biodisel-diesel blends on combustion, performance and emission characteristics of a direct injection (DI) diesel engine is carried out. The blends are prepared at different proportions and fuel properties such as calorific value, viscosity, flash point and fire point, cloud point, pour point of butanol (B), biodiesel (B), diesel (D), biodiesel-diesel (BD) blends and butanol-biodiesel-diesel (BBD) blends are determined. The engine test is conducted at different speed and load. From the results obtained for fuel properties we can observe that the flash, fire and pour point, viscosity and density are decreasing by increasing the percentage of butanol in BBD blends. It is also observed that the performance parameters such as brake thermal efficiency (BTE) and exhaust gas temperature increases with increase in the proportion of butanol in BBD blend. However, the brake specific fuel consumption (BFSC) decreases with increase in the proportion of butanol in BBD blend. The increase of butanol in BBD blends also influence to increase on emission characteristic such as carbon monoxide (CO), hydrocarbon (HC) and oxides of nitrogen (NOx).

  14. Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains.

    Science.gov (United States)

    Abd-Alla, Mohamed Hemida; Zohri, Abdel-Naser Ahmed; El-Enany, Abdel-Wahab Elsadek; Ali, Shimaa Mohamed

    2015-04-01

    One hundred and seven mesophilic isolates of Clostridium were isolated from agricultural soils cultivated with different plants in Assuit Governorate, Egypt. Eighty isolates (out of 107) showed the ability to produce ABE (Acetone, butanol and ethanol) on T6 medium ranging from 0.036 to 31.89 g/L. The highest numbers of ABE producing isolates were obtained from soil samples of potato contributing 27 isolates, followed by 18 isolates from wheat and 10 isolates from onion. On the other hand, there were three native isolates that produced ABE more than those produced by the reference isolate Clostridium acetobutylicum ATCC 824 (11.543 g/L). The three isolates were identified based on phenotypic and gene encoding 16S rRNA as Clostridium beijerinckii ASU10 (KF372577), Clostridium chauvoei ASU55 (KF372580) and Clostridium roseum ASU58 (KF372581). The highest ABE level from substandard and surplus dates was produced by C. beijerinckii ASU10 (24.07 g/L) comprising butanol 67.15% (16.16 g/L), acetone 30.73% (7.4 g/L) and ethanol 2.12% (0.51 g/L), while C. roseum ASU58 and C. chauvoei ASU55 produced ABE contributing 20.20 and 13.79 g/L, respectively. ABE production by C. acetobutylicum ATCC 824 was 15.01 g/L. This study proved that the native strains C. beijerinckii ASU10 and C. roseum ASU58 have high competitive efficacy on ABE production from economical substrate as substandard and surplus date fruits. Additionally, using this substrate without any nutritional components is considered to be a commercial substrate for desired ABE production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A Primer on High-Throughput Computing for Genomic Selection

    Science.gov (United States)

    Wu, Xiao-Lin; Beissinger, Timothy M.; Bauck, Stewart; Woodward, Brent; Rosa, Guilherme J. M.; Weigel, Kent A.; Gatti, Natalia de Leon; Gianola, Daniel

    2011-01-01

    High-throughput computing (HTC) uses computer clusters to solve advanced computational problems, with the goal of accomplishing high-throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long, and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl, and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general-purpose computation on a graphics processing unit provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin–Madison, which can be leveraged for genomic selection, in terms of central processing unit capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general-purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of marker panels to realized

  16. Peptide-Directed Highly Selective Targeting of Pulmonary Arterial Hypertension

    Science.gov (United States)

    Urakami, Takeo; Järvinen, Tero A.H.; Toba, Michie; Sawada, Junko; Ambalavanan, Namasivayam; Mann, David; McMurtry, Ivan; Oka, Masahiko; Ruoslahti, Erkki; Komatsu, Masanobu

    2011-01-01

    Pulmonary arterial hypertension (PAH) is a disorder of the pulmonary vasculature associated with elevated pulmonary vascular resistance. Despite recent advances in the treatment of PAH, with eight approved clinical therapies and additional therapies undergoing clinical trials, PAH remains a serious life-threatening condition. The lack of pulmonary vascular selectivity and associated systemic adverse effects of these therapies remain the main obstacles to successful treatment. Peptide-mediated drug delivery that specifically targets the vasculature of PAH lungs may offer a solution to the lack of drug selectivity. Herein, we show highly selective targeting of rat PAH lesions by a novel cyclic peptide, CARSKNKDC (CAR). Intravenous administration of CAR peptide resulted in intense accumulation of the peptide in monocrotaline-induced and SU5416/hypoxia-induced hypertensive lungs but not in healthy lungs or other organs of PAH rats. CAR homed to all layers of remodeled pulmonary arteries, ie, endothelium, neointima, medial smooth muscle, and adventitia, in the hypertensive lungs. CAR also homed to capillary vessels and accumulated in the interstitial space of the PAH lungs, manifesting its extravasation activity. These results demonstrated the remarkable ability of CAR to selectively target PAH lung vasculature and effectively penetrate and spread throughout the diseased lung tissue. These results suggest the clinical utility of CAR in the targeted delivery of therapeutic compounds and imaging probes to PAH lungs. PMID:21549345

  17. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Branduardi, Paola; Longo, Valeria; Berterame, Nadia Maria; Rossi, Giorgia; Porro, Danilo

    2013-05-04

    The sustainable production of biofuels remains one of the major issues of the upcoming years. Among the number of most desirable molecules to be produced, butanol and isobutanol deserve a prominent place. They have superior liquid-fuel features in respect to ethanol. Particularly, butanol has similar properties to gasoline and thus it has the potential to be used as a substitute for gasoline in currently running engines. Clostridia are recognized as natural and good butanol producers and are employed in the industrial-scale production of solvents. Due to their complex metabolic characteristics and to the difficulty of performing genetic manipulations, in recent years the Clostridia butanol pathway was expressed in other microorganisms such as Escherichia coli and Saccharomyces cerevisiae, but in yeast the obtained results were not so promising. An alternative way for producing fusel alcohol is to exploit the degradation pathway of aminoacids released from protein hydrolysis, where proteins derive from exhausted microbial biomasses at the end of the fermentation processes. It is known that wine yeasts can, at the end of the fermentation process, accumulate fusel alcohols, and butanol is among them. Despite it was quite obvious to correlate said production with aminoacid degradation, a putative native pathway was never proposed. Starting from literature data and combining information about different organisms, here we demonstrate how glycine can be the substrate for butanol and isobutanol production, individuating at least one gene encoding for the necessary activities leading to butanol accumulation. During a kinetic of growth using glycine as substrate, butanol and isobutanol accumulate in the medium up to 92 and 58 mg/L, respectively. Here for the first time we demonstrate an alternative metabolic pathway for butanol and isobutanol production in the yeast S. cerevisiae, using glycine as a substrate. Doors are now opened for a number of optimizations, also

  18. Reaction Mechanisms and HCCI Combustion Processes of Mixtures of n-Heptane and the Butanols

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-03-01

    Full Text Available A reduced primary reference fuel (PRF-Alcohol-Di-tert-butyl Peroxide (DTBP mechanism with 108 species and 435 reactions, including sub-mechanisms of PRF, methanol, ethanol, DTBP and the four butanol isomers, is proposed for homogeneous charge compression ignition (HCCI engine combustion simulations of butanol isomers/n-heptane mixtures. HCCI experiments fuelled with butanol isomer/n-heptane mixtures on two different engines are conducted for the validation of proposed mechanism. The mechanism has been validated against shock tube ignition delays, laminar flame speeds, species profiles in premixed flames and engine HCCI combustion data, and good agreements with experimental results are demonstrated under various validation conditions. It is found that although the reactivity of neat tert-butanol is the lowest, mixtures of tert-butanol/n-heptane exhibit the highest reactivity among the butanol isomer/n-heptane mixtures if the n-heptane blending ratio exceeds 20% (mole. Kinetic analysis shows that the highest C-H bond energy in the tert-butanol molecule is partially responsible for this phenomenon. It is also found that the reaction tC4H9OH+CH3O2 =tC4H9O+CH3O2H plays important role and eventually produces the OH radical to promote the ignition and combustion. The proposed mechanism is able to capture HCCI combustion processes of the butanol/n-heptane mixtures under different operating conditions. In addition, the trend that tert-butanol /n-heptane has the highest reactivity is also captured in HCCI combustion simulations. The results indicate that the current mechanism can be used for HCCI engine predictions of PRF and alcohol fuels.

  19. ON SELECTION OF CIRCUIT-BREAKERS SWITCHING ELECTRICAL INSTALLATIONS OF HIGH AND EXTRA-HIGH VOLTAGE

    Directory of Open Access Journals (Sweden)

    T. M. Lazimov

    2005-01-01

    Full Text Available The paper proposes some additional conditions for high-voltage circuit-breaker selection keeping in mind coordination of the switched over-voltages and voltages induced in secondary circuits with their permissible values.

  20. Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes

    NARCIS (Netherlands)

    Metz, S.J.; van de Ven, W.J.C.; Potreck, Jens; Mulder, M.H.V.; Wessling, Matthias

    2005-01-01

    This paper studies in detail the measurement of the permeation properties of highly permeable and highly selective polymers for water vapor/nitrogen gas mixtures. The analysis of the mass transport of a highly permeable polymer is complicated by the presence of stagnant boundary layers at feed and

  1. Material Selection and Characterization for High Gradient RF Applications

    CERN Document Server

    Arnau-Izquierdo, G; Heikkinen, S; Ramsvik, T; Sgobba, Stefano; Taborelli, M; Wuensch, W

    2007-01-01

    The selection of candidate materials for the accelerating cavities of the Compact Linear Collider (CLIC) is carried out in parallel with high power RF testing. The maximum DC breakdown field of copper, copper alloys, refractory metals, aluminium and titanium have been measured with a dedicated setup. Higher maximum fields are obtained for refractory metals and for titanium, which exhibits, however, important damages after conditioning. Fatigue behaviour of copper alloys has been studied for surface and bulk by pulsed laser irradiation and ultrasonic excitation, respectively. The selected copper alloys show consistently higher fatigue resistance than copper in both experiments. In order to obtain the best local properties in the device a possible solution is a bi-metallic assembly. Junctions of molybdenum and copper-zirconium UNS C15000 alloy, achieved by HIP (Hot Isostatic Pressing) diffusion bonding or explosion bonding were evaluated for their mechanical strength. The reliability of the results obtained wit...

  2. Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Huang, C; Yang, X-Y; Xiong, L; Guo, H-J; Luo, J; Wang, B; Zhang, H-R; Lin, X-Q; Chen, X-D

    2015-05-01

    To reduce the cost of bacterial cellulose (BC) production, the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater with high COD value (18 050 mg l(-1) ) for BC production by Gluconacetobacter xylinus was evaluated. After 7 days of fermentation, the highest BC yield (1·34 g l(-1) ) was obtained. The carbon sources including sugars (glucose and xylose), organic acids (acetic acid and butyric acid) and alcohol compounds (ethanol and butanol) were utilized by G. xylinus simultaneously during fermentation. Although the COD decrease ratio (about 14·7%) was low, the highest BC yield on COD consumption (56·2%, g g(-1) ) was relatively high and the remaining wastewater could be used for further BC fermentation. Besides, the environment of ABE fermentation wastewater showed small influence on the BC structure by comparison with the BC products obtained in traditional HS medium using field emission scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Overall, ABE fermentation wastewater is one promising substrate for BC production. The possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose (BC) production by Gluconacetobacter xylinus was evaluated in this study. This is the first time that ABE fermentation wastewater was used as substrate for BC fermentation. The results provide detail information of metabolism of G. xylinus in ABE fermentation wastewater and the influence of wastewater environment on the structure of BC samples. Overall, this bioconversion could reduce the cost of BC production greatly. © 2015 The Society for Applied Microbiology.

  3. High Selectivity Wideband Bandpass Filter Using Stub Loaded Resonator

    Science.gov (United States)

    Ma, Xing-Bing; Jiang, Ting

    2017-07-01

    This article presents a high selectivity wideband bandpass filter (BPF) adopting stub loaded resonator. Hereinto, aim passband is determined by BPF without stub embedded, which is only composed of four half-wavelength open-loop resonators. Based on typical tapped-line coupling, two same stubs are located at physical middle points of two resonators connected with I/O feed lines, respectively. Due to embedded point at middle of loaded resonator, the stub with two open-end branches has no influence on original half-wavelength resonant frequency, and aim passband keeps unchanged. Because of different even-mode resonant frequencies between loaded and unloaded resonators, no new passband is constructed. With the help of embedded stubs, original transmission zero (TZ) near low-edge of aim passband is shifted towards passband, and a new TZ is introduced near high-edge. High selectivity and good passband characteristics are obtained optimizing sizes of stubs, I/O tapped position and top open-end length of loaded resonator.

  4. Guidelines for Microplate Selection in High Content Imaging.

    Science.gov (United States)

    Trask, Oscar J

    2018-01-01

    Since the inception of commercialized automated high content screening (HCS) imaging devices in the mid to late 1990s, the adoption of media vessels typically used to house and contain biological specimens for interrogation has transitioned from microscope slides and petri dishes into multi-well microtiter plates called microplates. The early 96- and 384-well microplates commonly used in other high-throughput screening (HTS) technology applications were often not designed for optical imaging. Since then, modifications and the use of next-generation materials with improved optical clarity have enhanced the quality of captured images, reduced autofocusing failures, and empowered the use of higher power magnification objectives to resolve fine detailed measurements at the subcellular pixel level. The plethora of microplates and their applications requires practitioners of high content imaging (HCI) to be especially diligent in the selection and adoption of the best plates for running longitudinal studies or larger screening campaigns. While the highest priority in experimental design is the selection of the biological model, the choice of microplate can alter the biological response and ultimately may change the experimental outcome. This chapter will provide readers with background, troubleshooting guidelines, and considerations for choosing an appropriate microplate.

  5. Current status and prospects of industrial bio-production of n-butanol in China.

    Science.gov (United States)

    Jiang, Yu; Liu, Jinle; Jiang, Weihong; Yang, Yunliu; Yang, Sheng

    2015-11-15

    n-Butanol is an important bulk chemical. Commercial fermentative production of n-butanol has been applied more than 100 years ago but is currently more costly than production from propylene and syngas. Renewed interest in biobutanol as a biofuel has spurred technological advances to the fermentation process. This article reviewed the recent status including the commercialization, pilot production and R&D activities of n-butanol fermentation in China. Long-term bio-production of n-butanol as a next generation biofuel and biochemical from biomass waste and steel mill off-gas needs technology breakthroughs and more environmental concerns from policymakers. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  7. Effect of n-Butanol on Chromosomal Damage in Mice Bone Marrow Cells

    Directory of Open Access Journals (Sweden)

    Nahid Mansouri

    2016-07-01

    Full Text Available Background: n-Butanol is a four-carbon alcohol used widely in foods, cosmetics industries, biology and chemistry research laboratories, and other fields. Long time-effects of inhalation or consumption of small amounts of Butanol on human health are still unknown. On the other hand, numerous reports about the development of n-Butanol toxicity are available. The main objective of the study was to investigate the effects of inhaled and oral administration of n-Butanol as a long-term in vivo investigation.Materials and Methods: Small white laboratory, male mice (20-30 g were used in 11 groups (n=4 including experimental 1 to 6, 1 to 4 control "A” and positive control groups. Experimental groups 1-3, for 10, 20, and 40 days; 5 hours a day were inside a box with ventilation facilities exposed to air saturated with n-Butanol vapor. Experimental groups 4 to 6, received water containing n-Butanol 0.2%, 1% and 5% for 10 days. Control groups B, 1 to 3 was placed for 10, 20, and 40 days inside a similar box exposed to normal air, respectively. Control group B 4 received water without any particular substance for 10 days. The positive control group received 30µl subcutaneous vinblastine. Bone marrow cells were extracted 24 hours after treatments and stained by May-Grünwald-Giemsa staining and the number of micronucleus was counted. Vinblastine, as a positive control, increased an average of micronucleus numbers significantly compared to control group (P<0.001.Results: n-Butanol inhalation caused no significant difference in 1-3 experimental groups in the average numbers of micronucleus compared to control group, even in the 40 days treatment group, average numbers of micronucleus was decreased comparing to control group (P<0.05. Also, oral administration of 0.2% and 1% n-Butanol had no effect on the average micronucleus numbers compared to the control group, while oral administration of 5% n-Butanol caused even decrease in average numbers of micronucleus

  8. Plans, Patterns, and Move Categories Guiding a Highly Selective Search

    Science.gov (United States)

    Trippen, Gerhard

    In this paper we present our ideas for an Arimaa-playing program (also called a bot) that uses plans and pattern matching to guide a highly selective search. We restrict move generation to moves in certain move categories to reduce the number of moves considered by the bot significantly. Arimaa is a modern board game that can be played with a standard Chess set. However, the rules of the game are not at all like those of Chess. Furthermore, Arimaa was designed to be as simple and intuitive as possible for humans, yet challenging for computers. While all established Arimaa bots use alpha-beta search with a variety of pruning techniques and other heuristics ending in an extensive positional leaf node evaluation, our new bot, Rat, starts with a positional evaluation of the current position. Based on features found in the current position - supported by pattern matching using a directed position graph - our bot Rat decides which of a given set of plans to follow. The plan then dictates what types of moves can be chosen. This is another major difference from bots that generate "all" possible moves for a particular position. Rat is only allowed to generate moves that belong to certain categories. Leaf nodes are evaluated only by a straightforward material evaluation to help avoid moves that lose material. This highly selective search looks, on average, at only 5 moves out of 5,000 to over 40,000 possible moves in a middle game position.

  9. Selection of High Temperature Organic Materials for Future Stirling Convertors

    Science.gov (United States)

    Shin, Euy-Sik Eugene

    2017-01-01

    In the future higher temperature Stirling convertors for improved efficiency and performance, various high temperature organic materials have been demanded as essential components for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The higher temperature capabilities would also allow current state-of-the-art (SOA) convertors to be used in additional missions, particularly those that require a Venus flyby for a gravity assist. Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of comprehensive structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, o-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This paper presents results of the three-step candidate evaluation processes, their application limitations, and the final selection recommendations.

  10. Role of Calcination Temperature on the Hydrotalcite Derived MgO–Al2O3 in Converting Ethanol to Butanol

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Santosa, Daniel M.; Li, Xiaohong S.; Devaraj, Arun; Karkamkar, Abhijeet J.; Wang, Yong

    2015-10-09

    In the base catalyzed ethanol condensation reactions, the calcined MgO-Al2O3 derived hydrotalcites used broadly as catalytic material and the calcination temperature plays a big role in determining the catalytic activity. The characteristic of the hydrotalcite material treated between catalytically relevant temperatures 450ºC and 800ºC have been studied with respect to the physical, chemical, and structural properties and compared with catalytic activity testing. With the increasing calcination temperature, the total measured catalytic basicity dropped linearly with the calcination temperature and the total measured acidity stayed the same for all the calcination temperatures except 800ºC. However, the catalyst activity testing does not show any direct correlation between the measured catalytic basicity and the catalyst activity to the ethanol condensation reaction to form 1-butanol. The highest ethanol conversion of 44 percent with 1-butanol selectivity of 50 percent was achieved for the 600ºC calcined hydrotalcite material.

  11. Enzyme assays: high-throughput screening, genetic selection, and fingerprinting

    National Research Council Canada - National Science Library

    Reymond, Jean-Louis

    2006-01-01

    ... (Testing Many Substrates Toward Hydrolase) Comparison with Other Methods 26 Estimating and Measuring Selectivity 27 Estimating Selectivity without a Reference Compound 28 Quantitative Measure of Se...

  12. Oxidation of butane to butanol coupled to electrochemical redox reaction of NAD+/NADH.

    Science.gov (United States)

    Kang, Hye Sun; Na, Byung Kwan; Park, Doo Hyun

    2007-08-01

    A crude cell extract from a butane-utilizing bacterium, Alcaligenes sp., catalyzed the oxidation of butane to butanol coupled to NADH. A graphite electrode modified with Neutral Red (NR-electrode) catalyzed the reduction of NAD(+) to NADH. About 4.9 mM butanol was produced from 50% n-butane/O(2) mixture through the combined reactions of the crude enzyme and the NR-electrode in 250 ml reactor for 3 h.

  13. Industrial production of acetone and butanol by fermentation?100 years later

    OpenAIRE

    Sauer, Michael

    2016-01-01

    Microbial production of acetone and butanol was one of the first large-scale industrial fermentation processes of global importance. During the first part of the 20th century, it was indeed the second largest fermentation process, superseded in importance only by the ethanol fermentation. After a rapid decline after the 1950s, acetone-butanol-ethanol (ABE) fermentation has recently gained renewed interest in the context of biorefinery approaches for the production of fuels and chemicals from ...

  14. N-butanol and isobutanol as alternatives to gasoline: Comparison of port fuel injector characteristics

    Directory of Open Access Journals (Sweden)

    Fenkl Michael

    2016-01-01

    Full Text Available The paper reports on an experimental investigation of the relationship between the pulse width of a gasoline engine port fuel injector and the quantity of the fuel injected when butanol is used as a fuel. Two isomers of butanol, n-butanol and isobutanol, are considered as potential candidates for renewable, locally produced fuels capable of serving as a drop-in replacement fuel for gasoline, as an alternative to ethanol which poses material compatibility and other drawbacks. While the injected quantity of fuel is typically a linear function of the time the injector coil is energized, the flow through the port fuel injector is complex, non ideal, and not necessarily laminar, and considering that butanol has much higher viscosity than gasoline, an experimental investigation was conducted. A production injector, coupled to a production fueling system, and driven by a pulse width generator was operated at various pulse lengths and frequencies, covering the range of engine rpm and loads on a car engine. The results suggest that at least at room temperature, the fueling rate remains to be a linear function of the pulse width for both n-butanol and isobutanol, and the volumes of fuel injected are comparable for gasoline and both butanol isomers.

  15. Butanol fermentation of the brown seaweed Laminaria digitata by Clostridium beijerinckii DSM-6422.

    Science.gov (United States)

    Hou, Xiaoru; From, Nikolaj; Angelidaki, Irini; Huijgen, Wouter J J; Bjerre, Anne-Belinda

    2017-08-01

    Seaweed represents an abundant, renewable, and fast-growing biomass resource for 3rd generation biofuel production. This study reports an efficient butanol fermentation process carried out by Clostridium beijerinckii DSM-6422 using enzymatic hydrolysate of the sugar-rich brown seaweed Laminaria digitata harvested from the coast of the Danish North Sea as substrate. The highest butanol yield (0.42g/g-consumed-substrates) compared to literature was achieved, with a significantly higher butanol:acetone-butanol-ethanol (ABE) molar ratio (0.85) than typical (0.6). This demonstrates the possibility of using the seaweed L. digitata as a potential biomass for butanol production. For the first time, consumption of alginate components was observed by C. beijerinckii DSM-6422. The efficient utilization of sugars and lactic acid further highlighted the potential of using this strain for future development of large-scale cost-effective butanol production based on (ensiled) seaweed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4.

    Science.gov (United States)

    He, Ai-Yong; Yin, Chun-Yan; Xu, Hao; Kong, Xiang-Ping; Xue, Jia-Wei; Zhu, Jing; Jiang, Min; Wu, Hao

    2016-02-01

    Reducing power such as NADH is an essential factor for acetone/butanol/ethanol (ABE) fermentation using Clostridium spp. The objective of this study was to increase available NADH in Clostridium beijerinckii IB4 by a microbial electrolysis cell (MEC) with an electron carrier to enhance butanol production. First of all, a MEC was performed without electron carrier to study the function of cathodic potential applying. Then, various electron carriers were tested, and neutral red (NR)-amended cultures showed an increase of butanol concentration. Optimal NR concentration (0.1 mM) was used to add in a MEC. Electricity stimulated the cell growth obviously and dramatically diminished the fermentation time from 40 to 28 h. NR and electrically reduced NR improved the final butanol concentration and inhibited the acetone generation. In the MEC with NR, the butanol concentration, yield, proportion and productivity were increased by 12.2, 17.4, 7.2 and 60.3 %, respectively. To further understand the mechanisms of NR, cathodic potential applying and electrically reduced NR, NADH and NAD(+) levels, ATP levels and hydrogen production were determined. NR and electrically reduced NR also improved ATP levels and the ratio of NADH/NAD(+), whereas they decreased hydrogen production. Thus, the MEC is an efficient method for enhancing the butanol production.

  17. The effect of CTAB on synthesis in butanol of samaria and gadolinia doped ceria - nickel oxide ceramics; Efeito do CTAB na sintese solvotermica em butanol de ceramicas de ceria dopada com samaria e gadolinia - oxido de niquel

    Energy Technology Data Exchange (ETDEWEB)

    Arakaki, A.R.; Cunha, S.M.; Yoshito, W.K.; Ussui, V.; Lazar, D.R.R., E-mail: alexander@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CCTM/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais

    2011-07-01

    In this work it was synthesized doped ceria and Samaria gadolinia - nickel oxide ceramics, mainly applied as anodes Fuel Cells Solid Oxide. Powders of composition Ce{sub 0,8}(SmGd){sub 0,2}O{sub 1,9}/NiO and mass ratio of 40: 60% were initially synthesized by hydroxides coprecipitation and then treated solvo thermically in butanol. Cerium samarium, gadolinium and nickel chlorides and CTAB with molar ratio metal / CTAB ranging from 1 to 3, were used as raw materials Powders were treated in butanol at 150 deg C for 16h. The powders were analyzed by X-ray diffraction, scanning electron microscopy, specific surface area for adsorption of nitrogen and particle size distribution by laser beam scattering. The ceramics were analyzed by scanning electron microscopy and density measurements by immersion technique in water. The results showed that the powders had the characteristic crystalline structures of ceria and nickel hydroxide, and high specific surface area (80 m{sup 2} / g). The characterizations of ceramics demonstrated high chemical homogeneity and porosity values of 30%. (author)

  18. Technical and economic assessment of processes for the production of butanol and acetone. Phase two: analysis of research advances. Energy Conversion and Utilization Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-08-01

    The initial objective of this work was to develop a methodology for analyzing the impact of technological advances as a tool to help establish priorities for R and D options in the field of biocatalysis. As an example of a biocatalyzed process, butanol/acetone fermentation (ABE process) was selected as the specific topic of study. A base case model characterizing the technology and economics associated with the ABE process was developed in the previous first phase of study. The project objectives were broadened in this second phase of work to provide parametric estimates of the economic and energy impacts of a variety of research advances in the hydrolysis, fermentation and purification sections of the process. The research advances analyzed in this study were based on a comprehensive literature review. The six process options analyzed were: continuous ABE fermentaton; vacuum ABE fermentation; Baelene solvent extraction; HRI's Lignol process; improved prehydrolysis/dual enzyme hydrolysis; and improved microorganism tolerance to butanol toxicity. Of the six options analyzed, only improved microorganism tolerance to butanol toxicity had a significant positive effect on energy efficiency and economics. This particular process option reduced the base case production cost (including 10% DCF return) by 20% and energy consumption by 16%. Figures and tables.

  19. Novel antimicrobial peptides with high anticancer activity and selectivity.

    Science.gov (United States)

    Chu, Hung-Lun; Yip, Bak-Sau; Chen, Kuan-Hao; Yu, Hui-Yuan; Chih, Ya-Han; Cheng, Hsi-Tsung; Chou, Yu-Ting; Cheng, Jya-Wei

    2015-01-01

    We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid β-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics.

  20. Novel antimicrobial peptides with high anticancer activity and selectivity.

    Directory of Open Access Journals (Sweden)

    Hung-Lun Chu

    Full Text Available We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid β-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics.

  1. Tributyl phosphate biodegradation to butanol and phosphate and utilization by a novel bacterial isolate, Sphingobium sp. strain RSMS.

    Science.gov (United States)

    Rangu, Shyam Sunder; Muralidharan, Bindu; Tripathi, S C; Apte, Shree Kumar

    2014-03-01

    A Sphingobium sp. strain isolated from radioactive solid waste management site (RSMS) completely degraded 7.98 g/L of tributyl phosphate (TBP) from TBP containing suspensions in 3 days. It also completely degraded 20 mM dibutyl phosphate (DBP) within 2 days. The strain tolerated high levels of TBP and showed excellent stability with respect to TBP degradation over several repeated subcultures. On solid minimal media or Luria Bertani media supplemented with TBP, the RSMS strain showed a clear zone of TBP degradation around the colony. Gas chromatography and spectrophotometry analyses identified DBP as the intermediate and butanol and phosphate as the products of TBP biodegradation. The RSMS strain utilized both TBP and DBP as the sole source of carbon and phosphorous for its growth. The butanol released was completely utilized by the strain as a carbon source thereby leaving no toxic residue in the medium. Degradation of TBP or DBP was found to be suppressed by high concentration of glucose which also inhibited TBP or DBP dependent growth. The results highlight the potential of Sphingobium sp. strain RSMS for bioremediation of TBP and for further molecular investigation.

  2. Lipase-Catalyzed Transesterification of Rapeseed Oil for Biodiesel Production with tert-Butanol

    Science.gov (United States)

    Jeong, Gwi-Taek; Park, Don-Hee

    Biodiesel is a fatty acid alkyl ester that can be derived from any vegetable oil or animal fat via the process of transesterification. It is a renewable, biodegradable, and nontoxic fuel. In this paper, we have evaluated the efficacy of a transesterification process for rapeseed oil with methanol in the presence of an enzyme and tert-butanol, which is added to ameliorate the negative effects associated with excess methanol. The application of Novozym 435 was determined to catalyze the transesterification process, and a conversion of 76.1% was achieved under selected conditions (reaction temperature 40 °C, methanol/oil molar ratio 3:1, 5% (w/w) Novozym 435 based on the oil weight, water content 1% (w/w), and reaction time of 24h). It has also been determined that rapeseed oil can be converted to fatty acid methyl ester using this system, and the results of this study contribute to the body of basic data relevant to the development of continuous enzymatic processes.

  3. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis.

    Science.gov (United States)

    Shibata, Michitaro; Oikawa, Kazusato; Yoshimoto, Kohki; Kondo, Maki; Mano, Shoji; Yamada, Kenji; Hayashi, Makoto; Sakamoto, Wataru; Ohsumi, Yoshinori; Nishimura, Mikio

    2013-12-01

    The positioning of peroxisomes in a cell is a regulated process that is closely associated with their functions. Using this feature of the peroxisomal positioning as a criterion, we identified three Arabidopsis thaliana mutants (peroxisome unusual positioning1 [peup1], peup2, and peup4) that contain aggregated peroxisomes. We found that the PEUP1, PEUP2, and PEUP4 were identical to Autophagy-related2 (ATG2), ATG18a, and ATG7, respectively, which are involved in the autophagic system. The number of peroxisomes was increased and the peroxisomal proteins were highly accumulated in the peup1 mutant, suggesting that peroxisome degradation by autophagy (pexophagy) is deficient in the peup1 mutant. These aggregated peroxisomes contained high levels of inactive catalase and were more oxidative than those of the wild type, indicating that peroxisome aggregates comprise damaged peroxisomes. In addition, peroxisome aggregation was induced in wild-type plants by exogenous application of hydrogen peroxide. The cat2 mutant also contained peroxisome aggregates. These findings demonstrate that hydrogen peroxide as a result of catalase inactivation is the inducer of peroxisome aggregation. Furthermore, an autophagosome marker, ATG8, frequently colocalized with peroxisome aggregates, indicating that peroxisomes damaged by hydrogen peroxide are selectively degraded by autophagy in the wild type. Our data provide evidence that autophagy is crucial for quality control mechanisms for peroxisomes in Arabidopsis.

  4. High throughput selection of effective serodiagnostics for Trypanosoma cruzi infection.

    Directory of Open Access Journals (Sweden)

    Gretchen Cooley

    2008-10-01

    Full Text Available Diagnosis of Trypanosoma cruzi infection by direct pathogen detection is complicated by the low parasite burden in subjects persistently infected with this agent of human Chagas disease. Determination of infection status by serological analysis has also been faulty, largely due to the lack of well-characterized parasite reagents for the detection of anti-parasite antibodies.In this study, we screened more than 400 recombinant proteins of T. cruzi, including randomly selected and those known to be highly expressed in the parasite stages present in mammalian hosts, for the ability to detect anti-parasite antibodies in the sera of subjects with confirmed or suspected T. cruzi infection.A set of 16 protein groups were identified and incorporated into a multiplex bead array format which detected 100% of >100 confirmed positive sera and also documented consistent, strong and broad responses in samples undetected or discordant using conventional serologic tests. Each serum had a distinct but highly stable reaction pattern. This diagnostic panel was also useful for monitoring drug treatment efficacy in chronic Chagas disease.These results substantially extend the variety and quality of diagnostic targets for Chagas disease and offer a useful tool for determining treatment success or failure.

  5. Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Gholamreza Salehi Jouzani

    2015-03-01

    Full Text Available Recently, lignocellulosic biomass as the most abundant renewable resource has been widely considered for bioalcohols production. However, the complex structure of lignocelluloses requires a multi-step process which is costly and time consuming. Although, several bioprocessing approaches have been developed for pretreatment, saccharification and fermentation, bioalcohols production from lignocelluloses is still limited because of the economic infeasibility of these technologies. This cost constraint could be overcome by designing and constructing robust cellulolytic and bioalcohols producing microbes and by using them in a consolidated bioprocessing (CBP system. This paper comprehensively reviews potentials, recent advances and challenges faced in CBP systems for efficient bioalcohols (ethanol and butanol production from lignocellulosic and starchy biomass. The CBP strategies include using native single strains with cellulytic and alcohol production activities, microbial co-cultures containing both cellulytic and ethanologenic microorganisms, and genetic engineering of cellulytic microorganisms to be alcohol-producing or alcohol producing microorganisms to be cellulytic. Moreover, high-throughput techniques, such as metagenomics, metatranscriptomics, next generation sequencing and synthetic biology developed to explore novel microorganisms and powerful enzymes with high activity, thermostability and pH stability are also discussed. Currently, the CBP technology is in its infant stage, and ideal microorganisms and/or conditions at industrial scale are yet to be introduced. So, it is essential to bring into attention all barriers faced and take advantage of all the experiences gained to achieve a high-yield and low-cost CBP process.

  6. Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol.

    Science.gov (United States)

    Jensen, Torbjørn Olshøj; Kvist, Thomas; Mikkelsen, Marie Just; Westermann, Peter

    2012-08-17

    The production of biodiesel results in a concomitant production of crude glycerol (10% w/w). Clostridium pasteurianum can utilize glycerol as sole carbon source and converts it into 1,3-propanediol, ethanol, butanol, and CO2. Reduced growth and productivities on crude glycerol as compared to technical grade glycerol have previously been observed. In this study, we applied random mutagenesis mediated by ethane methyl sulfonate (EMS) to develop a mutant strain of C. pasteurianum tolerating high concentrations of crude glycerol. At an initial crude glycerol concentration of 25 g/l the amount of dry cell mass produced by the mutant strain was six times higher than the amount produced by the wild type. Growth of the mutant strain was even detected at an initial crude glycerol concentration of 105 g/l. A pH controlled reactor with in situ removal of butanol by gas-stripping was used to evaluate the performance of the mutant strain. Utilizing stored crude glycerol, the mutant strain showed significantly increased rates compared to the wild type. A maximum glycerol utilization rate of 7.59 g/l/h was observed along with productivities of 1.80 g/l/h and 1.21 g/l/h of butanol and 1,3-PDO, respectively. These rates are higher than what previously has been published for C. pasteurianum growing on technical grade glycerol in fed batch reactors. In addition, high yields of the main products (butanol and 1,3-PDO) were detected and these two products were efficiently separated in two steams using gas-stripping.

  7. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine

    KAUST Repository

    Baumgardner, Marc E.

    2013-12-19

    In this study, the autoignition behavior of primary reference fuels (PRF) and blends of n-heptane/n-butanol were examined in a Waukesha Fuel Ignition Tester (FIT) and a Homogeneous Charge Compression Engine (HCCI). Fourteen different blends of iso-octane, n-heptane, and n-butanol were tested in the FIT - 28 test runs with 25 ignition measurements for each test run, totaling 350 individual tests in all. These experimental results supported previous findings that fuel blends with high alcohol content can exhibit very different ignition delay periods than similarly blended reference fuels. The experiments further showed that n-butanol blends behaved unlike PRF blends when comparing the autoignition behavior as a function of the percentage of low reactivity component. The HCCI and FIT experimental results favorably compared against single and multizone models with detailed chemical kinetic mechanisms - both an existing mechanism as well as one developed during this study were used. The experimental and modeling results suggest that that the FIT instrument is a valuable tool for analysis of high pressure, low temperature chemistry, and autoignition for future fuels in advanced combustion engines. Additionally, in both the FIT and engine experiments the fraction of low temperature heat release (fLTHR) was found to correlate very well with the crank angle of maximum heat release and shows promise as a useful metric for fuel reactivity in advanced combustion applications. © 2013 American Chemical Society.

  8. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli

    DEFF Research Database (Denmark)

    Heo, Min-Ji; Jung, Hwi-Min; Um, Jaeyong

    2017-01-01

    Genome editing using CRISPR/Cas9 was successfully demonstrated in Esherichia coli to effectively produce n-butanol in a defined medium under microaerobic condition. The butanol synthetic pathway genes including those encoding oxygen-tolerant alcohol dehydrogenase were overexpressed in metabolically...... prediction program, UTR designer, and modified using the CRISPR/Cas9 genome editing method to reduce its expression level. E. coli strains with decreased citrate synthase expression produced more butanol and the citrate synthase activity was correlated with butanol production. These results demonstrate...

  9. Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation.

    Science.gov (United States)

    Díaz, Víctor Hugo Grisales; Tost, Gerard Olivar

    2016-10-01

    Techno-economic study of acetone, butanol and ethanol (ABE) fermentation from lignocellulose was performed. Simultaneous saccharification, fermentation and vacuum evaporation (SFS-V) or pervaporation (SFS-P) were proposed. A kinetic model of metabolic pathways for ABE fermentation with the effect of phenolics and furans in the growth was proposed based on published laboratory results. The processes were optimized in Matlab®. The end ABE purification was carried out by heat-integrated distillation. The objective function of the minimization was the total annualized cost (TAC). Fuel consumption of SFS-P using poly[1-(trimethylsilyl)-1-propyne] membrane was between 13.8 and 19.6% lower than SFS-V. Recovery of furans and phenolics for the hybrid reactors was difficult for its high boiling point. TAC of SFS-P was increased 1.9 times with supplementation of phenolics and furans to 3g/l each one for its high toxicity. Therefore, an additional detoxification method or an efficient pretreatment process will be necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Utilization of pentoses from sugarcane biomass: techno-economics of biogas vs. butanol production.

    Science.gov (United States)

    Mariano, Adriano Pinto; Dias, Marina O S; Junqueira, Tassia L; Cunha, Marcelo P; Bonomi, Antonio; Filho, Rubens Maciel

    2013-08-01

    This paper presents the techno-economics of greenfield projects of an integrated first and second-generation sugarcane biorefinery in which pentose sugars obtained from sugarcane biomass are used either for biogas (consumed internally in the power boiler) or n-butanol production via the ABE batch fermentation process. The complete sugarcane biorefinery was simulated using Aspen Plus®. Although the pentoses stream available in the sugarcane biorefinery gives room for a relatively small biobutanol plant (7.1-12 thousand tonnes per year), the introduction of butanol and acetone to the product portfolio of the biorefinery increased and diversified its revenues. Whereas the IRR of the investment on a biorefinery with biogas production is 11.3%, IRR varied between 13.1% and 15.2% in the butanol production option, depending on technology (regular or engineered microorganism with improved butanol yield and pentoses conversion) and target market (chemicals or automotive fuels). Additional discussions include the effects of energy-efficient technologies for butanol processing on the profitability of the biorefinery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Steen, EricJ.; Chan, Rossana; Prasad, Nilu; Myers, Samuel; Petzold, Christopher; Redding, Alyssa; Ouellet, Mario; Keasling, JayD.

    2008-11-25

    BackgroundIncreasing energy costs and environmental concerns have motivated engineering microbes for the production of ?second generation? biofuels that have better properties than ethanol.Results& ConclusionsSaccharomyces cerevisiae was engineered with an n-butanol biosynthetic pathway, in which isozymes from a number of different organisms (S. cerevisiae, Escherichia coli, Clostridium beijerinckii, and Ralstonia eutropha) were substituted for the Clostridial enzymes and their effect on n-butanol production was compared. By choosing the appropriate isozymes, we were able to improve production of n-butanol ten-fold to 2.5 mg/L. The most productive strains harbored the C. beijerinckii 3-hydroxybutyryl-CoA dehydrogenase, which uses NADH as a co-factor, rather than the R. eutropha isozyme, which uses NADPH, and the acetoacetyl-CoA transferase from S. cerevisiae or E. coli rather than that from R. eutropha. Surprisingly, expression of the genes encoding the butyryl-CoA dehydrogenase from C. beijerinckii (bcd and etfAB) did not improve butanol production significantly as previously reported in E. coli. Using metabolite analysis, we were able to determine which steps in the n-butanol biosynthetic pathway were the most problematic and ripe for future improvement.

  12. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol

    Directory of Open Access Journals (Sweden)

    Myers Samuel

    2008-12-01

    Full Text Available Abstract Background Increasing energy costs and environmental concerns have motivated engineering microbes for the production of "second generation" biofuels that have better properties than ethanol. Results and conclusion Saccharomyces cerevisiae was engineered with an n-butanol biosynthetic pathway, in which isozymes from a number of different organisms (S. cerevisiae, Escherichia coli, Clostridium beijerinckii, and Ralstonia eutropha were substituted for the Clostridial enzymes and their effect on n-butanol production was compared. By choosing the appropriate isozymes, we were able to improve production of n-butanol ten-fold to 2.5 mg/L. The most productive strains harbored the C. beijerinckii 3-hydroxybutyryl-CoA dehydrogenase, which uses NADH as a co-factor, rather than the R. eutropha isozyme, which uses NADPH, and the acetoacetyl-CoA transferase from S. cerevisiae or E. coli rather than that from R. eutropha. Surprisingly, expression of the genes encoding the butyryl-CoA dehydrogenase from C. beijerinckii (bcd and etfAB did not improve butanol production significantly as previously reported in E. coli. Using metabolite analysis, we were able to determine which steps in the n-butanol biosynthetic pathway were the most problematic and ripe for future improvement.

  13. Highly selective enrichment of phosphorylated peptides using titanium dioxide

    DEFF Research Database (Denmark)

    Thingholm, Tine; Jørgensen, Thomas J D; Jensen, Ole N

    2006-01-01

    a protocol for selective phosphopeptide enrichment using titanium dioxide (TiO2) chromatography. The selectivity toward phosphopeptides is obtained by loading the sample in a 2,5-dihydroxybenzoic acid (DHB) or phthalic acid solution containing acetonitrile and trifluoroacetic acid (TFA) onto a TiO2 micro...

  14. Acoustic and Volumetric Properties of Mixture of (N,N-Dimethylacetamide + Ethyl Acrylate with 1-Butanol or iso-Butanol or t-Butanol at 308.15 K

    Directory of Open Access Journals (Sweden)

    M. Kondaiah

    2014-01-01

    Full Text Available Densities, ρ, and ultrasonic speeds, u of mixtures of 1-butanol or iso-butanol or t-butanol with equimolar mixture of (N,N-dimethylacetamide + Ethyl acrylate over the entire composition range have been measured at T=308.15 K. Using the experimental results, deviation in ultrasonic speed, Δu, deviation in isentropic compressibility, Δks, excess molar volume, VmE, excess intermolecular free length, LfE, and excess acoustic impedance, ZE, have been calculated. The variation of these properties with composition of the mixtures has been discussed in terms of molecular interactions in these mixtures. The deviation/excess properties have been fitted to Redlich-Kister type polynomial and the corresponding standard deviations have been calculated. Negative values of VmE, Δks, and LfE and positive values of Δu, and ZE are observed over the entire composition range. The observed negative and positive values of deviation/excess properties are attributed to the strong interactions between the unlike molecules of the mixtures. Further theoretical values of sound velocity in the mixtures have been evaluated using various theories and compared with experimental sound velocities to verify the applicability of such theories to the systems studied. Theoretical ultrasonic velocity data has been used to study molecular interactions in the systems investigated.

  15. Study of alcohol fuel of butanol and ethanol effect on the compression ignition (CI) engine performance, combustion and emission characteristic

    Science.gov (United States)

    Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.

    2017-10-01

    speed. Thus, D90BU10 had higher BSFC compared to mineral diesel and D90E10. In general, the addition of alcohol blend in diesel fuel had increase the BSFC. In term of in cylinder pressure, as the engine speed is increased, the crank angle noted to move away from TDC for all test fuel. The maximum cylinder pressure increased at low and medium speed, but decrease in higher engine speed. The addition of 10% of butanol and ethanol in the mineral diesel decreased the maximum cylinder pressure. Meanwhile, O2 emission of D90E10 is higher compared to D90BU10 due to higher oxygen content found in ethanol. The CO2 emission of D90BU10 recorded higher compared to mineral diesel due to the high oxygen contents in the alcohol. CO emission of alcohol blend on the other hand had lower emission at higher engine speed compared to mineral diesel. As engine speed is increased, NOx emission of mineral diesel and D90E10 had decreased gradually. However, D90BU10 had increased of NOx emission at lower to medium engine speed, than gradually decreased at higher engine speed.

  16. Highly sensitive and selective colorimetric sensing of antibiotics in milk.

    Science.gov (United States)

    Zhang, Xiaofang; Zhang, Yang; Zhao, Hong; He, Yujian; Li, Xiangjun; Yuan, Zhuobin

    2013-05-17

    Antibiotics residues in foods are very harmful to human beings. Determination of antibiotics residues relies largely on the availability of adequate analytical techniques. Currently, there is an urgent need for on site and real time detection of antibiotics in food. In this work, a novel one step synthesis of gold nanoparticles (AuNPs) was proposed using pyrocatechol violet (PCV) as a reducer agent. Highly sensitive and selective colorimetric detection of four antibiotics kanamycin mono sulfate (KA), neomycin sulfate (NE), streptomycin sulfate (ST) and bleomycin sulfate (BL) was realized during the formation of AuNPs. PCV has -OH groups and these antibiotics have -OH, -NH2, -NH- groups, so there may be some special hydrogen-bonding interactions between PCV and these antibiotics. Therefore, the presence of KA, NE, ST and BL would influence the synthesis of AuNPs, then the color and state of AuNPs would change, which could be observed with the naked eye or a UV-vis spectrophotometer. Results showed that A670 was linear with the logarithm of KA concentration in the range from 1.0×10(-8) to 5.0×10(-7)M and 5.0×10(-7) to 5.5×10(-5)M. The detection limit of KA was 1.0×10(-9)M (S/N=3). The coexisting substances including 1.0×10(-5)M phenylalanine, alanine, glycerol, glucose, Mg(2+), Ca(2+), Na(+), K(+), CO3(2-), SO4(2-), NO3(-), Cl(-) and Br(-) did not affect the determination of 1.0×10(-7)M antibiotics. In particular, the proposed method could be applied successfully to the detection of antibiotics in the pretreated liquid milk products. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Catalytic Upgrading of Ethanol to n-Butanol: Progress in Catalyst Development.

    Science.gov (United States)

    Wu, Xianyuan; Fang, Geqian; Tong, Yuqin; Jiang, Dahao; Liang, Zhe; Leng, Wenhua; Liu, Liu; Tu, Pengxiang; Wang, Hongjing; Ni, Jun; Li, Xiaonian

    2018-01-10

    Because n-butanol as a fuel additive has more advantageous physicochemical properties than those of ethanol, ethanol valorization to n-butanol through homo- or heterogeneous catalysis has received much attention in recent decades in both scientific and industrial fields. Recent progress in catalyst development for upgrading ethanol to n-butanol, which involves homogeneous catalysts, such as iridium and ruthenium complexes, and heterogeneous catalysts, including metal oxides, hydroxyapatite (HAP), and, in particular, supported metal catalysts, is reviewed herein. The structure-activity relationships of catalysts and underlying reaction mechanisms are critically examined, and future research directions on the design and improvement of catalysts are also proposed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characterization of an Arxula adeninivorans alcohol dehydrogenase involved in the metabolism of ethanol and 1-butanol.

    Science.gov (United States)

    Kasprzak, Jakub; Rauter, Marion; Riechen, Jan; Worch, Sebastian; Baronian, Kim; Bode, Rüdiger; Schauer, Frieder; Kunze, Gotthard

    2016-05-01

    In this study, alcohol dehydrogenase 1 from Arxula adeninivorans (Aadh1p) was identified and characterized. Aadh1p showed activity with short and medium chain length primary alcohols in the forward reaction and their aldehydes in the reverse reaction. Aadh1p has 64% identity with Saccharomyces cerevisiae Adh1p, is localized in the cytoplasm and uses NAD(+) as cofactor. Gene expression analysis showed a low level increase in AADH1 gene expression with ethanol, pyruvate or xylose as the carbon source. Deletion of the AADH1 gene affects growth of the cells with 1-butanol, ethanol and glucose as the carbon source, and a strain which overexpressed the AADH1 gene metabolized 1-butanol more rapidly. An ADH activity assay indicated that Aadh1p is a major enzyme for the synthesis of ethanol and the degradation of 1-butanol in A. adeninivorans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. A kinetic model of the Amberlyst-15 catalyzed transesterification of methyl stearate with n-butanol.

    Science.gov (United States)

    Pappu, Venkata K S; Yanez, Abraham J; Peereboom, Lars; Muller, Evan; Lira, Carl T; Miller, Dennis J

    2011-03-01

    An attractive approach to improving cold flow properties of biodiesel is to transesterify fatty acid methyl esters with higher alcohols such as n-butanol or with branched alcohols such as isopropanol. In this study, the reaction kinetics of Amberlyst-15 catalyzed transesterification of methyl stearate, a model biodiesel compound, with n-butanol have been examined. After identifying conditions to minimize both internal and external mass transfer resistances, the effects of catalyst loading, temperature, and the mole ratio of n-butanol to methyl stearate in the transesterification reaction were investigated. Experimental data were fit to a pseudo-homogeneous, activity-based kinetic model with inclusion of etherification reactions to appropriately characterize the transesterification system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Isolasi Dan Identifikasi Terpenoid dari Fraksi n-Butanol Herba Lampasau (Diplazium esculentum Swartz

    Directory of Open Access Journals (Sweden)

    Maria Dewi Astuti

    2017-03-01

    Full Text Available Abstrak Telah dilakukan penelitian yang bertujuan untuk mengidentifikasi senyawa kimia yang diisolasi dari fraksi n-butanol ekstrak metanol herba lampasau (Diplazium esculentum Swartz. Ekstrak metanol diperoleh secara maserasi dan difraksinasi berturut-turut denganpetroleum eter, etil asetat, dan n-butanol. Fraksi n­-butanol difraksinasidengan kromatografi kolom dengan fase diam silika gel dihasilkan fraksi A, B, C, dan D. Fraksi B dimurnikan dengan kromatografi lapis tipis preparatif pada silika geldihasilkan isolat B1. Isolat B1 berupa padatan tidak berwarna danberfluoresensi putih di bawah lampu UV 366 nm. Panjang gelombang maksimum pada spektra UV  isolat B1 adalah 225 nm dan 272.5 nm yang menunjukkan adanya ikatan rangkap tak terkonjugasi. Spektra IR isolat B1 menunjukkan adanya gugus C=C, –OH, C=O lakton, –CO, C–H ulur, dan C–H tekuk. Spektra 1H-NMR isolat B1 menunjukkan sinyal proton pada ikatan rangkap, proton –OH, proton pada –CH2 yang terikat atom oksigen, serta proton gugus metil –CH3. Berdasarkan data spektra UV, IR, dan 1H-NMR maka isolat B1 disarankan sebagai turunan senyawa triterpenoid hopan-lakton. Kata kunci : diplazium esculentum Swartz, fraksi n-butanol, triterpenoid hopan-lakton  Abstract The research  aims to identify chemical compounds isolated fromn-butanol fraction methanol extract of lampasau herbs (Diplazium esculentum Swartz. The methanol extract was obtained by maceration and fractioned by petroleum ether, ethyl acetate, andn-butanol. N-butanol fraction was fractionated using column chromatography on silica gel produced fractions A, B, C, and D. Fraction B was purified by preparative thin layer chromatography on silica gel produced isolate B1. Isolate B1was colorless solid and has white fluorescent under UV lamp 366 nm. The maximum wavelength on UV spectra of B1 are 225 nm and 272,5 nm indicates the unconjugated double bond. IR spectra of B1 showed the vibration of C=C, –OH, C=O lactone, –CO, C

  1. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): Production of butanol from corn stover using Clostridium beijerinckii P260

    Science.gov (United States)

    A simultaneous saccharification, fermentation, and recovery (SSFR) process was developed for production of acetone butanol ethanol (AB or ABE), of which butanol is the main product, from corn stover employing Clostridium beijerinckii P260. Of the 86 gL^-1^ corn stover, over 97% of the sugars were r...

  2. Kinetic studies on the Rhizomucor miehei lipase catalyzed esterification reaction of oleic acid with 1-butanol in a biphasic system

    NARCIS (Netherlands)

    Kraai, G.N.; Winkelman, J.G.M.; de Vries, Johannes; Heeres, H.J.

    2008-01-01

    The kinetics of the esterification of oleic acid with 1 -butanol catalyzed by free Rhizomucor miehei lipase in a biphasic system was studied in a batch reactor. The reaction appeared to proceed via a Ping Pong bi-bi mechanism with I -butanol inhibition. The kinetic constants of the model were

  3. Aadh2p: an Arxula adeninivorans alcohol dehydrogenase involved in the first step of the 1-butanol degradation pathway.

    Science.gov (United States)

    Rauter, Marion; Kasprzak, Jakub; Becker, Karin; Riechen, Jan; Worch, Sebastian; Hartmann, Anja; Mascher, Martin; Scholz, Uwe; Baronian, Kim; Bode, Rüdiger; Schauer, Frieder; Matthias Vorbrodt, H; Kunze, Gotthard

    2016-10-12

    The non-conventional yeast Arxula adeninivorans uses 1-butanol as a carbon source and has recently attracted attention as a promising organism for 1-butanol production. Alcohol dehydrogenases (adhp) are important catalysts in 1-butanol metabolism, but only Aadh1p from Arxula has been characterized. This enzyme is involved in ethanol synthesis but has a low impact on 1-butanol degradation. In this study, we identified and characterized a second adhp from A. adeninivorans (Aadh2p). Compared to Saccharomyces cerevisiae ADHs' (ScAdh) protein sequences it originates from the same ancestral node as ScAdh6p, 7p and 4p. It is also localized in the cytoplasm and uses NAD(H) as cofactor. The enzyme has its highest activity with medium chain-length alcohols and maximum activity with 1-butanol with the catalytic efficiency of the purified enzyme being 42 and 43,000 times higher than with ethanol and acetaldehyde, respectively. Arxula adeninivorans strain G1212/YRC102-AADH2, which expresses the AADH2 gene under the control of the strong constitutive TEF1 promoter was constructed. It achieved an ADH activity of up to 8000 U/L and 500 U/g dry cell weight (dcw) which is in contrast to the control strain G1212/YRC102 which had an ADH activity of up to 1400 U/L and 200 U/g dcw. Gene expression analysis showed that AADH2 derepression or induction using non-fermentable carbon-sources such as ethanol, pyruvate, glycerol or 1-butanol did occur. Compared to G1212/YRC102 AADH2 knock-out strain had a slower growth rate and lower 1-butanol consumption if 1-butanol was used as sole carbon source and AADH2-transformants did not grow at all in the same conditions. However, addition of the branched-chain amino acids leucine, isoleucine and valine allowed the transformants to use 1-butanol as carbon source. The addition of these amino acids to the control strain and Δaadh2 mutant cultures had the effect of accelerating 1-butanol consumption. Our results confirm that Aadh2p plays a major

  4. High throughput in vivo protease inhibitor selection platform

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a recombinant microbial cell comprising a selection platform for screening for a protease inhibitor, wherein the platform comprises transgenes encoding a protease having selective peptide bond cleavage activity at a recognition site amino acid sequence; and transgenes...... encoding polypeptides conferring resistance to microbial growth inhibitors; wherein the polypeptides comprise the recognition site amino acid sequence cleavable by the protease. Protease inhibitors are detected by their ability to inhibit protease specific cleavage and inactivation of the polypeptides...... platform for screening for a protease inhibitor....

  5. Family Structure Changes during High School and College Selectivity

    Science.gov (United States)

    An, Brian P.; Sorensen, Kia N.

    2017-01-01

    Research has shown that family structure changes negatively influence educational attainment, but they overlook qualitative distinctions in college choice, such as college selectivity. Yet, college choice research has largely focused on static measures of family structure, failing to account for year-to-year family structure changes that occur…

  6. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  7. Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity.

    Science.gov (United States)

    Van der Perre, Stijn; Gelin, Pierre; Claessens, Benjamin; Martin-Calvo, Ana; Cousin Saint Remi, Julien; Duerinck, Tim; Baron, Gino V; Palomino, Miguel; Sánchez, Ledys Y; Valencia, Susana; Shang, Jin; Singh, Ranjeet; Webley, Paul A; Rey, Fernando; Denayer, Joeri F M

    2017-07-21

    A vapor-phase adsorptive recovery process is proposed as an alternative way to isolate biobutanol from acetone-butanol-ethanol (ABE) fermentation media, offering several advantages compared to liquid phase separation. The effect of water, which is still present in large quantities in the vapor phase, on the adsorption of the organics could be minimized by using hydrophobic zeolites. Shape-selective all-silica zeolites CHA and LTA were prepared and evaluated with single-component isotherms and breakthrough experiments. These zeolites show opposite selectivities; adsorption of ethanol is favorable on all-silica CHA, whereas the LTA topology has a clear preference for butanol. The molecular sieving properties of both zeolites allow easy elimination of acetone from the mixture. The molecular interaction mechanisms are studied by density functional theory (DFT) simulations. The effects of mixture composition, humidity and total pressure of the vapor stream on the selectivity and separation behavior are investigated. Desorption profiles are studied to maximize butanol purity and recovery. The combination of LTA with CHA-type zeolites (Si-CHA or SAPO-34) in sequential adsorption columns with alternating adsorption and desorption steps allows butanol to be recovered in unpreceded purity and yield. A butanol purity of 99.7 mol % could be obtained at nearly complete butanol recovery, demonstrating the effectiveness of this technique for biobutanol separation processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets.

    Directory of Open Access Journals (Sweden)

    Julita Sadowska

    Full Text Available Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model-mice selected for divergent BMR rates (the H-BMR and L-BMR line type presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human "sedentary lifestyle", with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets.

  9. Phase equilibria of microemulsion forming system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol

    DEFF Research Database (Denmark)

    Kahl, Heike; Quitzsch, Konrad; Stenby, Erling Halfdan

    1997-01-01

    A systematic investigation of the phase behaviour involving microemulsions is presented with respect to experimental and calculated data for the four-component system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol and its corresponding ternaries at 25°C. The main feature of this kind...... of the UNIQUAC-equation and the UNIFAC-method. The UNIFAC-method is able to describe the phase behaviour in the quaternary system qualitatively, without fitting parameters. However, by applying the UNIQUAC-method, with adjustable parameters, it was only possible to model the ternary subsystems. The modelling...... of multicomponent system is the coexistence of a highly structural liquid phase enriched with amphiphilic compounds and an excess water or an excess oil phase or both of them. The phase behaviour was studied experimentally by use of turbidity titration and HPLC measurements and theoretically by application...

  10. Feature selection for high-dimensional integrated data

    KAUST Repository

    Zheng, Charles

    2012-04-26

    Motivated by the problem of identifying correlations between genes or features of two related biological systems, we propose a model of feature selection in which only a subset of the predictors Xt are dependent on the multidimensional variate Y, and the remainder of the predictors constitute a “noise set” Xu independent of Y. Using Monte Carlo simulations, we investigated the relative performance of two methods: thresholding and singular-value decomposition, in combination with stochastic optimization to determine “empirical bounds” on the small-sample accuracy of an asymptotic approximation. We demonstrate utility of the thresholding and SVD feature selection methods to with respect to a recent infant intestinal gene expression and metagenomics dataset.

  11. Design of a high activity and selectivity alcohol catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Foley, H.C.; Mills, G.A.

    1992-11-30

    Efforts to synthesize bimetallic cluster-derived Rh-Mo catalysts for CO and CO[sub 2] hydrogenation to preferentially produce oxygenates. The rhodium-molybdenum cluster, (PPh[sub 3])[sub 2]RhMO(CO)([mu]-CO)[sub 2]Cp, was employed as a precursor to alumina- and silica-supported catalysts which were in CO hydrogenation. When compared to catalysts made from the distinct organometallic complexes, RhH(CO)(PPh[sub 3])[sub 3] and [MO(CO)[sub 3]Cp][sub 2], the catalysts derived from a binuclear precursor show higher activities for CO hydrogenation and superior selectivities towards oxygenates, namely, methanol, dimethyl ether and ethanol. Their product distributions depend on the support. Fourier transform infrared spectroscopy studies indicate that CO chemisorbs on cluster-derived catalysts as gem-dicarbonyls while it is chemisorbed only in the linear-carbonyl configuration on catalysts made from separate rhodium and molybdenum complexes. The particular oxygenate selectivity of the cluster-derived catalysts may be correlated to the strong electronic interaction between Rh and Mo. Carbon dioxide hydrogenation has also been carried out on the catalysts mentioned above. Again, the cluster-derived catalysts show higher oxygenate selectivities. Finally, the catalysts were studied with regard to both CO and CO[sub 2] hydrogenation kinetics, apparent activation energies inferred.

  12. Selection of a tool to decision making for site selection for high level waste

    Directory of Open Access Journals (Sweden)

    Guiller Madeira Jonni

    2016-01-01

    Full Text Available The aim of this paper is to create a panel comparing some of the key decision-making support tools used in situations with the characteristics of the problem of selecting suitable areas for constructing a final deep geologic repository. The tools addressed in this work are also well known and with easy implementation. The decision-making process in matters of this kind is, in general, complex due to its multicriteria nature and the conflicting opinions of various stakeholders. Thus, a comprehensive study was performed with the literature in this subject, specifically in documents of the International Atomic Energy Agency (IAEA, regarding the importance of the criteria involved in the decision-making process. Therefore, we highlighted six judgment attributes for selecting a decision support tool, suitable for the problem. For this study, we have selected the following multicriteria tools: AHP, Delphi, Brainstorm, Nominal Group Technique and AHP-Delphi. Finally, the AHP-Delphi method has demonstrated to be more appropriate for managing the inherent multiple attributes to the problem proposed.

  13. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution

    Science.gov (United States)

    Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. In these studies we investigated use of food waste to produce butanol by Clostridium beijerinckii P260. In control fermentation, 40.5 g/L of glucose (initia...

  14. Techno-economics of carbon preserving butanol production using a combined fermentative and catalytic approach.

    Science.gov (United States)

    Nilsson, Robert; Bauer, Fredric; Mesfun, Sennai; Hulteberg, Christian; Lundgren, Joakim; Wännström, Sune; Rova, Ulrika; Berglund, Kris Arvid

    2014-06-01

    This paper presents a novel process for n-butanol production which combines a fermentation consuming carbon dioxide (succinic acid fermentation) with subsequent catalytic reduction steps to add hydrogen to form butanol. Process simulations in Aspen Plus have been the basis for the techno-economic analyses performed. The overall economy for the novel process cannot be justified, as production of succinic acid by fermentation is too costly. Though, succinic acid price is expected to drop drastically in a near future. By fully integrating the succinic acid fermentation with the catalytic conversion the need for costly recovery operations could be reduced. The hybrid process would need 22% less raw material than the butanol fermentation at a succinic acid fermentation yield of 0.7g/g substrate. Additionally, a carbon dioxide fixation of up to 13ktonnes could be achieved at a plant with an annual butanol production of 10ktonnes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Si, Tong; Luo, Yunzi; Xiao, Han; Zhao, Huimin

    2014-03-01

    Microbial production of higher alcohols from renewable feedstock has attracted intensive attention thanks to its potential as a source for next-generation gasoline substitutes. Here we report the discovery, characterization and engineering of an endogenous 1-butanol pathway in Saccharomyces cerevisiae. Upon introduction of a single gene deletion adh1Δ, S. cerevisiae was able to accumulate more than 120 mg/L 1-butanol from glucose in rich medium. Precursor feeding, ¹³C-isotope labeling and gene deletion experiments demonstrated that the endogenous 1-butanol production was dependent on catabolism of threonine in a manner similar to fusel alcohol production by the Ehrlich pathway. Specifically, the leucine biosynthesis pathway was engaged in the conversion of key 2-keto acid intermediates. Overexpression of the pathway enzymes and elimination of competing pathways achieved the highest reported 1-butanol titer in S. cerevisiae (242.8 mg/L). Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Butanol fermentation of the brown seaweed Laminaria digitata by Clostridium beijerinckii DSM-6422

    DEFF Research Database (Denmark)

    Hou, Xiaoru; From, Nikolaj; Angelidaki, Irini

    2017-01-01

    Seaweed represents an abundant, renewable, and fast-growing biomass resource for 3rd generation biofuel production. This study reports an efficient butanol fermentation process carried out by Clostridium beijerinckii DSM-6422 using enzymatic hydrolysate of the sugar-rich brown seaweed Laminaria...

  17. Chemical constituents in n-butanol fractions of Costus afer ker Gawl leaf and stem

    Directory of Open Access Journals (Sweden)

    Godswill Nduka Anyasor

    2014-04-01

    Conclusion: The bioactive compounds identified in the n-butanol fractions of C. afer leaves and stem may explain the folkloric use of C. afer plant in the treatment of chronic inflammatory and oxidative stress related diseases. [J Intercult Ethnopharmacol 2014; 3(2.000: 78-84

  18. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    Science.gov (United States)

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  19. Measurement of Ring Strain Using Butanols: A Physical Chemistry Lab Experiment

    Science.gov (United States)

    Martin, William R.; Davidson, Ada S.; Ball, David W.

    2016-01-01

    In this article, a bomb calorimeter experiment and subsequent calculations aimed at determining the strain energy of the cyclobutane backbone are described. Students use several butanol isomers instead of the parent hydrocarbons, and they manipulate liquids instead of gases, which makes the experiment much easier to perform. Experiments show that…

  20. Use of liquid/supercritical CO2 extraction process for butanol recovery from fermentation broth

    Science.gov (United States)

    In order for butanol fermentation to be a viable option, it is essential to recover it from fermentation broth using economical alternate in-situ product recovery techniques such as liquid/supercritical CO2 extraction as compared to distillation. This technique (liquid CO2 extraction & supercritical...

  1. Acetone-butanol-ethanol fermentation of corn stover by Clostridium species: present status and future perspectives.

    Science.gov (United States)

    Li, Jianzheng; Baral, Nawa Raj; Jha, Ajay Kumar

    2014-04-01

    Sustainable vehicle fuel is indispensable in future due to worldwide depletion of fossil fuel reserve, oil price fluctuation and environmental degradation. Microbial production of butanol from renewable biomass could be one of the possible options. Renewable biomass such as corn stover has no food deficiency issues and is also cheaper in most of the agricultural based countries. Thus it can effectively solve the existing issue of substrate cost. In the last 30 years, a few of Clostridium strains have been successfully implemented for biobutanol fermentation. However, the commercial production is hindered due to their poor tolerance to butanol and inhibitors. Metabolic engineering of Clostridia strains is essential to solve above problems and ultimately enhance the solvent production. An effective and efficient pretreatment of raw material as well as optimization of fermentation condition could be another option. Furthermore, biological approaches may be useful to optimize both the host and pathways to maximize butanol production. In this context, this paper reviews the existing Clostridium strains and their ability to produce butanol particularly from corn stover. This study also highlights possible fermentation pathways and biological approaches that may be useful to optimize fermentation pathways. Moreover, challenges and future perspectives are also discussed.

  2. Laboratory evaluation of the molluscicidal potency of a butanol extract of Phytolacca dodecandra (endod) berries.

    Science.gov (United States)

    Baalawy, S S

    1972-01-01

    The effect of butanol extracts of endod against Biomphalaria choanomphala, B. pfeifferi, and Bulinus (Physopsis) nasutus was tested at different concentrations and for different exposure periods. Exposure to 19-25 ppm for 6 hours or to 6-7 ppm for 24 hours caused about 100% mortality.

  3. The Influence of Water on Butanol Isomers Pervaporation Transport through Polyethylene Membrane..

    Czech Academy of Sciences Publication Activity Database

    Petričkovič, Roman; Setničková, Kateřina; Uchytil, Petr

    2013-01-01

    Roč. 107, APR 2 (2013), s. 85-90 ISSN 1383-5866 R&D Projects: GA ČR GA104/09/1165 Institutional support: RVO:67985858 Keywords : pervaporation * binary mixtures butanol isomers- water * polyethylene membranes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.065, year: 2013

  4. Analgesic and anti-inflammatory activities of the n-butanol fraction of ...

    African Journals Online (AJOL)

    The n-butanol leaf fraction of Vernonia glaberrima was evaluated for its toxicity, analgesic and anti-inflammatory effects. The leaves of V. glaberrima were collected, identified and extracted with methanol using maceration method and the resulting crude methanol extract was then partitioned using different solvents of ...

  5. Low Cost High Performance Nanostructured Spectrally Selective Coating

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sungho [Univ. of California, San Diego, CA (United States)

    2017-04-05

    Sunlight absorbing coating is a key enabling technology to achieve high-temperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), high-temperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency. Black oxide nanoparticles have been synthesized using a facile process and coated onto absorber metal surface. The material composition, size distribution and morphology of the nanoparticle are guided by numeric modeling. Optical and thermal properties have been both modeled and measured. High temperature durability has been achieved by using nanocomposites and high temperature annealing. Mechanical durability on thermal cycling have also been investigated and optimized. This technology is promising for commercial applications in next-generation high-temperature concentration solar power (CSP) plants.

  6. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    Energy Technology Data Exchange (ETDEWEB)

    N. Lybeck; B. Pham; M. Tawfik; J. B. Coble; R. M. Meyer; P. Ramuhalli; L. J. Bond

    2011-08-01

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure, and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and

  7. Selection of local extremophile lactic acid bacteria with high capacity ...

    African Journals Online (AJOL)

    This study is related to the isolation and identification of strains of local thermophilic lactic acid bacteria belonging to the species, Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria can exist under extreme conditions of the digestive tract (acidity and high concentration of bile salts) and have a high ...

  8. Chemical constituents in n-butanol fractions of Castus afer ker Gawl leaf and stem.

    Science.gov (United States)

    Anyasor, Godswill Nduka; Funmilayo, Onajobi; Odutola, Osilesi; Olugbenga, Adebawo; Oboutor, Efere Martins

    2014-01-01

    This study was designed to investigate the bioactive compounds in Costus afer Ker Gawl, an indigenous African medicinal plant whose leaf and stem extracts are used in the treatment of chronic inflammatory diseases, especially rheumatism and arthritis. The bioactive compounds present in the n-butanol fractions of C. afer leaf and stem were identified using qualitative phytochemical evaluation and gas chromatography-mass spectrometry (GC/MS) analytical method, comparing the mass spectra of the identified compounds with those of the National Institute of Standards and Technology database library. Qualitative analysis detected alkaloids, saponins, diterpenes, triterpenes, phytosterol, phlobatannins, and tannins in both n-butanol fractions of C. afer leaf and stem. Phenols were detected in leaves alone while flavonoids were present in stem alone. GC/MS data showed that the bioactive compounds in n-butanol fraction of C. afer leaf were indolizine, 2-methoxy-4 vinylphenol, phytol, hexadecanoic acid-methyl ester, n-hexadecanoic acid, 9,12-octadecanoic acid-methyl ester, eicosane, cis-vaccenic acid and oleic acid while n-butanol fraction of C. afer stem contain benzofuran,2,3-dihydro,2-methoxy-4 vinylphenol, 9-octadecenoic acid (Z)-2-hydroxy-1-(hydroxymethyl) ethyl ester, campesterol, stigmasterol, hexadecanoic acid-methyl ester, n-hexadecanoic acid, and cis-vaccenic acid. The bioactive compounds identified in the n-butanol fractions of C. afer leaves and stem may explain the folkloric use of C. afer plant in the treatment of chronic inflammatory and oxidative stress related diseases.

  9. Inflammatory Mediator Profiling of n-butanol Exposed Upper Airways in Individuals with Multiple Chemical Sensitivity.

    Directory of Open Access Journals (Sweden)

    Thomas Meinertz Dantoft

    Full Text Available Multiple Chemical Sensitivity (MCS is a chronic condition characterized by reports of recurrent symptoms in response to low level exposure to various chemical substances. Recent findings suggests that dysregulation of the immune system may play a role in MCS pathophysiology.The aim of this study was to examine baseline and low dose n-butanol-induced upper airway inflammatory response profiles in MCS subjects versus healthy controls.Eighteen participants with MCS and 18 age- and sex-matched healthy controls were enrolled in the study. Epithelial lining fluid was collected from the nasal cavity at three time points: baseline, within 15 minutes after being exposed to 3.7 ppm n-butanol in an exposure chamber and four hours after exposure termination. A total of 19 cytokines and chemokines were quantified. Furthermore, at baseline and during the exposure session, participants rated the perceived intensity, valence and levels of symptoms and autonomic recordings were obtained.The physiological and psychophysical measurements during the n-butanol exposure session verified a specific response in MCS individuals only. However, MCS subjects and healthy controls displayed similar upper airway inflammatory mediator profiles (P>0.05 at baseline. Likewise, direct comparison of mediator levels in the MCS group and controls after n-butanol exposure revealed no significant group differences.We demonstrate no abnormal upper airway inflammatory mediator levels in MCS subjects before or after a symptom-eliciting exposure to low dose n-butanol, implying that upper airways of MCS subjects are functionally intact at the level of cytokine and chemokine production and secretory capacity. This suggests that previous findings of increased cytokine plasma levels in MCS are unlikely to be caused by systemic priming via excessive upper airway inflammatory processes.

  10. Noria: A Highly Xe-Selective Nanoporous Organic Solid

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Rahul S. [Department of Chemistry, University of Missouri, Columbia Missouri 65211 United States; Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland Washington 99352 United States; Banerjee, Debasis [Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland Washington 99352 United States; Simon, Cory M. [Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley California 94720 United States; Atwood, Jerry L. [Department of Chemistry, University of Missouri, Columbia Missouri 65211 United States; Thallapally, Praveen K. [Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland Washington 99352 United States

    2016-07-05

    The successful mass-implementation of nuclear energy requires reprocessing of used nuclear fuel (UNF) to mitigate harmful radioactive waste. Volatile radionuclides such as Xe and Kr evolve into off-gas streams of UNF reprocessing facilities in parts per million concentrations; their capture and successive safe handing is essential from a regulatory point of view. As radioactive Xe has a short half-life, this captured Xe could be sold in the chemical market. Energy-intensive, expensive, and hazardous cryogenic distillation is the current benchmark process to capture and separate radioactive Xe and Kr from air. Thus, a cost-effective, alternative technology for the separation of Xe and Kr and their capture from air is of significant importance. Thus far, nanoporous materials, such as aluminosilicate zeolites, metal organic frameworks (MOFs) and porous organic molecules have shown promise for an adsorption-based separation process at room temperature. Herein, we report the selective Xe uptake in a crystalline porous organic oligomeric molecule, noria, and its structural analogue, PgC-noria, under ambient conditions. The selectivity of noria towards Xe arises from its tailored pore size and small cavities, which allows a directed non-bonding interaction of Xe atoms with a large number of carbon atoms of the noria molecular wheel in a confined space.

  11. Aromatic amino acids in high selectivity bismuth(III) recognition.

    Science.gov (United States)

    Ghatak, Sumanta Kumar; Dey, Debarati; Sen, Souvik; Sen, Kamalika

    2013-04-21

    The three aromatic amino acids, tyrosine, tryptophan and phenylalanine, play different physiological roles in life processes. Metal ions capable of binding these amino acids may aid in the reduction of effective concentration of these amino acids in any physiological system. Here we have studied the efficacy of some heavy metals for their complexation with these three amino acids. Bismuth has been found to bind selectively with these aromatic amino acids and this was confirmed using spectrofluorimetric, spectrophotometric and cyclic voltammetric studies. The series of heavy metals has been chosen because each of these metals remains associated with the others at very low concentration levels and Bi(III) is the least toxic amongst the other elements. So, selective recognition for Bi(III) would also mean no response for the other heavy elements if contaminants are present even at low concentration levels. The affinity towards these amino acids has been found to be in the order tryptophan < phenylalanine < tyrosine. The association constants of these amino acids have been calculated using Benesi-Hildebrand equations and the corresponding free energy change has also been calculated. The values of the association constants obtained from BH equations using absorbance values corroborate with the Stern-Volmer constants obtained from fluorimetric studies. The evidence for complexation is also supported by the results of cyclic voltammetry.

  12. Butanol production in a first-generation Brazilian sugarcane biorefinery: technical aspects and economics of greenfield projects.

    Science.gov (United States)

    Mariano, Adriano Pinto; Dias, Marina O S; Junqueira, Tassia L; Cunha, Marcelo P; Bonomi, Antonio; Filho, Rubens Maciel

    2013-05-01

    The techno-economics of greenfield projects of a first-generation sugarcane biorefinery aimed to produce ethanol, sugar, power, and n-butanol was conducted taking into account different butanol fermentation technologies (regular microorganism and mutant strain with improved butanol yield) and market scenarios (chemicals and automotive fuel). The complete sugarcane biorefinery with the batch acetone-butanol-ethanol (ABE) fermentation process was simulated using Aspen Plus®. The biorefinery was designed to process 2 million tonne sugarcane per year and utilize 25%, 50%, and 25% of the available sugarcane juice to produce sugar, ethanol, and butanol, respectively. The investment on a biorefinery with butanol production showed to be more attractive [14.8% IRR, P(IRR>12%)=0.99] than the conventional 50:50 (ethanol:sugar) annexed plant [13.3% IRR, P(IRR>12%)=0.80] only in the case butanol is produced by an improved microorganism and traded as a chemical. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Thermodynamic properties of ternary mixtures containing water, 2-ethoxyethanol, and t-butanol at 298.15 K

    Science.gov (United States)

    Siva Prasad, V.; Rajagopal, E.; Manohara Murthy, N.

    2010-12-01

    Ultrasonic speeds and isentropic compressibilities were measured at 298.15 K in the water-rich region of aqueous solutions of water + 2-ethoxyethanol (2EE) + t-butanol. The excess properties of ultrasonic speed and isentropic compressibility were also calculated and have been discussed in terms of molecular interactions. The concentrations of t-butanol at which ultrasonic speed becomes maximum and isentropic compressibility becomes minimum are found to decrease with increase in the concentration of 2EE in the cosolvent (aqueous 2EE). This behavior indicates that the aqueous ternary solutions are less structured than aqueous t-butanol. This behavior is explained as due to a decrease in the ability of t-butanol to form clathrate hydrates owing to the presence of 2EE. When the concentration of 2EE in the cosolvent ( x 2EE) > 0.14, ultrasonic speed decreases and isentropic compressibility increases with concentration of t-butanol indicating that the ternary solution behaves as normal solution wherein any further addition of 2EE or t-butanol leads to destabilization of the hydrogen bonded structure of water and t-butanol looses its ability to form clathrate hydrates in aqueous solutions.

  14. Bayesian Variable Selection in High-dimensional Applications

    NARCIS (Netherlands)

    V. Rockova (Veronika)

    2013-01-01

    markdownabstract__Abstract__ Advances in research technologies over the past few decades have encouraged the proliferation of massive datasets, revolutionizing statistical perspectives on high-dimensionality. Highthroughput technologies have become pervasive in diverse scientific disciplines

  15. Engineering Data on Selected High Speed Passenger Trucks

    Science.gov (United States)

    1978-07-01

    The purpose of this project is to compile a list of high speed truck engineering parameters for characterization in dynamic performance modeling activities. Data tabulations are supplied for trucks from France, Germany, Italy, England, Japan, U.S.S.R...

  16. Regeneration of the vagus nerve after highly selective vagotomy, an autoradiographic study in the ferret stomach .

    OpenAIRE

    Al Muhtaseb, M. H. [محمد هاشم المحتسب; Abu-Khalaf, M.

    1995-01-01

    This study investigates the regeneration of the vagal nerve fibres after highly selective vagotomy in the ferret stomach by using the autoradiographic technique. Autoradiographic examination of the body of the stomach in the acute experimental animals has failed to show any labelled nerve fibres after highly selective vagotomy while the pylorus has shown many labelled nerve fibres . These observations indicate that the highly selective vagotomy has been performed properly and adequately. ...

  17. A Novel Ion - selective Polymeric Membrane Sensor for Determining Thallium(I) With High Selectivity

    Science.gov (United States)

    Kassim, Anuar; Rezayi, Majid; Ahmadzadeh, Saeid; Rounaghi, Gholamhossein; Mohajeri, Masoomeh; Azah Yusof, Noor; Tee, Tan Wee; Yook Heng, Lee; Halim Abdullah, Abd

    2011-02-01

    Thallium is a toxic metal that introduced into the environment mainly as a waste from the production of zinc, cadmium, and lead and by combustion of coal. Thallium causes gastrointestinal irritation and nerve damage when people are exposed to it for relatively short period of time. For long term, thallium has the potential to cause the following effects: change in blood chemistry, damage to liver, kidney, intestinal and testicular tissue, and hair loss. In this work a membrane was prepared by use of 4'-nitrobenzo -18-crown-6 (4'NB18C6) as an ion carrier, polyvinylchloride (PVC) as a matrix, and diocthylphetalate (DOP) as a plasticizer for making an ion selective electrode for measurement of Tl+ cation in solutions. The amount of 4'-nitrobenzo-18C6 and polyvinylchloride were optimized in the preparation of the membrane. The response of the electrode was Nernstian within the concentration range 1.0 × 10-8 to 1.0 × 10-1M. This sensor displays a drift in Nernstian response for this cation with increasing the amount of ionophore and decreasing the amount of polyvinylchloride.The results of potentiometric measurements showed that, this electrode also responses to Cu2+ Ni2+ and Pb2+ cations, but the electrode has a wider dynamic range and a lower detection limit to Tl+ cation. The effects of various parameters such as pH, different cations interferences, effect of the amount of ionophore and polyvinylchloride and time on response of the coated ion selective electrode were investigated. Finally the constructed electrode was used in complexometric and precipitation titrations of Tl+ cation with EDTA and KBr, respectively. The response of the fabricated electrode at concentration range from 1.0 × 10-8 to 1.0 × 10-1M is linear with a Nernstian slope of 57.27 mV.

  18. Copper-based nanocatalysts for 2-butanol dehydrogenation: Screening and optimization of preparation parameters by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Geravand, Elham; Shariatinia, Geravand; Yaripour, Fereydoon [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sahebdelfar, Saeed [National Iranian Petrochemical Company, P. O. Box 1493, Tehran (Iran, Islamic Republic of)

    2015-12-15

    Two types of copper-based dehydrogenation nanocatalysts (Cu/ZnO/Al{sub 2}O{sub 3} and Cu/SiO{sub 2}) were prepared from various precursors by impregnation (IM), sol-gel (SG) and co precipitation (COPRE) methods. The structures of samples were characterized by N{sub 2} adsorption-desorption, XRD, XRF, TPR, N{sub 2}O-Titration, FT-IR, FE-SEM and TEM techniques. The catalytic performance tests in vapor-phase dehydrogenation of 2-butanol to methyl ethyl ketone (MEK) were carried out in a fixed-bed reactor at a temperature of 260 .deg. C under atmospheric pressure and LHSV of 4mL/(h·g cat). The experimental results indicated that (i) the copper oxide over the COPRE nanocatalyst was reduced at a lower temperature (222 .deg. C) in comparison with the CuO reduced on the SG and IM samples (243 and 327 .deg. C, respectively). Also, the percentage of reduction of CuO species on COPRE catalyst was the highest (98.8%) in comparison with the two other samples, (ii) the COPRE nanocatalyst exhibited the highest activity for the dehydrogenation of 2-butanol to MEK, and (iii) co-precipitation method was selected as an optimum method for preparation of nanocatalyst. The central composite experimental design method was applied for investigation of the effects of four critical preparation factors on the MEK selectivity of Cu/ZnO/Al{sub 2}O{sub 3} nanocatalyst. The results showed that Cu/Zn molar ratio and precipitation pH are the most effective factors on the response and the optimum conditions for synthesis of Cu/ZnO/Al{sub 2}O{sub 3} nanocatalyst with maximum selectivity of MEK were T(pre)=67.5 .deg. C, T(aging)=68.8 .deg. C, pH(pre)=7.27 and Cu/Zn molar ratio=1.38. The performance of the prepared nanocatalyst at the optimum conditions was comparable to the commercially available nanocatalyst.

  19. Input variable selection for interpolating high-resolution climate ...

    African Journals Online (AJOL)

    2010-10-20

    Oct 20, 2010 ... Accurate climate surfaces are vital for applications relating to groundwater recharge modelling, evapotranspiration estima- ... with distance to oceans and elevation to generate 8 sets of high-resolution (i.e. 3 arc second) climate surfaces of the Western .... ANUSPLIN, developed by the Australian National.

  20. Marker-assisted selection of high molecular weight glutenin alleles ...

    Indian Academy of Sciences (India)

    Bread-making quality in hexaploid wheats is a complex trait. It has been shown that the amount and composition of protein can influence dough rheological properties. The high-molecular-weight (HMW) glutenins are encoded by a complex locus, Glu-1, on the long arm of group-1 homoeologus chromosome of the A, B and ...

  1. Green chemistry: highly selective biocatalytic hydrolysis of nitrile compounds

    CSIR Research Space (South Africa)

    Brady, D

    2006-09-01

    Full Text Available The application of highly substrate-specific catalysts, such as biocatalysts, can reduce the number of synthetic steps required to generate organic compounds. A wide range of bacteria and yeast cultures were enriched on nitriles as the sole source...

  2. Machine learning for event selection in high energy physics

    NARCIS (Netherlands)

    Whiteson, S.; Whiteson, D.

    2009-01-01

    The field of high energy physics aims to discover the underlying structure of matter by searching for and studying exotic particles, such as the top quark and Higgs boson, produced in collisions at modern accelerators. Since such accelerators are extraordinarily expensive, extracting maximal

  3. Selected Practices and Characteristics of Highly Effective Elementary Schools

    Science.gov (United States)

    Lauritson, George Allen

    2012-01-01

    The federal government, through NCLB legislation, has provided target proficiency goals schools will be accountable to meet. Missouri public elementary schools use these target goals to determine their success. The focus of this study was to examine the highly effective public elementary schools in Missouri that met or exceeded the 2011 Adequate…

  4. High-density nanopore array for selective biomolecule transport.

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kamlesh D.

    2011-11-01

    Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

  5. An objective method for High Dynamic Range source content selection

    DEFF Research Database (Denmark)

    Narwaria, Manish; Mantel, Claire; Da Silva, Matthieu Perreira

    2014-01-01

    With the aim of improving the immersive experience of the end user, High Dynamic Range (HDR) imaging has been gaining popularity. Therefore, proper validation and performance benchmarking of HDR processing algorithms is a key step towards standardization and commercial deployment. A crucial compo...... visible errors on contrast reduction. This information is subsequently analyzed via fuzzy clustering to enable a probabilistic interpretation. To evaluate the proposed approach, we performed an experimental study on a large set of publicly available HDR images....

  6. Reference satellite selection method for GNSS high-precision relative positioning

    OpenAIRE

    Xiao Gao; Wujiao Dai; Zhiyong Song; Changsheng Cai

    2017-01-01

    Selecting the optimal reference satellite is an important component of high-precision relative positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP) value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection ...

  7. Chemiluminescence analysis of the effect of butanol-diesel fuel blends on the spray-combustion process in an experimental common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Merola Simona Silvia S.

    2015-01-01

    Full Text Available Combustion process was studied from the injection until the late combustion phase in an high swirl optically accessible combustion bowl connected to a single cylinder 2-stroke high pressure common rail compression ignition engine. Commercial diesel and blends of diesel and n-butanol (20%: BU20 and 40%: BU40 were used for the experiments. A pilot plus main injection strategy was investigated fixing the injection pressure and fuel mass injected per stroke. Two main injection timings and different pilot-main dwell times were explored achieving for any strategy a mixing controlled combustion. Advancing the main injection start, an increase in net engine working cycle (>40% together with a strong smoke number decrease (>80% and NOx concentration increase (@50% were measured for all pilot injection timings. Compared to diesel fuel, butanol induced a decrease in soot emission and an increase in net engine working area when butanol ratio increased in the blend. A noticeable increase in NOx was detected at the exhaust for BU40 with a slight effect of the dwell-time. Spectroscopic investigations confirmed the delayed auto-ignition (~60 ms of the pilot injection for BU40 compared to diesel. The spectral features for the different fuels were comparable at the start of combustion process, but they evolved in different ways. Broadband signal caused by soot emission, was lower for BU40 than diesel. Different balance of the bands at 309 and 282 nm, due to different OH transitions, were detected between the two fuels. The ratio of these intensities was used to follow flame temperature evolution.

  8. High Dietary Fat Selectively Increases Catalase Expression within Cardiac Mitochondria*

    Science.gov (United States)

    Rindler, Paul M.; Plafker, Scott M.; Szweda, Luke I.; Kinter, Michael

    2013-01-01

    Obesity is a predictor of diabetes and cardiovascular disease. One consequence of obesity is dyslipidemia characterized by high blood triglycerides. It has been proposed that oxidative stress, driven by utilization of lipids for energy, contributes to these diseases. The effects of oxidative stress are mitigated by an endogenous antioxidant enzyme network, but little is known about its response to high fat utilization. Our experiments used a multiplexed quantitative proteomics method to measure antioxidant enzyme expression in heart tissue in a mouse model of diet-induced obesity. This experiment showed a rapid and specific up-regulation of catalase protein, with subsequent assays showing increases in activity and mRNA. Catalase, traditionally considered a peroxisomal protein, was found to be present in cardiac mitochondria and significantly increased in content and activity during high fat feeding. These data, coupled with the fact that fatty acid oxidation enhances mitochondrial H2O2 production, suggest that a localized catalase increase is needed to consume excessive mitochondrial H2O2 produced by increased fat metabolism. To determine whether the catalase-specific response is a common feature of physiological conditions that increase blood triglycerides and fatty acid oxidation, we measured changes in antioxidant expression in fasted versus fed mice. Indeed, a similar specific catalase increase was observed in mice fasted for 24 h. Our findings suggest a fundamental metabolic process in which catalase expression is regulated to prevent damage while preserving an H2O2-mediated sensing of diet composition that appropriately adjusts insulin sensitivity in the short term as needed to prioritize lipid metabolism for complete utilization. PMID:23204527

  9. Selected topics in high temperature chemistry defect chemistry of solids

    CERN Document Server

    Johannesen, Ø

    2013-01-01

    The properties of materials at high temperature play a vital role in their processing and practical use. The real properties of materials at elevated temperatures are very often governed by defects in their structure. Lattice defects may consist of point defects like vacancies, interstitial atoms or substituted atoms. These classes are discussed in general and specifically for oxides, nitrides, carbides and sulfides. Defect aggregates, shear structures and adaptive structures are also described. Special attention is paid to hydrogen defects which seem to play an important role in several mater

  10. When selection ratios are high: predicting the expatriation willingness of prospective domestic entry-level job applicants

    NARCIS (Netherlands)

    Mol, S.T.; Born, M.P.; Willemsen, M.E.; van der Molen, H.T.; Derous, E.

    2009-01-01

    High expatriate selection ratios thwart the ability of multinational organizations to select expatriates. Reducing the selection ratio may be accomplished by selecting those applicants for entry level domestic positions who have expatriate aspirations. Regression analyses conducted on data from a

  11. Dynamo Enhancement and Mode Selection Triggered by High Magnetic Permeability

    Science.gov (United States)

    Kreuzahler, S.; Ponty, Y.; Plihon, N.; Homann, H.; Grauer, R.

    2017-12-01

    We present results from consistent dynamo simulations, where the electrically conducting and incompressible flow inside a cylinder vessel is forced by moving impellers numerically implemented by a penalization method. The numerical scheme models jumps of magnetic permeability for the solid impellers, resembling various configurations tested experimentally in the von Kármán sodium experiment. The most striking experimental observations are reproduced in our set of simulations. In particular, we report on the existence of a time-averaged axisymmetric dynamo mode, self-consistently generated when the magnetic permeability of the impellers exceeds a threshold. We describe a possible scenario involving both the turbulent flow in the vicinity of the impellers and the high magnetic permeability of the impellers.

  12. [Employees in high-reliability organizations: systematic selection of personnel as a final criterion].

    Science.gov (United States)

    Oubaid, V; Anheuser, P

    2014-05-01

    Employees represent an important safety factor in high-reliability organizations. The combination of clear organizational structures, a nonpunitive safety culture, and psychological personnel selection guarantee a high level of safety. The cockpit personnel selection process of a major German airline is presented in order to demonstrate a possible transferability into medicine and urology.

  13. High performance selectively oxidized VCSELs and arrays for parallel high-speed optical interconnects

    Science.gov (United States)

    Mederer, Felix; Grabherr, Martin; Eberhard, Franz; Ecker, Irene; Jäger, Roland; Joos, Jürgen; Jung, Chistian; Kicherer, Max; King, Roger; Schnitzer, Peter; Unold, Heiko; Wiedenmann, Dieter; Ebeling, Karl Joachim

    We introduce a new layout for high-bandwidth single-mode selectively oxidized vertical-cavity surface-emitting laser (VCSEL) arrays operating at 980 nm or 850 nm emission wavelength for substrate or epitaxial side emission. Coplanar feeding lines and polyimide passivation are used to reduce electrical parasitics in top-emitting GaAs and bottom-emitting InGaAs VCSELs. In order to enhance fundamental single-mode emission for larger devices of reduced series resistance a surface relief transverse mode filter is employed. Fabricated VCSELs are applied in various interconnect schemes. In detail, we demonstrate 2.5 Gb/s pseudo-random data transmission with GaAs VCSELs at an emission wavelength of λ=835 nm over 120 μm core diameter step index plastic-optical fiber (POF) of 2.5 m length. InGaAs quantum-well based VCSELs at 935 nm emission wavelength are investigated for use in perfluorinated graded-index plastic-optical fiber (GI-POF) links. We obtain a 7 Gb/s pseudo random bit sequence (PRBS) non-return-to-zero (NRZ) data transmission over 80 m long 155 μm diameter GI-POF. We investigate data transmission over standard 1300 nm, 9 μm core diameter single-mode fiber using selectively oxidized single-mode GaAs or InGaAs VCSELs. We achieve biased 3 Gb/s and bias-free 1 Gb/s pseudo-random data transmission over 4.3 km at 830 nm emission wavelength where a simple fiber mode filter is used to suppress intermodal dispersion caused by the second order fiber mode. For the first time, we demonstrate 12.5 Gb/s data rate transmission of PRBS signals over 100 m graded-index multimode fiber or 1 km single-mode fiber using high performance single-mode GaAs VCSELs of 12.3 GHz modulation bandwidth emitting at λ=850 nm. Longer wave-length InGaAs VCSELs with emission at λ=1130 nm are used to transmit 2.5 Gb/s signals over 10 km of 9 μm standard fiber. For all data transmission experiments bit-error rates (BER) remain better than 10-11 for transmission of PRBS signals for back

  14. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans

    Science.gov (United States)

    2014-01-01

    Background Butanol is an industrial commodity and also considered to be a more promising gasoline substitute compared to ethanol. Renewed attention has been paid to solvents (acetone, butanol and ethanol) production from the renewable and inexpensive substrates, for example, lignocellulose, on account of the depletion of oil resources, increasing gasoline prices and deteriorating environment. Limited to current tools for genetic manipulation, it is difficult to develop a genetically engineered microorganism with combined ability of lignocellulose utilization and solvents production. Mixed culture of cellulolytic microorganisms and solventogenic bacteria provides a more convenient and feasible approach for ABE fermentation due to the potential for synergistic utilization of the metabolic pathways of two organisms. But few bacteria pairs succeeded in producing biobutanol of high titer or high productivity without adding butyrate. The aim of this work was to use Clostridium cellulovorans 743B to saccharify lignocellulose and produce butyric acid, instead of adding cellulase and butyric acid to the medium, so that the soluble sugars and butyric acid generated can be subsequently utilized by Clostridium beijerinckii NCIMB 8052 to produce butanol in one pot reaction. Results A stable artificial symbiotic system was constructed by co-culturing a celluloytic, anaerobic, butyrate-producing mesophile (C. cellulovorans 743B) and a non-celluloytic, solventogenic bacterium (C. beijerinckii NCIMB 8052) to produce solvents by consolidated bioprocessing (CBP) with alkali extracted deshelled corn cobs (AECC), a low-cost renewable feedstock, as the sole carbon source. Under optimized conditions, the co-culture degraded 68.6 g/L AECC and produced 11.8 g/L solvents (2.64 g/L acetone, 8.30 g/L butanol and 0.87 g/L ethanol) in less than 80 h. Besides, a real-time PCR assay based on the 16S rRNA gene sequence was performed to study the dynamics of the abundance of each strain

  15. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans.

    Science.gov (United States)

    Wen, Zhiqiang; Wu, Mianbin; Lin, Yijun; Yang, Lirong; Lin, Jianping; Cen, Peilin

    2014-07-15

    Butanol is an industrial commodity and also considered to be a more promising gasoline substitute compared to ethanol. Renewed attention has been paid to solvents (acetone, butanol and ethanol) production from the renewable and inexpensive substrates, for example, lignocellulose, on account of the depletion of oil resources, increasing gasoline prices and deteriorating environment. Limited to current tools for genetic manipulation, it is difficult to develop a genetically engineered microorganism with combined ability of lignocellulose utilization and solvents production. Mixed culture of cellulolytic microorganisms and solventogenic bacteria provides a more convenient and feasible approach for ABE fermentation due to the potential for synergistic utilization of the metabolic pathways of two organisms. But few bacteria pairs succeeded in producing biobutanol of high titer or high productivity without adding butyrate. The aim of this work was to use Clostridium cellulovorans 743B to saccharify lignocellulose and produce butyric acid, instead of adding cellulase and butyric acid to the medium, so that the soluble sugars and butyric acid generated can be subsequently utilized by Clostridium beijerinckii NCIMB 8052 to produce butanol in one pot reaction. A stable artificial symbiotic system was constructed by co-culturing a celluloytic, anaerobic, butyrate-producing mesophile (C. cellulovorans 743B) and a non-celluloytic, solventogenic bacterium (C. beijerinckii NCIMB 8052) to produce solvents by consolidated bioprocessing (CBP) with alkali extracted deshelled corn cobs (AECC), a low-cost renewable feedstock, as the sole carbon source. Under optimized conditions, the co-culture degraded 68.6 g/L AECC and produced 11.8 g/L solvents (2.64 g/L acetone, 8.30 g/L butanol and 0.87 g/L ethanol) in less than 80 h. Besides, a real-time PCR assay based on the 16S rRNA gene sequence was performed to study the dynamics of the abundance of each strain during the co

  16. Thermal Expansion Studies of Selected High Temperature Thermoelectric Materials

    Science.gov (United States)

    Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry; Brandon, Erik; Van Der Walde, Keith; Maricic, Lina; Sayir, Ali

    2008-01-01

    Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power less than or equal to 5.1 W/kg. Higher specific power would result in more on-board power for the same RTG mass, or less RTG mass for the same on-board power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermo-mechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.

  17. Preparation of H-mordenite/MCM-48 composite and its catalytic performance in the alkylation of toluene with tert-butanol

    Science.gov (United States)

    Zhou, Zhiwei; Cheng, Fuling; Qin, Juan; Yu, Pengcheng; Xu, Lin; Gu, Zhiqiang; Liu, Xiaoqin; Wu, Wenliang

    2017-09-01

    A series of HM/MCM-48 samples with different SiO2/Al2O3 molar ratio were prepared by sol-gel method. The prepared catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, FT-IR, SEM, and TEM techniques, and their catalytic performance was investigated in alkylation of toluene with tert-butanol. The adsorption capacity and the acid sites amount of HM/MCM-48-4 sample prepared by growing MCM-48 on the surface of HM zeolite are much higher than that of their mechanical mixture (HM/MCM-48(4) sample) due to its biporous structure; it shows higher catalytic performance than other HM/MCM-48 samples. The influence of reaction conditions on the catalytic performance of HM/MCM-48-4 zeolite was discussed. Toluene conversion of 41.4% and p-tert-butyltoluene selectivity of 73.5% were obtained at the weight ratio of toluene to HM/MCM-48-4 of 5, reaction temperature of 453 K, reaction time of 5 h and the molar ratio of toluene to tert-butanol of 0.5.

  18. Phase equilibria in water-(1-, 2-, iso-)butanol-18-crown-6 systems

    Science.gov (United States)

    Kovalenko, N. A.; Golovina, N. B.; Bogachev, A. G.; Uspenskaya, I. A.

    2011-09-01

    We present the results from measuring the solubility of 18-crown-6 in isobutanol in the temperature interval of 280-308 K and information about liquid-liquid equilibria in water-(1-, 2-, iso-)butanol-18-crown-6 systems at 298 K. The parameter values of the extended UNIQUAC model were determined on the basis of information about the thermodynamic properties and phase equilibria in the binary systems. It is shown that we must use parameters of ternary interaction in addition to binary parameters to adequately describe the miscibility gap on the basis of the results of turbidimetric titration in ternary water-(1-,2-, iso)butanol-18-crown-6 systems.

  19. Thermophysical properties of N, N-dimethylacetamide mixtures with n-butanol

    Science.gov (United States)

    Maharolkar, Aruna P.; Murugkar, A. G.; Khirade, P. W.; Mehrotra, S. C.

    2017-09-01

    The refraction, dielectric, viscosity, density, data of the binary mixtures of N, N-dimethylacetamide (DMA) with n-butanol at 308.15 and 313.15 K. The measured parameters used to obtain derived properties like Bruggeman factor, molar refraction and excess static dielectric constant, excess inverse relaxation time, excess molar volume and excess viscosity, excess molar refraction. The variation in magnitude with composition and temperature of these quantities has been used to discuss the type, strength and nature of binary interactions. Results confirm that there are strong hydrogen-bond interactions between unlike molecules of DMA+ n-butanol mixtures and that 1: 1 complexes are formed and strength of intermolecular interaction increases with temperature.

  20. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway.

    Science.gov (United States)

    Cooksley, Clare M; Zhang, Ying; Wang, Hengzheng; Redl, Stephanie; Winzer, Klaus; Minton, Nigel P

    2012-11-01

    The production of the chemical solvents acetone and butanol by the bacterium Clostridium acetobutylicum was one of the first large-scale industrial processes to be developed, and in the first part of the last century ranked second in importance only to ethanol production. After a steep decline in its industrial use, there has been a recent resurgence of interest in the acetone-butanol-ethanol (ABE) fermentation process, with a particular emphasis on butanol production. In order to generate strains suitable for efficient use on an industrial scale, metabolic engineering is required to alter the AB ratio in favour of butanol, and eradicate the production of unwanted products of fermentation. Using ClosTron technology, a large-scale targeted mutagenesis in C. acetobutylicum ATCC 824 was carried out, generating a set of 10 mutants, defective in alcohol/aldehyde dehydrogenases 1 and 2 (adhE1, adhE2), butanol dehydrogenases A and B (bdhA, bdhB), phosphotransbutyrylase (ptb), acetate kinase (ack), acetoacetate decarboxylase (adc), CoA transferase (ctfA/ctfB), and a previously uncharacterised putative alcohol dehydrogenase (CAP0059). However, inactivation of the main hydrogenase (hydA) and thiolase (thl) could not be achieved. Constructing such a series of mutants is paramount for the acquisition of information on the mechanism of solvent production in this organism, and the subsequent development of industrial solvent producing strains. Unexpectedly, bdhA and bdhB mutants did not affect solvent production, whereas inactivation of the previously uncharacterised gene CAP0059 resulted in increased acetone, butanol, and ethanol formation. Other mutants showed predicted phenotypes, including a lack of acetone formation (adc, ctfA, and ctfB mutants), an inability to take up acids (ctfA and ctfB mutants), and a much reduced acetate formation (ack mutant). The adhE1 mutant in particular produced very little solvents, demonstrating that this gene was indeed the main contributor to

  1. Bioreactors and in situ product recovery techniques for acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Li, Si-Yu; Chiang, Chung-Jen; Tseng, I-Ting; He, Chi-Ruei; Chao, Yun-Peng

    2016-07-01

    The microbial fermentation process is one of the sustainable and environment-friendly ways to produce 1-butanol and other bio-based chemicals. The success of the fermentation process greatly relies on the choice of bioreactors and the separation methods. In this review, the history and the performance of bioreactors for the acetone-butanol-ethanol (ABE) fermentation is discussed. The subject is then focused on in situ product recovery (ISPR) techniques, particularly for the integrated extraction-gas stripping. The usefulness of this promising hybrid ISPR device is acknowledged by its incorporation with batch, fed-batch and continuous processes to improve the performance of ABE fermentation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction

    Directory of Open Access Journals (Sweden)

    Hanno Richter

    2016-11-01

    Full Text Available Carboxydotrophic bacteria (CTB have received attention due to their ability to synthesize commodity chemicals from producer gas and synthesis gas (syngas. CTB have an important advantage of a high product selectivity compared to chemical catalysts. However, the product spectrum of wild-type CTB is narrow. Our objective was to investigate whether a strategy of combining two wild-type bacterial strains into a single, continuously fed bioprocessing step would be promising to broaden the product spectrum. Here, we have operated a syngas-fermentation process with Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction through gas stripping and product condensing within the syngas recirculation line. The main products from C. ljungdahlii fermentation at a pH of 6.0 were ethanol and acetate at net volumetric production rates of 65.5 and 431 mmol C•L-1•d-1, respectively. An estimated 2/3 of total ethanol produced was utilized by C. kluyveri to chain elongate with the reverse β-oxidation pathway, resulting in n-butyrate and n-caproate at net rates of 129 and 70 mmol C•L-1•d-1, respectively. C. ljungdahlii likely reduced the produced carboxylates to their corresponding alcohols with the reductive power from syngas. This resulted in the longer-chain alcohols n-butanol, n-hexanol, and n-octanol at net volumetric production rates of 39.2, 31.7, and 0.045 mmol C•L-1•d-1, respectively. The continuous production of the longer-chain alcohols occurred only within a narrow pH spectrum of 5.7-6.4 due to the pH discrepancy between the two strains. Regardless whether other wild-type strains could overcome this pH discrepancy, the specificity (mol carbon in product per mol carbon in all other liquid products for each longer-chain alcohol may never be high in a single bioprocessing step. This, because two bioprocesses compete for intermediates (i.e., carboxylates: 1 chain elongation; and 2 biological reduction. This innate

  3. Performance comparison of ethanol and butanol production in a continuous and closed-circulating fermentation system with membrane bioreactor.

    Science.gov (United States)

    Chen, Chunyan; Long, Sihua; Li, Airong; Xiao, Guoqing; Wang, Linyuan; Xiao, Zeyi

    2017-03-16

    Since both ethanol and butanol fermentations are urgently developed processes with the biofuel-demand increasing, performance comparison of aerobic ethanol fermentation and anerobic butanol fermentation in a continuous and closed-circulating fermentation (CCCF) system was necessary to achieve their fermentation characteristics and further optimize the fermentation process. Fermentation and pervaporation parameters including the average cell concentration, glucose consumption rate, cumulated production concentration, product flux, and separation factor of ethanol fermentation were 11.45 g/L, 3.70 g/L/h, 655.83 g/L, 378.5 g/m 2 /h, and 4.83, respectively, the corresponding parameters of butanol fermentation were 2.19 g/L, 0.61 g/L/h, 28.03 g/L, 58.56 g/m 2 /h, and 10.62, respectively. Profiles of fermentation and pervaporation parameters indicated that the intensity and efficiency of ethanol fermentation was higher than butanol fermentation, but the stability of butanol fermentation was superior to ethanol fermentation. Although the two fermentation processes had different features, the performance indicated the application prospect of both ethanol and butanol production by the CCCF system.

  4. Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Yessica; Ellis, Joshua T.; Miller, Charles D.; Sims, Ronald C.

    2015-02-01

    Exploring and developing sustainable and efficient technologies for biofuel production are crucial for averting global consequences associated with fuel shortages and climate change. Optimization of sugar liberation from wastewater algae through acid hydrolysis was determined for subsequent fermentation to acetone, butanol, and ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4. Acid concentration, retention time, and temperature were evaluated to determine optimal hydrolysis conditions by assessing the sugar and ABE yield as well as the associated costs. Sulfuric acid concentrations ranging from 0-1.5 M, retention times of 40-120 min, and temperatures from 23°C- 90°C were combined to form a full factorial experiment. Acid hydrolysis pretreatment of 10% dried wastewater microalgae using 1.0 M sulfuric acid for 120 min at 80-90°C was found to be the optimal parameters, with a sugar yield of 166.1 g for kg of dry algae, concentrations of 5.23 g/L of total ABE, and 3.74 g/L of butanol at a rate of USD $12.83 per kg of butanol.

  5. Lignocellulosic butanol production from Napier grass using semi-simultaneous saccharification fermentation.

    Science.gov (United States)

    He, Chi-Ruei; Kuo, Yu-Yuan; Li, Si-Yu

    2017-05-01

    Napier grass is a potential feedstock for biofuel production because of its strong adaptability and wide availability. Compositional analysis has been done on Napier grass which was collected from a local area of Taiwan. By comparing acid- and alkali-pretreatment, it was found that the alkali-pretreatment process is favorable for Napier grass. An overall glucose yield of 0.82g/g-glucose total can be obtained with the combination of alkali-pretreatment (2.5wt% NaOH, 8wt% sample loading, 121°C, and a reaction time of 40min) and enzymatic hydrolysis (40FPU/g-substrate). Semi-simultaneous saccharification fermentation (sSSF) was carried out, where enzymatic hydrolysis and ABE fermentation were operated in the same batch. It was found that after 24-h hydrolysis, followed by 96-h fermentation, the butanol and acetone concentrations reached 9.45 and 4.85g/L, respectively. The butanol yield reached 0.22g/g-sugar glucose+xylose . Finally, the efficiency of butanol production from Napier grass was calculated at 31%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Heterogeneous natural selection on oxidative phosphorylation genes among fishes with extreme high and low aerobic performance.

    Science.gov (United States)

    Zhang, Feifei; Broughton, Richard E

    2015-08-26

    Oxidative phosphorylation (OXPHOS) is the primary source of ATP in eukaryotes and serves as a mechanistic link between variation in genotypes and energetic phenotypes. While several physiological and anatomical factors may lead to increased aerobic capacity, variation in OXPHOS proteins may influence OXPHOS efficiency and facilitate adaptation in organisms with varied energy demands. Although there is evidence that natural selection acts on OXPHOS genes, the focus has been on detection of directional (positive) selection on specific phylogenetic branches where traits that increase energetic demands appear to have evolved. We examined patterns of selection in a broader evolutionary context, i.e., on multiple lineages of fishes with extreme high and low aerobic performance. We found that patterns of natural selection on mitochondrial OXPHOS genes are complex among fishes with different swimming performance. Positive selection is not consistently associated with high performance taxa and appears to be strongest on lineages containing low performance taxa. In contrast, within high performance lineages, purifying (negative) selection appears to predominate. We provide evidence that selection on OXPHOS varies in both form and intensity within and among lineages through evolutionary time. These results provide evidence for fluctuating selection on OXPHOS associated with divergence in aerobic performance. However, in contrast to previous studies, positive selection was strongest on low performance taxa suggesting that adaptation of OXPHOS involves many factors beyond enhancing ATP production in high performance taxa. The broader pattern indicates a complex interplay between organismal adaptations, ATP demand, and OXPHOS function.

  7. Gene expression profiling in persons with multiple chemical sensitivity before and after a controlled n-butanol exposure session.

    Science.gov (United States)

    Dantoft, Thomas M; Skovbjerg, Sine; Andersson, Linus; Claeson, Anna-Sara; Engkilde, Kaare; Lind, Nina; Nordin, Steven; Hellgren, Lars I

    2017-02-22

    To investigate the pathophysiological pathways leading to symptoms elicitation in multiple chemical sensitivity (MCS) by comparing gene expression in MCS participants and healthy controls before and after a chemical exposure optimised to cause symptoms among MCS participants.The first hypothesis was that unexposed and symptom-free MCS participants have similar gene expression patterns to controls and a second hypothesis that MCS participants can be separated from controls based on differential gene expression upon a controlled n-butanol exposure. Participants were exposed to 3.7 ppm n-butanol while seated in a windowed exposure chamber for 60 min. A total of 26 genes involved in biochemical pathways found in the literature have been proposed to play a role in the pathogenesis of MCS and other functional somatic syndromes were selected. Expression levels were compared between MCS and controls before, within 15 min after being exposed to and 4 hours after the exposure. Participants suffering from MCS and healthy controls were recruited through advertisement at public places and in a local newspaper. 36 participants who considered themselves sensitive were prescreened for eligibility. 18 sensitive persons fulfilling the criteria for MCS were enrolled together with 18 healthy controls. 17 genes showed sufficient transcriptional level for analysis. Group comparisons were conducted for each gene at the 3 times points and for the computed area under the curve (AUC) expression levels. MCS participants and controls displayed similar gene expression levels both at baseline and after the exposure and the computed AUC values were likewise comparable between the 2 groups. The intragroup variation in expression levels among MCS participants was noticeably greater than the controls. MCS participants and controls have similar gene expression levels at baseline and it was not possible to separate MCS participants from controls based on gene expression measured after the

  8. Bayesian Variable Selection in High Dimensional Survival Time Cancer Genomic Datasets using Nonlocal Priors

    OpenAIRE

    Nikooienejad, Amir; Wang, Wenyi; Johnson, Valen E.

    2017-01-01

    Variable selection in high dimensional cancer genomic studies has become very popular in the past decade, due to the interest in discovering significant genes pertinent to a specific cancer type. Censored survival data is the main data structure in such studies and performing variable selection for such data type requires certain methodology. With recent developments in computational power, Bayesian methods have become more attractive in the context of variable selection. In this article we i...

  9. Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Cai, Di; Li, Ping; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    To investigate the effect of dilute alkaline pretreatment on different parts of biomass, corn stalk was separated into flower, leaf, cob, husk and stem, which were treated by NaOH in range of temperature and chemical loading. The NaOH-pretreated solid was then enzymatic hydrolysis and used as the substrate for batch acetone-butanol-ethanol (ABE) fermentation. The results demonstrated the five parts of corn stalk could be used as potential feedstock separately, with vivid performances in solvents production. Under the optimized conditions towards high product titer, 7.5g/L, 7.6g/L, 9.4g/L, 7g/L and 7.6g/L of butanol was obtained in the fermentation broth of flower, leaf, cob, husk and stem hydrolysate, respectively. Under the optimized conditions towards high product yield, 143.7g/kg, 126.3g/kg, 169.1g/kg, 107.7g/kg and 116.4g/kg of ABE solvent were generated, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The thermodynamic properties of solutions and phase equilibria in the water-2-butanol-sodium chloride system

    Science.gov (United States)

    Veryaeva, E. S.; Bogachev, A. G.; Shishin, D. I.; Voskov, A. L.; Igumnov, S. N.; Mamontov, M. N.; Uspenskaya, I. A.

    2012-06-01

    Fragments of the phase diagram of the H2O-2-C4H9OH-NaCl system were studied experimentally at 298 and 313 K. The thermodynamic properties of sodium chloride in three-component solutions with ionic strengths up to 1.9 mol/kg and alcohol content in the solvent 4.97 and 10 wt % were measured at 298 and 323 K by the electromotive force method with ion-selective electrodes. The eNRTL (electrolyte Non-Random Two-Liquids) model parameters correctly describing the results of electrochemical measurements of the partial properties of NaCl and phase equilibria in the water-2-butanol-sodium chloride ternary system and binary subsystems constituting it were determined. The isothermal sections of the phase diagram of the H2O-2-C4H9OH-NaCl system were calculated using the method of convex hulls implemented in the TernAPI package.

  11. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Science.gov (United States)

    Ahmad, K. H.; Hossain, A. K.

    2017-11-01

    Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without the nanoparticles. The

  12. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Directory of Open Access Journals (Sweden)

    Ahmad K. H.

    2017-01-01

    Full Text Available Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without

  13. Effects of 1-butanol, neomycin and calcium on the photosynthetic ...

    African Journals Online (AJOL)

    The stepwise multiple linear regression analysis showed that, PC maintained its relative high Pn through the increase of stomatal conductance. It was proved by the scanning electron microscope (SEM) that, when compared with the WT, the stomatal density of PC leaves increased while the stomatal aperture also increased ...

  14. Evaluation and Selection of Technology Concepts for a Hypersonic High Speed Standoff Missile

    National Research Council Canada - National Science Library

    Roth, Bryce

    1999-01-01

    This paper describes the application of a method for technology concept selection to the design of a hypersonic high-speed standoff missile capable of achieving pin-point strike of long-range targets...

  15. Genetically correlated effects of selective breeding for high and low methamphetamine consumption

    National Research Council Canada - National Science Library

    Wheeler, J M; Reed, C; Burkhart-Kasch, S; Li, N; Cunningham, C L; Janowsky, A; Franken, F H; Wiren, K M; Hashimoto, J G; Scibelli, A C; Phillips, T J

    2009-01-01

    .... We produced mouse lines that orally self-administer high (MAHDR) or low (MALDR) amounts of methamphetamine, representing the first demonstration of selective breeding for self-administration of any psychostimulant drug...

  16. Efficient acetone-butanol-ethanol production (ABE) by Clostridium acetobutylicum XY16 immobilized on chemically modified sugarcane bagasse.

    Science.gov (United States)

    Kong, Xiangping; He, Aiyong; Zhao, Jie; Wu, Hao; Jiang, Min

    2015-07-01

    Sugarcane bagasse was chemically modified by polyethylenimine (PEI) and glutaraldehyde (GA) and then used as a support to immobilize Clostridium acetobutylicum XY16 in the process of butanol production. Compared with batch fermentation using unmodified sugarcane bagasse, 22.3 g/L total solvents were produced by cells immobilized on 4 g/L PEI treated sugarcane bagasse with high solvent productivity of 0.62 g/(L h) and glucose consumption rate of 1.67 g/(L h). Improvement of 14, 43, and 37 % in total solvent titer, solvent productivity and glucose consumption rate was observed, respectively. Enhanced solvent production of 25.14 g/L was obtained when using a high concentration of glucose of 80 g/L. Continuous fermentation was studied using PEI/GA modified sugarcane bagasse as immobilization support with a range of dilution which rates from 0.2 to 2.5 to find an optimal condition. The maximum solvent productivity of 11.32 g/(L h) was obtained at a high dilution rate of 2.0 h(-1).

  17. Reference satellite selection method for GNSS high-precision relative positioning

    Directory of Open Access Journals (Sweden)

    Xiao Gao

    2017-03-01

    Full Text Available Selecting the optimal reference satellite is an important component of high-precision relative positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.

  18. Selective high-affinity polydentate ligands and methods of making such

    Energy Technology Data Exchange (ETDEWEB)

    Denardo, Sally J.; Denardo, Gerald L.; Balhorn, Rodney L.

    2018-02-06

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  19. High Trans Kinetic Selectivity in Ruthenium-Based Olefin Cross-Metathesis through Stereoretention.

    Science.gov (United States)

    Johns, Adam M; Ahmed, Tonia S; Jackson, Bradford W; Grubbs, Robert H; Pederson, Richard L

    2016-02-19

    The first kinetically controlled, highly trans-selective (>98%) olefin cross-metathesis reaction is demonstrated using Ru-based catalysts. Reactions with either trans or cis olefins afford products with highly trans or cis stereochemistry, respectively. This E-selective olefin cross-metathesis is shown to occur between two trans olefins and between a trans olefin and a terminal olefin. Additionally, new stereoretentive catalysts have been synthesized for improved reactivity.

  20. Genome-wide analyses suggest parallel selection for universal traits may eclipse local environmental selection in a highly mobile carnivore.

    Science.gov (United States)

    Stronen, Astrid Vik; Jędrzejewska, Bogumiła; Pertoldi, Cino; Demontis, Ditte; Randi, Ettore; Niedziałkowska, Magdalena; Borowik, Tomasz; Sidorovich, Vadim E; Kusak, Josip; Kojola, Ilpo; Karamanlidis, Alexandros A; Ozolins, Janis; Dumenko, Vitalii; Czarnomska, Sylwia D

    2015-10-01

    Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north-south population differentiation. We investigated more than 67-K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n = 32, Carpathian Mountains n = 7, Dinaric-Balkan n = 9, Ukrainian Steppe n = 11). Our analyses combined identification of outlier loci with findings from genome-wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1 Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long-term separation among population clusters.

  1. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    Science.gov (United States)

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride.

    Science.gov (United States)

    Oh, Youngtak; Le, Viet-Duc; Maiti, Uday Narayan; Hwang, Jin Ok; Park, Woo Jin; Lim, Joonwon; Lee, Kyung Eun; Bae, Youn-Sang; Kim, Yong-Hyun; Kim, Sang Ouk

    2015-09-22

    Energy-efficient CO2 capture is a stringent demand for green and sustainable energy supply. Strong adsorption is desirable for high capacity and selective capture at ambient conditions but unfavorable for regeneration of adsorbents by a simple pressure control process. Here we present highly regenerative and selective CO2 capture by carbon nitride functionalized porous reduced graphene oxide aerogel surface. The resultant structure demonstrates large CO2 adsorption capacity at ambient conditions (0.43 mmol·g(-1)) and high CO2 selectivity against N2 yet retains regenerability to desorb 98% CO2 by simple pressure swing. First-principles thermodynamics calculations revealed that microporous edges of graphitic carbon nitride offer the optimal CO2 adsorption by induced dipole interaction and allows excellent CO2 selectivity as well as facile regenerability. This work identifies a customized route to reversible gas capture using metal-free, two-dimensional carbonaceous materials, which can be extended to other useful applications.

  3. Analysis of severe feather pecking behavior in a high feather pecking selection line

    DEFF Research Database (Denmark)

    Labouriau, R; Kjaer, J B; Abreu, G C G

    2009-01-01

    Even though feather pecking (FP) in laying hens has been extensively studied, a good solution to prevent chickens from this behavior under commercial circumstances has not been found. Selection against FP behavior is possible, but for a more effective selection across different populations......, it is necessary to characterize the genetic mechanism associated with this behavior. In this study, we use a high FP selection line, which has been selected for 8 generations. We present evidence of the presence of a major dominant allele affecting the FP behavior by using an argument based on the presence...... of mixture in the distribution of the observed FP and by studying the evolution of the proportion of very high FP along the sequence of 8 generations. This hypothesis is further supported by the fact that the gene transcription profile of the birds performing high FP differs from the profile of the other...

  4. The feature selection bias problem in relation to high-dimensional gene data.

    Science.gov (United States)

    Krawczuk, Jerzy; Łukaszuk, Tomasz

    2016-01-01

    Feature selection is a technique widely used in data mining. The aim is to select the best subset of features relevant to the problem being considered. In this paper, we consider feature selection for the classification of gene datasets. Gene data is usually composed of just a few dozen objects described by thousands of features. For this kind of data, it is easy to find a model that fits the learning data. However, it is not easy to find one that will simultaneously evaluate new data equally well as learning data. This overfitting issue is well known as regards classification and regression, but it also applies to feature selection. We address this problem and investigate its importance in an empirical study of four feature selection methods applied to seven high-dimensional gene datasets. We chose datasets that are well studied in the literature-colon cancer, leukemia and breast cancer. All the datasets are characterized by a significant number of features and the presence of exactly two decision classes. The feature selection methods used are ReliefF, minimum redundancy maximum relevance, support vector machine-recursive feature elimination and relaxed linear separability. Our main result reveals the existence of positive feature selection bias in all 28 experiments (7 datasets and 4 feature selection methods). Bias was calculated as the difference between validation and test accuracies and ranges from 2.6% to as much as 41.67%. The validation accuracy (biased accuracy) was calculated on the same dataset on which the feature selection was performed. The test accuracy was calculated for data that was not used for feature selection (by so called external cross-validation). This work provides evidence that using the same dataset for feature selection and learning is not appropriate. We recommend using cross-validation for feature selection in order to reduce selection bias. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. High-throughput screening to identify selective inhibitors of microbial sulfate reduction (and beyond)

    Science.gov (United States)

    Carlson, H. K.; Coates, J. D.; Deutschbauer, A. M.

    2015-12-01

    The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive and corrosive. Current strategies to selectively inhibit sulfidogenesis are based on non-specific biocide treatments, bio-competitive exclusion by alternative electron acceptors or sulfate-analogs which are competitive inhibitors or futile/alternative substrates of the sulfate reduction pathway. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to target SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Once inhibitor selectivity is defined, high-throughput characterization of microbial community structure across compound gradients and identification of fitness determinants using isolate bar-coded transposon mutant libraries can give insights into the genetic mechanisms whereby compounds structure microbial communities. The high-throughput (HT) approach we present can be readily applied to target SRM in diverse environments and more broadly, could be used to identify and quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant for engineering environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.

  6. Construction of CoA-dependent 1-butanol synthetic pathway functions under aerobic conditions in Escherichia coli.

    Science.gov (United States)

    Kataoka, Naoya; Vangnai, Alisa S; Pongtharangkul, Thunyarat; Tajima, Takahisa; Yakushi, Toshiharu; Matsushita, Kazunobu; Kato, Junichi

    2015-06-20

    1-Butanol is an important industrial platform chemical and an advanced biofuel. While various groups have attempted to construct synthetic pathways for 1-butanol production, efforts to construct a pathway that functions under aerobic conditions have met with limited success. Here, we constructed a CoA-dependent 1-butanol synthetic pathway that functions under aerobic conditions in Escherichia coli, by expanding the previously reported (R)-1,3-butanediol synthetic pathway. The pathway consists of phaA (acetyltransferase) and phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, phaJ ((R)-specific enoyl-CoA hydratase) from Aeromonas caviae, ter (trans-enoyl-CoA reductase) from Treponema denticola, bld (butylraldehyde dehydrogenase) from Clostridium saccharoperbutylacetonicum, and inherent alcohol dehydrogenase(s) from E. coli. To evaluate the potential of this pathway for 1-butanol production, culture conditions, including volumetric oxygen transfer coefficient (kLa) and pH were optimized in a mini-jar fermenter. Under optimal conditions, 1-butanol was produced at a concentration of up to 8.60gL(-1) after 46h of fed-batch cultivation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Mixed models for selection of Jatropha progenies with high adaptability and yield stability in Brazilian regions.

    Science.gov (United States)

    Teodoro, P E; Bhering, L L; Costa, R D; Rocha, R B; Laviola, B G

    2016-08-19

    The aim of this study was to estimate genetic parameters via mixed models and simultaneously to select Jatropha progenies grown in three regions of Brazil that meet high adaptability and stability. From a previous phenotypic selection, three progeny tests were installed in 2008 in the municipalities of Planaltina-DF (Midwest), Nova Porteirinha-MG (Southeast), and Pelotas-RS (South). We evaluated 18 families of half-sib in a randomized block design with three replications. Genetic parameters were estimated using restricted maximum likelihood/best linear unbiased prediction. Selection was based on the harmonic mean of the relative performance of genetic values method in three strategies considering: 1) performance in each environment (with interaction effect); 2) performance in each environment (with interaction effect); and 3) simultaneous selection for grain yield, stability and adaptability. Accuracy obtained (91%) reveals excellent experimental quality and consequently safety and credibility in the selection of superior progenies for grain yield. The gain with the selection of the best five progenies was more than 20%, regardless of the selection strategy. Thus, based on the three selection strategies used in this study, the progenies 4, 11, and 3 (selected in all environments and the mean environment and by adaptability and phenotypic stability methods) are the most suitable for growing in the three regions evaluated.

  8. A visual method for direct selection of high-producing Pichia pastoris clones

    Directory of Open Access Journals (Sweden)

    Liu Sheng

    2011-03-01

    Full Text Available Abstract Background The methylotrophic yeast, Pichia pastoris, offers the possibility to generate a high amount of recombinant proteins in a fast and easy way to use expression system. Being a single-celled microorganism, P. pastoris is easy to manipulate and grows rapidly on inexpensive media at high cell densities. A simple and direct method for the selection of high-producing clones can dramatically enhance the whole production process along with significant decrease in production costs. Results A visual method for rapid selection of high-producing clones based on mannanase reporter system was developed. The study explained that it was possible to use mannanase activity as a measure of the expression level of the protein of interest. High-producing target protein clones were directly selected based on the size of hydrolysis holes in the selected plate. As an example, the target gene (9elp-hal18 was expressed and purified in Pichia pastoris using this technology. Conclusions A novel methodology is proposed for obtaining the high-producing clones of proteins of interest, based on the mannanase reporter system. This system may be adapted to other microorganisms, such as Saccharomyces cerevisiae for the selection of clones.

  9. Green chemistry: Efficient epoxides ring-opening with 1-butanol under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Vidal, Jesus A. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Campus Universitario, Avda. de Elvas, s/n, E-06071-Badajoz (Spain); Duran-Valle, Carlos J. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Campus Universitario, Avda. de Elvas, s/n, E-06071-Badajoz (Spain)]. E-mail: carlosdv@unex.es; Ferrera-Escudero, Santiago [Departamento de Quimica Inorganica y Quimica Tecnica, Universidad Nacional de Educacion a Distancia, C/Senda del Rey, 9, E-28040 Madrid (Spain)

    2006-06-30

    Two activated carbons treated with mineral acids (HNO{sub 3} and sulfonitric mixture) have been tested as acid catalysts in the epoxides (1,2-epoxyhexane and styrene oxide) ring-opening reaction with 1-butanol under microwave (MW) irradiation. The mayor obtained product is that resulting of the alcohol addition to the most substituted carbon in the epoxide ring. The most active catalyst is that treated with sulfonitric mixture. The use of a MW oven allows achieving to the complete conversion of styrene oxide in only 2 min.

  10. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution

    OpenAIRE

    Huang, Haibo; Singh, Vijay; Qureshi, Nasib

    2015-01-01

    Background Waste is currently a major problem in the world, both in the developing and the developed countries. Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. This study investigated using food waste to produce acetone, butanol, and ethanol (ABE) by Clostridium beijerinckii P260. Results In control fermentation, 40.5 g/L of glucose (initial glucose 56.7 g/L) was used to produce 14.2 g/L of ABE wit...

  11. CINÉTICA DE LA PRODUCCIÓN DE ACETONA-BUTANOL.

    OpenAIRE

    Molina Córdoba, Manuel Enrique; J. R. Hernández; Jiménez, U.F.

    2011-01-01

    Se estudió el cumplimiento cinético de la fermentación acetobutílica, utilizando el clostridium acetobutylicum NRRL-B594.Se empleó almidón de banano al 2% como sustrato, condiciones de pH inicial de 5,5 y temperatura constante de 36ºC. la relación de butanol, acetona y etanol obtenida fue de 9:3:2 al cabo de 96 horas de proceso.

  12. Inflammatory Mediator Profiling of n-butanol Exposed Upper Airways in Individuals with Multiple Chemical Sensitivity

    DEFF Research Database (Denmark)

    Dantoft, Thomas Meinertz; Skovbjerg, Sine; Andersson, Linus

    2015-01-01

    Multiple Chemical Sensitivity (MCS) is a chronic condition characterized by reports of recurrent symptoms in response to low level exposure to various chemical substances. Recent findings suggests that dysregulation of the immune system may play a role in MCS pathophysiology. The aim of this study......-eliciting exposure to low dose n-butanol, implying that upper airways of MCS subjects are functionally intact at the level of cytokine and chemokine production and secretory capacity. This suggests that previous findings of increased cytokine plasma levels in MCS are unlikely to be caused by systemic priming via...

  13. High-paraffinaceous oil as a disperse system: The selection of a flow equation

    Energy Technology Data Exchange (ETDEWEB)

    Matveenko, V.N.; Kirsanov, E.S.; Remizov, S.V. [Moscow State Univ. (Russian Federation)

    1994-05-01

    The rheological properties of high-paraffinaceous oil were studied for different preliminary mechanical treatments of the samples. The flow curves were analyzed by different rheological models. The selection of Casson`s model for the range of high shear velocities was proven.

  14. Nutrition Information at the Point of Selection in High Schools Does Not Affect Purchases

    Science.gov (United States)

    Rainville, Alice Jo; Choi, Kyunghee; Ragg, Mark; King, Amber; Carr, Deborah H.

    2010-01-01

    Purpose/Objectives: Nutrition information can be an important component of local wellness policies. There are very few studies regarding nutrition information at the point of selection (POS) in high schools. The purpose of this study was to investigate the effects of posting entree nutrition information at the POS in high schools nationwide.…

  15. Assessment System for Junior High Schools in Taiwan to Select Environmental Education Facilities and Sites

    Science.gov (United States)

    Ho, Shyue-Yung; Chen, Wen-Te; Hsu, Wei-Ling

    2017-01-01

    Environmental education is essential for people to pursue sustainable development. In Taiwan, environmental education is taught to students until they graduate from junior high school. This study was conducted to establish an assessment system for junior high schools to select appropriate environmental education facilities and sites. A mix of…

  16. Inference for feature selection using the Lasso with high-dimensional data

    DEFF Research Database (Denmark)

    Brink-Jensen, Kasper; Ekstrøm, Claus Thorn

    2014-01-01

    that involve various effects strengths and correlation between predictors. The algorithm is also applied to a prostate cancer dataset that has been analyzed in recent papers on the subject. The proposed method is found to provide a powerful way to make inference for feature selection even for small samples......Penalized regression models such as the Lasso have proved useful for variable selection in many fields - especially for situations with high-dimensional data where the numbers of predictors far exceeds the number of observations. These methods identify and rank variables of importance but do...... not generally provide any inference of the selected variables. Thus, the variables selected might be the "most important" but need not be significant. We propose a significance test for the selection found by the Lasso. We introduce a procedure that computes inference and p-values for features chosen...

  17. Effects of erythrocyte lipid and of glucose and galactose concentration on transport of the sugars across a water-butanol interface.

    Science.gov (United States)

    Moore, T J; Schlowsky, B

    1969-03-01

    A property of sugar transport into the human erythrocyte is that a sugar with a high affinity for the hypothetical "carrier" will enter the cell at low concentration more rapidly than a sugar with lower affinity for carrier. At high concentration the sequence will be reversed. This behavior is exemplified by glucose, which enters erythrocytes faster than galactose at 0.015 m and slower than galactose at 1.3 m. A physicochemical model with the same properties has been found: layers of butanol and water with erythrocyte lipid at the interface. With total lipid from the human erythrocyte incorporated into the model, glucose at low concentration enters the oil phase faster than galactose and at high concentration galactose enters more rapidly. In the absence of lipid, glucose flux exceeds galactose flux at all concentrations. The hypothetical carrier molecule has not been identified.

  18. Chiral liquid-crystalline polyacrylates from (S-(--2-methyl-1-butanol. Synthesis, mesomorphic properties and light scattering

    Directory of Open Access Journals (Sweden)

    Merlo Aloir A.

    2001-01-01

    Full Text Available The synthesis and mesomorphic behavior of two chiral side chain liquid crystalline polyacrylates from (S-(--2-methyl-1-butanol are described. These new polyacrylates show a dependence of the phase transition temperatures on both, molecular weight and spacer length. The polyacrylate with four methylene units in the spacer exhibits a chiral nematic phase whereas the polyacrylate with a spacer containing eleven methylene units presents a smectic phase. In addition, the chiral nematic phase appears for low molecular weight and smectic phase for high molecular weight polyacrylates. Light scattering experiments were performed in dilute solutions of the polyacrylate containing eleven methylene units in tetrahydrofuran and dichloromethane. Values for weight averaged molecular weight, radius of gyration and second virial coefficient were determined by static light scattering whereas the diffusion coefficient and the hydrodynamic radius of the chains were obtained by photon correlation spectroscopy. A comparison between both techniques indicates that the chain behavior can be taken as typical for a polydisperse linear chain in a good solvent.

  19. Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans.

    Science.gov (United States)

    Crawford, Jacob E; Amaru, Ricardo; Song, Jihyun; Julian, Colleen G; Racimo, Fernando; Cheng, Jade Yu; Guo, Xiuqing; Yao, Jie; Ambale-Venkatesh, Bharath; Lima, João A; Rotter, Jerome I; Stehlik, Josef; Moore, Lorna G; Prchal, Josef T; Nielsen, Rasmus

    2017-11-02

    The increase in red blood cell mass (polycythemia) due to the reduced oxygen availability (hypoxia) of residence at high altitude or other conditions is generally thought to be beneficial in terms of increasing tissue oxygen supply. However, the extreme polycythemia and accompanying increased mortality due to heart failure in chronic mountain sickness most likely reduces fitness. Tibetan highlanders have adapted to high altitude, possibly in part via the selection of genetic variants associated with reduced polycythemic response to hypoxia. In contrast, high-altitude-adapted Quechua- and Aymara-speaking inhabitants of the Andean Altiplano are not protected from high-altitude polycythemia in the same way, yet they exhibit other adaptive features for which the genetic underpinnings remain obscure. Here, we used whole-genome sequencing to scan high-altitude Andeans for signals of selection. The genes showing the strongest evidence of selection-including BRINP3, NOS2, and TBX5-are associated with cardiovascular development and function but are not in the response-to-hypoxia pathway. Using association mapping, we demonstrated that the haplotypes under selection are associated with phenotypic variations related to cardiovascular health. We hypothesize that selection in response to hypoxia in Andeans could have vascular effects and could serve to mitigate the deleterious effects of polycythemia rather than reduce polycythemia itself. Copyright © 2017. Published by Elsevier Inc.

  20. Simple and highly Z-selective ruthenium-based olefin metathesis catalyst.

    Science.gov (United States)

    Occhipinti, Giovanni; Hansen, Fredrik R; Törnroos, Karl W; Jensen, Vidar R

    2013-03-06

    A one-step substitution of a single chloride anion of the Grubbs-Hoveyda second-generation catalyst with a 2,4,6-triphenylbenzenethiolate ligand resulted in an active olefin metathesis catalyst with remarkable Z selectivity, reaching 96% in metathesis homocoupling of terminal olefins. High turnover numbers (up to 2000 for homocoupling of 1-octene) were obtained along with sustained appreciable Z selectivity (>85%). Apart from the Z selectivity, many properties of the new catalyst, such as robustness toward oxygen and water as well as a tendency to isomerize substrates and react with internal olefin products, resemble those of the parent catalyst.

  1. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction

    Science.gov (United States)

    Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2013-03-01

    Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize

  2. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  3. Studies on Dielectric Properties of Binary Polar Mixtures of n-Butanol-Mutual Correlation and Excess Thermodynamic Functions

    Science.gov (United States)

    Swain, B. B.

    1984-07-01

    Dielectric constant of binary mixtures of six polar liquids with n-butanol has been measured at radio frequency. The data has been utilised for calculation of (i) mutual correlation factor, gab, between the unlike molecules and (ii) contribution of the unlike molecules to the excess free energy of mixing, \\varDelta Fab, and excess entropy \\varDelta Sab. The value of gab in mixture of the alcohols (n-butanol with methanol and n-propanol) remains above unity while for mixtures where the other component is a nonassociated liquid (n-butanol in chlorobenzene/aniline/ethyl benzoate/methyl benzoate) go below unity. These indicate predominance of microheterogeneous clustres with co-operative angular correlation (α-cluster) in the case of alcohol mixtures and of clusters with destructive angular correlation (β-cluster) in mixtures where one component is a non-associated liquid. The excess thermodynamic parameters calculated from this data also qualitatively support this view.

  4. Effect of Butanol Extract of Maturated Mahkota Dewa (Phaleria macrocarpa Fruit on Liver Tissue of Mice (Mus musculus

    Directory of Open Access Journals (Sweden)

    ARIF SOEKSMANTO

    2006-10-01

    Full Text Available Mahkota dewa (Phaleria macrocarpa [Scheff.] Boerl. is a poisonous plant, but almost all parts of the plants can be used as a traditional medicine. Consuming the plant directly can cause swollen, sprue, numb at tongue, fever, even unconscious. Although the plant can conquere various diseases, from diabetes mellitus, hemorrhoid, impotency to cancer, but research on the plant is still limited. A research was conducted to find out effect of subchronic dosage of butanol extract of maturated mahkota dewa fruit. Observation was carried out on liver tissue which is main organ detoxifying poison in the body. Dosage of butanol extract of 0; 42,5; 85 and 170 mg/kg body weight was administered intra peritoneally to mice. The result showed that butanol extract of maturated mahkota dewa fruit did not affect liver tissue, although at dosage 170 mg/kg body weight, a vacuolization on liver's tissue, was occurred.

  5. Tracking and flavour tagging selection in the ATLAS High Level Trigger

    CERN Document Server

    Calvetti, Milene; The ATLAS collaboration

    2017-01-01

    In high-energy physics experiments, track based selection in the online environment is crucial for the efficient real time selection of the rare physics process of interest. This is of particular importance at the Large Hadron Collider (LHC), where the increasingly harsh collision environment is challenging the experiments to improve the performance of their online selection. Principal among these challenges is the increasing number of interactions per bunch crossing, known as pileup. In the ATLAS experiment the challenge has been addressed with multiple strategies. Firstly, specific trigger objects have been improved by building algorithms using detailed tracking and vertexing in specific detector regions to improve background rejection without loosing signal efficiency. Secondly, since 2015 all trigger areas have benefited from a new high performance Inner Detector (ID) software tracking system implemented in the High Level Trigger. Finally, performance will be further enhanced in future by the installation...

  6. NEW STRAIN PRODUCERS OF BIOBUTANOL. III. METHODS OF INCREASED BUTANOL ACCUMULATION FROM BIOMASS OF SWITCHGRASS Panicum virgatum L.

    Directory of Open Access Journals (Sweden)

    Tigunova O. O.

    2015-08-01

    Full Text Available The aim of this work was to enlarge accumulation of butanol from switchgrass Panicum virgatum L. biomass using strains-producers obtained from grounds and silts of Kyiv lakes. The objects of the study were strains of C. acetobutylicum ІМВ B-7407 (IFBG C6H, Clostridium acetobutylicum IFBG C6H 5М and Clostridium tyrobutyricum IFBG C4B from the "Collections of microbial strains and lines of plants for food and agricultural biotechnology" of the Public Institution "Institute of Food Biotechnology and Genomics" of the National Academy of Sciences of Ukraine. Gas chromatography was used to determine the alcohol concentration at the stage of solvent synthesis. To determine the effect of butanol precursors during cultivation, butyric, lactic and acetic acids were used. Optimization of processing parameters, which was based on the needs of cultures, allowed us to increase the yield by 20 and 50% for the initial and mutant strain respectively. Using synthetic precursors (such as lactic, butyric and acetic acid during cultivation increased total concentration of butanol by 1.7 times. To optimize the process, a study was carried out using acetone- butyl grains. Using of acetone-butyl grains in concentrations up to 60% does not affect the synthesis of butanol by C. acetobutylicum IFBG C6H 5M. Increasing the concentration of grains led to decrease in accumulation of butanol. Almost double increase in accumulation of the target product (butanol was achieved using two-stage fermentation and/or precursors of synthesis. It was shown the possibility of using acetone-butyl grains in fermentation. As a result the mass fraction of the waste was reduced.

  7. A Highly Selective Photoresist Ashing Process for Silicon Nitride Films by Addition of Trifluoromethane

    Science.gov (United States)

    Saito, Makoto; Eto, Hideo; Makino, Nobuaki; Omiya, Kayoko; Homma, Tetsuya; Nagatomo, Takao

    2001-09-01

    A highly selective photoresist ashing process was developed for the fabrication of thin-film transistor liquid-crystal displays (TFT-LCDs). This ashing process utilizes downflow plasma consisting of a carbon trifluoromethane/oxygen (CHF3/O2) gas mixture at a low temperature. The etching selectivity of photoresist films to silicon nitride (SiN) film increased when using the CHF3/O2 gas mixture plasma, as compared to that when using the carbon tetrafluoride/oxygen (CF4/O2) gas mixture plasma. At the CHF3 gas flow rate of 30 sccm, a high etching selectivity ratio of about 1080 for the photoresist films to the SiN films was achieved at room temperature. On the basis of surface analysis results for SiN films and plasma analysis results for the CHF3/O2 gas mixture, a mechanism for the high etching selectivity of the photoresist films was proposed. Reaction products that were formed on SiN films by the CHF3/O2 gas mixture plasma obstructed the etching of SiN films by fluorine (F) radicals, resulting in the high selectivity. It was found that the CHF3/O2 gas mixture plasma reacted with SiN, resulting in the formation of a protective reaction product that is considered to be an ammonium salt such as (NH4)2SiF6.

  8. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  9. Structure of deuterated liquid n-butanol by neutron diffraction and molecular dynamics simulations

    Science.gov (United States)

    Cristiglio, Viviana; Gonzalez, Miguel Angel; Cuello, Gabriel Julio; Cabrillo, Carlos; Pardo, Luis Carlos; Silva-Santisteban, Alvaro

    Aliphatic alcohols are the simpler molecular liquids possessing a polar hydroxylic group and a nonpolar alkyl tail. While the structure of the smallest alcohols has been relatively well studied, no much attention has been paid to the temperature dependence of the pre-peak observed before the main diffraction peak. The role of H-bonding in causing this feature and the direct relation between the number of C atoms and their distance were discovered very early, suggesting a liquid picture constituted of straight chains joined by H-bonds with the formation of mesoscopic size clusters. X-rays and neutron diffraction measurements showed that the height of the pre-peak associated with the formation of H-bonds increases with temperature. To explain this counterintuitive effect, a complete diffraction study using two neutron diffractometers D4 and D16 (ILL, Grenoble, France) allowing to cover the range 0.01-23 Å t1 and exploring a temperature range from 100 K (glassy butanol) to 400 K (moderately supercritical conditions) has been conducted. Molecular Dynamics simulations using the OPLS-AA potential were also carried out as a function of temperature and compared to experiment. Experimental and numerical results of liquid n-butanol and its glassy transition will be presented.

  10. Evidence of mixotrophic carbon-capture by n-butanol-producer Clostridium beijerinckii.

    Science.gov (United States)

    Sandoval-Espinola, W J; Chinn, M S; Thon, M R; Bruno-Bárcena, J M

    2017-10-06

    Recent efforts to combat increasing greenhouse gas emissions include their capture into advanced biofuels, such as butanol. Traditionally, biobutanol research has been centered solely on its generation from sugars. Our results show partial re-assimilation of CO2 and H2 by n-butanol-producer C. beijerinckii. This was detected as synchronous CO2/H2 oscillations by direct (real-time) monitoring of their fermentation gasses. Additional functional analysis demonstrated increased total carbon recovery above heterotrophic values associated to mixotrophic assimilation of synthesis gas (H2, CO2 and CO). This was further confirmed using 13C-Tracer experiments feeding 13CO2 and measuring the resulting labeled products. Genome- and transcriptome-wide analysis revealed transcription of key C-1 capture and additional energy conservation genes, including partial Wood-Ljungdahl and complete reversed pyruvate ferredoxin oxidoreductase / pyruvate-formate-lyase-dependent (rPFOR/Pfl) pathways. Therefore, this report provides direct genetic and physiological evidences of mixotrophic inorganic carbon-capture by C. beijerinckii.

  11. Continuous acetone-ethanol-butanol fermentation by immobilized cells of Clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Badr, H.R.; Toledo, R.; Hamdy, M.K. [University of Georgia, Athens (Greece). Food Science and Technology Dept.

    2001-07-01

    Eight Clostridium acetobutylicum strains were examined for {alpha}-amylase and strains B-591, B-594 and P-262 had the highest activities. Defibered-sweet-potato-slurry (DSPS), containing 39.7 g starch l{sup -1}, supplemented with potassium phosphate (1.0 g l{sup -1}), cysteine-HCl (5.0 g l{sup -1}), the antifoam (polypropylene glycol, 0.1 mg ml{sup -1}), was used a continuous feedstock (FS) to a multistage bioreactor system for acetone-ethanol-butanol (AEB) fermentation. The system consisted on four columns (three vertical and one near horizontal) packed with beads containing immobilized cells of C. acetobutylicum P-262. When DSPS was pumped into the bioreactor system, at a flow rate of 2.36 ml min{sup -1}, the effluent has 7.73 g solvents l{sup -1} (1.56, acetone; 0.65, ethanol; 5.52 g, butanol) and no starch. Productivity of total solvents synthesized during continuous operation were 1.0 g 1{sup -1}h{sup -1} and 19.5 % yield compared to 0.12 g l{sup -1}h{sup -1} with 29% yield using the batch system. We proposed using DSPS for AEB fermentation in a continuous mode with immobilized P-262 cells that are active amylase producers which will lead to cost reduction compared to the batch system. (Author)

  12. Acetone-butanol-ethanol production from Kraft paper mill sludge by simultaneous saccharification and fermentation.

    Science.gov (United States)

    Guan, Wenjian; Shi, Suan; Tu, Maobing; Lee, Yoon Y

    2016-01-01

    Paper mill sludge (PS), a solid waste from pulp and paper industry, was investigated as a feedstock for acetone-butanol-ethanol (ABE) production by simultaneous saccharification and fermentation (SSF). ABE fermentation of paper sludge by Clostridium acetobutylicum required partial removal of ash in PS to enhance its enzymatic digestibility. Enzymatic hydrolysis was found to be a rate-limiting step in the SSF. A total of 16.4-18.0g/L of ABE solvents were produced in the SSF of de-ashed PS with solid loading of 6.3-7.4% and enzyme loading of 10-15FPU/g-glucan, and the final solvent yield reached 0.27g/g sugars. No pretreatment and pH control were needed in ABE fermentation of paper sludge, which makes it an attractive feedstock for butanol production. The results suggested utilization of paper sludge should not only consider the benefits of buffering effect of CaCO3 in fermentation, but also take into account its inhibitory effect on enzymatic hydrolysis. Published by Elsevier Ltd.

  13. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties

    Energy Technology Data Exchange (ETDEWEB)

    Crabbe, E.; Nolasco-Hipolito, C.; Kobayashi, Genta; Sonomoto, Kenji; Ishizaki, Ayaaki [Kyushu University, Fukuoka (Japan). Laboratory of Microbial Technology

    2001-09-01

    Three principal variables, molar ratio of methanol to oil, amount of catalyst, and reaction temperature, affecting the yield of acid-catalyzed production of methyl ester (biodiesel) from crude palm oil were investigated. The biodiesel was then used as an extractant in batch and continuous acetone-butanol-ethanol fermentation, and its fuel properties and that of the biodiesel-ABE product mix extracted from the batch culture analyzed. The optimized variables, 40:1 methanol/oil (mol/mol) with 5% H{sub 2}S0{sub 4} (vol/wt) reacted at 95{sup o}C for 9 h, gave a maximum ester yield of 97%. Biodiesel preferentially extracted butanol, and enhanced its production in the batch culture from 10 to 12 g 1{sup -1}. The fuel properties of biodiesel and the biodiesel-ABE mix were comparable to that of No.2 diesel, but their cetane numbers and the boiling points of the 90% fractions were higher. Therefore, they could serve as efficient No. 2 diesel substitutes. The biodiesel-ABE mixture had the highest cetane number. (author)

  14. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation.

    Science.gov (United States)

    Xu, Guo-Chao; Ding, Ji-Cai; Han, Rui-Zhi; Dong, Jin-Jun; Ni, Ye

    2016-03-01

    In this study, an effective corn stover (CS) pretreatment method was developed for biobutanol fermentation. Deep eutectic solvents (DESs), consisted of quaternary ammonium salts and hydrogen donors, display similar properties to room temperature ionic liquid. Seven DESs with different hydrogen donors were facilely synthesized. Choline chloride:formic acid (ChCl:formic acid), an acidic DES, displayed excellent performance in the pretreatment of corn stover by removal of hemicellulose and lignin as confirmed by SEM, FTIR and XRD analysis. After optimization, glucose released from pretreated CS reached 17.0 g L(-1) and yield of 99%. The CS hydrolysate was successfully utilized in butanol fermentation by Clostridium saccharobutylicum DSM 13864, achieving butanol titer of 5.63 g L(-1) with a yield of 0.17 g g(-1) total sugar and productivity of 0.12 g L(-1)h(-1). This study demonstrates DES could be used as a promising and biocompatible pretreatment method for the conversion of lignocellulosic biomass into biofuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China.

    Science.gov (United States)

    Ni, Ye; Sun, Zhihao

    2009-06-01

    China is one of the few countries, which maintained the fermentative acetone-butanol-ethanol (ABE) production for several decades. Until the end of the last century, the ABE fermentation from grain was operated in a few industrial scale plants. Due to the strong competition from the petrochemical industries, the fermentative ABE production lost its position in the 1990s, when all the solvent fermentation plants in China were closed. Under the current circumstances of concern about energy limitations and environmental pollution, new opportunities have emerged for the traditional ABE fermentation industry since it could again be potentially competitive with chemical synthesis. From 2006, several ABE fermentation plants in China have resumed production. The total solvent (acetone, butanol, and ethanol) production capacity from ten plants reached 210,000 tons, and the total solvent production is expected to be extended to 1,000,000 tons (based on the available data as of Sept. 2008). This article reviews current work in strain development, the continuous fermentation process, solvent recovery, and economic evaluation of ABE process in China. Challenges for an economically competitive ABE process in the future are also discussed.

  16. Industrial production of acetone and butanol by fermentation-100 years later.

    Science.gov (United States)

    Sauer, Michael

    2016-07-01

    Microbial production of acetone and butanol was one of the first large-scale industrial fermentation processes of global importance. During the first part of the 20th century, it was indeed the second largest fermentation process, superseded in importance only by the ethanol fermentation. After a rapid decline after the 1950s, acetone-butanol-ethanol (ABE) fermentation has recently gained renewed interest in the context of biorefinery approaches for the production of fuels and chemicals from renewable resources. The availability of new methods and knowledge opens many new doors for industrial microbiology, and a comprehensive view on this process is worthwhile due to the new interest. This thematic issue of FEMS Microbiology Letters, dedicated to the 100th anniversary of the first industrial exploitation of Chaim Weizmann's ABE fermentation process, covers the main aspects of old and new developments, thereby outlining a model development in biotechnology. All major aspects of industrial microbiology are exemplified by this single process. This includes new technologies, such as the latest developments in metabolic engineering, the exploitation of biodiversity and discoveries of new regulatory systems such as for microbial stress tolerance, as well as technological aspects, such as bio- and down-stream processing. © FEMS 2016.

  17. SELECTION RESPONSE FOR INCREASED GRAIN YIELD IN TWO HIGH OIL MAIZE SYNTHETICS

    Directory of Open Access Journals (Sweden)

    Made J. Mejaya

    2016-10-01

    Full Text Available Selection for increased oil level in maize showed the increase was associated with decrease in starch concentration, kernel weight, and grain yield. The study was conducted with the objectives: (1 to evaluate response to six cycles for increased grain yield in the high oil maize Alexho Elite (AE: 60-90 g kg-1 oil concentration and Ultra High Oil (UHO: 100-140 g kg-1 oil concentration using inbred tester B73; (2 to measure responses to selection for increased grain yield with changes in yield components; and (3 to determine a suitable tester. Previously the two synthetics had been selected for oil concentration. After six cycles, the six genotypes i.e. AE C0, AE C3, AE C6, UHO C0, UHO C3, and UHO C6 were testcrossed to B73, LH185, and LH202 inbreds (40 g kg-1 oil concentration to a total of 18 testcrosses. Two field experiments were used to evaluate selection in AE and UHO testcrosses. The study showed selection using inbred tester B73 in AE and UHO was effective in increasing grain yield of AE testcrosses without changing (i.e. decreasing oil and protein concentrations. AE testcrosses produced higher grain yield and greater selection response for grain yield than UHO testcrosses. LH185 was best for grain yield in AE and UHO testcrosses. Increase in grain yield in most of the testcrosses was associated with increases in starch concentration, kernel weight, kernel number, and grain weight.

  18. Design of Highly Selective Gas Sensors via Physicochemical Modification of Oxide Nanowires: Overview

    Directory of Open Access Journals (Sweden)

    Hyung-Sik Woo

    2016-09-01

    Full Text Available Strategies for the enhancement of gas sensing properties, and specifically the improvement of gas selectivity of metal oxide semiconductor nanowire (NW networks grown by chemical vapor deposition and thermal evaporation, are reviewed. Highly crystalline NWs grown by vapor-phase routes have various advantages, and thus have been applied in the field of gas sensors over the years. In particular, n-type NWs such as SnO2, ZnO, and In2O3 are widely studied because of their simple synthetic preparation and high gas response. However, due to their usually high responses to C2H5OH and NO2, the selective detection of other harmful and toxic gases using oxide NWs remains a challenging issue. Various strategies—such as doping/loading of noble metals, decorating/doping of catalytic metal oxides, and the formation of core–shell structures—have been explored to enhance gas selectivity and sensitivity, and are discussed herein. Additional methods such as the transformation of n-type into p-type NWs and the formation of catalyst-doped hierarchical structures by branch growth have also proven to be promising for the enhancement of gas selectivity. Accordingly, the physicochemical modification of oxide NWs via various methods provides new strategies to achieve the selective detection of a specific gas, and after further investigations, this approach could pave a new way in the field of NW-based semiconductor-type gas sensors.

  19. Enhanced selection of high affinity DNA-reactive B cells following cyclophosphamide treatment in mice.

    Directory of Open Access Journals (Sweden)

    Daisuke Kawabata

    Full Text Available A major goal for the treatment of patients with systemic lupus erythematosus with cytotoxic therapies is the induction of long-term remission. There is, however, a paucity of information concerning the effects of these therapies on the reconstituting B cell repertoire. Since there is recent evidence suggesting that B cell lymphopenia might attenuate negative selection of autoreactive B cells, we elected to investigate the effects of cyclophosphamide on the selection of the re-emerging B cell repertoire in wild type mice and transgenic mice that express the H chain of an anti-DNA antibody. The reconstituting B cell repertoire in wild type mice contained an increased frequency of DNA-reactive B cells; in heavy chain transgenic mice, the reconstituting repertoire was characterized by an increased frequency of mature, high affinity DNA-reactive B cells and the mice expressed increased levels of serum anti-DNA antibodies. This coincided with a significant increase in serum levels of BAFF. Treatment of transgene-expressing mice with a BAFF blocking agent or with DNase to reduce exposure to autoantigen limited the expansion of high affinity DNA-reactive B cells during B cell reconstitution. These studies suggest that during B cell reconstitution, not only is negative selection of high affinity DNA-reactive B cells impaired by increased BAFF, but also that B cells escaping negative selection are positively selected by autoantigen. There are significant implications for therapy.

  20. Scene content is predominantly conveyed by high spatial frequencies in scene-selective visual cortex.

    Science.gov (United States)

    Berman, Daniel; Golomb, Julie D; Walther, Dirk B

    2017-01-01

    In complex real-world scenes, image content is conveyed by a large collection of intertwined visual features. The visual system disentangles these features in order to extract information about image content. Here, we investigate the role of one integral component: the content of spatial frequencies in an image. Specifically, we measure the amount of image content carried by low versus high spatial frequencies for the representation of real-world scenes in scene-selective regions of human visual cortex. To this end, we attempted to decode scene categories from the brain activity patterns of participants viewing scene images that contained the full spatial frequency spectrum, only low spatial frequencies, or only high spatial frequencies, all carefully controlled for contrast and luminance. Contrary to the findings from numerous behavioral studies and computational models that have highlighted how low spatial frequencies preferentially encode image content, decoding of scene categories from the scene-selective brain regions, including the parahippocampal place area (PPA), was significantly more accurate for high than low spatial frequency images. In fact, decoding accuracy was just as high for high spatial frequency images as for images containing the full spatial frequency spectrum in scene-selective areas PPA, RSC, OPA and object selective area LOC. We also found an interesting dissociation between the posterior and anterior subdivisions of PPA: categories were decodable from both high and low spatial frequency scenes in posterior PPA but only from high spatial frequency scenes in anterior PPA; and spatial frequency was explicitly decodable from posterior but not anterior PPA. Our results are consistent with recent findings that line drawings, which consist almost entirely of high spatial frequencies, elicit a neural representation of scene categories that is equivalent to that of full-spectrum color photographs. Collectively, these findings demonstrate the

  1. Scene content is predominantly conveyed by high spatial frequencies in scene-selective visual cortex.

    Directory of Open Access Journals (Sweden)

    Daniel Berman

    Full Text Available In complex real-world scenes, image content is conveyed by a large collection of intertwined visual features. The visual system disentangles these features in order to extract information about image content. Here, we investigate the role of one integral component: the content of spatial frequencies in an image. Specifically, we measure the amount of image content carried by low versus high spatial frequencies for the representation of real-world scenes in scene-selective regions of human visual cortex. To this end, we attempted to decode scene categories from the brain activity patterns of participants viewing scene images that contained the full spatial frequency spectrum, only low spatial frequencies, or only high spatial frequencies, all carefully controlled for contrast and luminance. Contrary to the findings from numerous behavioral studies and computational models that have highlighted how low spatial frequencies preferentially encode image content, decoding of scene categories from the scene-selective brain regions, including the parahippocampal place area (PPA, was significantly more accurate for high than low spatial frequency images. In fact, decoding accuracy was just as high for high spatial frequency images as for images containing the full spatial frequency spectrum in scene-selective areas PPA, RSC, OPA and object selective area LOC. We also found an interesting dissociation between the posterior and anterior subdivisions of PPA: categories were decodable from both high and low spatial frequency scenes in posterior PPA but only from high spatial frequency scenes in anterior PPA; and spatial frequency was explicitly decodable from posterior but not anterior PPA. Our results are consistent with recent findings that line drawings, which consist almost entirely of high spatial frequencies, elicit a neural representation of scene categories that is equivalent to that of full-spectrum color photographs. Collectively, these findings

  2. Peripheral and central antinociceptive effects of the butanolic fraction of Byrsonima verbascifolia leaves on nociception-induced models in mice.

    Science.gov (United States)

    Saldanha, A A; Siqueira, J M; Castro, A H F; Matos, N A; Klein, A; Silva, D B; Carollo, C A; Soares, A C

    2017-02-01

    Byrsonima verbascifolia (Malpighiaceae), commonly known as 'murici', is used in folk medicine, for example, in the treatment of inflammation. The anti-inflammatory activity of the butanolic fraction of B. verbascifolia leaves (BvBF) was previously reported by our group, and the present study was designed to evaluate their antinociceptive effects. BvBF (25, 50, and 100 mg/kg) administered intraperitoneally (i.p.) inhibited acetic acid induced abdominal writhing. In the formalin test, BvBF (10, 30 and 100 mg/kg, i.p.) caused a reduction in licking time in both the neurogenic and inflammatory phases. Moreover, we demonstrated that BvBF (30 and 100 mg/kg, i.p.) caused an increase in the latency to response in the hot-plate test. These results demonstrate that BvBF possesses marked peripheral and central antinociceptive activities. Pre-treatment with the non-selective receptor antagonist naloxone (5 mg/kg, i.p.) abolished the antinociceptive effects of BvBF (100 mg/kg, i.p.) in the neurogenic phase of the formalin and hot-plate tests. The anti-inflammatory activity of BvBF (previously reported) as well as the participation of the opioidergic system seems to be responsible, at least in part, for these antinociceptive effects. Finally, BvBF at the doses investigated (25, 50 and 100 mg/Kg) did not cause any toxicity signals, showing that the antinociceptive activity is devoid of sedative and hypomotility effects.

  3. Marker-Assisted Selection to Pyramid Nematode Resistance and the High Oleic Trait in Peanut

    Directory of Open Access Journals (Sweden)

    Y. Chu

    2011-07-01

    Full Text Available The dynamic challenges of peanut ( L. farming demand a quick response from breeders to develop new cultivars, a process that can be aided by the application of molecular markers. With the goal to pyramid nematode resistance and the trait for high oleic:linoleic acid (high O:L ratio in seeds, nematode-resistant cultivar Tifguard was used as the recurrent female parent and high O:L cultivars Georgia-02C and Florida-07 were used as donor parents for the high O:L trait. ‘Tifguard High O/L’ was generated through three rounds of accelerated backcrossing using BCF progenies selected with molecular markers for these two traits as the pollen donors. Selfed BCF plants yielded marker-homozygous individuals identified as Tifguard High O/L, compressing the hybridization and selection phases of the cultivar development process to less than 3 yr. The accuracy of marker-assisted selection (MAS was confirmed by phenotyping a subset of F populations from both parental combinations. Once additional molecular markers linked with traits of interest are designed to be compatible with high-throughput screening platforms, MAS will be more widely integrated into peanut breeding programs.

  4. Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide

    Science.gov (United States)

    Nagarkar, Sanjog S.; Saha, Tanmoy; Desai, Aamod V.; Talukdar, Pinaki; Ghosh, Sujit K.

    2014-11-01

    Hydrogen sulphide (H2S) is known to play a vital role in human physiology and pathology which stimulated interest in understanding complex behaviour of H2S. Discerning the pathways of H2S production and its mode of action is still a challenge owing to its volatile and reactive nature. Herein we report azide functionalized metal-organic framework (MOF) as a selective turn-on fluorescent probe for H2S detection. The MOF shows highly selective and fast response towards H2S even in presence of other relevant biomolecules. Low cytotoxicity and H2S detection in live cells, demonstrate the potential of MOF towards monitoring H2S chemistry in biological system. To the best of our knowledge this is the first example of MOF that exhibit fast and highly selective fluorescence turn-on response towards H2S under physiological conditions.

  5. Graphene oxide membranes with high permeability and selectivity for dehumidification of air

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yongsoon; Liu, Wei; Schwenzer, Birgit; Manandhar, Sandeep; Chase-Woods, Dylan G.; Engelhard, Mark H.; Devanathan, Ram; Fifield, Leonard S.; Bennett, Wendy D.; Ginovska-Pangovska, Bojana; Gotthold, David W.

    2016-09-01

    Hierarchically stacked 2D graphene oxide (GO) membranes are a fascinating and promising new class of materials with the potential for radically improved water vapor/gas separation with excellent selectivity and high permeability. This paper details dehumidification results from flowing gas mixtures through free-standing GO membrane samples prepared by a casting method. The first demonstrated use of free-standing GO membranes for water vapor separation reveals outstanding water vapor permeability and H2O/N2 selectivity. Free-standing GO membranes exhibit extremely high water vapor permeability of 1.82 x 105 Barrer and a water vapor permeance of 1.01 x 10-5 mol/m2sPa, while the nitrogen permeability was below the system’s detection limit, yielding a selectivity >104 in 80% relative humidity (RH) air at 30.8 °C. The results show great potential for a range of energy conversion and environmental applications

  6. ERP markers of target selection discriminate children with high vs. low working memory capacity

    Directory of Open Access Journals (Sweden)

    Andria eShimi

    2015-11-01

    Full Text Available Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults’ selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children’s selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults’ selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc. However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the adult time-window related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children’s neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM

  7. ERP markers of target selection discriminate children with high vs. low working memory capacity.

    Science.gov (United States)

    Shimi, Andria; Nobre, Anna Christina; Scerif, Gaia

    2015-01-01

    Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM) system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults' selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children's selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults' selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc). However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the "adult time-window" related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children's neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM performance in children.

  8. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  9. The Impact of Legalized Abortion on High School Graduation through Selection and Composition

    Science.gov (United States)

    Whitaker, Stephan

    2011-01-01

    This analysis examines whether the legalization of abortion changed high school graduation rates among the children selected into birth. Unless women in all socio-economic circumstances sought abortions to the same extent, increased use of abortion must have changed the distribution of child development inputs. I find that higher abortion ratios…

  10. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  11. Highly Selective Continuous Gas-Phase Methoxycarbonylation of Ethylene with Supported Ionic Liquid Phase (SILP) Catalysts

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; Garcia Suárez, Eduardo José; Fehrmann, Rasmus

    2017-01-01

    Supported ionic liquid phase (SILP) technology was applied for the first time to the Pd-catalyzed continuous, gas-phase methoxycarbonylation of ethylene to selectively produce methyl propanoate (MP) in high yields. The influence of catalyst and reaction parameters such as, for example, ionic liquid...

  12. A high-content subtractive screen for selecting small molecules affecting internalization of GPCRs

    CSIR Research Space (South Africa)

    Kwon, Y-J

    2012-03-01

    Full Text Available transduction to physiology. Here, the authors demonstrate a high-content screen using a panel of GPCR assays to identify receptor selective molecules acting within the kinase/phosphatase inhibitor family. A collection of 88 kinase and phosphatase inhibitors...

  13. Highly selective detection of Zn 2 and Cd 2 with a simple amino ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 1. Highly selective detection of Zn2+ and Cd2+ with a simple amino-terpyridine compound in ... Author Affiliations. Duobin Chao1. School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P. R. China ...

  14. Pd-Diimine : A Highly Selective Catalyst System for the Base-Free Oxidative Heck Reaction

    NARCIS (Netherlands)

    Gottumukkala, Aditya L.; Teichert, Johannes F.; Heijnen, Donis; Eisink, Niek; van Dijk, Simon; Ferrer, Catalina; van den Hoogenband, Adri; Minnaard, Adriaan J.

    2011-01-01

    Pd(OAc)(2)/3 is an efficient catalyst system for the base-free oxidative Heck reaction that outperforms the currently available catalysts for the more challenging substrates studied. The catalyst system is highly selective, and works at room temperature with dioxygen as the oxidant.

  15. High-tide habitat choice : insights from modelling roost selection by shorebirds around a tropical bay

    NARCIS (Netherlands)

    Rogers, Danny I.; Battley, Phil F.; Piersma, Theunis; Van Gils, Jan A.; Rogers, Ken G.

    High tides force shorebirds from intertidal feeding areas to sites known as roosts. We investigated the roost selection of great knots, Calidris tenuirostris, and red knots, Calidris canutus, on a tropical coastline in northwestern Australia, assessing several roost attributes and recording the

  16. Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources

    Energy Technology Data Exchange (ETDEWEB)

    Michael Pernice

    2010-09-01

    INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

  17. A Highly Active and Selective Manganese Oxide Promoted Cobalt-on-Silica Fischer-Tropsch Catalyst

    NARCIS (Netherlands)

    den Breejen, Johan P.|info:eu-repo/dai/nl/304837318; Frey, Anne M.|info:eu-repo/dai/nl/341358851; Yang, Jia; Holmen, Anders; van Schooneveld, Matti M.|info:eu-repo/dai/nl/315032863; de Groot, Frank M. F.|info:eu-repo/dai/nl/08747610X; Stephan, Odile; Bitter, Johannes H.|info:eu-repo/dai/nl/160581435; de Jong, Krijn P.|info:eu-repo/dai/nl/06885580X

    A highly active and selective manganese oxide-promoted silica-supported cobalt catalyst for the Fischer-Tropsch reaction is reported. Co/MnO/SiO2 catalysts were prepared via impregnation of a cobalt nitrate and manganese nitrate precursor, followed by drying and calcination in an NO/He flow. The

  18. Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation

    NARCIS (Netherlands)

    Benvenuti, G.; Bosma, R.; Cuaresma Franco, M.; Janssen, M.G.J.; Barbosa, M.J.; Wijffels, R.H.

    2015-01-01

    An economically feasible microalgal lipid industry heavily relies on the selection of suitable strains. Because microalgae lipid content increases under a range of adverse conditions (e.g. nutrient deprivation, high light intensity), photosynthetic activity is usually strongly reduced. As a

  19. Ir/Sn dual-reagent catalysis towards highly selective alkylation of ...

    Indian Academy of Sciences (India)

    Wintec

    *For correspondence. Ir/Sn dual-reagent catalysis towards highly selective alkylation of arenes and heteroarenes with benzyl alcohols. SUJIT ROY*, SUSMITA PODDER and JOYANTA CHOUDHURY. Organometallics and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology,. Kharagpur 721 302.

  20. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system

    DEFF Research Database (Denmark)

    Shao, Jing; Tao, Youkun; Kammer Hansen, Kent

    2016-01-01

    in current diesel after-treatment techniques. The electrochemical system consisted of an electrochemical cell modified with NOx adsorbents and a diesel oxidation catalyst placed upstream of the cell. The system offers highly selective NOx reduction and a strong resistance to oxygen interference with almost...... zero emission of secondary pollutants....

  1. Materials selection for low temperature processed high Q resonators using ashby approach

    NARCIS (Netherlands)

    Kazmi, S.N.R.; Salm, Cora; Schmitz, Jurriaan

    2009-01-01

    MicroElectroMechanical Systems (MEMS) is an emerging class of microfabrication technology that can truly be anticipated as an enabling technology for future radio frequency (RF) communications. This work focuses on the material selection using the Ashby approach for the high-Q resonators that need

  2. Middle-Class Parents' Educational Work in an Academically Selective Public High School

    Science.gov (United States)

    Stacey, Meghan

    2016-01-01

    This article reports the findings of a study on the nature of parent-school engagement at an academically selective public high school in New South Wales, Australia. Such research is pertinent given recent policies of "choice" and decentralization, making a study of local stakeholders timely. The research comprised a set of interviews…

  3. Hierarchical High-Order Functional Connectivity Networks and Selective Feature Fusion for MCI Classification.

    Science.gov (United States)

    Chen, Xiaobo; Zhang, Han; Lee, Seong-Whan; Shen, Dinggang

    2017-07-01

    Conventional Functional connectivity (FC) analysis focuses on characterizing the correlation between two brain regions, whereas the high-order FC can model the correlation between two brain region pairs. To reduce the number of brain region pairs, clustering is applied to group all the brain region pairs into a small number of clusters. Then, a high-order FC network can be constructed based on the clustering result. By varying the number of clusters, multiple high-order FC networks can be generated and the one with the best overall performance can be finally selected. However, the important information contained in other networks may be simply discarded. To address this issue, in this paper, we propose to make full use of the information contained in all high-order FC networks. First, an agglomerative hierarchical clustering technique is applied such that the clustering result in one layer always depends on the previous layer, thus making the high-order FC networks in the two consecutive layers highly correlated. As a result, the features extracted from high-order FC network in each layer can be decomposed into two parts (blocks), i.e., one is redundant while the other might be informative or complementary, with respect to its previous layer. Then, a selective feature fusion method, which combines sequential forward selection and sparse regression, is developed to select a feature set from those informative feature blocks for classification. Experimental results confirm that our novel method outperforms the best single high-order FC network in diagnosis of mild cognitive impairment (MCI) subjects.

  4. Deep Mutational Scanning: Library Construction, Functional Selection, and High-Throughput Sequencing.

    Science.gov (United States)

    Starita, Lea M; Fields, Stanley

    2015-08-03

    Deep mutational scanning is a highly parallel method that uses high-throughput sequencing to track changes in >10(5) protein variants before and after selection to measure the effects of mutations on protein function. Here we outline the stages of a deep mutational scanning experiment, focusing on the construction of libraries of protein sequence variants and the preparation of Illumina sequencing libraries. © 2015 Cold Spring Harbor Laboratory Press.

  5. Periodic peristalsis increasing acetone-butanol-ethanol productivity during simultaneous saccharification and fermentation of steam-exploded corn straw.

    Science.gov (United States)

    Li, Jingwen; Wang, Lan; Chen, Hongzhang

    2016-11-01

    The acetone-butanol-ethanol (ABE) fermentation of lignocellulose at high solids content has recently attracted extensive attention. However, the productivity of high solids ABE fermentation of lignocellulose is typically low in traditional processes due to the lack of efficient intensifying methods. In the present study, periodic peristalsis, a novel intensifying method, was applied to improve ABE production by the simultaneous saccharification and fermentation (SSF) of steam-exploded corn straw using Clostridium acetobutylicum ATCC824. The ABE concentration and the ABE productivity of SSF at a solids content of 17.5% (w/w) with periodic peristalsis were 17.1 g/L and 0.20 g/(L h), respectively, which were higher than those obtained under static conditions (15.2 g/L and 0.14 g/(L h)). The initial sugar conversion rate over the first 12 h with periodic peristalsis was 4.67 g/(L h) at 10 FPU/g cellulase dosage and 15% (w/w) solids content, an increase of 49.7% compared with the static conditions. With periodic peristalsis, the period of batch fermentation was shortened from 108 h to 84 h. The optimal operating regime was a low frequency (6 h -1 ) of periodic peristalsis in the acid-production phase (0-48 h) of SSF. Therefore, periodic peristalsis should be an effective intensifying method to increase the productivity of ABE fermentation at high solids content. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2

    Directory of Open Access Journals (Sweden)

    Hellberg Michael E

    2010-05-01

    Full Text Available Abstract Background Genes involved in immune functions, including pathogen recognition and the activation of innate defense pathways, are among the most genetically variable known, and the proteins that they encode are often characterized by high rates of amino acid substitutions, a hallmark of positive selection. The high levels of variation characteristic of immunity genes make them useful tools for conservation genetics. To date, highly variable immunity genes have yet to be found in corals, keystone organisms of the world's most diverse marine ecosystem, the coral reef. Here, we examine variation in and selection on a putative innate immunity gene from Oculina, a coral genus previously used as a model for studies of coral disease and bleaching. Results In a survey of 244 Oculina alleles, we find high nonsynonymous variation and a signature of positive selection, consistent with a putative role in immunity. Using computational protein structure prediction, we generate a structural model of the Oculina protein that closely matches the known structure of tachylectin-2 from the Japanese horseshoe crab (Tachypleus tridentatus, a protein with demonstrated function in microbial recognition and agglutination. We also demonstrate that at least three other genera of anthozoan cnidarians (Acropora, Montastrea and Nematostella possess proteins structurally similar to tachylectin-2. Conclusions Taken together, the evidence of high amino acid diversity, positive selection and structural correspondence to the horseshoe crab tachylectin-2 suggests that this protein is 1 part of Oculina's innate immunity repertoire, and 2 evolving adaptively, possibly under selective pressure from coral-associated microorganisms. Tachylectin-2 may serve as a candidate locus to screen coral populations for their capacity to respond adaptively to future environmental change.

  7. An Augmented Common Weight Data Envelopment Analysis for Material Selection in High-tech Industries

    Directory of Open Access Journals (Sweden)

    Iman Shokr

    2016-08-01

    Full Text Available Material selection is a challenging issue in manufacturing processes while the inappropriate selected material may lead to fail the manufacturing process or end user experience especially in high-tech industries such as aircraft and shipping. Every material has different quantitative and qualitative criteria which should be considered simultaneously when assessing and selecting the right material. A weighted linear optimization method (WLOM in the class of data envelopment analysis which exists in literature is adopted to address material selection problem while accounting for both qualitative and quantitative criteria. However, it is demonstrated the adopted WLOM method is not able to produce a full ranking vector for the material selection problems borrowed from the literature. Thus, an augmented common weight data envelopment analysis model (ACWDEA is developed in this paper with the aim of eliminating deficiencies of WLOM model. The proposed ACWDEA is able to produce full ranking vector in decision making problems with less computational complexities in superior to the WLOM. Two material selection problems are solved and results are compared with WLOM and previous methods. Finally, the robustness and effectiveness of the proposed ACWDEA method are evaluated through Spearman’s correlation tests.

  8. Highly Active Ruthenium Metathesis Catalysts Exhibiting Unprecedented Activity and Z-Selectivity

    Science.gov (United States)

    Rosebrugh, Lauren E.; Herbert, Myles B.; Marx, Vanessa M.; Keitz, Benjamin K.; Grubbs, Robert H.

    2013-01-01

    A novel chelated ruthenium-based metathesis catalyst bearing an N-2,6-diisopropylphenyl group is reported and displays near-perfect selectivity for the Z-olefin (>95%), as well as unparalleled TONs of up to 7400, in a variety of homodimerization and industrially relevant metathesis reactions. This derivative and other new catalytically-active species were synthesized using an improved method employing sodium carboxylates to induce the salt metathesis and C-H activation of these chelated complexes. All of these new ruthenium-based catalysts are highly Z-selective in the homodimerization of terminal olefins. PMID:23317178

  9. Binary, ternary and quaternary liquid-liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures

    NARCIS (Netherlands)

    Winkelman, J. G. M.; Kraai, G. N.; Heeres, H. J.

    2009-01-01

    This work reports on liquid-liquid equilibria in the system 1-butanol, oleic acid, water and n-heptane used for biphasic, lipase catalysed esterifications. The literature was studied on the mutual solubility in binary systems of water and each of the organic components. Experimental results were

  10. Steam reforming of n-butanol over Rh/ZrO2 catalyst : Role of 1-butene and butyraldehyde

    NARCIS (Netherlands)

    Harju, Heikki; Lehtonen, Juha; Lefferts, Leon

    2016-01-01

    Steam reforming (SR) of n-butanol and its main reaction intermediates, i.e., 1-butene, and butyraldehyde, was studied over 0,5wt.% Rh/ZrO2 catalyst at 500 and 700°C, atmospheric pressure and steam to carbon (S/C) molar ratio of 4. Coke deposits on the spent catalyst samples were characterized using

  11. Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 for production of acetone, butanol and ethanol

    NARCIS (Netherlands)

    Lopez-Contreras, A.M.; Claassen, P.A.; Mooibroek, H.; Vos, de W.M.

    2000-01-01

    Domestic organic waste (DOW) collected in The Netherlands was analysed and used as substrate for acetone, butanol and ethanol (ABE) production. Two different samples of DOW, referred to as fresh DOW and dried DOW, were treated by extrusion in order to expand the polymer fibres present and to obtain

  12. Efficient Catalytic Conversion of Ethanol to 1-Butanol via the Guerbet Reaction over Copper- and Nickel-Doped Porous

    NARCIS (Netherlands)

    Sun, Zhuohua; Vasconcelos, Anais Couto; Bottari, Giovanni; Stuart, Marc C. A.; Bonura, Giuseppe; Cannilla, Catia; Frusteri, Francesco; Barta, Katalin

    The direct conversion of ethanol to higher value 1-butanol is a catalytic transformation of great interest in light of the expected wide availability of bioethanol originating from the fermentation of renewable resources. In this contribution we describe several novel compositions of porous metal

  13. Acetone enhances the direct analysis of total condensed tannins in plant tissues by the butanol-HCl-iron assay

    Science.gov (United States)

    The butanol-HCl spectrophotometric assay is widely used to quantify extractable and insoluble forms of condensed tannin (CT, syn. proanthocyanidin) in foods, feeds, and foliage of herbaceous and woody plants. However, this method underestimates total CT content when applied directly to plant materia...

  14. Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal

    Science.gov (United States)

    Acetone butanol ethanol (ABE) was produced in an integrated continuous fermentation and product recovery system using a microbial strain Clostridium beijerinckii BA101 for ABE production and fermentation gases (CO2 and H2) for product removal by gas stripping. This represents a continuation of our ...

  15. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth.

    Science.gov (United States)

    Cai, Di; Hu, Song; Miao, Qi; Chen, Changjing; Chen, Huidong; Zhang, Changwei; Li, Ping; Qin, Peiyong; Tan, Tianwei

    2017-01-01

    Two-stage pervaporation for ABE recovery from fermentation broth was studied to reduce the energy cost. The permeate after the first stage in situ pervaporation system was further used as the feedstock in the second stage of pervaporation unit using the same PDMS/PVDF membrane. A total 782.5g/L of ABE (304.56g/L of acetone, 451.98g/L of butanol and 25.97g/L of ethanol) was achieved in the second stage permeate, while the overall acetone, butanol and ethanol separation factors were: 70.7-89.73, 70.48-84.74 and 9.05-13.58, respectively. Furthermore, the theoretical evaporation energy requirement for ABE separation in the consolidate fermentation, which containing two-stage pervaporation and the following distillation process, was estimated less than ∼13.2MJ/kg-butanol. The required evaporation energy was only 36.7% of the energy content of butanol. The novel two-stage pervaporation process was effective in increasing ABE production and reducing energy consumption of the solvents separation system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production

    DEFF Research Database (Denmark)

    Anfelt, Josefine; Kaczmarzyk, Danuta; Shabestary, Kiyan

    2015-01-01

    There is a strong interest in using photosynthetic cyanobacteria as production hosts for biofuels and chemicals. Recent work has shown the benefit of pathway engineering, enzyme tolerance, and co-factor usage for improving yields of fermentation products. An n-butanol pathway was inserted...

  17. Process economics of renewable biorefineries: butanol and ethanol production in integrated bioprocesses from lignocellulosics and other industrial by-products

    Science.gov (United States)

    This chapter provides process economic details on production of butanol from lignocellulosic biomass and glycerol in integrated bioreactors where numerous unit operations are combined. In order to compare various processes, economic evaluations were performed using SuperPro Designer Software (versio...

  18. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge.

    Science.gov (United States)

    Cabrera-Bosquet, Llorenç; Crossa, José; von Zitzewitz, Jarislav; Serret, María Dolors; Araus, José Luis

    2012-05-01

    Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding community from both the public and private sectors world-wide. Both approaches promise to revolutionize the prediction of complex traits, including growth, yield and adaptation to stress. Whereas high-throughput phenotyping may help to improve understanding of crop physiology, most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and comparable to genomic selection. Despite the fact that the two methodological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome), they both consider the targeted traits (e.g. grain yield, growth, phenology, plant adaptation to stress) as a black box instead of dissecting them as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology. This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield. © 2012 Institute of Botany, Chinese Academy of Sciences.

  19. Tracking and flavour tagging selection in the ATLAS High Level Trigger

    CERN Document Server

    Calvetti, Milene; The ATLAS collaboration

    2017-01-01

    In high-energy physics experiments, track based selection in the online environment is crucial for the detection of physics processes of interest for further study. This is of particular importance at the Large Hadron Collider (LHC), where the increasingly harsh collision environment is challenging participating experiments to improve the performance of their online selection. Principle among these challenges is the increasing number of interactions per bunch crossing, known as pileup. In the ATLAS experiment the challenge has been addressed with multiple strategies. Firstly, individual trigger groups focusing on specific physics objects have implemented novel algorithms which make use of the detailed tracking and vertexing performed within the trigger to improve rejection without losing efficiency. Secondly, since 2015 all trigger areas have also benefited from a new high performance inner detector software tracking system implemented in the High Level Trigger. Finally, performance will be further enhanced i...

  20. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods

    Science.gov (United States)

    2015-01-01

    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  1. Selection of high heterozygosity popcorn varieties in Brazil based on SSR markers.

    Science.gov (United States)

    Eloi, I B O; Mangolin, C A; Scapim, C A; Gonçalves, C S; Machado, M F P S

    2012-07-19

    We analyzed genetic structure and diversity among eight populations of popcorn, using SSR loci as genetic markers. Our objectives were to select SSR loci that could be used to estimate genetic diversity within popcorn populations, and to analyze the genetic structure of promising populations with high levels of heterozygosity that could be used in breeding programs. Fifty-seven alleles (3.7 alleles per locus) were detected; the highest effective number of alleles (4.21) and the highest gene diversity (0.763) were found for the Umc2226 locus. A very high level of population differentiation was found (F(ST) = 0.3664), with F(ST) for each locus ranging from 0.1029 (Umc1664) to 0.6010 (Umc2350). This analysis allowed us to identify SSR loci with high levels of heterozygosity and heterozygous varieties, which could be selected for production of inbred lines and for developing new cultivars.

  2. Molybdenum disulfide nanoparticles decorated reduced graphene oxide: highly sensitive and selective hydrogen sensor

    Science.gov (United States)

    Venkatesan, A.; Rathi, Servin; Lee, In-yeal; Park, Jinwoo; Lim, Dongsuk; Kang, Moonshik; Joh, Han-Ik; Kim, Gil-Ho; Kannan, E. S.

    2017-09-01

    In this work, we report on the hydrogen (H2) sensing behavior of reduced graphene oxide (RGO)/molybdenum disulfide (MoS2) nano particles (NPs) based composite film. The RGO/MoS2 composite exhibited a highly enhanced H2 response (∼15.6%) for 200 ppm at an operating temperature of 60 °C. Furthermore, the RGO/MoS2 composite showed excellent selectivity to H2 with respect to ammonia (NH3) and nitric oxide (NO) which are highly reactive gas species. The composite’s response to H2 is 2.9 times higher than that of NH3 whereas for NO it is 3.5. This highly improved H2 sensing response and selectivity of RGO/MoS2 at low operating temperatures were attributed to the structural integration of MoS2 nanoparticles in the nanochannels and pores in the RGO layer.

  3. Genomic mapping of social behavior traits in a F2 cross derived from mice selectively bred for high aggression

    National Research Council Canada - National Science Library

    Nehrenberg, Derrick L; Wang, Shiliang; Buus, Ryan J; Perkins, James; de Villena, Fernando Pardo-Manuel; Pomp, Daniel

    2010-01-01

    Rapid response to selection was previously observed in mice selected for high levels of inter-male aggression based on number of attacks displayed in a novel social interaction test after isolation housing...

  4. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua)

    National Research Council Canada - National Science Library

    Nielsen, Einar E; Hemmer-Hansen, Jakob; Poulsen, Nina A; Loeschcke, Volker; Moen, Thomas; Johansen, Torild; Mittelholzer, Christian; Taranger, Geir-Lasse; Ogden, Rob; Carvalho, Gary R

    2009-01-01

    .... Our global genome scan analysis identified eight outlier gene loci with very high statistical support, likely to be subject to directional selection in local demes, or closely linked to loci under selection...

  5. Sociodemographic differences in selected eating practices among alternative high school students.

    Science.gov (United States)

    Arcan, Chrisa; Kubik, Martha Y; Fulkerson, Jayne A; Story, Mary

    2009-05-01

    Students attending alternative high schools are an at-risk group of youth for poor health behaviors and obesity. However, little is known about their dietary practices. To examine associations between sex, race/ethnicity, and socioeconomic status and selected dietary practices, including consumption of sugar-sweetened beverages, high-fat foods, and fruits and vegetables and fast-food restaurant use, among students attending alternative high schools. Population-based, cross-sectional study. A convenience sample of adolescents (n=145; 52% men; 63% aged sociodemographic differences in fruit/vegetable consumption. Higher socioeconomic status was associated with a higher consumption of regular soda (P=0.027). Racial/ethnic and sex differences in the consumption of regular soda, high-fat foods, and fast-food restaurant use among alternative high school students underscores the importance of implementing health promotion programs in alternative high schools.

  6. Highly Selective Fluorescent Sensing of Proteins Based on a Fluorescent Molecularly Imprinted Nanosensor

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2013-09-01

    Full Text Available A fluorescent molecularly imprinted nanosensor was obtained by grafting imprinted polymer onto the surface of multi-wall carbon nanotubes and post-imprinting treatment with fluorescein isothiocyanate (FITC. The fluorescence of lysozyme-imprinted polymer (Lys-MIP was quenched more strongly by Lys than that of nonimprinted polymer (NIP, which indicated that the Lys-MIP could recognize Lys. The resulted imprinted material has the ability to selectively sense a target protein, and an imprinting factor of 3.34 was achieved. The Lys-MIP also showed selective detection for Lys among other proteins such as cytochrome C (Cyt C, hemoglobin (HB and bovine serum albumin (BSA due to the imprinted sites in the Lys-MIP. This approach combines the high selectivity of surface molecular imprinting technology and fluorescence, and converts binding events into detectable signals by monitoring fluorescence spectra. Therefore, it will have further applications for Lys sensing.

  7. Chiral separation of hesperidin and naringin and its analysis in a butanol extract of Launeae arborescens.

    Science.gov (United States)

    Belboukhari, Nasser; Cheriti, Abdelkrim; Roussel, Christian; Vanthuyne, Nicolas

    2010-04-01

    Two flavanone glycosides were isolated from the aerial part of Launeae arborescens (Asteraceae), which were identified as hesperidin and naringin. They are the most abundant flavonoids in the edible parts of many species of citrus fruits. In this study, we were interested in the chiral separation and determination of the diastereomerisation barriers of hesperidin and naringin by HPLC methods. The chiral separation HPLC screening of diastereomers of hesperidin and naringin by HPLC methods was accomplished in the normal-phase mode using 11 chiral stationary phases and various n-hexane/alcohol mobile phases. The rate constants and activation energy of diastereomerisation (DeltaG#) of flavanones, naringin and hesperidin were determined, respectively, on Chiralpak IC and Chiralpak IA. The analysis of flavanones isolated in butanol extracts of Launeae arborescens were confirmed by HPLC on Chiralpak IC.

  8. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture.

    Science.gov (United States)

    Buehler, Edward A; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies.

  9. Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production.

    Science.gov (United States)

    Procentese, Alessandra; Raganati, Francesca; Olivieri, Giuseppe; Russo, Maria Elena; Rehmann, Lars; Marzocchella, Antonio

    2017-11-01

    Waste lettuce leaves - from the "fresh cut vegetable" industry - were pretreated with the deep eutectic solvent (DES) made of choline chloride - glycerol. Reaction time (3-16h) and the operation temperature (80-150°C) were investigated. Enzymatic glucose and xylose yields of 94.9% and 75.0%, respectively were obtained when the biomass was pretreated at 150°C for 16h. Sugars contained in the biomass hydrolysate were fermented in batch cultures of Clostridium acetobutylicum DSMZ 792. The energy consumption and the energy efficiency related to the DES pretreatment were calculated and compared to the most common lignocellulosic pretreatment processes reported in the literature. The DES pretreatment process was characterized by lower energy required (about 28% decrease and 72% decrease) than the NAOH pretreatment and steam explosion process respectively. The Net Energy Ratio (NER) value related to butanol production via DES biomass pretreatment was assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [Univ. of California, Davis, CA (United States). Dept. of Applied Science

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  11. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    Science.gov (United States)

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  12. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin.

    Science.gov (United States)

    Wang, Xiaoyan; Yu, Jialuo; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-03-15

    A facile strategy was developed to prepare molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin (PC) based on fluorescence resonance energy transfer (FRET), via a sol-gel polymerization process using nitrobenzoxadiazole (NBD) as fluorescent signal source. The ratio of two fluorescence peak emission intensities of NBD and PC was utilized to determine the concentration of PC, which could effectively reduce the background interference and fluctuation of diverse conditions. As a result, this sensor obtained high sensitivity with a low detection limit of 0.14 nM within 6 min, and excellent recognition specificity for PC over its analogues with a high imprinting factor of 9.1. Furthermore, the sensor attained high recoveries in the range of 93.8-110.2% at three spiking levels of PC, with precisions below 4.7% in seawater and lake water samples. The developed sensor strategy demonstrated simplicity, reliability, rapidity, high selectivity and high sensitivity, proving to be a feasible way to develop high efficient fluorescence sensors and thus potentially applicable for ultratrace analysis of complicated matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    Science.gov (United States)

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  14. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst

    Science.gov (United States)

    Gao, Peng; Li, Shenggang; Bu, Xianni; Dang, Shanshan; Liu, Ziyu; Wang, Hui; Zhong, Liangshu; Qiu, Minghuang; Yang, Chengguang; Cai, Jun; Wei, Wei; Sun, Yuhan

    2017-10-01

    Although considerable progress has been made in carbon dioxide (CO2) hydrogenation to various C1 chemicals, it is still a great challenge to synthesize value-added products with two or more carbons, such as gasoline, directly from CO2 because of the extreme inertness of CO2 and a high C-C coupling barrier. Here we present a bifunctional catalyst composed of reducible indium oxides (In2O3) and zeolites that yields a high selectivity to gasoline-range hydrocarbons (78.6%) with a very low methane selectivity (1%). The oxygen vacancies on the In2O3 surfaces activate CO2 and hydrogen to form methanol, and C-C coupling subsequently occurs inside zeolite pores to produce gasoline-range hydrocarbons with a high octane number. The proximity of these two components plays a crucial role in suppressing the undesired reverse water gas shift reaction and giving a high selectivity for gasoline-range hydrocarbons. Moreover, the pellet catalyst exhibits a much better performance during an industry-relevant test, which suggests promising prospects for industrial applications.

  15. Efficient removal and highly selective adsorption of Hg2+ by polydopamine nanospheres with total recycle capacity

    Science.gov (United States)

    Zhang, Xiulan; Jia, Xin; Zhang, Guoxiang; Hu, Jiamei; Sheng, Wenbo; Ma, Zhiyuan; Lu, Jianjiang; Liu, Zhiyong

    2014-09-01

    This study reported a new method for efficient removal of Hg2+ from contaminated water using highly selective adsorptive polydopamine (PDA) nanospheres, which were uniform and had a small diameter (150-200 nm). The adsorption isotherms, kinetics, thermodynamics were investigated. Also, the effects of ionic strength, co-existing ions on removing ability of PDA nanospheres for Hg2+ were studied. Adsorption of Hg2+ was very fast and efficient as adsorption equilibrium was completed within 4 h and the maximum adsorption capacities were 1861.72 mg/g, 2037.22 mg/g, and 2076.81 mg/g at 298 K, 313 K, and 328 K respectively, increasing with increasing of temperature. The PDA nanospheres exhibited highly selective adsorption of Hg2+ and had a total desorption capacity of 100% in hydrochloric acid solution, pH 1. The results showed that the structure of PDA nanospheres remained almost unchanged after recycling five times. Furthermore, X-ray photoelectron spectroscopy (XPS) was employed to determine the elements of PDA nanospheres before and after Hg2+ adsorption. Considering their efficient and highly Hg2+ selective adsorption, total recycle capacity, and high stability, PDA nanospheres will be feasible in a number of practical applications.

  16. A Study on Site Selecting for National Project including High Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many national projects are stopped since sites for the projects are not determined. The sites selections are hold by NIMBY for unpleasant facilities or by PYMFY for preferable facilities among local governments. The followings are the typical ones; NIMBY projects: high level radioactive waste disposal, THAAD, Nuclear power plant(NPP), etc. PIMFY projects: South-east new airport, KTX station, Research center for NPP decommission, etc. The site selection for high level radioactive waste disposal is more difficult problem, and thus government did not decide and postpone to a dead end street. Since it seems that there is no solution for site selection for high level radioactive waste disposal due to NIMBY among local governments, a solution method is proposed in this paper. To decide a high level radioactive waste disposal, the first step is to invite a bid by suggesting a package deal including PIMFY projects such as Research Center for NPP decommission. Maybe potential host local governments are asked to submit sealed bids indicating the minimum compensation sum that they would accept the high level radioactive waste disposal site. If there are more than one local government put in a bid, then decide an adequate site by considering both the accumulated PESS point and technical evaluation results. By considering how fairly preferable national projects and unpleasant national projects are distributed among local government, sites selection for NIMBY or PIMFY facilities is suggested. For NIMBY national projects, risk, cost benefit analysis is useful and required since it generates cost value to be used in the PESS. For many cases, the suggested method may be not adequate. However, similar one should be prepared, and be basis to decide sites for NIMBY or PIMFY national projects.

  17. Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis.

    Science.gov (United States)

    Al-Rajab, Murad; Lu, Joan; Xu, Qiang

    2017-07-01

    This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. High hunting pressure selects for earlier birth date: Wild boar as a case study

    Science.gov (United States)

    Gamelon, M.; Besnard, A.; Gaillard, J.-M.; Servanty, S.; Baubet, E.; Brandt, S.; Gimenez, O.

    2011-01-01

    Exploitation by humans affects the size and structure of populations. This has evolutionary and demographic consequences that have typically being studied independent of one another. We here applied a framework recently developed applying quantitative tools from population ecology and selection gradient analysis to quantify the selection on a quantitative trait-birth date-through its association with multiple fitness components. From the long-term monitoring (22 years) of a wild boar (Sus scrofa scrofa) population subject to markedly increasing hunting pressure, we found that birth dates have advanced by up to 12 days throughout the study period. During the period of low hunting pressure, there was no detectable selection. However, during the period of high hunting pressure, the selection gradient linking breeding probability in the first year of life to birth date was negative, supporting current life-history theory predicting selection for early births to reproduce within the first year of life with increasing adult mortality. ?? 2011 The Author(s). Evolution?? 2011 The Society for the Study of Evolution..

  19. Detecting selection signatures between Duroc and Duroc synthetic pig populations using high-density SNP chip.

    Science.gov (United States)

    Edea, Z; Hong, J-K; Jung, J-H; Kim, D-W; Kim, Y-M; Kim, E-S; Shin, S S; Jung, Y C; Kim, K-S

    2017-08-01

    The development of high throughput genotyping techniques has facilitated the identification of selection signatures of pigs. The detection of genomic selection signals in a population subjected to differential selection pressures may provide insights into the genes associated with economically and biologically important traits. To identify genomic regions under selection, we genotyped 488 Duroc (D) pigs and 155 D × Korean native pigs (DKNPs) using the Porcine SNP70K BeadChip. By applying the FST and extended haplotype homozygosity (EHH-Rsb) methods, we detected genes under directional selection associated with growth/stature (DOCK7, PLCB4, HS2ST1, FBP2 and TG), carcass and meat quality (TG, COL14A1, FBXO5, NR3C1, SNX7, ARHGAP26 and DPYD), number of teats (LOC100153159 and LRRC1), pigmentation (MME) and ear morphology (SOX5), which are all mostly near or at fixation. These results could be a basis for investigating the underlying mutations associated with observed phenotypic variation. Validation using genome-wide association analysis would also facilitate the inclusion of some of these markers in genetic evaluation programs. © 2017 Stichting International Foundation for Animal Genetics.

  20. Highly Selective, Reversible Inhibitor Identified by Comparative Chemoproteomics Modulates Diacylglycerol Lipase Activity in Neurons.

    Science.gov (United States)

    Baggelaar, Marc P; Chameau, Pascal J P; Kantae, Vasudev; Hummel, Jessica; Hsu, Ku-Lung; Janssen, Freek; van der Wel, Tom; Soethoudt, Marjolein; Deng, Hui; den Dulk, Hans; Allarà, Marco; Florea, Bogdan I; Di Marzo, Vincenzo; Wadman, Wytse J; Kruse, Chris G; Overkleeft, Herman S; Hankemeier, Thomas; Werkman, Taco R; Cravatt, Benjamin F; van der Stelt, Mario

    2015-07-15

    Diacylglycerol lipase (DAGL)-α and -β are enzymes responsible for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Selective and reversible inhibitors are required to study the function of DAGLs in neuronal cells in an acute and temporal fashion, but they are currently lacking. Here, we describe the identification of a highly selective DAGL inhibitor using structure-guided and a chemoproteomics strategy to characterize the selectivity of the inhibitor in complex proteomes. Key to the success of this approach is the use of comparative and competitive activity-based proteome profiling (ABPP), in which broad-spectrum and tailor-made activity-based probes are combined to report on the inhibition of a protein family in its native environment. Competitive ABPP with broad-spectrum fluorophosphonate-based probes and specific β-lactone-based probes led to the discovery of α-ketoheterocycle LEI105 as a potent, highly selective, and reversible dual DAGL-α/DAGL-β inhibitor. LEI105 did not affect other enzymes involved in endocannabinoid metabolism including abhydrolase domain-containing protein 6, abhydrolase domain-containing protein 12, monoacylglycerol lipase, and fatty acid amide hydrolase and did not display affinity for the cannabinoid CB1 receptor. Targeted lipidomics revealed that LEI105 concentration-dependently reduced 2-AG levels, but not anandamide levels, in Neuro2A cells. We show that cannabinoid CB1-receptor-mediated short-term synaptic plasticity in a mouse hippocampal slice model can be reduced by LEI105. Thus, we have developed a highly selective DAGL inhibitor and provide new pharmacological evidence to support the hypothesis that "on demand biosynthesis" of 2-AG is responsible for retrograde signaling.

  1. A highly selective, reversible inhibitor identified by comparative chemoproteomics modulates diacylglycerol lipase activity in neurons

    Science.gov (United States)

    Baggelaar, Marc P.; Chameau, Pascal J. P.; Kantae, Vasudev; Hummel, Jessica; Hsu, Ku-Lung; Janssen, Freek; van der Wel, Tom; Soethoudt, Marjolein; Deng, Hui; den Dulk, Hans; Allarà, Marco; Florea, Bogdan I.; Di Marzo, Vincenzo; Wadman, Wytse J.; Kruse, Chris G.; Overkleeft, Herman S.; Hankemeier, Thomas; Werkman, Taco R.; Cravatt, Benjamin F.; van der Stelt, Mario

    2016-01-01

    Diacylglycerol lipase (DAGL)-α and -β are enzymes responsible for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Selective and reversible inhibitors are required to study the function of DAGLs in neuronal cells in an acute and temporal fashion, but they are currently lacking. Here, we describe the identification of a highly selective DAGL inhibitor using structure-guided and a chemoproteomics strategy to characterize the selectivity of the inhibitor in complex proteomes. Key to the success of this approach is the use of comparative and competitive activity-based proteome profiling (ABPP), in which broad-spectrum and tailor-made activity-based probes are combined to report on the inhibition of a protein family in its native environment. Competitive ABPP with broad-spectrum fluorophosphonate-based probes and specific β-lactone-based probes led to the discovery of α-ketoheterocycle LEI105 as a potent, highly selective and reversible dual DAGL-α/DAGL-β inhibitor. LEI105 did not affect other enzymes involved in endocannabinoid metabolism including abhydrolase domain-containing protein 6, abhydrolase domain-containing protein 12, monoacylglycerol lipase and fatty acid amide hydrolase and did not display affinity for the cannabinoid CB1 receptor. Targeted lipidomics revealed that LEI105 concentration-dependently reduced 2-AG levels, but not anandamide levels, in Neuro2A cells. We show that cannabinoid CB1-receptor-mediated short-term synaptic plasticity in a mouse hippocampal slice model can be reduced by LEI105. Thus, we have developed a highly selective DAGL inhibitor and provide new pharmacological evidence to support the hypothesis that ‘on demand biosynthesis’ of 2-AG is responsible for retrograde signaling. PMID:26083464

  2. Oligonucleotide Functionalised Microbeads: Indispensable Tools for High-Throughput Aptamer Selection

    Directory of Open Access Journals (Sweden)

    Lewis A. Fraser

    2015-12-01

    Full Text Available The functionalisation of microbeads with oligonucleotides has become an indispensable technique for high-throughput aptamer selection in SELEX protocols. In addition to simplifying the separation of binding and non-binding aptamer candidates, microbeads have facilitated the integration of other technologies such as emulsion PCR (ePCR and Fluorescence Activated Cell Sorting (FACS to high-throughput selection techniques. Within these systems, monoclonal aptamer microbeads can be individually generated and assayed to assess aptamer candidate fitness thereby helping eliminate stochastic effects which are common to classical SELEX techniques. Such techniques have given rise to aptamers with 1000 times greater binding affinities when compared to traditional SELEX. Another emerging technique is Fluorescence Activated Droplet Sorting (FADS whereby selection does not rely on binding capture allowing evolution of a greater diversity of aptamer properties such as fluorescence or enzymatic activity. Within this review we explore examples and applications of oligonucleotide functionalised microbeads in aptamer selection and reflect upon new opportunities arising for aptamer science.

  3. Oligonucleotide Functionalised Microbeads: Indispensable Tools for High-Throughput Aptamer Selection.

    Science.gov (United States)

    Fraser, Lewis A; Kinghorn, Andrew B; Tang, Marco S L; Cheung, Yee-Wai; Lim, Bryce; Liang, Shaolin; Dirkzwager, Roderick M; Tanner, Julian A

    2015-12-01

    The functionalisation of microbeads with oligonucleotides has become an indispensable technique for high-throughput aptamer selection in SELEX protocols. In addition to simplifying the separation of binding and non-binding aptamer candidates, microbeads have facilitated the integration of other technologies such as emulsion PCR (ePCR) and Fluorescence Activated Cell Sorting (FACS) to high-throughput selection techniques. Within these systems, monoclonal aptamer microbeads can be individually generated and assayed to assess aptamer candidate fitness thereby helping eliminate stochastic effects which are common to classical SELEX techniques. Such techniques have given rise to aptamers with 1000 times greater binding affinities when compared to traditional SELEX. Another emerging technique is Fluorescence Activated Droplet Sorting (FADS) whereby selection does not rely on binding capture allowing evolution of a greater diversity of aptamer properties such as fluorescence or enzymatic activity. Within this review we explore examples and applications of oligonucleotide functionalised microbeads in aptamer selection and reflect upon new opportunities arising for aptamer science.

  4. Miniaturizable Ion-Selective Arrays Based on Highly Stable Polymer Membranes for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Mònica Mir

    2014-07-01

    Full Text Available Poly(vinylchloride (PVC is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs. However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene (PEDOT, where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol diglycidyl ether (PEG, thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors.

  5. Submillimetre observations of WISE-selected high-redshift, luminous AGN and their surrounding overdense environments

    Science.gov (United States)

    Jones, Suzy F.

    2016-08-01

    We present JCMT SCUBA-2 850 μm submillimetre (submm) observations of 10 mid-infrared (mid-IR) luminous active galactic nuclei (AGNs), detected by the Wide-field Infrared Survey Explorer (WISE) all-sky IR survey and 30 that have also been detected by the NVSS/FIRST radio survey. These rare sources are selected by their extremely red mid-IR spectral energy distributions (SEDs). Further investigations show that they are highly obscured, have abundant warm AGN-heated dust and are thought to be experiencing intense AGN feedback. When comparing the number of submm galaxies detected serendipitously in the surrounding 1.5 arcmin to those in blank-field submm surveys, there is a very significant overdensity, of order 3-5, but no sign of radial clustering centred at our primary objects. The WISE-selected AGN thus reside in 10-Mpc-scale overdense environments that could be forming in pre-viralized clusters of galaxies. WISE-selected AGNs appear to be the strongest signposts of high-density regions of active, luminous and dusty galaxies. SCUBA-2 850 μm observations indicate that their submm fluxes are low compared to many popular AGN SED templates, hence the WISE/radio-selected AGNs have either less cold and/or more warm dust emission than normally assumed for typical AGN. Most of the targets have total IR luminosities ≥1013 L⊙, with known redshifts of 20 targets between z ˜ 0.44-4.6.

  6. Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Panos G. Datskos; Michael J. Sepaniak; Nickolay Lavrik; Pampa Dutta; Mustafa Culha

    2005-12-28

    The main objective of this research program is to develop robust and reliable micro-electro-mechanical sensing systems, based on microcantilevers (MCs), that can operate in liquid environments with high levels of sensitivity and selectivity. The chemical responses of MCs result from analyte-induced differential stress at the cantilever surfaces. We aim to employ various surface nanostructuring strategies that enhance these stresses and hence the degree of static bending of the cantilevers. Receptor phases as self assembled monolayers (SAMs) and thin films are being synthesized and tested to provide selectivity. Selectivity is chemically enhanced by using different phases on individual MCs in arrays and by adding a spectroscopic component, surface enhanced Raman spectrometry (SERS), in hybrid approaches to sensing. Significant progress was made in tasks that were listed in the work plan for DOE EMSP project ''Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste''. Several project areas are listed below and discussed and referenced to our literature on the topics.

  7. Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid.

    Science.gov (United States)

    Dapsens, Pierre Y; Mondelli, Cecilia; Pérez-Ramírez, Javier

    2013-05-01

    Desilication of commercial MFI-type (ZSM-5) zeolites in solutions of alkali metal hydroxides is demonstrated to generate highly selective heterogeneous catalysts for the aqueous-phase isomerization of biobased dihydroxyacetone (DHA) to lactic acid (LA). The best hierarchical ZSM-5 sample attains a LA selectivity exceeding 90 %, which is comparable to that of the state-of-the-art catalyst (i.e., the Sn-beta zeolite); this optimized hierarchical catalyst is recyclable over three runs. The Lewis acid sites, which are created through desilication along with the introduction of mesoporosity, are shown to play a crucial role in the formation of the desired product; these cannot be achieved by using other post-synthetic methods, such as steaming or impregnation of aluminum species. Desilication of other metallosilicates, such as Ga-MFI, also leads to high LA selectivity. In the presence of a soluble aluminum source, such as aluminum nitrate, alkaline-assisted alumination can introduce these unique Lewis acid centers in all-silica MFI zeolites. These findings highlight the potential of zeolites in the field of biomass-to-chemical conversion, and expand the applicability of desilication for the generation of selective catalytic centers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Selective catalytic conversion of bio-oil over high-silica zeolites.

    Science.gov (United States)

    Widayatno, Wahyu Bambang; Guan, Guoqing; Rizkiana, Jenny; Du, Xiao; Hao, Xiaogang; Zhang, Zhonglin; Abudula, Abuliti

    2015-03-01

    Four high silica zeolites, i.e., HSZ-385, 890, 960, and 990 were utilized for the selective catalytic conversion of bio-oil from Fallopia japonica to certain chemicals in a fixed-bed reactor. The Beta-type HSZ-960 zeolite showed the highest selectivity to hydrocarbons, especially to aromatics as well as PAH compounds with the lowest unwanted chemicals while HSZ-890 showed high selectivity to aromatics. NH3-Temperature Programmed Desorption (TPD) analysis indicated that different amounts of acid sites in different zeolites determined the catalytic activity for the oxygen removal from bio-oil, in which the acid sites at low temperature (LT) region gave more contribution within the utilized temperature region. The reusability test of HSZ-960 showed the stability of hydrocarbons yield at higher temperature due to the significant contribution of coke gasification which assisted further deoxygenation of bio-oil. These results provide a guidance to select suitable zeolite catalysts for the upgrading of bio-oil in a practical process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs.

    Directory of Open Access Journals (Sweden)

    Ville-Petri Friman

    Full Text Available The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae at 25°C and 37°C for four weeks (N = 5. At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37°C increased bacterial motility and pathogenicity but only in the absence of phages. Exposure to phages increased the phage-resistance of bacteria, and this was costly in terms of decreased maximum population size in the absence of phages. However, this small-magnitude growth cost was not greater with bacteria that had evolved in high temperature regime, and no trade-off was found between phage-resistance and growth rate. As a result, phages constrained the evolution of a temperature-mediated increase in bacterial pathogenicity presumably by preferably infecting the highly motile and virulent bacteria. In more general perspective, our results suggest that the traits connected to bacterial pathogenicity could be indirectly selected as a correlated response by abiotic and biotic factors in environmental reservoirs.

  10. New detection systems of bacteria using highly selective media designed by SMART: selective medium-design algorithm restricted by two constraints.

    Science.gov (United States)

    Kawanishi, Takeshi; Shiraishi, Takuya; Okano, Yukari; Sugawara, Kyoko; Hashimoto, Masayoshi; Maejima, Kensaku; Komatsu, Ken; Kakizawa, Shigeyuki; Yamaji, Yasuyuki; Hamamoto, Hiroshi; Oshima, Kenro; Namba, Shigetou

    2011-01-27

    Culturing is an indispensable technique in microbiological research, and culturing with selective media has played a crucial role in the detection of pathogenic microorganisms and the isolation of commercially useful microorganisms from environmental samples. Although numerous selective media have been developed in empirical studies, unintended microorganisms often grow on such media probably due to the enormous numbers of microorganisms in the environment. Here, we present a novel strategy for designing highly selective media based on two selective agents, a carbon source and antimicrobials. We named our strategy SMART for highly Selective Medium-design Algorithm Restricted by Two constraints. To test whether the SMART method is applicable to a wide range of microorganisms, we developed selective media for Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum, Ralstonia solanacearum, and Xanthomonas campestris. The series of media developed by SMART specifically allowed growth of the targeted bacteria. Because these selective media exhibited high specificity for growth of the target bacteria compared to established selective media, we applied three notable detection technologies: paper-based, flow cytometry-based, and color change-based detection systems for target bacteria species. SMART facilitates not only the development of novel techniques for detecting specific bacteria, but also our understanding of the ecology and epidemiology of the targeted bacteria.

  11. New detection systems of bacteria using highly selective media designed by SMART: selective medium-design algorithm restricted by two constraints.

    Directory of Open Access Journals (Sweden)

    Takeshi Kawanishi

    Full Text Available Culturing is an indispensable technique in microbiological research, and culturing with selective media has played a crucial role in the detection of pathogenic microorganisms and the isolation of commercially useful microorganisms from environmental samples. Although numerous selective media have been developed in empirical studies, unintended microorganisms often grow on such media probably due to the enormous numbers of microorganisms in the environment. Here, we present a novel strategy for designing highly selective media based on two selective agents, a carbon source and antimicrobials. We named our strategy SMART for highly Selective Medium-design Algorithm Restricted by Two constraints. To test whether the SMART method is applicable to a wide range of microorganisms, we developed selective media for Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum, Ralstonia solanacearum, and Xanthomonas campestris. The series of media developed by SMART specifically allowed growth of the targeted bacteria. Because these selective media exhibited high specificity for growth of the target bacteria compared to established selective media, we applied three notable detection technologies: paper-based, flow cytometry-based, and color change-based detection systems for target bacteria species. SMART facilitates not only the development of novel techniques for detecting specific bacteria, but also our understanding of the ecology and epidemiology of the targeted bacteria.

  12. Characterisation and deposition studies of recrystallised lactose from binary mixtures of ethanol/butanol for improved drug delivery from dry powder inhalers.

    Science.gov (United States)

    Kaialy, Waseem; Martin, Gary P; Ticehurst, Martyn D; Royall, Paul; Mohammad, Mohammad A; Murphy, John; Nokhodchi, Ali

    2011-03-01

    Dry powder inhaler formulations comprising commercial lactose-drug blends can show restricted detachment of drug from lactose during aerosolisation, which can lead to poor fine particle fractions (FPFs) which are suboptimal. The aim of the present study was to investigate whether the crystallisation of lactose from different ethanol/butanol co-solvent mixtures could be employed as a method of altering the FPF of salbutamol sulphate from powder blends. Lactose particles were prepared by an anti-solvent recrystallisation process using various ratios of the two solvents. Crystallised lactose or commercial lactose was mixed with salbutamol sulphate and in vitro deposition studies were performed using a multistage liquid impinger. Solid-state characterisation results showed that commercial lactose was primarily composed of the α-anomer whilst the crystallised lactose samples comprised a α/β mixture containing a lower number of moles of water per mole of lactose compared to the commercial lactose. The crystallised lactose particles were also less elongated and more irregular in shape with rougher surfaces. Formulation blends containing crystallised lactose showed better aerosolisation performance and dose uniformity when compared to commercial lactose. The highest FPF of salbutamol sulphate (38.0 ± 2.5%) was obtained for the lactose samples that were crystallised from a mixture of ethanol/butanol (20:60) compared to a FPF of 19.7 ± 1.9% obtained for commercial lactose. Engineered lactose carriers with modified anomer content and physicochemical properties, when compared to the commercial grade, produced formulations which generated a high FPF.

  13. Selection Criteria for Combining High Yield and Striga Resistance in Sorghum

    Directory of Open Access Journals (Sweden)

    Showemimo, FA.

    2003-01-01

    Full Text Available Ten genetically diverse but homozygote sorghum cultivars that are adapted to northern Guinea savanna zone of Nigeria were grown in Striga sick-field for two years. Agronomic traits of maturity, Striga resistance traits and actual grain yield were quantitatively heritable. Correlation coefficients computed among these traits revealed that grain yield was positively correlated with plant vigour, stem girth, root weight, shoot weight and plant height, while Striga count was negative and highly significantly correlated (r= -0.86 with grain yield. Correlated response indicated that selecting for bigger stem girth, high root, good plant vigour and shoot weight, and taller plants under Striga infestation will lead to a corresponding increase of 1.1%, 1.4%, 2.7%, 7.8% and 14.9% respectively on grain yield, while a 52.4% reduction in grain yield is observed by selecting Striga encouraging traits.

  14. High-temperature selective solar thermal absorber based on Fabry-Perot resonance cavity

    Science.gov (United States)

    Wang, Hao; Wang, Liping

    2015-09-01

    In this work, we investigate the design, fabrication and characterization of a multilayer selective solar absorber made of metallic and dielectric thin films. The investigated selective absorber exhibits theoretical spectral absorptance higher than 95% within solar spectrum and infrared emittance lower than 5%, due to the Fabry-Perot resonance and antireflection effect. In terms of fabrication, different materials are tested under high temperatures in order to obtain the structure with best thermal stability. Structures with different materials are fabricated with sputtering, chemical vapor deposition and electron beam evaporation techniques. The near normal reflectance is characterized with a Fourier Transform Infrared spectrometer for these structures before and after heat treatment. Meanwhile, Rutherford backscattering Spectroscopy is employed to analyze the diffusion and oxidation conditions during the heating process. Moreover, better material choice and fabrication techniques are considered to construct solar absorber sample with better high temperature thermal stability.

  15. Highly sensitive and selective sugar detection by terahertz nano-antennas

    CERN Document Server

    Lee, Dong-Kyu; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Kim, Jae Hun; Lee, Taikjin; Son, Joo-Hiuk; Park, Q-Han; Seo, Minah

    2015-01-01

    Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz frequency range. This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz t...

  16. Therapeutic Antibodies to Ganglioside GD2 Evolved from Highly Selective Germline Antibodies

    Directory of Open Access Journals (Sweden)

    Eric Sterner

    2017-08-01

    Full Text Available Antibodies play a crucial role in host defense and are indispensable research tools, diagnostics, and therapeutics. Antibody generation involves binding of genomically encoded germline antibodies followed by somatic hypermutation and in vivo selection to obtain antibodies with high affinity and selectivity. Understanding this process is critical for developing monoclonal antibodies, designing effective vaccines, and understanding autoantibody formation. Prior studies have found that antibodies to haptens, peptides, and proteins evolve from polyspecific germline antibodies. The immunological evolution of antibodies to mammalian glycans has not been studied. Using glycan microarrays, protein microarrays, cell binding studies, and molecular modeling, we demonstrate that therapeutic antibodies to the tumor-associated ganglioside GD2 evolved from highly specific germline precursors. The results have important implications for developing vaccines and monoclonal antibodies that target carbohydrate antigens. In addition, they demonstrate an alternative pathway for antibody evolution within the immune system that is distinct from the polyspecific germline pathway.

  17. Networked Pd (core) @ polyaniline (shell) composite: Highly electro-catalytic ability and unique selectivity

    Science.gov (United States)

    Xia, Youyi; Liu, Ning; Sun, Ling; Xu, Hao; Gao, Hong; Lu, Taofeng

    2018-01-01

    A networked composite (Pd@PANI), which is self-assemblied freely from Pd (core) @polyaniline (shell) nanoparticles, has been prepared successfully by a facilely one-step approach. Owing to the conductive environment and acid-doped behavior provided by PANI, the composite exhibits highly catalytic ability in the reaction involving acidic reactants. For instance, in the HCOOH electro-oxidation, 9.16 times of specific activity (comparing with that when using commercial Pd/C catalyst) is observed. Meanwhile, the as-prepared product is unable to catalyze some other systems like the electro-oxidation of C2H5OH, showing novel and unique selectivity. Those would open up new routes for synthesizing high-performance Pd-based catalysts, and could also shed some light on synthesizing new types of selective catalysts.

  18. Highly selective and potent agonists of sphingosine-1-phosphate 1 (S1P1) receptor.

    Science.gov (United States)

    Vachal, Petr; Toth, Leslie M; Hale, Jeffrey J; Yan, Lin; Mills, Sander G; Chrebet, Gary L; Koehane, Carol A; Hajdu, Richard; Milligan, James A; Rosenbach, Mark J; Mandala, Suzanne

    2006-07-15

    Novel series of sphingosine-1-phosphate (S1P) receptor agonists were developed through a systematic SAR aimed to achieve high selectivity for a single member of the S1P family of receptors, S1P1. The optimized structure represents a highly S1P1-selective and efficacious agonist: S1P1/S1P2, S1P1/S1P3, S1P1/S1P4>10,000-fold, S1P1/S1P5>600-fold, while EC50 (S1P1) <0.2 nM. In vivo experiments are consistent with S1P1 receptor agonism alone being sufficient for achieving desired lymphocyte-lowering effect.

  19. Highly sensitive and selective liquid crystal optical sensor for detection of ammonia.

    Science.gov (United States)

    Niu, Xiaofang; Zhong, Yuanbo; Chen, Rui; Wang, Fei; Luo, Dan

    2017-06-12

    Ammonia detection technologies are very important in environment monitoring. However, most existing technologies are complex and expensive, which limit the useful range of real-time application. Here, we propose a highly sensitive and selective optical sensor for detection of ammonia (NH3) based on liquid crystals (LCs). This optical sensor is realized through the competitive binding between ammonia and liquid crystals on chitosan-Cu2+ that decorated on glass substrate. We achieve a broad detection range of ammonia from 50 ppm to 1250 ppm, with a low detection limit of 16.6 ppm. This sensor is low-cost, simple, fast, and highly sensitive and selective for detection of ammonia. The proposal LC sensing method can be a sensitive detection platform for other molecule monitors such as proteins, DNAs and other heavy metal ions by modifying sensing molecules.

  20. Thermal-hydraulic code selection for modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E.M.J.; Bogaard, J.P.A. van den

    1995-06-01

    In order to study the transient thermal-hydraulic system behaviour of modular high temperature gas-cooled reactors, the thermal-hydraulic computer codes RELAP5, MELCOR, THATCH, MORECA, and VSOP are considered at the Netherlands Energy Research Foundation ECN. This report presents the selection of the most appropriate codes. To cover the range of relevant accidents, a suite of three codes is recommended for analyses of HTR-M and MHTGR reactors. (orig.).

  1. Clinical outcome of intracytoplasmic injection of spermatozoa morphologically selected under high magnification: a prospective randomized study.

    Science.gov (United States)

    Balaban, Basak; Yakin, Kayhan; Alatas, Cengiz; Oktem, Ozgur; Isiklar, Aycan; Urman, Bulent

    2011-05-01

    Recent evidence shows that the selection of spermatozoa based on the analysis of morphology under high magnification (×6000) may have a positive impact on embryo development in cases with severe male factor infertility and/or previous implantation failures. The objective of this prospective randomized study was to compare the clinical outcome of 87 intracytoplasmic morphologically selected sperm injection (IMSI) cycles with 81 conventional intracytoplasmic sperm injection (ICSI) cycles in an unselected infertile population. IMSI did not provide a significant improvement in the clinical outcome compared with ICSI although there were trends for higher implantation (28.9% versus 19.5%), clinical pregnancy (54.0% versus 44.4%) and live birth rates (43.7% versus 38.3%) in the IMSI group. However, severe male factor patients benefited from the IMSI procedure as shown by significantly higher implantation rates compared with their counterparts in the ICSI group (29.6% versus 15.2%, P=0.01). These results suggest that IMSI may improve IVF success rates in a selected group of patients with male factor infertility. New technological developments enable the real time examination of motile spermatozoa with an inverted light microscope equipped with high-power differential interference contrast optics, enhanced by digital imaging. High magnification (over ×6000) provides the identification of spermatozoa with a normal nucleus and nuclear content. Intracytoplasmic injection of spermatozoa selected according to fine nuclear morphology under high magnification may improve the clinical outcome in cases with severe male factor infertility. Copyright © 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  2. High strain-rate compressive behavior and constitutive modeling of selected polymers

    OpenAIRE

    Yokoyama T; Nakai K

    2012-01-01

    The present paper deals with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10−3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves for four different commercially available extruded polymers are determined on the standard split Hopkinson pressure bar. The low and intermediate strain-rates compressive stress-strain relations are measured in an Instron testing machine. The five paramete...

  3. Highly efficient cobalt-doped carbon nitride polymers for solvent-free selective oxidation of cyclohexane

    Directory of Open Access Journals (Sweden)

    Yu Fu

    2017-04-01

    Full Text Available Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of heterogeneous catalyst, cobalt-doped carbon nitride polymer (g-C3N4, was harnessed for the selective oxidation of cyclohexane. X-ray diffraction, Fourier transform infrared spectra and high resolution transmission electron microscope revealed that Co species were highly dispersed in g-C3N4 matrix and the characteristic structure of polymeric g-C3N4 can be retained after Co-doping, although Co-doping caused the incomplete polymerization to some extent. Ultraviolet–visible, Raman and X-ray photoelectron spectroscopy further proved the successful Co doping in g-C3N4 matrix as the form of Co(IIN bonds. For the selective oxidation of cyclohexane, Co-doping can markedly promote the catalytic performance of g-C3N4 catalyst due to the synergistic effect of Co species and g-C3N4 hybrid. Furthermore, the content of Co largely affected the activity of Co-doped g-C3N4 catalysts, among which the catalyst with 9.0 wt% Co content exhibited the highest yield (9.0% of cyclohexanone and cyclohexanol, as well as a high stability. Meanwhile, the reaction mechanism over Co-doped g-C3N4 catalysts was elaborated. Keywords: Selective oxidation of cyclohexane, Oxygen oxidant, Carbon nitride, Co-doping

  4. Selective screening of 650 high risk Iranian patients for detection of inborn error of metabolism

    OpenAIRE

    Narges Pishva; Alie Mirzaee; Zohre Karamizade; Shahnaz Pourarian; Fariba Hemmati; Mostajab Razvi; Forough Saki

    2015-01-01

    Objective: Although metabolic diseases individually are rare ,but overall have an incidence of 1/2000 and can cause devastating and irreversible effect if not diagnosed early and treated promptly. selective screening is an acceptable method for detection of these multi presentation diseases. Method: using panel neonatal screening for detection of metabolic diseases in 650 high risk Iranian patients in Fars province. The following clinical features were used as inclusion criteria for inv...

  5. Ultrasensitive and highly selective detection of Cu2 + ions based on a new carbazole-Schiff

    Science.gov (United States)

    Yin, Jun; Bing, Qijing; Wang, Lin; Wang, Guang

    2018-01-01

    A new chemosensor for Cu2 + based on Schiff base with high sensitivity and selectivity was designed and synthesized. The fluorescence intensity of the chemosensor in CH3CN solution was enhanced 160-fold after the addition of 10 equiv. Cu2 + over other metal ions. In addition, it also facilitates colorimetric detection for Cu2 + in CH3CN solution. The chemosensor displayed low detection limit and fast response time to Cu2 +.

  6. Highly selective and active niobia-supported cobalt catalysts for fischer-tropsch synthesis

    NARCIS (Netherlands)

    Den Otter, Jan H.|info:eu-repo/dai/nl/337238774; De Jong, Krijn P.|info:eu-repo/dai/nl/06885580X

    The performance of Co/Nb2O5 was compared to that of Co/γ-Al2O3 for the Fischer-Tropsch synthesis at 20 bar and over the temperature range of 220-260°C. The C5+ selectivity of Nb2O5-supported cobalt catalysts was found to be very high, i.e. up to 90 wt% C5+ at 220°C. The activity per unit weight

  7. High temperature size selective membranes. Final report, September 1992--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Availability of a high temperature size selective membrane capable of separating hydrogen from carbon dioxide and other gases is seen as highly desirable from an economic perspective. Preparation of such a membrane is technically very difficult due to the limitations that the high temperature places on materials selection. We have prepared high temperature membranes as thin film composites of a porous Blackglas{trademark} support and a carbon molecular sieve selective film. Porous Blackglail{trademark} supports have been prepared by pyrolysis of a formed mixture of Blackglas{trademark} B-staged precursor and short Carbon fibers. Such supports have the necessary smoothness for use as a membrane support, good mechanical properties, and an appropriate pore size distribution. These supports can be made either in flat sheet form or in a tubular configuration. A carbon molecular sieve layer can be added to the support by repeated coating/pyrolysis with a dilute solution of precursor polymer. The preferred precursors are polyimide or polyamic acid. Crack formation is observed after the first pyrolyses, but these cracks are repaired during later pyrolyses. The final membrane thickness is only 2.5 {mu}m. The permeation flux of the membrane for hydrogen ranges from 8.1 x 10{sup -5} at room temperature to 3.0 x 10{sup -3} cm{sup 3} (STP) cm{sup -2} sec{sup -1} cmHg{sup -1} at 717{degrees}C, and the selectivity for hydrogen over nitrogen from 2.8 to 3.8, and a selectivity for hydrogen over carbon dioxide of 2.4. This selectivity is close to the Knudsen diffusion limit. In a companion study, unsupported carbon molecular sieve films were also prepared under pyrolysis conditions similar to those used for the supported film. Hydrogen adsorption porosimetry at 19.7{degrees}K was used to show that, under appropriate activation or pyrolysis conditions, such films can be prepared which adsorb hydrogen to a much greater extent than carbon dioxide.

  8. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.

    Science.gov (United States)

    Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi

    2015-09-01

    Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All

  9. Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics Analysis

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available With the extensive increase in the utilization of energy resources in the modern era, the need of energy extraction from various resources has pronounced in recent years. Thus comprehensive efforts have been made around the globe in the technological development of turbo machines where means of energy extraction is energized fluids. This development led the aviation industry to power boost due to better performing engines. Meanwhile, the structural conformability requirements relative to the functional requirements have also increased with the advent of newer, better performing materials. Thus there is a need to study the material behavior and its usage with the idea of selecting the best possible material for its application. In this work a gas turbine blade of a small turbofan engine, where geometry and aerodynamic data was available, was analyzed for its structural behavior in the proposed mission envelope, where the engine turbine is subjected to high thermal, inertial and aerodynamic loads. Multiphysics Finite Element (FE linear stress analysis was carried out on the turbine blade. The results revealed the upper limit of Ultimate Tensile Strength (UTS for the blade. Based on the limiting factor, high performance alloys were selected from the literature. The two most recommended alloy categories for gas turbine blades are NIMONIC and INCONEL from where total of 21 types of INCONEL alloys and 12 of NIMONIC alloys, available on commercial bases, were analyzed individually to meet the structural requirements. After applying selection criteria, four alloys were finalized from NIMONIC and INCONEL alloys for further analysis. On the basis of stress-strain behavior of finalized alloys, the Multiphysics FE nonlinear stress analysis was then carried out for the selection of the individual alloy by imposing a restriction of Ultimate Factor of Safety (UFOS of 1.33 and yield strength. Final selection is made keeping in view other factors

  10. Effect of acclimation to high ambient temperature of pigs selected for residual feed intake

    OpenAIRE

    Campos, Paulo Henrique Reis Furtado

    2011-01-01

    Thirty-six Large White castrate males belonging to two divergent lines in residual feed intake, with average initial body weight of 50.5 ± 0.9 kg and approximately 92 days of age, were used to evaluate the effects of acclimation to high temperature on the performance, thermoregulatory responses and blood parameters of pigs divergently selected for low and high residual feed intake. The experiment was conducted in two successive replicates of 18 animals each. The first replicate was composed b...

  11. Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting

    Science.gov (United States)

    Casati, Riccardo; Lemke, Jannis Nicolas; Alarcon, Adrianni Zanatta; Vedani, Maurizio

    2017-02-01

    High Si-bearing Al alloys are commonly used in additive manufacturing, but they have moderate mechanical properties. New high-strength compositions are necessary to spread the use of additively manufactured Al parts for heavy-duty structural applications. This work focuses on the microstructure, mechanical behavior, and aging response of an Al alloy 2618 processed by selective laser melting. Calorimetric analysis, electron microscopy, and compression tests were performed in order to correlate the mechanical properties with the peculiar microstructure induced by laser melting and thermal treatments

  12. Prompting one low-fat, high-fiber selection in a fast-food restaurant.

    Science.gov (United States)

    Wagner, J L; Winett, R A

    1988-01-01

    Evidence increasingly links a high-fat, low-fiber diet to coronary heart disease and certain site cancers, indicating a need for large-scale dietary change. Studies showing the effectiveness of particular procedures in specific settings are important at this point. The present study, using an A-B-A-B design and sales data from computerized cash registers, replicated and extended previous work by showing that inexpensive prompts (i.e., signs and fliers) in a national fast-food restaurant could increase the sales of salads, a low-fat, high-fiber menu selection. Suggestions also are made pertinent to more widespread use of the procedures.

  13. Silver nanoparticles supported on alumina-​a highly efficient and selective nanocatalyst for imine reduction

    DEFF Research Database (Denmark)

    Poreddy, Raju; Garcia-Suarez, Eduardo J.; Riisager, Anders

    2014-01-01

    Silver nanoparticles supported on alumina were prepared and tested in the catalytic reduction of various imines to primary and secondary amines and were shown to be exceptionally active and chemoselective. Furthermore, the catalytic activity of the prepared nanocatalyst was also tested...... organic synthesis. Due to the mild reaction conditions and high conversion as well as high selectivity, we consider that the utilization of silver nanoparticles supported on alumina represents an attractive and environmentally friendly alternative to the current synthesis of N-alkyl amines....

  14. Phase equilibrium properties of binary and ternary systems containing di-isopropyl ether + 1-butanol + benzene at 313.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Villamanan, Rosa M. [Grupo de Termodinamica y Calibracion TERMOCAL, Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, Paseo del Cauce s/n, E-47071 Valladolid (Spain)]. E-mail: rvillama@dce.uva.es; Martin, M. Carmen [Grupo de Termodinamica y Calibracion TERMOCAL, Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, Paseo del Cauce s/n, E-47071 Valladolid (Spain)]. E-mail: mcmg@eis.uva.es; Chamorro, Cesar R. [Grupo de Termodinamica y Calibracion TERMOCAL, Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, Paseo del Cauce s/n, E-47071 Valladolid (Spain)]. E-mail: cescha@eis.uva.es; Villamanan, Miguel A. [Grupo de Termodinamica y Calibracion TERMOCAL, Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, Paseo del Cauce s/n, E-47071 Valladolid (Spain)]. E-mail: miguel.villamanan@eis.uva.es; Segovia, Jose J. [Grupo de Termodinamica y Calibracion TERMOCAL, Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, Paseo del Cauce s/n, E-47071 Valladolid (Spain)]. E-mail: josseg@eis.uva.es

    2006-05-15

    (Vapour + liquid) equilibria data of (di-isopropyl ether + 1-butanol + benzene) (di-isopropyl ether + 1-butanol) and (1-butanol + benzene) have been measured at T = 313.15 K using an isothermal total pressure cell. Data reduction by Barker's method provides correlations for the excess molar Gibbs energy using the Margules equation for the binary systems and the Wohl expansion for the ternary. The Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems reported here.

  15. Leucine zipper-mediated targeting of multi-enzyme cascade reactions to inclusion bodies in Escherichia coli for enhanced production of 1-butanol.

    Science.gov (United States)

    Han, Gui Hwan; Seong, Wonjae; Fu, Yaoyao; Yoon, Paul K; Kim, Seong Keun; Yeom, Soo-Jin; Lee, Dae-Hee; Lee, Seung-Goo

    2017-03-01

    Metabolons in nature have evolved to facilitate more efficient catalysis of multistep reactions through the co-localization of functionally related enzymes to cellular organelles or membrane structures. To mimic the natural metabolon architecture, we present a novel artificial metabolon that was created by targeting multi-enzyme cascade reactions onto inclusion body (IB) in Escherichia coli. The utility of this system was examined by co-localizing four heterologous enzymes of the 1-butanol pathway onto an IB that was formed in E. coli through overexpression of the cellulose binding domain (CBD) of Cellulomonas fimi exoglucanase. To target the 1-butanol pathway enzymes to the CBD IB, we utilized a peptide-peptide interaction between leucine zipper (LZ) peptides. We genetically fused the LZ peptide to the N-termini of four heterologous genes involved in the synthetic 1-butanol pathway, whereas an antiparallel LZ peptide was fused to the CBD gene. The in vivo activity of the CBD IB-based metabolon was examined through the determination of 1-butanol synthesis using E. coli transformed with two plasmids containing the LZ-fused CBD and LZ-fused 1-butanol pathway genes, respectively. In vivo synthesis of 1-butanol using the engineered E. coli yielded 1.98g/L of 1-butanol from glucose, representing a 1.5-fold increase over that obtained from E. coli expressing the LZ-fused 1-butanol pathway genes alone. In an attempt to examine the in vitro 1-butanol productivity, we reconstituted CBD IB-based metabolon using CBD IB and individual enzymes of 1-butanol pathway. The 1-butanol productivity of in vitro reconstituted CBD IB-based metabolon using acetoacetyl-CoA as the starting material was 2.29mg/L/h, 7.9-fold higher than that obtained from metabolon-free enzymes of 1-butanol pathway. Therefore, this novel CBD-based artificial metabolon may prove useful in metabolic engineering both in vivo and in vitro for the efficient production of desired products. Copyright © 2017

  16. Using degrees of rate control to improve selective n-butane oxidation over model MOF-encapsulated catalysts: sterically-constrained Ag 3 Pd(111)

    Energy Technology Data Exchange (ETDEWEB)

    Dix, Sean T. [Department of Chemical and Biomolecular Engineering; Clemson University; Clemson, USA; Scott, Joseph K. [Department of Chemical and Biomolecular Engineering; Clemson University; Clemson, USA; Getman, Rachel B. [Department of Chemical and Biomolecular Engineering; Clemson University; Clemson, USA; Campbell, Charles T. [Department of Chemistry; University of Washington; Seattle, USA

    2016-01-01

    Metal nanoparticles encapsulated within metal organic frameworks (MOFs) offer steric restrictions near the catalytic metal that can improve selectivity, much like in enzymes. A microkinetic model is developed for the regio-selective oxidation ofn-butane to 1-butanol with O2over a model for MOF-encapsulated bimetallic nanoparticles. The model consists of a Ag3Pd(111) surface decorated with a 2-atom-thick ring of (immobile) helium atoms which creates an artificial pore of similar size to that in common MOFs, which sterically constrains the adsorbed reaction intermediates. The kinetic parameters are based on energies calculated using density functional theory (DFT). The microkinetic model was analysed at 423 K to determine the dominant pathways and which species (adsorbed intermediates and transition states in the reaction mechanism) have energies that most sensitively affect the reaction rates to the different products, using degree-of-rate-control (DRC) analysis. This analysis revealed that activation of the C–H bond is assisted by adsorbed oxygen atoms, O*. Unfortunately, O* also abstracts H from adsorbed 1-butanol and butoxy as well, leading to butanal as the only significant product. This suggested to (1) add water to produce more OH*, thus inhibiting these undesired steps which produce OH*, and (2) eliminate most of the O2pressure to reduce the O* coverage, thus also inhibiting these steps. Combined with increasing butane pressure, this dramatically improved the 1-butanol selectivity (from 0 to 95%) and the rate (to 2 molecules per site per s). Moreover, 40% less O2was consumed per oxygen atom in the products. Under these conditions, a terminal H in butane is directly eliminated to the Pd site, and the resulting adsorbed butyl combines with OH* to give the desired 1-butanol. These results demonstrate that DRC analysis provides a powerful approach for optimizing catalytic process conditions, and

  17. Using degrees of rate control to improve selective n-butane oxidation over model MOF-encapsulated catalysts: sterically-constrained Ag3Pd(111).

    Science.gov (United States)

    Dix, Sean T; Scott, Joseph K; Getman, Rachel B; Campbell, Charles T

    2016-07-04

    Metal nanoparticles encapsulated within metal organic frameworks (MOFs) offer steric restrictions near the catalytic metal that can improve selectivity, much like in enzymes. A microkinetic model is developed for the regio-selective oxidation of n-butane to 1-butanol with O2 over a model for MOF-encapsulated bimetallic nanoparticles. The model consists of a Ag3Pd(111) surface decorated with a 2-atom-thick ring of (immobile) helium atoms which creates an artificial pore of similar size to that in common MOFs, which sterically constrains the adsorbed reaction intermediates. The kinetic parameters are based on energies calculated using density functional theory (DFT). The microkinetic model was analysed at 423 K to determine the dominant pathways and which species (adsorbed intermediates and transition states in the reaction mechanism) have energies that most sensitively affect the reaction rates to the different products, using degree-of-rate-control (DRC) analysis. This analysis revealed that activation of the C-H bond is assisted by adsorbed oxygen atoms, O*. Unfortunately, O* also abstracts H from adsorbed 1-butanol and butoxy as well, leading to butanal as the only significant product. This suggested to (1) add water to produce more OH*, thus inhibiting these undesired steps which produce OH*, and (2) eliminate most of the O2 pressure to reduce the O* coverage, thus also inhibiting these steps. Combined with increasing butane pressure, this dramatically improved the 1-butanol selectivity (from 0 to 95%) and the rate (to 2 molecules per site per s). Moreover, 40% less O2 was consumed per oxygen atom in the products. Under these conditions, a terminal H in butane is directly eliminated to the Pd site, and the resulting adsorbed butyl combines with OH* to give the desired 1-butanol. These results demonstrate that DRC analysis provides a powerful approach for optimizing catalytic process conditions, and that highly selectivity oxidation can sometimes be achieved by

  18. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  19. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  20. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression.

    Directory of Open Access Journals (Sweden)

    Robert M Paris

    Full Text Available The role of PD-1 expression on CD4 T cells during HIV infection is not well understood. Here, we describe the differential expression of PD-1 in CD127high CD4 T cells within the early/intermediate differentiated (EI (CD27highCD45RAlow T cell population among uninfected and HIV-infected subjects, with higher expression associated with decreased viral replication (HIV-1 viral load. A significant loss of circulating PD-1highCTLA-4low CD4 T cells was found specifically in the CD127highCD27highCD45RAlow compartment, while initiation of antiretroviral treatment, particularly in subjects with advanced disease, reversed these dynamics. Increased HIV-1 Gag DNA was also found in PD-1high compared to PD-1low ED CD4 T cells. In line with an increased susceptibility to HIV infection, PD-1 expression in this CD4 T cell subset was associated with increased activation and expression of the HIV co-receptor, CCR5. Rather than exhaustion, this population produced more IFN-g, MIP1-a, IL-4, IL-10, and IL-17a compared to PD-1low EI CD4 T cells. In line with our previous findings, PD-1high EI CD4 T cells were also characterized by a high expression of CCR7, CXCR5 and CCR6, a phenotype associated with increased in vitro B cell help. Our data show that expression of PD-1 on early-differentiated CD4 T cells may represent a population that is highly functional, more susceptible to HIV infection and selectively lost in chronic HIV infection.

  1. Automated respiratory cycles selection is highly specific and improves respiratory mechanics analysis.

    Science.gov (United States)

    Rigo, Vincent; Graas, Estelle; Rigo, Jacques

    2012-07-01

    Selected optimal respiratory cycles should allow calculation of respiratory mechanic parameters focusing on patient-ventilator interaction. New computer software automatically selecting optimal breaths and respiratory mechanics derived from those cycles are evaluated. Retrospective study. University level III neonatal intensive care unit. Ten mins synchronized intermittent mandatory ventilation and assist/control ventilation recordings from ten newborns. The ventilator provided respiratory mechanic data (ventilator respiratory cycles) every 10 secs. Pressure, flow, and volume waves and pressure-volume, pressure-flow, and volume-flow loops were reconstructed from continuous pressure-volume recordings. Visual assessment determined assisted leak-free optimal respiratory cycles (selected respiratory cycles). New software graded the quality of cycles (automated respiratory cycles). Respiratory mechanic values were derived from both sets of optimal cycles. We evaluated quality selection and compared mean values and their variability according to ventilatory mode and respiratory mechanic provenance. To assess discriminating power, all 45 "t" values obtained from interpatient comparisons were compared for each respiratory mechanic parameter. A total of 11,724 breaths are evaluated. Automated respiratory cycle/selected respiratory cycle selections agreement is high: 88% of maximal κ with linear weighting. Specificity and positive predictive values are 0.98 and 0.96, respectively. Averaged values are similar between automated respiratory cycle and ventilator respiratory cycle. C20/C alone is markedly decreased in automated respiratory cycle (1.27 ± 0.37 vs. 1.81 ± 0.67). Tidal volume apparent similarity disappears in assist/control: automated respiratory cycle tidal volume (4.8 ± 1.0 mL/kg) is significantly lower than for ventilator respiratory cycle (5.6 ± 1.8 mL/kg). Coefficients of variation decrease for all automated respiratory cycle parameters in all infants. "t

  2. Overdensities of SMGs around WISE-selected, ultraluminous, high-redshift AGNs

    Science.gov (United States)

    Jones, Suzy F.; Blain, Andrew W.; Assef, Roberto J.; Eisenhardt, Peter; Lonsdale, Carol; Condon, James; Farrah, Duncan; Tsai, Chao-Wei; Bridge, Carrie; Wu, Jingwen; Wright, Edward L.; Jarrett, Tom

    2017-08-01

    We investigate extremely luminous dusty galaxies in the environments around Wide-field Infrared Survey Explorer (WISE)-selected hot dust-obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and 1.7, respectively. Previous observations have detected overdensities of companion submillimetre-selected sources around 10 Hot DOGs and 30 WISE/radio AGNs, with overdensities of ˜2-3 and ˜5-6, respectively. We find that the space densities in both samples to be overdense compared to normal star-forming galaxies and submillimetre galaxies (SMGs) in the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS). Both samples of companion sources have consistent mid-infrared (mid-IR) colours and mid-IR to submm ratios as SMGs. The brighter population around WISE/radio AGNs could be responsible for the higher overdensity reported. We also find that the star formation rate densities are higher than the field, but consistent with clusters of dusty galaxies. WISE-selected AGNs appear to be good signposts for protoclusters at high redshift on arcmin scales. The results reported here provide an upper limit to the strength of angular clustering using the two-point correlation function. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5-arcmin scale maps.

  3. Rabies infection and specific effect of vaccination in mice selected for high and low immunobiological parameters

    Directory of Open Access Journals (Sweden)

    Queiroz-da-Silva L.H.

    1997-01-01

    Full Text Available Innate and acquired resistance to rabies infection was investigated in mice genetically selected for high (H or low (L antibody responsiveness from selections I, III and IV and in mice selected for maximal (AIRmax or minimal (AIRmin acute inflammatory reaction. These mouse lines were infected intramuscularly with different virus dilutions and the LD50 was determined. The HIII and HIV mouse lines were more susceptible than the LIII and LIV lines and the HI line showed a discrete but higher resistance than the LI line. Analysis of the interline (H x L F1 hybrids from selections III and IV indicated different dominance effects on the "resistant" and" susceptible" phenotypes when the route of vaccination was changed. No differences were observed between the AIRmax and AIRmin mice, suggesting that inflammation plays a minor role in the resistance to rabies virus. The comparison of LD50 in mice vaccinated by distinct routes showed that the highest interline difference occurred after intramuscular vaccination (250-fold between H and L and 800-fold between F1 and L. These results indicate that different mechanisms may participate in acquired antirabies resistance

  4. Inherently stealthy and highly tumor-selective gold nanoraspberries for photothermal cancer therapy.

    Science.gov (United States)

    Gandra, Naveen; Portz, Christopher; Nergiz, Saide Z; Fales, Andrew; Vo-Dinh, Tuan; Singamaneni, Srikanth

    2015-05-14

    Owing to their unique optical properties such as large absorption and scattering cross section and large enhancement of electromagnetic field at the surface, plasmonic nanostructures have received extensive attention as a highly promising class of materials for nano-oncology. Most of the existing plasmonic nanostructures require extensive post-synthesis treatments and biofunctionalization routines to mitigate their cytotoxicity and/or make them tumor-specific. Here, we report one-pot synthesis of a novel class of plasmonic nanostructures, namely, gold nanoraspberries (GRBs) with tunable size and localized surface plasmon resonance by using a naturally abundant polysaccharide, chitosan, which acts as a template and capping agent. Significantly, the GRBs, which do not require any further biofunctionalization, exhibit excellent selectivity to tumor cells, thus enabling locoregional therapy at the cellular level. We demonstrate the tumor-selectivity of GRBs by photothermal ablation of tumor cells selectively from their co-culture with normal cells. The simple, scalable and tumor-selective nature of GRBs makes them excellent candidates for translational plasmonics-based nanomedicine.

  5. Selecting Optimal Feature Set in High-Dimensional Data by Swarm Search

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2013-01-01

    Full Text Available Selecting the right set of features from data of high dimensionality for inducing an accurate classification model is a tough computational challenge. It is almost a NP-hard problem as the combinations of features escalate exponentially as the number of features increases. Unfortunately in data mining, as well as other engineering applications and bioinformatics, some data are described by a long array of features. Many feature subset selection algorithms have been proposed in the past, but not all of them are effective. Since it takes seemingly forever to use brute force in exhaustively trying every possible combination of features, stochastic optimization may be a solution. In this paper, we propose a new feature selection scheme called Swarm Search to find an optimal feature set by using metaheuristics. The advantage of Swarm Search is its flexibility in integrating any classifier into its fitness function and plugging in any metaheuristic algorithm to facilitate heuristic search. Simulation experiments are carried out by testing the Swarm Search over some high-dimensional datasets, with different classification algorithms and various metaheuristic algorithms. The comparative experiment results show that Swarm Search is able to attain relatively low error rates in classification without shrinking the size of the feature subset to its minimum.

  6. Highly efficient selection of epitope specific antibody through competitive yeast display library sorting.

    Science.gov (United States)

    Puri, Vinita; Streaker, Emily; Prabakaran, Ponraj; Zhu, Zhongyu; Dimitrov, Dimiter S

    2013-01-01

    Combinatory antibody library display technologies have been invented and successfully implemented for the selection and engineering of therapeutic antibodies. Precise targeting of important epitopes on the protein of interest is essential for such isolated antibodies to serve as effective modulators of molecular interactions. We developed a strategy to efficiently isolate antibodies against a specific epitope on a target protein from a yeast display antibody library using dengue virus envelope protein domain III as a model target. A domain III mutant protein with a key mutation inside a cross-reactive neutralizing epitope was designed, expressed, and used in the competitive panning of a yeast display naïve antibody library. All the yeast display antibodies that bound to the wild type domain III but not to the mutant were selectively sorted and characterized. Two unique clones were identified and showed cross-reactive binding to envelope protein domain IIIs from different serotypes. Epitope mapping of one of the antibodies confirmed that its epitope overlapped with the intended neutralizing epitope. This novel approach has implications for many areas of research where the isolation of epitope-specific antibodies is desired, such as selecting antibodies against conserved epitope(s) of viral envelope proteins from a library containing high titer, high affinity non-neutralizing antibodies, and targeting unique epitopes on cancer-related proteins.

  7. Selection Effects in the Study of High-Redshift Galaxy Morphology

    Science.gov (United States)

    Elmegreen, Debra M.; Elmegreen, B.

    2010-05-01

    Selection effects from bandshifting, angular resolution limitations, surface brightness dimming, and intergalactic absorption skew our view of high redshift galaxies so that we primarily see those that are extremely bright, massive, and star-bursting. Bandshifting shows a galaxy in its restframe NUV or FUV at z>1, and also biases the determination of age from BViz colors to lower values. The rapid increase in resolvable physical size with redshift for zUDF) noise by redshift z 2. Intergalactic absorption further decreases the brightness of galaxies by factors of a few at this z. These effects combine to make the average star formation rate in an observable clump increase as (1+z)8 for z<1. None of these selection effects directly causes the clump mass to increase with redshift in clumpy galaxies, however. Clumps are well separated from each other and they show up over a wide range of wavelengths. The increase in clump mass with redshift is mostly from an increase in observable galaxy mass. This is because there is a nearly constant ratio of clump mass to galaxy luminosity and the primary selection effect is for bright galaxies, considering that the intrinsic surface brightness for anything observable increases sharply with z. Redshifted versions of local grand design, multiple arm, and flocculent spiral galaxies, along with dwarf irregulars and interacting galaxies, will be shown to indicate which features are observable at high redshift.

  8. Highly selective defluoridation of brick tea infusion by tea waste supported aluminum oxides.

    Science.gov (United States)

    Peng, Chuanyi; Xi, Junjun; Chen, Guijie; Feng, Zhihui; Ke, Fei; Ning, Jingming; Li, Daxiang; Ho, Chi-Tang; Cai, Huimei; Wan, Xiaochun

    2017-03-01

    Brick tea usually contains very high fluoride, which may affect human health. Biosorbents have received much attention for selective removal of fluoride because of low cost, environmental friendliness, and relative safeness. In the present study, a highly selective fluoride tea waste based biosorbent, namely, aluminum (Al) oxide decorated tea waste (Tea-Al), was successfully prepared. The Tea-Al biosorbent was characterized by energy-dispersive spectrometry, Fourier transform infrared spectroscopy, powder X-ray diffraction and X-ray photoelectron spectroscopic analysis. The Tea-Al sample exhibited remarkably selective adsorption for fluoride (52.90%), but a weaker adsorption for other major constituents of brick tea infusion, such as catechins, polyphenols and caffeine, under the same conditions. Fluoride adsorption by Tea-Al for different times obeyed the surface reaction and adsorption isotherms fit the Freundlich model. In addition, the fluoride adsorption mechanism appeared to be an ion exchange between hydroxyl and fluoride ions. Results from this study demonstrated that Tea-Al is a promising biosorbent useful for the removal of fluoride in brick tea infusion. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Different Levels of DNA Methylation Detected in Human Sperms after Morphological Selection Using High Magnification Microscopy

    Directory of Open Access Journals (Sweden)

    Nino Guy Cassuto

    2016-01-01

    Full Text Available Objective. To analyze DNA methylation levels between two groups of spermatozoa taken from the same sample, following morphological selection by high magnification (HM at 6100x microscopy. A prospective study was conducted and studied 876 spermatozoa from 10 randomly selected men. Sperm morphology was characterized at HM according to criteria previously established. High-scoring Score 6 and low-scoring Score 0 sperm were selected. Sperm DNA methylation level was assessed using an immunoassay method targeting 5-methylcytosine residues by fluorescence microscopy with imaging analysis system to detect DNA methylation in single spermatozoon. Results. In total, 448 S6 spermatozoa and 428 S0 spermatozoa were analyzed. A strong relationship was found between sperm DNA methylation levels and sperm morphology observed at HM. Sperm DNA methylation level in the S6 group was significantly lower compared with that in the S0 group (p<10-6, OR = 2.4; and p<0.001, as determined using the Wilcoxon test. Conclusion. Differences in DNA methylation levels are associated with sperm morphology variations as observed at HM, which allows spermatozoa with abnormal levels to be discarded and ultimately decrease birth defects, malformations, and epigenetic diseases that may be transmitted from sperm to offspring in ICSI.

  10. Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion.

    Science.gov (United States)

    Zhang, Zhen; Sui, Xin; Li, Pei; Xie, Ganhua; Kong, Xiang-Yu; Xiao, Kai; Gao, Longcheng; Wen, Liping; Jiang, Lei

    2017-07-05

    The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m 2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.

  11. The selective catalytic cracking of Fischer-Tropsch liquids to high value transportation fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.M.; Reagon, W.J.; Nicholas, J.J.; Hughes, R.D.

    1994-11-01

    Amoco Oil Company, investigated a selective catalytic cracking process (FCC) to convert the Fischer-Tropsch (F-T) gasoline and wax fractions to high value transportation fuels. The primary tasks of this contract were to (1) optimize the catalyst and process conditions of the FCC process for maximum conversion of F-T wax into reactive olefins for later production of C{sub 4}{minus}C{sub 8} ethers, and (2) use the olefin-containing light naphtha obtained from FCC processing of the F-T wax as feedstock for the synthesis of ethers. The catalytic cracking of F-T wax feedstocks gave high conversions with low activity catalysts and low process severities. HZSM-5 and beta zeolite catalysts gave higher yields of propylene, isobutylene, and isoamylenes but a lower gasoline yield than Y zeolite catalysts. Catalyst selection and process optimization will depend on product valuation. For a given catalyst and process condition, Sasol and LaPorte waxes gave similar conversions and product selectivities. The contaminant iron F-T catalyst fines in the LaPorte wax caused higher coke and hydrogen yields.

  12. Review of Mid- to High-Temperature Solar Selective Absorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C. E.

    2002-07-01

    This report describes the concentrating solar power (CSP) systems using solar absorbers to convert concentrated sunlight to thermal electric power. It is possible to achieve solar absorber surfaces for efficient photothermal conversion having high solar absorptance (a) for solar radiation and a low thermal emittance (e) at the operational temperature. A low reflectance (?'' 0) at wavelengths (?) 3 mm and a high reflectance (?'' 1) at l 3 mm characterize spectrally selective surfaces. The operational temperature ranges of these materials for solar applications can be categorized as low temperature (T< 100 C), mid-temperature (100 C< T< 400 C), and high-temperature (T> 400 C). High- and mid-temperature applications are needed for CSP applications. For CSP applications, the ideal spectrally selective surface would be low-cost and easy to manufacture, chemically and thermally stable in air at elevated operating temperatures (T= 500 C), and have a solar absorptance= 0.98 and a thermal emittance= 0.05 at 500 C.

  13. Microalgal process-monitoring based on high-selectivity spectroscopy tools: status and future perspectives.

    Science.gov (United States)

    Podevin, Michael; Fotidis, Ioannis A; Angelidaki, Irini

    2017-11-27

    Microalgae are well known for their ability to accumulate lipids intracellularly, which can be used for biofuels and mitigate CO2 emissions. However, due to economic challenges, microalgae bioprocesses have maneuvered towards the simultaneous production of food, feed, fuel, and various high-value chemicals in a biorefinery concept. On-line and in-line monitoring of macromolecules such as lipids, proteins, carbohydrates, and high-value pigments will be more critical to maintain product quality and consistency for downstream processing in a biorefinery to maintain and valorize these markets. The main contribution of this review is to present current and prospective advances of on-line and in-line process analytical technology (PAT), with high-selectivity - the capability of monitoring several analytes simultaneously - in the interest of improving product quality, productivity, and process automation of a microalgal biorefinery. The high-selectivity PAT under consideration are mid-infrared (MIR), near-infrared (NIR), and Raman vibrational spectroscopies. The current review contains a critical assessment of these technologies in the context of recent advances in software and hardware in order to move microalgae production towards process automation through multivariate process control (MVPC) and software sensors trained on "big data". The paper will also include a comprehensive overview of off-line implementations of vibrational spectroscopy in microalgal research as it pertains to spectral interpretation and process automation to aid and motivate development.

  14. High resolution profiling of ammonium and carbonate with solid contact ion selective electrodes

    Science.gov (United States)

    Athavale, R.; Wehrli, B.; Dinkel, C.; Crespo, G.; Bakker, E.; Brand, A.

    2016-02-01

    Biogeochemical processes involved in the carbon and nitrogen cycle are often confined to very narrow zones in aquatic systems. To study such processes, highly resolved measurements are required, which are not possible by conventional sampling and subsequent laboratory analysis. Potentiometric solid contact ion selective electrodes (SC-ISEs) are promising tools for high resolution in-situ profiling owing to their robustness to pressure changes, their improved detection limits ( 10-6 M) and selectivity and the fast response (t95 ≤ 10s). Conventional SC-ISEs work well under controlled laboratory conditions but can fail to meet the challenges of natural water matrices. In-situ application requires SC-ISEs which are insensitive to changes in redox conditions, pH, and light and to reactive solutes such as high sulfide concentrations. To meet these criteria, we adapted a double layer design by using different combinations of transducing materials and membrane matrices for fabrication of SC-ISEs. We applied these sensors in an custom built profiling set up and demonstrated the potential of this system for high resolution in-situ measurements.

  15. Fearfulness and feather damage in laying hens divergently selected for high and low feather pecking

    DEFF Research Database (Denmark)

    Rodenburg, T Bas; de Haas, Elske N; Nielsen, Birte Lindstrøm

    2010-01-01

    Feather pecking (FP) remains a major welfare and economic problem in laying hens. FP has been found to be related to other behavioural characteristics, such as fearfulness. There are indications that fearful birds are more likely to develop FP. Furthermore, FP can lead to increased fearfulness...... in the victims. To investigate further the relationship between FP and fearfulness, feather damage and behavioural fear responses were recorded in three White Leghorn lines of laying hens: a line selected for high FP (HFP line), a line selected for low FP (LFP line) and an unselected control line (10th...... in fear responses between the HFP and LFP lines were not found, neither in the TI-test, nor in the HA or NO test. As expected, birds from the HFP line had considerably more feather damage than birds from the LFP line and birds from the unselected control line were intermediate. Cages that withdrew from...

  16. Direct Selective Laser Sintering/Melting of High Density Alumina Powder Layers at Elevated Temperatures

    Science.gov (United States)

    Deckers, J.; Meyers, S.; Kruth, J. P.; Vleugels, J.

    Direct selective laser sintering (SLS) or selective laser melting (SLM) are additive manufacturing techniques that can be used to produce three-dimensional ceramic parts directly, without the need for a sacrificial binder. In this paper, a low laser energy density is applied to SLS/SLM high density powder layers of sub-micrometer alumina at elevated temperatures (up to 800̊C). In order to achieve this, a furnace was designed and built into a commercial SLS machine. This furnace was able to produce a homogeneously heated cylindrical zone with a height of 60 mm and a diameter of 32 mm. After optimizing the layer deposition and laser scanning parameters, two ceramic parts with a density up to 85% and grain sizes as low as 5 μm were successfully produced.

  17. Palladium-tin catalysts for the direct synthesis of H₂O₂ with high selectivity.

    Science.gov (United States)

    Freakley, Simon J; He, Qian; Harrhy, Jonathan H; Lu, Li; Crole, David A; Morgan, David J; Ntainjua, Edwin N; Edwards, Jennifer K; Carley, Albert F; Borisevich, Albina Y; Kiely, Christopher J; Hutchings, Graham J

    2016-02-26

    The direct synthesis of hydrogen peroxide (H2O2) from H2 and O2 represents a potentially atom-efficient alternative to the current industrial indirect process. We show that the addition of tin to palladium catalysts coupled with an appropriate heat treatment cycle switches off the sequential hydrogenation and decomposition reactions, enabling selectivities of >95% toward H2O2. This effect arises from a tin oxide surface layer that encapsulates small Pd-rich particles while leaving larger Pd-Sn alloy particles exposed. We show that this effect is a general feature for oxide-supported Pd catalysts containing an appropriate second metal oxide component, and we set out the design principles for producing high-selectivity Pd-based catalysts for direct H2O2 production that do not contain gold. Copyright © 2016, American Association for the Advancement of Science.

  18. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    Science.gov (United States)

    Takahata, Chihiro; Nielsen, Scott Eric; Takii, Akiko; Izumiyama, Shigeyuki

    2014-01-01

    When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  19. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    Directory of Open Access Journals (Sweden)

    Chihiro Takahata

    Full Text Available When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF. Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  20. Solar selective absorber coating for high service temperatures, produced by plasma sputtering

    Science.gov (United States)

    Lanxner, Michael; Elgat, Zvi

    1990-08-01

    Spectrally selective absorber coatings, deposited on engineering material substrates such as stainless steel, have been developed for service as efficient solar photothermal energy converters. The selective solar absorber is based on a multilayer of thin films, produced by sputtering. The main solar absorber is a metal/ceramic (cermet) composite, such as, Mo/Al2th or Mo/Si02, with a graded metal concentration. Such a cermet layer, strongly absorbs radiation over most of the range of the solar spectrum but is transparent to longer wavelength radiation. The cermet layer is deposited on a highly reflecting infrared metal layer. Two more layers were added: An AhO diffusion barrier layer which is deposited first on the substrate and an AI2O or a Si02 antireflection layer which is deposited on the top of the cermet film. In order to better understand the spectral reflectivity of the multilayered selective coating, a procedure for the calculation of the optical properties was developed. After the R&D development phase was successfully completed, a full scale production coating machine was constructed. The production machine is a linear in line coater. The selective coating is deposited on stainless steel tubes, translating in the coating machine while rotating about their axes, along their axial direction. Measurements of reflectance, solar absorptivity, a, thermal emissivity, C, and high temperature durability, are all parts of the quality control routine. The results show values of a in the range 0.96 - 0.98. The thermal emissivity at 350CC is in the range 0.16 - 0.18. Thermal durability tests, show no degradation of the coating when subjected to up to 65O in vacuum for one month and when passed through a temperature cycling test which includes 1200 cycles between temperatures of 150CC and 450CCfor a period of two months.

  1. Optimal site selection for a high-resolution ice core record in East Antarctica

    Science.gov (United States)

    Vance, Tessa R.; Roberts, Jason L.; Moy, Andrew D.; Curran, Mark A. J.; Tozer, Carly R.; Gallant, Ailie J. E.; Abram, Nerilie J.; van Ommen, Tas D.; Young, Duncan A.; Grima, Cyril; Blankenship, Don D.; Siegert, Martin J.

    2016-03-01

    Ice cores provide some of the best-dated and most comprehensive proxy records, as they yield a vast and growing array of proxy indicators. Selecting a site for ice core drilling is nonetheless challenging, as the assessment of potential new sites needs to consider a variety of factors. Here, we demonstrate a systematic approach to site selection for a new East Antarctic high-resolution ice core record. Specifically, seven criteria are considered: (1) 2000-year-old ice at 300 m depth; (2) above 1000 m elevation; (3) a minimum accumulation rate of 250 mm years-1 IE (ice equivalent); (4) minimal surface reworking to preserve the deposited climate signal; (5) a site with minimal displacement or elevation change in ice at 300 m depth; (6) a strong teleconnection to midlatitude climate; and (7) an appropriately complementary relationship to the existing Law Dome record (a high-resolution record in East Antarctica). Once assessment of these physical characteristics identified promising regions, logistical considerations (for site access and ice core retrieval) were briefly considered. We use Antarctic surface mass balance syntheses, along with ground-truthing of satellite data by airborne radar surveys to produce all-of-Antarctica maps of surface roughness, age at specified depth, elevation and displacement change, and surface air temperature correlations to pinpoint promising locations. We also use the European Centre for Medium-Range Weather Forecast ERA 20th Century reanalysis (ERA-20C) to ensure that a site complementary to the Law Dome record is selected. We find three promising sites in the Indian Ocean sector of East Antarctica in the coastal zone from Enderby Land to the Ingrid Christensen Coast (50-100° E). Although we focus on East Antarctica for a new ice core site, the methodology is more generally applicable, and we include key parameters for all of Antarctica which may be useful for ice core site selection elsewhere and/or for other purposes.

  2. Optimal site selection for a high resolution ice core record in East Antarctica

    Science.gov (United States)

    Vance, T.; Roberts, J.; Moy, A.; Curran, M.; Tozer, C.; Gallant, A.; Abram, N.; van Ommen, T.; Young, D.; Grima, C.; Blankenship, D.; Siegert, M.

    2015-11-01

    Ice cores provide some of the best dated and most comprehensive proxy records, as they yield a vast and growing array of proxy indicators. Selecting a site for ice core drilling is nonetheless challenging, as the assessment of potential new sites needs to consider a variety of factors. Here, we demonstrate a systematic approach to site selection for a new East Antarctic high resolution ice core record. Specifically, seven criteria are considered: (1) 2000 year old ice at 300 m depth, (2) above 1000 m elevation, (3) a minimum accumulation rate of 250 mm yr-1 IE, (4) minimal surface re-working to preserve the deposited climate signal, (5) a site with minimal displacement or elevation change of ice at 300 m depth, (6) a strong teleconnection to mid-latitude climate and (7) an appropriately complementary relationship to the existing Law Dome record (a high resolution record in East Antarctica). Once assessment of these physical characteristics identified promising regions, logistical considerations (for site access and ice core retrieval) were briefly considered. We use Antarctic surface mass balance syntheses, along with ground-truthing of satellite data by airborne radar surveys to produce all-of-Antarctica maps of surface roughness, age at specified depth, elevation and displacement change and surface air temperature correlations to pinpoint promising locations. We also use the European Centre for Medium-Range Weather Forecast ERA 20th Century reanalysis (ERA-20C) to ensure a site complementary to the Law Dome record is selected. We find three promising sites in the Indian Ocean sector of East Antarctica in the coastal zone from Enderby Land to the Ingrid Christensen Coast (50-100° E). Although we focus on East Antarctica for a new ice core site, the methodology is more generally applicable and we include key parameters for all of Antarctica which may be useful for ice core site selection elsewhere and/or for other purposes.

  3. FIFS: A data mining method for informative marker selection in high dimensional population genomic data.

    Science.gov (United States)

    Kavakiotis, Ioannis; Samaras, Patroklos; Triantafyllidis, Alexandros; Vlahavas, Ioannis

    2017-11-01

    Single Nucleotide Polymorphism (SNPs) are, nowadays, becoming the marker of choice for biological analyses involving a wide range of applications with great medical, biological, economic and environmental interest. Classification tasks i.e. the assignment of individuals to groups of origin based on their (multi-locus) genotypes, are performed in many fields such as forensic investigations, discrimination between wild and/or farmed populations and others. Τhese tasks, should be performed with a small number of loci, for computational as well as biological reasons. Thus, feature selection should precede classification tasks, especially for Single Nucleotide Polymorphism (SNP) datasets, where the number of features can amount to hundreds of thousands or millions. In this paper, we present a novel data mining approach, called FIFS - Frequent Item Feature Selection, based on the use of frequent items for selection of the most informative markers from population genomic data. It is a modular method, consisting of two main components. The first one identifies the most frequent and unique genotypes for each sampled population. The second one selects the most appropriate among them, in order to create the informative SNP subsets to be returned. The proposed method (FIFS) was tested on a real dataset, which comprised of a comprehensive coverage of pig breed types present in Britain. This dataset consisted of 446 individuals divided in 14 sub-populations, genotyped at 59,436 SNPs. Our method outperforms the state-of-the-art and baseline methods in every case. More specifically, our method surpassed the assignment accuracy threshold of 95% needing only half the number of SNPs selected by other methods (FIFS: 28 SNPs, Delta: 70 SNPs Pairwise FST: 70 SNPs, In: 100 SNPs.) CONCLUSION: Our approach successfully deals with the problem of informative marker selection in high dimensional genomic datasets. It offers better results compared to existing approaches and can aid biologists

  4. Experimental High Speed Milling of the Selected Thin-Walled Component

    Directory of Open Access Journals (Sweden)

    Jozef Zajac

    2017-11-01

    Full Text Available In a technical practice, it is possible to meet thin-walled parts more and more often. These parts are most commonly used in the automotive industry or aircraft industry to reduce the weight of different design part of cars or aircraft. Presented article is focused on experimental high speed milling of selected thin-walled component. The introduction of this article presents description of high speed machining and specification of thin – walled parts. The experiments were carried out using a CNC machine Pinnacle VMC 650S and C45 material - plain carbon steel for automotive components and mechanical engineering. In the last part of the article, described are the arrangements to reduction of deformation of thin-walled component during the experimental high speed milling.

  5. Highly Sensitive and Selective Gas Sensor Using Hydrophilic and Hydrophobic Graphenes

    Science.gov (United States)

    Some, Surajit; Xu, Yang; Kim, Youngmin; Yoon, Yeoheung; Qin, Hongyi; Kulkarni, Atul; Kim, Taesung; Lee, Hyoyoung

    2013-06-01

    New hydrophilic 2D graphene oxide (GO) nanosheets with various oxygen functional groups were employed to maintain high sensitivity in highly unfavorable environments (extremely high humidity, strong acidic or basic). Novel one-headed polymer optical fiber sensor arrays using hydrophilic GO and hydrophobic reduced graphene oxide (rGO) were carefully designed, leading to the selective sensing of volatile organic gases for the first time. The two physically different surfaces of GO and rGO could provide the sensing ability to distinguish between tetrahydrofuran (THF) and dichloromethane (MC), respectively, which is the most challenging issue in the area of gas sensors. The eco-friendly physical properties of GO allowed for faster sensing and higher sensitivity when compared to previous results for rGO even under extreme environments of over 90% humidity, making it the best choice for an environmentally friendly gas sensor.

  6. Recombination and selectional forces in cyanopeptolin NRPS operons from highly similar, but geographically remote Planktothrix strains

    Directory of Open Access Journals (Sweden)

    Kristensen Tom

    2008-08-01

    Full Text Available Abstract Background Cyanopeptolins are nonribosomally produced heptapetides showing a highly variable composition. The cyanopeptolin synthetase operon has previously been investigated in three strains from the genera Microcystis, Planktothrix and Anabaena. Cyanopeptolins are displaying protease inhibitor activity, but the biological function(s is (are unknown. Cyanopeptolin gene cluster variability and biological functions of the peptide variants are likely to be interconnected. Results We have investigated two cyanopeptolin gene clusters from highly similar, but geographically remote strains of the same genus. Sequencing of a nonribosomal peptide synthetase (NRPS cyanopeptolin gene cluster from the Japanese strain Planktothrix NIES 205 (205-oci, showed the 30 kb gene cluster to be highly similar to the oci gene cluster previously described in Planktothrix NIVA CYA 116, isolated in Norway. Both operons contained seven NRPS modules, a sulfotransferase (S and a glyceric acid loading (GA-domain. Sequence analyses showed a high degree of conservation, except for the presence of an epimerase domain in NIES 205 and the regions around the epimerase, showing high substitution rates and Ka/Ks values above 1. The two strains produce almost identical cyanopeptolins, cyanopeptolin-1138 and oscillapeptin E respectively, but with slight differences regarding the production of minor cyanopeptolin variants. These variants may be the result of relaxed adenylation (A-domain specificity in the nonribosomal enzyme complex. Other genetic markers (16S rRNA, ntcA and the phycocyanin cpcBA spacer were identical, supporting that these geographically separated Planktothrix strains are closely related. Conclusion A horizontal gene transfer event resulting in exchange of a whole module-encoding region was observed. Nucleotide statistics indicate that both purifying selection and positive selection forces are operating on the gene cluster. The positive selection forces are

  7. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  8. The n-Butanol Fraction and Rutin from Tartary Buckwheat Improve Cognition and Memory in an In Vivo Model of Amyloid-β-Induced Alzheimer's Disease.

    Science.gov (United States)

    Choi, Ji Yeon; Lee, Jeong Min; Lee, Dong Gu; Cho, Sunghun; Yoon, Young-Ho; Cho, Eun Ju; Lee, Sanghyun

    2015-06-01

    This study examined the beneficial effects of the n-butanol fraction and rutin extracted from tartary buckwheat (TB) on learning and memory deficits in a mouse model of amyloid β (Aβ)-induced Alzheimer's disease (AD). Learning and memory were assessed using the T-maze, object recognition, and Morris water maze tests. Animals administered Aβ showed impaired cognition and memory, which were alleviated by oral administration of an n-butanol fraction and rutin extracted from TB. Similarly, Aβ-induced increases in nitric oxide formation and lipid peroxidation in the brain, liver, and kidneys were attenuated by treatment with n-butanol fraction and rutin from TB in addition to antioxidant effects observed in control (nonAβ-treated) animals. The results of the present study suggest that the n-butanol fraction and rutin extracted from TB are protective against and have possible therapeutic applications for the treatment of AD.

  9. Characterisation and Deposition Studies of Recrystallised Lactose from Binary Mixtures of Ethanol/Butanol for Improved Drug Delivery from Dry Powder Inhalers

    National Research Council Canada - National Science Library

    Kaialy, Waseem; Martin, Gary P; Ticehurst, Martyn D; Royall, Paul; Mohammad, Mohammad A; Murphy, John; Nokhodchi, Ali

    2011-01-01

    ...) which are suboptimal. The aim of the present study was to investigate whether the crystallisation of lactose from different ethanol/butanol co-solvent mixtures could be employed as a method of altering the FPF...

  10. Shape-selective catalysis for synthesis of high-value chemicals from aromatics in coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chunshan; Schobert, H.H. [Pennsylvania State Univ., University Park, PA (United States)

    1996-12-31

    Liquids derived from coals contain numerous aromatic compounds. Many of the one- to four-ring aromatic and polar compounds can be converted into valuable chemicals. Economic analysis of the viability of liquefaction (and related conversion processes) may well produce a different result if some of the aromatics and phenolics are used for making high-value chemicals and some of the liquids for making high-quality fuels such as thermally stable aviation fuels. To make effective use of aromatics in coal liquids, we are studying shape-selective catalytic conversion of multi-ring compounds. The products of such reactions are intermediates for making value-added chemicals, monomers of advanced polymer materials, or components of advanced jet fuels. Two broad strategic approaches can be used for making chemicals and materials from coals. The first is the indirect approach: conversion of coals to liquids, followed by transformation of compounds in the liquids into value-added products. The second is direct conversion of coals to materials and chemicals. Both approaches are being explored in this laboratory. In this paper, we will give an account of our recent work on (1) shape-selective catalysis which demonstrates that high-value chemicals can be obtained from aromatic compounds by catalytic conversion over certain zeolites; and (2) catalytic graphitization of anthracites, which reveals that using some metal compounds promotes graphitization at lower temperatures and may lead to a more efficient process for making graphites from coals.

  11. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to?

    Directory of Open Access Journals (Sweden)

    Andreas Schütze

    2017-03-01

    Full Text Available Monitoring of volatile organic compounds (VOCs is of increasing importance in many application fields such as environmental monitoring, indoor air quality, industrial safety, fire detection, and health applications. The challenges in all of these applications are the wide variety and low concentrations of target molecules combined with the complex matrix containing many inorganic and organic interferents. This paper will give an overview over the application fields and address the requirements, pitfalls, and possible solutions for using low-cost sensor systems for VOC monitoring. The focus lies on highly sensitive metal oxide semiconductor gas sensors, which show very high sensitivity, but normally lack selectivity required for targeting relevant VOC monitoring applications. In addition to providing an overview of methods to increase the selectivity, especially virtual multisensors achieved with dynamic operation, and boost the sensitivity further via novel pro-concentrator concepts, we will also address the requirement for high-performance gas test systems, advanced solutions for operating and read-out electronic, and, finally, a cost-efficient factory and on-site calibration. The various methods will be primarily discussed in the context of requirements for monitoring of indoor air quality, but can equally be applied for environmental monitoring and other fields.

  12. Selective adsorption of protein by a high-efficiency Cu(2+) -cooperated magnetic imprinted nanomaterial.

    Science.gov (United States)

    Shi, Lu; Tang, Yuhai; Hao, Yi; He, Gaiyan; Gao, Ruixia; Tang, Xiaoshuang

    2016-07-01

    We report a core-shell magnetic molecularly imprinted polymer with high affinity through a facile sol-gel method for the selective adsorption of bovine hemoglobin from real bovine blood. Copper ions grafted on the surface of the matrix could immobilize template protein through chelation, which greatly enhances the orderliness of imprinted cavities and affinity of polymers. The obtained products exhibit a desired level of magnetic susceptibility, resulting in the highly efficient adsorption process. The results of adsorption experiments show that the saturation adsorption capacity of imprinted products could reach 116.3 mg/g within 30 min. Meanwhile, the specific binding experiment demonstrates the high selectivity of polymers for bovine hemoglobin. Furthermore, satisfactory reusability is demonstrated by ten adsorption-desorption cycles with no obvious deterioration in binding capacity. Electrophoretic analysis suggests the polymer could be used successfully in separation and enrichment of bovine hemoglobin from the bovine blood sample, which exhibits potential application in pretreatment of proteomics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes.

    Science.gov (United States)

    Wu, Jingjie; Yadav, Ram Manohar; Liu, Mingjie; Sharma, Pranav P; Tiwary, Chandra Sekhar; Ma, Lulu; Zou, Xiaolong; Zhou, Xiao-Dong; Yakobson, Boris I; Lou, Jun; Ajayan, Pulickel M

    2015-05-26

    The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed COOH and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.

  14. Highly Sensitive and Selective Detection of Nanomolar Ferric Ions Using Dopamine Functionalized Graphene Quantum Dots.

    Science.gov (United States)

    Dutta Chowdhury, Ankan; Doong, Ruey-An

    2016-08-17

    The good stability, low cytotoxicity, and excellent photoluminescence property of graphene quantum dots (GQDs) make them an emerging class of promising materials in various application fields ranging from sensor to drug delivery. In the present work, the dopamine-functionalized GQDs (DA-GQDs) with stably bright blue fluorescence were successfully synthesized for low level Fe(3+) ions detection. The as-synthesized GQDs are uniform in size with narrow-distributed particle size of 4.5 ± 0.6 nm and high quantum yield of 10.2%. The amide linkage of GQDs with dopamine, confirmed by using XPS and FTIR spectra, results in the specific interaction between Fe(3+) and catechol moiety of dopamine at the interfaces for highly sensitive and selective detection of Fe(3+). A linear range of 20 nM to 2 μM with a detection limit of 7.6 nM is obtained for Fe(3+) detection by DA-GQDs. The selectivity of DA-GQDs sensing probe is significantly excellent in the presence of other interfering metal ions. In addition, the reaction mechanism for Fe(3+) detection based on the complexation and oxidation of dopamine has been proposed and validated. Results obtained in this study clearly demonstrate the superiority of surface functionalized GQDs to Fe(3+) detection, which can pave an avenue for the development of high performance and robust sensing probes for detection of metal ions and other organic metabolites in environmental and biomedical applications.

  15. Tuning PIM-PI-Based Membranes for Highly Selective Transport of Propylene/Propane

    KAUST Repository

    Swaidan, Ramy J.

    2016-12-06

    To date there exists a great deal of energetic and economic inefficiency in the separation of olefins from paraffins because the principal means of achieving industrial purity requirements is accomplished with very energy intensive cryogenic distillation. Mitigation of the severe energy intensity of the propylene/propane separation has been identified as one of seven chemical separations which can change the landscape of global energy use, and membranes have been targeted as an emerging technology because they offer scalability and lower capital and operating costs. The focus of this work was to evaluate a new direction of material development for the very industrially relevant propylene/propane separation using membranes. The objective was to develop a rational design approach for generating highly selective membranes using a relatively new platform of materials known as polyimides of intrinsic microporosity (PIM-PIs), the prospects of which have never been examined for the propylene/propane separation. Structurally, PIMs comprise relatively inflexible macromolecular architectures integrating contortion sites that help disrupt packing and trap microporous free volume elements (< 20 Å). To date most of the work reported in the literature on this separation is based on conventional low free volume 6FDA-based polyimides which in the best case show moderate C3H6/C3H8 selectivities (<20) with C3H6 permeabilities too low to garner industrial interest. Due to propylene and propane’s relatively large molecular size, we hypothesized that the use of more open structures can provide greater accessibility to the pores necessary to enhance membrane sieving and flux. It has been shown for numerous key gas separations that introduction of microporosity into a polymer structure can defy the notorious permeability/selectivity tradeoff curve and induce simultaneous boosts in both permeability and selectivity. The cornerstone approach to designing state of the art high

  16. SELF-ALIGNED SINGLE CRYSTAL CONTACTED HIGH-SPEED SILICON BIPOLAR TRANSISTOR UTILIZING SELECTIVE (SEG) AND CONFINED SELECTIVE EPITAXIAL GROWTH (CLSEG)

    OpenAIRE

    Siekkinen, James W.; Neudeck, Gerold W.

    1992-01-01

    A new high-speed bipolar transistor structure, the ELOBJT-3, is proposed as a novel application of selective epitaxy technology. The new structure is greatly suited to high-speed ECL circuits, where Ccb, C,, and Rbx are of prime importance. The reduction of these parasitics to their nearly theoretical minimums is accomplished through the use of dielectric isolation and concentric contacting. For extremely high speed operation, dimensions can be scaled to sub-micron size due to the completely ...

  17. An Efficient Method for the Preparative Isolation and Purification of Flavonoid Glycosides and Caffeoylquinic Acid Derivatives from Leaves of Lonicera japonica Thunb. Using High Speed Counter-Current Chromatography (HSCCC) and Prep-HPLC Guided by DPPH-HPLC Experiments

    National Research Council Canada - National Science Library

    Wang, Daijie; Du, Ning; Wen, Lei; Zhu, Heng; Liu, Feng; Wang, Xiao; Du, Jinhua; Li, Shengbo

    2017-01-01

    .... japonica using high speed counter-current chromatography (HSCCC) and prep-HPLC. The n-butanol extract was firstly isolated by HSCCC using methyl tert-butyl ether/n-butanol/acetonitrile/water (0.5% acetic acid) (2:2:1:5, v/v...

  18. A highly selective and sensitive rhodamine-derived fluorescent probe for detection of Cu2 +

    Science.gov (United States)

    Lv, Linlin; Diao, Quanping

    2017-05-01

    A novel water-soluble and reversible fluorescent probe was designed and synthesized based on a rhodamine B derivative. It was used for detection of Cu2 + in drinking water and in living cells with high sensitivity and excellent selectivity. The tested concentration range and the limit of detection (LOD) of the probe were 0-15.00 μmol L- 1 and 0.085 μmol L- 1, respectively. In addition, the mode of binding and mechanism of interaction between the probe and Cu2 + were analyzed by density functional theory (DFT) calculations.

  19. GRINDABILITY OF SELECTED GRADES OF LOW-ALLOY HIGH-SPEED STEEL

    Directory of Open Access Journals (Sweden)

    Jan Jaworski

    2016-09-01

    Full Text Available In this paper, we presents the results of investigations studied the cutting ability and grindability of selected high-speed steels. We analysed the effect of the austenitization temperature on the grain size, the amount of retained austenite and percentage of retained austenite in HS3-1-1 steel. Furthermore, the investigations concerned on the efficiency of the keyway broaches during the whole period of operation were carried out. It was found that the value of average roughness parameter increases together with increases in the grinding depth. The investigations also show the influence of tempering conditions on the volume of carbide phases in HS3-1-1 steel.

  20. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    KAUST Repository

    Wang, Liang

    2015-04-22

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen.

  1. Hitting times of local and global optima in genetic algorithms with very high selection pressure

    Directory of Open Access Journals (Sweden)

    Eremeev Anton V.

    2017-01-01

    Full Text Available The paper is devoted to upper bounds on the expected first hitting times of the sets of local or global optima for non-elitist genetic algorithms with very high selection pressure. The results of this paper extend the range of situations where the upper bounds on the expected runtime are known for genetic algorithms and apply, in particular, to the Canonical Genetic Algorithm. The obtained bounds do not require the probability of fitness-decreasing mutation to be bounded by a constant which is less than one.

  2. Highly Sensitive Fluorescence Probe Based on Functional SBA-15 for Selective Detection of Hg2+

    Directory of Open Access Journals (Sweden)

    Wang Xiaoyu

    2010-01-01

    Full Text Available Abstract An inorganic–organic hybrid fluorescence chemosensor (DA/SBA-15 was prepared by covalent immobilization of a dansylamide derivative into the channels of mesoporous silica material SBA-15 via (3-aminopropyltriethoxysilane (APTES groups. The primary hexagonally ordered mesoporous structure of SBA-15 was preserved after the grafting procedure. Fluorescence characterization shows that the obtained inorganic–organic hybrid composite is highly selective and sensitive to Hg2+ detection, suggesting the possibility for real-time qualitative or quantitative detection of Hg2+ and the convenience for potential application in toxicology and environmental science.

  3. Highly selective and reversible chemosensor for Pd(2+) detected by fluorescence, colorimetry, and test paper.

    Science.gov (United States)

    Wang, Mian; Liu, Xiaomei; Lu, Huizhe; Wang, Hongmei; Qin, Zhaohai

    2015-01-21

    A "turn-on" fluorescent and colorimetric chemosensor (RBS) for Pd(2+) has been designed and synthesized through introduction of sulfur as a ligand atom to Rhodamine B. RBS exhibits high selectivity (freedom from the interference of Hg(2+ )in particular) and sensitivity toward Pd(2+) with a detection limit as low as 2.4 nM. RBS is also a reversible sensor, and it can be made into test paper to detect Pd(2+) in pure water. Compared to the chemosensors that introduced phosphorus to Rhodamine to detect Pd(2+), RBS can be synthesized more simply and economically.

  4. Tumor-specific immunotherapy of murine bladder cancer with butanol-extracted antigens and ethylchlorformate polymerized tumor protein.

    Science.gov (United States)

    Rochester, M G; Sarosdy, M F; Pickett, S H; Stogdill, B J; Lamm, D L

    1988-09-01

    Successful treatment of superficial bladder cancer using nonspecific immunotherapy with Bacillus Calmette-Guerin (BCG) has been well documented. Investigation of two potential tumor-specific immunotherapeutic agents using a murine transitional-cell carcinoma model (MBT-2) is reported. The survival of mice immunized with tumor proteins obtained by treating tumor cells with either 1-butanol or ethylchlorformate was compared to the survival of animals immunized with BCG. Long-term immunity conferred by each of these agents was also assessed. Significant protection by both agents was noted in all treatment groups compared to controls. Long-term immunity was also found to result from treatment with both investigational agents as well as with BCG. Butanol-extracted antigens and ethylchlorformate polymerized tumor protein may be useful as immunotherapeutic alternatives to BCG.

  5. Simultaneous saccharification and fermentation of dilute alkaline-pretreated corn stover for enhanced butanol production by Clostridium saccharobutylicum DSM 13864.

    Science.gov (United States)

    Dong, Jin-Jun; Ding, Ji-Cai; Zhang, Yun; Ma, Li; Xu, Guo-Chao; Han, Rui-Zhi; Ni, Ye

    2016-02-01

    Simultaneous saccharification and fermentation (SSF) process was applied for biobutanol production by Clostridium saccharobutylicum DSM 13864 from corn stover (CS). The key influential factors in SSF process, including corn steep liquor concentration, dry biomass and enzyme loading, SSF temperature, inoculation size and pre-hydrolysis time were optimized. In 5-L bioreactor with SSF process, butanol titer and productivity of 12.3 g/L and 0.257 g/L/h were achieved at 48 h, which were 20.6% and 21.2% higher than those in separate hydrolysis and fermentation (SHF), respectively. The butanol yield reached 0.175 g/g pretreated CS in SSF, representing 50.9% increase than that in SHF (0.116 g/g pretreated CS). This study proves the feasibility of efficient and economic production of biobutanol from CS by SSF. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. A novel algorithm for simultaneous SNP selection in high-dimensional genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Zuber Verena

    2012-10-01

    Full Text Available Abstract Background Identification of causal SNPs in most genome wide association studies relies on approaches that consider each SNP individually. However, there is a strong correlation structure among SNPs that needs to be taken into account. Hence, increasingly modern computationally expensive regression methods are employed for SNP selection that consider all markers simultaneously and thus incorporate dependencies among SNPs. Results We develop a novel multivariate algorithm for large scale SNP selection using CAR score regression, a promising new approach for prioritizing biomarkers. Specifically, we propose a computationally efficient procedure for shrinkage estimation of CAR scores from high-dimensional data. Subsequently, we conduct a comprehensive comparison study including five advanced regression approaches (boosting, lasso, NEG, MCP, and CAR score and a univariate approach (marginal correlation to determine the effectiveness in finding true causal SNPs. Conclusions Simultaneous SNP selection is a challenging task. We demonstrate that our CAR score-based algorithm consistently outperforms all competing approaches, both uni- and multivariate, in terms of correctly recovered causal SNPs and SNP ranking. An R package implementing the approach as well as R code to reproduce the complete study presented here is available from http://strimmerlab.org/software/care/.

  7. Au-decorated sodium titanate nanotubes as high-performance selective photocatalysts for pollutant degradation

    Science.gov (United States)

    El Rouby, Waleed M. A.; Comesaña-Hermo, Miguel; Testa-Anta, Martín; Carbó-Argibay, Enrique; Salgueiriño, Verónica; Pérez-Lorenzo, Moisés; Correa-Duarte, Miguel A.

    2017-04-01

    The bioaccumulation of polycyclic aromatic compounds originating from textile processing industries is nowadays a major environmental problem worldwide. In order to tackle this situation, several inorganic semiconductors have been tested as photocatalysts for the degradation of these harmful pollutants in the search of sustainable and cost-effective solutions. Nevertheless, these semiconductor materials often involve important limitations, such as poor efficiency and selectivity, which, in the end, substantially restrict their implementation at the industrial scale. As an alternative, we herein report the fabrication and application of Au-decorated titanate nanotubes (TNTs) as high-performance architectures for the selective degradation of organic contaminants. This synthetic strategy is intended to establish a synergetic integration of the physicochemical and photocatalytic features of these hybrid nanostructures, by combining the remarkable adsorption capabilities of TNTs with the enhanced light-harvesting efficiency provided by the incorporation of a noble metal component. The obtained results evidence the great potential that rationally designed plasmonic composites may have for the development of selective environmental remediation technologies and in particular on the current challenges faced by the wastewater treatment sector.

  8. Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection.

    Science.gov (United States)

    Fahrenfort, Johannes Jacobus; Grubert, Anna; Olivers, Christian N L; Eimer, Martin

    2017-05-15

    The primary electrophysiological marker of feature-based selection is the N2pc, a lateralized posterior negativity emerging around 180-200 ms. As it relies on hemispheric differences, its ability to discriminate the locus of focal attention is severely limited. Here we demonstrate that multivariate analyses of raw EEG data provide a much more fine-grained spatial profile of feature-based target selection. When training a pattern classifier to determine target position from EEG, we were able to decode target positions on the vertical midline, which cannot be achieved using standard N2pc methodology. Next, we used a forward encoding model to construct a channel tuning function that describes the continuous relationship between target position and multivariate EEG in an eight-position display. This model can spatially discriminate individual target positions in these displays and is fully invertible, enabling us to construct hypothetical topographic activation maps for target positions that were never used. When tested against the real pattern of neural activity obtained from a different group of subjects, the constructed maps from the forward model turned out statistically indistinguishable, thus providing independent validation of our model. Our findings demonstrate the power of multivariate EEG analysis to track feature-based target selection with high spatial and temporal precision.

  9. Spectroscopic Characteristics of Highly Selective Manganese Catalysis in Acqueous Polyurethane Systems

    Science.gov (United States)

    Cakic, Suzana; Lacnjevac, Caslav; Nikolic, Goran; Stamenkovic, Jakov; Rajkovic, Milos B.; Gligoric, Miladin; Barac, Miroljub

    2006-01-01

    The latest investigations on producing more efficient catalytic aqueous polyurethane systems are in the domain of metal complexes with mixed ligands. In our previous research works, the high selectivity for the isocyanate-hydroxyl reaction in aqueous polyurethane systems has been shown by the manganese(III) mixed-ligand complexes. The two new complexes have been prepared with two acetylacetonate (acac) ligands and one maleate ligand and its hydroxylamine derivative of the general formula [Mn(C5H7O2)2L]. Their structures have been established by using the fundamental analyses, the FTIR and UV/VIS spectroscopic methods, as well as the magnetic measurements. In order to explain the different selectivity of the manganese(III) mixed-ligand complexes, the UV and ESR spectroscopy have been employed to determine the kinetics of the complexes' decomposition. The thermal stability of the complexes has been determined by way of the dynamic TG method at the heating rate of 5°C·min-1 and at the temperature ranged 20-550°C. It suggests the decomposition of the complexes by loss of acid ligand. The main factor in the selective catalysis control in the aqueous polyurethane systems is the nature of the acid ligands and their impact on the manganese(II)/manganese(III) equilibrium.

  10. Spectroscopic Characteristics of Highly Selective Manganese Catalysis in Acqueous Polyurethane Systems

    Directory of Open Access Journals (Sweden)

    Miroljub Barac

    2006-11-01

    Full Text Available The latest investigations on producing more efficient catalytic aqueouspolyurethane systems are in the domain of metal complexes with mixed ligands. In ourprevious research works, the high selectivity for the isocyanate-hydroxyl reaction inaqueous polyurethane systems has been shown by the manganese(III mixed-ligandcomplexes. The two new complexes have been prepared with two acetylacetonate (acacligands and one maleate ligand and its hydroxylamine derivative of the general formula[Mn(C5H7O22L]. Their structures have been established by using the fundamental analyses,the FTIR and UV/VIS spectroscopic methods, as well as the magnetic measurements. Inorder to explain the different selectivity of the manganese(III mixed-ligand complexes, theUV and ESR spectroscopy have been employed to determine the kinetics of the complexes’decomposition. The thermal stability of the complexes has been determined by way of thedynamic TG method at the heating rate of 5°C⋅min-1 and at the temperature ranged 20-550°C. It suggests the decomposition of the complexes by loss of acid ligand. The main factor in the selective catalysis control in theaqueous polyurethane systems is the nature of the acid ligands and their impact on themanganese(II/manganese(III equilibrium.

  11. Emulsion PCR: a high efficient way of PCR amplification of random DNA libraries in aptamer selection.

    Directory of Open Access Journals (Sweden)

    Keke Shao

    Full Text Available Aptamers are short RNA or DNA oligonucleotides which can bind with different targets. Typically, they are selected from a large number of random DNA sequence libraries. The main strategy to obtain aptamers is systematic evolution of ligands by exponential enrichment (SELEX. Low efficiency is one of the limitations for conventional PCR amplification of random DNA sequence library in aptamer selection because of relative low products and high by-products formation efficiency. Here, we developed emulsion PCR for aptamer selection. With this method, the by-products formation decreased tremendously to an undetectable level, while the products formation increased significantly. Our results indicated that by-products in conventional PCR amplification were from primer-product and product-product hybridization. In emulsion PCR, we can completely avoid the product-product hybridization and avoid the most of primer-product hybridization if the conditions were optimized. In addition, it also showed that the molecule ratio of template to compartment was crucial to by-product formation efficiency in emulsion PCR amplification. Furthermore, the concentration of the Taq DNA polymerase in the emulsion PCR mixture had a significant impact on product formation efficiency. So, the results of our study indicated that emulsion PCR could improve the efficiency of SELEX.

  12. Detection of genomic variation by selection of a 9 mb DNA region and high throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Sergey I Nikolaev

    Full Text Available Detection of the rare polymorphisms and causative mutations of genetic diseases in a targeted genomic area has become a major goal in order to understand genomic and phenotypic variability. We have interrogated repeat-masked regions of 8.9 Mb on human chromosomes 21 (7.8 Mb and 7 (1.1 Mb from an individual from the International HapMap Project (NA12872. We have optimized a method of genomic selection for high throughput sequencing. Microarray-based selection and sequencing resulted in 260-fold enrichment, with 41% of reads mapping to the target region. 83% of SNPs in the targeted region had at least 4-fold sequence coverage and 54% at least 15-fold. When assaying HapMap SNPs in NA12872, our sequence genotypes are 91.3% concordant in regions with coverage > or = 4-fold, and 97.9% concordant in regions with coverage > or = 15-fold. About 81% of the SNPs recovered with both thresholds are listed in dbSNP. We observed that regions with low sequence coverage occur in close proximity to low-complexity DNA. Validation experiments using Sanger sequencing were performed for 46 SNPs with 15-20 fold coverage, with a confirmation rate of 96%, suggesting that DNA selection provides an accurate and cost-effective method for identifying rare genomic variants.

  13. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  14. Measurement of electron spin-lattice relaxation times in radical doped butanol samples at 1 K using the NEDOR method

    Energy Technology Data Exchange (ETDEWEB)

    Hess, C., E-mail: hess@ep1.rub.de [Ruhr-Universitaet Bochum, Experimentalphysik I, Universitaetsstr. 150, 44801 Bochum (Germany); Herick, J.; Berlin, A.; Meyer, W.; Reicherz, G. [Ruhr-Universitaet Bochum, Experimentalphysik I, Universitaetsstr. 150, 44801 Bochum (Germany)

    2012-12-01

    The electron spin-lattice relaxation time (T{sub 1e}) of TEMPO- and trityl-doped butanol samples at 2.5 T and temperatures between 0.95 K and 2.17 K was studied by pulsed nuclear magnetic resonance (NMR) using the nuclear-electron double resonance (NEDOR) method. This method is based on the idea to measure the NMR lineshift produced by the local field of paramagnetic impurities, whose polarization can be manipulated. This is of technical advantage as measurements can be performed under conditions typically used for the dynamic nuclear polarization (DNP) process - in our case 2.5 T and temperatures around 1 K - where a direct measurement on the electronic spins would be far more complicated to perform. As T{sub 1e} is a crucial parameter determining the overall efficiency of DNP, the effect of the radical type, its spin concentration, the temperature and the oxygen content on T{sub 1e} has been investigated. For radical concentrations as used in DNP (several 10{sup 19} spins/cm{sup 3}) the relaxation rate (T{sub 1e}{sup -1}) has shown a linear dependence on the paramagnetic electron concentration for both radicals investigated. Experiments with perdeuterated and ordinary butanol have given no indication for any influence of the host materials isotopes. The measured temperature dependence has shown an exponential characteristic. It is further observed that the oxygen content in the butanol samples has a considerable effect on the electron relaxation time and thus influences the nuclear relaxation time and polarization rate during the DNP. The experiments also show a variation in the NMR linewidth, leading to comparable time constants as determined by the lineshift. NEDOR measurements were also performed on irradiated, crystal grains of {sup 6}LiD. These samples exhibited a linewidth behavior similar to that of the cylindrically shaped butanol samples.

  15. Raman-shifted wavelength-selectable pulsed fiber laser with high repetition rate and high pulse energy in the visible.

    Science.gov (United States)

    Xu, L; Alam, S; Kang, Q; Shepherd, D P; Richardson, D J

    2017-01-09

    A high-pulse-energy, diffraction-limited, wavelength-selectable, visible source, based on Raman frequency shifting of a frequency-doubled Yb-doped fiber laser, has been studied. The relative length-scaling laws of Raman gain and self-phase modulation push the design towards short fiber lengths with large core size. It is experimentally demonstrated that the Raman clean-up effect in a graded-index multi-mode fiber is not sufficient to obtain diffraction-limited beam quality in the short fiber length. Thus, a large-core photonic crystal fiber is used to maintain diffraction-limited performance and output pulse energies of ~1 μJ, at a 1-MHz repetition rate and 1.3-ns pulse-width are successfully achieved. This step-tunable visible source should find applications in photoacoustic microscopy.

  16. Pipe leak diagnostic using high frequency piezoelectric pressure sensor and automatic selection of intrinsic mode function

    Science.gov (United States)

    Yusop, Hanafi M.; Ghazali, M. F.; Yusof, M. F. M.; Remli, M. A. Pi; Kamarulzaman, M. H.

    2017-10-01

    In a recent study, the analysis of pressure transient signals could be seen as an accurate and low-cost method for leak and feature detection in water distribution systems. Transient phenomena occurs due to sudden changes in the fluid’s propagation in pipelines system caused by rapid pressure and flow fluctuation due to events such as closing and opening valves rapidly or through pump failure. In this paper, the feasibility of the Hilbert-Huang transform (HHT) method/technique in analysing the pressure transient signals in presented and discussed. HHT is a way to decompose a signal into intrinsic mode functions (IMF). However, the advantage of HHT is its difficulty in selecting the suitable IMF for the next data postprocessing method which is Hilbert Transform (HT). This paper reveals that utilizing the application of an integrated kurtosis-based algorithm for a z-filter technique (I-Kaz) to kurtosis ratio (I-Kaz-Kurtosis) allows/contributes to/leads to automatic selection of the IMF that should be used. This technique is demonstrated on a 57.90-meter medium high-density polyethylene (MDPE) pipe installed with a single artificial leak. The analysis results using the I-Kaz-kurtosis ratio revealed/confirmed that the method can be used as an automatic selection of the IMF although the noise level ratio of the signal is low. Therefore, the I-Kaz-kurtosis ratio method is recommended as a means to implement an automatic selection technique of the IMF for HHT analysis.

  17. Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB.

    Science.gov (United States)

    Lu, Congcong; Yu, Le; Varghese, Saju; Yu, Mingrui; Yang, Shang-Tian

    2017-11-01

    Clostridium beijerinckii CC101 was engineered to overexpress aldehyde/alcohol dehydrogenase (adhE2) and CoA-transferase (ctfAB). Solvent production and acid assimilation were compared between the parental and engineered strains expressing only adhE2 (CC101-SV4) and expressing adhE2, ald and ctfAB (CC101-SV6). CC101-SV4 showed an early butanol production from glucose but stopped pre-maturely at a low butanol concentration of ∼6g/L. Compared to CC101, CC101-SV6 produced more butanol (∼12g/L) from glucose and was able to re-assimilate more acids, which prevented "acid crash" and increased butanol production, under all conditions studied. CC101-SV6 also showed better ability in using glucose and xylose present in sugarcane bagasse hydrolysate, and produced 9.4g/L solvents (acetone, butanol and ethanol) compared to only 2.6g/L by CC101, confirming its robustness and better tolerance to hydrolysate inhibitors. The engineered strain of C. beijerinckii overexpressing adhE2 and ctfAB should have good potential for producing butanol from lignocellulosic biomass hydrolysates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Antinociceptive activities of crude methanolic extract and phases, n-butanolic, chloroformic and ethyl acetate from Caulerpa racemosa (Caulerpaceae

    Directory of Open Access Journals (Sweden)

    Everton T. Souza

    Full Text Available In this study, we attempted to identify the possible antinociceptive actions of n-butanolic phase, chloroformic phase, ethyl acetate phase and crude methanolic extract obtained from Caulerpa racemosa. This seaweed is cosmopolitan in world, mainly in tropical regions. The n-butanolic, chloroformic, ethyl acetate phases and crude methanolic extract, all administered orally in the concentration of 100 mg/kg, reduced the nociception produced by acetic acid by 47.39%, 70.51%, 76.11% and 72.24%, respectively. In the hotplate test the chloroformic and ethyl acetate phase were activite in this models. In the neurogenic phase on formalin test, were observed that crude methanolic extract (51.77%, n-butanolic phase (35.12%, chloroformic phase (32.70% and indomethacin (32.06% were effective in inhibit the nociceptive response. In the inflammatory phase, only the ethyl acetate phase (75.43% and indomethacin (47.83% inhibited significantly the nociceptive response. Based on these data, we can infer that the ethyl acetate phase shows a significant anti-inflammatory profile, whose power has not yet been determined. However, pharmacological and chemical studies are continuing in order to characterize the mechanism(s responsible for the antinociceptive action and also to identify other active principles present in Caulerpa racemosa.

  19. Simultaneous glucose and xylose uptake by an acetone/butanol/ethanol producing laboratory Clostridium beijerinckii strain SE-2.

    Science.gov (United States)

    Zhang, Jie; Zhu, Wen; Xu, Haipeng; Li, Yan; Hua, Dongliang; Jin, Fuqiang; Gao, Mintian; Zhang, Xiaodong

    2016-04-01

    Most butanol-producing strains of Clostridium prefer glucose over xylose, leading to a slower butanol production from lignocellulose hydrolysates. It is therefore beneficial to find and use a strain that can simultaneously use both glucose and xylose. Clostridium beijerinckii SE-2 strain assimilated glucose and xylose simultaneously and produced ABE (acetone/butanol/ethanol). The classic diauxic growth behavior was not seen. Similar rates of sugar consumption (4.44 mM glucose h(-1) and 6.66 mM xylose h(-1)) were observed suggesting this strain could use either glucose or xylose as the substrate and it has a similar capability to degrade these two sugars. With different initial glucose:xylose ratios, glucose and xylose were consumed simultaneously at rates roughly proportional to their individual concentrations in the medium, leading to complete utilization of both sugars at the same time. ABE production profiles were similar on different substrates. Transcriptional studies on the effect of glucose and xylose supplementation, however, suggests a clear glucose inhibition on xylose metabolism-related genes is still present.

  20. Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313.

    Science.gov (United States)

    Bankar, Sandip B; Survase, Shrikant A; Singhal, Rekha S; Granström, Tom

    2012-02-01

    The objective of this study was to optimize continuous acetone-butanol-ethanol (ABE) fermentation using a two stage chemostat system integrated with liquid-liquid extraction of solvents produced in the first stage. This minimized end product inhibition by butanol and subsequently enhanced glucose utilization and solvent production in continuous cultures of Clostridium acetobutylicum B 5313. During continuous two-stage ABE fermentation, sugarcane bagasse was used as the cell holding material for the both stages and liquid-liquid extraction was performed using an oleyl alcohol and decanol mixture. An overall solvent production of 25.32g/L (acetone 5.93g/L, butanol 16.90g/L and ethanol 2.48g/L) was observed as compared to 15.98g/L in the single stage chemostat with highest solvent productivity and solvent yield of 2.5g/Lh and of 0.35g/g, respectively. Maximum glucose utilization (83.21%) at a dilution rate of 0.051/h was observed as compared to 54.38% in the single stage chemostat. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Effect of butanolic fraction of yellow and black maca (Lepidium meyenii) on the sperm count of adult mice.

    Science.gov (United States)

    Inoue, N; Farfan, C; Gonzales, G F

    2016-10-01

    Lepidium meyenii, known as maca, is a popular nutraceutical food which is grown over 4,000 m above sea level in the Peruvian central highlands. Maca contains alkaloids, but there are no studies on their biological effects. The butanol fraction obtained from methanol extract of maca hypocotyls contains alkaloids. The effects of butanol/aqueous fractions partitioned from methanol extract of yellow and black maca were examined. Total phenolic content (TPC) and antioxidant capacity by 2,2'-diphenyl-1-picrylhydrazyl were used to evaluate maca fractions in vitro. Daily sperm production and sperm count in epididymis and vas deferens in mice were determined as biological effect of maca extracts in vivo. Yellow maca (21.7%±0.69) had better antioxidant capacity than black maca (18.2% ± 0.12; p maca. TPC is higher in the aqueous fraction than in the methanolic extract of yellow or black maca. Black maca administration resulted in higher concentration of sperm count in epididymis and vas deferens compared to yellow maca. A higher biological effect was observed in methanolic extract and in aqueous extract than in the butanol fraction of maca. In conclusion, better biological effect was observed in the methanolic extract of maca than in its partitioned fractions. © 2016 Blackwell Verlag GmbH.

  2. Antidiabetic activities of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Toma, Alemayehu; Makonnen, Eyasu; Mekonnen, Yelamtsehay; Debella, Asfaw; Adisakwattana, Sirichai

    2015-07-18

    Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. The aim of this study was to investigate the antidiabetic activity of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin (STZ) induced diabetic rats. The aqueous ethanol extract and n-butanol fraction of Moringa stenopetala leaves hydroalcoholic (500 mg/kg body weight) and metformin (150 mg/kg body weight) were administered to diabetic rats. Blood glucose, lipid profiles, liver and kidney function were examined after 14 days of experiment. Histopathological profile of the pancreas was also observed in diabetic rats at the end of study. An oral sucrose challenge test was also carried out to assess the post prandial effect of the extract. Oral administration of the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves (500 mg/kg body weight) and metformin (150 mg/kg) significantly reduced blood glucose level (PMoringa stenopetala leaves possess antihyperglycemic and antihyperlipidemic properties, and alleviate STZ-induced pancreatic damage in diabetic rats. The beneficial effects of plant material in inhibition of diabetes-induced complications are being investigated.

  3. Selective screening of 650 high risk Iranian patients for detection of inborn error of metabolism

    Directory of Open Access Journals (Sweden)

    Narges Pishva

    2015-02-01

    Full Text Available Objective: Although metabolic diseases individually are rare ,but overall have an incidence of 1/2000 and can cause devastating and irreversible effect if not diagnosed early and treated promptly. selective screening is an acceptable method for detection of these multi presentation diseases. Method: using panel neonatal screening for detection of metabolic diseases in 650 high risk Iranian patients in Fars province. The following clinical features were used as inclusion criteria for investigation of the patients. Lethargy, poor feeding ,persistent vomiting, cholestasis, intractable seizure ,decreased level of consciousness ,persistent hypoglycemia, unexplained acid base disturbance and unexplained neonatal death. Result: Organic acidemia with 40 cases (42% was the most frequent disorder diagnosed in our high risk populations, followed by disorder of galactose metabolism(30%, 15 patient had classic galactosemia(GALT

  4. Selective screening of 650 high risk Iranian patients for detection of inborn error of metabolism

    Directory of Open Access Journals (Sweden)

    Narges Pishva

    2015-02-01

    Full Text Available Objective: Although metabolic diseases individually are rare ,but overall have an incidence of 1/2000 and can cause devastating and irreversible effect if not diagnosed early and treated promptly. selective screening is an acceptable method for detection of these multi presentation diseases.Method: using panel neonatal screening for detection of metabolic diseases in 650 high risk Iranian patients in Fars province. The following clinical features were used as inclusion criteria for investigation of the patients.Lethargy, poor feeding ,persistent vomiting, cholestasis, intractable seizure ,decreased level of consciousness ,persistent hypoglycemia, unexplained acid base disturbance and unexplained neonatal death.Result: Organic acidemia with 40 cases (42% was the most frequent disorder diagnosed in our high risk populations, followed by disorder of galactose metabolism(30%, 15 patient had classic galactosemia(GALT

  5. A new hydroxynaphthyl benzothiazole derived fluorescent probe for highly selective and sensitive Cu2 + detection

    Science.gov (United States)

    Tang, Lijun; He, Ping; Zhong, Keli; Hou, Shuhua; Bian, Yanjiang

    2016-12-01

    A new reactive probe, 1-(benzo[d]thiazol-2-yl)naphthalen-2-yl-picolinate (BTNP), was designed and synthesized. BTNP acts as a highly selective probe to Cu2 + in DMSO/H2O (7/3, v/v, Tris-HCl 10 mM, pH = 7.4) solution based on Cu2 + catalyzed hydrolysis of the picolinate ester moiety in BTNP, which leads to the formation of an ESIPT active product with dual wavelength emission enhancement. The probe also possesses the advantages of simple synthesis, rapid response and high sensitivity. The pseudo-first-order reaction rate constant was calculated to be 0.205 min- 1. Moreover, application of BTNP to Cu2 + detection in living cells and real water samples was also explored.

  6. An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves

    Science.gov (United States)

    Li, Minhua; Guo, Linyan; Dong, Jianfeng; Yang, Helin

    2014-05-01

    An ultra-thin chiral metamaterial absorber (CMMA) is constructed from twisted ‘L-shaped’ folded metallic wires. In particular, it has high selectivity for left-handed and right-handed circular polarized (LCP and RCP) incident waves, which is impossible in traditional metamaterial absorbers. The thickness of the CMMA is only 0.8 mm, with absorption of 93.2% for LCP and 8.4% for RCP waves, respectively. This superb performance can be applied in homogeneous circular polarizers for an arbitrarily polarized incident wave with high polarization conversion efficiency. Meanwhile, current distributions, retrieval results and multipole theory have been used in analyzing the absorption mechanism. Microwave experiments are performed to successfully realize these ideas, and measured results are in good agreement with the numerical results.

  7. Spatial Qualification Tests for Highly Selective Compact Micromachined Band Pass Planar Filters

    Directory of Open Access Journals (Sweden)

    Raghida Hajj

    2012-01-01

    Full Text Available A highly selective planar band pass filter is proposed for satellite receivers to suppress intermodulation components. The 4-pole filter has a center frequency of 19.825 GHz with a bandwidth of 240 MHz. The measured quality factor is over 600 and the insertion losses are 4.1 dB. The micromachining technological process is used to fabricate this filter. A BCB (benzocyclobutene thin layer is used as an electrical and mechanical support for the filter. The compatibility of the BCB with the spatial constraints was tested. Various tests were accomplished for this purpose and the results of all these tests are presented in the paper. The tests showed a very small influence of the temperature variation and high temperature storage test and practically no influence of the radiation test on the circuit.

  8. Reconfigurable all-dielectric metamaterial frequency selective surface based on high-permittivity ceramics

    Science.gov (United States)

    Li, Liyang; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Zhang, Jieqiu; Qu, Shaobo; Xu, Zhuo

    2016-01-01

    Based on effective medium theory and dielectric resonator theory, we propose the design of reconfigurable all-dielectric metamaterial frequency selective surfaces (FSSs) using high-permittivity ceramics. The FSS is composed of ceramic resonators with different band stop responses under front and side incidences. By mechanically tuning the orientation of the ceramic resonators, reconfigurable electromagnetic (EM) responses between two adjacent stopbands can be achieved. The two broad stopbands originate from the first two resonant modes of the ceramic resonators. As an example, a reconfigurable FSS composed of cross-shaped ceramic resonators is demonstrated. Both numerical and experimental results show that the FSS can switch between two consecutive stopbands in 3.55–4.60 GHz and 4.54–4.94 GHz. The design method can be readily extended to the design of FSSs in other frequencies for high-power applications. PMID:27052098

  9. EPAS1 variants in high altitude Tibetan wolves were selectively introgressed into highland dogs

    Directory of Open Access Journals (Sweden)

    Bridgett vonHoldt

    2017-07-01

    Full Text Available Background Admixture can facilitate adaptation. For example, black wolves have obtained the variant causing black coat color through past hybridization with domestic dogs and have higher fitness than gray colored wolves. Another recent example of the transfer of adaptive variation between the two species has been suggested by the similarity between high altitude Tibetan mastiffs and wolves at the EPAS1 gene, a transcription factor induced in low oxygen environments. Methods Here, we investigate the directionality of admixture in EPAS1 between 28 reference highland gray wolves, 15 reference domestic dogs, and 21 putatively admixed highland wolves. This experimental design represents an expanded sample of Asian dogs and wolves from previous studies. Admixture was inferred using 17,709 publicly available SNP genotypes on canine chromosome 10. We additionally conducted a scan for positive selection in the highland dog genome. Results We find an excess of highland gray wolf ancestry at the EPAS1 locus in highland domestic dogs, suggesting adaptive introgression from wolves to dogs. The signal of admixture is limited in genomic extent to a small region on chromosome 10, indicating that it is the focus of selection in an oxygen-limited environment. Discussion Our results suggest that an adaptive variant of EPAS1 in highland wolves was transferred to highland dogs, carrying linked variants that potentially function in hypoxia response at high elevation. The intertwined history of dogs and wolves ensures a unique evolutionary dynamic where variants that have appeared in the history of either species can be tested for their effects on fitness under natural and artificial selection. Such coupled evolutionary histories may be key to the persistence of wild canines and their domesticated kin given the increasing anthropogenic modifications that characterize the future of both species.

  10. Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors.

    Science.gov (United States)

    Shadpour, Hamed; Zawistowski, Jon S; Herman, Annadele; Hahn, Klaus; Allbritton, Nancy L

    2011-06-24

    Pallet arrays enable cells to be separated while they remain adherent to a surface and provide a much greater range of cell selection criteria relative to that of current technologies. However there remains a need to further broaden cell selection criteria to include dynamic intracellular signaling events. To demonstrate the feasibility of measuring cellular protein behavior on the arrays using high resolution microscopy, the surfaces of individual pallets were modified to minimize the impact of scattered light at the pallet edges. The surfaces of the three-dimensional pallets on an array were patterned with a coating such as fibronectin using a customized stamping tool. Micropatterns of varying shape and size were printed in designated regions on the pallets in single or multiple steps to demonstrate the reliability and precision of patterning molecules on the pallet surface. Use of a fibronectin matrix stamped at the center of each pallet permitted the localization of H1299 and mouse embryonic fibroblast (MEF) cells to the pallet centers and away from the edges. Compared to pallet arrays with fibronectin coating the entire top surface, arrays with a central fibronectin pattern increased the percentage of cells localized to the pallet center by 3-4-fold. Localization of cells to the pallet center also enabled the physical separation of cells from optical artifacts created by the rough pallet side walls. To demonstrate the measurement of dynamic intracellular signaling on the arrays, fluorescence measurements of high spatial resolution were performed using a RhoA GTPase biosensor. This biosensor utilized fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) to measure localized RhoA activity in cellular ruffles at the cell periphery. These results demonstrated the ability to perform spatially resolved measurements of fluorescence-based sensors on the pallet arrays. Thus, the patterned pallet arrays

  11. Chemical characterization of selected high copper dental amalgams using XPS and XRD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Talik, E. [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)]. E-mail: talik@us.edu.pl; Babiarz-Zdyb, R. [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Dziedzic, A. [Medical University of Silesia, Department of Conservative Dentistry and Periodontology, Akademicki 17 Sqr., 41-209 Bytom (Poland)

    2005-08-02

    The study was carried out to analyze some dependencies between the composition of seven high copper dental amalgams and mercury release behavior, as well as oxygen reactivity of metallic elements. Chemical comparative analysis of selected dental amalgams was carried out using X-ray photoelectron spectroscopy (XPS) technique and X-ray diffraction (XRD) method. The X-ray powder diffraction measurements revealed two main phases for measured amalgams: {gamma}{sub 1}-(Ag{sub 2}Hg{sub 3}) and {eta}'-(Cu{sub 6}Sn{sub 5}). The amount of mercury obtained by the XPS method was lower than the value quoted in the manufacturer's literature, which suggested evaporation of mercury under the UHV conditions. A linear decrease of oxygen and carbon contamination with the growing amount of Cu and Ag was observed. The XPS analysis showed that a high Sn concentration caused less resistance to oxidation. Some of the amalgams contained some extra elements, such as Bi, In, and Zn. All samples contained lead in metallic state and oxides. The amount of Ag, Cu, Sn ingredients determines the main properties of high copper amalgams and plays an important role in mercury evaporation. High tin concentration combined with the presence of smaller amounts of silver and copper (high Sn/Ag ratio) may influence the increase of mercury vaporization.

  12. High level of microsynteny and purifying selection affect the evolution of WRKY family in Gramineae.

    Science.gov (United States)

    Jin, Jing; Kong, Jingjing; Qiu, Jianle; Zhu, Huasheng; Peng, Yuancheng; Jiang, Haiyang

    2016-01-01

    The WRKY gene family, which encodes proteins in the regulation processes of diverse developmental stages, is one of the largest families of transcription factors in higher plants. In this study, by searching for interspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found 35 chromosomal segments of subgroup I genes of WRKY family (WRKY I) in four Gramineae species (Brachypodium, rice, sorghum, and maize) formed eight orthologous groups. After a stepwise gene-by-gene reciprocal comparison of all the protein sequences in the WRKY I gene flanking areas, highly conserved regions of microsynteny were found in the four Gramineae species. Most gene pairs showed conserved orientation within syntenic genome regions. Furthermore, tandem duplication events played the leading role in gene expansion. Eventually, environmental selection pressure analysis indicated strong purifying selection for the WRKY I genes in Gramineae, which may have been followed by gene loss and rearrangement. The results presented in this study provide basic information of Gramineae WRKY I genes and form the foundation for future functional studies of these genes. High level of microsynteny in the four grass species provides further evidence that a large-scale genome duplication event predated speciation.

  13. Manufacturing of a high-temperature resistojet heat exchanger by selective laser melting

    Science.gov (United States)

    Romei, F.; Grubišić, A. N.; Gibbon, D.

    2017-09-01

    The paper presents the design, manufacturing and postproduction analysis of a novel high-temperature spacecraft resistojet heat exchanger manufactured through selective laser melting to validate the manufacturing approach. The work includes the analysis of critical features of a heat exchanger with integrated converging-diverging nozzle as a single piece element. The metrology of the component is investigated using optical analysis and profilometry to verify the integrity of components. High-resolution micro-Computed Tomography (CT) is applied as a tool for volumetric non-destructive inspection and conformity since the complex geometry of the thruster does not allow internal examination. The CT volume data is utilised to determine a surface mesh on which a novel perform coordinate measurement technique is applied for nominal/actual comparison and wall thickness analysis. A thin-wall concentric tubular heat exchanger design is determined to meet dimensional accuracy requirements. The work indicates the production of fine structures with feature sizes below 200 μm in 316L stainless via selective laser melting is feasible and opens up new possibilities for the future developments in multiple industries.

  14. An Integrated Model for Supplier Selection for a High-Tech Manufacturer

    Science.gov (United States)

    Lee, Amy H. I.; Kang, He-Yau; Lin, Chun-Yu

    2011-11-01

    Global competitiveness has become the biggest concern of manufacturing companies, especially in high-tech industries. Improving competitive edges in an environment with rapidly changing technological innovations and dynamic customer needs is essential for a firm to survive and to acquire a decent profit. Thus, the introduction of successful new products is a source of new sales and profits and is a necessity in the intense competitive international market. After a product is developed, a firm needs the cooperation of upstream suppliers to provide satisfactory components and parts for manufacturing final products. Therefore, the selection of suitable suppliers has also become a very important decision. In this study, an analytical approach is proposed to select the most appropriate critical-part suppliers in order to maintain a high reliability of the supply chain. A fuzzy analytic network process (FANP) model, which incorporates the benefits, opportunities, costs and risks (BOCR) concept, is constructed to evaluate various aspects of suppliers. The proposed model is adopted in a TFT-LCD manufacturer in Taiwan in evaluating the expected performance of suppliers with respect to each important factor, and an overall ranking of the suppliers can be generated as a result.

  15. High-throughput screening for potent and selective inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase.

    Science.gov (United States)

    Baldwin, Jeffrey; Michnoff, Carolyn H; Malmquist, Nicholas A; White, John; Roth, Michael G; Rathod, Pradipsinh K; Phillips, Margaret A

    2005-06-10

    Plasmodium falciparum is the causative agent of the most serious and fatal malarial infections, and it has developed resistance to commonly employed chemotherapeutics. The de novo pyrimidine biosynthesis enzymes offer potential as targets for drug design, because, unlike the host, the parasite does not have pyrimidine salvage pathways. Dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme that catalyzes the fourth reaction in this essential pathway. Coenzyme Q (CoQ) is utilized as the oxidant. Potent and species-selective inhibitors of malarial DHODH were identified by high-throughput screening of a chemical library, which contained 220,000 drug-like molecules. These novel inhibitors represent a diverse range of chemical scaffolds, including a series of halogenated phenyl benzamide/naphthamides and urea-based compounds containing napthyl or quinolinyl substituents. Inhibitors in these classes with IC(50) values below 600 nm were purified by high pressure liquid chromatography, characterized by mass spectroscopy, and subjected to kinetic analysis against the parasite and human enzymes. The most active compound is a competitive inhibitor of CoQ with an IC(50) against malarial DHODH of 16 nm, and it is 12,500-fold less active against the human enzyme. Site-directed mutagenesis of residues in the CoQ-binding site significantly reduced inhibitor potency. The structural basis for the species selective enzyme inhibition is explained by the variable amino acid sequence in this binding site, making DHODH a particularly strong candidate for the development of new anti-malarial compounds.

  16. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo

    2017-05-31

    Dopant-free, carrier-selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron-selective titanium dioxide (TiO) contacts, one of the most promising dopant-free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long-term stability. Our findings underscore the great appeal of TiO contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost.

  17. Development of immobilized Sn(4+) affinity chromatography material for highly selective enrichment of phosphopeptides.

    Science.gov (United States)

    Lin, Haizhu; Deng, Chunhui

    2016-11-01

    In this work, we first immobilized tin(IV) ion on polydopamine-coated magnetic graphene (magG@PDA) to synthesize Sn(4+) -immobilized magG@PDA (magG@PDA-Sn(4+) ) and successfully applied the material to highly selective enrichment of phosphopeptides. The material gathered the advantages of large surface area of graphene, superparamagnetism of Fe3 O4 , good hydrophilicity and biocompatibility of polydopamine, and strong interaction between Sn(4+) and phosphopeptides. The enrichment performance of magG@PDA-Sn(4+) toward phosphopeptides from digested β-casein at different concentrations, with and without added digested BSA was investigated and compared with magG@PDA-Ti(4+) . The results showed high selectivity and sensitivity of the Sn(4+) -IMAC material toward phosphopeptides, as good as the Ti(4+) -IMAC material. Finally, magG@PDA-Sn(4+) was applied to the analysis of endogenous phosphopeptides from a real sample, human saliva, with both MALDI-TOF MS and nano-LC-ESI-MS/MS. The results indicated that the as-synthesized Sn(4+) -IMAC material not only has good enrichment performance, but also could serve as a supplement to the Ti(4+) -IMAC material and expand the phosphopeptide coverage enriched by the single Ti(4+) -IMAC material, demonstrating the broad application prospects of magG@PDA-Sn(4+) in phosphoproteome research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Female infertility in India: Causes, treatment and impairment of fertility in selected districts with high prevalence

    Directory of Open Access Journals (Sweden)

    Shraboni Patra

    2017-01-01

    Full Text Available Although the ‘universal access to sexual and reproductive health care’ has received priority in the SDG‐3, the rural women experiencing infertility problem in India are unable to access and afford quality reproductive health care. The study investigates the present infertility situation, with a focus on risk factors, treatment seeking for infertility, and impact of infertility on fertility in India and its districts with high infertility prevalence. The DLHS‐3 data is used. Top fifteen districts with high infertility prevalence are selected for analysis. Simple bivariate and multivariate techniques are applied. In India, the prevalence of ever‐experienced primary, secondary, and current infertility is 6.6%, 2.1% and 4.6% respectively, whereas, in the selected districts, the estimates for the same indicators are 15%, 3.1%, and 5% respectively. A higher prevalence of reported symptoms of RTIs/STIs and menstrual problems is observed among women who ever had infertility. Treatment seeking for infertility is low in Korba and Koryia. The MCEB is less among women who ever had experienced infertility. The prevalence of ever‐experienced infertility and current infertility is considerably higher among women from socio‐economically disadvantaged sections. Awareness of RTIs, STIs, and menstrual problems, and preventive care can reduce infertility among rural women.

  19. Selection, periodicity and potential function for Highly Iterative Palindrome-1 (HIP1) in cyanobacterial genomes.

    Science.gov (United States)

    Xu, Minli; Lawrence, Jeffrey G; Durand, Dannie

    2018-02-08

    Highly Iterated Palindrome 1 (HIP1, GCGATCGC) is hyper-abundant in most cyanobacterial genomes. In some cyanobacteria, average HIP1 abundance exceeds one motif per gene. Such high abundance suggests a significant role in cyanobacterial biology. However, 20 years of study have not revealed whether HIP1 has a function, much less what that function might be. We show that HIP1 is 15- to 300-fold over-represented in genomes analyzed. More importantly, HIP1 sites are conserved both within and between open reading frames, suggesting that their overabundance is maintained by selection rather than by continual replenishment by neutral processes, such as biased DNA repair. This evidence for selection suggests a functional role for HIP1. No evidence was found to support a functional role as a peptide or RNA motif or a role in the regulation of gene expression. Rather, we demonstrate that the distribution of HIP1 along cyanobacterial chromosomes is significantly periodic, with periods ranging from 10 to 90 kb, consistent in scale with periodicities reported for co-regulated, co-expressed and evolutionarily correlated genes. The periodicity we observe is also comparable in scale to chromosomal interaction domains previously described in other bacteria. In this context, our findings imply HIP1 functions associated with chromosome and nucleoid structure. © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets

    Science.gov (United States)

    Jeon, Mi Young; Kim, Donghun; Kumar, Prashant; Lee, Pyung Soo; Rangnekar, Neel; Bai, Peng; Shete, Meera; Elyassi, Bahman; Lee, Han Seung; Narasimharao, Katabathini; Basahel, Sulaiman Nasir; Al-Thabaiti, Shaeel; Xu, Wenqian; Cho, Hong Je; Fetisov, Evgenii O.; Thyagarajan, Raghuram; Dejaco, Robert F.; Fan, Wei; Mkhoyan, K. Andre; Siepmann, J. Ilja; Tsapatsis, Michael

    2017-03-01

    A zeolite with structure type MFI is an aluminosilicate or silicate material that has a three-dimensionally connected pore network, which enables molecular recognition in the size range 0.5-0.6 nm. These micropore dimensions are relevant for many valuable chemical intermediates, and therefore MFI-type zeolites are widely used in the chemical industry as selective catalysts or adsorbents. As with all zeolites, strategies to tailor them for specific applications include controlling their crystal size and shape. Nanometre-thick MFI crystals (nanosheets) have been introduced in pillared and self-pillared (intergrown) architectures, offering improved mass-transfer characteristics for certain adsorption and catalysis applications. Moreover, single (non-intergrown and non-layered) nanosheets have been used to prepare thin membranes that could be used to improve the energy efficiency of separation processes. However, until now, single MFI nanosheets have been prepared using a multi-step approach based on the exfoliation of layered MFI, followed by centrifugation to remove non-exfoliated particles. This top-down method is time-consuming, costly and low-yield and it produces fragmented nanosheets with submicrometre lateral dimensions. Alternatively, direct (bottom-up) synthesis could produce high-aspect-ratio zeolite nanosheets, with improved yield and at lower cost. Here we use a nanocrystal-seeded growth method triggered by a single rotational intergrowth to synthesize high-aspect-ratio MFI nanosheets with a thickness of 5 nanometres (2.5 unit cells). These high-aspect-ratio nanosheets allow the fabrication of thin and defect-free coatings that effectively cover porous substrates. These coatings can be intergrown to produce high-flux and ultra-selective MFI membranes that compare favourably with other MFI membranes prepared from existing MFI materials (such as exfoliated nanosheets or nanocrystals).