WorldWideScience

Sample records for highly interactive learning

  1. Patterns of interactive learning in a high tech region

    NARCIS (Netherlands)

    Meeus, M.T.H.; Oerlemans, L.A.G.; Hage, J.

    2001-01-01

    This paper aims at developing a theoretical framework that explains levels of interactive learning. Interactive learning is defined as the exchange and sharing of knowledge resources conducive to innovation between an innovator firm, its suppliers, and/or its customers. Our research question is: Why

  2. The Effects of Online Interactive Games on High School Students' Achievement and Motivation in History Learning

    Science.gov (United States)

    Lin, Kuan-Cheng; Wei, Yu Che; Hung, Jason C.

    2012-01-01

    Many studies demonstrate that Digital Game Based Learning (DGBL) can foster learning effect. The purpose of this study is to survey whether the online game in junior high school students can encourage learning effect in Taiwan's History. So, the research applied Interactive Game-based Learning System (IGLS) to junior high history teaching as an…

  3. Students' experiences with interactivity and learning in a high school physics multimedia distance learning course

    Science.gov (United States)

    Villarreal-Stewart, Irene

    The purpose guiding this research has been to learn about and describe the phenomena of interactivity from the learners' perspectives and to learn which of the interactivity affordances and practices were actually used by students and why in the process of learning physics using an interactive multimedia distance learning course system. The bigger purpose behind learning about and describing interactivity has been to gain knowledge and perspective for its instructional design to benefit the learner, the school as curriculum implementer, and instructional media designers to create better products. Qualitative methodology in the interpretivist tradition was used, that is, in-depth interviews and on-site observations, to gain understanding of interactivity from the learners' perspective and to gain understanding of the student learning context impacting and shaping the students' interactivity experiences. NVivo was used to sort, organize and index data. All data were read on three levels: literally, interpretively, and reflexively; and were read comparatively to other perspectives to get descriptions and interpretations that were holistic to the implementation and had potential insight to improve practice for instructional designers, teachers, administrators, specifically to improve the learning experience for students. Site-Specific Findings: Students watched videos, resisted using phone and e-mail, and worked math problems to demonstrate learning, which resulted in very little interactivity, virtually no dialogue about physics, no physical activity, one-way communication, multifaceted dissatisfaction, student need for teacher involvement in the learning enterprise, student appreciation for interactivity, and expressed desire for a real, live teacher. I also found that some students did experience the system as interactive, did experience learner control and self-directed learning, and despite dissatisfaction, liked and appreciated the course. Wider Applications

  4. Restructuring High School Math Learning Spaces with Interactive Technology and Transformative Pedagogy

    Science.gov (United States)

    Lucas, Roland

    2013-01-01

    There are three hypotheses for this research: 1. High school mathematics students in urban public schools, who are provided interactive technology resources during normal course work, will experience a multiplier effect of enhanced learning in mathematics. They will have an increase in positive dispositions indicative of their identity development…

  5. Development of Highly Interactive Service Platform for Social Learning via Ubiquitous Media

    Directory of Open Access Journals (Sweden)

    Gangman Yi

    2014-01-01

    Full Text Available Several emerging issues concerning the development of interactive learning environment were left unsolved although e-learning has been applied for years. With several studies indicate that more interaction between students and systems increases students’ level of interest and allows them to focus on learning support. Due to the way current interactive learning tools are designed, users have to wear or operate actual tools in order to carry out the required learning procedures. The use of tools for long durations of time results in user fatigue. Hence, this study incorporates the Microsoft Kinect as interactive tool for detecting gestures in the e-learning process. This study also uses the interaction method that we had developed on Facebook to interact with the proposed learning system. The experiments in this study are divided into five parts: system performance of the 3D web engine, gesture accuracy, system and gesture usability, system and gesture satisfaction, and learning satisfaction of the learner. Also, the gesture design was accepted by learners when they interacted with the learning system. Our research shows that our concept as well as the features of our system can fully support social learning and enhance interaction between users in learning environments.

  6. INTERACTIVE CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES BASED ON ACTIVE LEARNING WITH GAUSSIAN PROCESSES

    Directory of Open Access Journals (Sweden)

    H. Ru

    2016-06-01

    Full Text Available Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  7. High quality interaction in the classroom: a focus for professional learning

    NARCIS (Netherlands)

    Damhuis, R.; de Blauw, A.

    2008-01-01

    Oral language education is important throughout primary school for the development of language and learning. Yet in today's educational practice this core principle is neglected and classroom interactions lack quality. Teachers know that supporting students to participate actively in learning is

  8. Reframing Practice: High School Mathematics Teachers' Learning through Interactions in Their Workplace Community

    Science.gov (United States)

    Bannister, Nicole A.

    2009-01-01

    This dissertation seeks to understand how teachers learn through interactions in newly formed workplace communities by examining how mathematics teachers engaged in equity-oriented reforms frame problems of practice. It examines how teachers' framings develop over time, and how teachers' shifting frames connect to their learning in a community of…

  9. Budgeted Interactive Learning

    Science.gov (United States)

    2017-06-15

    2, and 3). The selection scheme is implemented and released as an open-source active learning package. They have studied theories for designing...We have studied theories for designing algorithms for interactive learning with batch-like feedback (for 1) and algorithms for online digestion of... necessity on pre-training. The new idea provides layer-wise cost estimation with auxiliary nodes, and is applicable to a wider range of deep learning

  10. What can we learn from high-energy hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Tow, D.M.

    1979-12-01

    High-energy hadron-nucleus (hA) collisions provide the exciting possibility of giving information about the spacetime development of hadron-hadron interactions and therefore differentiating various multiparticle production models. Some of the major developments in this field during the past decade, both experimentally and theoretically are reviewed. Several general features of the data are pointed out, and several classes of models are discussed. A recently proposed simple spacetime model for high-energy hA collisions is elaborated. Comments are made on the extension to nucleus-nucleus interactions and the future outlook

  11. Interactive Learning and "Clickers"

    Science.gov (United States)

    Rudolph, Alexander

    2006-12-01

    A growing body of evidence demonstrates that student understanding and retention of key concepts in science can be dramatically improved by using “Interactive Learning” techniques. Interactive learning is a way to get students more actively involved in their own learning than by simple lecture alone. I will focus on one type of interactive learning activity, known as “Think-Pair-Share”. After a brief (10-20 minute) lecture on a topic, students are asked a conceptually challenging multiple-choice question. After they answer, if there is sufficient disagreement, the students discuss the question in small groups after which they answer the same question again. Frequently, the percentage of correct answers goes up, indicating that the active role of speaking and listening, together with peer instruction, has helped students better grasp the concept being tested. If disagreement persists, or if students continue to have questions, a short, class-wide discussion can be held. Clickers provide an excellent means to collect students’ answers to “Think-Pair-Share” questions in real time. Although clickers are not essential, they do provide some advantages over alternatives such as flash cards: answers are completely anonymous (though you as instructor can record individual responses); you can display a histogram of results immediately, either before or after group discussion, providing immediate feedback; by recording the results, you can give students credit for their participation in class. In this talk, I will model “Think-Pair-Share” with the audience using clickers, show results from my classes before and after group discussions, share results of a student survey on “Think-Pair-Share” and clickers, describe other uses of clickers (e.g., taking attendance, surveys, test administration) and highlight some of the pros and cons of clickers v. flashcards.

  12. Using Interactive Animations to Enhance Teaching, Learning, and Retention of Respiration Pathway Concepts in Face-to-Face and Online High School, Undergraduate, and Continuing Education Learning Environments

    Directory of Open Access Journals (Sweden)

    Sederick C. Rice

    2013-02-01

    Full Text Available One major tool set teachers/instructors can use is online interactive animations, which presents content in a way that helps pique students' interest and differentiates instructional content.  The Virtual Cell Animation Collections (VCAC, developed from the Molecular and Cellular Biology Learning Center, has developed a series of online interactive animations that provide teacher/instructors and students with immersive learning tools for studying and understanding respiration processes.  These virtual tools work as powerful instructional devices to help explain and reinforce concepts of metabolic pathways that would normally be taught traditionally using static textbook pages or by neumonic flashcards. High school, undergraduate, and continuing education students of today learn and retain knowledge differently than their predecessors.  Now teachers face new challenges and must engage and assess students, within a small window during classroom instruction, but also have the skills to provide useful content in distance learning environments.  Educators have to keep up with changing trends in education as a result of technological advances, higher student/teacher ratios, and the influence of social media on education. It is critical for teachers/instructors to be able to present content that not only keeps students interested but also helps bridge learning gaps. VCAC provides high school, undergraduate, and continuing education biology or life science teachers/instructors with classroom strategies and tools for introducing respiration content through free open source online resources. VCAC content supports the development of more inquiry-based classroom and distance-learning environments that can be facilitated by teachers/instructors, which helps improve retention of important respiration subject content and problem-based learning skills for students.

  13. INTERACTIVE LEARNING: ADVANTAGES AND DISADVANTAGES

    Directory of Open Access Journals (Sweden)

    O. Kustovska

    2016-10-01

    Full Text Available In the article the use of interactive technologies in the educational process of the university, allowing students to develop innovative thinking, away from stereotypes, develop imagination, communication skills and expertise, intellectual, emotional, motivational and other areas of personality. Implementing the principles of technological learning, interactive educational technology and provides interactive computer learning tools, and interactivity of educational process when the basic conceptual provisions defined training based on interactive communication.

  14. Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    The original publication is available from www.springerlink.com. Sloep, P. (2009). Social Interaction in Learning Networks. In R. Koper (Ed.), Learning Network Services for Professional Development (pp 13-15). Berlin, Germany: Springer Verlag.

  15. What can we learn from high-energy, soft (pp) interactions

    International Nuclear Information System (INIS)

    Basile, M.; Bonvicini, G.; Cara Romeo, G.; Cifarelli, L.; Contin, A.; Curatolo, M.; D'Ali, G.; Esposito, B.

    1983-01-01

    This chapter reports on a series of similarities between multiparticle hadronic systems produced in (pp) interactions and in (e + e - ) annihilation. Explains that in order to establish these similarities, the basic principle is to evaluate, for each (pp) interaction, the correct energy available for particle production. Examines the comparison of the multiparticle hadronic systems produced in (pp) interactions and (e + e - ) annihilation in terms of: 1) the inclusive, single-particle, fractional momentum distribution of the produced particles; 2) the inclusive, single particle, transverse momentum distribution of the particles produced; 3) the average charged particle multiplicity; 4) the ratio of ''charged'' to ''total'' energy of the multiparticle hadronic systems produced; and 5) the planarity of the multiparticle hadronic systems produced. Concludes that hadronic production in (e + e - ) annihilation takes place in such a way that no hadron has a privileged energy sharing. Points out that in order to understand the way in which the multiparticle hadronic systems are produced in strong, electromagnetic, and weak interactions, all p /SUB T/ physics needs to be investigated. Presents discussion featuring Zichichi, Herten, Karliner and others

  16. Using Interactive Animations to Enhance Teaching, Learning, and Retention of Respiration Pathway Concepts in Face-to-Face and Online High School, Undergraduate, and Continuing Education Learning Environments ?

    OpenAIRE

    Rice, Sederick C.

    2013-01-01

    One major tool set teachers/instructors can use is online interactive animations, which presents content in a way that helps pique students' interest and differentiates instructional content.  The Virtual Cell Animation Collections (VCAC), developed from the Molecular and Cellular Biology Learning Center, has developed a series of online interactive animations that provide teacher/instructors and students with immersive learning tools for studying and understanding respiration processes.  The...

  17. Transformations: Mobile Interaction & Language Learning

    Science.gov (United States)

    Carroll, Fiona; Kop, Rita; Thomas, Nathan; Dunning, Rebecca

    2015-01-01

    Mobile devices and the interactions that these technologies afford have the potential to change the face and nature of education in our schools. Indeed, mobile technological advances are seen to offer better access to educational material and new interactive ways to learn. However, the question arises, as to whether these new technologies are…

  18. Exploring Temporal Sequences of Regulatory Phases and Associated Interactions in Low- and High-Challenge Collaborative Learning Sessions

    Science.gov (United States)

    Sobocinski, Márta; Malmberg, Jonna; Järvelä, Sanna

    2017-01-01

    Investigating the temporal order of regulatory processes can explain in more detail the mechanisms behind success or lack of success during collaborative learning. The aim of this study is to explore the differences between high- and low-challenge collaborative learning sessions. This is achieved through examining how the three phases of…

  19. Final report: Imagining Fire Futures - An interactive, online learning activity for high school and college students

    Science.gov (United States)

    Jane Kapler Smith

    2014-01-01

    In IMAGINING FIRE FUTURES, students in a high school or college class use model results to develop a vision of the future for Flathead County, Montana. This is a rural area in the northern Rocky Mountains where more than half of the landscape is covered by wildland ecosystems that have evolved with and are shaped by wildland fire.

  20. Digital interactive learning of oral radiographic anatomy.

    Science.gov (United States)

    Vuchkova, J; Maybury, T; Farah, C S

    2012-02-01

    Studies reporting high number of diagnostic errors made from radiographs suggest the need to improve the learning of radiographic interpretation in the dental curriculum. Given studies that show student preference for computer-assisted or digital technologies, the purpose of this study was to develop an interactive digital tool and to determine whether it was more successful than a conventional radiology textbook in assisting dental students with the learning of radiographic anatomy. Eighty-eight dental students underwent a learning phase of radiographic anatomy using an interactive digital tool alongside a conventional radiology textbook. The success of the digital tool, when compared to the textbook, was assessed by quantitative means using a radiographic interpretation test and by qualitative means using a structured Likert scale survey, asking students to evaluate their own learning outcomes from the digital tool. Student evaluations of the digital tool showed that almost all participants (95%) indicated that the tool positively enhanced their learning of radiographic anatomy and interpretation. The success of the digital tool in assisting the learning of radiographic interpretation is discussed in the broader context of learning and teaching curricula, and preference (by students) for the use of this digital form when compared to the conventional literate form of the textbook. Whilst traditional textbooks are still valued in the dental curriculum, it is evident that the preference for computer-assisted learning of oral radiographic anatomy enhances the learning experience by enabling students to interact and better engage with the course material. © 2011 John Wiley & Sons A/S.

  1. Validation of Lectora based interactive module to improve the ability of junior high school students spatial in learning Geometry

    Directory of Open Access Journals (Sweden)

    Tika Septia

    2017-12-01

    Full Text Available Rapid technological developments provide opportunities for educators to develop learning media through interactive modules integrated into lectora software. The development of an interactive module based on lectora can motivate students to learn independently, to be creative, and to enjoy what they are doing. Research into the development of an interactive module based on lectora geometry flat side material aimed to develop an interactive module based on lectora geometry flat side material, with the research design consisting of analysis, design, development, implementation, and evaluation of the module. The result obtained from the use of an interactive module based on lectora geometry flat side material that had been designed and validated and later revised showed an average value of the feasibility of content to be 3.75, the average value of the aspects of presentation was 2.94, the average value aspects of language was 3.06, and the average value of the aspects of graph was 2.86. This research enabled us to conclude that an interactive module based on lectora geometry flat side material could be categorized as valid.

  2. Educational interactive multimedia software: The impact of interactivity on learning

    Science.gov (United States)

    Reamon, Derek Trent

    This dissertation discusses the design, development, deployment and testing of two versions of educational interactive multimedia software. Both versions of the software are focused on teaching mechanical engineering undergraduates about the fundamentals of direct-current (DC) motor physics and selection. The two versions of Motor Workshop software cover the same basic materials on motors, but differ in the level of interactivity between the students and the software. Here, the level of interactivity refers to the particular role of the computer in the interaction between the user and the software. In one version, the students navigate through information that is organized by topic, reading text, and viewing embedded video clips; this is referred to as "low-level interactivity" software because the computer simply presents the content. In the other version, the students are given a task to accomplish---they must design a small motor-driven 'virtual' vehicle that competes against computer-generated opponents. The interaction is guided by the software which offers advice from 'experts' and provides contextual information; we refer to this as "high-level interactivity" software because the computer is actively participating in the interaction. The software was used in two sets of experiments, where students using the low-level interactivity software served as the 'control group,' and students using the highly interactive software were the 'treatment group.' Data, including pre- and post-performance tests, questionnaire responses, learning style characterizations, activity tracking logs and videotapes were collected for analysis. Statistical and observational research methods were applied to the various data to test the hypothesis that the level of interactivity effects the learning situation, with higher levels of interactivity being more effective for learning. The results show that both the low-level and high-level interactive versions of the software were effective

  3. Effects of Concept-Mapping-Based Interactive E-Books on Active and Reflective-Style Students' Learning Performances in Junior High School Law Courses

    Science.gov (United States)

    Hwang, Gwo-Jen; Sung, Han-Yu; Chang, Hsuan

    2017-01-01

    Researchers have pointed out that interactive e-books have rich content and interactive features which can promote students' learning interest. However, researchers have also indicated the need to integrate effective learning supports or tools to help students organize what they have learned so as to increase their learning performance, in…

  4. Towards Ways to Promote Interaction in Digital Learning Spaces

    OpenAIRE

    Olsson , Hanna ,

    2012-01-01

    Part 7: Doctoral Student Papers; International audience; Social learning is dependent on social interactions. I am exploring ways to promote interaction in Digital Learning Spaces. As theoretical framework I use the types of interaction between learner, instructor and content. That learners feel isolated and lonely in DLSs is a problem which comes at high cost for social learning. My aim is to promote social interaction by offering the edentity: a system for making participants visible to eac...

  5. Interaction Forms in Successful Collaborative Learning in Virtual Learning Environments

    Science.gov (United States)

    Vuopala, Essi; Hyvönen, Pirkko; Järvelä, Sanna

    2016-01-01

    Despite the numerous studies on social interaction in collaborative learning, little is known about interaction forms in successful computer-supported collaborative learning situations. The purpose of this study was to explore and understand student interaction in successful collaborative learning during a university course which was mediated by…

  6. Interactive Learning for Graphic Design Foundations

    Science.gov (United States)

    Chu, Sauman; Ramirez, German Mauricio Mejia

    2012-01-01

    One of the biggest problems for students majoring in pre-graphic design is students' inability to apply their knowledge to different design solutions. The purpose of this study is to examine the effectiveness of interactive learning modules in facilitating knowledge acquisition during the learning process and to create interactive learning modules…

  7. Learning and interactivity in solving a transformation problem.

    Science.gov (United States)

    Guthrie, Lisa G; Vallée-Tourangeau, Frédéric; Vallée-Tourangeau, Gaëlle; Howard, Chelsea

    2015-07-01

    Outside the psychologist's laboratory, thinking proceeds on the basis of a great deal of interaction with artefacts that are recruited to augment problem-solving skills. The role of interactivity in problem solving was investigated using a river-crossing problem. In Experiment 1A, participants completed the same problem twice, once in a low interactivity condition, and once in a high interactivity condition (with order counterbalanced across participants). Learning, as gauged in terms of latency to completion, was much more pronounced when the high interactivity condition was experienced second. When participants first completed the task in the high interactivity condition, transfer to the low interactivity condition during the second attempt was limited; Experiment 1B replicated this pattern of results. Participants thus showed greater facility to transfer their experience of completing the problem from a low to a high interactivity condition. Experiment 2 was designed to determine the amount of learning in a low and high interactivity condition; in this experiment participants completed the problem twice, but level of interactivity was manipulated between subjects. Learning was evident in both the low and high interactivity groups, but latency per move was significantly faster in the high interactivity group, in both presentations. So-called problem isomorphs instantiated in different task ecologies draw upon different skills and abilities; a distributed cognition analysis may provide a fruitful perspective on learning and transfer.

  8. Student Learning from Interactive Software

    Science.gov (United States)

    Lee, Kevin M.; Collaboration of Astronomy Teaching Scholars CATS

    2011-01-01

    For several years at the University of Nebraska we have been developing interactive software to teach introductory astronomy. This software includes the simulations of the Nebraska Astronomy Applet Project, the computer database of visual Think-Pair-Share questions and resources for feedback known as ClassAction, and a library of animated ranking and sorting tasks. All of these projects are publicly available for use over the web or download at http://astro.unl.edu. This presentation will highlight examples of research into student learning using these materials. Results from a multi-institution study of ClassAction using the Light and Spectra Concept Inventory in a pre/post format will be shown. Results from a second study on student learning gains, practices, and attitudes from use of animated ranking tasks focusing on lunar phases will also be included. This material is based upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  9. Unleashing the Power of Science in Early Childhood: A Foundation for High-Quality Interactions and Learning

    Science.gov (United States)

    Greenfield, Daryl B.; Alexander, Alexandra; Frechette, Elizabeth

    2017-01-01

    When science is integrated into early childhood learning experiences, it becomes a critical area supporting young children's development. Young children are natural scientists, curious about their world, and they engage in scientific practices to learn about and explore their world. This article describes how the K-12 Framework for Science…

  10. Learning to Write with Interactive Writing Instruction

    Science.gov (United States)

    Williams, Cheri

    2018-01-01

    Interactive writing is a process-oriented instructional approach designed to make the composing and encoding processes of writing overt and explicit for young students who are learning to write. It is particularly suitable for students who struggle with literacy learning. This article describes one first-grade teacher's use of interactive writing…

  11. A Long-Term Experiment to Investigate the Relationships between High School Students' Perceptions of Mobile Learning and Peer Interaction and Higher-Order Thinking Tendencies

    Science.gov (United States)

    Hwang, Gwo-Jen; Lai, Chiu-Lin; Liang, Jyh-Chong; Chu, Hui-Chun; Tsai, Chin-Chung

    2018-01-01

    In this study, a one-year program was conducted to investigate the relationships between students' perceptions of mobile learning and their tendencies of peer interaction and higher-order thinking in issue-based mobile learning activities. To achieve the research objective, a survey consisting of eight scales, namely, usability, continuity,…

  12. Interaction between learners in an interactive learning environment

    DEFF Research Database (Denmark)

    Davidsen, Jacob; Georgsen, Marianne

    to collaborative and academic issues. In the paper, we bring forward perspectives on the creation of learning designs where students engage in dialogue and interaction in a shared workspace. Empirical studies show that children regulate their own learning processes and guide each other through activities in which...

  13. Interactive Distance Learning in Connecticut.

    Science.gov (United States)

    Pietras, Jesse John; Murphy, Robert J.

    This paper provides an overview of distance learning activities in Connecticut and addresses the feasibility of such activities. Distance education programs have evolved from the one dimensional electronic mail systems to the use of sophisticated digital fiber networks. The Middlesex Distance Learning Consortium has developed a long-range plan to…

  14. Interactive learning software for electrical engineering subjects ...

    African Journals Online (AJOL)

    Interactive learning software for electrical engineering subjects using MATLAB and ... Keywords: electrical engineering; MATLAB; graphic user interface (GUI); educational software. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  15. Applying Economics Using Interactive Learning Modules

    Science.gov (United States)

    Goma, Ophelia D.

    2010-01-01

    This article describes the use of web-based, interactive learning modules in the principles of economics course. The learning modules introduce students to important, historical economic events while providing real-world application of the economic theory presented in class. Each module is designed to supplement and complement the economic theory…

  16. Learning models of activities involving interacting objects

    DEFF Research Database (Denmark)

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.

    2013-01-01

    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were t...

  17. Teacher-Student Interaction and Learning.

    Science.gov (United States)

    Hall, Joan Kelly; Walsh, Meghan

    2002-01-01

    Reviews literature on recent developments in teacher-student interaction and language learning. Based on a sociocultural perspective of language and learning, draws from three types of classrooms: first language, second language, and foreign language. Attention is given to studies that investigate the specific means used in teacher-student…

  18. Cooperative Learning Principles Enhance Online Interaction

    Science.gov (United States)

    Jacobs, George; Seow, Peter

    2014-01-01

    This paper describes eight principles that can be used to promote cooperative interactions among students working in online environments. The principles derive from a well-established approach to education, known variously as cooperative learning and collaborative learning. Each principle is explained as to what it means, why it is important and…

  19. A Multimodal Interaction Framework for Blended Learning

    DEFF Research Database (Denmark)

    Vidakis, Nikolaos; Kalafatis, Konstantinos; Triantafyllidis, Georgios

    2016-01-01

    Humans interact with each other by utilizing the five basic senses as input modalities, whereas sounds, gestures, facial expressions etc. are utilized as output modalities. Multimodal interaction is also used between humans and their surrounding environment, although enhanced with further senses ...... framework enabling deployment of a vast variety of modalities, tailored appropriately for use in blended learning environment....

  20. Interactive learning environments in augmented reality technology

    Directory of Open Access Journals (Sweden)

    Rafał Wojciechowski

    2010-01-01

    Full Text Available In this paper, the problem of creation of learning environments based on augmented reality (AR is considered. The concept of AR is presented as a tool for safe and cheap experimental learning. In AR learning environments students may acquire knowledge by personally carrying out experiments on virtual objects by manipulating real objects located in real environments. In the paper, a new approach to creation of interactive educational scenarios, called Augmented Reality Interactive Scenario Modeling (ARISM, is mentioned. In this approach, the process of building learning environments is divided into three stages, each of them performed by users with different technical and domain knowledge. The ARISM approach enables teachers who are not computer science experts to create AR learning environments adapted to the needs of their students.

  1. Interactivity, Game Creation, Design, Learning, and Innovation

    DEFF Research Database (Denmark)

    This book constitutes the proceedings of two conferences: The 5th International Conference on ArtsIT, Interactivity and Game Creation (ArtsIT 2016) and the First International Conference on Design, Learning and Innovation (DLI 2016). ArtsIT is reflecting trends in the expanding field of digital art......, interactive art, and how game creation is considered an art form. The decision was made to augment the title of ArtsIT to be in future known as “The International Conference on Interactivity, Game Creation, Design, Learning, and Innovation”. The event was hosted in Esbjerg, Denmark in May 2016 and attracted...

  2. The Videoconferencing Learning Environment: Technology, Interaction and Learning Intersect

    Science.gov (United States)

    Saw, K. G.; Majid, Omar; Ghani, N. Abdul; Atan, H.; Idrus, R. M.; Rahman, Z. A.; Tan, K. E.

    2008-01-01

    This paper is a study on the interaction patterns of distance learners enrolled in the Mathematics and Physics programmes of Universiti Sains Malaysia in the videoconferencing learning environment (VCLE). Interaction patterns are analysed in six randomly chosen videoconferencing sessions within one academic year. The findings show there are more…

  3. Learning Axure RP interactive prototypes

    CERN Document Server

    Krahenbuhl, John Henry

    2015-01-01

    If you are a user experience professional, designer, information architect, or business analyst who wants to gain interactive prototyping skills with Axure, then this book is ideal for you. Some familiarity with Axure is preferred but not essential.

  4. Radiotherapy: an interactive learning tool

    International Nuclear Information System (INIS)

    Frenzel, T.; Kruell, A.; Schmidt, R.; Dobrucki, W.; Malys, B.

    1998-01-01

    The program is primarily intended for radiological medical technicians, student nurses, students of medicine and physics, and doctors. It is designed as a tool for vocational training and further training and gives comprehensive insight into the daily routines of a radiotherapy unit. The chapters deal with: fundamental biological aspects - fundamental physical aspects - radiation sources and irradiation systems - preparatory examinations - therapies and concepts - irradiation planning - irradiation performance - termination of irradiation treatment. For every page displayed, spoken texts and written, on-screen keywords, illustrations, animated sequences and a large number of videos have been combined in a way easy to digest. The software of the program permits handling also by learners less familiar with computer-based learning. (orig./) [de

  5. Web based Interactive 3D Learning Objects for Learning Management Systems

    Directory of Open Access Journals (Sweden)

    Stefan Hesse

    2012-02-01

    Full Text Available In this paper, we present an approach to create and integrate interactive 3D learning objects of high quality for higher education into a learning management system. The use of these resources allows to visualize topics, such as electro-technical and physical processes in the interior of complex devices. This paper addresses the challenge of combining rich interactivity and adequate realism with 3D exercise material for distance elearning.

  6. Can Interactive Working Memory Training Improve Learning?

    Science.gov (United States)

    Alloway, Tracy

    2012-01-01

    Background: Working memory is linked to learning outcomes and there is emerging evidence that training working memory can yield gains in working memory and fluid intelligence. Aims: The aim of the present study was to investigate whether interactive working memory training would transfer to acquired cognitive skills, such as vocabulary and…

  7. ZAPs: Using Interactive Programs for Learning Psychology

    Science.gov (United States)

    Hulshof, Casper D.; Eysink, Tessa H. S.; Loyens, Sofie; de Jong, Ton

    2005-01-01

    ZAPs are short, self-contained computer programs that encourage students to experience psychological phenomena in a vivid, self-explanatory way, and that are meant to evoke enthusiasm about psychological topics. ZAPs were designed according to principles that originate from experiential and discovery learning theories. The interactive approach…

  8. Twenty-First Century Learning: Communities, Interaction and Ubiquitous Computing

    Science.gov (United States)

    Leh, Amy S.C.; Kouba, Barbara; Davis, Dirk

    2005-01-01

    Advanced technology makes 21st century learning, communities and interactions unique and leads people to an era of ubiquitous computing. The purpose of this article is to contribute to the discussion of learning in the 21st century. The paper will review literature on learning community, community learning, interaction, 21st century learning and…

  9. The Influence of Interactive Learning Materials on Self-Regulated Learning and Learning Satisfaction of Primary School Teachers in Mongolia

    Directory of Open Access Journals (Sweden)

    Shengru Li

    2018-04-01

    Full Text Available The purpose of this study was to investigate the effects of interactive learning materials on learners’ self-regulated learning processes and learning satisfaction. A two-group experimental design was employed for 285 primary school teachers involved in teacher training. Teachers in the experimental group utilised interactive learning materials along with training videos and guidelines for their self-development at the school level. Teachers in the control group conducted self-development only with training videos and guidelines. The result was analysed using self-regulated learning theory explaining how one’s self-regulation processes affect learning satisfaction. Five self-regulation processes were identified in this study: internal motivation, motivation for better assessment, planning and organizing skills, critical and positive thinking skills, and effort regulation. The analysis was conducted in two steps. First, t-test analysis was used to identify the significant differences between the experimental group and the control group. The analysis revealed: (1 teachers conducting self-development with interactive learning materials were highly motivated to achieve better teacher assessment, (2 teachers with interactive learning materials had higher learning satisfaction. Second, the study further investigated the effect of interactive materials on the relationship between self-regulation processes and learning satisfaction, using moderation analysis. The results showed that interactive materials significantly affect the relationship between motivation for better assessment and learning satisfaction, as well as the relationship between internal motivation and learning satisfaction. These results were complemented by qualitative analysis including interviews and focus group discussions with teachers.

  10. Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring.

    Directory of Open Access Journals (Sweden)

    Xia Jiang

    Full Text Available The problems of correlation and classification are long-standing in the fields of statistics and machine learning, and techniques have been developed to address these problems. We are now in the era of high-dimensional data, which is data that can concern billions of variables. These data present new challenges. In particular, it is difficult to discover predictive variables, when each variable has little marginal effect. An example concerns Genome-wide Association Studies (GWAS datasets, which involve millions of single nucleotide polymorphism (SNPs, where some of the SNPs interact epistatically to affect disease status. Towards determining these interacting SNPs, researchers developed techniques that addressed this specific problem. However, the problem is more general, and so these techniques are applicable to other problems concerning interactions. A difficulty with many of these techniques is that they do not distinguish whether a learned interaction is actually an interaction or whether it involves several variables with strong marginal effects.We address this problem using information gain and Bayesian network scoring. First, we identify candidate interactions by determining whether together variables provide more information than they do separately. Then we use Bayesian network scoring to see if a candidate interaction really is a likely model. Our strategy is called MBS-IGain. Using 100 simulated datasets and a real GWAS Alzheimer's dataset, we investigated the performance of MBS-IGain.When analyzing the simulated datasets, MBS-IGain substantially out-performed nine previous methods at locating interacting predictors, and at identifying interactions exactly. When analyzing the real Alzheimer's dataset, we obtained new results and results that substantiated previous findings. We conclude that MBS-IGain is highly effective at finding interactions in high-dimensional datasets. This result is significant because we have increasingly

  11. learning environments and the learning proces of interaction

    DEFF Research Database (Denmark)

    Jørgensen, Christian Helms

    2004-01-01

    In recent years, learning in working life has been launched as an important approach in relation to the urgent need for competence-development in our modern knowledge society. But what does it mean in practice? What can and what cannot be learned on the job; what is learned better at courses......, and their results, findings and recommendations are summed up in this book. The book ranges from the background for this development, over general mapping of the area from social, learning and political angles, the development of an overview model and analysis of a wide variety of practical approaches...... to the concluding perspectives on a practical, a theoretical and a political level. On the practical level, the door is opened for close interaction between workplaces and educational organisers, and politically for broad cooperation between the state, the partners in the labour market, and educational institutions...

  12. Blackthorn: Large-Scale Interactive Multimodal Learning

    DEFF Research Database (Denmark)

    Zahálka, Jan; Rudinac, Stevan; Jónsson, Björn Thór

    2018-01-01

    learning process. The Ratio-64 data representation introduced in this work only costs tens of bytes per item yet preserves most of the visual and textual semantic information with good accuracy. The optimized interactive learning model scores the Ratio-64- compressed data directly, greatly reducing...... outperforming the baseline with respect to the relevance of results: it vastly outperforms the baseline on recall over time and reaches up to 108% of its precision. Compared to the product quantization variant, Blackthorn is just as fast, while producing more relevant results. On the full YFCC100M dataset...

  13. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  14. Active learning methods for interactive image retrieval.

    Science.gov (United States)

    Gosselin, Philippe Henri; Cord, Matthieu

    2008-07-01

    Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.

  15. EFFECTS OF THE INQUIRY TRAINING AND MOTIVATION LEARNING AGAINST LEARNING OUTCOMES IN HIGH SCHOOL PHYSICS STUDENTS

    Directory of Open Access Journals (Sweden)

    Vika Andini

    2014-12-01

    Full Text Available This study aims to: determine the significance of differences in physics learning outcomes of students with learning models Inquiry Training and conventional models, knowing the significance of differences in physics learning outcomes of students who have learning motivation high and low, low motivation, the interaction model of learning and motivation to learn physics in improving student learning outcomes. The sample in this study conducted in a cluster random sampling of two classes, where the first class as a class experiment applied learning models and Inquiry Training as a second grade class learning model Conventional control applied. The instrument used in this study is the result of learning physics instruments in the form of 20 multiple-choice questions and motivation questionnaire  by 25 statements has been declared valid and reliable. From the results of this study concluded that the learning outcomes of students who are taught by Training Inquiry learning model is better than conventional models of learning outcomes. Learning outcomes of students who have high motivation to learn is better than the learning outcomes of students who have a low learning motivation. Inquiry learning model training and motivation interact in affecting student learning outcomes.

  16. Encouraging Interaction by Applying Cooperative Learning

    Directory of Open Access Journals (Sweden)

    González Sonia Helena

    2001-08-01

    Full Text Available A project was conducted in order to improve oral interaction in English by applying cooperative learning to students of seventh grade. These students have lower levels of oral production and attend Marco Fidel Suárez public school. So, I decided to choose topics related to real life and to plan a series of activities of sensitization to create stable work groups and to increase oral interaction. According to the analysis and results, I can say that cooperative work and the oral activities help the students increase oral production, express better and use a foreign language with more security. In spite of the results, I consider that cooperative learning needs more time so that it can be successful. Students must have the will to cooperate. Only when students have that good will and can work together is the potential of acquisition of knowledge maximized.

  17. Dual learning processes in interactive skill acquisition.

    Science.gov (United States)

    Fu, Wai-Tat; Anderson, John R

    2008-06-01

    Acquisition of interactive skills involves the use of internal and external cues. Experiment 1 showed that when actions were interdependent, learning was effective with and without external cues in the single-task condition but was effective only with the presence of external cues in the dual-task condition. In the dual-task condition, actions closer to the feedback were learned faster than actions farther away but this difference was reversed in the single-task condition. Experiment 2 tested how knowledge acquired in single and dual-task conditions would transfer to a new reward structure. Results confirmed the two forms of learning mediated by the secondary task: A declarative memory encoding process that simultaneously assigned credits to actions and a reinforcement-learning process that slowly propagated credits backward from the feedback. The results showed that both forms of learning were engaged during training, but only at the response selection stage, one form of knowledge may dominate over the other depending on the availability of attentional resources. (c) 2008 APA, all rights reserved

  18. Learning Microbiology Through Cooperation: Designing Cooperative Learning Activities that Promote Interdependence, Interaction, and Accountability

    Directory of Open Access Journals (Sweden)

    Janine E. Trempy

    2009-12-01

    Full Text Available A microbiology course and its corresponding learning activities have been structured according to the Cooperative Learning Model. This course, The World According to Microbes, integrates science, math, engineering, and technology (SMET majors and non-SMET majors into teams of students charged with problem solving activities that are microbial in origin. In this study we describe development of learning activities that utilize key components of Cooperative Learning—positive interdependence, promotive interaction, individual accountability, teamwork skills, and group processing. Assessments and evaluations over an 8-year period demonstrate high retention of key concepts in microbiology and high student satisfaction with the course.

  19. Distance learning through synchronous interactive television.

    Science.gov (United States)

    Hall, Janis L

    2007-01-01

    The advent and popularity of asynchronous online learning has somewhat obscured a standby technology developed over the last two decades. Interactive videoconferencing, sometimes called "interactive television," though not as glamorous and popular a topic at distance-learning conferences, is still alive and well at many institutions. Three or four years ago, many of us were led to believe that interactive television would go the way of the dinosaurs-everything would soon be in an asynchronous format or on individual desktops. There would no longer be any need for elaborately designed classrooms, networks, and operations staff. To date, this prediction has not come true. In fact, synchronous interactive television has experienced significant growth as newer, easier, and cheaper technologies allow institutions to reach more students with less resource investment. Faculty and students, while appreciating the convenience of asynchronous delivery, still express a need for synchronous communication. This article explores the issues involved in synchronous distance education, the current technologies and proposed future developments, and best practices in terms of classroom design, faculty use, and operational issues. It is not a research article but an anecdotal case study based on Washington State University's experiences over the last 20 years in developing and adapting to new synchronous technologies and creating the support and technical infrastructure to best deliver academic courses through this medium.

  20. Learning Music via Tangible and Corporeal Interaction

    DEFF Research Database (Denmark)

    Valente, Andrea; Jensen, Karl Kristoffer

    2008-01-01

    to consider an existing teaching tool from the computer science domain, computational cards, and modify it to cope with the specific problems found in musical education; we re-designed it, simplified and generalized its notation. The new tool, musiCards, also permits corporeal interaction, so children can......Young music learners face a number of challenges, mostly because musical theory and practice are deeply interrelated. Many musical teaching theories and methodologies exist, and music is taught today from primary school, in a variety of ways, and to different degrees of success. We proposal...... design interactive musical machines, implement them physically, then enact the interaction to generate musical performances. MusiCards enables pupils to explore music-related concepts such as rhythm and polyphonic performance; moreover it supports active involvement, imitation, group learning...

  1. Blended Learning Based on Schoology: Effort of Improvement Learning Outcome and Practicum Chance in Vocational High School

    Science.gov (United States)

    Irawan, Vincentius Tjandra; Sutadji, Eddy; Widiyanti

    2017-01-01

    The aims of this study were to determine: (1) the differences in learning outcome between Blended Learning based on Schoology and Problem-Based Learning, (2) the differences in learning outcome between students with prior knowledge of high, medium, and low, and (3) the interaction between Blended Learning based on Schoology and prior knowledge to…

  2. Interactive learning in oral and maxillofacial radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, Aruna; Ganguly, Rumpa [Dept. of Diagnostic Sciences, Div. of Oral and Maxillofacial Radiology, Tufts University School of Dental Medicine, Boston (United States)

    2016-09-15

    The use of electronic tools in teaching is growing rapidly in all fields, and there are many options to choose from. We present one such platform, Learning Catalytics (LC) (Pearson, New York, NY, USA), which we utilized in our oral and maxillofacial radiology course for second-year dental students. The aim of our study was to assess the correlation between students' performance on course exams and self-assessment LC quizzes. The performance of 354 predoctoral dental students from 2 consecutive classes on the course exams and LC quizzes was assessed to identify correlations using the Spearman rank correlation test. The first class was given in-class LC quizzes that were graded for accuracy. The second class was given out-of-class quizzes that were treated as online self-assessment exercises. The grading in the self-assessment exercises was for participation only and not accuracy. All quizzes were scheduled 1-2 weeks before the course examinations. A positive but weak correlation was found between the overall quiz scores and exam scores when the two classes were combined (P<0.0001). A positive but weak correlation was likewise found between students' performance on exams and on in-class LC quizzes (class of 2016) (P<0.0001) as well as on exams and online LC quizzes (class of 2017) (P<0.0001). It is not just the introduction of technological tools that impacts learning, but also their use in enabling an interactive learning environment. The LC platform provides an excellent technological tool for enhancing learning by improving bidirectional communication in a learning environment.

  3. Interactive learning in oral and maxillofacial radiology

    International Nuclear Information System (INIS)

    Ramesh, Aruna; Ganguly, Rumpa

    2016-01-01

    The use of electronic tools in teaching is growing rapidly in all fields, and there are many options to choose from. We present one such platform, Learning Catalytics (LC) (Pearson, New York, NY, USA), which we utilized in our oral and maxillofacial radiology course for second-year dental students. The aim of our study was to assess the correlation between students' performance on course exams and self-assessment LC quizzes. The performance of 354 predoctoral dental students from 2 consecutive classes on the course exams and LC quizzes was assessed to identify correlations using the Spearman rank correlation test. The first class was given in-class LC quizzes that were graded for accuracy. The second class was given out-of-class quizzes that were treated as online self-assessment exercises. The grading in the self-assessment exercises was for participation only and not accuracy. All quizzes were scheduled 1-2 weeks before the course examinations. A positive but weak correlation was found between the overall quiz scores and exam scores when the two classes were combined (P<0.0001). A positive but weak correlation was likewise found between students' performance on exams and on in-class LC quizzes (class of 2016) (P<0.0001) as well as on exams and online LC quizzes (class of 2017) (P<0.0001). It is not just the introduction of technological tools that impacts learning, but also their use in enabling an interactive learning environment. The LC platform provides an excellent technological tool for enhancing learning by improving bidirectional communication in a learning environment

  4. Weak interactions at high energies

    International Nuclear Information System (INIS)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references

  5. Skype me! Socially contingent interactions help toddlers learn language.

    Science.gov (United States)

    Roseberry, Sarah; Hirsh-Pasek, Kathy; Golinkoff, Roberta M

    2014-01-01

    Language learning takes place in the context of social interactions, yet the mechanisms that render social interactions useful for learning language remain unclear. This study focuses on whether social contingency might support word learning. Toddlers aged 24-30 months (N = 36) were exposed to novel verbs in one of three conditions: live interaction training, socially contingent video training over video chat, and noncontingent video training (yoked video). Results suggest that children only learned novel verbs in socially contingent interactions (live interactions and video chat). This study highlights the importance of social contingency in interactions for language learning and informs the literature on learning through screen media as the first study to examine word learning through video chat technology. © 2013 The Authors. Child Development © 2013 Society for Research in Child Development, Inc.

  6. Skype me! Socially Contingent Interactions Help Toddlers Learn Language

    Science.gov (United States)

    Roseberry, Sarah; Hirsh-Pasek, Kathy; Golinkoff, Roberta Michnick

    2013-01-01

    Language learning takes place in the context of social interactions, yet the mechanisms that render social interactions useful for learning language remain unclear. This paper focuses on whether social contingency might support word learning. Toddlers aged 24- to 30-months (N=36) were exposed to novel verbs in one of three conditions: live interaction training, socially contingent video training over video chat, and non-contingent video training (yoked video). Results suggest that children only learned novel verbs in socially contingent interactions (live interactions and video chat). The current study highlights the importance of social contingency in interactions for language learning and informs the literature on learning through screen media as the first study to examine word learning through video chat technology. PMID:24112079

  7. Student-Teacher Interaction in Online Learning Environments

    Science.gov (United States)

    Wright, Robert D., Ed.

    2015-01-01

    As face-to-face interaction between student and instructor is not present in online learning environments, it is increasingly important to understand how to establish and maintain social presence in online learning. "Student-Teacher Interaction in Online Learning Environments" provides successful strategies and procedures for developing…

  8. An Interactive Learning Environment for Information and Communication Theory

    Science.gov (United States)

    Hamada, Mohamed; Hassan, Mohammed

    2017-01-01

    Interactive learning tools are emerging as effective educational materials in the area of computer science and engineering. It is a research domain that is rapidly expanding because of its positive impacts on motivating and improving students' performance during the learning process. This paper introduces an interactive learning environment for…

  9. Emergent Learning and Interactive Media Artworks: Parameters of Interaction for Novice Groups

    Science.gov (United States)

    Kawka, Marta; Larkin, Kevin; Danaher, P. A.

    2011-01-01

    Emergent learning describes learning that occurs when participants interact and distribute knowledge, where learning is self-directed, and where the learning destination of the participants is largely unpredictable (Williams, Karousou, & Mackness, 2011). These notions of learning arise from the topologies of social networks and can be applied to…

  10. A new approach to theoretical investigations of high harmonics generation by means of fs laser interaction with overdense plasma layers. Combining particle-in-cell simulations with machine learning

    International Nuclear Information System (INIS)

    Mihailescu, A.

    2016-01-01

    Within the past decade, various experimental and theoretical investigations have been performed in the field of high-order harmonics generation (HHG) by means of femtosecond ( fs ) laser pulses interacting with laser produced plasmas. Numerous potential future applications thus arise. Beyond achieving higher conversion efficiency for higher harmonic orders and hence harmonic power and brilliance, there are more ambitious scientific goals such as attaining shorter harmonic wavelengths or reducing harmonic pulse durations towards the attosecond and even the zeptosecond range. High order harmonics are also an attractive diagnostic tool for the laser-plasma interaction process itself. Particle-in-Cell (PIC) simulations are known to be one of the most important numerical instruments employed in plasma physics and in laser-plasma interaction investigations. The novelty brought by this paper consists in combining the PIC method with several machine learning approaches. For predictive modelling purposes, a universal functional approximator is used, namely a multi-layer perceptron (MLP), in conjunction with a self-organizing map (SOM). The training sets have been retrieved from the PIC simulations and also from the available literature in the field. The results demonstrate the potential utility of machine learning in predicting optimal interaction scenarios for gaining higher order harmonics or harmonics with particular features such as a particular wavelength range, a particular harmonic pulse duration or a certain intensity. Furthermore, the author will show how machine learning can be used for estimations of electronic temperatures, proving that it can be a reliable tool for obtaining better insights into the fs laser interaction physics.

  11. Learning to Rank for Information Retrieval from User Interactions

    NARCIS (Netherlands)

    Hofmann, K.; Whiteson, S.; Schuth, A.; de Rijke, M.

    2014-01-01

    In this article we give an overview of our recent work on online learning to rank for information retrieval (IR). This work addresses IR from a reinforcement learning (RL) point of view, with the aim to enable systems that can learn directly from interactions with their users. Learning directly from

  12. Discover the pythagorean theorem using interactive multimedia learning

    Science.gov (United States)

    Adhitama, I.; Sujadi, I.; Pramudya, I.

    2018-04-01

    In learning process students are required to play an active role in learning. They do not just accept the concept directly from teachers, but also build their own knowledge so that the learning process becomes more meaningful. Based on the observation, when learning Pythagorean theorem, students got difficulty on determining hypotenuse. One of the solution to solve this problem is using an interactive multimedia learning. This article aims to discuss the interactive multimedia as learning media for students. This was a Research and Development (R&D) by using ADDIE model of development. The results obtained was multimedia which was developed proper for students as learning media. Besides, on Phytagorian theorem learning activity we also compare Discovery Learning (DL) model with interactive multimedia and DL without interactive multimedia, and obtained that DL with interactive gave positive effect better than DL without interactive multimedia. It was also obtainde that interactive multimedia can attract and increase the interest ot the students on learning math. Therefore, the use of interactive multimedia on DL procees can improve student learning achievement.

  13. Student’s social interaction in mathematics learning

    Science.gov (United States)

    Apriliyanto, B.; Saputro, D. R. S.; Riyadi

    2018-03-01

    Mathematics learning achievement is influenced by the internal and external factor of the students. One of the influencing external factors is social interaction with friends in learning activities. In modern learning, the learning is student-centered, so the student interaction is needed to learn about certain basic competence. Potential and motivation of students in learning are expected to develop with good social interaction in order to get maximum results. Social interaction is an important aspect of learning Mathematics because students get the opportunity to express their own thoughts in order to encourage a reflection on the knowledge they have. This research uses the correlational descriptive method involving 36 students for the tenth grade, eleventh grade, and twelfth grade of SMA Negeri 1 Wuryantoro and data collecting technique using questionnaire for social interaction and documentation for learning outcome. The result of this research shows that learning achievement and social interaction of students are not good. Based on the result of data analysis, it is shown that the social interaction and Mathematics learning achievement are still in the low level. This research concludes that students’ social interaction influences student learning achievement in Mathematics subjects.

  14. Interactive Videos Enhance Learning about Socio-Ecological Systems

    Science.gov (United States)

    Smithwick, Erica; Baxter, Emily; Kim, Kyung; Edel-Malizia, Stephanie; Rocco, Stevie; Blackstock, Dean

    2018-01-01

    Two forms of interactive video were assessed in an online course focused on conservation. The hypothesis was that interactive video enhances student perceptions about learning and improves mental models of social-ecological systems. Results showed that students reported greater learning and attitudes toward the subject following interactive video.…

  15. Designing an Interactive Multimedia Environment for Learning and Aiding Troubleshooting

    National Research Council Canada - National Science Library

    Kolodner, Janet

    1997-01-01

    .... However troubleshooting is a complex process both to learn and perform. This report examines the prospects for designing an interactive learning environment that helps users acquire and engage in effective troubleshooting...

  16. Skype me! Socially Contingent Interactions Help Toddlers Learn Language

    OpenAIRE

    Roseberry, Sarah; Hirsh-Pasek, Kathy; Golinkoff, Roberta Michnick

    2013-01-01

    Language learning takes place in the context of social interactions, yet the mechanisms that render social interactions useful for learning language remain unclear. This paper focuses on whether social contingency might support word learning. Toddlers aged 24- to 30-months (N=36) were exposed to novel verbs in one of three conditions: live interaction training, socially contingent video training over video chat, and non-contingent video training (yoked video). Results sugges...

  17. Toxicology of Nanomaterials: Permanent interactive learning

    Directory of Open Access Journals (Sweden)

    Castranova Vince

    2009-10-01

    Full Text Available Abstract Particle and Fibre Toxicology wants to play a decisive role in a time where particle research is challenged and driven by the developments and applications of nanomaterials. This aim is not merely quantitative in publishing a given number of papers on nanomaterials, but also qualitatively since the field of nanotoxicology is rapidly emerging and benchmarks for good science are needed. Since then a number of things have happened that merit further analysis. The interactive learning issue is best shown by report and communications on the toxicology of multi-wall carbon nanotubes (CNT. A special workshop on the CNT has now been organized twice in Nagano (Japan and this editorial contains a summary of the most important outcomes. Finally, we take the opportunity discuss some recent reports from the nanotech literature, and more specifically a Chinese study that claims severe consequences of nanoparticle exposure.

  18. A unified treatment of high energy interactions

    International Nuclear Information System (INIS)

    Drescher, H.J.; Werner, K.; Ostapchenko, S.; Centre National de la Recherche Scientifique, 44 - Nantes

    1999-01-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author)

  19. Visual Interactive Syntax Learning: A Case of Blended Learning

    Directory of Open Access Journals (Sweden)

    Jane Vinther

    2008-11-01

    Full Text Available The integration of the computer as a tool in language learningat the tertiary level brings several opportunities for adaptingto individual student needs, but lack of appropriate material suited for the level of student proficiency in Scandinavia has meant that university teachers have found it difficult to blendthe traditional approach with computer tools. This article will present one programme (VISL which has been developed with the purpose of supporting and enhancing traditional instruction. Visual Interactive Syntax Learning (VISL is a programme which is basically a parser put to pedagogical use. The pedagogical purpose is to teach English syntax to university students at an advanced level. The programme allows the students to build sophisticated tree diagrams of Englishsentences with provisions for both functions and forms (simple or complex, incl. subclauses. VISL was initiated as an attempt to facilitate the metalinguistic learning process. Thisarticle will present VISL as a pedagogical tool and tries to argue the case for the benefits of blending traditional lecturing with modern technology while pointing out some of the issues involved.

  20. Mobile human-computer interaction perspective on mobile learning

    CSIR Research Space (South Africa)

    Botha, Adèle

    2010-10-01

    Full Text Available Applying a Mobile Human Computer Interaction (MHCI) view to the domain of education using Mobile Learning (Mlearning), the research outlines its understanding of the influences and effects of different interactions on the use of mobile technology...

  1. Word learning emerges from the interaction of online referent selection and slow associative learning

    Science.gov (United States)

    McMurray, Bob; Horst, Jessica S.; Samuelson, Larissa K.

    2013-01-01

    Classic approaches to word learning emphasize the problem of referential ambiguity: in any naming situation the referent of a novel word must be selected from many possible objects, properties, actions, etc. To solve this problem, researchers have posited numerous constraints, and inference strategies, but assume that determining the referent of a novel word is isomorphic to learning. We present an alternative model in which referent selection is an online process that is independent of long-term learning. This two timescale approach creates significant power in the developing system. We illustrate this with a dynamic associative model in which referent selection is simulated as dynamic competition between competing referents, and learning is simulated using associative (Hebbian) learning. This model can account for a range of findings including the delay in expressive vocabulary relative to receptive vocabulary, learning under high degrees of referential ambiguity using cross-situational statistics, accelerating (vocabulary explosion) and decelerating (power-law) learning rates, fast-mapping by mutual exclusivity (and differences in bilinguals), improvements in familiar word recognition with development, and correlations between individual differences in speed of processing and learning. Five theoretical points are illustrated. 1) Word learning does not require specialized processes – general association learning buttressed by dynamic competition can account for much of the literature. 2) The processes of recognizing familiar words are not different than those that support novel words (e.g., fast-mapping). 3) Online competition may allow the network (or child) to leverage information available in the task to augment performance or behavior despite what might be relatively slow learning or poor representations. 4) Even associative learning is more complex than previously thought – a major contributor to performance is the pruning of incorrect associations

  2. Interactive instruction of cellular physiology for remote learning.

    Science.gov (United States)

    Huang, C; Huang, H K

    2003-12-01

    The biomedical sciences are a rapidly changing discipline that have adapted to innovative technological advances. Despite these many advances, we face two major challenges: a) the number of experts in the field is vastly outnumbered by the number of students, many of whom are separated geographically or temporally and b) the teaching methods used to instruct students and learners have not changed. Today's students have adapted to technology--they use the web as a source of information and communicate via email and chat rooms. Teaching in the biomedical sciences should adopt these new information technologies (IT), but has thus far failed to capitalize on technological opportunity. Creating a "digital textbook" of the traditional learning material is not sufficient for dynamic processes such as cellular physiology. This paper describes innovative teaching techniques that incorporate familiar IT and high-quality interactive learning content with user-centric instruction design models. The Virtual Labs Project from Stanford University has created effective interactive online teaching modules in physiology (simPHYSIO) and delivered them over broadband networks to their undergraduate and medical students. Evaluation results of the modules are given as a measure of success of such innovative teaching method. This learning media strategically merges IT innovations with pedagogy to produce user-driven animations of processes and engaging interactive simulations.

  3. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.

    Science.gov (United States)

    Kim, Su Kyoung; Kirchner, Elsa Andrea; Stefes, Arne; Kirchner, Frank

    2017-12-14

    Reinforcement learning (RL) enables robots to learn its optimal behavioral strategy in dynamic environments based on feedback. Explicit human feedback during robot RL is advantageous, since an explicit reward function can be easily adapted. However, it is very demanding and tiresome for a human to continuously and explicitly generate feedback. Therefore, the development of implicit approaches is of high relevance. In this paper, we used an error-related potential (ErrP), an event-related activity in the human electroencephalogram (EEG), as an intrinsically generated implicit feedback (rewards) for RL. Initially we validated our approach with seven subjects in a simulated robot learning scenario. ErrPs were detected online in single trial with a balanced accuracy (bACC) of 91%, which was sufficient to learn to recognize gestures and the correct mapping between human gestures and robot actions in parallel. Finally, we validated our approach in a real robot scenario, in which seven subjects freely chose gestures and the real robot correctly learned the mapping between gestures and actions (ErrP detection (90% bACC)). In this paper, we demonstrated that intrinsically generated EEG-based human feedback in RL can successfully be used to implicitly improve gesture-based robot control during human-robot interaction. We call our approach intrinsic interactive RL.

  4. Designing Interactions for Learning: Physicality, Interactivity, and Interface Effects in Digital Environments

    Science.gov (United States)

    Hoffman, Daniel L.

    2013-01-01

    The purpose of the study is to better understand the role of physicality, interactivity, and interface effects in learning with digital content. Drawing on work in cognitive science, human-computer interaction, and multimedia learning, the study argues that interfaces that promote physical interaction can provide "conceptual leverage"…

  5. Interactive Multimedia Learning: Innovating Classroom Education in a Malaysian University

    Science.gov (United States)

    Leow, Fui-Theng; Neo, Mai

    2014-01-01

    This research study was conducted at INTI International University, and aimed at enhancing the quality of classroom learning for University students with three important emphases: Gagne's instructional model, multimedia, and student-centred learning. An Interactive Learning Module (ILM) was developed as the core component in forming the…

  6. Internet-based Interactive Construction Management Learning System.

    Science.gov (United States)

    Sawhney, Anil; Mund, Andre; Koczenasz, Jeremy

    2001-01-01

    Describes a way to incorporate practical content into the construction engineering and management curricula: the Internet-based Interactive Construction Management Learning System, which uses interactive and adaptive learning environments to train students in the areas of construction methods, equipment and processes using multimedia, databases,…

  7. Informal Language Learning Setting: Technology or Social Interaction?

    Science.gov (United States)

    Bahrani, Taher; Sim, Tam Shu

    2012-01-01

    Based on the informal language learning theory, language learning can occur outside the classroom setting unconsciously and incidentally through interaction with the native speakers or exposure to authentic language input through technology. However, an EFL context lacks the social interaction which naturally occurs in an ESL context. To explore…

  8. Hybrid E-Textbooks as Comprehensive Interactive Learning Environments

    Science.gov (United States)

    Ghaem Sigarchian, Hajar; Logghe, Sara; Verborgh, Ruben; de Neve, Wesley; Salliau, Frank; Mannens, Erik; Van de Walle, Rik; Schuurman, Dimitri

    2018-01-01

    An e-TextBook can serve as an interactive learning environment (ILE), facilitating more effective teaching and learning processes. In this paper, we propose the novel concept of an EPUB 3-based Hybrid e-TextBook, which allows for interaction between the digital and the physical world. In that regard, we first investigated the gap between the…

  9. An OWL Ontology for Metadata of Interactive Learning Objects

    Science.gov (United States)

    Luz, Bruno N.; Santos, Rafael; Alves, Bruno; Areão, Andreza S.; Yokoyama, Marcos H.; Guimarães, Marcelo P.

    2015-01-01

    The main purpose of this paper is to present the importance of Interactive Learning Objects (ILO) to improve the teaching-learning process by assuring a constant interaction among teachers and students, which in turn, allows students to be constantly supported by the teacher. The paper describes the ontology that defines the ILO available on the…

  10. Interaction in a Blended Environment for English Language Learning

    Science.gov (United States)

    Romero Archila, Yuranny Marcela

    2014-01-01

    The purpose of this research was to identify the types of interaction that emerged not only in a Virtual Learning Environment (VLE) but also in face-to-face settings. The study also assessed the impact of the different kinds of interactions in terms of language learning. This is a qualitative case study that took place in a private Colombian…

  11. Natural Interaction Based Online Military Boxing Learning System

    Science.gov (United States)

    Yang, Chenglei; Wang, Lu; Sun, Bing; Yin, Xu; Wang, Xiaoting; Liu, Li; Lu, Lin

    2013-01-01

    Military boxing, a kind of Chinese martial arts, is widespread and health beneficial. In this paper, the authors introduce a military boxing learning system realized by 3D motion capture, Web3D and 3D interactive technologies. The interactions with the system are natural and intuitive. Users can observe and learn the details of each action of the…

  12. Social Phenomenon of Community on Online Learning: Digital Interaction and Collaborative Learning Experience

    Science.gov (United States)

    Aleksic-Maslac, Karmela; Magzan, Masha; Juric, Visnja

    2009-01-01

    Digital interaction in e-learning offers great opportunities for education quality improvement in both--the classical teaching combined with e-learning, and distance learning. Zagreb School of Economics & Management (ZSEM) is one of the few higher education institutions in Croatia that systematically uses e-learning in teaching. Systematically…

  13. A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology.

    Science.gov (United States)

    Koo, Ching Lee; Liew, Mei Jing; Mohamad, Mohd Saberi; Salleh, Abdul Hakim Mohamed

    2013-01-01

    Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs), support vector machine (SVM), and random forests (RFs) in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  14. Developing Models for Embodied Learning with Live Interactive Simulations

    DEFF Research Database (Denmark)

    Gjedde, Lisa

    2014-01-01

    Live simulations may offer a natural form of multimodal learning through embodied action, which can be engaging to a variety of learners and provide a platform for inclusion of special needs learners across the classroom. In this approach to interactive learning, the subject matter is embedded...... learning design is available that provides for interactive and embodied learning, which appeals to the segment of boys that are often difficult to motivate with ordinary uni-modal teaching methods. The paper will present preliminary results from an action research project carried out in collaboration...

  15. Interactive Algorithms for Unsupervised Machine Learning

    Science.gov (United States)

    2015-06-01

    in Neural Information Processing Systems, 2013. 14 [3] Louigi Addario-Berry, Nicolas Broutin, Luc Devroye, and Gábor Lugosi. On combinato- rial...Myung Jin Choi, Vincent Y F Tan , Animashree Anandkumar, and Alan S Willsky. Learn- ing Latent Tree Graphical Models. Journal of Machine Learning

  16. Pedagogical Agents as Learning Companions: The Role of Agent Competency and Type of Interaction

    Science.gov (United States)

    Kim, Yanghee; Baylor, Amy L.

    2006-01-01

    This study was designed to examine the effects of the competency (low vs. high) and interaction type (proactive vs. responsive) of pedagogical agents as learning companions (PALs) on learning, self-efficacy, and attitudes. Participants were 72 undergraduates in an introductory computer-literacy course who were randomly assigned to one of four…

  17. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  18. Hospitals as learning organizations: fostering innovation through interactive learning.

    Science.gov (United States)

    Dias, Casimiro; Escoval, Ana

    2015-01-01

    The article aims to provide an analytical understanding of hospitals as "learning organizations." It further analyzes the development of learning organizations as a way to enhance innovation and performance in the hospital sector. The article pulls together primary data on organizational flexibility, innovation, and performance from 95 administrators from hospital boards in Portugal, collected through a survey, interviews with hospital's boards, and a nominal group technique with a panel of experts on health systems. Results show that a combination of several organizational traits of the learning organization enhances its capacity for innovation development. The logistic model presented reveals that hospitals classified as "advanced learning organizations" have 5 times more chance of developing innovation than "basic learning organizations." Empirical findings further pointed out incentives, standards, and measurement requirements as key elements for integration of service delivery systems and expansion of the current capacity for structured and real-time learning in the hospital sector. The major implication arising from this study is that policy needs to combine instruments that promote innovation opportunities and incentives, with instruments stimulating the further development of the core components of learning organizations. Such a combination of policy instruments has the potential to ensure a wide external cooperation through a learning infrastructure.

  19. The High Scope Approach To Early Learning

    OpenAIRE

    French, Geraldine

    2012-01-01

    Learning Objectives: After studying this chapter the reader should be able to: • Describe the historical origins, the longitudinal research, and the theoretical underpinnings of the HighScope approach. • Identify the teaching strategies adopted by HighScope educators. • Appreciate the curriculum content. • Understand the HighScope approach to the assessment of children’s learning. • Consider some criticisms of the HighScope research and approach to early learning. This ...

  20. The Importance of Human-Computer Interaction in Radiology E-learning.

    Science.gov (United States)

    den Harder, Annemarie M; Frijlingh, Marissa; Ravesloot, Cécile J; Oosterbaan, Anne E; van der Gijp, Anouk

    2016-04-01

    With the development of cross-sectional imaging techniques and transformation to digital reading of radiological imaging, e-learning might be a promising tool in undergraduate radiology education. In this systematic review of the literature, we evaluate the emergence of image interaction possibilities in radiology e-learning programs and evidence for effects of radiology e-learning on learning outcomes and perspectives of medical students and teachers. A systematic search in PubMed, EMBASE, Cochrane, ERIC, and PsycInfo was performed. Articles were screened by two authors and included when they concerned the evaluation of radiological e-learning tools for undergraduate medical students. Nineteen articles were included. Seven studies evaluated e-learning programs with image interaction possibilities. Students perceived e-learning with image interaction possibilities to be a useful addition to learning with hard copy images and to be effective for learning 3D anatomy. Both e-learning programs with and without image interaction possibilities were found to improve radiological knowledge and skills. In general, students found e-learning programs easy to use, rated image quality high, and found the difficulty level of the courses appropriate. Furthermore, they felt that their knowledge and understanding of radiology improved by using e-learning. In conclusion, the addition of radiology e-learning in undergraduate medical education can improve radiological knowledge and image interpretation skills. Differences between the effect of e-learning with and without image interpretation possibilities on learning outcomes are unknown and should be subject to future research.

  1. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Moses, Alan M.; Zhang, Zhaolei

    2015-01-01

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  2. Design of Feedback in Interactive Multimedia Language Learning Environments

    Directory of Open Access Journals (Sweden)

    Vehbi Türel

    2012-01-01

    Full Text Available In interactive multimedia environments, different digital elements (i. e. video, audio, visuals, text, animations, graphics and glossary can be combined and delivered on the same digital computer screen (TDM 1997: 151, CCED 1987, Brett 1998: 81, Stenton 1998: 11, Mangiafico 1996: 46. This also enables effectively provision and presentation of feedback in pedagogically more efficient ways, which meets not only the requirement of different teaching and learning theories, but also the needs of language learners who vary in their learning-style preferences (Robinson 1991: 156, Peter 1994: 157f.. This study aims to bring out the pedagogical and design principles that might help us to more effectively design and customise feedback in interactive multimedia language learning environments. While so doing, some examples of thought out and customized computerised feedback from an interactive multimedia language learning environment, which were designed and created by the author of this study and were also used for language learning purposes, will be shown.

  3. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun

    2015-11-02

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  4. Personal Profiles: Enhancing Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Berlanga, Adriana; Bitter-Rijpkema, Marlies; Brouns, Francis; Sloep, Peter; Fetter, Sibren

    2009-01-01

    Berlanga, A. J., Bitter-Rijpkema, M., Brouns, F., Sloep, P. B., & Fetter, S. (2011). Personal Profiles: Enhancing Social Interaction in Learning Networks. International Journal of Web Based Communities, 7(1), 66-82.

  5. Non-formal Learning through Ludic Engagement within Interactive Environments

    DEFF Research Database (Denmark)

    Petersson, Eva

    Adaptive responsive environments that encourage interaction for children with severe disabilities offer a distinct potential for play and learning in rehabilitation. Physical training and therapy for these children is often enduring, tedious, and boring through repetition – and this is often...... the case for both the child and the facilitator/therapist. Despite this, little is yet known about how the utilization of empowering technology influences the users’ communication and learning. The aim of this thesis is twofold: to contribute to the understanding of the role of action and interaction...... in the learning involved when people with different abilities are using interactive environments, and to make a contribution to the research field by concluding at tentative generalizations on design for non-formal learning in interactive environments.      The thesis consists of seven studies which analyze...

  6. Interactive eLearning - a safe place to practice.

    Science.gov (United States)

    Einarson, Elisabeth; Moen, Anne; Kolberg, Ragnhild; Flingtorp, Gry; Linnerud, Eva

    2009-01-01

    Interactive web-based learning environment offers refreshing opportunities to create innovative solutions to explore and exploit informatics support on-the-job training. We report from a study where a hospital is created a interactive eLearning resource. The modules are creating a safe place to practice - to be used for introduction to the work and preparation for certification or re-certification of competencies.

  7. A framework for interactive learning in emerging technologies

    OpenAIRE

    Rens L.J. Vandeberg; Ellen H.M. Moors

    2008-01-01

    Innovation is an interactive learning process which is of special interest for emerging technologies in which complex complementary knowledge from heterogeneous stakeholders is combined. In the emerging phase of technology development a lot of knowledge is tacit and can only be transferred face-to-face. At the same time a shared vision between stakeholders is being formed that acts as a driver for innovation. Although the importance of interactive learning is widely acknowledged, an adequate ...

  8. Self-Regulation, Cooperative Learning, and Academic Self-Efficacy: Interactions to Prevent School Failure.

    Science.gov (United States)

    Fernandez-Rio, Javier; Cecchini, Jose A; Méndez-Gimenez, Antonio; Mendez-Alonso, David; Prieto, Jose A

    2017-01-01

    Learning to learn and learning to cooperate are two important goals for individuals. Moreover, self regulation has been identified as fundamental to prevent school failure. The goal of the present study was to assess the interactions between self-regulated learning, cooperative learning and academic self-efficacy in secondary education students experiencing cooperative learning as the main pedagogical approach for at least one school year. 2.513 secondary education students (1.308 males, 1.205 females), 12-17 years old ( M = 13.85, SD = 1.29), enrolled in 17 different schools belonging to the National Network of Schools on Cooperative Learning in Spain agreed to participate. They all had experienced this pedagogical approach a minimum of one school year. Participants were asked to complete the cooperative learning questionnaire, the strategies to control the study questionnaire and the global academic self-efficacy questionnaire. Participants were grouped based on their perceptions on cooperative learning and self-regulated learning in their classes. A combination of hierarchical and κ -means cluster analyses was used. Results revealed a four-cluster solution: cluster one included students with low levels of cooperative learning, self-regulated learning and academic self-efficacy, cluster two included students with high levels of cooperative learning, self-regulated learning and academic self-efficacy, cluster three included students with high levels of cooperative learning, low levels of self-regulated learning and intermediate-low levels of academic self-efficacy, and, finally, cluster four included students with high levels of self-regulated learning, low levels of cooperative learning, and intermediate-high levels of academic self-efficacy. Self-regulated learning was found more influential than cooperative learning on students' academic self-efficacy. In cooperative learning contexts students interact through different types of regulations: self, co, and

  9. Self-Regulation, Cooperative Learning, and Academic Self-Efficacy: Interactions to Prevent School Failure

    Science.gov (United States)

    Fernandez-Rio, Javier; Cecchini, Jose A.; Méndez-Gimenez, Antonio; Mendez-Alonso, David; Prieto, Jose A.

    2017-01-01

    Learning to learn and learning to cooperate are two important goals for individuals. Moreover, self regulation has been identified as fundamental to prevent school failure. The goal of the present study was to assess the interactions between self-regulated learning, cooperative learning and academic self-efficacy in secondary education students experiencing cooperative learning as the main pedagogical approach for at least one school year. 2.513 secondary education students (1.308 males, 1.205 females), 12–17 years old (M = 13.85, SD = 1.29), enrolled in 17 different schools belonging to the National Network of Schools on Cooperative Learning in Spain agreed to participate. They all had experienced this pedagogical approach a minimum of one school year. Participants were asked to complete the cooperative learning questionnaire, the strategies to control the study questionnaire and the global academic self-efficacy questionnaire. Participants were grouped based on their perceptions on cooperative learning and self-regulated learning in their classes. A combination of hierarchical and κ-means cluster analyses was used. Results revealed a four-cluster solution: cluster one included students with low levels of cooperative learning, self-regulated learning and academic self-efficacy, cluster two included students with high levels of cooperative learning, self-regulated learning and academic self-efficacy, cluster three included students with high levels of cooperative learning, low levels of self-regulated learning and intermediate-low levels of academic self-efficacy, and, finally, cluster four included students with high levels of self-regulated learning, low levels of cooperative learning, and intermediate-high levels of academic self-efficacy. Self-regulated learning was found more influential than cooperative learning on students’ academic self-efficacy. In cooperative learning contexts students interact through different types of regulations: self, co, and

  10. Cautions: Implementing Interpersonal Interaction in Workplace E-Learning

    Science.gov (United States)

    Githens, Rod P.

    2006-01-01

    E-learning programs in workplaces have been slow to incorporate social and collaborative methods. Although these programs provide flexibility and cost savings, poor learning outcomes and low completion rates have caused some organizations to transition to approaches that include interpersonal interaction. In reviewing studies of e-learning…

  11. The Value of Interactive Assignments in the Online Learning Environment

    Science.gov (United States)

    Florenthal, Bela

    2016-01-01

    The offerings of Web-based supplemental material for textbooks have been increasingly growing. When deciding to adopt a textbook, instructors examine the added value of the associated supplements, also called "e-learning tools," to enhance students' learning of course concepts. In this study, one such supplement, interactive assignments,…

  12. Interactive Internet Based Pendulum for Learning Mechatronics

    Science.gov (United States)

    Sethson, Magnus R.

    2003-01-01

    This paper describes an Internet based remote experimental setup of a double lined pendulum mechanism for students experiments at the M. Sc. Level. Some of the first year experience using this web-based setup in classes is referred. In most of the courses given at the division of mechanical engineering systems at Linkoeping Institute of Technology we provide experimental setups to enhance the teaching Of M.Sc. students. Many of these experimental setups involve mechatronical systems. Disciplines like fluid power, electronics, and mechanics and also software technologies are used in each experiment. As our campus has recently been split into two different cities some new concepts for distance learning have been studied. The one described here tries to implement remotely controlled mechatronic setups for teaching basic programming of real-time operating systems and analysis of the dynamics of mechanical systems. The students control the regulators for the pendulum through a web interface and get measurement results and a movie back through their email. The present setup uses a double linked pendulum that is controlled by a DC-motor and monitored through both camera and angular position sensors. All software needed is hosted on a double-processor PC running the RedHat 7.1. distribution complemented with real-time scheduling using DIAPM-RTAI 1.7. The Internet site is presented to the students using PHP, Apache and MySQL. All of the used software originates from the open source domain. The experience from integrating these technologies and security issues is discussed together with the web-camera interface. One of the important experiences from this project so far is the need for a good visual feedback. This is both in terms of video speed but also in resolution. It has been noticed that when the students makes misstates and wants to search the failure they want clear, large images with high resolution to support their personal believes in the cause of the failure. Even

  13. Intermolecular Interactions at high pressure

    DEFF Research Database (Denmark)

    Eikeland, Espen Zink

    2016-01-01

    In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together with their st...

  14. Interactive learning environments to support independent learning: the impact of discernability of embedded support devices

    NARCIS (Netherlands)

    Martens, Rob; Valcke, Martin; Portier, Stanley

    2017-01-01

    In this article the effectivity of prototypes of interactive learning environments (ILE) is investigated. These computer-based environments are used for independent learning. In the learning materials, represented in the prototypes, a clear distinction is made between the basic content and embedded

  15. Relationship between Online Learning Readiness and Structure and Interaction of Online Learning Students

    Science.gov (United States)

    Demir Kaymak, Zeliha; Horzum, Mehmet Baris

    2013-01-01

    Current study tried to determine whether a relationship exists between readiness levels of the online learning students for online learning and the perceived structure and interaction in online learning environments. In the study, cross sectional survey model was used. The study was conducted with 320 voluntary students studying online learning…

  16. Innovative Collaborative Learning Strategies for Integrated Interactive E-Learning in the 21st Century

    Science.gov (United States)

    Son, Barbara

    2016-01-01

    There is a constant challenge for online programs, instructional designers and instructors to tailor eLearning materials for different learning styles. We examined this issue by closely looking at the innovative interactive learning models at the previous AACE Conferences (Son & Goldstone, 2011, Son & Goldstone, 2012, Son & Simonian,…

  17. Pedagogical Agents as Learning Companions: The Role of Agent Competency and Type of Interaction

    OpenAIRE

    Kim, Yanghee; Baylor, Amy L.; PALS Group,

    2006-01-01

    This study was designed to examine the effects of the competency (low vs. high) and interaction type (proactive vs. responsive) of pedagogical agents as learning companions (PALs) on learning, self-efficacy, and attitudes. Participants were 72 undergraduates in an introductory computer-literacy course who were randomly assigned to one of four treatments: Low-Proactive, Low-Responsive, High-Proactive, and High-Responsive. Results indicated a main effect for PAL competency. Students who worked ...

  18. A Development of Game-Based Learning Environment to Activate Interaction among Learners

    Science.gov (United States)

    Takaoka, Ryo; Shimokawa, Masayuki; Okamoto, Toshio

    Many studies and systems that incorporate elements such as “pleasure” and “fun” in the game to improve a learner's motivation have been developed in the field of learning environments. However, few are the studies of situations where many learners gather at a single computer and participate in a game-based learning environment (GBLE), and where the GBLE designs the learning process by controlling the interactions between learners such as competition, collaboration, and learning by teaching. Therefore, the purpose of this study is to propose a framework of educational control that induces and activates interaction between learners intentionally to create a learning opportunity that is based on the knowledge understanding model of each learner. In this paper, we explain the design philosophy and the framework of our GBLE called “Who becomes the king in the country of mathematics?” from a game viewpoint and describe the method of learning support control in the learning environment. In addition, we report the results of the learning experiment with our GBLE, which we carried out in a junior high school, and include some comments by a principal and a teacher. From the results of the experiment and some comments, we noticed that a game may play a significant role in weakening the learning relationship among students and creating new relationships in the world of the game. Furthermore, we discovered that learning support control of the GBLE has led to activation of the interaction between learners to some extent.

  19. Participant Interaction in Asynchronous Learning Environments: Evaluating Interaction Analysis Methods

    Science.gov (United States)

    Blanchette, Judith

    2012-01-01

    The purpose of this empirical study was to determine the extent to which three different objective analytical methods--sequence analysis, surface cohesion analysis, and lexical cohesion analysis--can most accurately identify specific characteristics of online interaction. Statistically significant differences were found in all points of…

  20. Determinants of Internet Use for Interactive Learning: An Exploratory Study

    Science.gov (United States)

    Castaño, Jonatan; Duart, Josep M.; Sancho-Vinuesa, Teresa

    2015-01-01

    The use of the Internet in higher education teaching can facilitate the interactive learning process and thus improve educational outcomes. The aim of the study presented here is to explore which variables are linked to higher intensity of Internet-based interactive educational practices. The study is based on data obtained from an online survey…

  1. Designing Learning Environments to Teach Interactive Quantum Physics

    Science.gov (United States)

    Puente, Sonia M. Gomez; Swagten, Henk J. M.

    2012-01-01

    This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small…

  2. Designing learning environments to teach interactive Quantum Physics

    NARCIS (Netherlands)

    Gómez Puente, S.M.; Swagten, H.J.M.

    2012-01-01

    This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and

  3. Boosting compound-protein interaction prediction by deep learning.

    Science.gov (United States)

    Tian, Kai; Shao, Mingyu; Wang, Yang; Guan, Jihong; Zhou, Shuigeng

    2016-11-01

    The identification of interactions between compounds and proteins plays an important role in network pharmacology and drug discovery. However, experimentally identifying compound-protein interactions (CPIs) is generally expensive and time-consuming, computational approaches are thus introduced. Among these, machine-learning based methods have achieved a considerable success. However, due to the nonlinear and imbalanced nature of biological data, many machine learning approaches have their own limitations. Recently, deep learning techniques show advantages over many state-of-the-art machine learning methods in some applications. In this study, we aim at improving the performance of CPI prediction based on deep learning, and propose a method called DL-CPI (the abbreviation of Deep Learning for Compound-Protein Interactions prediction), which employs deep neural network (DNN) to effectively learn the representations of compound-protein pairs. Extensive experiments show that DL-CPI can learn useful features of compound-protein pairs by a layerwise abstraction, and thus achieves better prediction performance than existing methods on both balanced and imbalanced datasets. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Situated learning and interacting with/through technologies

    DEFF Research Database (Denmark)

    Raudaskoski, Pirkko Liisa

    2006-01-01

    There is a growing interest within social and humanistic sciences towards understanding practice theoretically and analytically. Lave and Wenger’s concept “situated learning” describes the process of newcomers moving toward full participation in a community. Wenger later refined his approach in h...... practices. The interdisciplinary interaction analysis (IA) is suggested as the best way to study the various aspects of situated learning in technology-intensive interactions.......There is a growing interest within social and humanistic sciences towards understanding practice theoretically and analytically. Lave and Wenger’s concept “situated learning” describes the process of newcomers moving toward full participation in a community. Wenger later refined his approach in his...... book ‘Communities of practice: Learning, meaning and identity’. Situated learning is equalled with social order: instead of understanding learning as a separate practice from everyday life, learning is seen as a more mundane phenomenon. It is sometimes difficult to operationalize Lave and Wenger...

  5. Patterns of interactions at grade 5 classroom in learning the topic of statistics viewed from cognitive load theory

    Science.gov (United States)

    Setianingsih, R.

    2018-01-01

    The nature of interactions that occurs among teacher, students, learning sources, and learning environment creates different settings to enhance learning. Any setting created by a teacher is affected by 3 (three) types of cognitive load: intrinsic cognitive load, extraneous cognitive load, and germane cognitive load. This study is qualitative in nature, aims to analyse the patterns of interaction that are constituted in mathematics instructions by taking into account the cognitive load theory. The subjects of this study are 21 fifth-grade students who learn mathematics in small groups and whole-class interactive lessons. The data were collected through classroom observations which were videotaped, while field notes were also taken. The data analysis revealed that students engaged in productive interaction and inquiry while they were learning mathematics in small groups or in whole class setting, in which there was a different type of cognitive load that dominantly affecting the learning processes at each setting. During learning mathematics in whole class setting, the most frequently found interaction patterns were to discuss and compare solution based on self-developed models, followed by expressing opinions. This is consistent with the principles of mathematics learning, which gives students wide opportunities to construct mathematical knowledge through individual learning, learning in small groups as well as learning in whole class settings. It means that by participating in interactive learning, the students are habitually engaged in productive interactions and high level of mathematical thinking.

  6. Emergent Learning and Interactive Media Artworks: Parameters of Interaction for Novice Groups

    Directory of Open Access Journals (Sweden)

    Marta Kawka

    2011-11-01

    Full Text Available Emergent learning describes learning that occurs when participants interact and distribute knowledge, where learning is self-directed, and where the learning destination of the participants is largely unpredictable (Williams, Karousou, & Mackness, 2011. These notions of learning arise from the topologies of social networks and can be applied to the learning that occurs in educational institutions. However, the question remains whether institutional frameworks can accommodate the opposing notion of “cooperative systems” (Shirky, 2005, systems that facilitate the creation of user-generated content, particularly as first-year education cohorts are novice groups in the sense of not yet having developed university-level knowledge.This paper theorizes an emergent learning assessment item (Flickr photo-narratives within a first-year media arts undergraduate education course. It challenges the conventional models of student–lecturer interaction by outlining a methodology of teaching for emergence that will facilitate student-directed and open-ended learning. The paper applies a matrix with four parameters (teacher-directed content/student-directed content; non-interactive learning task/interactive learning framework. This matrix is used as a conceptual space within which to investigate how a learning task might be constructed to afford the best opportunities for emergent learning. It explores the strategies that interactive artists utilize for participant engagement (particularly the relationship between the artist and the audience in the creation of interactive artworks and suggests how these strategies might be applied to emergent generative outcomes with first-year education students.We build upon Williams et al.’s framework of emergent learning, where “content will not be delivered to learners but co-constructed with them” (De Freitas & Conole, as cited in Williams et al., 2011, p. 40, and the notion that in constructing emergent

  7. Research progress in machine learning methods for gene-gene interaction detection.

    Science.gov (United States)

    Peng, Zhe-Ye; Tang, Zi-Jun; Xie, Min-Zhu

    2018-03-20

    Complex diseases are results of gene-gene and gene-environment interactions. However, the detection of high-dimensional gene-gene interactions is computationally challenging. In the last two decades, machine-learning approaches have been developed to detect gene-gene interactions with some successes. In this review, we summarize the progress in research on machine learning methods, as applied to gene-gene interaction detection. It systematically examines the principles and limitations of the current machine learning methods used in genome wide association studies (GWAS) to detect gene-gene interactions, such as neural networks (NN), random forest (RF), support vector machines (SVM) and multifactor dimensionality reduction (MDR), and provides some insights on the future research directions in the field.

  8. High Ability Students' Voice on Learning Motivation

    Science.gov (United States)

    Garn, Alex C.; Jolly, Jennifer L.

    2014-01-01

    This study used a self-determination theory lens to investigate high ability learners' motivational experiences. Participants were 15 high ability youth involved in a summer learning camp for gifted students. Two major themes emerged from qualitative data analysis: (a) "The Fun Factor of Learning" and (b) "The Rewards and Pressures…

  9. Learning to Detect Human-Object Interactions

    KAUST Repository

    Chao, Yu-Wei; Liu, Yunfan; Liu, Xieyang; Zeng, Huayi; Deng, Jia

    2017-01-01

    In this paper we study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. We propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN), a novel DNN-based framework for HOI detection. At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. We validate the effectiveness of our HO-RCNN using HICO-DET. Experiments demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.

  10. Learning to Detect Human-Object Interactions

    KAUST Repository

    Chao, Yu-Wei

    2017-02-17

    In this paper we study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. We propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN), a novel DNN-based framework for HOI detection. At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. We validate the effectiveness of our HO-RCNN using HICO-DET. Experiments demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.

  11. Particle Swarm Optimization With Interswarm Interactive Learning Strategy.

    Science.gov (United States)

    Qin, Quande; Cheng, Shi; Zhang, Qingyu; Li, Li; Shi, Yuhui

    2016-10-01

    The learning strategy in the canonical particle swarm optimization (PSO) algorithm is often blamed for being the primary reason for loss of diversity. Population diversity maintenance is crucial for preventing particles from being stuck into local optima. In this paper, we present an improved PSO algorithm with an interswarm interactive learning strategy (IILPSO) by overcoming the drawbacks of the canonical PSO algorithm's learning strategy. IILPSO is inspired by the phenomenon in human society that the interactive learning behavior takes place among different groups. Particles in IILPSO are divided into two swarms. The interswarm interactive learning (IIL) behavior is triggered when the best particle's fitness value of both the swarms does not improve for a certain number of iterations. According to the best particle's fitness value of each swarm, the softmax method and roulette method are used to determine the roles of the two swarms as the learning swarm and the learned swarm. In addition, the velocity mutation operator and global best vibration strategy are used to improve the algorithm's global search capability. The IIL strategy is applied to PSO with global star and local ring structures, which are termed as IILPSO-G and IILPSO-L algorithm, respectively. Numerical experiments are conducted to compare the proposed algorithms with eight popular PSO variants. From the experimental results, IILPSO demonstrates the good performance in terms of solution accuracy, convergence speed, and reliability. Finally, the variations of the population diversity in the entire search process provide an explanation why IILPSO performs effectively.

  12. Seven-step problem-based learning in an interaction design course

    DEFF Research Database (Denmark)

    Schultz, Nette; Christensen, Hans Peter

    2004-01-01

    The objective in this paper is the implementation of the highly structured seven-step PBL procedure as part of the learning process in a human-computer interaction design course at the Technical University of Denmark, taking into account the common learning processes in PBL and the interaction de...... others in a single course. The evaluation results showed that the students definitely took a deep approach to learning, and indicated clearly that the students had obtained competences not only within the traditional HCI curriculum but also in terms of team-work skills.......The objective in this paper is the implementation of the highly structured seven-step PBL procedure as part of the learning process in a human-computer interaction design course at the Technical University of Denmark, taking into account the common learning processes in PBL and the interaction...... individual reports after each case in the PBL-process in order to explore the students’ inter- and intra-personal team skills development in the learning process. Different qualitative and quantitative evaluation methods have been used to obtain a thorough evaluation of PBL used as a learning method among...

  13. Indigenous Learning Preferences and Interactive Technologies

    Science.gov (United States)

    Kitchenham, Andrew

    2017-01-01

    This three-year research study examined the influence of interactive technologies on the math achievement of Indigenous students in Years 4, 5, 6 and 7 technology-equipped classrooms in a rural elementary school in British Columbia, Canada. Using a mixed-methods approach, the researcher conducted semistructured interviews and collected math…

  14. Towards learning reward functions from user interactions

    NARCIS (Netherlands)

    Li, Z.; Kiseleva, J.; de Rijke, M.; Grotov, A.

    2017-01-01

    In the physical world, people have dynamic preferences, e.g., the same situation can lead to satisfaction for some humans and to frustration for others. Personalization is called for. The same observation holds for online behavior with interactive systems. It is natural to represent the behavior of

  15. Learning to walk changes infants' social interactions.

    Science.gov (United States)

    Clearfield, Melissa W

    2011-02-01

    The onset of crawling marks a motor, cognitive and social milestone. The present study investigated whether independent walking marks a second milestone for social behaviors. In Experiment 1, the social and exploratory behaviors of crawling infants were observed while crawling and in a baby-walker, resulting in no differences based on posture. In Experiment 2, the social behaviors of independently walking infants were compared to age-matched crawling infants in a baby-walker. Independently walking infants spent significantly more time interacting with the toys and with their mothers, and also made more vocalizations and more directed gestures compared to infants in the walker. Experiment 3 tracked infants' social behaviors longitudinally across the transition from crawling and walking. Even when controlled for age, the transition to independent walking marked increased interaction time with mothers, as well as more sophisticated interactions, including directing mothers' attention to particular objects. The results suggest a developmental progression linking social interactions with milestones in locomotor development. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Interactive Taste Tests Enhance Student Learning

    Science.gov (United States)

    Soh, Michael; Roth-Johnson, Elizabeth A.; Levis-Fitzgerald, Marc; Rowat, Amy

    2015-01-01

    If we could effectively engage students in general science curricula and lead them to recognize the everyday relevance of scientific concepts, we would significantly strengthen the understanding of science among our nation's future workforce. This article shows that increased levels of student cognition can be achieved through interactive taste…

  17. How relevant is social interaction in second language learning?

    Directory of Open Access Journals (Sweden)

    Laura eVerga

    2013-09-01

    Full Text Available Verbal language is the most widespread mode of human communication, and an intrinsically social activity. This claim is strengthen by evidence emerging from different fields, which clearly indicate that social interaction influences human communication, and more specifically, language learning. Indeed, research conducted with infants and children shows that interaction with a caregiver is necessary to acquire language. Further evidence on the influence of sociality on language comes from social and linguistic pathologies, in which deficits in social and linguistic abilities are tightly intertwined, as it is the case for Autism, for example. However, studies on adult second language learning have been mostly focused on individualistic approaches, partly because of methodological constraints especially of imaging methods. The question as to whether social interaction should be considered as a critical factor impacting upon adult language learning still remains underspecified. Here, we review evidence in support of the view that sociality plays a significant role in communication and language learning, in an attempt to emphasize factors that could facilitate this process in adult language learning. We suggest that sociality should be considered as a potentially influential factor in adult language learning and that future studies in this domain should explicitly target this factor.

  18. How relevant is social interaction in second language learning?

    Science.gov (United States)

    Verga, Laura; Kotz, Sonja A

    2013-09-03

    Verbal language is the most widespread mode of human communication, and an intrinsically social activity. This claim is strengthened by evidence emerging from different fields, which clearly indicates that social interaction influences human communication, and more specifically, language learning. Indeed, research conducted with infants and children shows that interaction with a caregiver is necessary to acquire language. Further evidence on the influence of sociality on language comes from social and linguistic pathologies, in which deficits in social and linguistic abilities are tightly intertwined, as is the case for Autism, for example. However, studies on adult second language (L2) learning have been mostly focused on individualistic approaches, partly because of methodological constraints, especially of imaging methods. The question as to whether social interaction should be considered as a critical factor impacting upon adult language learning still remains underspecified. Here, we review evidence in support of the view that sociality plays a significant role in communication and language learning, in an attempt to emphasize factors that could facilitate this process in adult language learning. We suggest that sociality should be considered as a potentially influential factor in adult language learning and that future studies in this domain should explicitly target this factor.

  19. The Role of Interactional Quality in Learning from Touch Screens during Infancy: Context Matters

    Directory of Open Access Journals (Sweden)

    Elizabeth Zack

    2016-08-01

    Full Text Available Interactional quality has been shown to enhance learning during book reading and play, but has not been examined during touch screen use. Learning to apply knowledge from a touch screen is complex for infants because it involves transfer of learning between a 2-dimensional (2D screen and 3-dimensional (3D object in the physical world. This study uses a touch screen procedure to examine interactional quality measured via maternal structuring, diversity of maternal language, and dyadic emotional responsiveness and infant outcomes during a transfer of learning task. Fifty 15-month-old infants and their mothers participated in this semi-naturalistic teaching task. Mothers were given a 3D object, and a static image of the object presented on a touch screen. Mothers had 5 minutes to teach their infant that a button on the real toy works in the same way as a virtual button on the touch screen (or vice versa. Overall, 64% of infants learned how to make the button work, transferring learning from the touch screen to the 3D object or vice versa. Infants were just as successful in the 3D to 2D transfer direction as they were in the 2D to 3D transfer direction. A cluster analysis based on emotional responsiveness, the proportion of diverse maternal verbal input, and amount of maternal structuring resulted in two levels of interactional quality: high quality and moderate quality. A logistic regression revealed the level of interactional quality predicted infant transfer. Infants were 19 times more likely to succeed and transfer learning between the touch screen and real object if they were in a high interactional quality dyad, even after controlling for infant activity levels. The present findings suggest that interactional quality between mother and infant plays an important role in making touch screens effective teaching tools for infants’ learning.

  20. The Role of Interactional Quality in Learning from Touch Screens during Infancy: Context Matters.

    Science.gov (United States)

    Zack, Elizabeth; Barr, Rachel

    2016-01-01

    Interactional quality has been shown to enhance learning during book reading and play, but has not been examined during touch screen use. Learning to apply knowledge from a touch screen is complex for infants because it involves transfer of learning between a two-dimensional (2D) screen and three-dimensional (3D) object in the physical world. This study uses a touch screen procedure to examine interactional quality measured via maternal structuring, diversity of maternal language, and dyadic emotional responsiveness and infant outcomes during a transfer of learning task. Fifty 15-month-old infants and their mothers participated in this semi-naturalistic teaching task. Mothers were given a 3D object, and a static image of the object presented on a touch screen. Mothers had 5 min to teach their infant that a button on the real toy works in the same way as a virtual button on the touch screen (or vice versa). Overall, 64% of infants learned how to make the button work, transferring learning from the touch screen to the 3D object or vice versa. Infants were just as successful in the 3D to 2D transfer direction as they were in the 2D to 3D transfer direction. A cluster analysis based on emotional responsiveness, the proportion of diverse maternal verbal input, and amount of maternal structuring resulted in two levels of interactional quality: high quality and moderate quality. A logistic regression revealed the level of interactional quality predicted infant transfer. Infants were 19 times more likely to succeed and transfer learning between the touch screen and real object if they were in a high interactional quality dyad, even after controlling for infant activity levels. The present findings suggest that interactional quality between mother and infant plays an important role in making touch screens effective teaching tools for infants' learning.

  1. Measurement of Usability for Multimedia Interactive Learning Based on Website in Mathematics for SMK

    Science.gov (United States)

    Sukardjo, Moch.; Sugiyanta, Lipur

    2018-04-01

    Web usability, if evaluation done correctly, can significantly improve the quality of the website. Website containing multimedia for education shoud apply user interfaces that are both easy to learn and easy to use. Multimedia has big role in changing the mindset of a person in learning. Using multimedia, learners get easy to obtain information, adjust information and empower information. Therefore, multimedia is utilized by teachers in developing learning techniques to improve student learning outcomes. For students with self-directed learning, multimedia provides the ease and completeness of the courses in such a way that students can complete the learning independently both at school and at home without the guidance of teachers. The learning independence takes place in how students choose, absorb information, and follow the evaluation quickly and efficiently. The 2013 Curriculum 2013 for Vocational High School (SMK) requires teachers to create engaging teaching and learning activities that students enjoy in the classroom (also called invitation learning environment). The creation of learning activity environment is still problem for most teachers. Various researches reveal that teaching and learning activities will be more effective and easy when assisted by visual tools. Using multimedia, learning material can be presented more attractively that help students understand the material easily. The opposite is found in the learning activity environment who only rely on ordinary lectures. Usability is a quality level of multimedia with easy to learn, easy to use and encourages users to use it. The website Multimedia Interactive Learning for Mathematics SMK Class X is targeted object. Usability website in Multimedia Interactive Learning for Mathematics SMK Class X is important indicators to measure effectiveness, efficiency, and student satisfaction to access the functionality of website. This usability measurement should be done carefully before the design is

  2. Expectations for ultra-high energy interactions

    International Nuclear Information System (INIS)

    Feynman, R.P.

    1978-01-01

    Strong interactions at ultra-high energies are discussed with emphasis on the hadrons produced in high energy collisions. Evidence is considered that quantum chromodynamics might be the right theory, and also some estimates are given of quantum chromodynamics asymptotic-freedom phenomena, the work under discussion being very preliminary. 6 references

  3. Cultures of Learning in Effective High Schools

    Science.gov (United States)

    Tichnor-Wagner, Ariel; Harrison, Christopher; Cohen-Vogel, Lora

    2016-01-01

    Purpose: Research indicates that a culture of learning is a key factor in building high schools that foster academic achievement in all students. Yet less is known about which elements of a culture of learning differentiate schools with higher levels of academic performance. To fill this gap, this comparative case study examined the cultures of…

  4. eLearning Hands-On: Blending Interactive eLearning with Practical Engineering Laboratory

    Science.gov (United States)

    Kiravu, Cheddi; Yanev, Kamen M.; Tunde, Moses O.; Jeffrey, Anna M.; Schoenian, Dirk; Renner, Ansel

    2016-01-01

    Purpose: Integrating laboratory work into interactive engineering eLearning contents augments theory with practice while simultaneously ameliorating the apparent theory-practice gap in traditional eLearning. The purpose of this paper is to assess and recommend media that currently fulfil this desirable dual pedagogical goal.…

  5. The Use of Interactive Learning Technology in Institutions of Higher Learning

    Science.gov (United States)

    Abykanova, Bakytgul; Nugumanova, Samal; Yelezhanova, Shynar; Kabylkhamit, Zhanargul; Sabirova, Zhanylsyn

    2016-01-01

    This paper is linked to a study aiming to provide a theoretical rationale for the methodological foundations of the use of interactive learning technology in institutions of higher learning and undertakes to describe the process of practical implementation of this approach and analyze the outcomes. The authors examine the views expressed by…

  6. Employees' and Managers' Accounts of Interactive Workplace Learning: A Grounded Theory of "Complex Integrative Learning"

    Science.gov (United States)

    Armson, Genevieve; Whiteley, Alma

    2010-01-01

    Purpose: The purpose of this paper is to investigate employees' and managers' accounts of interactive learning and what might encourage or inhibit emergent learning. Design/methodology/approach: The approach taken was a constructivist/social constructivist ontology, interpretive epistemology and qualitative methodology, using grounded theory…

  7. Impact of Interactive Online Units on Learning Science among Students with Learning Disabilities and English Learners

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Gallard M., Alejandro J.; Strycker, Lisa A.; Walden, Emily D.

    2018-01-01

    The purpose of this study was to document the design, classroom implementation, and effectiveness of interactive online units to enhance science learning over 3 years among students with learning disabilities, English learners, and general education students. Results of a randomised controlled trial with 2,303 middle school students and 71…

  8. Interactive Learning in SME-University Collaborations: A Conceptual Framework for Facilitating Interaction

    DEFF Research Database (Denmark)

    Filip, Diane

    2013-01-01

    . The facilitation process focuses on interactive learning and is divided into phases, which makes it easier for SMEs to progressive engage in innovation projects with researchers. In-depth interviews with the facilitators of the programme were conducted and focused on barriers to collaboration, human interaction......, and lessons learned. From the facilitators’ perspective, a conceptual model capturing the main actor’s activities in each phase paralleled with an illustration of the narrowed gap from the human interaction is presented in the paper. The main findings addressed the issues of human-based and system......-based barriers. One of the lessons learned is the importance of human interaction of narrowing the perceived gap by mitigating the human-based barriers, and to some extent also system-based barriers. The case presented in this paper has managerial and innovation policy implications....

  9. BridgeUP: STEM and Learning Astrophysics Interactively

    Science.gov (United States)

    Hernandez, Betsy; Geogdzhayeva, Maria; Beltre, Chasity; Ocasio, Adrienne; Skarbinski, Maya; Zbib, Daniela; Swar, Prachi; Mac Low, Mordecai

    2018-01-01

    BridgeUP: STEM is an initiative responding to the gender and opportunity gaps that exist in the STEM pipeline for women, girls, and under-resourced youth. The program engages high school girls in experiences at the intersection of computer science, scientific research, and visualization that will position them to succeed and lead in these fields. Students work on projects closely aligned with research taking place at the American Museum of Natural History. One of the current astronomy research projects at the museum simulates migration of black holes in active galactic nucleus disks using the Pencil Code. The work presented here focuses on interactive tools used to teach dynamical concepts pertaining to this project. These include Logger Pro, along with Vernier equipment, PhET Interactive Simulations, and Python. Throughout the internship, students also learn qualitative astrophysics via presentations, animations and videos. We discuss the success of utilizing the aforementioned tools in teaching, as well as showing work conducted by the six current students participating in this Astronomy research project.

  10. Category Learning Research in the Interactive Online Environment Second Life

    Science.gov (United States)

    Andrews, Jan; Livingston, Ken; Sturm, Joshua; Bliss, Daniel; Hawthorne, Daniel

    2011-01-01

    The interactive online environment Second Life allows users to create novel three-dimensional stimuli that can be manipulated in a meaningful yet controlled environment. These features suggest Second Life's utility as a powerful tool for investigating how people learn concepts for unfamiliar objects. The first of two studies was designed to establish that cognitive processes elicited in this virtual world are comparable to those tapped in conventional settings by attempting to replicate the established finding that category learning systematically influences perceived similarity . From the perspective of an avatar, participants navigated a course of unfamiliar three-dimensional stimuli and were trained to classify them into two labeled categories based on two visual features. Participants then gave similarity ratings for pairs of stimuli and their responses were compared to those of control participants who did not learn the categories. Results indicated significant compression, whereby objects classified together were judged to be more similar by learning than control participants, thus supporting the validity of using Second Life as a laboratory for studying human cognition. A second study used Second Life to test the novel hypothesis that effects of learning on perceived similarity do not depend on the presence of verbal labels for categories. We presented the same stimuli but participants classified them by selecting between two complex visual patterns designed to be extremely difficult to label. While learning was more challenging in this condition , those who did learn without labels showed a compression effect identical to that found in the first study using verbal labels. Together these studies establish that at least some forms of human learning in Second Life parallel learning in the actual world and thus open the door to future studies that will make greater use of the enriched variety of objects and interactions possible in simulated environments

  11. Introduction of Interactive Learning into French University Physics Classrooms

    Science.gov (United States)

    Rudolph, Alexander L.; Lamine, Brahim; Joyce, Michael; Vignolles, Hélène; Consiglio, David

    2014-01-01

    We report on a project to introduce interactive learning strategies (ILS) to physics classes at the Université Pierre et Marie Curie, one of the leading science universities in France. In Spring 2012, instructors in two large introductory classes, first-year, second-semester mechanics, and second-year introductory electricity and magnetism,…

  12. Learning Emotional Understanding and Emotion Regulation through Sibling Interaction

    Science.gov (United States)

    Kramer, Laurie

    2014-01-01

    Research Findings: Young children's relationships with their sisters and brothers offer unique and important opportunities for learning about emotions and developing emotional understanding. Through a critical analysis, this article examines sibling interaction in 3 different but normative contexts (conflict/conflict management, play, and…

  13. Including the Disabled : The Chiminike Interactive Learning Center in Honduras

    OpenAIRE

    Maria Valéria Pena; Barbara Brakarz

    2003-01-01

    In the aftermath of Hurricane Mitch in 1998, the Honduras Interactive Environmental Learning and Science Promotion Project "Profuturo" was launched as a multi-sectoral effort designed to encourage and expand scientific, environmental, and cultural knowledge and management in the context of Honduras' sustainable development needs and ethnic diversity. Profuturo benefits Hondurans by providi...

  14. An Interactive Graphics Program for Assistance in Learning Convolution.

    Science.gov (United States)

    Frederick, Dean K.; Waag, Gary L.

    1980-01-01

    A program has been written for the interactive computer graphics facility at Rensselaer Polytechnic Institute that is designed to assist the user in learning the mathematical technique of convolving two functions. Because convolution can be represented graphically by a sequence of steps involving folding, shifting, multiplying, and integration, it…

  15. An Online Interactive Competition Model for E-Learning System ...

    African Journals Online (AJOL)

    An Online Interactive Competition Model for E-Learning System. ... A working prototype of the system was developed using MySQL Database Management System (DBMS), PHP as the scripting language and Apache as the web server. The system was tested and the results were presented graphically in this paper.

  16. Interactive Digital Textbooks and Engagement: A Learning Strategies Framework

    Science.gov (United States)

    Bikowski, Dawn; Casal, J. Elliott

    2018-01-01

    This mixed-methods study explored non-native English speaking students' learning processes and engagement as they used a customized interactive digital textbook housed on a mobile device. Think aloud protocols, surveys of anticipated and actual engagement with the digital textbook, reflective journals, and member checking constituted data…

  17. Educational Technology Research Journals: "Interactive Learning Environments," 2004-2013

    Science.gov (United States)

    Christensen, Steven S.; Andrews, Carolyn; Harris, Scott P.; Lloyd, Adam; Turley, Chad; West, Richard E.

    2015-01-01

    This study examined the journal "Interactive Learning Environments" to discover trends from 2004-2013. The authors looked at trends in article topics, research methods, authorship, citations, keyword frequencies, phrase counts of article abstracts, and article citations according to Google Scholar. Evidence is provided of the journal's…

  18. Educational integrating projects as a method of interactive learning

    Directory of Open Access Journals (Sweden)

    Иван Николаевич Куринин

    2013-12-01

    Full Text Available The article describes a method of interactive learning based on educational integrating projects. Some examples of content of such projects for the disciplines related to the study of information and Internet technologies and their application in management are presented.

  19. Interaction of Neurological and Emotional Factors in Learning Disability.

    Science.gov (United States)

    Abrams, Jules C.

    1984-01-01

    The article proposes a dynamic-developmental-interaction approach to individuals with learning disabilities (LD) which addresses the absence of certain fundamental ego skills. Emotional conomitants to LD (such as low frustration tolerance and overcompensation) are noted, and intervention techniques based on the dynamic-developmental interaction…

  20. Learning with Interactive Computer Graphics in the Undergraduate Neuroscience Classroom

    Science.gov (United States)

    Pani, John R.; Chariker, Julia H.; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E.

    2014-01-01

    Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of…

  1. Virtual learning environment for interactive engagement with advanced quantum mechanics

    Directory of Open Access Journals (Sweden)

    Mads Kock Pedersen

    2016-04-01

    Full Text Available A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  2. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    Science.gov (United States)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  3. Learning medical and dental sciences through interactive multi-media.

    Science.gov (United States)

    Demirjian, A; David, B

    1995-01-01

    Health professionals in various fields of Medicine and Dentistry must acquire comprehensive technological knowledge in order to practice their professions. A large portion of that knowledge cannot be found in a textbook. Examples of this type of information are data gleaned from viewing microscopic slides and dissecting cadavers. In order to fully comprehend an area of study in medicine, the student relies on various resources (often physically unrelated, like the x-ray department and the dissection room). This situation makes the teaching and learning processes much more difficult to accomplish, since the instructor and students have to manipulate multiple media and take the courses in various sites. Today's technology allows us to design and create teaching and learning tools that can alleviate these difficulties. Personal computers are now used to capture and display a vast array of information through many different media: text, sound, images, photographs, illustrations, animation and video. This information can be presented to the user with audio-visual interfaces designed to facilitate efficient communication of ideas. It is controlled primarily by the use of the mouse, at one's own pace. This interactive, multi-media approach to teaching and learning is called "Edutainment" (Education and Entertainment). This demonstration will show how these new tools are used to teach and learn about various subjects related to Medicine, particularly in Dermatology and Dentistry. Several courseware applications were developed, addressing various aspects of the field: Cancers of the Skin, Dental Development, the Temporomandibular joint, the Masticatory Muscles etc. These programs provide anthropological data on growth collected through longitudinal research, diagnosis and treatments of pigmented lesions of the skin, thousands of digitized x-rays accessible through a relational database, the latest imaging technology used to diagnose the temporomandibular disorders, high

  4. Effectiveness of E-Learning for Students Vocational High School Building Engineering Program

    Science.gov (United States)

    Soeparno; Muslim, Supari

    2018-04-01

    Implementation of vocational learning in accordance with the 2013 curriculum must meet the criteria, one of which is learning to be consistent with advances in technology and information. Technology-based learning in vocational commonly referred to as E-Learning, online (in the network) and WBL (Web-Based Learning). Facts on the ground indicate that based learning technology and information on Vocational High School of Building Engineering is still not going well. The purpose of this research is to know: advantages and disadvantages of learning with E-Learning, conformity of learning with E-Learning with characteristics of students on Vocational High School of Building Engineering and effective learning method based on E-Learning for students on Vocational High School of Building Engineering. Research done by literature method, get the following conclusion as follow: the advantages of E-Learning is learning can be done anywhere and anytime, efficient in accessing materials and tasks, ease of communication and discussion; while the shortage is the need for additional costs for good internet access and lack of social interaction between teachers and students. E-learning is appropriate to basic knowledge competencies, and not appropriate at the level of advanced competencies and skills. Effective E-Learning Based Learning Method on Vocational High School of Building Engineering is a Blended method that is a mix between conventional method and e-learning.

  5. Learning Apache Solr high performance

    CERN Document Server

    Mohan, Surendra

    2014-01-01

    This book is an easy-to-follow guide, full of hands-on, real-world examples. Each topic is explained and demonstrated in a specific and user-friendly flow, from search optimization using Solr to Deployment of Zookeeper applications. This book is ideal for Apache Solr developers and want to learn different techniques to optimize Solr performance with utmost efficiency, along with effectively troubleshooting the problems that usually occur while trying to boost performance. Familiarity with search servers and database querying is expected.

  6. Integrating Video-Capture Virtual Reality Technology into a Physically Interactive Learning Environment for English Learning

    Science.gov (United States)

    Yang, Jie Chi; Chen, Chih Hung; Jeng, Ming Chang

    2010-01-01

    The aim of this study is to design and develop a Physically Interactive Learning Environment, the PILE system, by integrating video-capture virtual reality technology into a classroom. The system is designed for elementary school level English classes where students can interact with the system through physical movements. The system is designed to…

  7. Finding Waldo: Learning about Users from their Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eli T.; Ottley, Alvitta; Zhao, Helen; Lin, Quan; Souvenir, Richard; Endert, Alex; Chang, Remco

    2014-12-31

    Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user’s interactions with a system reflect a large amount of the user’s reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user’s task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, we conduct an experiment in which participants perform a visual search task and we apply well-known machine learning algorithms to three encodings of the users interaction data. We achieve, depending on algorithm and encoding, between 62% and 96% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user’s personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time, in some cases, 82% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed- initiative visual analytics systems.

  8. Finding Waldo: Learning about Users from their Interactions.

    Science.gov (United States)

    Brown, Eli T; Ottley, Alvitta; Zhao, Helen; Quan Lin; Souvenir, Richard; Endert, Alex; Chang, Remco

    2014-12-01

    Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user's interactions with a system reflect a large amount of the user's reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user's task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, we conduct an experiment in which participants perform a visual search task, and apply well-known machine learning algorithms to three encodings of the users' interaction data. We achieve, depending on algorithm and encoding, between 62% and 83% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user's personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time: in one case 95% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed-initiative visual analytics systems.

  9. Charged current weak interactions at high energy

    International Nuclear Information System (INIS)

    Cline, D.

    1977-01-01

    We review high energy neutrino and antineutrino charged current interactions. An overview of the experimental data is given, including a discussion of the experimental status of the y anomaly. Locality tests, μ-e universality and charge symmetry invariance tests are discussed. Charm production is discussed. The experimental status of trimuon events and possible phenomenological models for these events are presented. (orig.) [de

  10. How Levels of Interactivity in Tutorials Affect Students' Learning of Modeling Transportation Problems in a Spreadsheet

    Science.gov (United States)

    Seal, Kala Chand; Przasnyski, Zbigniew H.; Leon, Linda A.

    2010-01-01

    Do students learn to model OR/MS problems better by using computer-based interactive tutorials and, if so, does increased interactivity in the tutorials lead to better learning? In order to determine the effect of different levels of interactivity on student learning, we used screen capture technology to design interactive support materials for…

  11. High fidelity simulation effectiveness in nursing students' transfer of learning.

    Science.gov (United States)

    Kirkman, Tera R

    2013-07-13

    Members of nursing faculty are utilizing interactive teaching tools to improve nursing student's clinical judgment; one method that has been found to be potentially effective is high fidelity simulation (HFS). The purpose of this time series design study was to determine whether undergraduate nursing students were able to transfer knowledge and skills learned from classroom lecture and a HFS clinical to the traditional clinical setting. Students (n=42) were observed and rated on their ability to perform a respiratory assessment. The observations and ratings took place at the bedside, prior to a respiratory lecture, following the respiratory lecture, and following simulation clinical. The findings indicated that there was a significant difference (p=0.000) in transfer of learning demonstrated over time. Transfer of learning was demonstrated and the use of HFS was found to be an effective learning and teaching method. Implications of results are discussed.

  12. Conditional High-Order Boltzmann Machines for Supervised Relation Learning.

    Science.gov (United States)

    Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu

    2017-09-01

    Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.

  13. Statistical learning in high energy and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J.

    2005-06-16

    This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ''learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning methods is either motivated by the lack of knowledge about this relationship or by tight time restrictions. In the first case learning from examples is the only possibility since no theory is available which would allow to build an algorithm in the classical way. In the second case a classical algorithm exists but is too slow to cope with the time restrictions. It is therefore replaced by a pattern recognition machine which implements a fast statistical learning method. But even in applications where some kind of classical algorithm had done a good job, statistical learning methods convinced by their remarkable performance. This thesis gives an introduction to statistical learning methods and how they are applied correctly in physics analysis. Their flexibility and high performance will be discussed by showing intriguing results from high energy and astrophysics. These include the development of highly efficient triggers, powerful purification of event samples and exact reconstruction of hidden event parameters. The presented studies also show typical problems in the application of statistical learning methods. They should be only second choice in all cases where an algorithm based on prior knowledge exists. Some examples in physics analyses are found where these methods are not used in the right way leading either to wrong predictions or bad performance. Physicists also often hesitate to profit from these methods because they fear that statistical learning methods cannot

  14. Statistical learning in high energy and astrophysics

    International Nuclear Information System (INIS)

    Zimmermann, J.

    2005-01-01

    This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ''learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning methods is either motivated by the lack of knowledge about this relationship or by tight time restrictions. In the first case learning from examples is the only possibility since no theory is available which would allow to build an algorithm in the classical way. In the second case a classical algorithm exists but is too slow to cope with the time restrictions. It is therefore replaced by a pattern recognition machine which implements a fast statistical learning method. But even in applications where some kind of classical algorithm had done a good job, statistical learning methods convinced by their remarkable performance. This thesis gives an introduction to statistical learning methods and how they are applied correctly in physics analysis. Their flexibility and high performance will be discussed by showing intriguing results from high energy and astrophysics. These include the development of highly efficient triggers, powerful purification of event samples and exact reconstruction of hidden event parameters. The presented studies also show typical problems in the application of statistical learning methods. They should be only second choice in all cases where an algorithm based on prior knowledge exists. Some examples in physics analyses are found where these methods are not used in the right way leading either to wrong predictions or bad performance. Physicists also often hesitate to profit from these methods because they fear that statistical learning methods cannot be controlled in a

  15. The cognitive impact of interactive design features for learning complex materials in medical education.

    Science.gov (United States)

    Song, Hyuksoon S; Pusic, Martin; Nick, Michael W; Sarpel, Umut; Plass, Jan L; Kalet, Adina L

    2014-02-01

    To identify the most effective way for medical students to interact with a browser-based learning module on the symptoms and neurological underpinnings of stroke syndromes, this study manipulated the way in which subjects interacted with a graphical model of the brain and examined the impact of functional changes on learning outcomes. It was hypothesized that behavioral interactions that were behaviorally more engaging and which required deeper consideration of the model would result in heightened cognitive interaction and better learning than those whose manipulation required less deliberate behavioral and cognitive processing. One hundred forty four students were randomly assigned to four conditions whose model controls incorporated features that required different levels of behavioral and cognitive interaction: Movie (low behavioral/low cognitive, n = 40), Slider (high behavioral/low cognitive, n = 36), Click (low behavioral/high cognitive, n = 30), and Drag (high behavioral/high cognitive, n = 38). Analysis of Covariates (ANCOVA) showed that students who received the treatments associated with lower cognitive interactivity (Movie and Slider) performed better on a transfer task than those receiving the module associated with high cognitive interactivity (Click and Drag, partial eta squared = .03). In addition, the students in the high cognitive interactivity conditions spent significantly more time on the stroke locator activity than other conditions (partial eta squared = .36). The results suggest that interaction with controls that were tightly coupled with the model and whose manipulation required deliberate consideration of the model's features may have overtaxed subjects' cognitive resources. Cognitive effort that facilitated manipulation of content, though directed at the model, may have resulted in extraneous cognitive load, impeding subjects in recognizing the deeper, global relationships in the materials. Instructional designers must, therefore, keep in

  16. Experiences with the Mobile Interactive Learning Table: a custom table for education

    OpenAIRE

    Wilson, Gregory

    2011-01-01

    Multi-touch technology on tabletop displays lets children interact with digital objects in collaborative and competitive ways. Multi-touch tables are not a part of classroom instruction because of high cost and lack of meaningful applications. This thesis explores possible solutions to building hardware and software that support the engagement of children. Outlined is a demonstration of our Mobile Interactive Learning Table (MILT), a custom hardware system that can be built for a cost well...

  17. A Framework for Interaction and Cognitive Engagement in Connectivist Learning Contexts

    Science.gov (United States)

    Wang, Zhijun; Chen, Li; Anderson, Terry

    2014-01-01

    Interaction has always been highly valued in education, especially in distance education (Moore, 1989; Anderson, 2003; Chen, 2004a; Woo & Reeves, 2007; Wang, 2013; Conrad, in press). It has been associated with motivation (Mahle, 2011; Wen-chi, et al., 2011), persistence (Tello, 2007; Joo, Lim, & Kim, 2011), deep learning (Offir, et al.,…

  18. Use of Colour and Interactive Animation in Learning 3D Vectors

    Science.gov (United States)

    Iskander, Wejdan; Curtis, Sharon

    2005-01-01

    This study investigated the effects of two computer-implemented techniques (colour and interactive animation) on learning 3D vectors. The participants were 43 female Saudi Arabian high school students. They were pre-tested on 3D vectors using a paper questionnaire that consisted of calculation and visualization types of questions. The students…

  19. What we can learn from lepton-quark interactions

    International Nuclear Information System (INIS)

    Quigg, C.

    1982-01-01

    This chapter discusses what can be learned from lepton-quark scattering after a brief metaphysical introduction with a review of what has been learned from lepton-quark interactions. It offers a paradigm which constitutes the assumptions that form the basis of the experiments, describes 2 forthcoming neutrino experiments of specific interest, focuses on some of the possibilities for experiments with electron-proton (ep) colliders, and points out that ep colliders open new horizons on all 3 of the fundamental questions: the spectroscopy of fundamental fermions, the spectroscopy of gauge bosons, and the problem of hadron structure

  20. Interactions between attention, context and learning in primary visual cortex.

    Science.gov (United States)

    Gilbert, C; Ito, M; Kapadia, M; Westheimer, G

    2000-01-01

    Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.

  1. Introducing Scenario Based Learning interactive to postgraduates in UQ Orthodontic Program.

    Science.gov (United States)

    Naser-ud-Din, S

    2015-08-01

    E-learning has gained momentum in health sciences and seems to have great potential in specialist dental education. Higher acceptability by learners is particularly associated with the surge of smart devices. Currently, there are limited number of e-learning modules available for dental education, particularly in Orthodontics. Scenario Based Learning interactive (SBLi(®)) software was used for the first time in Orthodontics Postgraduate training at the University of Queensland. Nine interactive modules were created embedded with clinical procedure videos, web-links, evidence-based literature, along with opportunity for self-assessment and evaluation. Qualitative data were collected before and after the administration of the SBLi(®) for Orthodontics. The purpose of this data was to investigate learning styles and the acceptance of e-modules as part of postgraduate training. Advantages of the package included high acceptance rate, greater confidence in the application of clinical skills covered in the modules and reduced contact time particularly with limited academic staff. E-modules demonstrated high compatibility with the learning styles of the participants and were considered engaging. It seems apparent that e-learning is most effective in a blended learning environment, supplemented with the traditional classroom approach, rather than as a sole mechanism for postgraduate training. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Learning in human-dolphin interactions at zoological facilities

    Science.gov (United States)

    Sweeney, Diane L.

    This research aimed to better understand learning in zoological settings, particularly learning about marine mammals, by investigating the research question, what do people learn through interacting with dolphins in zoological facilities? Sociocultural situated learning theory, specifically a Community of Practice (CoP) model of learning (Lave & Wenger, 1991), was the theoretical framework. The CoP model allowed for diversity of knowledge, interest, motivations, and goals that existed among the community of animal enthusiasts at three commercial zoological facilities, and also for peripheral to more central types of participation. I collected data through interviews of spectators, visitors, and trainers (n=51), observations (n=16), and an online questionnaire of past-visitors (n=933). Data were coded, categorized, and analyzed based on the National Science Foundation's (Friedman, 2008) and the National Research Council's (2009) frameworks for informal science education. Five principal findings answered the research question. First, all participants gained new knowledge within three broad categories: (a) dolphin physiology and natural history, (b) care and training of dolphins, and (c) conservation. Second, all participants constructed personal meanings by connecting the activity to experiences, beliefs, and practices outside the interaction context. Almost all participants made associations with conservation. Third, most participants shifted their attitudes and gained a sense of personal agency about beginning or increasing stewardship actions. Fourth, visitors learned interspecies etiquette skills; trainers learned skills in dolphin training and management, people management, and teaching. Fifth, visitors had long-lasting memories of the experience that occurred eight months to 18 years in the past. Popular cultural ideas about dolphins and the ways the dolphins were represented influenced visitors' expectations and the types of learning. Potential physical

  3. High School Students' Views on Blended Learning

    Science.gov (United States)

    Yapici, Ibrahim Umit; Akbayin, Hasan

    2012-01-01

    In this study, it is aimed to determine the high school students' views on blended learning. The study was carried out in biology course for the lesson unit of "Classification of Living Things and Biodiversity" with 47 9[superscript th] grade students attending Nevzat Ayaz Anatolian High School in the second term of the academic year of…

  4. Industry - Public knowledge infrastructure interaction: intra- and inter-organizational explanations of interactive learning

    NARCIS (Netherlands)

    Meeus, M.T.H.; Oerlemans, L.A.G.; Hage, J.

    2004-01-01

    This paper pursues the development and empirical exploration of a theoretical framework that explains the probabilities of interactive learning of innovating firms and actors in the public knowledge infrastructure. Our research question reads as follows: To what extent does the strength of innovator

  5. ARTutor—An Augmented Reality Platform for Interactive Distance Learning

    Directory of Open Access Journals (Sweden)

    Chris Lytridis

    2018-01-01

    Full Text Available Augmented Reality (AR has been used in various contexts in recent years in order to enhance user experiences in mobile and wearable devices. Various studies have shown the utility of AR, especially in the field of education, where it has been observed that learning results are improved. However, such applications require specialized teams of software developers to create and maintain them. In an attempt to solve this problem and enable educators to easily create AR content for existing textbooks, the ARTutor platform was developed. It consists of a web-based application that acts as an AR authoring tool, and an accompanying mobile application that is used to access and interact with the educational AR content. In addition, the ARTutor application allows students to ask questions verbally and receive answers based on the contents of the book. This means that the system is suitable for distance learning and promotes self-study and independent learning.

  6. 19th International Conference on Interactive Collaborative Learning

    CERN Document Server

    Guralnick, David; Uhomoibhi, James

    2017-01-01

    This book presents the proceedings of the 19th International Conference on Interactive Collaborative Learning, held 21-23 September 2016 at Clayton Hotel in Belfast, UK. We are currently witnessing a significant transformation in the development of education. The impact of globalisation on all areas of human life, the exponential acceleration of developments in both technology and the global markets, and the growing need for flexibility and agility are essential and challenging elements of this process that have to be addressed in general, but especially in the context of engineering education. To face these topical and very real challenges, higher education is called upon to find innovative responses. Since being founded in 1998, this conference has consistently been devoted to finding new approaches to learning, with a focus on collaborative learning. Today the ICL conferences have established themselves as a vital forum for the exchange of information on key trends and findings, and of practical lessons le...

  7. BOOK REVIEW STUDENT-TEACHER INTERACTION IN ONLINE LEARNING ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Harun SERPIL

    2017-04-01

    Full Text Available As online learning environments do not lend themselves to face-to-face interaction between teachers and students, it is essential to understand how to ensure healthy social presence in online learning. This book provides a useful selection of both commonly used and recently developed theories by discussing current research and giving examples of social presence in latest Online Learning Environments (OLEs. The book examines how the appropriate use of technological tools can relate instructors, peers, and course content. The reports on successful implementations are reinforced with research involving pre-service teachers. Both experienced and inexperienced educators will benefit by being informed about the effective use of many valuable tools exemplified here. The last six chapters present an array of new models that support social presence, and demonstrate how traditional paradigms can be used to create online social presence.

  8. Student nurses' learning processes in interaction with psychiatric patients

    DEFF Research Database (Denmark)

    Kragelund, Linda

    2011-01-01

    descriptive approach was chosen. The theoretical framework includes Jarvis’ concept of ‘disjuncture’, because it offers a theoretical way of understanding the empirical phenomenon of ‘non-routine-situations’. Heller’s concept of ‘everyday life activities’ is also drawn on, for its contribution......When the Danish government converted the national practice-oriented nursing qualification from a vocational course to a bachelor’s degree in 2002, the clinical training component was scaled back. Accordingly, mentors needed to optimise students’ learning from this curtailed clinical practice...... participant which takes place just after the researcher’s observation of the participant in interaction with a patient. The role of the researcher is to be a catalyst for the reflection. Using qualitative content analysis, a model of student nurses learning processes, termed the ‘Windmill of Learning...

  9. Teachers’ interactions and mathematics learning within a virtual environment

    Directory of Open Access Journals (Sweden)

    Aline Terra Salles

    2012-09-01

    Full Text Available The use of information and communication technology brings new ways of enrolment and motivation of individuals. These technologies have been an important vehicle for sharing information and constitute various communities. For this reason, it is necessary analysis of learning in virtual environments. The aim of this article focuses on the analysis of teachers interactions in the environment Virtual Math Team (VMT-Chat in addressing one problem of taxicab geometry. We study learning through different forms of participation of individuals within the environment. The results shows that the identification of different types of interlocution (evaluative, interpretative, informative and negociative allows the teacher the creation of strategies to contribute with the continuity of the debate and to promote the development of mathematical ideas emerged from interlocutions. The analysis also illustrates how teachers interacted online with the use of combinatorial analysis on the metric in taxicab geometry.

  10. Innovation in preregistration midwifery education: Web based interactive storytelling learning.

    Science.gov (United States)

    Scamell, Mandie; Hanley, Thomas

    2017-07-01

    through a critical description of the implementation of a web based interactive storytelling learning activity introduced into an undergraduate, preregistration midwifery education programme, this paper will explore how low-cost, low-fidelity online storytelling, designed using Moodle, can be used to enhance students' understanding of compassion and empathy in practice. cross sectional sample of first year undergraduate Midwifery students (n111) METHOD: drawing from both research and audit data collected in an Higher Education Institution in London England, the paper presents the case for using web based technology to create a sustainable model for midwifery education. initial results indicate that it is both the low cost and positive student evaluations of web based interactive storytelling, which make this approach to preregistration midwifery education which suggests that this approach has significant potential for learning and teaching in midwifery education in diverse settings around the world. Or how about: global relevance? . Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. HIGH SCHOOL STUDENTS’ VIEWS ON BLENDED LEARNING

    Directory of Open Access Journals (Sweden)

    Ibrahim Umit YAPICI,

    2012-08-01

    Full Text Available In this study, it is aimed to determine the high school students’ views on blended learning. The study was carried out in biology course for the lesson unit of “Classification of Living Things and Biodiversity” with 47 9th grade students attending Nevzat Ayaz Anatolian High School in the second term of the academic year of 2009-2010. The lessons were taught in a way appropriate to the blended learning model both via the Internet and on face-to-face basis. As the online dimension of the blended learning model, Moodle, a Learning Management System (LMS, was used. The application lasted 10 weeks. The scale of learners’ views on blended learning was applied and interviews were held to determine the views. As a result of the analysis of the scale, it was seen that their views were “highly” positive. The interviews held with the students revealed that the blended learning model provided students with various opportunities such as getting prepared for the lessons, reviewing the lessons as many times as wanted, reaching the subject-related materials without being dependent on time and place, testing oneself and communicating with the teacher and other students out of the school. The interviews also revealed that there were various problems though such as lack of Internet connection at home and problems experienced while playing the videos.

  12. Innovation in preregistration midwifery education: Web based interactive storytelling learning.

    OpenAIRE

    Scamell, M.; Hanley, T.

    2017-01-01

    BACKGROUND: through a critical description of the implementation of a web based interactive storytelling learning activity introduced into an undergraduate, preregistration midwifery education programme, this paper will explore how low-cost, low-fidelity online storytelling, designed using Moodle, can be used to enhance students' understanding of compassion and empathy in practice.\\ud \\ud SAMPLE: cross sectional sample of first year undergraduate Midwifery students (n111)\\ud \\ud METHOD: drawi...

  13. A Review for Detecting Gene-Gene Interactions Using Machine Learning Methods in Genetic Epidemiology

    Directory of Open Access Journals (Sweden)

    Ching Lee Koo

    2013-01-01

    Full Text Available Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs, support vector machine (SVM, and random forests (RFs in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  14. Interaction and Technological Resources to Support Learning of Complex Numbers

    Directory of Open Access Journals (Sweden)

    Cassiano Scott Puhl

    2016-02-01

    Full Text Available This article presents a didactic proposal, a workshop for the introduction of the study of complex numbers. Unlike recurrent practices, the workshop began developing the geometric shape of the complex number, implicitly, through vectors. Eliminating student formal vision and algebraic, enriching the teaching practice. The main objective of the strategy was to build the concept of imaginary unit without causing a feeling of strangeness or insignificance of number. The theory of David Ausubel, meaningful learning, the workshop was based on a strategy developed to analyze the subsumers of students and develop a learning by subject. Combined with dynamic and interactive activities in the workshop, there is the use of a learning object (http://matematicacomplexa.meximas.com/. An environment created and basing on the theory of meaningful learning, making students reflect and interact in developed applications sometimes being challenged and other testing hypotheses and, above all, building knowledge. This proposal provided a rich environment for exchange of information between participants and deepening of ideas and concepts that served as subsumers. The result of the experience was very positive, as evidenced by the comments and data submitted by the participants, thus demonstrating that the objectives of this didactic proposal have been achieved.

  15. High school students presenting science: An interactional sociolinguistic analysis

    Science.gov (United States)

    Bleicher, Robert

    Presenting science is an authentic activity of practicing scientists. Thus, effective communication of science is an important skill to nurture in high school students who are learning science. This study examines strategies employed by high school students as they make science presentations; it assesses students' conceptual understandings of particular science topics through their presentations and investigates gender differences. Data are derived from science presentation given by eight high school students, three females and five males who attended a summer science program. Data sources included videotaped presentations, ethnographic fieldnotes, interviews with presenters and members of the audience, and presenter notes and overheads. Presentations were transcribed and submitted to discourse analysis from an interactional sociolinguistic perspective. This article focuses on the methodology employed and how it helps inform the above research questions. The author argues that use of this methodology leads to findings that inform important social-communicative issues in the learning of science. Practical advice for teaching students to present science, implications for use of presentations to assess conceptual learning, and indications of some possible gender differences are discussed.Received: 14 April 1993; Revised: 15 February 1994;

  16. Interactive Rhythm Learning System by Combining Tablet Computers and Robots

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chou

    2017-03-01

    Full Text Available This study proposes a percussion learning device that combines tablet computers and robots. This device comprises two systems: a rhythm teaching system, in which users can compose and practice rhythms by using a tablet computer, and a robot performance system. First, teachers compose the rhythm training contents on the tablet computer. Then, the learners practice these percussion exercises by using the tablet computer and a small drum set. The teaching system provides a new and user-friendly score editing interface for composing a rhythm exercise. It also provides a rhythm rating function to facilitate percussion training for children and improve the stability of rhythmic beating. To encourage children to practice percussion exercises, a robotic performance system is used to interact with the children; this system can perform percussion exercises for students to listen to and then help them practice the exercise. This interaction enhances children’s interest and motivation to learn and practice rhythm exercises. The results of experimental course and field trials reveal that the proposed system not only increases students’ interest and efficiency in learning but also helps them in understanding musical rhythms through interaction and composing simple rhythms.

  17. Development and evaluation of an interactive electronic laboratory manual for cooperative learning of medical histology.

    Science.gov (United States)

    Khalil, Mohammed K; Kirkley, Debbie L; Kibble, Jonathan D

    2013-01-01

    This article describes the development of an interactive computer-based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self-directed group interactivities that actively engage students during laboratory sessions. The design of the manual includes guided instruction for students to navigate virtual slides, exercises for students to monitor learning, and cases to provide clinical relevance. At the end of the laboratory activities, student groups can generate a laboratory report that may be used to provide formative feedback. The instructional value of the manual was evaluated by a questionnaire containing both closed-ended and open-ended items. Closed-ended items using a five-point Likert-scale assessed the format and navigation, instructional contents, group process, and learning process. Open-ended items assessed student's perception on the effectiveness of the manual in facilitating their learning. After implementation for two consecutive years, student evaluation of the manual was highly positive and indicated that it facilitated their learning by reinforcing and clarifying classroom sessions, improved their understanding, facilitated active and cooperative learning, and supported self-monitoring of their learning. Copyright © 2013 American Association of Anatomists.

  18. Application Design Of Interactive Multimedia Development Based Motion Graphic On Making Fashion Design Learning In Digital Format

    Directory of Open Access Journals (Sweden)

    Winwin Wiana

    2017-05-01

    Full Text Available This study is a research and development aimed at developing multimedia interactive learning based animation as an effort to improve student learning motivation in learning Fashion Design Technology apart from this study also aims to design a learning program courses Fashion Design Technology with a focus on optimizing the use of interactive media in learning process. From this study showed 1 A preliminary study found that the problems faced by students when studying Fashion Design Technology is the student is not optimal when learning designing clothes based computer technology both in terms of learning content learning mechanisms that still uses a linear media and limitations of highly structured learning time. 2 Animation multimedia has the following characteristics a media of learning is convergent interactive self-contained in the sense of giving convenience to users without the guidance of others as multimedia applications can present the material to see more interesting and informative. 3 Design of multimedia learning software developed include the creation of flowcharts storyboards and drafting manuscript of interactive multimedia based animation. 4 Based on the results of validation by multimedia experts obtained an average percentage of 85.55 viability of the material experts obtained an average percentage of 90.84 viability and by students as users gained an average percentage of 96.38 eligibility so it can be said that the standard of the feasibility of interactive multimedia based animation developed is included in the category of Very High or Very Good. Furthermore experts agree that the development of interactive multimedia based animation on learning Fashion Design Technology can be used with some aspects that need to be improved to obtain higher levels of feasibility more optimal.

  19. The Implementation of Aptitude Treatment Interaction (ATI to Improve Learning Motivation of Low Achievement Students

    Directory of Open Access Journals (Sweden)

    Syawal - Syawal

    2017-10-01

    Full Text Available This research was classroom action research, which aims at improving students' motivation of their poor performance through learning model Aptitude Treatment Interaction (ATI on VII.3 grade students of SMP Negeri 6 Parepare. Aptitude Treatment Interaction (ATI can serve individual student differences by adjusting treatment or learning method with students' abilities. The use of this model was emphasizing to create small groups of students that have achievement alike. Students with have low academic achievement based on test results and teacher interview will be grouped into one group and will be given preferential treatment by tutoring intensity rather than the group of high academic achievement. Subjects of this research were students of class VII.3 SMP Negeri 6 Parepare which is consist of 25 students. This research was conducted in two cycles. The procedure of this research involved four phases: (1 planning, (2 Implementation of action, (3 observation, (4 Reflection. The data collection was done by observation, tests, and questionnaires for each cycle after giving treatment through learning model Aptitude Treatment Interaction (ATI. Data collected were analyzed using quantitative and qualitative analysis. The results of this research indicate that the Aptitude Treatment Interaction (ATI can be an alternative method to improve learning motivation of low achievement students. The results of this research also showed that the Aptitude Treatment Interaction (ATI can be an alternative to problem-solving in the classroom, especially for low achievement students.

  20. Exploring the Peer Interaction Effects on Learning Achievement in a Social Learning Platform Based on Social Network Analysis

    Science.gov (United States)

    Lin, Yu-Tzu; Chen, Ming-Puu; Chang, Chia-Hu; Chang, Pu-Chen

    2017-01-01

    The benefits of social learning have been recognized by existing research. To explore knowledge distribution in social learning and its effects on learning achievement, we developed a social learning platform and explored students' behaviors of peer interactions by the proposed algorithms based on social network analysis. An empirical study was…

  1. Learners' Perceptions of Blended Learning and the Roles and Interaction of f2f and Online Learning

    Science.gov (United States)

    Huang, Qiang

    2016-01-01

    The present study aims to probe into learners' perceptions of blended learning in relation to the respective roles of face-to-face learning (f2f learning) and online learning as well as their interaction in the blended EFL contexts. Questionnaires were used in the study to examine the attitudes of 296 university students towards a blended English…

  2. High-field electron-photon interactions

    International Nuclear Information System (INIS)

    Hartemann, F V.

    1999-01-01

    Recent advances in novel technologies (including chirped-pulse amplification, femtosecond laser systems operating in the TW-PW range, high-gradient rf photoinjectors, and synchronized relativistic electron bunches with subpicosecond durations and THz bandwidths) allow experimentalists to study the interaction of relativistic electrons with ultrahigh-intensity photon fields. Ponderomotive scattering can accelerate these electrons with extremely high gradients in a three-dimensional vacuum laser focus. The nonlinear Doppler shift induced by relativistic radiation pressure in Compton backscattering is shown to yield complex nonlinear spectra which can be modified by using temporal laser pulse shaping techniques. Colliding laser pulses, where ponderomotive acceleration and Compton backscattering are combined, could also yield extremely short wavelength photons. Finally, one expects strong radiative corrections when the Doppler-upshifted laser wavelength approaches the Compton scale. These are discussed within the context of high-field classical electrodynamics, a new discipline borne out of the aforementioned innovations

  3. Designing learning environments to teach interactive Quantum Physics

    Science.gov (United States)

    Gómez Puente, Sonia M.; Swagten, Henk J. M.

    2012-10-01

    This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small groups. Individual formative feedback was introduced as a rapid assessment tool to provide an overview on progress and identify gaps by means of questioning students at three levels: conceptual; prior knowledge; homework exercises. The setup of Quantum Physics has been developed as a result of several loops of adjustments and improvements from a traditional-like type of teaching to an interactive classroom. Results of this particular instructional arrangement indicate significant gains in students' achievements in comparison with the traditional structure of this course, after recent optimisation steps such as the implementation of an individual feedback system.

  4. A tool for monitoring lecturers’ interactions with Learning Management Systems

    Directory of Open Access Journals (Sweden)

    Magdalena Cantabella

    2016-12-01

    Full Text Available Learning Management Systems’ (LMS interaction mechanisms are mainly focused on the improvement of students’ experiences and academic results. However, special attention should also be given to the interaction between these LMS and other actors involved in the educational process. This paper specifically targets the interaction of degree coordinators with LMS when monitoring lecturers’ performance, especially in an online mode. The methodology is guided by the following three objectives: (1 analysis of the limitations of monitoring lecturers in current LMS; (2 development of software program to overcome such limitations; and (3 empirical evaluation of the proposed program. The results show that this type of tool helps coordinators to intuitively and efficiently analyze the status of the subjects taught in their degree programs.

  5. SNAPP: GRAPHING STUDENT INTERACTIONS IN A LEARNING MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Kevin YEE,

    2011-01-01

    Full Text Available One of the more vexing problems in teaching fully-online classes concerns the development of community. As Rovai (2001 identified, online courses must combat feelings of isolation and impart a sense of personal and individual attention. To create a sense of belonging and togetherness, instructors typically need to surmount numerous technological hurdles inherent in online delivery, not least of which is the inescapable conclusion that the one factor most basic to the formation of community-face to face interaction-is by definition absent in an online class. Many new tech-based teaching tools have been developed in an attempt to ameliorate the digital alienation and promote interaction, such as discussion boards, synchronous chat rooms, and emerging media like wikis, blogs and podcasts, as well as virtual worlds, such as Second Life. As the frequency of interaction grows, so does the sense of belonging to a learning community (Dawson, 2008.

  6. Analysis of Learning Achievement and Teacher-Student Interactions in Flipped and Conventional Classrooms

    Science.gov (United States)

    Sun, Jerry Chih-Yuan; Wu, Yu-Ting

    2016-01-01

    This study aimed to investigate the effectiveness of two different teaching methods on learning effectiveness. OpenCourseWare was integrated into the flipped classroom model (experimental group) and distance learning (control group). Learning effectiveness encompassed learning achievement, teacher-student interactions, and learning satisfaction.…

  7. MOOCs, High Technology, and Higher Learning

    Science.gov (United States)

    Rhoads, Robert A.

    2015-01-01

    In "MOOCs, High Technology, and Higher Learning," Robert A. Rhoads places the OpenCourseWare (OCW) movement into the larger context of a revolution in educational technology. In doing so, he seeks to bring greater balance to increasingly polarized discussions of massively open online courses (MOOCs) and show their ongoing relevance to…

  8. Hadron interactions at high energy in QCD

    International Nuclear Information System (INIS)

    Levin, E.M.; Ryskin, M.G.

    1988-01-01

    Well known the typical hadronic interactions at high energy are soft processes occurring at large distances where the mysterious confinement forces should be essential. Due to this fact, discussing these processes at first sight the authors are to use and really use some models that incorporate their educated guess about the confinement and utilize the QCD degrees of freedom. But really these models use the QCD terminology rather than the explicit form of the QCD interaction. Up to now the multiparticle dynamics had been the dynamics of reggeons with some detailization coming from their hypothesis about confinement. It is the Reggeon Calculus or the reggeon phenomenology that allows them to describe the main properties of exclusive and inclusive reactions at high energy in agreement with experiment. This paper discusses this problem at this Symposium in many details. However, such pure phenomenological understanding cannot satisfy all of us at the moment. The authors would like to understand the multiparticle production and other soft processes at high energy in more microscopic way using directly the form of the QCD Lagrangian

  9. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  10. Multimedia And Internetworking Architecture Infrastructure On Interactive E-Learning System

    Science.gov (United States)

    Indah, K. A. T.; Sukarata, G.

    2018-01-01

    Interactive e-learning is a distance learning method that involves information technology, electronic system or computer as one means of learning system used for teaching and learning process that is implemented without having face to face directly between teacher and student. A strong dependence on emerging technologies greatly influences the way in which the architecture is designed to produce a powerful interactive e-learning network. In this paper analyzed an architecture model where learning can be done interactively, involving many participants (N-way synchronized distance learning) using video conferencing technology. Also used broadband internet network as well as multicast techniques as a troubleshooting method for bandwidth usage can be efficient.

  11. Interactive Apps Promote Learning of Basic Mathematics in Children With Special Educational Needs and Disabilities

    Directory of Open Access Journals (Sweden)

    Nicola J. Pitchford

    2018-03-01

    Full Text Available Interactive apps delivered on touch-screen tablets can be effective at supporting the acquisition of basic skills in mainstream primary school children. This technology may also be beneficial for children with Special Educational Needs and Disabilities (SEND as it can promote high levels of engagement with the learning task and an inclusive learning environment. However, few studies have measured extent of learning for SEND pupils when using interactive apps, so it has yet to be determined if this technology is effective at raising attainment for these pupils. We report the first observational study of a group of 33 pupils with SEND from two primary schools in Malawi that are implementing a new digital technology intervention which uses touch-screen tablets to deliver interactive apps designed to teach basic mathematical skills. The apps contain topics that align to the national curriculum. To assess learning gains, rate of progress (minutes per topic for each pupil was determined by calculating the average time taken to complete a topic. Progress rate was then correlated with teacher ratings of extent of disability and independent ratings of pupil engagement with the apps. Results showed SEND pupils could interact with the apps and all pupils passed at least one topic. Average progress rate for SEND pupils was twice as long as mainstream peers. Stepwise regression revealed extent of disability significantly predicted progress rate. Further exploratory correlations revealed pupils with moderate to severe difficulties with hearing and/or language made slower progress through the apps than those with greater functionality in these two domains because the use of verbal instructions within the apps limited their capacity to learn. This original quantitative analysis demonstrates that interactive apps can raise learning standards in pupils with SEND but may have limited utility for pupils with severe difficulties. Software modifications are needed to

  12. Interactive Apps Promote Learning of Basic Mathematics in Children With Special Educational Needs and Disabilities.

    Science.gov (United States)

    Pitchford, Nicola J; Kamchedzera, Elizabeth; Hubber, Paula J; Chigeda, Antonie L

    2018-01-01

    Interactive apps delivered on touch-screen tablets can be effective at supporting the acquisition of basic skills in mainstream primary school children. This technology may also be beneficial for children with Special Educational Needs and Disabilities (SEND) as it can promote high levels of engagement with the learning task and an inclusive learning environment. However, few studies have measured extent of learning for SEND pupils when using interactive apps, so it has yet to be determined if this technology is effective at raising attainment for these pupils. We report the first observational study of a group of 33 pupils with SEND from two primary schools in Malawi that are implementing a new digital technology intervention which uses touch-screen tablets to deliver interactive apps designed to teach basic mathematical skills. The apps contain topics that align to the national curriculum. To assess learning gains, rate of progress (minutes per topic) for each pupil was determined by calculating the average time taken to complete a topic. Progress rate was then correlated with teacher ratings of extent of disability and independent ratings of pupil engagement with the apps. Results showed SEND pupils could interact with the apps and all pupils passed at least one topic. Average progress rate for SEND pupils was twice as long as mainstream peers. Stepwise regression revealed extent of disability significantly predicted progress rate. Further exploratory correlations revealed pupils with moderate to severe difficulties with hearing and/or language made slower progress through the apps than those with greater functionality in these two domains because the use of verbal instructions within the apps limited their capacity to learn. This original quantitative analysis demonstrates that interactive apps can raise learning standards in pupils with SEND but may have limited utility for pupils with severe difficulties. Software modifications are needed to address specific

  13. Cabri 3D - assisted collaborative learning to enhance junior high school students’ spatial ability

    Science.gov (United States)

    Muntazhimah; Miatun, A.

    2018-01-01

    The main purpose of this quasi-experimental study was to determine the enhancement of spatial ability of junior high school students who learned through Cabri-3D assisted collaborative learning. The methodology of this study was the nonequivalent group that was conducted to students of the eighth grade in a junior high school as a population. Samples consisted one class of the experimental group who studied with Cabri-3D assisted collaborative learning and one class as a control group who got regular learning activity. The instrument used in this study was a spatial ability test. Analyzing normalized gain of students’ spatial ability based on mathemathical prior knowledge (MPK) and its interactions was tested by two-way ANOVA at a significance level of 5% then continued with using Post Hoc Scheffe test. The research results showed that there was significant difference in enhancement of the spatial ability between students who learnt with Cabri 3D assisted collaborative learning and students who got regular learning, there was significant difference in enhancement of the spatial ability between students who learnt with cabri 3D assisted collaborative learning and students who got regular learning in terms of MPK and there is no significant interaction between learning (Cabri-3D assisted collaborative learning and regular learning) with students’ MPK (high, medium, and low) toward the enhancement of students’ spatial abilities. From the above findings, it can be seen that cabri-3D assisted collaborative learning could enhance spatial ability of junior high school students.

  14. An integrated system for interactive continuous learning of categorical knowledge

    Science.gov (United States)

    Skočaj, Danijel; Vrečko, Alen; Mahnič, Marko; Janíček, Miroslav; Kruijff, Geert-Jan M.; Hanheide, Marc; Hawes, Nick; Wyatt, Jeremy L.; Keller, Thomas; Zhou, Kai; Zillich, Michael; Kristan, Matej

    2016-09-01

    This article presents an integrated robot system capable of interactive learning in dialogue with a human. Such a system needs to have several competencies and must be able to process different types of representations. In this article, we describe a collection of mechanisms that enable integration of heterogeneous competencies in a principled way. Central to our design is the creation of beliefs from visual and linguistic information, and the use of these beliefs for planning system behaviour to satisfy internal drives. The system is able to detect gaps in its knowledge and to plan and execute actions that provide information needed to fill these gaps. We propose a hierarchy of mechanisms which are capable of engaging in different kinds of learning interactions, e.g. those initiated by a tutor or by the system itself. We present the theory these mechanisms are build upon and an instantiation of this theory in the form of an integrated robot system. We demonstrate the operation of the system in the case of learning conceptual models of objects and their visual properties.

  15. Learning to discover: machine learning in high-energy physics

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    In this talk we will survey some of the latest developments in machine learning research through the optics of potential applications in high-energy physics. We will then describe three ongoing projects in detail. The main subject of the talk is the data challenge we are organizing with ATLAS on optimizing the discovery significance for the Higgs to tau-tau channel. Second, we describe our collaboration with the LHCb experiment on designing and optimizing fast multi-variate techniques that can be implemented as online classifiers in triggers. Finally, we will sketch a relatively young project with the ILC (Calice) group in which we are attempting to apply deep learning techniques for inference on imaging calorimeter data.

  16. Learning from tutorials: a qualitative study of approaches to learning and perceptions of tutorial interaction

    DEFF Research Database (Denmark)

    Herrmann, Kim Jesper

    2014-01-01

    This study examines differences in university students’ approaches to learning when attending tutorials as well as variation in students’ perceptions of tutorials as an educational arena. In-depth qualitative analysis of semi-structured interviews with undergraduates showed how surface and deep...... approaches to learning were revealed in the students’ note-taking, listening, and engaging in dialogue. It was also shown how variation in the students’ approaches to learning were coherent with variation in the students’ perceptions of the tutors’ pedagogical role, the value of peer interaction......, and the overall purpose of tutorials. The results are discussed regarding the paradox that students relying on surface approaches to learning seemingly are the ones least likely to respond to tutorials in the way they were intended....

  17. Development of Interactive Media for ICT Learning at Elementary School Based on Student Self Learning

    Directory of Open Access Journals (Sweden)

    Sri Huning Anwariningsih

    2013-05-01

    Full Text Available The implementation of information and comunication technology (ICT curriculum at elementary school is the educational sector development. ICT subject is a practical subject which require a direct practice to make easier in the student understanding. Therefore, a teacher is demanded to make a learning media which helps the student to understand the material of study. This research is aimed at describing the model of ICT study in elementary school and using of learning media. Moreover, the description can be bocome one of the basic from the development of interactive study model base on student self learning. Besides, the arraging of this study model is hoped to make habitual and self learning.

  18. Virtual Learning Simulations in High School

    DEFF Research Database (Denmark)

    Thisgaard, Malene Warming; Makransky, Guido

    2017-01-01

    The present study compared the value of using a virtual learning simulation compared to traditional lessons on the topic of evolution, and investigated if the virtual learning simulation could serve as a catalyst for STEM academic and career development, based on social cognitive career theory....... The investigation was conducted using a crossover repeated measures design based on a sample of 128 high school biology/biotech students. The results showed that the virtual learning simulation increased knowledge of evolution significantly, compared to the traditional lesson. No significant differences between...... the simulation and lesson were found in their ability to increase the non-cognitive measures. Both interventions increased self-efficacy significantly, and none of them had a significant effect on motivation. In addition, the results showed that the simulation increased interest in biology related tasks...

  19. Learning Organizations in High Reliability Industries

    International Nuclear Information System (INIS)

    Schwalbe, D.; Wächter, C.

    2016-01-01

    Full text: Humans make mistakes. Sometimes we learn from them. In a high reliability organization we have to learn before an error leads to an incident (or even accident). Therefore the “human factor” is most important as most of the time the human is the last line of defense. The “human factor” is more than communication or leadership skills. At the end, it is the personal attitude. This attitude has to be safety minded. And this attitude has to be self-reflected continuously. Moreover, feedback from others is urgently needed to improve one’s personal skills daily and learn from our own experience as well as from others. (author

  20. Using the interactive distance learning broadcast format for international audiences

    International Nuclear Information System (INIS)

    Callan, C.; Hylko, J.M.

    1997-01-01

    Since 1989, the National Environmental Technology Network (NETN) has been broadcasting interactive presentations on topics of national and international concern. Each interactive presentation covers such topics as decommissioning, environmental risk management, radioactive waste management, waste minimization, and total quality management. Course materials are provided to the attendees which feature case studies, legal and regulatory issues, and the application of existing and new technologies. The interactive presentations are broadcast by satellite and videotaped, allowing employees to participate who do not have convenient access to traditional classroom training resources. Over 8,000 professionals and students in the United States and several foreign countries have participated in the distance learning broadcast format, thus providing a proven and cost-effective method for managing educational and facility resources effectively. A case study is presented depicting why training, if neglected, can result in costly errors, and how the distance learning broadcast format can be expanded to assist regulatory officials, and even the local populace, in making cost-effective decisions. (author)

  1. Tools For Interactive Learning And Self-Management Of Diabetes

    Science.gov (United States)

    Capelo, Rita; Baptista, Carla; Figueiredo, Júlia; Carrilho, Francisco; Furtado, Pedro

    2015-05-01

    Diabetes is a widespread disease and its control is dependent upon the patient. Although there is no permanent cure for diabetes, there are several available treatments which, when followed regularly, allow the patient to have a good quality of life. Patient education, especially about eating habits, is key to keep glucose levels stable both in the short and in the long term. This should include nutritional counselling, physical exercise, and the self monitoring of glucose levels. The University of Coimbra and the Serviço de Endocrinologia, Diabetes e Metabolismo of Centro Hospitalar e Universitário de Coimbra started a collaboration to develop interactive tools for the learning and improvement of carbohydrate counting by patients. The approach presented in this paper is an interactive multimedia tool, available to patients through either the web or a smartphone. It helps them to learn how to maintain a healthy diet and how to monitor their insulin levels correctly by measuring the carbo-hidrate “equivalents” in meals. This application will create a more dynamic and interactive way of educating patients, improving solutions currently used in the Serviço de Endocrinologia, Diabetes e Metabolismo of the Centro Hospitalar e Universitário de Coimbra.

  2. Project InterActions: A Multigenerational Robotic Learning Environment

    Science.gov (United States)

    Bers, Marina U.

    2007-12-01

    This paper presents Project InterActions, a series of 5-week workshops in which very young learners (4- to 7-year-old children) and their parents come together to build and program a personally meaningful robotic project in the context of a multigenerational robotics-based community of practice. The goal of these family workshops is to teach both parents and children about the mechanical and programming aspects involved in robotics, as well as to initiate them in a learning trajectory with and about technology. Results from this project address different ways in which parents and children learn together and provide insights into how to develop educational interventions that would educate parents, as well as children, in new domains of knowledge and skills such as robotics and new technologies.

  3. What we can learn from lepton-quark interactions

    International Nuclear Information System (INIS)

    Quigg, C.

    1981-07-01

    A review is presented of what has been learned from lepton-quark interactions. Next, the context in which to ask future questions, the paradigm, it constitutes the set of assumptions that we believe on the basis of present experiments and which - subject always to refinement, extension, and revision - defines the way we talk about experiments done now and in the future. Two fothcoming neutrino experiments are discussed which seem to be of specific interest. Finally, some of the possibilities for experiments with ep colliders are covered. The point of that discussion is to try to understand what - in very general terms - are the things we may hope to learn from these facilities, and to begin to ask what requirements our physics questions place upon machines and experiments

  4. Deep-Learning-Based Drug-Target Interaction Prediction.

    Science.gov (United States)

    Wen, Ming; Zhang, Zhimin; Niu, Shaoyu; Sha, Haozhi; Yang, Ruihan; Yun, Yonghuan; Lu, Hongmei

    2017-04-07

    Identifying interactions between known drugs and targets is a major challenge in drug repositioning. In silico prediction of drug-target interaction (DTI) can speed up the expensive and time-consuming experimental work by providing the most potent DTIs. In silico prediction of DTI can also provide insights about the potential drug-drug interaction and promote the exploration of drug side effects. Traditionally, the performance of DTI prediction depends heavily on the descriptors used to represent the drugs and the target proteins. In this paper, to accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, we developed a deep-learning-based algorithmic framework named DeepDTIs. It first abstracts representations from raw input descriptors using unsupervised pretraining and then applies known label pairs of interaction to build a classification model. Compared with other methods, it is found that DeepDTIs reaches or outperforms other state-of-the-art methods. The DeepDTIs can be further used to predict whether a new drug targets to some existing targets or whether a new target interacts with some existing drugs.

  5. Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics.

    Science.gov (United States)

    Ludolph, Nicolas; Giese, Martin A; Ilg, Winfried

    2017-10-16

    There is increasing evidence that sensorimotor learning under real-life conditions relies on a composition of several learning processes. Nevertheless, most studies examine learning behaviour in relation to one specific learning mechanism. In this study, we examined the interaction between reward-based skill acquisition and motor adaptation to changes of object dynamics. Thirty healthy subjects, split into two groups, acquired the skill of balancing a pole on a cart in virtual reality. In one group, we gradually increased the gravity, making the task easier in the beginning and more difficult towards the end. In the second group, subjects had to acquire the skill on the maximum, most difficult gravity level. We hypothesized that the gradual increase in gravity during skill acquisition supports learning despite the necessary adjustments to changes in cart-pole dynamics. We found that the gradual group benefits from the slow increment, although overall improvement was interrupted by the changes in gravity and resulting system dynamics, which caused short-term degradations in performance and timing of actions. In conclusion, our results deliver evidence for an interaction of reward-based skill acquisition and motor adaptation processes, which indicates the importance of both processes for the development of optimized skill acquisition schedules.

  6. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory

    Science.gov (United States)

    Mattfeld, Aaron T.; Stark, Craig E. L.

    2015-01-01

    The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. PMID:25560298

  7. The interactive learning toolkit: technology and the classroom

    Science.gov (United States)

    Lukoff, Brian; Tucker, Laura

    2011-04-01

    Peer Instruction (PI) and Just-in-Time-Teaching (JiTT) have been shown to increase both students' conceptual understanding and problem-solving skills. However, the time investment for the instructor to prepare appropriate conceptual questions and manage student JiTT responses is one of the main implementation hurdles. To overcome this we have developed the Interactive Learning Toolkit (ILT), a course management system specifically designed to support PI and JiTT. We are working to integrate the ILT with a fully interactive classroom system where students can use their laptops and smartphones to respond to ConcepTests in class. The goal is to use technology to engage students in conceptual thinking both in and out of the classroom.

  8. The Method of High School English Word Learning

    Institute of Scientific and Technical Information of China (English)

    吴博涵

    2016-01-01

    Most Chinese students are not interested in English learning, especially English words. In this paper, I focus on English vocabulary learning, for example, the study of high school students English word learning method, and also introduce several ways to make vocabulary memory becomes more effective. The purpose is to make high school students grasp more English word learning skills.

  9. Machine Learning Control For Highly Reconfigurable High-Order Systems

    Science.gov (United States)

    2015-01-02

    calibration and applications,” Mechatronics and Embedded Systems and Applications (MESA), 2010 IEEE/ASME International Conference on, IEEE, 2010, pp. 38–43...AFRL-OSR-VA-TR-2015-0012 MACHINE LEARNING CONTROL FOR HIGHLY RECONFIGURABLE HIGH-ORDER SYSTEMS John Valasek TEXAS ENGINEERING EXPERIMENT STATION...DIMENSIONAL RECONFIGURABLE SYSTEMS FA9550-11-1-0302 Period of Performance 1 July 2011 – 29 September 2014 John Valasek Aerospace Engineering

  10. Using Mobile Communication Technology in High School Education: Motivation, Pressure, and Learning Performance

    Science.gov (United States)

    Rau, Pei-Luen Patrick; Gao, Qin; Wu, Li-Mei

    2008-01-01

    Motivation and pressure are considered two factors impacting vocational senior high school student learning. New communication technology, especially mobile communication technology, is supposed to be effective in encouraging interaction between the student and the instructor and improving learning efficiency. Social presence and information…

  11. From conditioning to learning communities: implications of fifty years of research in e-learning interaction design

    Directory of Open Access Journals (Sweden)

    Andrew Ravenscroft

    2003-12-01

    Full Text Available This paper will consider e-learning in terms of the underlying learning processes and interactions that are stimulated, supported or favoured by new media and the contexts or communities in which it is used. We will review and critique a selection of research and development from the past fifty years that has linked pedagogical and learning theory to the design of innovative e-learning systems and activities, and discuss their implications. It will include approaches that are, essentially, behaviourist (Skinner and Gagné, cognitivist (Pask, Piaget and Papert, situated (Lave, Wenger and Seely-Brown, socioconstructivist (Vygotsky, socio-cultural (Nardi and Engestrom and community-based (Wenger and Preece. Emerging from this review is the argument that effective elearning usually requires, or involves, high-quality educational discourse, that leads to, at the least, improved knowledge, and at the best, conceptual development and improved understanding. To achieve this I argue that we need to adopt a more holistic approach to design that synthesizes features of the included approaches, leading to a framework that emphasizes the relationships between cognitive changes, dialogue processes and the communities, or contexts for e-learning.

  12. Self-Regulation, Cooperative Learning, and Academic Self-Efficacy: Interactions to Prevent School Failure

    OpenAIRE

    Fernández Río, Francisco Javier; Cecchini Estrada, José Antonio; Méndez Giménez, Antonio; Prieto Saborit, José Antonio

    2017-01-01

    Learning to learn and learning to cooperate are two important goals for individuals. Moreover, self regulation has been identified as fundamental to prevent school failure. The goal of the present study was to assess the interactions between self-regulated learning, cooperative learning and academic self-efficacy in secondary education students experiencing cooperative learning as the main pedagogical approach for at least one school year. 2.513 secondary education students (1.308 males, 1.20...

  13. Exploration of Textual Interactions in CALL Learning Communities: Emerging Research and Opportunities

    Science.gov (United States)

    White, Jonathan R.

    2017-01-01

    Computer-assisted language learning (CALL) has greatly enhanced the realm of online social interaction and behavior. In language classrooms, it allows the opportunity for students to enhance their learning experiences. "Exploration of Textual Interactions in CALL Learning Communities: Emerging Research and Opportunities" is an ideal…

  14. Investigating Learning with an Interactive Tutorial: A Mixed-Methods Strategy

    Science.gov (United States)

    de Villiers, M. R.; Becker, Daphne

    2017-01-01

    From the perspective of parallel mixed-methods research, this paper describes interactivity research that employed usability-testing technology to analyse cognitive learning processes; personal learning styles and times; and errors-and-recovery of learners using an interactive e-learning tutorial called "Relations." "Relations"…

  15. Virtual respiratory system for interactive e-learning of spirometry

    Directory of Open Access Journals (Sweden)

    W. Tomalak

    2008-04-01

    Full Text Available Progress in computer simulation technology offers new possibilities for modern medicine. On one hand – virtual organs can help to create animal or human models for research, on the other hand – e-learning or distant learning through Internet is now possible. The aim of our work was to create a system for interactive learning of spirometry (SILS, enabling students or physicians to observe spirometric measurements (flow-volume modified by setting level and kind of abnormalities within the respiratory system. SILS is based on a virtual respiratory system presented previously in several papers. Its main features are: separation of the lungs and chest; anatomical division of the lungs; division of airway resistance into transmural pressure dependent (Rp and lung volume dependent (Rv parts. The one mathematical formula that represents Rp describes both flow limitation (forced expiration and dependence of Raw on lungs volume (small airflows. The output of system are spirometric parameters (as FEV1, FVC, FEV1%FVC and a flow–volume loop constructed according to results of simulation of forced expiration for the chosen abnormality kind and level. As a result – this system may be used in teaching process in medical schools and postgraduate education. We offer access to a basic version of SILS for students and physicians at: www.spirometry.ibib.waw.pl and www.zpigichp.edu.pl. As we expect feedback from users, it is possible to modify user interface or model features to comply with users' requests.

  16. High-frequency TRNS reduces BOLD activity during visuomotor learning.

    Directory of Open Access Journals (Sweden)

    Catarina Saiote

    Full Text Available Transcranial direct current stimulation (tDCS and transcranial random noise stimulation (tRNS consist in the application of electrical current of small intensity through the scalp, able to modulate perceptual and motor learning, probably by changing brain excitability. We investigated the effects of these transcranial electrical stimulation techniques in the early and later stages of visuomotor learning, as well as associated brain activity changes using functional magnetic resonance imaging (fMRI. We applied anodal and cathodal tDCS, low-frequency and high-frequency tRNS (lf-tRNS, 0.1-100 Hz; hf-tRNS 101-640 Hz, respectively and sham stimulation over the primary motor cortex (M1 during the first 10 minutes of a visuomotor learning paradigm and measured performance changes for 20 minutes after stimulation ceased. Functional imaging scans were acquired throughout the whole experiment. Cathodal tDCS and hf-tRNS showed a tendency to improve and lf-tRNS to hinder early learning during stimulation, an effect that remained for 20 minutes after cessation of stimulation in the late learning phase. Motor learning-related activity decreased in several regions as reported previously, however, there was no significant modulation of brain activity by tDCS. In opposition to this, hf-tRNS was associated with reduced motor task-related-activity bilaterally in the frontal cortex and precuneous, probably due to interaction with ongoing neuronal oscillations. This result highlights the potential of lf-tRNS and hf-tRNS to differentially modulate visuomotor learning and advances our knowledge on neuroplasticity induction approaches combined with functional imaging methods.

  17. Pedagogical Interaction in High School, the Structural and Functional Model of Pedagogical Interaction

    Science.gov (United States)

    Semenova, Larissa A.; Kazantseva, Anastassiya I.; Sergeyeva, Valeriya V.; Raklova, Yekaterina M.; Baiseitova, Zhanar B.

    2016-01-01

    The study covers the problems of pedagogical technologies and their experimental implementation in the learning process. The theoretical aspects of the "student-teacher" interaction are investigated. A structural and functional model of pedagogical interaction is offered, which determines the conditions for improving pedagogical…

  18. Analysis of an Interactive Technology Supported Problem-Based Learning STEM Project Using Selected Learning Sciences Interest Areas (SLSIA)

    Science.gov (United States)

    Kumar, David Devraj

    2017-01-01

    This paper reports an analysis of an interactive technology-supported, problem-based learning (PBL) project in science, technology, engineering and mathematics (STEM) from a Learning Sciences perspective using the Selected Learning Sciences Interest Areas (SLSIA). The SLSIA was adapted from the "What kinds of topics do ISLS [International…

  19. Role of Pre-Course Student Characteristics on Student Learning in Interactive Teaching Environments

    Science.gov (United States)

    Miller, Kelly Anne

    explore ways to steer discussion forums to produce high-quality learning interactions.

  20. Impact of interactive online units on learning science among students with learning disabilities and English learners

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Gallard M., Alejandro J.; Strycker, Lisa A.; Walden, Emily D.

    2018-03-01

    The purpose of this study was to document the design, classroom implementation, and effectiveness of interactive online units to enhance science learning over 3 years among students with learning disabilities, English learners, and general education students. Results of a randomised controlled trial with 2,303 middle school students and 71 teachers across 13 schools in two states indicated that online units effectively deepened science knowledge across all three student groups. Comparing all treatment and control students on pretest-to-posttest improvement on standards-based content-specific assessments, there were statistically significant mean differences (17% improvement treatment vs. 6% control; p English learner status, indicating that these two groups performed similarly to their peers; students with learning disabilities had significantly lower assessment scores overall. Teachers and students were moderately satisfied with the units.

  1. Monitoring of Students' Interaction in Online Learning Settings by Structural Network Analysis and Indicators.

    Science.gov (United States)

    Ammenwerth, Elske; Hackl, Werner O

    2017-01-01

    Learning as a constructive process works best in interaction with other learners. Support of social interaction processes is a particular challenge within online learning settings due to the spatial and temporal distribution of participants. It should thus be carefully monitored. We present structural network analysis and related indicators to analyse and visualize interaction patterns of participants in online learning settings. We validate this approach in two online courses and show how the visualization helps to monitor interaction and to identify activity profiles of learners. Structural network analysis is a feasible approach for an analysis of the intensity and direction of interaction in online learning settings.

  2. Cross-modal interaction between visual and olfactory learning in Apis cerana.

    Science.gov (United States)

    Zhang, Li-Zhen; Zhang, Shao-Wu; Wang, Zi-Long; Yan, Wei-Yu; Zeng, Zhi-Jiang

    2014-10-01

    The power of the small honeybee brain carrying out behavioral and cognitive tasks has been shown repeatedly to be highly impressive. The present study investigates, for the first time, the cross-modal interaction between visual and olfactory learning in Apis cerana. To explore the role and molecular mechanisms of cross-modal learning in A. cerana, the honeybees were trained and tested in a modified Y-maze with seven visual and five olfactory stimulus, where a robust visual threshold for black/white grating (period of 2.8°-3.8°) and relatively olfactory threshold (concentration of 50-25%) was obtained. Meanwhile, the expression levels of five genes (AcCREB, Acdop1, Acdop2, Acdop3, Actyr1) related to learning and memory were analyzed under different training conditions by real-time RT-PCR. The experimental results indicate that A. cerana could exhibit cross-modal interactions between visual and olfactory learning by reducing the threshold level of the conditioning stimuli, and that these genes may play important roles in the learning process of honeybees.

  3. Learning objects and interactive whiteboards: a evaluation proposal of learning objects for mathematics teaching

    Directory of Open Access Journals (Sweden)

    Silvio Henrique Fiscarelli

    2016-05-01

    Full Text Available The current conditions of the classroom learning tend to be a one-way process based in teacher exposition, this make a negative impact on learning make it a mechanical and not meaningful activity. One possibility to improve the quality of teaching is to innovate methodologies and varying forms of presenting information to students, such as the use of technology in the teaching process. The Interactive Whiteboard (IBW is one of the technologies that are being implemented in Brazilian schools. One of the promising possibilities to add value to the use of LDI in classroom are "learning objects" (LO. However, one problem is that often the LO are not fully suited to the dynamics of IWB, whether functional or pedagogical point of view. The objective of this study is to analyze and propose a set of indicators that evaluate the learning objects for use in conjunction with Interactive Whiteboards. The selection and definition of evaluation indicators was carried from the literature review on the subject and based on LDI experiences of use in Municipal Elementary School. After defining the set of indicators was conducted a evaluation of a sample of 30 OA utilized to teaching mathematics in 3rd grade of elementary school. The results of the evaluation indicate that the proposed indicators are suitable for a pre-analysis of OA and assisting in the process of selection of these.

  4. An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.

    Science.gov (United States)

    Kundu, Kousik; Backofen, Rolf

    2017-01-01

    Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.

  5. Interactive Video, Tablets and Self-Paced Learning in the Classroom: Preservice Teachers Perceptions

    Science.gov (United States)

    Papadopoulou, Anthia; Palaigeorgiou, George

    2016-01-01

    In recent years, a lot of focus has been given to the study of interactive video. However, interactive video has not been examined as a tool for self-directed learning in the classroom and has not been exploited together with tablets. This study tries to assess the value of an e-learning environment which is based primarily on interactive learning…

  6. Student Talk and Opportunities for Mathematical Learning in Small Group Interactions

    Science.gov (United States)

    Wood, Marcy B.; Kalinec, Crystal A.

    2012-01-01

    Small group interactions are an important tool for mathematical learning and yet researchers have neither examined small group talk across entire lessons nor have they focused on moments of mathematical learning in small groups. We examined such talk and identified kinds of interactions and connections between interactions and mathematical…

  7. Beyond Lecture and Non-Lecture Classrooms: LA-student interactions in Active Learning Classrooms

    Science.gov (United States)

    Gonzalez, Dayana; Kornreich, Hagit; Rodriguez, Idaykis; Monslave, Camila; Pena-Flores, Norma

    Our expanded multi-site study on active learning classrooms supported by Learning Assistants (LAs) aims to understand the connections between three classroom elements: the activity, student learning, and how LAs support the learning process in the classroom. At FIU, LAs are used in a variety of active learning settings, from large auditorium settings to studio classroom with movable tables. Our study uses the COPUS observation protocol as a way to characterize LAs behaviors in these classrooms. With a focus on LA-student interactions, our analysis of how LAs interact with students during a 'learning session' generated new observational codes for specific new categories of LA roles. Preliminary results show that LAs spend more time interacting with students in some classes, regardless of the classroom setting, while in other classrooms, LA-student interactions are mostly brief. We discuss how LA-student interactions contribute to the dynamics and mechanism of the socially shared learning activity.

  8. JACEE results on very high energy interactions

    International Nuclear Information System (INIS)

    Wilczynski, H.

    1996-01-01

    Direct observations of cosmic ray interactions in emulsion chambers of the JACEE experiment at energies above 1 TeV/nucleon are presented. An analysis of two decay of short lived particles produced in cosmic ray interactions is described. The known decay modes of bottom and charged particles do not account satisfactorily for the observations. This could possibly indicate a new decay channel of a heavy particle. The JACEE results support the hypothesis of existence of a long-flying component in cosmic ray showers. An interaction event was observed which may be the first direct observation of (mini)anticentauro interaction. (author)

  9. Virtual photon interactions in high energy QCD

    International Nuclear Information System (INIS)

    Gieseke, S.

    2001-07-01

    We study the interactions of virtual photons in the high energy limit of quantum chromodynamics (QCD). The subject is discussed in terms of two closely linked applications: the calculation of the total cross section for γ * γ * -scattering and the description of DIS in the colour dipole model. We calculate virtual corrections in α s to the process γ * q → (qq)q and the tree level process γ * q → (qqg)q in the high energy limit. From this calculation we obtain one-loop corrections to the effective γ * -reggeon-qq-vertex in the helicity basis of the virtual photon and the qq-pair. The loop integrals for the virtual corrections have been performed and expressed in dimensional regularization in terms of logarithms and dilogarithms. We have convoluted the virtual one-loop matrix elements with tree level matrix elements and expressed the integrals over the phase space of the qq-pair explicitly in terms of a set of standard integrals. The real corrections have been calculated and, in case of the longitudinal polarization, expressed in factorized form. From these calculations, the impact factor of virtual photons will be determined, allowing for a first prediction of the total cross section for γ * γ * -scattering in the next-to-leading-log s approximation. The calculations in this thesis extend the photon wave function picture in the colour dipole model to next-to-leading order. For this purpose, the real corrections with a qqg final state are analyzed in transverse configuration space and interpreted as a first higher Fock component of the photon wave function. In addition, the matrix elements that have been calculated in this thesis are needed for the calculation of jet cross sections. (orig.)

  10. Cooperative learning model with high order thinking skills questions: an understanding on geometry

    Science.gov (United States)

    Sari, P. P.; Budiyono; Slamet, I.

    2018-05-01

    Geometry, a branch of mathematics, has an important role in mathematics learning. This research aims to find out the effect of learning model, emotional intelligence, and the interaction between learning model and emotional intelligence toward students’ mathematics achievement. This research is quasi-experimental research with 2 × 3 factorial design. The sample in this research included 179 Senior High School students on 11th grade in Sukoharjo Regency, Central Java, Indonesia in academic year of 2016/2017. The sample was taken by using stratified cluster random sampling. The results showed that: the student are taught by Thinking Aloud Pairs Problem-Solving using HOTs questions provides better mathematics learning achievement than Make A Match using HOTs questions. High emotional intelligence students have better mathematics learning achievement than moderate and low emotional intelligence students, and moderate emotional intelligence students have better mathematics learning achievement than low emotional intelligence students. There is an interaction between learning model and emotional intelligence, and these affect mathematics learning achievement. We conclude that appropriate learning model can support learning activities become more meaningful and facilitate students to understand material. For further research, we suggest to explore the contribution of other aspects in cooperative learning modification to mathematics achievement.

  11. Children Can Learn New Facts Equally Well From Interactive Media Versus Face to Face Instruction

    OpenAIRE

    Kwok, Kristine; Ghrear, Siba; Li, Vivian; Haddock, Taeh; Coleman, Patrick; Birch, Susan A. J.

    2016-01-01

    Today’s children have more opportunities than ever before to learn from interactive technology, yet experimental research assessing the efficacy of children’s learning from interactive media in comparison to traditional learning approaches is still quite scarce. Moreover, little work has examined the efficacy of using touch-screen devices for research purposes. The current study compared children’s rate of learning factual information about animals during a face-to-face instruction from an ad...

  12. Illustrated Plant Identification Keys: An Interactive Tool to Learn Botany

    Science.gov (United States)

    Silva, Helena; Pinho, Rosa; Lopes, Lisia; Nogueira, Antonio J. A.; Silveira, Paulo

    2011-01-01

    An Interactive Dichotomous Key (IDK) for 390 "taxa" of vascular plants from the Ria de Aveiro, available on a website, was developed to help teach botany to school and universitary students. This multimedia tool includes several links to Descriptive and Illustrated Glossaries. Questionnaires answered by high-school and undergraduate students about…

  13. Student talk and opportunities for mathematical learning in small group interactions

    OpenAIRE

    Wood, M.; Kalinec, C.

    2012-01-01

    Small group interactions are an important tool for mathematical learning and yet researchers have neither examined small group talk across entire lessons nor have they focused on moments of mathematical learning in small groups. We examined such talk and identified kinds of interactions and connections between interactions and mathematical learning. We differentiated talk based upon its focus: mathematical objects (mathematizing), people (subjectifying), or more specifically, people’s attribu...

  14. Technology-enhanced instruction in learning world languages: The Middlebury interactive learning program

    Directory of Open Access Journals (Sweden)

    Cynthia Lake

    2015-03-01

    Full Text Available Middlebury Interactive Language (MIL programs are designed to teach world language courses using blended and online learning for students in kindergarten through grade 12. Middlebury Interactive courses start with fundamental building blocks in four key areas of world-language study: listening comprehension, speaking, reading, and writing. As students progress through the course levels, they deepen their understanding of the target language, continuing to focus on the three modes of communication: interpretive, interpersonal, and presentational. The extensive use of authentic materials (video, audio, images, or texts is intended to provide a contextualized and interactive presentation of the vocabulary and the linguistic structures. In the present paper, we describe the MIL program and the results of a mixed-methods survey and case-study evaluation of its implementation in a broad sample of schools. Technology application is examined with regard to MIL instructional strategies and the present evaluation approach relative to those employed in the literature.

  15. The Development of Interactive Mathematics Learning Material Based on Local Wisdom with .swf Format

    Science.gov (United States)

    Abadi, M. K.; Asih, E. C. M.; Jupri, A.

    2018-05-01

    Learning materials used by students and schools in Serang district are lacking because they do not contain local wisdom content. The aim of this study is to improve the deficiencies in learning materials used by students by making interactive materials based on local wisdom content with format .swf. The method in this research is research and development (RnD) with ADDIE model. In making this interactive learning materials in accordance with the stages of the ADDIE study. The results of this study include interactive learning materials based on local wisdom. This learning material is suitable for digital students.

  16. Let's Face(book) It: Analyzing Interactions in Social Network Groups for Chemistry Learning

    Science.gov (United States)

    Rap, Shelley; Blonder, Ron

    2016-02-01

    We examined how social network (SN) groups contribute to the learning of chemistry. The main goal was to determine whether chemistry learning could occur in the group discourse. The emphasis was on groups of students in the 11th and 12th grades who learn chemistry in preparation for their final external examination. A total of 1118 discourse events were tallied in the different groups. We analyzed the different events that were found in chemistry learning Facebook groups (CLFGs). The analysis revealed that seven types of interactions were observed in the CLFGs: The most common interaction (47 %) dealt with organizing learning (e.g., announcements regarding homework, the location of the next class); learning interactions were observed in 22 % of the posts, and links to learning materials and social interactions constituted about 20 % each. The learning events that were ascertained underwent a deeper examination and three different types of chemistry learning interactions were identified. This examination was based on the theoretical framework of the commognitive approach to learning (Sfard in Thinking as communicating. Cambridge University Press, Cambridge, 2008), which will be explained. The identified learning interactions that were observed in the Facebook groups illustrate the potential of SNs to serve as an additional tool for teachers to advance their students' learning of chemistry.

  17. Interactive and collaborative learning in the classroom at the medical school Automated response systems and team-based learning.

    Science.gov (United States)

    Nasr, Rihab; Antoun, Jumana; Sabra, Ramzi; Zgheib, Nathalie K

    2016-01-01

    There has been a pedagogic shift in higher education from the traditional teacher centered to the student centered approach in teaching, necessitating a change in the role of the teacher from a supplier of information to passive receptive students into a more facilitative role. Active learning activities are based on various learning theories such as self-directed learning, cooperative learning and adult learning. There exist many instructional activities that enhance active and collaborative learning. The aim of this manuscript is to describe two methods of interactive and collaborative learning in the classroom, automated response systems (ARS) and team-based learning (TBL), and to list some of their applications and advantages. The success of these innovative teaching and learning methods at a large scale depends on few elements, probably the most important of which is the support of the higher administration and leadership in addition to the availability of “champions” who are committed to lead the change.

  18. Radiation interactions in high-pressure gases

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1990-01-01

    This article is on basic radiation interaction processes in dense fluids and on interphase studies aiming at the interfacing of knowledge on radiation interaction processes in the gaseous and the liquid state of matter. It is specifically focused on the effect of the density and nature of the medium on electron production in irradiated fluids and on the state, energy, transport, and attachment of slow excess electrons in dense fluids especially dielectric liquids which possess excess-electron conduction bands (V 0 < 0 eV). Studies over the past two decades have shown that the interactions of low-energy electrons with molecules embedded in dense media depend not only on the molecules themselves and their internal state of excitation, but also on the electron state and energy in -- and the nature and density of -- the medium in which the interactions occur

  19. Radiation interactions in high-pressure gases

    Energy Technology Data Exchange (ETDEWEB)

    Christophorou, L.G. (Oak Ridge National Lab., TN (USA) Tennessee Univ., Knoxville, TN (USA))

    1990-01-01

    This article is on basic radiation interaction processes in dense fluids and on interphase studies aiming at the interfacing of knowledge on radiation interaction processes in the gaseous and the liquid state of matter. It is specifically focused on the effect of the density and nature of the medium on electron production in irradiated fluids and on the state, energy, transport, and attachment of slow excess electrons in dense fluids especially dielectric liquids which possess excess-electron conduction bands (V{sub 0} < 0 eV). Studies over the past two decades have shown that the interactions of low-energy electrons with molecules embedded in dense media depend not only on the molecules themselves and their internal state of excitation, but also on the electron state and energy in -- and the nature and density of -- the medium in which the interactions occur.

  20. A Framework for Building an Interactive Satellite TV Based M-Learning Environment

    Directory of Open Access Journals (Sweden)

    Ghassan Issa

    2010-07-01

    Full Text Available This paper presents a description of an interactive satellite TV based mobile learning (STV-ML framework, in which a satellite TV station is used as an integral part of a comprehensive interactive mobile learning (M-Learning environment. The proposed framework assists in building a reliable, efficient, and cost-effective environment to meet the growing demands of M-Learning all over the world, especially in developing countries. It utilizes recent advances in satellite reception, broadcasting technologies, and interactive TV to facilitate the delivery of gigantic learning materials. This paper also proposed a simple and flexible three-phase implementation methodology which includes construction of earth station, expansion of broadcasting channels, and developing true user interactivity. The proposed framework and implementation methodology ensure the construction of a true, reliable, and cost effective M-Learning system that can be used efficiently and effectively by a wide range of users and educational institutions to deliver ubiquitous learning.

  1. Do Interactive Globes and Games Help Students Learn Planetary Science?

    Science.gov (United States)

    Coba, Filis; Burgin, Stephen; De Paor, Declan; Georgen, Jennifer

    2016-01-01

    The popularity of animations and interactive visualizations in undergraduate science education might lead one to assume that these teaching aids enhance student learning. We tested this assumption for the case of the Google Earth virtual globe with a comparison of control and treatment student groups in a general education class of over 370 students at a large public university. Earth and Planetary Science course content was developed in two formats: using Keyhole Markup Language (KML) to create interactive tours in Google Earth (the treatment group) and Portable Document Format (PDF) for on-screen reading (the control group). The PDF documents contained identical text and images to the placemark balloons or "tour stops" in the Google Earth version. Some significant differences were noted between the two groups based on the immediate post-questionnaire with the KML students out-performing the PDF students, but not on the delayed measure. In a separate but related project, we undertake preliminary investigations into methods of teaching basic concepts in planetary mantle convection using numerical simulations. The goal of this project is to develop an interface with a two-dimensional finite element model that will allow students to vary parameters such as the temperatures assigned to the boundaries of the model domain, to help them actively explore important variables that control convection.

  2. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    Science.gov (United States)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-01-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…

  3. Measuring Team Learning Behaviours through Observing Verbal Team Interaction

    Science.gov (United States)

    Raes, Elisabeth; Boon, Anne; Kyndt, Eva; Dochy, Filip

    2015-01-01

    Purpose: This study aims to explore, as an answer to the observed lack of knowledge about actual team learning behaviours, the characteristics of the actual observed basic team learning behaviours and facilitating team learning behaviours more in-depth of three project teams. Over time, team learning in an organisational context has been…

  4. Is Peer Interaction Necessary for Optimal Active Learning?

    Science.gov (United States)

    Linton, Debra L.; Farmer, Jan Keith; Peterson, Ernie

    2014-01-01

    Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of…

  5. Interaction matters: Strategies to promote engaged learning in an online introductory nutrition course.

    Science.gov (United States)

    Banna, Jinan; Grace Lin, Meng-Fen; Stewart, Maria; Fialkowski, Marie K

    2015-06-01

    Fostering interaction in the online classroom is an important consideration in ensuring that students actively create their own knowledge and reach a high level of achievement in science courses. This study focuses on fostering interaction in an online introductory nutrition course offered in a public institution of higher education in Hawai'i, USA. Interactive features included synchronous discussions and polls in scheduled sessions, and social media tools for sharing of information and resources. Qualitative student feedback was solicited regarding the new course features. Findings indicated that students who attended monthly synchronous sessions valued live interaction with peers and the instructor. Issues identified included technical difficulties during synchronous sessions, lack of participation on the part of fellow students in discussion and inability to attend synchronous sessions due to scheduling conflicts. In addition, few students made use of the opportunity to interact via social media. While students indicated that the interactive components of the course were valuable, several areas in which improvement may be made remain. Future studies may explore potential solutions to issues identified with new features to further promote interaction and foster learning in the course. Recommendations for instructors who are interested in offering online science courses in higher education are provided.

  6. Dynamically analyzing cell interactions in biological environments using multiagent social learning framework.

    Science.gov (United States)

    Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong

    2017-09-20

    Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.

  7. Teacher-Student Interaction, Empathy and Their Influence on Learning in Swimming Lessons

    Science.gov (United States)

    Lémonie, Yannick; Light, Richard; Sarremejane, Philippe

    2016-01-01

    The bulk of interest in the role that interaction plays in learning in sport and physical education (PE) has focused on peer interaction at the expense of teacher-student interaction. This article redresses this imbalance in the literature by reporting on a study that inquired into the nature of teacher-student interaction and its effect on…

  8. Learning Style Preferences of Iranian EFL High School Students

    OpenAIRE

    Reza Vaseghi; Hamed Barjesteh; Sedigheh Shakib

    2013-01-01

    The current study examined the learning style preferences of 75 Iranian students at Marefat high school in Kuala Lumpur of which, 41 are females and 34 are males. As there are very few researches in which the learning style preferences of Iranian high school students investigated, this study attempts to fulfil this gap. To this end, in order to identify the students’ preferred learning styles (Visual, Auditory, Kinesthetic, Tactile, Group, and Individual) Reid’s Perceptual Learning Style Pref...

  9. Working with interpreters: an interactive Web-based learning module.

    Science.gov (United States)

    Kalet, Adina; Gany, Francesca; Senter, Lindsay

    2002-09-01

    Medical students are presented with unique challenges when they care for patients with limited English proficiency. Students must learn a complex set of skills needed to care for patients across cultural and language barriers and to understand the impact of their own attitudes and beliefs about caring for these patients. We developed and piloted a multimedia interactive Web-based module aimed at teaching students effective strategies for working with interpreters and diverse patient populations, and at raising their awareness of important legal, ethical, and cultural issues. First the learner completes a 37-multiple-choice-question (MCQ) pre-test that assesses attitudes, factual knowledge, and ability to analyze written clinical scenarios relevant to the module's content. Learners are then shown a series of professionally produced video vignettes, which reflect diverse patient populations, interpreters, and effectiveness of interpretation strategies (e.g., a Russian-speaking woman with chest pain whose daughter interprets, a medical student interpreting for a Chinese-speaking man using herbal medication, a Haitian woman told of an abnormal mammogram through a trained simultaneous interpreter). In each case, learners submit short answers to on-screen questions analyzing the effectiveness of the interpretation strategies demonstrated. Immediate feedback is given comparing student responses with those of experts. At any time during the module, the learners may view video commentary by legal, ethics, and cultural experts, or access a glossary and Web site links. Students conclude the module by again taking the MCQ test. A final screen compares their pre- and post-MCQ test responses and shows best answers, allowing them to assess their learning. The learners also complete a survey, providing personal cultural information and feedback on the module. All 160 first-year medical students completed the module and evaluated its effectiveness this year. On average, students

  10. Improving self-regulated learning junior high school students through computer-based learning

    Science.gov (United States)

    Nurjanah; Dahlan, J. A.

    2018-05-01

    This study is back grounded by the importance of self-regulated learning as an affective aspect that determines the success of students in learning mathematics. The purpose of this research is to see how the improvement of junior high school students' self-regulated learning through computer based learning is reviewed in whole and school level. This research used a quasi-experimental research method. This is because individual sample subjects are not randomly selected. The research design used is Pretest-and-Posttest Control Group Design. Subjects in this study were students of grade VIII junior high school in Bandung taken from high school (A) and middle school (B). The results of this study showed that the increase of the students' self-regulated learning who obtain learning with computer-based learning is higher than students who obtain conventional learning. School-level factors have a significant effect on increasing of the students' self-regulated learning.

  11. Interactive lesion segmentation with shape priors from offline and online learning.

    Science.gov (United States)

    Shepherd, Tony; Prince, Simon J D; Alexander, Daniel C

    2012-09-01

    In medical image segmentation, tumors and other lesions demand the highest levels of accuracy but still call for the highest levels of manual delineation. One factor holding back automatic segmentation is the exemption of pathological regions from shape modelling techniques that rely on high-level shape information not offered by lesions. This paper introduces two new statistical shape models (SSMs) that combine radial shape parameterization with machine learning techniques from the field of nonlinear time series analysis. We then develop two dynamic contour models (DCMs) using the new SSMs as shape priors for tumor and lesion segmentation. From training data, the SSMs learn the lower level shape information of boundary fluctuations, which we prove to be nevertheless highly discriminant. One of the new DCMs also uses online learning to refine the shape prior for the lesion of interest based on user interactions. Classification experiments reveal superior sensitivity and specificity of the new shape priors over those previously used to constrain DCMs. User trials with the new interactive algorithms show that the shape priors are directly responsible for improvements in accuracy and reductions in user demand.

  12. Learning as Longitudinal Interactional Change: From "Other"-Repair to "Self"-Repair in Physiotherapy Treatment

    Science.gov (United States)

    Martin, Cathrin; Sahlstrom, Fritjof

    2010-01-01

    The aims of this article are to address how learning is constituted and can be studied as a phenomenon in interaction and to discuss how teaching and learning are related. Theoretically, the article argues for and discusses constraints and affordances for relating sociocultural understandings of learning as changing participation to "conversation…

  13. A Survey of Educational Games as Interaction Design Tools for Affective Learning: Thematic Analysis Taxonomy

    Science.gov (United States)

    Yusoff, Zarwina; Kamsin, Amirrudin; Shamshirband, Shahaboddin; Chronopoulos, Anthony T.

    2018-01-01

    A Computer game is the new platform in generating learning experiences for educational purposes. There are many educational games that have been used as an interaction design tool in a learning environment to enhance students learning outcomes. However, research also claims that playing video games can have a negative impact on student behavior,…

  14. Exploring the Interaction of Implicit and Explicit Processes to Facilitate Individual Skill Learning

    National Research Council Canada - National Science Library

    Sun, Ron; Mathews, Robert C

    2005-01-01

    .... It helps us to explain (and eventually to predict) training and learning processes. The results of the experiments support the theory of the interactions of implicit and explicit learning processes during skill acquisition. The outcomes (data, models, and theories) provide a more detailed, clearer and more comprehensive perspective on skill learning.

  15. Interaction between Gaming and Multistage Guiding Strategies on Students' Field Trip Mobile Learning Performance and Motivation

    Science.gov (United States)

    Chen, Chih-Hung; Liu, Guan-Zhi; Hwang, Gwo-Jen

    2016-01-01

    In this study, an integrated gaming and multistage guiding approach was proposed for conducting in-field mobile learning activities. A mobile learning system was developed based on the proposed approach. To investigate the interaction between the gaming and guiding strategies on students' learning performance and motivation, a 2 × 2 experiment was…

  16. Online Interaction Quality among Adult Learners: The Role of Sense of Belonging and Perceived Learning Benefits

    Science.gov (United States)

    Diep, Nguyet A.; Cocquyt, Celine; Zhu, Chang; Vanwing, Tom

    2017-01-01

    The present study employs social cognitive theory (SCT) and social capital as the guiding frameworks to explain online interaction quality among learners in a blended learning program (N = 179). Capturing performance expectancy by perceived learning benefits and online interaction quality with nuanced cognitive measures, the study aims to validate…

  17. SciEthics Interactive: Science and Ethics Learning in a Virtual Environment

    Science.gov (United States)

    Nadolny, Larysa; Woolfrey, Joan; Pierlott, Matthew; Kahn, Seth

    2013-01-01

    Learning in immersive 3D environments allows students to collaborate, build, and interact with difficult course concepts. This case study examines the design and development of the TransGen Island within the SciEthics Interactive project, a National Science Foundation-funded, 3D virtual world emphasizing learning science content in the context of…

  18. Students' Collective Knowledge Construction in the Virtual Learning Environment ""ToLigado"--Your School Interactive Newspaper"

    Science.gov (United States)

    Passarelli, Brasilina

    2008-01-01

    Introduction: The ToLigado Project--Your School Interactive Newspaper is an interactive virtual learning environment conceived, developed, implemented and supported by researchers at the School of the Future Research Laboratory of the University of Sao Paulo, Brazil. Method: This virtual learning environment aims to motivate trans-disciplinary…

  19. Sectoral patterns of interactive learning : an empirical exploration using an extended resource based model

    NARCIS (Netherlands)

    Meeus, M.T.H.; Oerlemans, L.A.G.; Hage, J.

    1999-01-01

    This paper pursues the development of a theoretical framework that explains interactive learning between innovating firms and external actors in the knowledge infrastructure and the production chain. The research question is: what kinds of factors explain interactive learning of innovating firms

  20. Sectoral patterns of interactive learning : an empirical exploration of a case in a Dutch region

    NARCIS (Netherlands)

    Meeus, M.T.H.; Oerlemans, L.A.G.; Hage, J.

    2001-01-01

    This paper pursues the development of a theoretical framework that explains interactive learning between innovator firms and external actors in both the knowledge infrastructure and the production chain. The research question is: What kinds of factors explain the interactive learning of innovator

  1. TF.Learn: TensorFlow's High-level Module for Distributed Machine Learning

    OpenAIRE

    Tang, Yuan

    2016-01-01

    TF.Learn is a high-level Python module for distributed machine learning inside TensorFlow. It provides an easy-to-use Scikit-learn style interface to simplify the process of creating, configuring, training, evaluating, and experimenting a machine learning model. TF.Learn integrates a wide range of state-of-art machine learning algorithms built on top of TensorFlow's low level APIs for small to large-scale supervised and unsupervised problems. This module focuses on bringing machine learning t...

  2. A Learning and Interaction design framework, from a study on formulating principles for the design of engaging music learning games

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke; Ørngreen, Rikke

    2012-01-01

    Based on a preliminary action research study investigating the design of digital music games and years of experiences from interaction design processes of learning resources, this extended abstract presents a framework that mixes designs for learning principles and game design with a process view...... using a simple interaction design lifecycle. Though the first outset was to design engaging music games, the resulting framework has a more generic character....

  3. The Role of Interactional Quality in Learning from Touch Screens during Infancy: Context Matters

    OpenAIRE

    Zack, Elizabeth; Barr, Rachel

    2016-01-01

    Interactional quality has been shown to enhance learning during book reading and play, but has not been examined during touch screen use. Learning to apply knowledge from a touch screen is complex for infants because it involves transfer of learning between a 2-dimensional (2D) screen and 3-dimensional (3D) object in the physical world. This study uses a touch screen procedure to examine interactional quality measured via maternal structuring, diversity of maternal language, and dyadic emot...

  4. Design of an Effective WSN-Based Interactive u-Learning Model

    OpenAIRE

    Kim, Hye-jin; Caytiles, Ronnie D.; Kim, Tai-hoon

    2012-01-01

    Wireless sensor networks include a wide range of potential applications to improve the quality of teaching and learning in a ubiquitous environment. WSNs become an evolving technology that acts as the ultimate interface between the learners and the context, enhancing the interactivity and improving the acquisition or collection of learner's contextual information in ubiquitous learning. This paper presents a model of an effective and interactive ubiquitous learning environment system based on...

  5. An Attentional Goldilocks Effect: An Optimal Amount of Social Interactivity Promotes Word Learning from Video

    OpenAIRE

    Nussenbaum, Kate; Amso, Dima

    2015-01-01

    Television can be a powerful education tool; however, content-makers must understand the factors that engage attention and promote learning from screen media. Prior research suggests that social engagement is critical for learning and that interactivity may enhance the educational quality of children’s media. The present study examined the effects of increasing the social interactivity of television on children’s visual attention and word learning. Three- to 5-year-old (MAge = 4;5 years, SD =...

  6. The Interaction Model in iLearning Environments and its Use in the Smart Lab Concept

    Directory of Open Access Journals (Sweden)

    Yuliya Lyalina

    2011-11-01

    Full Text Available This paper identifies and discusses current trends and challenges, offers an overview of state-of-the-art technologies in the development of remote and smart laboratories, and introduces the iLearning interaction model. The use of the model allows reconstructing already- existing iLearning environments. The smart lab model is described for face-to-face, Mobile and Blended Learning. As a result, this allows offering new information technology that organizes the educational process according to learning type (face-to-face, hands-on learning, Life Long Learning, E-Learning, M-Learning, Blended learning, Game-based learning, etc.. The remote access Architecture and Interface for the multifunctional Smart Lab will be developed.

  7. Analysis of Learning Tools in the study of Developmental of Interactive Multimedia Based Physic Learning Charged in Problem Solving

    Science.gov (United States)

    Manurung, Sondang; Demonta Pangabean, Deo

    2017-05-01

    The main purpose of this study is to produce needs analysis, literature review, and learning tools in the study of developmental of interactive multimedia based physic learning charged in problem solving to improve thinking ability of physic prospective student. The first-year result of the study is: result of the draft based on a needs analysis of the facts on the ground, the conditions of existing learning and literature studies. Following the design of devices and instruments performed as well the development of media. Result of the second study is physics learning device -based interactive multimedia charged problem solving in the form of textbooks and scientific publications. Previous learning models tested in a limited sample, then in the evaluation and repair. Besides, the product of research has an economic value on the grounds: (1) a virtual laboratory to offer this research provides a solution purchases physics laboratory equipment is expensive; (2) address the shortage of teachers of physics in remote areas as a learning tool can be accessed offline and online; (3). reducing material or consumables as tutorials can be done online; Targeted research is the first year: i.e story board learning physics that have been scanned in a web form CD (compact disk) and the interactive multimedia of gas Kinetic Theory concept. This draft is based on a needs analysis of the facts on the ground, the existing learning conditions, and literature studies. Previous learning models tested in a limited sample, then in the evaluation and repair.

  8. Distributed interactive virtual environments for collaborative experiential learning and training independent of distance over Internet2.

    Science.gov (United States)

    Alverson, Dale C; Saiki, Stanley M; Jacobs, Joshua; Saland, Linda; Keep, Marcus F; Norenberg, Jeffrey; Baker, Rex; Nakatsu, Curtis; Kalishman, Summers; Lindberg, Marlene; Wax, Diane; Mowafi, Moad; Summers, Kenneth L; Holten, James R; Greenfield, John A; Aalseth, Edward; Nickles, David; Sherstyuk, Andrei; Haines, Karen; Caudell, Thomas P

    2004-01-01

    Medical knowledge and skills essential for tomorrow's healthcare professionals continue to change faster than ever before creating new demands in medical education. Project TOUCH (Telehealth Outreach for Unified Community Health) has been developing methods to enhance learning by coupling innovations in medical education with advanced technology in high performance computing and next generation Internet2 embedded in virtual reality environments (VRE), artificial intelligence and experiential active learning. Simulations have been used in education and training to allow learners to make mistakes safely in lieu of real-life situations, learn from those mistakes and ultimately improve performance by subsequent avoidance of those mistakes. Distributed virtual interactive environments are used over distance to enable learning and participation in dynamic, problem-based, clinical, artificial intelligence rules-based, virtual simulations. The virtual reality patient is programmed to dynamically change over time and respond to the manipulations by the learner. Participants are fully immersed within the VRE platform using a head-mounted display and tracker system. Navigation, locomotion and handling of objects are accomplished using a joy-wand. Distribution is managed via the Internet2 Access Grid using point-to-point or multi-casting connectivity through which the participants can interact. Medical students in Hawaii and New Mexico (NM) participated collaboratively in problem solving and managing of a simulated patient with a closed head injury in VRE; dividing tasks, handing off objects, and functioning as a team. Students stated that opportunities to make mistakes and repeat actions in the VRE were extremely helpful in learning specific principles. VRE created higher performance expectations and some anxiety among VRE users. VRE orientation was adequate but students needed time to adapt and practice in order to improve efficiency. This was also demonstrated successfully

  9. Interactive Board with Technology of Bluetooth Data Sending Through Tablet for Learning and Teaching

    Directory of Open Access Journals (Sweden)

    Chonlatee Photong

    2017-06-01

    Full Text Available Interactive boards are the boards that can be written, presented or showed multimedia materials; thus, They become the most famous devices for modern learning and teaching. However, interactive boards currently sold in marketplace are expensive, large size and heavy, which are inconvenient to be carried-away. This paper presented an interactive board that utilizes technology of bluetooth data sending through a tablet. The paper presented the details of the board and satisfaction results of using the board from 253 sampling students and staff of Mahasarakham University. The research results showed that the constructed board had small size and light-weight, which would be convenient to be carried-away. The cost of the board was approximately 3-8 times less than the conventional boards. In addition, the board could be operated in the large area covering the area with estimated radius of 13 meters. The satisfaction of using the board from questionnaires showed that the constructed board was useful and should be used for learning and teaching, 94.1% of correspondents were highly and very highly statified of using the board, 89.3% of correspondents agreed that the board was suitable equipment in smart classroom and 88.4% of correspondents felt excited and very excited when using the board while 83.0% of correspondents have never seen this kind of innovation for education before.

  10. Active Learning for Autonomous Intelligent Agents: Exploration, Curiosity, and Interaction

    OpenAIRE

    Lopes, Manuel; Montesano, Luis

    2014-01-01

    In this survey we present different approaches that allow an intelligent agent to explore autonomous its environment to gather information and learn multiple tasks. Different communities proposed different solutions, that are in many cases, similar and/or complementary. These solutions include active learning, exploration/exploitation, online-learning and social learning. The common aspect of all these approaches is that it is the agent to selects and decides what information to gather next. ...

  11. Dispositional optimism and perceived risk interact to predict intentions to learn genome sequencing results.

    Science.gov (United States)

    Taber, Jennifer M; Klein, William M P; Ferrer, Rebecca A; Lewis, Katie L; Biesecker, Leslie G; Biesecker, Barbara B

    2015-07-01

    Dispositional optimism and risk perceptions are each associated with health-related behaviors and decisions and other outcomes, but little research has examined how these constructs interact, particularly in consequential health contexts. The predictive validity of risk perceptions for health-related information seeking and intentions may be improved by examining dispositional optimism as a moderator, and by testing alternate types of risk perceptions, such as comparative and experiential risk. Participants (n = 496) had their genomes sequenced as part of a National Institutes of Health pilot cohort study (ClinSeq®). Participants completed a cross-sectional baseline survey of various types of risk perceptions and intentions to learn genome sequencing results for differing disease risks (e.g., medically actionable, nonmedically actionable, carrier status) and to use this information to change their lifestyle/health behaviors. Risk perceptions (absolute, comparative, and experiential) were largely unassociated with intentions to learn sequencing results. Dispositional optimism and comparative risk perceptions interacted, however, such that individuals higher in optimism reported greater intentions to learn all 3 types of sequencing results when comparative risk was perceived to be higher than when it was perceived to be lower. This interaction was inconsistent for experiential risk and absent for absolute risk. Independent of perceived risk, participants high in dispositional optimism reported greater interest in learning risks for nonmedically actionable disease and carrier status, and greater intentions to use genome information to change their lifestyle/health behaviors. The relationship between risk perceptions and intentions may depend on how risk perceptions are assessed and on degree of optimism. (c) 2015 APA, all rights reserved.

  12. Use of interactive live digital imaging to enhance histology learning in introductory level anatomy and physiology classes.

    Science.gov (United States)

    Higazi, Tarig B

    2011-01-01

    Histology is one of the main subjects in introductory college-level Human Anatomy and Physiology classes. Institutions are moving toward the replacement of traditional microscope-based histology learning with virtual microscopy learning amid concerns of losing the valuable learning experience of traditional microscopy. This study used live digital imaging (LDI) of microscopic slides on a SMART board to enhance Histology laboratory teaching. The interactive LDI system consists of a digital camera-equipped microscope that projects live images on a wall-mounted SMART board via a computer. This set-up allows real-time illustration of microscopic slides with highlighted key structural components, as well as the ability to provide the students with relevant study and review material. The impact of interactive LDI on student learning of Histology was then measured based on performance in subsequent laboratory tests before and after its implementation. Student grades increased from a mean of 76% (70.3-82.0, 95% CI) before to 92% (88.8-95.3, 95% CI) after integration of LDI indicating highly significant (P < 0.001) enhancement in students' Histology laboratory performance. In addition, student ratings of the impact of the interactive LDI on their Histology learning were strongly positive, suggesting that a majority of students who valued this learning approach also improved learning and understanding of the material as a result. The interactive LDI technique is an innovative, highly efficient and affordable tool to enhance student Histology learning, which is likely to expand knowledge and student perception of the subject and in turn enrich future science careers. Copyright © 2011 American Association of Anatomists.

  13. Effects of Prior Knowledge in Mathematics on Learner-Interface Interactions in a Learning-by-Teaching Intelligent Tutoring System

    Science.gov (United States)

    Bringula, Rex P.; Basa, Roselle S.; Dela Cruz, Cecilio; Rodrigo, Ma. Mercedes T.

    2016-01-01

    This study attempted to determine the influence of prior knowledge in mathematics of students on learner-interface interactions in a learning-by-teaching intelligent tutoring system. One hundred thirty-nine high school students answered a pretest (i.e., the prior knowledge in mathematics) and a posttest. In between the pretest and posttest, they…

  14. Blended Learning and Student Engagement in an Urban High School

    Science.gov (United States)

    Johnson, Courtney

    2017-01-01

    A metropolitan school district wanted to understand blended learning as it existed in one of their high schools. Blended learning had been school-wide for four years, and district administrators wanted to know how students, teachers, and school administrators perceived blended learning and its impact on student engagement. This was a…

  15. Statistical learning methods in high-energy and astrophysics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J. [Forschungszentrum Juelich GmbH, Zentrallabor fuer Elektronik, 52425 Juelich (Germany) and Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: zimmerm@mppmu.mpg.de; Kiesling, C. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)

    2004-11-21

    We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application.

  16. Learning Disabilities and Achieving High-Quality Education Standards

    Science.gov (United States)

    Gartland, Debi; Strosnider, Roberta

    2017-01-01

    This is an official document of the National Joint Committee on Learning Disabilities (NJCLD), of which Council for Learning Disabilities is a long-standing, active member. With this position paper, NJCLD advocates for the implementation of high-quality education standards (HQES) for students with learning disabilities (LD) and outlines the…

  17. Statistical learning methods in high-energy and astrophysics analysis

    International Nuclear Information System (INIS)

    Zimmermann, J.; Kiesling, C.

    2004-01-01

    We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application

  18. High-Power, High-Intensity Laser Propagation and Interactions

    Science.gov (United States)

    2014-03-10

    intensity as the weighting function. The full refractive index associated with the laser plasma interaction having a parabolic density variation ...radiation in turn enhances the electron density wave further amplifying the radiation. Considering spatial variations in the z direction only the FEL...effL/ at the entrance to the wiggler where effL is the effective interaction length. This requirement can be expressed by the following inequality

  19. A Studi on High Plant Systems Course with Active Learning in Higher Education Through Outdoor Learning to Increase Student Learning Activities

    OpenAIRE

    Nur Rokhimah Hanik, Anwari Adi Nugroho

    2015-01-01

    Biology learning especially high plant system courses needs to be applied to active learning centered on the student (Active Learning In Higher Education) to enhance the students' learning activities so that the quality of learning for the better. Outdoor Learning is one of the active learning invites students to learn outside of the classroom by exploring the surrounding environment. This research aims to improve the students' learning activities in the course of high plant systems through t...

  20. Help me if I can't: Social interaction effects in adult contextual word learning.

    Science.gov (United States)

    Verga, Laura; Kotz, Sonja A

    2017-11-01

    A major challenge in second language acquisition is to build up new vocabulary. How is it possible to identify the meaning of a new word among several possible referents? Adult learners typically use contextual information, which reduces the number of possible referents a new word can have. Alternatively, a social partner may facilitate word learning by directing the learner's attention toward the correct new word meaning. While much is known about the role of this form of 'joint attention' in first language acquisition, little is known about its efficacy in second language acquisition. Consequently, we introduce and validate a novel visual word learning game to evaluate how joint attention affects the contextual learning of new words in a second language. Adult learners either acquired new words in a constant or variable sentence context by playing the game with a knowledgeable partner, or by playing the game alone on a computer. Results clearly show that participants who learned new words in social interaction (i) are faster in identifying a correct new word referent in variable sentence contexts, and (ii) temporally coordinate their behavior with a social partner. Testing the learned words in a post-learning recall or recognition task showed that participants, who learned interactively, better recognized words originally learned in a variable context. While this result may suggest that interactive learning facilitates the allocation of attention to a target referent, the differences in the performance during recognition and recall call for further studies investigating the effect of social interaction on learning performance. In summary, we provide first evidence on the role joint attention in second language learning. Furthermore, the new interactive learning game offers itself to further testing in complex neuroimaging research, where the lack of appropriate experimental set-ups has so far limited the investigation of the neural basis of adult word learning in

  1. iCBLS: An interactive case-based learning system for medical education.

    Science.gov (United States)

    Ali, Maqbool; Han, Soyeon Caren; Bilal, Hafiz Syed Muhammad; Lee, Sungyoung; Kang, Matthew Jee Yun; Kang, Byeong Ho; Razzaq, Muhammad Asif; Amin, Muhammad Bilal

    2018-01-01

    Medical students should be able to actively apply clinical reasoning skills to further their interpretative, diagnostic, and treatment skills in a non-obtrusive and scalable way. Case-Based Learning (CBL) approach has been receiving attention in medical education as it is a student-centered teaching methodology that exposes students to real-world scenarios that need to be solved using their reasoning skills and existing theoretical knowledge. In this paper, we propose an interactive CBL System, called iCBLS, which supports the development of collaborative clinical reasoning skills for medical students in an online environment. The iCBLS consists of three modules: (i) system administration (SA), (ii) clinical case creation (CCC) with an innovative semi-automatic approach, and (iii) case formulation (CF) through intervention of medical students' and teachers' knowledge. Two evaluations under the umbrella of the context/input/process/product (CIPP) model have been performed with a Glycemia study. The first focused on the system satisfaction, evaluated by 54 students. The latter aimed to evaluate the system effectiveness, simulated by 155 students. The results show a high success rate of 70% for students' interaction, 76.4% for group learning, 72.8% for solo learning, and 74.6% for improved clinical skills. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Children Can Learn New Facts Equally Well From Interactive Media Versus Face to Face Instruction.

    Science.gov (United States)

    Kwok, Kristine; Ghrear, Siba; Li, Vivian; Haddock, Taeh; Coleman, Patrick; Birch, Susan A J

    2016-01-01

    Today's children have more opportunities than ever before to learn from interactive technology, yet experimental research assessing the efficacy of children's learning from interactive media in comparison to traditional learning approaches is still quite scarce. Moreover, little work has examined the efficacy of using touch-screen devices for research purposes. The current study compared children's rate of learning factual information about animals during a face-to-face instruction from an adult female researcher versus an analogous instruction from an interactive device. Eighty-six children ages 4 through 8 years (64% male) completed the learning task in either the Face-to-Face condition ( n = 43) or the Interactive Media condition ( n = 43). In the Learning Phase of the experiment, which was presented as a game, children were taught novel facts about animals without being told that their memory of the facts would be tested. The facts were taught to the children either by an adult female researcher (Face-to-Face condition) or from a pre-recorded female voice represented by a cartoon Llama (Interactive Media condition). In the Testing Phase of the experiment that immediately followed, children's memory for the taught facts was tested using a 4-option forced-choice paradigm. Children's rate of learning was significantly above chance in both conditions and a comparison of the rates of learning across the two conditions revealed no significant differences. Learning significantly improved from age 4 to age 8, however, even the preschool-aged children performed significantly above chance, and their performance did not differ between conditions. These results suggest that, interactive media can be equally as effective as one-on-one instruction, at least under certain conditions. Moreover, these results offer support for the validity of using interactive technology to collect data for research purposes. We discuss the implications of these results for children's learning

  3. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction

    Science.gov (United States)

    de Greeff, Joachim; Belpaeme, Tony

    2015-01-01

    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children’s social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a “mental model” of the robot, tailoring the tutoring to the robot’s performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot’s bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance. PMID:26422143

  4. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.

    Science.gov (United States)

    de Greeff, Joachim; Belpaeme, Tony

    2015-01-01

    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.

  5. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.

    Directory of Open Access Journals (Sweden)

    Joachim de Greeff

    Full Text Available Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference; the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.

  6. 高中職學生問題導向兩性關係與溝通網路學習成效之研究 A Study of the Effectiveness of Problem-based Gender Relationship and Communication by Applying Interactive E-learning to Assist High School and Vocational High School Students

    Directory of Open Access Journals (Sweden)

    張菀珍 Wan-Jen Chang

    2009-12-01

    Full Text Available 依據相關研究發現,「兩性關係與溝通」是高中職學生最迫切需要的學習主題。本研究將應用「問題導向兩性關係與溝通學習網站」及「融入式問題導向兩性關係與溝通實驗教材」,以一所高中和高職共133 位學生,分為「實驗組」及「對照組」進行準實驗研究,並採用問卷調查、觀察日誌及焦點團體等方式,蒐集分析量化及質性資料。研究發現:一、問題導向兩性關係與溝通學習實驗,不論在高中和高職均有顯著的學習成效;二、高中學生的問題導向「面對面學習」組優於「網路學習」組的學習成效;三、高職學生的問題導向「網路學習」組優於「面對面學習」組的學習成效;四、未來可增加多元化的討論議題、影音教材,並提供線上心理測驗與個別諮詢,以提升學習成效。 The problems of campus violence such as acquaintanceship in Internet, suicide and sexual harassment occur very often. Related research results showed that infusing the Gender Relationship and Communication into the web-based learning is urgent need for high school and vocational high school students. This study uses “the e-learning web-side of problem-based Gender Relationship and Communication” and “involving problem-based Gender Relationship and Communication e-learning teaching materials” to instruct students. The purpose of this study was to explore the learning effect and investigate the influenced problems. A quasi-experimental design was utilized and purposive sampling was conducted at a high school and a vocational high school in Taiwan. One hundred thirty three eleven grade students were assigned into experimental and control group in each school. In this study, quantitative and qualitative research methods were used, and they included Survey, Observation records analyzing and focus group. The findings of this study including: (1 Using

  7. Less is more: development and evaluation of an interactive e-atlas to support anatomy learning.

    Science.gov (United States)

    Guy, Richard; Pisani, Heather R; Rich, Peter; Leahy, Cathy; Mandarano, Giovanni; Molyneux, Tom

    2015-01-01

    An Interactive electronic Atlas (IeA) was developed to assist first-year nursing students with interpretation of laboratory-based prosected cadaveric material. It was designed, using pedagogically sound principles, as a student-centered resource accessible to students from a wide range of learning backgrounds. It consisted of a highly simplified interactive interface limited to essential anatomical structures and was intended for use in a blended learning situation. The IeA's nine modules mirrored the body systems covered in a Nursing Biosciences course, with each module comprising a maximum of 10 pages using the same template: an image displaying a cadaveric specimen and, in most cases, a corresponding anatomical model with navigation panes (menus) on one side. Cursor movement over the image or clicking the menu highlighted the structure with a transparent overlay and revealed a succinct functional description. The atlas was complemented by a multiple-choice database of nearly 1,000 questions using IeA images. Students' perceptions of usability and utility were measured by survey (n = 115; 57% of the class) revealing mean access of 2.3 times per week during the 12-week semester and a median time of three hours of use. Ratings for usability and utility were high, with means ranging between 4.24 and 4.54 (five-point Likert scale; 5 = strongly agree). Written responses told a similar story for both usability and utility. The role of providing basic computer-assisted learning support for a large first-year class is discussed in the context of current research into student-centered resources and blended learning in human anatomy. © 2014 American Association of Anatomists.

  8. The combination of appetitive and aversive reinforcers and the nature of their interaction during auditory learning.

    Science.gov (United States)

    Ilango, A; Wetzel, W; Scheich, H; Ohl, F W

    2010-03-31

    Learned changes in behavior can be elicited by either appetitive or aversive reinforcers. It is, however, not clear whether the two types of motivation, (approaching appetitive stimuli and avoiding aversive stimuli) drive learning in the same or different ways, nor is their interaction understood in situations where the two types are combined in a single experiment. To investigate this question we have developed a novel learning paradigm for Mongolian gerbils, which not only allows rewards and punishments to be presented in isolation or in combination with each other, but also can use these opposite reinforcers to drive the same learned behavior. Specifically, we studied learning of tone-conditioned hurdle crossing in a shuttle box driven by either an appetitive reinforcer (brain stimulation reward) or an aversive reinforcer (electrical footshock), or by a combination of both. Combination of the two reinforcers potentiated speed of acquisition, led to maximum possible performance, and delayed extinction as compared to either reinforcer alone. Additional experiments, using partial reinforcement protocols and experiments in which one of the reinforcers was omitted after the animals had been previously trained with the combination of both reinforcers, indicated that appetitive and aversive reinforcers operated together but acted in different ways: in this particular experimental context, punishment appeared to be more effective for initial acquisition and reward more effective to maintain a high level of conditioned responses (CRs). The results imply that learning mechanisms in problem solving were maximally effective when the initial punishment of mistakes was combined with the subsequent rewarding of correct performance. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. An interactive E-Learning Portal in Pediatric Endocrinology: Practical Experience

    Directory of Open Access Journals (Sweden)

    Stenvert L. S. Drop

    2013-10-01

    Full Text Available Based on educational considerations, the European Society for Paediatric Endocrinology (ESPE e-learning portal has been developed, providing an interactive learning environment for up-to-date information in pediatric endocrinology. From March 2011 to January 2012, five small-scale pilot studies were completed to assess the usefulness of the structure and content by senior experts, fellows, residents and medical students. Altogether, 8 cases and 4 chapters were studied by a total of 71 individuals: 18 senior experts, 21 fellows, 10 medical students, 9 regional pediatricians and 13 residents, resulting in a total of 127 evaluations. Participants considered the portal content interesting and appreciated the way of learning compared to traditional learning from literature and textbooks. Special attention was paid to assess the personalized feedback given by experts to fellows and residents who completed the portal. Feedback from experts included both medical understanding and communication skills demonstrated by fellows and residents. Users highly appreciated the feedback of the medical experts, who brought perspectives from another clinic. This portal also offers educational opportunities for medical students and regional pediatricians and can be used to develop various CanMEDS competencies, e.g., medical expert, health advocate, and scholar.

  10. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.

    Science.gov (United States)

    Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O

    2016-03-01

    An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.

  11. Medical students' learning orientation regarding interracial interactions affects preparedness to care for minority patients: a report from Medical Student CHANGES.

    Science.gov (United States)

    Burgess, Diana J; Burke, Sara E; Cunningham, Brooke A; Dovidio, John F; Hardeman, Rachel R; Hou, Yuefeng; Nelson, David B; Perry, Sylvia P; Phelan, Sean M; Yeazel, Mark W; van Ryn, Michelle

    2016-09-29

    There is a paucity of evidence on how to train medical students to provide equitable, high quality care to racial and ethnic minority patients. We test the hypothesis that medical schools' ability to foster a learning orientation toward interracial interactions (i.e., that students can improve their ability to successfully interact with people of another race and learn from their mistakes), will contribute to white medical students' readiness to care for racial minority patients. We then test the hypothesis that white medical students who perceive their medical school environment as supporting a learning orientation will benefit more from disparities training. Prospective observational study involving web-based questionnaires administered during first (2010) and last (2014) semesters of medical school to 2394 white medical students from a stratified, random sample of 49 U.S. medical schools. Analysis used data from students' last semester to build mixed effects hierarchical models in order to assess the effects of medical school interracial learning orientation, calculated at both the school and individual (student) level, on key dependent measures. School differences in learning orientation explained part of the school difference in readiness to care for minority patients. However, individual differences in learning orientation accounted for individual differences in readiness, even after controlling for school-level learning orientation. Individual differences in learning orientation significantly moderated the effect of disparities training on white students' readiness to care for minority patients. Specifically, white medical students who perceived a high level of learning orientation in their medical schools regarding interracial interactions benefited more from training to address disparities. Coursework aimed at reducing healthcare disparities and improving the care of racial minority patients was only effective when white medical students perceived their

  12. Evaluating Types of Students' Interactions in a Wiki-Based Collaborative Learning Project

    Science.gov (United States)

    Prokofieva, Maria

    2013-01-01

    Wiki technology has been promoted as a collaborative software platform. This study investigates interactions that occur in a wiki-based collaborative learning project. The study draws on interaction literature and investigates the types of interactions with which students are engaged in wiki-based group projects, clusters that reflect online…

  13. Development of a visual tool to analyze interactions in forums in an e-learning environment

    Directory of Open Access Journals (Sweden)

    Cláudio Filipe Tereso

    2016-12-01

    Full Text Available This article presents VAFAE – Forum Access Visualization on a Distance Learning Environment, a web tool that visually maps Universidade Aberta’s (UAb students’ interaction with a course available on the e-learning platform. Raw data is extracted from the log files that are then transformed to obtain the necessary format. Next, different visualization techniques are applied with the aim of improving and streamlining the underlying information. In a more specific way, VAFAE aims at helping teachers to better understand the level and quality of the interaction of the students with the modules of the learning units in UAb’s distance learning environment.

  14. Skilled interaction among professional carers in special accommodations for adult people with learning disabilities.

    Science.gov (United States)

    Antonsson, H; Aström, S; Lundström, M; Graneheim, U H

    2013-09-01

    Communicative difficulties affect interactions between people with learning disabilities and their carers. Despite such difficulties, however, some carers seem to interact successfully with people who have limited ability to communicate verbally and exhibit challenging behaviour. This study aims to illuminate skilled interaction among carers working in special accommodations for people with learning disabilities. Interactions between 16 caregivers and 11 residents with learning disabilities were recorded on video. Verbal and non-verbal interaction skills among the carers were identified. Four caring situations with people with learning disabilities were chosen to illuminate skilled interaction. The transcribed text was subjected to qualitative content analysis and core stories were created. The results show that skilled interaction between the carers and the people with learning disabilities is based upon being confirming, sharing daily life experience, giving time and space, and using congruent and distinct language. In this paper we present examples that offer concrete suggestions of how to promote successful interaction and create meaning in the shared day-to-day life in special accommodations for people with learning disabilities. © 2012 John Wiley & Sons Ltd.

  15. A learning analytics approach to correlate the academic achievements of students with interaction data from an educational simulator

    NARCIS (Netherlands)

    Vahdat, M.; Oneto, L.; Anguita, D.; Funk, M.; Rauterberg, M.; Conole, G.; Klobucar, T.; Rensing, C.; Konert, J.; Lavoue, E.

    2015-01-01

    This paper presents a Learning Analytics approach for understanding the learning behavior of students while interacting with Technology Enhanced Learning tools. In this work we show that it is possible to gain insight into the learning processes of students from their interaction data. We base our

  16. Learning Style Preferences of Iranian EFL High School Students

    Directory of Open Access Journals (Sweden)

    Reza Vaseghi

    2013-05-01

    Full Text Available The current study examined the learning style preferences of 75 Iranian students at Marefat high school in Kuala Lumpur of which, 41 are females and 34 are males. As there are very few researches in which the learning style preferences of Iranian high school students investigated, this study attempts to fulfil this gap. To this end, in order to identify the students’ preferred learning styles (Visual, Auditory, Kinesthetic, Tactile, Group, and Individual Reid’s Perceptual Learning Style Preferences Questionnaire was used. Results indicated that the six learning style preferences considered in the questionnaire were positively preferred. Overall, kinesthetic and tactile learning were major learning styles. Auditory, group, visual, and individual were minor.

  17. Anisotropic interaction rules in circular motions of pigeon flocks: An empirical study based on sparse Bayesian learning

    Science.gov (United States)

    Chen, Duxin; Xu, Bowen; Zhu, Tao; Zhou, Tao; Zhang, Hai-Tao

    2017-08-01

    Coordination shall be deemed to the result of interindividual interaction among natural gregarious animal groups. However, revealing the underlying interaction rules and decision-making strategies governing highly coordinated motion in bird flocks is still a long-standing challenge. Based on analysis of high spatial-temporal resolution GPS data of three pigeon flocks, we extract the hidden interaction principle by using a newly emerging machine learning method, namely the sparse Bayesian learning. It is observed that the interaction probability has an inflection point at pairwise distance of 3-4 m closer than the average maximum interindividual distance, after which it decays strictly with rising pairwise metric distances. Significantly, the density of spatial neighbor distribution is strongly anisotropic, with an evident lack of interactions along individual velocity. Thus, it is found that in small-sized bird flocks, individuals reciprocally cooperate with a variational number of neighbors in metric space and tend to interact with closer time-varying neighbors, rather than interacting with a fixed number of topological ones. Finally, extensive numerical investigation is conducted to verify both the revealed interaction and decision-making principle during circular flights of pigeon flocks.

  18. FUNDAMENTALIZATION OF ICT LEARNING IN MODERN HIGH TECH ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    M. P. Shyshkina

    2013-03-01

    Full Text Available The article outlines the features of the process of fundamentalization of ICT learning, educational background to ensure it in high school. The concept of fundamental knowledge and its role in training of a specialist is described. The problems of access to qualitative education, particularly to electronic learning resources in modern high-tech environment are revealed. The role of computer mathematics as a tool of ICT learning fundamentalization is emphasized.

  19. [Study of high energy nucleus-nucleus interactions with a Magnetic-Interferometric-Emulsion-Chamber

    International Nuclear Information System (INIS)

    Takahashi, Yoshiyuki.

    1990-01-01

    The Nuclear Physics group at the University of Alabama in Huntsville (UAH) has been analyzing 200 GeV/n S + Pb collision events with a Magnetic-Interactive-Emulsion-Chamber (MAGIC). The objectives of the research are to learn the nature of nuclear matter at high density of particles and to develop an all-particle tracking system for very high particle densities. To advance the study further, the detector capability has been improved so as to allow the best utilization of all-particle measurements. A design study for Pb + Pb interactions at 160 GeV/n was made for planned experiments in 1993

  20. An Attentional Goldilocks Effect: An Optimal Amount of Social Interactivity Promotes Word Learning from Video.

    Science.gov (United States)

    Nussenbaum, Kate; Amso, Dima

    2016-01-01

    Television can be a powerful education tool; however, content-makers must understand the factors that engage attention and promote learning from screen media. Prior research suggests that social engagement is critical for learning and that interactivity may enhance the educational quality of children's media. The present study examined the effects of increasing the social interactivity of television on children's visual attention and word learning. Three- to 5-year-old ( M Age = 4;5 years, SD = 9 months) children completed a task in which they viewed videos of an actress teaching them the Swahili label for an on-screen image. Each child viewed these video clips in four conditions that parametrically manipulated social engagement and interactivity. We then tested whether each child had successfully learned the Swahili labels. Though 5-year-old children were able to learn words in all conditions, we found that there was an optimal level of social engagement that best supported learning for all participants, defined by engaging the child but not distracting from word labeling. Our eye-tracking data indicated that children in this condition spent more time looking at the target image and less time looking at the actress's face as compared to the most interactive condition. These findings suggest that social interactivity is critical to engaging attention and promoting learning from screen media up until a certain point, after which social stimuli may draw attention away from target images and impair children's word learning.

  1. Third-Party Social Interaction and Word Learning from Video

    Science.gov (United States)

    O'Doherty, Katherine; Troseth, Georgene L.; Shimpi, Priya M.; Goldenberg, Elizabeth; Akhtar, Nameera; Saylor, Megan M.

    2011-01-01

    In previous studies, very young children have learned words while "overhearing" a conversation, yet they have had trouble learning words from a person on video. In Study 1, 64 toddlers (mean age = 29.8 months) viewed an object-labeling demonstration in 1 of 4 conditions. In 2, the speaker (present or on video) directly addressed the child, and in…

  2. Learning to interact with a computer by gaze

    DEFF Research Database (Denmark)

    Aoki, Hirotaka; Hansen, John Paulin; Itoh, Kenji

    2008-01-01

    that inefficient eye movements was dramatically reduced after only 15 to 25 sentences of typing, equal to approximately 3-4 hours of practice. The performance data fits a general learning model based on the power law of practice. The learning model can be used to estimate further improvements in gaze typing...

  3. Foster interaction by the integration of ICT with sociocultural and constructivist learning principles

    Science.gov (United States)

    Nguyen, Nhung; Williams, P. John

    2018-01-01

    Research shows that it is challenging to introduce an interactive way of teaching and learning into Asian classrooms where Confucian philosophy has considerable influence. This study was conducted within the context of an ASEAN undergraduate physics course. A goal of the study was to use information communication technology (ICT) to integrate sociocultural and constructivist learning principles to foster interaction within the learning environment. Ninety-three students, a lecturer and a teaching assistant participated in the study. The study employed a mixed method approach, using a questionnaire and interviews with students, the lecturer and the teaching assistant to collect the data, to triangulate, complement and explain the findings. Data was also collected from different groups of people in order to investigate, compare and synthesize perspectives from each group (i.e. students, lecturer, and teaching assistant). SPSS was used to analyze quantitative data from the questionnaire, and NVivo was used to analyze qualitative data from the interviews. The findings of this study obtained from the different sources showed that the interactions within the learning environment were enhanced using this framework. Interviews with the lecturer and the teaching assistant showed that interaction was fostered, and the integration of ICT with the learning principles provided opportunities for new ways of teaching and learning. The lecturer designed learning tasks that required the participant students to search and study different learning resources, and then design group presentation on the topic of optics to explain these topics to their classmates. The lecturer also provided support and motivation for this process. In this way, the lecturer believed that he had created opportunities for the students to interact with learning resources, work in groups, discuss physics content and working processes. Data analysis of the students' interviews revealed this undergraduate ASEAN

  4. ExpandED Options: Learning beyond High School Walls

    Science.gov (United States)

    ExpandED Schools, 2014

    2014-01-01

    Through ExpandED Options by TASC, New York City high school students get academic credit for learning career-related skills that lead to paid summer jobs. Too many high school students--including those most likely to drop out--are bored or see classroom learning as irrelevant. ExpandED Options students live the connection between mastering new…

  5. Alberta High School, College Elevate Learning with Rare Joint Venture

    Science.gov (United States)

    Pearson, George

    2012-01-01

    The refusal by a group of parents in Olds, Alberta, in 2003 to accept a provincial grant to renovate their high school set in motion a remarkable collaboration that spawned an innovative learning campus for an entire community and beyond. The new Olds High School, which opened in 2010, is part of a new Community Learning Campus (CLC), a joint…

  6. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Hohman, Frederick M.; Hodas, Nathan O.; Chau, Duen Horng

    2017-05-30

    Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as “black-boxes” due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user’s data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

  7. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation.

    Science.gov (United States)

    Hohman, Fred; Hodas, Nathan; Chau, Duen Horng

    2017-05-01

    Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as "black-boxes" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

  8. High power laser-matter interaction

    CERN Document Server

    Mulser, Peter

    2010-01-01

    This book intended as a guide for scientists and students who have just discovered the field as a new and attractive area of research, and for scientists who have worked in another field and want to join now the subject of laser plasmas. In the first chapter the plasma dynamics is described phenomenologically by a two fluid model and similarity relations from dimensional analysis. Chapter 2 is devoted to plasma optics and collisional absorption in the dielectric and ballistic model. Linear resonance absorption at the plasma frequency and its mild nonlinearities as well as the self-quenching of high amplitude electron plasma waves by wave breaking are discussed in Chapter 3. With increasing laser intensity the plasma dynamics is dominated by radiation pressure, at resonance producing all kinds of parametric instabilities and out of resonance leading to density steps, self-focusing and filamentation, described in Chapters 4 and 5. A self-contained treatment of field ionization of atoms and related phenomena ar...

  9. Interactivity, Information Processing, and Learning on the World Wide Web.

    Science.gov (United States)

    Tremayne, Mark; Dunwoody, Sharon

    2001-01-01

    Examines the role of interactivity in the presentation of science news on the World Wide Web. Proposes and tests a model of interactive information processing that suggests that characteristics of users and Web sites influence interactivity, which influences knowledge acquisition. Describes use of a think-aloud method to study participants' mental…

  10. Toward accelerating landslide mapping with interactive machine learning techniques

    Science.gov (United States)

    Stumpf, André; Lachiche, Nicolas; Malet, Jean-Philippe; Kerle, Norman; Puissant, Anne

    2013-04-01

    Despite important advances in the development of more automated methods for landslide mapping from optical remote sensing images, the elaboration of inventory maps after major triggering events still remains a tedious task. Image classification with expert defined rules typically still requires significant manual labour for the elaboration and adaption of rule sets for each particular case. Machine learning algorithm, on the contrary, have the ability to learn and identify complex image patterns from labelled examples but may require relatively large amounts of training data. In order to reduce the amount of required training data active learning has evolved as key concept to guide the sampling for applications such as document classification, genetics and remote sensing. The general underlying idea of most active learning approaches is to initialize a machine learning model with a small training set, and to subsequently exploit the model state and/or the data structure to iteratively select the most valuable samples that should be labelled by the user and added in the training set. With relatively few queries and labelled samples, an active learning strategy should ideally yield at least the same accuracy than an equivalent classifier trained with many randomly selected samples. Our study was dedicated to the development of an active learning approach for landslide mapping from VHR remote sensing images with special consideration of the spatial distribution of the samples. The developed approach is a region-based query heuristic that enables to guide the user attention towards few compact spatial batches rather than distributed points resulting in time savings of 50% and more compared to standard active learning techniques. The approach was tested with multi-temporal and multi-sensor satellite images capturing recent large scale triggering events in Brazil and China and demonstrated balanced user's and producer's accuracies between 74% and 80%. The assessment also

  11. Support patient search on pathology reports with interactive online learning based data extraction.

    Science.gov (United States)

    Zheng, Shuai; Lu, James J; Appin, Christina; Brat, Daniel; Wang, Fusheng

    2015-01-01

    Structural reporting enables semantic understanding and prompt retrieval of clinical findings about patients. While synoptic pathology reporting provides templates for data entries, information in pathology reports remains primarily in narrative free text form. Extracting data of interest from narrative pathology reports could significantly improve the representation of the information and enable complex structured queries. However, manual extraction is tedious and error-prone, and automated tools are often constructed with a fixed training dataset and not easily adaptable. Our goal is to extract data from pathology reports to support advanced patient search with a highly adaptable semi-automated data extraction system, which can adjust and self-improve by learning from a user's interaction with minimal human effort. We have developed an online machine learning based information extraction system called IDEAL-X. With its graphical user interface, the system's data extraction engine automatically annotates values for users to review upon loading each report text. The system analyzes users' corrections regarding these annotations with online machine learning, and incrementally enhances and refines the learning model as reports are processed. The system also takes advantage of customized controlled vocabularies, which can be adaptively refined during the online learning process to further assist the data extraction. As the accuracy of automatic annotation improves overtime, the effort of human annotation is gradually reduced. After all reports are processed, a built-in query engine can be applied to conveniently define queries based on extracted structured data. We have evaluated the system with a dataset of anatomic pathology reports from 50 patients. Extracted data elements include demographical data, diagnosis, genetic marker, and procedure. The system achieves F-1 scores of around 95% for the majority of tests. Extracting data from pathology reports could enable

  12. Support patient search on pathology reports with interactive online learning based data extraction

    Directory of Open Access Journals (Sweden)

    Shuai Zheng

    2015-01-01

    Full Text Available Background: Structural reporting enables semantic understanding and prompt retrieval of clinical findings about patients. While synoptic pathology reporting provides templates for data entries, information in pathology reports remains primarily in narrative free text form. Extracting data of interest from narrative pathology reports could significantly improve the representation of the information and enable complex structured queries. However, manual extraction is tedious and error-prone, and automated tools are often constructed with a fixed training dataset and not easily adaptable. Our goal is to extract data from pathology reports to support advanced patient search with a highly adaptable semi-automated data extraction system, which can adjust and self-improve by learning from a user′s interaction with minimal human effort. Methods : We have developed an online machine learning based information extraction system called IDEAL-X. With its graphical user interface, the system′s data extraction engine automatically annotates values for users to review upon loading each report text. The system analyzes users′ corrections regarding these annotations with online machine learning, and incrementally enhances and refines the learning model as reports are processed. The system also takes advantage of customized controlled vocabularies, which can be adaptively refined during the online learning process to further assist the data extraction. As the accuracy of automatic annotation improves overtime, the effort of human annotation is gradually reduced. After all reports are processed, a built-in query engine can be applied to conveniently define queries based on extracted structured data. Results: We have evaluated the system with a dataset of anatomic pathology reports from 50 patients. Extracted data elements include demographical data, diagnosis, genetic marker, and procedure. The system achieves F-1 scores of around 95% for the majority of

  13. VATE: VAlidation of high TEchnology based on large database analysis by learning machine

    NARCIS (Netherlands)

    Meldolesi, E; Van Soest, J; Alitto, A R; Autorino, R; Dinapoli, N; Dekker, A; Gambacorta, M A; Gatta, R; Tagliaferri, L; Damiani, A; Valentini, V

    2014-01-01

    The interaction between implementation of new technologies and different outcomes can allow a broad range of researches to be expanded. The purpose of this paper is to introduce the VAlidation of high TEchnology based on large database analysis by learning machine (VATE) project that aims to combine

  14. Prediction of Human Drug Targets and Their Interactions Using Machine Learning Methods: Current and Future Perspectives.

    Science.gov (United States)

    Nath, Abhigyan; Kumari, Priyanka; Chaube, Radha

    2018-01-01

    Identification of drug targets and drug target interactions are important steps in the drug-discovery pipeline. Successful computational prediction methods can reduce the cost and time demanded by the experimental methods. Knowledge of putative drug targets and their interactions can be very useful for drug repurposing. Supervised machine learning methods have been very useful in drug target prediction and in prediction of drug target interactions. Here, we describe the details for developing prediction models using supervised learning techniques for human drug target prediction and their interactions.

  15. Modeling a student-classroom interaction in a tutorial-like system using learning automata.

    Science.gov (United States)

    Oommen, B John; Hashem, M Khaled

    2010-02-01

    Almost all of the learning paradigms used in machine learning, learning automata (LA), and learning theory, in general, use the philosophy of a Student (learning mechanism) attempting to learn from a teacher. This paradigm has been generalized in a myriad of ways, including the scenario when there are multiple teachers or a hierarchy of mechanisms that collectively achieve the learning. In this paper, we consider a departure from this paradigm by allowing the Student to be a member of a classroom of Students, where, for the most part, we permit each member of the classroom not only to learn from the teacher(s) but also to "extract" information from any of his fellow Students. This paper deals with issues concerning the modeling, decision-making process, and testing of such a scenario within the LA context. The main result that we show is that a weak learner can actually benefit from this capability of utilizing the information that he gets from a superior colleague-if this information transfer is done appropriately. As far as we know, the whole concept of Students learning from both a teacher and from a classroom of Students is novel and unreported in the literature. The proposed Student-classroom interaction has been tested for numerous strategies and for different environments, including the established benchmarks, and the results show that Students can improve their learning by interacting with each other. For example, for some interaction strategies, a weak Student can improve his learning by up to 73% when interacting with a classroom of Students, which includes Students of various capabilities. In these interactions, the Student does not have a priori knowledge of the identity or characteristics of the Students who offer their assistance.

  16. Students' interaction for enhancing learning motivation and learning success: findings from integrating a simulation game into a university course

    OpenAIRE

    Otto, Daniel

    2017-01-01

    In recent decades, a vast amount of literature has been published discussing the educational use of simulation games in higher education. Since their emergence in the 1960s, simulation games have had a substantial effect on the way we think about teaching and learning in higher education. One reason simulation games are regarded as superior to traditional teaching is that they encourage students to interact and collaborate. Simulation games can therefore be subsumed under Kolbs learning model...

  17. An Improved Opposition-Based Learning Particle Swarm Optimization for the Detection of SNP-SNP Interactions

    Science.gov (United States)

    Shang, Junliang; Sun, Yan; Li, Shengjun; Liu, Jin-Xing; Zheng, Chun-Hou; Zhang, Junying

    2015-01-01

    SNP-SNP interactions have been receiving increasing attention in understanding the mechanism underlying susceptibility to complex diseases. Though many works have been done for the detection of SNP-SNP interactions, the algorithmic development is still ongoing. In this study, an improved opposition-based learning particle swarm optimization (IOBLPSO) is proposed for the detection of SNP-SNP interactions. Highlights of IOBLPSO are the introduction of three strategies, namely, opposition-based learning, dynamic inertia weight, and a postprocedure. Opposition-based learning not only enhances the global explorative ability, but also avoids premature convergence. Dynamic inertia weight allows particles to cover a wider search space when the considered SNP is likely to be a random one and converges on promising regions of the search space while capturing a highly suspected SNP. The postprocedure is used to carry out a deep search in highly suspected SNP sets. Experiments of IOBLPSO are performed on both simulation data sets and a real data set of age-related macular degeneration, results of which demonstrate that IOBLPSO is promising in detecting SNP-SNP interactions. IOBLPSO might be an alternative to existing methods for detecting SNP-SNP interactions. PMID:26236727

  18. Communicative Approach: classroom interaction at High School (a ...

    African Journals Online (AJOL)

    Even though Communicative Approach is vast in its depth and breadth, classroom interaction is an indispensable component of it. Therefore, this research work endeavored to look in to the three elements of classroom interaction (individual participation, pair, and group formation) at grade ten classes of high school.

  19. An M-Learning Content Recommendation Service by Exploiting Mobile Social Interactions

    Science.gov (United States)

    Chao, Han-Chieh; Lai, Chin-Feng; Chen, Shih-Yeh; Huang, Yueh-Min

    2014-01-01

    With the rapid development of the Internet and the popularization of mobile devices, participating in a mobile community becomes a part of daily life. This study aims the influence impact of social interactions on mobile learning communities. With m-learning content recommendation services developed from mobile devices and mobile network…

  20. The effect of a pretest in an interactive, multimodal pretraining system for learning science concepts

    NARCIS (Netherlands)

    Bos, Floor/Floris; Terlouw, C.; Pilot, Albert

    2009-01-01

    In line with the cognitive theory of multimedia learning by Moreno and Mayer (2007), an interactive, multimodal learning environment was designed for the pretraining of science concepts in the joint area of physics, chemistry, biology, applied mathematics, and computer sciences. In the experimental

  1. A Multipurpose Interactive System for Promoting and Assessing the Learning of Physics

    Science.gov (United States)

    Picciarelli, Vittorio; Selvaggi, Giovanna; Stella, Rosa

    2013-01-01

    This paper presents an interactive system designed to facilitate the effective management of both knowledge consolidation and (self-)assessment of the progress made in the learning of physics by upper secondary school students. Via a specific multiple-choice test database, the system proposes several learning paths designed and implemented in an…

  2. The Use of Flexible, Interactive, Situation-Focused Software for the E-Learning of Mathematics.

    Science.gov (United States)

    Farnsworth, Ralph Edward

    This paper discusses the classroom, home, and distance use of new, flexible, interactive, application-oriented software known as Active Learning Suite. The actual use of the software, not just a controlled experiment, is reported on. Designed for the e-learning of university mathematics, the program was developed by a joint U.S.-Russia team and…

  3. Perceptions of the Effectiveness of System Dynamics-Based Interactive Learning Environments: An Empirical Study

    Science.gov (United States)

    Qudrat-Ullah, Hassan

    2010-01-01

    The use of simulations in general and of system dynamics simulation based interactive learning environments (SDILEs) in particular is well recognized as an effective way of improving users' decision making and learning in complex, dynamic tasks. However, the effectiveness of SDILEs in classrooms has rarely been evaluated. This article describes…

  4. Using Contact Work in Interactions with Adults with Learning Disabilities and Autistic Spectrum Disorders

    Science.gov (United States)

    Brooks, Sharon; Paterson, Gail

    2011-01-01

    This article describes a project about using contact work with people with learning disabilities and autistic spectrum disorder. People with learning disabilities and additional autistic spectrum disorder are at risk of becoming socially isolated because of their difficulties in interacting with others. Contact work is a form of Pre-Therapy, which…

  5. Contradictory Explorative Assessment. Multimodal Teacher/Student Interaction in Scandinavian Digital Learning Environments

    Science.gov (United States)

    Kjällander, Susanne

    2018-01-01

    Assessment in the much-discussed digital divide in Scandinavian technologically advanced schools, is the study object of this article. Interaction is studied to understand assessment; and to see how assessment can be didactically designed to recognise students' learning. With a multimodal, design theoretical perspective on learning teachers' and…

  6. An Interactive Approach to Learning and Teaching in Visual Arts Education

    Science.gov (United States)

    Tomljenovic, Zlata

    2015-01-01

    The present research focuses on modernising the approach to learning and teaching the visual arts in teaching practice, as well as examining the performance of an interactive approach to learning and teaching in visual arts classes with the use of a combination of general and specific (visual arts) teaching methods. The study uses quantitative…

  7. Social Presence and Interaction in Learning Environments: The Effect on Student Success

    Science.gov (United States)

    Kožuh, Ines; Jeremic, Zoran; Sarjaš, Andrej; Bele, Julija Lapuh; Devedžic, Vladan; Debevc, Matjaž

    2015-01-01

    With the increased use of social media there is a growing interest in using social interaction and social presence in education. Despite this phenomenon, no appropriate methodology was found on effective integrating of both concepts into online learning. In this study, we propose integrating two different kinds of learning tools to provide social…

  8. Effects of Mobile Apps for Nursing Students: Learning Motivation, Social Interaction and Study Performance

    Science.gov (United States)

    Li, Kam Cheong; Lee, Linda Yin-King; Wong, Suet-Lai; Yau, Ivy Sui-Yu; Wong, Billy Tak-Ming

    2018-01-01

    This study examined the effects of mobile apps on the learning motivation, social interaction and study performance of nursing students. A total of 20 students participated in focus group interviews to collect feedback on their use of mobile apps for learning and communicative activities. Two consecutive cohorts of students in a nursing programme,…

  9. Interactive Learning to Stimulate the Brain's Visual Center and to Enhance Memory Retention

    Science.gov (United States)

    Yun, Yang H.; Allen, Philip A.; Chaumpanich, Kritsakorn; Xiao, Yingcai

    2014-01-01

    This short paper describes an ongoing NSF-funded project on enhancing science and engineering education using the latest technology. More specifically, the project aims at developing an interactive learning system with Microsoft Kinect™ and Unity3D game engine. This system promotes active, rather than passive, learning by employing embodied…

  10. An interactive E-Learning portal in pediatric endocrinology : Practical experience

    NARCIS (Netherlands)

    Kranenburg-van Koppen, L.J.C.; Grijpink-van den Biggelaar, K.; Drop, S.L.S.

    2013-01-01

    Based on educational considerations, the European Society for Paediatric Endocrinology (ESPE) e-learning portal has been developed, providing an interactive learning environment for up-to-date information in pediatric endocrinology. From March 2011 to January 2012, five small-scale pilot studies

  11. Interactive ontology-based user modelling for personalized learning content management

    NARCIS (Netherlands)

    Denaux, R.O.; Dimitrova, V.; Aroyo, L.M.; Aroyo, L.; Tasso, C.

    2004-01-01

    This position paper discusses the need for using interactive ontology-based user modeling to empower on the fly adaptation in learning information systems. We outline several open issues related to adaptive learning content delivery and present an approach to deal with these issues based on the

  12. Interactive Learning Environment for Bio-Inspired Optimization Algorithms for UAV Path Planning

    Science.gov (United States)

    Duan, Haibin; Li, Pei; Shi, Yuhui; Zhang, Xiangyin; Sun, Changhao

    2015-01-01

    This paper describes the development of BOLE, a MATLAB-based interactive learning environment, that facilitates the process of learning bio-inspired optimization algorithms, and that is dedicated exclusively to unmanned aerial vehicle path planning. As a complement to conventional teaching methods, BOLE is designed to help students consolidate the…

  13. The Effects of Variations in Lesson Control and Practice on Learning from Interactive Video.

    Science.gov (United States)

    Hannafin, Michael J.; Colamaio, MaryAnne E.

    1987-01-01

    Discussion of the effects of variations in lesson control and practice on the learning of facts, procedures, and problem-solving skills during interactive video instruction focuses on a study of graduates and advanced level undergraduates learning cardiopulmonary resuscitation (CPR). Embedded questioning methods and posttests used are described.…

  14. Reciprocal Trust Mediates Deep Transfer of Learning between Games of Strategic Interaction

    Science.gov (United States)

    Juvina, Ion; Saleem, Muniba; Martin, Jolie M.; Gonzalez, Cleotilde; Lebiere, Christian

    2013-01-01

    We studied transfer of learning across two games of strategic interaction. We found that the interpersonal relation between two players during and across two games influence development of reciprocal trust and transfer of learning from one game to another. We show that two types of similarities between the games affect transfer: (1) deep…

  15. An Interactive Robotic Fish Exhibit for Designed Settings in Informal Science Learning

    Science.gov (United States)

    Phamduy, Paul; Leou, Mary; Milne, Catherine; Porfiri, Maurizio

    2017-01-01

    Informal science learning aims to improve public understanding of STEM. Free-choice learners can be engaged in a wide range of experiences, ranging from watching entertaining educational videos to actively participating in hands-on projects. Efforts in informal science learning are often gauged by their ability to elicit interaction, to foster…

  16. E-Learning as an Effective Interactive Pedagogy in The Teaching of ...

    African Journals Online (AJOL)

    In this paper, I propose the use of E-learning as an effective interactive pedagogical tool in the teaching of Art Education in Nigeria. Discussions on how the electronic media may be effectively utilized in the teaching of art as well as on art education and E-learning were made within the context of this discourse. Electronic ...

  17. Addressing grammar in the interaction task-based learning environment

    Directory of Open Access Journals (Sweden)

    Davis Brent M.

    2017-01-01

    Full Text Available One of the major problems in language teaching is developing grammatical accuracy. This paper proposes that using error correction based on a functional grammar in a task-based learning approach may be a suitable solution. Towards this end an emic (using categories intrinsic to the language functional grammar of the verb phrase is proposed and a description of how this fits into the focus on form component of task-based learning is provided.

  18. Interactive Multimedia Instruction for Training Self-Directed Learning Techniques

    Science.gov (United States)

    2016-06-01

    feedback and input on the content, format, and pedagogical approach of the lesson. This survey could be e-mailed to the principal ARI researcher for...peers in self-directed learning. Some examples of the metaphorical relationships and common examples woven into this IMI are identified in Table 1...20 Table 1 Metaphorical Relationships and Illustrations Used in Self-Directed Learning Training Military or Common Example Self-Directed

  19. Learning Photogrammetry with Interactive Software Tool PhoX

    Directory of Open Access Journals (Sweden)

    T. Luhmann

    2016-06-01

    Full Text Available Photogrammetry is a complex topic in high-level university teaching, especially in the fields of geodesy, geoinformatics and metrology where high quality results are demanded. In addition, more and more black-box solutions for 3D image processing and point cloud generation are available that generate nice results easily, e.g. by structure-from-motion approaches. Within this context, the classical approach of teaching photogrammetry (e.g. focusing on aerial stereophotogrammetry has to be reformed in order to educate students and professionals with new topics and provide them with more information behind the scene. Since around 20 years photogrammetry courses at the Jade University of Applied Sciences in Oldenburg, Germany, include the use of digital photogrammetry software that provide individual exercises, deep analysis of calculation results and a wide range of visualization tools for almost all standard tasks in photogrammetry. During the last years the software package PhoX has been developed that is part of a new didactic concept in photogrammetry and related subjects. It also serves as analysis tool in recent research projects. PhoX consists of a project-oriented data structure for images, image data, measured points and features and 3D objects. It allows for almost all basic photogrammetric measurement tools, image processing, calculation methods, graphical analysis functions, simulations and much more. Students use the program in order to conduct predefined exercises where they have the opportunity to analyse results in a high level of detail. This includes the analysis of statistical quality parameters but also the meaning of transformation parameters, rotation matrices, calibration and orientation data. As one specific advantage, PhoX allows for the interactive modification of single parameters and the direct view of the resulting effect in image or object space.

  20. Learning Photogrammetry with Interactive Software Tool PhoX

    Science.gov (United States)

    Luhmann, T.

    2016-06-01

    Photogrammetry is a complex topic in high-level university teaching, especially in the fields of geodesy, geoinformatics and metrology where high quality results are demanded. In addition, more and more black-box solutions for 3D image processing and point cloud generation are available that generate nice results easily, e.g. by structure-from-motion approaches. Within this context, the classical approach of teaching photogrammetry (e.g. focusing on aerial stereophotogrammetry) has to be reformed in order to educate students and professionals with new topics and provide them with more information behind the scene. Since around 20 years photogrammetry courses at the Jade University of Applied Sciences in Oldenburg, Germany, include the use of digital photogrammetry software that provide individual exercises, deep analysis of calculation results and a wide range of visualization tools for almost all standard tasks in photogrammetry. During the last years the software package PhoX has been developed that is part of a new didactic concept in photogrammetry and related subjects. It also serves as analysis tool in recent research projects. PhoX consists of a project-oriented data structure for images, image data, measured points and features and 3D objects. It allows for almost all basic photogrammetric measurement tools, image processing, calculation methods, graphical analysis functions, simulations and much more. Students use the program in order to conduct predefined exercises where they have the opportunity to analyse results in a high level of detail. This includes the analysis of statistical quality parameters but also the meaning of transformation parameters, rotation matrices, calibration and orientation data. As one specific advantage, PhoX allows for the interactive modification of single parameters and the direct view of the resulting effect in image or object space.

  1. Adjusted Framework of M-Learning in Blended Learning System for Mathematics Study Field of Junior High School Level VII

    Science.gov (United States)

    Sugiyanta, Lipur; Sukardjo, Moch.

    2018-04-01

    The 2013 curriculum requires teachers to be more productive, creative, and innovative in encouraging students to be more independent by strengthening attitudes, skills and knowledge. Teachers are given the options to create lesson plan according to the environment and conditions of their students. At the junior level, Core Competence (KI) and Basic Competence (KD) have been completely designed. In addition, there had already guidebooks, both for teacher manuals (Master’s Books) and for learners (Student Books). The lesson plan and guidebooks which already exist are intended only for learning in the classroom/in-school. Many alternative classrooms and alternatives learning models opened up using educational technology. The advance of educational technology opened opportunity for combination of class interaction using mobile learning applications. Mobile learning has rapidly evolved in education for the last ten years and many initiatives have been conducted worldwide. However, few of these efforts have produced any lasting outcomes. It is evident that mobile education applications are complex and hence, will not become sustainable. Long-term sustainability remains a risk. Long-term sustainability usually was resulted from continuous adaptation to changing conditions [4]. Frameworks are therefore required to avoid sustainability pitfalls. The implementation should start from simple environment then gradually become complex through adaptation steps. Therefore, our paper developed the framework of mobile learning (m-learning) adaptation for grade 7th (junior high school). The environment setup was blended mobile learning (not full mobile learning) and emphasize on Algebra. The research is done by R&D method (research and development). Results of the framework includes requirements and adaptation steps. The adjusted m-learning framework is designed to be a guidance for teachers to adopt m-learning to support blended learning environments. During mock-up prototype, the

  2. Interactive machine learning for health informatics: when do we need the human-in-the-loop?

    Science.gov (United States)

    Holzinger, Andreas

    2016-06-01

    Machine learning (ML) is the fastest growing field in computer science, and health informatics is among the greatest challenges. The goal of ML is to develop algorithms which can learn and improve over time and can be used for predictions. Most ML researchers concentrate on automatic machine learning (aML), where great advances have been made, for example, in speech recognition, recommender systems, or autonomous vehicles. Automatic approaches greatly benefit from big data with many training sets. However, in the health domain, sometimes we are confronted with a small number of data sets or rare events, where aML-approaches suffer of insufficient training samples. Here interactive machine learning (iML) may be of help, having its roots in reinforcement learning, preference learning, and active learning. The term iML is not yet well used, so we define it as "algorithms that can interact with agents and can optimize their learning behavior through these interactions, where the agents can also be human." This "human-in-the-loop" can be beneficial in solving computationally hard problems, e.g., subspace clustering, protein folding, or k-anonymization of health data, where human expertise can help to reduce an exponential search space through heuristic selection of samples. Therefore, what would otherwise be an NP-hard problem, reduces greatly in complexity through the input and the assistance of a human agent involved in the learning phase.

  3. A detector for high-energy neutrino interactions

    International Nuclear Information System (INIS)

    Holder, M.; Knobloch, J.; Lacourt, A.; Laverriere, G.; May, J.; Paar, H.; Palazzi, P.; Ranjard, F.; Schilly, P.; Schlatter, D.; Steinberger, J.; Suter, H.; Wahl, H.; Williams, E.G.H.; Eisele, F.; Geweniger, G.; Kleinknecht, K.; Pollmann, O.; Spahn, G.; Willutzki, H.J.; Navarria, F.L.

    1978-01-01

    The authors describe the design, construction and performance of a large mass detector used at CERN to study high-energy neutrino interactions in iron. This detector combines magnetic spectrometry and hadron calorimetry techniques. (Auth.)

  4. Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task.

    Science.gov (United States)

    Akam, Thomas; Costa, Rui; Dayan, Peter

    2015-12-01

    The recently developed 'two-step' behavioural task promises to differentiate model-based from model-free reinforcement learning, while generating neurophysiologically-friendly decision datasets with parametric variation of decision variables. These desirable features have prompted its widespread adoption. Here, we analyse the interactions between a range of different strategies and the structure of transitions and outcomes in order to examine constraints on what can be learned from behavioural performance. The task involves a trade-off between the need for stochasticity, to allow strategies to be discriminated, and a need for determinism, so that it is worth subjects' investment of effort to exploit the contingencies optimally. We show through simulation that under certain conditions model-free strategies can masquerade as being model-based. We first show that seemingly innocuous modifications to the task structure can induce correlations between action values at the start of the trial and the subsequent trial events in such a way that analysis based on comparing successive trials can lead to erroneous conclusions. We confirm the power of a suggested correction to the analysis that can alleviate this problem. We then consider model-free reinforcement learning strategies that exploit correlations between where rewards are obtained and which actions have high expected value. These generate behaviour that appears model-based under these, and also more sophisticated, analyses. Exploiting the full potential of the two-step task as a tool for behavioural neuroscience requires an understanding of these issues.

  5. Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task

    Science.gov (United States)

    Akam, Thomas; Costa, Rui; Dayan, Peter

    2015-01-01

    The recently developed ‘two-step’ behavioural task promises to differentiate model-based from model-free reinforcement learning, while generating neurophysiologically-friendly decision datasets with parametric variation of decision variables. These desirable features have prompted its widespread adoption. Here, we analyse the interactions between a range of different strategies and the structure of transitions and outcomes in order to examine constraints on what can be learned from behavioural performance. The task involves a trade-off between the need for stochasticity, to allow strategies to be discriminated, and a need for determinism, so that it is worth subjects’ investment of effort to exploit the contingencies optimally. We show through simulation that under certain conditions model-free strategies can masquerade as being model-based. We first show that seemingly innocuous modifications to the task structure can induce correlations between action values at the start of the trial and the subsequent trial events in such a way that analysis based on comparing successive trials can lead to erroneous conclusions. We confirm the power of a suggested correction to the analysis that can alleviate this problem. We then consider model-free reinforcement learning strategies that exploit correlations between where rewards are obtained and which actions have high expected value. These generate behaviour that appears model-based under these, and also more sophisticated, analyses. Exploiting the full potential of the two-step task as a tool for behavioural neuroscience requires an understanding of these issues. PMID:26657806

  6. Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task.

    Directory of Open Access Journals (Sweden)

    Thomas Akam

    2015-12-01

    Full Text Available The recently developed 'two-step' behavioural task promises to differentiate model-based from model-free reinforcement learning, while generating neurophysiologically-friendly decision datasets with parametric variation of decision variables. These desirable features have prompted its widespread adoption. Here, we analyse the interactions between a range of different strategies and the structure of transitions and outcomes in order to examine constraints on what can be learned from behavioural performance. The task involves a trade-off between the need for stochasticity, to allow strategies to be discriminated, and a need for determinism, so that it is worth subjects' investment of effort to exploit the contingencies optimally. We show through simulation that under certain conditions model-free strategies can masquerade as being model-based. We first show that seemingly innocuous modifications to the task structure can induce correlations between action values at the start of the trial and the subsequent trial events in such a way that analysis based on comparing successive trials can lead to erroneous conclusions. We confirm the power of a suggested correction to the analysis that can alleviate this problem. We then consider model-free reinforcement learning strategies that exploit correlations between where rewards are obtained and which actions have high expected value. These generate behaviour that appears model-based under these, and also more sophisticated, analyses. Exploiting the full potential of the two-step task as a tool for behavioural neuroscience requires an understanding of these issues.

  7. Sequence-based prediction of protein protein interaction using a deep-learning algorithm.

    Science.gov (United States)

    Sun, Tanlin; Zhou, Bo; Lai, Luhua; Pei, Jianfeng

    2017-05-25

    Protein-protein interactions (PPIs) are critical for many biological processes. It is therefore important to develop accurate high-throughput methods for identifying PPI to better understand protein function, disease occurrence, and therapy design. Though various computational methods for predicting PPI have been developed, their robustness for prediction with external datasets is unknown. Deep-learning algorithms have achieved successful results in diverse areas, but their effectiveness for PPI prediction has not been tested. We used a stacked autoencoder, a type of deep-learning algorithm, to study the sequence-based PPI prediction. The best model achieved an average accuracy of 97.19% with 10-fold cross-validation. The prediction accuracies for various external datasets ranged from 87.99% to 99.21%, which are superior to those achieved with previous methods. To our knowledge, this research is the first to apply a deep-learning algorithm to sequence-based PPI prediction, and the results demonstrate its potential in this field.

  8. A blended learning approach to teaching basic pharmacokinetics and the significance of face-to-face interaction.

    Science.gov (United States)

    Edginton, Andrea; Holbrook, Jane

    2010-06-15

    To assess pharmacy students' attitudes towards a blended-learning pharmacokinetics course. Narrated visual presentations and animations that illustrated kinetic processes and guided students through the use of software programs used for calculations were created. Other learning techniques used included online self-assessment quizzes, practice problem sets, and weekly face-to-face problem-solving tutorials. A precourse questionnaire to assess students' level of enthusiasm towards the blended-learning course and to solicit any concerns they had was administered at the beginning of the course. A postcourse questionnaire that included the same 4 Likert-scale items from the precourse questionnaire and follow-up open-ended questions was administered. Individual changes in level of enthusiasm were compared for individuals who completed both the precourse and postcourse questionnaire. Students' concerns about the blended method of learning had decreased postcourse while their enthusiasm for the benefits of blended learning had increased. Students' initial concerns about the blended learning experience were focused on their ability to communicate with the instructor about the online components, but shifted to their own time management skills at the end of the course. Face-to-face interactions with each other and with the instructor were more highly rated than online interactions in this course.

  9. Students’ Learning Obstacles and Alternative Solution in Counting Rules Learning Levels Senior High School

    Directory of Open Access Journals (Sweden)

    M A Jatmiko

    2017-12-01

    Full Text Available The counting rules is a topic in mathematics senior high school. In the learning process, teachers often find students who have difficulties in learning this topic. Knowing the characteristics of students' learning difficulties and analyzing the causes is important for the teacher, as an effort in trying to reflect the learning process and as a reference in constructing alternative learning solutions which appropriate to anticipate students’ learning obstacles. This study uses qualitative methods and involves 70 students of class XII as research subjects. The data collection techniques used in this study is diagnostic test instrument about learning difficulties in counting rules, observation, and interview. The data used to know the learning difficulties experienced by students, the causes of learning difficulties, and to develop alternative learning solutions. From the results of data analysis, the results of diagnostic tests researcher found some obstacles faced by students, such as students get confused in describing the definition, students difficulties in understanding the procedure of solving multiplication rules. Based on those problems, researcher analyzed the causes of these difficulties and make hypothetical learning trajectory as an alternative solution in counting rules learning.

  10. Play along: Effects of music and social interaction on word learning.

    Directory of Open Access Journals (Sweden)

    Laura eVerga

    2015-09-01

    Full Text Available Learning new words is an increasingly common necessity in everyday life. External factors, among which music and social interaction are particularly debated, are claimed to facilitate this task. Due to their influence on the learner’s temporal behavior, these stimuli are able to drive the learner's attention to the correct referent of new words at the correct point in time. However, do music and social interaction impact learning behavior in the same way? The current study aims to answer this question. Native German speakers (N = 80 were requested to learn new words (pseudo-words during a contextual learning game. This learning task was performed alone with a computer or with a partner, with or without music. Results showed that music and social interaction had a different impact on the learner’s behavior: Participants tended to temporally coordinate their behavior more with a partner than with music, and in both cases more than with a computer. However, when both music and social interaction were present, this temporal coordination was hindered. These results suggest that while music and social interaction do influence participants’ learning behavior, they have a different impact. Moreover, impaired behavior when both music and a partner are present suggests that different mechanisms are employed to coordinate with the two types of stimuli. Whether one or the other approach is more efficient for word learning, however, is a question still requiring further investigation, as no differences were observed between conditions in a retrieval phase which took place immediately after the learning session. This study contributes to the literature on word learning in adults by investigating two possible facilitating factors, and has important implications for situations such as music therapy, in which music and social interaction are present at the same time.

  11. Play along: effects of music and social interaction on word learning.

    Science.gov (United States)

    Verga, Laura; Bigand, Emmanuel; Kotz, Sonja A

    2015-01-01

    Learning new words is an increasingly common necessity in everyday life. External factors, among which music and social interaction are particularly debated, are claimed to facilitate this task. Due to their influence on the learner's temporal behavior, these stimuli are able to drive the learner's attention to the correct referent of new words at the correct point in time. However, do music and social interaction impact learning behavior in the same way? The current study aims to answer this question. Native German speakers (N = 80) were requested to learn new words (pseudo-words) during a contextual learning game. This learning task was performed alone with a computer or with a partner, with or without music. Results showed that music and social interaction had a different impact on the learner's behavior: Participants tended to temporally coordinate their behavior more with a partner than with music, and in both cases more than with a computer. However, when both music and social interaction were present, this temporal coordination was hindered. These results suggest that while music and social interaction do influence participants' learning behavior, they have a different impact. Moreover, impaired behavior when both music and a partner are present suggests that different mechanisms are employed to coordinate with the two types of stimuli. Whether one or the other approach is more efficient for word learning, however, is a question still requiring further investigation, as no differences were observed between conditions in a retrieval phase, which took place immediately after the learning session. This study contributes to the literature on word learning in adults by investigating two possible facilitating factors, and has important implications for situations such as music therapy, in which music and social interaction are present at the same time.

  12. Ensuring High-Quality Learning for All

    Science.gov (United States)

    Núñez, Elsa M.

    2018-01-01

    The Association of American Colleges and Universities (AAC&U) has embarked on a sustained program to enhance the quality of student learning on campuses, while also supporting AAC&U members' efforts to bring liberal education to all sectors of society. This commitment to quality and equity in service to democracy forms the basis for…

  13. Application Design Of Interactive Multimedia Development Based Motion Graphic On Making Fashion Design Learning In Digital Format

    OpenAIRE

    Winwin Wiana

    2017-01-01

    This study is a research and development aimed at developing multimedia interactive learning based animation as an effort to improve student learning motivation in learning Fashion Design Technology apart from this study also aims to design a learning program courses Fashion Design Technology with a focus on optimizing the use of interactive media in learning process. From this study showed 1 A preliminary study found that the problems faced by students when studying Fashion Design Technology...

  14. The Effects of Online Interactions on the Relationship between Learning-Related Anxiety and Intention to Persist among E-Learning Students with Visual Impairment

    Science.gov (United States)

    Oh, Yunjin; Lee, Soon Min

    2016-01-01

    This study explored whether learning-related anxiety would negatively affect intention to persist with e-learning among students with visual impairment, and examined the roles of three online interactions in the relationship between learning-related anxiety and intention to persist with e-learning. For this study, a convenience sample of…

  15. SnapAnatomy, a computer-based interactive tool for independent learning of human anatomy.

    Science.gov (United States)

    Yip, George W; Rajendran, Kanagasuntheram

    2008-06-01

    Computer-aided instruction materials are becoming increasing popular in medical education and particularly in the teaching of human anatomy. This paper describes SnapAnatomy, a new interactive program that the authors designed for independent learning of anatomy. SnapAnatomy is primarily tailored for the beginner student to encourage the learning of anatomy by developing a three-dimensional visualization of human structure that is essential to applications in clinical practice and the understanding of function. The program allows the student to take apart and to accurately put together body components in an interactive, self-paced and variable manner to achieve the learning outcome.

  16. Should I trust you? Learning and memory of social interactions in dementia.

    Science.gov (United States)

    Wong, Stephanie; Irish, Muireann; O'Callaghan, Claire; Kumfor, Fiona; Savage, Greg; Hodges, John R; Piguet, Olivier; Hornberger, Michael

    2017-09-01

    Social relevance has an enhancing effect on learning and subsequent memory retrieval. The ability to learn from and remember social interactions may impact on susceptibility to financial exploitation, which is elevated in individuals with dementia. The current study aimed to investigate learning and memory of social interactions, the relationship between performance and financial vulnerability and the neural substrates underpinning performance in 14 Alzheimer's disease (AD) and 20 behavioural-variant frontotemporal dementia (bvFTD) patients and 20 age-matched healthy controls. On a "trust game" task, participants invested virtual money with counterparts who acted either in a trustworthy or untrustworthy manner over repeated interactions. A non-social "lottery" condition was also included. Participants' learning of trust/distrust responses and subsequent memory for the counterparts and nature of the interactions was assessed. Carer-rated profiles of financial vulnerability were also collected. Relative to controls, both patient groups showed attenuated learning of trust/distrust responses, and lower overall memory for social interactions. Despite poor learning performance, both AD and bvFTD patients showed better memory of social compared to non-social interactions. Importantly, better memory for social interactions was associated with lower financial vulnerability in AD, but not bvFTD. Learning and memory of social interactions was associated with medial temporal and temporoparietal atrophy in AD, whereas a wider network of frontostriatal, insular, fusiform and medial temporal regions was implicated in bvFTD. Our findings suggest that although social relevance influences memory to an extent in both AD and bvFTD, this is associated with vulnerability to financial exploitation in AD only, and is underpinned by changes to different neural substrates. Theoretically, these findings provide novel insights into potential mechanisms that give rise to vulnerability in

  17. Integrating the Learning of Mathematics and Science Using Interactive Teaching and Learning Strategies

    Science.gov (United States)

    Holmes, Mark H.

    2006-10-01

    To help students grasp the intimate connections that exist between mathematics and its applications in other disciplines a library of interactive learning modules was developed. This library covers the mathematical areas normally studied by undergraduate students and is used in science courses at all levels. Moreover, the library is designed not just to provide critical connections across disciplines but to also provide longitudinal subject reinforcement as students progress in their studies. In the process of developing the modules a complete editing and publishing system was constructed that is optimized for automated maintenance and upgradeability of materials. The result is a single integrated production system for web-based educational materials. Included in this is a rigorous assessment program, involving both internal and external evaluations of each module. As will be seen, the formative evaluation obtained during the development of the library resulted in the modules successfully bridging multiple disciplines and breaking down the disciplinary barriers commonly found in their math and non-math courses.

  18. Neural Correlates of High Performance in Foreign Language Vocabulary Learning

    Science.gov (United States)

    Macedonia, Manuela; Muller, Karsten; Friederici, Angela D.

    2010-01-01

    Learning vocabulary in a foreign language is a laborious task which people perform with varying levels of success. Here, we investigated the neural underpinning of high performance on this task. In a within-subjects paradigm, participants learned 92 vocabulary items under two multimodal conditions: one condition paired novel words with iconic…

  19. Organisational learning via Interactive Process Simulation in AGE

    NARCIS (Netherlands)

    Szirbik, N. B.; Roest, G. B.; Sklenar, J; Tanguy, A; Bertelle, C; Fortino, G

    2007-01-01

    In this paper, the concept of Interactive Process Simulation is introduced as a specialisation of Business Gaming. A specific gaming and agent development framework, based oil interactive simulation and a specific modelling langauge, is shortly presented. The concepts of the language are explained

  20. Learning to Decode Nonverbal Cues in Cross-Cultural Interactions

    Science.gov (United States)

    2009-06-01

    incite a local mob to violence .” Impact of Gaming and Interactive Media Serious research on the educational potential of gaming and interactive...Rigby, 2006; Rigby 2007). In multiplayer games, including both competition and cooperation (where learners must work together to achieve a goal

  1. The Impact of Social Interaction on Student Learning

    Science.gov (United States)

    Hurst, Beth; Wallace, Randall; Nixon, Sarah B.

    2013-01-01

    Due to the lack of student engagement in the common lecture-centered model, we explored a model of instructional delivery where our undergraduate and graduate classes were structured so that students had opportunities for daily interaction with each other. Specifically, we examined how students perceived the value of social interaction on their…

  2. A Computational Agent Model for Hebbian Learning of Social Interaction

    NARCIS (Netherlands)

    Treur, J.

    2011-01-01

    In social interaction between two persons usually a person displays understanding of the other person. This may involve both nonverbal and verbal elements, such as bodily expressing a similar emotion and verbally expressing beliefs about the other person. Such social interaction relates to an

  3. What Predicts Use of Learning-Centered, Interactive Engagement Methods?

    Science.gov (United States)

    Madson, Laura; Trafimow, David; Gray, Tara; Gutowitz, Michael

    2014-01-01

    What makes some faculty members more likely to use interactive engagement methods than others? We use the theory of reasoned action to predict faculty members' use of interactive engagement methods. Results indicate that faculty members' beliefs about the personal positive consequences of using these methods (e.g., "Using interactive…

  4. Why STEM Learning Communities Work: The Development of Psychosocial Learning Factors through Social Interaction

    Science.gov (United States)

    Carrino, Stephanie Sedberry; Gerace, William J.

    2016-01-01

    STEM learning communities facilitate student academic success and persistence in science disciplines. This prompted us to explore the underlying factors that make learning communities successful. In this paper, we report findings from an illustrative case study of a 2-year STEM-based learning community designed to identify and describe these…

  5. Maximize the Mobile Learning Interaction through Project-Based Learning Activities

    Science.gov (United States)

    Sulisworo, Dwi; Santyasa, I. Wayan

    2018-01-01

    Mobile learning implementation at school is a must and meets what students currently need. To facilitate those conditions, teachers also need to have competencies in managing online learning. This research is a descriptive research to find out the experience of students who are prospective teachers when attending the mobile learning course…

  6. Active-constructive-interactive: a conceptual framework for differentiating learning activities.

    Science.gov (United States)

    Chi, Michelene T H

    2009-01-01

    Active, constructive, and interactive are terms that are commonly used in the cognitive and learning sciences. They describe activities that can be undertaken by learners. However, the literature is actually not explicit about how these terms can be defined; whether they are distinct; and whether they refer to overt manifestations, learning processes, or learning outcomes. Thus, a framework is provided here that offers a way to differentiate active, constructive, and interactive in terms of observable overt activities and underlying learning processes. The framework generates a testable hypothesis for learning: that interactive activities are most likely to be better than constructive activities, which in turn might be better than active activities, which are better than being passive. Studies from the literature are cited to provide evidence in support of this hypothesis. Moreover, postulating underlying learning processes allows us to interpret evidence in the literature more accurately. Specifying distinct overt activities for active, constructive, and interactive also offers suggestions for how learning activities can be coded and how each kind of activity might be elicited. Copyright © 2009 Cognitive Science Society, Inc.

  7. Imitative Learning from a Third-Party Interaction: Relations with Self-Recognition and Perspective Taking

    Science.gov (United States)

    Herold, Katherine H.; Akhtar, Nameera

    2008-01-01

    Young children's ability to learn something new from a third-party interaction may be related to the ability to imagine themselves in the third-party interaction. This imaginative ability presupposes an understanding of self-other equivalence, which is manifested in an objective understanding of the self and an understanding of others' subjective…

  8. Data Analysis Tools and Methods for Improving the Interaction Design in E-Learning

    Science.gov (United States)

    Popescu, Paul Stefan

    2015-01-01

    In this digital era, learning from data gathered from different software systems may have a great impact on the quality of the interaction experience. There are two main directions that come to enhance this emerging research domain, Intelligent Data Analysis (IDA) and Human Computer Interaction (HCI). HCI specific research methodologies can be…

  9. Some Technical Implications of Distributed Cognition on the Design on Interactive Learning Environments.

    Science.gov (United States)

    Dillenbourg, Pierre

    1996-01-01

    Maintains that diagnosis, explanation, and tutoring, the functions of an interactive learning environment, are collaborative processes. Examines how human-computer interaction can be improved using a distributed cognition framework. Discusses situational and distributed knowledge theories and provides a model on how they can be used to redesign…

  10. Group Trust, Communication Media, and Interactivity: Toward an Integrated Model of Online Collaborative Learning

    Science.gov (United States)

    Du, Jianxia; Wang, Chuang; Zhou, Mingming; Xu, Jianzhong; Fan, Xitao; Lei, Saosan

    2018-01-01

    The present investigation examines the multidimensional relationships among several critical components in online collaborative learning, including group trust, communication media, and interactivity. Four hundred eleven university students from 103 groups in the United States responded survey items on online collaboration, interactivity,…

  11. Using Tablet PCs and Interactive Software in IC Design Courses to Improve Learning

    Science.gov (United States)

    Simoni, M.

    2011-01-01

    This paper describes an initial study of using tablet PCs and interactive course software in integrated circuit (IC) design courses. A rapidly growing community is demonstrating how this technology can improve learning and retention of material by facilitating interaction between faculty and students via cognitive exercises during lectures. While…

  12. Socialization and Adolescent Self-Esteem: Symbolic Interaction and Social Learning Explanations.

    Science.gov (United States)

    Openshaw, D. Kim; And Others

    1983-01-01

    Investigated the effects of social learning and symbolic interaction on adolescent self-esteem. Adolescents (N=368) and their parents completed measures of self-esteem, parental behavior and parental power. Results suggested adolescent self-esteem is more a function of social interaction and the reflected appraisals of others than a modeling of…

  13. Brush and learn : transforming tooth brushing behavior through interactive materiality, a design exploration

    NARCIS (Netherlands)

    Bruns, M.; Stienstra, J.T.; Dijkstra, R.

    2014-01-01

    To counteract the increased tendency in skill learning addressing our cognitive abilities we discuss an opportunity on how performance skills can be trained by means of inherent feed forward through interactive materiality. We address this approach in the context of designing an interactive

  14. Interactions among Future Study Abroad Students: Exploring Potential Intercultural Learning Sequences

    Science.gov (United States)

    Borghetti, C.; Beaven, A.; Pugliese, R.

    2015-01-01

    The study presented in this article aims to explore if and how intercultural learning may take place in students' class interaction. It is grounded in the assumption that interculturality is not a clear-cut feature inherent to interactions occurring when individuals with presumed different linguistic and cultural/national backgrounds talk to each…

  15. Locating Cognition in Second Language Interaction and Learning: Inside the Skull or in Public View?

    Science.gov (United States)

    Kasper, Gabriele

    2009-01-01

    A key question in the debate on conversation analysis as an approach to SLA concerns the role of cognition in interaction and learning. Where is cognition located, and how is understanding in interaction achieved? For an empirically grounded answer, I will explore the procedural apparatus that sustains socially shared cognition. Following a brief…

  16. Development and Evaluation of an Interactive Electronic Laboratory Manual for Cooperative Learning of Medical Histology

    Science.gov (United States)

    Khalil, Mohammed K.; Kirkley, Debbie L.; Kibble, Jonathan D.

    2013-01-01

    This article describes the development of an interactive computer-based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self-directed group interactivities that actively engage students during laboratory sessions. The design of the manual…

  17. Differential impact of student behaviours on group interaction and collaborative learning: medical students' and tutors' perspectives.

    Science.gov (United States)

    Iqbal, Maha; Velan, Gary M; O'Sullivan, Anthony J; Balasooriya, Chinthaka

    2016-08-22

    Collaboration is of increasing importance in medical education and medical practice. Students' and tutors' perceptions about small group learning are valuable to inform the development of strategies to promote group dynamics and collaborative learning. This study investigated medical students' and tutors' views on competencies and behaviours which promote effective learning and interaction in small group settings. This study was conducted at UNSW Australia. Five focus group discussions were conducted with first and second year medical students and eight small group tutors were interviewed. Data were transcribed verbatim and thematic analysis was conducted. Students and tutors identified a range of behaviours that influenced collaborative learning. The main themes that emerged included: respectfulness; dominance, strong opinions and openness; constructiveness of feedback; active listening and contribution; goal orientation; acceptance of roles and responsibilities; engagement and enthusiasm; preparedness; self- awareness and positive personal attributes. An important finding was that some of these student behaviours were found to have a differential impact on group interaction compared with collaborative learning. This information could be used to promote higher quality learning in small groups. This study has identified medical students' and tutors' perceptions regarding interactional behaviours in small groups, as well as behaviours which lead to more effective learning in those settings. This information could be used to promote learning in small groups.

  18. Exploring the roles of interaction and flow in explaining nurses' e-learning acceptance.

    Science.gov (United States)

    Cheng, Yung-Ming

    2013-01-01

    To provide safe and competent patient care, it is very important that medical institutions should provide nurses with continuing education by using appropriate learning methods. As compared to traditional learning, electronic learning (e-learning) is a more flexible method for nurses' in-service learning. Hence, e-learning is expected to play a pivotal role in providing continuing education for nurses. This study's purpose was to explore the role and relevance of interaction factors, intrinsic motivator (i.e., flow), and extrinsic motivators (i.e., perceived usefulness (PU) and perceived ease of use (PEOU)) in explaining nurses' intention to use the e-learning system. Based on the technology acceptance model (TAM) with the flow theory, this study's research model presents three types of interaction factors, learner-system interaction, instructor-learner interaction, and learner-learner interaction to construct an extended TAM to explore nurses' intention to use the e-learning system. Sample data were gathered from nurses at two regional hospitals in Taiwan. A total of 320 questionnaires were distributed, 254 (79.375%) questionnaires were returned. Consequently, 218 usable questionnaires were analyzed in this study, with a usable response rate of 68.125%. First, confirmatory factor analysis was used to develop the measurement model. Second, to explore the causal relationships among all constructs, the structural model for the research model was tested by using structural equation modeling. First, learner-system interaction, instructor-learner interaction, and learner-learner interaction respectively had significant effects on PU, PEOU, and flow. Next, flow had significant effects on PU and PEOU, and PEOU had a significant effect on PU. Finally, the effects of flow, PU, and PEOU on intention to use were significant. Synthetically speaking, learner-system interaction, instructor-learner interaction, and learner-learner interaction can indirectly make significant

  19. Interaction learning for dynamic movement primitives used in cooperative robotic tasks

    DEFF Research Database (Denmark)

    Kulvicius, Tomas; Biehl, Martin; Aein, Mohamad Javad

    2013-01-01

    Abstract Since several years dynamic movement primitives (DMPs) are more and more getting into the center of interest for flexible movement control in robotics. In this study we introduce sensory feedback together with a predictive learning mechanism which allows tightly coupled dual-agent systems...... to learn an adaptive, sensor-driven interaction based on DMPs. The coupled conventional (no-sensors, no learning) DMP-system automatically equilibrates and can still be solved analytically allowing us to derive conditions for stability. When adding adaptive sensor control we can show that both agents learn...

  20. Learning from instructional explanations: effects of prompts based on the active-constructive-interactive framework.

    Science.gov (United States)

    Roelle, Julian; Müller, Claudia; Roelle, Detlev; Berthold, Kirsten

    2015-01-01

    Although instructional explanations are commonly provided when learners are introduced to new content, they often fail because they are not integrated into effective learning activities. The recently introduced active-constructive-interactive framework posits an effectiveness hierarchy in which interactive learning activities are at the top; these are then followed by constructive and active learning activities, respectively. Against this background, we combined instructional explanations with different types of prompts that were designed to elicit these learning activities and tested the central predictions of the active-constructive-interactive framework. In Experiment 1, N = 83 students were randomly assigned to one of four combinations of instructional explanations and prompts. To test the active learning hypothesis, the learners received either (1) complete explanations and engaging prompts designed to elicit active activities or (2) explanations that were reduced by inferences and inference prompts designed to engage learners in constructing the withheld information. Furthermore, in order to explore how interactive learning activities can be elicited, we gave the learners who had difficulties in constructing the prompted inferences adapted remedial explanations with either (3) unspecific engaging prompts or (4) revision prompts. In support of the active learning hypothesis, we found that the learners who received reduced explanations and inference prompts outperformed the learners who received complete explanations and engaging prompts. Moreover, revision prompts were more effective in eliciting interactive learning activities than engaging prompts. In Experiment 2, N = 40 students were randomly assigned to either (1) a reduced explanations and inference prompts or (2) a reduced explanations and inference prompts plus adapted remedial explanations and revision prompts condition. In support of the constructive learning hypothesis, the learners who received

  1. Hybrid High-Impact Pedagogies: Integrating Service-Learning with Three Other High-Impact Pedagogies

    Science.gov (United States)

    Bringle, Robert G.

    2017-01-01

    This article proposes enhancing student learning through civic engagement by considering the advantages of integrating service-learning with study away, research, and internships and pre-professional courses into first-order, second-order, and third-order hybrid high-impact pedagogies. Service-learning contributes numerous attributes to the other…

  2. The Ecology of Interactive Learning Environments: Situating Traditional Theory

    Science.gov (United States)

    Johnson, Genevieve Marie

    2014-01-01

    In educational discourse on human learning (i.e. the result of experience) and development (i.e. the result of maturation), there are three fundamental theoretical frameworks, -- behaviourism, cognitivism and constructivism, each of which have been applied, with varying degrees of success, in online environments. An ecological framework of human…

  3. "No Boundaries"? Girls' Interactive, Online Learning about Femininities

    Science.gov (United States)

    Kelly, Deirdre M.; Pomerantz, Shauna; Currie, Dawn H.

    2006-01-01

    This article explores girls' learning about issues of femininity that takes place in the presence of others online, connected through chat rooms, instant messaging, and role-playing games. Informed by critical and poststructuralist feminist theorizing of gendered subjectivity, agency, and power, the article draws from qualitative interviews with…

  4. ARTutor--An Augmented Reality Platform for Interactive Distance Learning

    Science.gov (United States)

    Lytridis, Chris; Tsinakos, Avgoustos; Kazanidis, Ioannis

    2018-01-01

    Augmented Reality (AR) has been used in various contexts in recent years in order to enhance user experiences in mobile and wearable devices. Various studies have shown the utility of AR, especially in the field of education, where it has been observed that learning results are improved. However, such applications require specialized teams of…

  5. Metabolic interrelationships software application: Interactive learning tool for intermediary metabolism

    NARCIS (Netherlands)

    A.J.M. Verhoeven (Adrie); M. Doets (Mathijs); J.M.J. Lamers (Jos); J.F. Koster (Johan)

    2005-01-01

    textabstractWe developed and implemented the software application titled Metabolic Interrelationships as a self-learning and -teaching tool for intermediary metabolism. It is used by undergraduate medical students in an integrated organ systems-based and disease-oriented core curriculum, which

  6. The role of learning and social interaction for changing practices

    DEFF Research Database (Denmark)

    Christensen, Toke Haunstrup

    The paper presents initial theoretical suggestions on how practice theory might be combined with understandings of learning as an experiential and social activity. The aim is to inspire to further thinking about how to make practice theory more “applicable” for designing changes towards a low...

  7. The Violet Experience: Social Interaction through Eclectic Music Learning Practices

    Science.gov (United States)

    Dakon, Jacob M.; Cloete, Elene

    2018-01-01

    In this qualitative case study, we used participant observation and interviews to examine Violet, a Flemish string youth orchestra. In doing so, we identify the qualities that constitute an 'eclectic' ensemble space, herein defined as a musical environment that uses a blend of informal and formal learning practices. Moreover, we emphasize how…

  8. Online Interactions and Social Presence in Online Learning

    Science.gov (United States)

    Lee, Sang Joon; Huang, Kun

    2018-01-01

    The community of inquiry framework identified three essential elements of cognitive, social, and teaching presences for a successful online learning experience. Among them, social presence is key for developing personal relationships and enhancing collaboration and critical discourse in online courses. This study examined whether providing more…

  9. Knowledge-Intensive, Interactive and Efficient Relational Pattern Learning

    Science.gov (United States)

    2006-09-01

    Although the idea of incorporating the ability to learn first order rules from RDBMSs is not new – Stonebraker et. al [6] added this feature to Postgres and...Future Directions. Volume To appear. AAAI Press (2004) 6. Stonebraker, M., Kemnitz, G.: The postgres next-generation database management system

  10. The Role of Interactive E-Learning in Problem-Solving Skill and Independent Learning of Medical Students in Psychology Courses

    OpenAIRE

    Sahar Mohamadi; Sayedeh Maryam Hosseiny; Sayedeh Sana Hosseiny

    2016-01-01

    Introduction: Today, due to the speed and amount of science production in the world, knowledge processing and learning is changing. In this regard, independent learning using new instructional methods interactively with a specific goal in order to dominate the content and assignments with self-regulation strategies is of great importance. This study is aimed to evaluate interactive e-learning role on medical students’ learning in psychology courses. Methods: This study is a experimental r...

  11. Improving Mathematical Communication Ability and Self Regulation Learning Of Yunior High Students by Using Reciprocal Teaching

    Directory of Open Access Journals (Sweden)

    Abdul Qohar

    2013-01-01

    Full Text Available This paper presents the findings from a posttest experiment control group design  by  using reciprocal teaching, conducted  in Indonesia University of Education to investigate students’ ability in mathematical communication and self regulated learning.  Subject of the study were 254 of 9th grade students from three junior high schools of high, medium, and low level in Bojonegoro, East Java.  The instruments of the study were an essay mathematical communication test, and a self regulated learning scale. The study found that reciprocal teaching took the best role among school  cluster  and students’ prior mathematics ability on students’ mathematical communication ability and self regulated learning as well.  The other finding were there was interaction between school cluster and teaching approaches, but was no interaction between students’ prior mathematics ability and teaching approaches on mathematical communication ability and  self regulated learning. Moreover, there was association between mathematical communication and self regulated learningKeywords: Reciprocal Teaching, Mathematical Communication, Self Regulated Learning DOI: http://dx.doi.org/10.22342/jme.4.1.562.59-74

  12. Children can learn new facts equally well from interactive media versus face to face instruction

    Directory of Open Access Journals (Sweden)

    Kristine Kwok

    2016-10-01

    Full Text Available Today’s children have more opportunities than ever before to learn from interactive technology, yet experimental research assessing the efficacy of children’s learning from interactive media in comparison to traditional learning approaches is still quite scarce. Moreover, little work has examined the efficacy of using touch-screen devices for research purposes. The current study compared children’s rate of learning factual information about animals during a face-to-face instruction from an adult female researcher versus an analogous instruction from an interactive device. Eighty-six children ages 4 through 8 years (64% male completed the learning task in either the Face-to-Face condition (n = 43 or the Interactive Media condition (n = 43. In the Learning Phase of the experiment, which was presented as a game, children were taught novel facts about animals without being told that their memory of the facts would be tested. The facts were taught to the children either by an adult female researcher (Face-to-Face condition or from a pre-recorded female voice represented by a cartoon Llama (Interactive Media condition. In the Testing Phase of the experiment that immediately followed, children’s memory for the taught facts was tested using a 4-option forced-choice paradigm. Children’s rate of learning was significantly above chance in both conditions and a comparison of the rates of learning across the two conditions revealed no significant differences. Learning significantly improved from age 4 to age 8, however, even the preschool-aged children performed significantly above chance, and their performance did not differ between conditions. These results suggest that, interactive media can be equally as effective as one-on-one instruction, at least under certain conditions. Moreover, these results offer support for the validity of using interactive technology to collect data for research purposes. We discuss the implications of these results

  13. iVFTs - immersive virtual field trips for interactive learning about Earth's environment.

    Science.gov (United States)

    Bruce, G.; Anbar, A. D.; Semken, S. C.; Summons, R. E.; Oliver, C.; Buxner, S.

    2014-12-01

    Innovations in immersive interactive technologies are changing the way students explore Earth and its environment. State-of-the-art hardware has given developers the tools needed to capture high-resolution spherical content, 360° panoramic video, giga-pixel imagery, and unique viewpoints via unmanned aerial vehicles as they explore remote and physically challenging regions of our planet. Advanced software enables integration of these data into seamless, dynamic, immersive, interactive, content-rich, and learner-driven virtual field explorations, experienced online via HTML5. These surpass conventional online exercises that use 2-D static imagery and enable the student to engage in these virtual environments that are more like games than like lectures. Grounded in the active learning of exploration, inquiry, and application of knowledge as it is acquired, users interact non-linearly in conjunction with an intelligent tutoring system (ITS). The integration of this system allows the educational experience to be adapted to each individual student as they interact within the program. Such explorations, which we term "immersive virtual field trips" (iVFTs), are being integrated into cyber-learning allowing science teachers to take students to scientifically significant but inaccessible environments. Our team and collaborators are producing a diverse suite of freely accessible, iVFTs to teach key concepts in geology, astrobiology, ecology, and anthropology. Topics include Early Life, Biodiversity, Impact craters, Photosynthesis, Geologic Time, Stratigraphy, Tectonics, Volcanism, Surface Processes, The Rise of Oxygen, Origin of Water, Early Civilizations, Early Multicellular Organisms, and Bioarcheology. These diverse topics allow students to experience field sites all over the world, including, Grand Canyon (USA), Flinders Ranges (Australia), Shark Bay (Australia), Rainforests (Panama), Teotihuacan (Mexico), Upheaval Dome (USA), Pilbara (Australia), Mid-Atlantic Ridge

  14. Corticostriatal interactions during learning, memory processing, and decision making

    NARCIS (Netherlands)

    Pennartz, C.M.A.; Berke, J.D.; Graybiel, A.M.; Ito, R.; Lansink, C.S.; van der Meer, M.; Redish, A.D.; Smith, K.S.; Voorn, P.

    2009-01-01

    This mini-symposium aims to integrate recent insights from anatomy, behavior, and neurophysiology, highlighting the anatomical organization, behavioral significance, and information-processing mechanisms of corticostriatal interactions. In this summary of topics, which is not meant to provide a

  15. Haptic Human-Human Interaction Through a Compliant Connection Does Not Improve Motor Learning in a Force Field

    NARCIS (Netherlands)

    Beckers, Niek; Keemink, Arvid; van Asseldonk, Edwin; van der Kooij, Herman; Prattichizzo, Domenico; Shinoda, Hiroyuki; Tan, Hong Z.; Ruffaldi, Emanuele; Frisoli, Antonio

    2018-01-01

    Humans have a natural ability to haptically interact with other humans, for instance during physically assisting a child to learn how to ride a bicycle. A recent study has shown that haptic human-human interaction can improve individual motor performance and motor learning rate while learning to

  16. A Proposed Framework between Internal, External and Pedagogy Dimensions in Adoption of Interactive Multimedia e-Learning

    Science.gov (United States)

    Lahwal, Fathia; Al-Ajlan, Ajlan S.; Amain, Mohamad

    2016-01-01

    This study focuses on interactive multimedia e-learning aims to improve our understanding about the dynamics of e-learning. The objective is to critical evaluate and better understand the interrelationships in the proposed framework between internal, external and the pedagogy dimensions in adoption of interactive multimedia and e-learning. It…

  17. THE IMPACT OF INTERACTIVE LEARNING ON THE QUALITY OF COMMUNICATION IN TEACHING PROCESS

    OpenAIRE

    Branka Kovačević; Brane Mikanović; Žana Gavrilović

    2017-01-01

    The application of interactive learning is directed towards increasing the quality of communication in the teaching process. The focus of the research in this paper is the influence of the communicative approach on the quality of the teaching process, and the purposeful interaction that has been both the method and the aim of the communicative approach. The authors of this paper argue that the interactive method significantly adds to a successful implementation of purposeful communication in ...

  18. High Quality Education and Learning for All through Open Education

    NARCIS (Netherlands)

    Stracke, Christian M.

    2016-01-01

    Keynote at the International Lensky Education Forum 2016, Yakutsk, Republic of Sakha, Russian Federation, by Stracke, C. M. (2016, 16 August): "High Quality Education and Learning for All through Open Education"

  19. Uninformative contexts support word learning for high-skill spellers.

    Science.gov (United States)

    Eskenazi, Michael A; Swischuk, Natascha K; Folk, Jocelyn R; Abraham, Ashley N

    2018-04-30

    The current study investigated how high-skill spellers and low-skill spellers incidentally learn words during reading. The purpose of the study was to determine whether readers can use uninformative contexts to support word learning after forming a lexical representation for a novel word, consistent with instance-based resonance processes. Previous research has found that uninformative contexts damage word learning; however, there may have been insufficient exposure to informative contexts (only one) prior to exposure to uninformative contexts (Webb, 2007; Webb, 2008). In Experiment 1, participants read sentences with one novel word (i.e., blaph, clurge) embedded in them in three different conditions: Informative (six informative contexts to support word learning), Mixed (three informative contexts followed by three uninformative contexts), and Uninformative (six uninformative contexts). Experiment 2 added a new condition with only three informative contexts to further clarify the conclusions of Experiment 1. Results indicated that uninformative contexts can support word learning, but only for high-skill spellers. Further, when participants learned the spelling of the novel word, they were more likely to learn the meaning of that word. This effect was much larger for high-skill spellers than for low-skill spellers. Results are consistent with the Lexical Quality Hypothesis (LQH) in that high-skill spellers form stronger orthographic representations which support word learning (Perfetti, 2007). Results also support an instance-based resonance process of word learning in that prior informative contexts can be reactivated to support word learning in future contexts (Bolger, Balass, Landen, & Perfetti, 2008; Balass, Nelson, & Perfetti, 2010; Reichle & Perfetti, 2003). (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Massive Multiplayer Online Role Playing Games and Interaction: A Measurable Model of Interaction for Online Learning

    Science.gov (United States)

    Anderson, Bodi

    2014-01-01

    This current study examines the need for operational definitions of the concept of interaction in distance education studies. It is proposed that a discourse analysis of linguistic features conversation noted as being representative of interaction can be used to operationalize interaction in synchronous CMC. This study goes on compare two…

  1. Photosynthesis: an interactive didactic model’s use to the learning and teaching process

    Directory of Open Access Journals (Sweden)

    Vanessa Liesenfeld

    2015-06-01

    Full Text Available Photosynthesis is a complex process that involves the implementation of several reactions which, many times, makes this content difficult for students to understand. The objective of this study was to investigate if an interactive didactic model, crafted with simple materials, could facilitate the understanding and learning of students on photosynthesis. Initially students of first year high school class from a public school Western of Paraná were asked to diagram what they knew about photosynthesis and respond to a questionnaire. It was concluded that many of the students’ prior concepts were general or inaccurate, such as the idea of photosynthesis being the process of respiration in plants, and O2 coming from the CO2, not from the photo-oxidation of water. These prior conceptions were important for planning the approach to the subject. The process of photosynthesis was then covered in lecture and dialogued, using the interactive didactic model to highlight the explanations. A new questionnaire was completed by the students, and concluded that the use of the interactive didactic model was efficient, since it helped to consolidate correct concepts and simultaneously, introduced new ones as well it shook the equivocal relations.

  2. Pragmatic Frames for Teaching and Learning in Human-Robot Interaction: Review and Challenges.

    Science.gov (United States)

    Vollmer, Anna-Lisa; Wrede, Britta; Rohlfing, Katharina J; Oudeyer, Pierre-Yves

    2016-01-01

    One of the big challenges in robotics today is to learn from human users that are inexperienced in interacting with robots but yet are often used to teach skills flexibly to other humans and to children in particular. A potential route toward natural and efficient learning and teaching in Human-Robot Interaction (HRI) is to leverage the social competences of humans and the underlying interactional mechanisms. In this perspective, this article discusses the importance of pragmatic frames as flexible interaction protocols that provide important contextual cues to enable learners to infer new action or language skills and teachers to convey these cues. After defining and discussing the concept of pragmatic frames, grounded in decades of research in developmental psychology, we study a selection of HRI work in the literature which has focused on learning-teaching interaction and analyze the interactional and learning mechanisms that were used in the light of pragmatic frames. This allows us to show that many of the works have already used in practice, but not always explicitly, basic elements of the pragmatic frames machinery. However, we also show that pragmatic frames have so far been used in a very restricted way as compared to how they are used in human-human interaction and argue that this has been an obstacle preventing robust natural multi-task learning and teaching in HRI. In particular, we explain that two central features of human pragmatic frames, mostly absent of existing HRI studies, are that (1) social peers use rich repertoires of frames, potentially combined together, to convey and infer multiple kinds of cues; (2) new frames can be learnt continually, building on existing ones, and guiding the interaction toward higher levels of complexity and expressivity. To conclude, we give an outlook on the future research direction describing the relevant key challenges that need to be solved for leveraging pragmatic frames for robot learning and teaching.

  3. Interaction Creates Learning: Engaging Learners with Special Educational Needs through Orff-Schulwerk

    Directory of Open Access Journals (Sweden)

    Markku Kaikkonen

    2013-12-01

    Full Text Available We consider the individual and the collective as fundamentally interdependent. Interaction leads to learning and therefore theories of interaction are of importance. For a music teacher, the achieved awareness can lead to practical advances. Discovering the most productive interactional strategy and understanding the consequences of actions within the actual learning situation can be helpful in creating interaction and learning. However, as interaction is dynamic and complex, especially those practitioners working with students with Special Educational Needs (SEN may not be satisfied with the respective conceptual frameworks on interaction processes. In the present article, we reason that on close inspection it is possible to develop a conceptual approach that meets the diversified challenges of pedagogical interaction. We also suggest that pedagogical interaction with students with SEN can be grounded on the insights of Orff-Schulwerk. First, we briefly describe some of the key principles of Orff-Schulwerk. After the theoretical background the article continues with real case examples with a view to illustrating the applications of the approach and some of the advances of the Orff-Schulwerk perspective in special music educational environments. We close with a summary, presenting some views on the potential of Orff-Schulwerk in pedagogical interaction with students with SEN.

  4. Mixed Reality Environment for Web-Based Laboratory Interactive Learning

    Directory of Open Access Journals (Sweden)

    A. I. Saleem

    2008-02-01

    Full Text Available This paper presents a web-based laboratory fordistance learners by incorporating simulation andhardware implementation into web-based e-learningsystems. It presents a development consisting of laboratorycourse through internet based on mixed reality technique tosetup, run and manipulateset of experiments. Eachexperiment has been designed in a way that allows thelearner to manipulate the components and check if it worksproperly in order to achieve the experiment objective. Theproposed laboratory e-learning tool has web-basedcomponents accessed by authorized users. Learners canacquire the necessary skills they need, while learning thetheory of the experiment and the basic characteristics ofeach component used in the experiment. Finally, a casestudy was conducted to show the feasibility and efficiencyof the proposed method.

  5. Blended learning in a first-year language class: Evaluating the acceptance of an interactive learning environment

    Directory of Open Access Journals (Sweden)

    Jako Olivier

    2016-10-01

    Full Text Available Increasingly blended learning, as a combination of face-to-face and online instruction is applied in university classrooms. In this study the use of an interactive learning environment (ILE, within a Sakai-based learning management system, as well as face-to-face teaching and learning in a first-year Afrikaans language class is explored. The Technology Acceptance Model (TAM was employed by means of a survey and the Structure Equation Model was used to explore factors relevant to this first-year class. In addition, qualitative research was conducted through an open questionnaire in order to determine the perceptions regarding the blended learning context and the ILE. It was found that students are generally able to function within the ILE and they are quite positive towards the use of the learning environment for learning and teaching. However, it is clear that some students still prefer printed study material. Despite the fact that students indicated that they use the ILE daily, actual usage statistics did not always correspond. Finally, this paper makes suggestions with regard to adapting teaching in terms of students’ behaviour based on their computer anxiety and Internet self-efficacy as well as the perceived usefulness and ease of use of the ILE.

  6. How Multi-Levels of Individual and Team Learning Interact in a Public Healthcare Organisation: A Conceptual Framework

    Science.gov (United States)

    Doyle, Louise; Kelliher, Felicity; Harrington, Denis

    2016-01-01

    The aim of this paper is to review the relevant literature on organisational learning and offer a preliminary conceptual framework as a basis to explore how the multi-levels of individual learning and team learning interact in a public healthcare organisation. The organisational learning literature highlights a need for further understanding of…

  7. An interactive approach for new careers: The role of learning opportunities and learning behavior

    OpenAIRE

    van der Sluis, E.C.; Peiperl, M.A.

    2000-01-01

    This study examined the learning process at work from an individual perspective. Different kinds of learning opportunities and learning behavior were examined as (a) predictors of career development and (b) moderators of the development process on the job. Survey data from early-career MBAs were analyzed by performing hierarchical regressions and difference-of-means tests. Results indicated that the total amount of developmental job opportunities has a positive influence on individual percept...

  8. Wolfram technologies as an integrated scalable platform for interactive learning

    Science.gov (United States)

    Kaurov, Vitaliy

    2012-02-01

    We rely on technology profoundly with the prospect of even greater integration in the future. Well known challenges in education are a technology-inadequate curriculum and many software platforms that are difficult to scale or interconnect. We'll review an integrated technology, much of it free, that addresses these issues for individuals and small schools as well as for universities. Topics include: Mathematica, a programming environment that offers a diverse range of functionality; natural language programming for getting started quickly and accessing data from Wolfram|Alpha; quick and easy construction of interactive courseware and scientific applications; partnering with publishers to create interactive e-textbooks; course assistant apps for mobile platforms; the computable document format (CDF); teacher-student and student-student collaboration on interactive projects and web publishing at the Wolfram Demonstrations site.

  9. Student profile with high adversity quotient in math learning

    Science.gov (United States)

    Hastuti, T. D.; Sari S, D. R.; Riyadi

    2018-03-01

    Lately a lot of research conducted to determine the effect of Adversity Quotient students on learning achievement. This is done because many students with excellent IQ and EQ, but often have problems when they are in the workforce. This study will analyze the profile of High School students with high Adversity Quotient (AQ) in learning mathematics. The test is done using a questionnaire to know the AQ level of the students, and the interview is done to get the data about the student profile. Based on the results of tests and interviews obtained data that students with high AQ able to face the learning of mathematics in various materials and with different models of learning.

  10. Impact of technology-infused interactive learning environments on college professors' instructional decisions and practices

    Science.gov (United States)

    Kuda Malwathumullage, Chamathca Priyanwada

    Recent advancements in instructional technology and interactive learning space designs have transformed how undergraduate classrooms are envisioned and conducted today. Large number of research studies have documented the impact of instructional technology and interactive learning spaces on elevated student learning gains, positive attitudes, and increased student engagement in undergraduate classrooms across nation. These research findings combined with the movement towards student-centered instructional strategies have motivated college professors to explore the unfamiliar territories of instructional technology and interactive learning spaces. Only a limited number of research studies that explored college professors' perspective on instructional technology and interactive learning space use in undergraduate classrooms exist in the education research literature. Since college professors are an essential factor in undergraduate students' academic success, investigating how college professors perceive and utilize instructional technology and interactive learning environments can provide insights into designing effective professional development programs for college professors across undergraduate institutions. Therefore, the purpose of this study was to investigate college professors' pedagogical reasoning behind incorporating different types of instructional technologies and teaching strategies to foster student learning in technology-infused interactive learning environments. Furthermore, this study explored the extent to which college professors' instructional decisions and practices are affected by teaching in an interactive learning space along with their overall perception of instructional technology and interactive learning spaces. Four college professors from a large public Midwestern university who taught undergraduate science courses in a classroom based on the 'SCALE-UP model' participated in this study. Major data sources included classroom

  11. Imitative and Direct Learning as Interacting Factors in Life History Evolution.

    Science.gov (United States)

    Bullinaria, John A

    2017-01-01

    The idea that lifetime learning can have a significant effect on life history evolution has recently been explored using a series of artificial life simulations. These involved populations of competing individuals evolving by natural selection to learn to perform well on simplified abstract tasks, with the learning consisting of identifying regularities in their environment. In reality, there is more to learning than that type of direct individual experience, because it often includes a substantial degree of social learning that involves various forms of imitation of what other individuals have learned before them. This article rectifies that omission by incorporating memes and imitative learning into revised versions of the previous approach. To do this reliably requires formulating and testing a general framework for meme-based simulations that will enable more complete investigations of learning as a factor in any life history evolution scenarios. It does that by simulating imitative information transfer in terms of memes being passed between individuals, and developing a process for merging that information with the (possibly inconsistent) information acquired by direct experience, leading to a consistent overall body of learning. The proposed framework is tested on a range of learning variations and a representative set of life history factors to confirm the robustness of the approach. The simulations presented illustrate the types of interactions and tradeoffs that can emerge, and indicate the kinds of species-specific models that could be developed with this approach in the future.

  12. Investigating physics learning with layered student interaction networks

    DEFF Research Database (Denmark)

    Bruun, Jesper; Traxler, Adrienne

    Centrality in student interaction networks (SINs) can be linked to variables like grades [1], persistence [2], and participation [3]. Recent efforts in the field of network science have been done to investigate layered - or multiplex - networks as mathematical objects [4]. These networks can be e......, this study investigates how target entropy [5,1] and pagerank [6,7] are affected when we take time and modes of interaction into account. We present our preliminary models and results and outline our future work in this area....

  13. Interactive Multimedia-Based Animation: A Study of Effectiveness on Fashion Design Technology Learning

    Science.gov (United States)

    Wiana, W.

    2018-01-01

    The learning process is believed will reach optimal results if facilitated by diversity of learning’s device from aspects of the approach, method, media or it’s evaluation system, in individually, groups, or as well as classical. One of the learning’s Device can be developed in an attempt to improve the results of the study is Computer Based Learning (CBL). CBL was developed aim to help students to understand the concepts of the learning material which presented interactively by the system and able to provide information and learning process better. This research is closely related to efforts to improve the quality of Fashion design in digital format learning, with specific targets to generate interactive multimedia-based animation as effective media and learning resources for fashion design learning. Applications that are generated may be an option for delivering learning material as well as to engender interest in learning as well as understanding with students against the subject matter so that it can improve the learning achievements of students. The instruments used to collect data is a test sheet of mastering the concept which developed on the basis of indicators understanding the concept of fashion design, the material elements and principles of fashion design as well as application on making fashion design. As for the skills test is done through test performance to making fashion design in digital format. The results of testing against the mastery of concepts and skills of fashion designing in digital formatted shows that experimental group obtained significantly higher qualifications compared to the control group. That means that the use of interactive multimedia-based animation, effective to increased mastery of concepts and skills on making fashion design in digital format.

  14. Exploring The Moon through a 21st Century Learning Environment of Interactive Whiteboards

    Science.gov (United States)

    Runyon, C. J.; Hall, C.; Joyner, E.; Meyer, H. M.

    2012-12-01

    Lunar exploration has an important role to play in inspiring students to hone their skills and understanding, as well as encouraging them to pursue careers in science, technology engineering and math (STEM). Many of NASA's current lunar educational materials do not dynamically engage the whole learner or effectively address 21st Century skills. We present examples of several dynamic lunar science activities for use on interactive white boards. These activities are replicable and incorporate NASA mission-derived sampling and analysis techniques. Building on a highly visual and tactile workforce, it is imperative that today's classrooms keep up with technologies that are the media of modern life. Interactive white boards offer a coordinated curricula and supporting resources that are immediately usable in most classrooms across America. Our dynamic classroom materials are rich in scientific processes, meet the national standards of learning in STEM, and are teacher-vetted for content and usability. Incorporating educational activities created from the NASA Lunar Science Institute team activities, the Moon Mineralogy Mapper (M3) Educator's Guide, and more current NASA lunar missions, we offer three dynamic modules for use on an interactive white board. SMART activities implement the mastery teaching model, employing instructional strategies so that all students can achieve the same level of learning. Our goal is to provide educators with multiple resources for teaching their students about the Moon and engaging their interest in pursuing STEM in the future. In addition to background information, inquiry-oriented lessons allow students to gather information and data directly through the Internet. For example, with the return of high resolution/high spatial data from M3/Chandrayaan-1, we can now better identify, discern and understand the compositional variations on the lunar surface. Data and analysis techniques from the M3 imaging spectrometer are incorporated into

  15. Representation and Integration: Combining Robot Control, High-Level Planning, and Action Learning

    DEFF Research Database (Denmark)

    Petrick, Ronald; Kraft, Dirk; Mourao, Kira

    We describe an approach to integrated robot control, high-level planning, and action effect learning that attempts to overcome the representational difficulties that exist between these diverse areas. Our approach combines ideas from robot vision, knowledgelevel planning, and connectionist machine......-level action specifications, suitable for planning, from a robot’s interactions with the world. We present a detailed overview of our approach and show how it supports the learning of certain aspects of a high-level lepresentation from low-level world state information....... learning, and focuses on the representational needs of these components.We also make use of a simple representational unit called an instantiated state transition fragment (ISTF) and a related structure called an object-action complex (OAC). The goal of this work is a general approach for inducing high...

  16. Carpet Aids Learning in High Performance Schools

    Science.gov (United States)

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  17. Instructional Design to Measure the Efficacy of Interactive E-Books in A High School Setting

    Directory of Open Access Journals (Sweden)

    Maria Victoria PABRUA BATOON

    2018-04-01

    Full Text Available This article describes a qualitative research analysis on the implementation of interactive e-books in high school courses using a case study approach. The subjects of the study included seven professors and 16 freshmen who were surveyed and interviewed with a questionnaire designed according to the Kemp Model of Instructional Design. The study revealed that participants use interactive e-books as a technological educational resource. The professors pointed out that the design of the interactive e-books helped students develop essential learning skills: technological ability, reading and writing skills, as well as cognition and metacognition abilities. Furthermore, the students noted that the use of interactive e-books has a positive effect on their grades due to its high audio and visual contents. However, the students indicated that they were allured to chat, to play or to navigate in their mobile device while they were using it. Finally, this study can contribute to the relative knowledge about the use of mobile technology in education, as well as, it aids the professor to make a reflection about the Instructional Design of the educational technological resources used in the classroom to promote better result in the process of learning.

  18. Authoring for Engagement in Interactive Dramatic Experiences for Learning

    DEFF Research Database (Denmark)

    Schoenau-Fog, Henrik; Bruni, Luis Emilio; Khalil, Faysal Fuad

    2013-01-01

    ’s control over communicating a theme. To address this problem, this paper contributes a method for organizing narrative events in a free-roaming virtual environment. The Interactive Dramatic Experience Model (IDEM) retains the freedom of navigation while maintaining the possibility to construct various...

  19. The ZAP Project: Designing Interactive Computer Tools for Learning Psychology

    Science.gov (United States)

    Hulshof, Casper; Eysink, Tessa; de Jong, Ton

    2006-01-01

    In the ZAP project, a set of interactive computer programs called "ZAPs" was developed. The programs were designed in such a way that first-year students experience psychological phenomena in a vivid and self-explanatory way. Students can either take the role of participant in a psychological experiment, they can experience phenomena themselves,…

  20. IMPROVING INTERACTION THROUGH BLOGS IN A CONSTRUCTIVIST LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Cem CUHADAR,

    2010-01-01

    Full Text Available The current study investigated the ways to improve the interaction through blogs in an information technology course, in which a constructive approach was employed. Eighteen students enrolled in the Department of Computer Education and Instructional Technologies at Anadolu University during the spring semester of the academic year 2006-2007 participated in the action research designed in accordance with the purpose of the study. The data were collected through different techniques and tools including observation and interviews. Content analysis and descriptive analysis were conducted to analyze data. To sustain credibility, conformability, consistency, and transferability, several strategies were adopted such as in-depth data collection and data triangulation. Findings revealed that the course, which was planned according to constructivist principles and applied through blogs, could improve both instruction and social interaction. Findings also suggested that participants’ needs regarding information sharing, instructional support and communication played an important role to improve interaction among participants and with the course instructor. Furthermore, it was observed that blogs could be used as tools to develop interaction in discussions and group works.

  1. Violent Interaction Detection in Video Based on Deep Learning

    Science.gov (United States)

    Zhou, Peipei; Ding, Qinghai; Luo, Haibo; Hou, Xinglin

    2017-06-01

    Violent interaction detection is of vital importance in some video surveillance scenarios like railway stations, prisons or psychiatric centres. Existing vision-based methods are mainly based on hand-crafted features such as statistic features between motion regions, leading to a poor adaptability to another dataset. En lightened by the development of convolutional networks on common activity recognition, we construct a FightNet to represent the complicated visual violence interaction. In this paper, a new input modality, image acceleration field is proposed to better extract the motion attributes. Firstly, each video is framed as RGB images. Secondly, optical flow field is computed using the consecutive frames and acceleration field is obtained according to the optical flow field. Thirdly, the FightNet is trained with three kinds of input modalities, i.e., RGB images for spatial networks, optical flow images and acceleration images for temporal networks. By fusing results from different inputs, we conclude whether a video tells a violent event or not. To provide researchers a common ground for comparison, we have collected a violent interaction dataset (VID), containing 2314 videos with 1077 fight ones and 1237 no-fight ones. By comparison with other algorithms, experimental results demonstrate that the proposed model for violent interaction detection shows higher accuracy and better robustness.

  2. Interactive Distance Learning Effectively Provides Winning Sports Nutrition Workshops.

    Science.gov (United States)

    Ricketts, Jennifer; Hoelscher-Day, Sharon; Begeman, Gale; Houtkooper, Linda

    2001-01-01

    Interactive distance-education (n=226) and face-to-face (n=129) continuing education workshops for health care and education professionals on sports nutrition were evaluated immediately and after 6 months. The well-designed distance-education format was as effective and acceptable as face to face and increased sports nutrition knowledge. (SK)

  3. Interactive Distance Learning and Job Support Strategies for Soft Skills.

    Science.gov (United States)

    Campbell, J. Olin; And Others

    1996-01-01

    Discusses the development of soft skills such as management and sales or collaborative problem solving through the use of interactive distance education. Highlights include performance support, including interpersonal skills; long-term cognitive restructuring; and linking training to organizational goals. (Author/LRW)

  4. Social coordination in toddler's word learning: interacting systems of perception and action

    Science.gov (United States)

    Pereira, Alfredo; Smith, Linda; Yu, Chen

    2008-06-01

    We measured turn-taking in terms of hand and head movements and asked if the global rhythm of the participants' body activity relates to word learning. Six dyads composed of parents and toddlers (M=18 months) interacted in a tabletop task wearing motion-tracking sensors on their hands and head. Parents were instructed to teach the labels of 10 novel objects and the child was later tested on a name-comprehension task. Using dynamic time warping, we compared the motion data of all body-part pairs, within and between partners. For every dyad, we also computed an overall measure of the quality of the interaction, that takes into consideration the state of interaction when the parent uttered an object label and the overall smoothness of the turn-taking. The overall interaction quality measure was correlated with the total number of words learned. In particular, head movements were inversely related to other partner's hand movements, and the degree of bodily coupling of parent and toddler predicted the words that children learned during the interaction. The implications of joint body dynamics to understanding joint coordination of activity in a social interaction, its scaffolding effect on the child's learning and its use in the development of artificial systems are discussed.

  5. Assessment of Learning in Digital Interactive Social Networks: A Learning Analytics Approach

    Science.gov (United States)

    Wilson, Mark; Gochyyev, Perman; Scalise, Kathleen

    2016-01-01

    This paper summarizes initial field-test results from data analytics used in the work of the Assessment and Teaching of 21st Century Skills (ATC21S) project, on the "ICT Literacy--Learning in digital networks" learning progression. This project, sponsored by Cisco, Intel and Microsoft, aims to help educators around the world enable…

  6. Facebook Mediated Interaction and Learning in Distance Learning at Makerere University

    Science.gov (United States)

    Mayende, Godfrey; Muyinda, Paul Birevu; Isabwe, Ghislain Maurice Norbert; Walimbwa, Michael; Siminyu, Samuel Ndeda

    2014-01-01

    This paper reports on an investigation of the use of Facebook as a tool to mediate learning amongst distance learners at Makerere University, a dual-mode institution offering both conventional and distance learning programs. While conventional courses take 17 weeks in a semester, the distance learners come in for two residential sessions, each…

  7. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.

    Science.gov (United States)

    Qureshi, Ahmed Hussain; Nakamura, Yutaka; Yoshikawa, Yuichiro; Ishiguro, Hiroshi

    2018-03-26

    For a natural social human-robot interaction, it is essential for a robot to learn the human-like social skills. However, learning such skills is notoriously hard due to the limited availability of direct instructions from people to teach a robot. In this paper, we propose an intrinsically motivated reinforcement learning framework in which an agent gets the intrinsic motivation-based rewards through the action-conditional predictive model. By using the proposed method, the robot learned the social skills from the human-robot interaction experiences gathered in the real uncontrolled environments. The results indicate that the robot not only acquired human-like social skills but also took more human-like decisions, on a test dataset, than a robot which received direct rewards for the task achievement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Social Interaction Affects Neural Outcomes of Sign Language Learning As a Foreign Language in Adults.

    Science.gov (United States)

    Yusa, Noriaki; Kim, Jungho; Koizumi, Masatoshi; Sugiura, Motoaki; Kawashima, Ryuta

    2017-01-01

    Children naturally acquire a language in social contexts where they interact with their caregivers. Indeed, research shows that social interaction facilitates lexical and phonological development at the early stages of child language acquisition. It is not clear, however, whether the relationship between social interaction and learning applies to adult second language acquisition of syntactic rules. Does learning second language syntactic rules through social interactions with a native speaker or without such interactions impact behavior and the brain? The current study aims to answer this question. Adult Japanese participants learned a new foreign language, Japanese sign language (JSL), either through a native deaf signer or via DVDs. Neural correlates of acquiring new linguistic knowledge were investigated using functional magnetic resonance imaging (fMRI). The participants in each group were indistinguishable in terms of their behavioral data after the instruction. The fMRI data, however, revealed significant differences in the neural activities between two groups. Significant activations in the left inferior frontal gyrus (IFG) were found for the participants who learned JSL through interactions with the native signer. In contrast, no cortical activation change in the left IFG was found for the group who experienced the same visual input for the same duration via the DVD presentation. Given that the left IFG is involved in the syntactic processing of language, spoken or signed, learning through social interactions resulted in an fMRI signature typical of native speakers: activation of the left IFG. Thus, broadly speaking, availability of communicative interaction is necessary for second language acquisition and this results in observed changes in the brain.

  9. Pragmatic Frames for Teaching and Learning in Human–Robot Interaction: Review and Challenges

    Science.gov (United States)

    Vollmer, Anna-Lisa; Wrede, Britta; Rohlfing, Katharina J.; Oudeyer, Pierre-Yves

    2016-01-01

    One of the big challenges in robotics today is to learn from human users that are inexperienced in interacting with robots but yet are often used to teach skills flexibly to other humans and to children in particular. A potential route toward natural and efficient learning and teaching in Human-Robot Interaction (HRI) is to leverage the social competences of humans and the underlying interactional mechanisms. In this perspective, this article discusses the importance of pragmatic frames as flexible interaction protocols that provide important contextual cues to enable learners to infer new action or language skills and teachers to convey these cues. After defining and discussing the concept of pragmatic frames, grounded in decades of research in developmental psychology, we study a selection of HRI work in the literature which has focused on learning–teaching interaction and analyze the interactional and learning mechanisms that were used in the light of pragmatic frames. This allows us to show that many of the works have already used in practice, but not always explicitly, basic elements of the pragmatic frames machinery. However, we also show that pragmatic frames have so far been used in a very restricted way as compared to how they are used in human–human interaction and argue that this has been an obstacle preventing robust natural multi-task learning and teaching in HRI. In particular, we explain that two central features of human pragmatic frames, mostly absent of existing HRI studies, are that (1) social peers use rich repertoires of frames, potentially combined together, to convey and infer multiple kinds of cues; (2) new frames can be learnt continually, building on existing ones, and guiding the interaction toward higher levels of complexity and expressivity. To conclude, we give an outlook on the future research direction describing the relevant key challenges that need to be solved for leveraging pragmatic frames for robot learning and teaching

  10. Interactive Preference Learning of Utility Functions for Multi-Objective Optimization

    OpenAIRE

    Dewancker, Ian; McCourt, Michael; Ainsworth, Samuel

    2016-01-01

    Real-world engineering systems are typically compared and contrasted using multiple metrics. For practical machine learning systems, performance tuning is often more nuanced than minimizing a single expected loss objective, and it may be more realistically discussed as a multi-objective optimization problem. We propose a novel generative model for scalar-valued utility functions to capture human preferences in a multi-objective optimization setting. We also outline an interactive active learn...

  11. Interactive, technology-enhanced self-regulated learning tools in healthcare education: a literature review.

    Science.gov (United States)

    Petty, Julia

    2013-01-01

    Learning technology is increasingly being implemented for programmes of blended learning within nurse education. With a growing emphasis on self-directed study particularly in post-basic education, there is a need for learners to be guided in their learning away from practice and limited classroom time. Technology-enabled (TE) tools which engage learners actively can play a part in this. The effectiveness and value of interactive TE learning strategies within healthcare is the focus of this paper. To identify literature that explores the effectiveness of interactive, TE tools on knowledge acquisition and learner satisfaction within healthcare with a view to evaluating their use for post-basic nurse education. A Literature Review was performed focusing on papers exploring the comparative value and perceived benefit of TE tools compared to traditional modes of learning within healthcare. The Databases identified as most suitable due to their relevance to healthcare were accessed through EBSCOhost. Primary, Boolean and advanced searches on key terms were undertaken. Inclusion and exclusion criteria were applied which resulted in a final selection of 11 studies for critique. Analysis of the literature found that knowledge acquisition in most cases was enhanced and measured learner satisfaction was generally positive for interactive, self-regulated TE tools. However, TE education may not suit all learners and this is critiqued in the light of the identified limitations. Interactive self regulation and/or testing can be a valuable learning strategy that can be incorporated into self-directed programmes of study for post-registration learners. Whilst acknowledging the learning styles not suited to such tools, the concurrent use of self-directed TE tools with those learning strategies necessitating a more social presence can work together to support enhancement of knowledge required to deliver rationale for nursing practice. Copyright © 2012 Elsevier Ltd. All rights

  12. Classroom interaction and language learning among boys in coed and single-sex contexts

    OpenAIRE

    Rojas Alfaro, Roberto Enrique

    2012-01-01

    This paper will address the differences and similarities in EFL interactive patterns of boys' learning in gender specific learning environments. The presentation will explore the findings of observational research conducted in coeducational and single-sex classrooms in two secondary schools in Costa Rica, namely Yorkin and New Hope schools. Data collection included class observation, interviews, surveys, questionnaires, photo ethnography and artifacts. The results revealed that boys in both c...

  13. Independent Interactive Inquiry-Based Learning Modules Using Audio-Visual Instruction In Statistics

    OpenAIRE

    McDaniel, Scott N.; Green, Lisa

    2012-01-01

    Simulations can make complex ideas easier for students to visualize and understand. It has been shown that guidance in the use of these simulations enhances students’ learning. This paper describes the implementation and evaluation of the Independent Interactive Inquiry-based (I3) Learning Modules, which use existing open-source Java applets, combined with audio-visual instruction. Students are guided to discover and visualize important concepts in post-calculus and algebra-based courses in p...

  14. Interaction between emotional state and learning underlies mood instability

    OpenAIRE

    Eldar, Eran; Niv, Yael

    2015-01-01

    Intuitively, good and bad outcomes affect our emotional state, but whether the emotional state feeds back onto the perception of outcomes remains unknown. Here, we use behaviour and functional neuroimaging of human participants to investigate this bidirectional interaction, by comparing the evaluation of slot machines played before and after an emotion-impacting wheel-of-fortune draw. Results indicate that self-reported mood instability is associated with a positive-feedback effect of emotion...

  15. Conceptual Framework: Development of Interactive Reading Malay Language Learning System (I-ReaMaLLS

    Directory of Open Access Journals (Sweden)

    Ismail Nurulisma

    2018-01-01

    Full Text Available Reading is very important to access knowledge. Reading skills starts during preschool level no matter of the types of languages. At present, there are many preschool children who are still unable to recognize letters or even words. This leads to the difficulties in reading. Therefore, there is a need of intervention in reading to overcome such problems. Thus, technologies were adapted in enhancing learning skills, especially in learning to read among the preschool children. Phonological is one of the factors to be considered to ensure a smooth of transition into reading. Phonological concept enables the first learner to easily learn reading such to learn reading Malay language. The medium of learning to read Malay language can be assisted via the supportive of multimedia technology to enhance the preschool children learning. Thus, an interactive system is proposed via a development of interactive reading Malay language learning system, which is called as I-ReaMaLLS. As a part of the development of I-ReaMaLLS, this paper focus on the development of conceptual framework in developing interactive reading Malay language learning system (I-ReaMaLLS. I-ReaMaLLS is voice based system that facilitates the preschool learner in learning reading Malay language. The conceptual framework of developing I-ReaMaLLS is conceptualized based on the initial study conducted via methods of literature review and observation with the preschool children, aged 5 – 6 years. As the result of the initial study, research objectives have been affirmed that finally contributes to the design of conceptual framework for the development of I-ReaMaLLS.

  16. "Learning to Do" during High Unemployment

    Science.gov (United States)

    Rhee-Weise, Michelle; Horn, Michael B.

    2013-01-01

    Even as the economy appears to have turned a corner, high unemployment persists. Strangely, as millions nationwide struggle to find work, there are millions of jobs that remain unfilled. High unemployment rates may therefore have less to do than commonly assumed with an economy that is not healthy enough to produce jobs or employers who are…

  17. Development of Interactive Learning Media on Kinetic Gas Theory at SMAN 2 Takalar

    Science.gov (United States)

    Yanti, M.; Ihsan, N.; Subaer

    2017-02-01

    Learning media is the one of the most factor in supporting successfully in the learning process. The purpose of this interactive media is preparing students to improve skills in laboratory practice without need for assistance and are not bound by time and place. The subject of this study was 30 students grade XI IPA SMAN 2 Takalar. This paper discuss about the development of learning media based in theory of gas kinetic. This media designed to assist students in learning independently. This media made using four software, they are Microsoft word, Snagit Editor, Macromedia Flash Player and Lectora. This media are interactive, dynamic and could support the users desires to learn and understand course of gas theory. The development produce followed the four D models. Consisted of definition phase, design phase, development phase and disseminate phase. The results showed 1) the media were valid and reliable, 2) learning tools as well as hardcopy and softcopy which links to website 3) activity learners above 80% and 4) according to the test results, the concept of comprehension of student was improved than before given interactive media.

  18. Inferring high-confidence human protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Yu Xueping

    2012-05-01

    Full Text Available Abstract Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs, aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83% of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134% than either ranking based on the hypergeometric test (~109% or occurrence ranking (~46%. Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high

  19. The effect of pyrithioxine and pyridoxine on individual behavior, social interactions, and learning in rats malnourished in early postnatal life.

    Science.gov (United States)

    Tikal, K; Benesová, O; Franková, S

    1976-04-15

    Low protein (LP) or low calorie (LC) dietary regimens were applied in early postnatal life(1st-40th day of life) in male rats. After nutritional rehabilitation, open-field behavior in larger more illuminated boxes (HI, high intensity stimulus), and smaller, less illuminated boxes (HI, high intensity stimulus), and smaller, less illuminated boxes (HI, high intensity stimulus), and smaller, less illuminated boxes (HI, high intensity stimulus), dyadic interactions, and learning ability were investigated in these animals as adults (between the 200th to 300th day of life). LP malnutrition induced an increase of open-field activity with features of sterotypy both in LI and HI situations, an increase number of intersignal reactions during learning procedures without changes in other registered criteria of learning ability (latency, number of correct responses), and an increase of aggressive behavior in pair interaction. LC rats revealed only significant inhibition in LI--open-field activity and a slightly increased number in intersignal reactions during avoidance learning. With the aim of preventing previously described long-term deviations in early malnourished rats, some groups of animals with the above-mentioned early calorie or protein deficits were treated with pyrithioxine (Encephabol Merck) or pyridoxine in 10 doses of 40 mg/kg i.p. administered in the period when nutritional rehabilitation was carried out (between the 40th--50th day of life). The treatment with pyrithioxine reduced significantly behavioral disturbances in adult LP rats except the increase of intersignal reactions which was even potentiated. Pyridoxine was less effective but normalized the increase number of intersignal reactions both in LP and LC rats. The effect of pyridoxine of adult LC rats was interesting. There was significant improvement in all registered parameters of avoidance learning and a significant increase of sexual acts was recorded.

  20. Interactive algorithms for teaching and learning acute medicine in the network of medical faculties MEFANET.

    Science.gov (United States)

    Schwarz, Daniel; Štourač, Petr; Komenda, Martin; Harazim, Hana; Kosinová, Martina; Gregor, Jakub; Hůlek, Richard; Smékalová, Olga; Křikava, Ivo; Štoudek, Roman; Dušek, Ladislav

    2013-07-08

    Medical Faculties Network (MEFANET) has established itself as the authority for setting standards for medical educators in the Czech Republic and Slovakia, 2 independent countries with similar languages that once comprised a federation and that still retain the same curricular structure for medical education. One of the basic goals of the network is to advance medical teaching and learning with the use of modern information and communication technologies. We present the education portal AKUTNE.CZ as an important part of the MEFANET's content. Our focus is primarily on simulation-based tools for teaching and learning acute medicine issues. Three fundamental elements of the MEFANET e-publishing system are described: (1) medical disciplines linker, (2) authentication/authorization framework, and (3) multidimensional quality assessment. A new set of tools for technology-enhanced learning have been introduced recently: Sandbox (works in progress), WikiLectures (collaborative content authoring), Moodle-MEFANET (central learning management system), and Serious Games (virtual casuistics and interactive algorithms). The latest development in MEFANET is designed for indexing metadata about simulation-based learning objects, also known as electronic virtual patients or virtual clinical cases. The simulations assume the form of interactive algorithms for teaching and learning acute medicine. An anonymous questionnaire of 10 items was used to explore students' attitudes and interests in using the interactive algorithms as part of their medical or health care studies. Data collection was conducted over 10 days in February 2013. In total, 25 interactive algorithms in the Czech and English languages have been developed and published on the AKUTNE.CZ education portal to allow the users to test and improve their knowledge and skills in the field of acute medicine. In the feedback survey, 62 participants completed the online questionnaire (13.5%) from the total 460 addressed

  1. Modelization of cognition, activity and motivation as indicators for Interactive Learning Environment

    Directory of Open Access Journals (Sweden)

    Asmaa Darouich

    2017-06-01

    Full Text Available In Interactive Learning Environment (ILE, the cognitive activity and behavior of learners are the center of the researchers’ concerns. The improvement of learning through combining these axes as a structure of indicators for well-designed learning environment, encloses the measurement of the educational activity as a part of the learning process. In this paper, we propose a mathematical modeling approach based on learners actions to estimate the cognitive activity, learning behavior and motivation, in accordance with a proposed course content structure. This Cognitive indicator includes the study of knowledge, memory and reasoning. While, activity indicator aims to study effort, resistance and intensity. The results recovered on a sample of students with different levels of education, assume that the proposed approach presents a relation among all these indicators which is relatively reliable in the term of cognitive system.

  2. A review of currently available high performance interactive graphics systems

    International Nuclear Information System (INIS)

    Clark, S.A.; Harvey, J.

    1981-12-01

    A survey of several interactive graphics systems is given, all but one of which being based on calligraphic technology, which are being considered for a new High Energy Physics graphics facility at RAL. A brief outline of the system architectures is given, the detailed features being summarised in an appendix, and their relative merits are discussed. (U.K.)

  3. High-energy behavior of field-strength interactions

    International Nuclear Information System (INIS)

    Levin, D.N.

    1976-01-01

    It is known that spontaneously broken gauge theories are the only renormalizable theories of massive spin-one particles with mass dimension less than or equal to 4. This paper describes a search for renormalizable interactions with higher mass dimension. Specifically, we examine the high-energy behavior of a class of models which involve field-strength interactions. Power counting shows that the high-energy behavior of these models is no worse than the naively estimated high-energy behavior of a gauge theory in the U gauge. Therefore, there may be a ''soft'' symmetry-breaking mechanism (for instance, a soft divergence of an antisymmetric tensor current) which enforces renormalizable high-energy behavior in the same way that spontaneously broken gauge invariance guarantees the renormalizability of gauge theories. This hope is supported by the existence of ''gauge theories'' of strings, which describe analogous interactions of strings and field strengths. Unfortunately, this idea is tarnished by explicit calculations in which renormalizability is imposed in the form of unitarity bounds. These unitarity bounds imply that all possible field-strength couplings must be zero and that the remaining interactions describe a spontaneously broken gauge theory. Thus this result supports an earlier conjecture that gauge theories are the only renormalizable theories of massive vector bosons

  4. Cyberl@b: a platform for learning english in Costa Rican public high schools

    OpenAIRE

    Allen Quesada Pacheco

    2006-01-01

    Abstract: This paper covers the design and development of a noncommercial software for learning and practicing English called CyberL@b. It was developed at the School of Modern Languages at the University of Costa Rica. Its target population focuses on 7th, 8th and 9th graders at six public high schools in diverse urban and rural settings in Costa Rica.CyberL@b uses interactive media resources designed to engage student in learning English within authentic contexts.Cyberlab was designed to cr...

  5. Interactive Multimodal Molecular Set – Designing Ludic Engaging Science Learning Content

    DEFF Research Database (Denmark)

    Thorsen, Tine Pinholt; Christiansen, Kasper Holm Bonde; Jakobsen Sillesen, Kristian

    2014-01-01

    This paper reports on an exploratory study investigating 10 primary school students’ interaction with an interactive multimodal molecular set fostering ludic engaging science learning content in primary schools (8th and 9th grade). The concept of the prototype design was to bridge the physical...... and virtual worlds with electronic tags and, through this, blend the familiarity of the computer and toys, to create a tool that provided a ludic approach to learning about atoms and molecules. The study was inspired by the participatory design and informant design methodologies and included design...

  6. Enhancing in-Museum Informal Learning by Augmenting Artworks with Gesture Interactions and AIED Paradigms

    DEFF Research Database (Denmark)

    Blanchard, Emmanuel G.; Zanciu, Alin-Nicolae; Mahmoud, Haydar

    2014-01-01

    This paper presents a computer-supported approach for providing ‘enhanced’ discovery learning in informal settings like museums. It is grounded on a combination of gesture-based interactions and artwork-embedded AIED paradigms, and is implemented through a distributed architecture.......This paper presents a computer-supported approach for providing ‘enhanced’ discovery learning in informal settings like museums. It is grounded on a combination of gesture-based interactions and artwork-embedded AIED paradigms, and is implemented through a distributed architecture....

  7. Promoting Active Learning in Calculus and General Physics through Interactive and Media-Enhanced Lectures

    Directory of Open Access Journals (Sweden)

    Guoqing Tang

    2004-02-01

    Full Text Available In this paper we present an approach of incorporating interactive and media-enhanced lectures to promote active learning in Calculus and General Physics courses. The pedagogical practice of using interactive techniques in lectures to require "heads-on" and "hands-on" learning, and involve students more as active participants than passive receivers is a part of academic curricular reform efforts undertaken currently by the mathematics, physics and chemistry departments at North Carolina A&T State University under the NSF funded project "Talent-21: Gateway for Advancing Science and Mathematics Talents."

  8. Aging and a genetic KIBRA polymorphism interactively affect feedback- and observation-based probabilistic classification learning.

    Science.gov (United States)

    Schuck, Nicolas W; Petok, Jessica R; Meeter, Martijn; Schjeide, Brit-Maren M; Schröder, Julia; Bertram, Lars; Gluck, Mark A; Li, Shu-Chen

    2018-01-01

    Probabilistic category learning involves complex interactions between the hippocampus and striatum that may depend on whether acquisition occurs via feedback or observation. Little is known about how healthy aging affects these processes. We tested whether age-related behavioral differences in probabilistic category learning from feedback or observation depend on a genetic factor known to influence individual differences in hippocampal function, the KIBRA gene (single nucleotide polymorphism rs17070145). Results showed comparable age-related performance impairments in observational as well as feedback-based learning. Moreover, genetic analyses indicated an age-related interactive effect of KIBRA on learning: among older adults, the beneficial T-allele was positively associated with learning from feedback, but negatively with learning from observation. In younger adults, no effects of KIBRA were found. Our results add behavioral genetic evidence to emerging data showing age-related differences in how neural resources relate to memory functions, namely that hippocampal and striatal contributions to probabilistic category learning may vary with age. Our findings highlight the effects genetic factors can have on differential age-related decline of different memory functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. AN INDUCTIVE, INTERACTIVE AND ADAPTIVE HYBRID PROBLEM-BASED LEARNING METHODOLOGY: APPLICATION TO STATISTICS

    Directory of Open Access Journals (Sweden)

    ADA ZHENG

    2011-10-01

    Full Text Available We have developed an innovative hybrid problem-based learning (PBL methodology. The methodology has the following distinctive features: i Each complex question was decomposed into a set of coherent finer subquestions by following the carefully designed criteria to maintain a delicate balance between guiding the students and inspiring them to think independently. This learning methodology enabled the students to solve the complex questions progressively in an inductive context. ii Facilitated by the utilization of our web-based learning systems, the teacher was able to interact with the students intensively and could allocate more teaching time to provide tailor-made feedback for individual student. The students were actively engaged in the learning activities, stimulated by the intensive interaction. iii The answers submitted by the students could be automatically consolidated in the report of the Moodle system in real-time. The teacher could adjust the teaching schedule and focus of the class to adapt to the learning progress of the students by analysing the automatically generated report and log files of the web-based learning system. As a result, the attendance rate of the students increased from about 50% to more than 90%, and the students’ learning motivation have been significantly enhanced.

  10. High School Students with Learning Disabilities: Mathematics Instruction, Study Skills, and High Stakes Tests

    Science.gov (United States)

    Steele, Marcee M.

    2010-01-01

    This article reviews characteristics of high school students with learning disabilities and presents instructional modifications and study skills to help them succeed in algebra and geometry courses and on high stakes mathematics assessments.

  11. Active Learning in PhysicsTechnology and Research-based Techniques Emphasizing Interactive Lecture Demonstrations

    Science.gov (United States)

    Thornton, Ronald

    2010-10-01

    Physics education research has shown that learning environments that engage students and allow them to take an active part in their learning can lead to large conceptual gains compared to traditional instruction. Examples of successful curricula and methods include Peer Instruction, Just in Time Teaching, RealTime Physics, Workshop Physics, Scale-Up, and Interactive Lecture Demonstrations (ILDs). An active learning environment is often difficult to achieve in lecture sessions. This presentation will demonstrate the use of sequences of Interactive Lecture Demonstrations (ILDs) that use real experiments often involving real-time data collection and display combined with student interaction to create an active learning environment in large or small lecture classes. Interactive lecture demonstrations will be done in the area of mechanics using real-time motion probes and the Visualizer. A video tape of students involved in interactive lecture demonstrations will be shown. The results of a number of research studies at various institutions (including international) to measure the effectiveness of ILDs and guided inquiry conceptual laboratories will be presented.

  12. DISTANCE LEARNING STUDENTS’ NEED: Evaluating Interactions from Moore’s Theory of Transactional Distance

    Directory of Open Access Journals (Sweden)

    Rusmanizah USTATI

    2013-04-01

    Full Text Available This study draws on the experience from a focus group interviews under the distance learning programme known as Program Pensiswazahan Guru (PPG organized by the Malaysian Ministry of Education in collaboration with local universities and institutes of education. Its purpose is to uncover students’ perception about the platform used by International Islamic University Malaysia (IIUM which is the Learning Management System (LMS. LMS is a vital instructional medium especially for the varsity distant learners. Michael Moore’s Theory of Transactional Distance is used as the guiding framework to gain insights on learning and interactions in this e-learning setting. Teacher-student interactions are analyzed for better understanding of the phenomena under study. The findings indicate that in terms of usability LMS is perceived as a good platform to acquire information on content and to receive feedback from instructors. However, IIUM learners hope for more interactivity where learners can communicate amongst themselves beside engaging with the instructor-learner- content interactions that they currently experience via the system. This study aspires to provide insights on the significance of interactions from distance learners’ perception.

  13. E-Learning Content Design Standards Based on Interactive Digital Concepts Maps in the Light of Meaningful and Constructivist Learning Theory

    Science.gov (United States)

    Afify, Mohammed Kamal

    2018-01-01

    The present study aims to identify standards of interactive digital concepts maps design and their measurement indicators as a tool to develop, organize and administer e-learning content in the light of Meaningful Learning Theory and Constructivist Learning Theory. To achieve the objective of the research, the author prepared a list of E-learning…

  14. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-01-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to…

  15. Virtual Interactive Classroom: A New Technology for Distance Learning Developed

    Science.gov (United States)

    York, David W.; Babula, Maria

    1999-01-01

    The Virtual Interactive Classroom (VIC) allows Internet users, specifically students, to remotely control and access data from scientific equipment. This is a significant advantage to school systems that cannot afford experimental equipment, have Internet access, and are seeking to improve science and math scores with current resources. A VIC Development Lab was established at Lewis to demonstrate that scientific equipment can be controlled by remote users over the Internet. Current projects include a wind tunnel, a room camera, a science table, and a microscope.

  16. A New Look on the Development and Learning of Children with High Abilities

    Directory of Open Access Journals (Sweden)

    Giovana Mattei

    2007-09-01

    Full Text Available When we approach the subject development and learning soon in them it comes the mind the process of education and specific learning of the pertaining to school environment. However we must have clearly that the development as well as learning is complex processes that involves the pertaining not only the school environment but the development of the physical, mental and social of the human being. The human being is not only intellect, is a complex being with strong cognitive and ambient support, of interactions, learnings and consequently development and evolution. This capacity to learn during all the life, exactly without being present in a pertaining school environment, is what in them it becomes only beings capable to be able to interpret, to reveal knowledge, to develop itself socially intellectual and, that is learning in potential. With regard to the children superendowed or carrying of high innumerable abilities doubts and contradictions thus permeat the relative aspects to its development and learning, different visions and perspectives are analyzed in order to contribute and to clarify aspects related to these children special, so that school and educators can assist in significant way these children potentializing his capacities.

  17. High School Students' Implicit Theories of What Facilitates Science Learning

    Science.gov (United States)

    Parsons, Eileen Carlton; Miles, Rhea; Petersen, Michael

    2011-01-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high…

  18. Development of Interactive Media for ICT Learning at Elementary School Based on Student Self Learning

    OpenAIRE

    Sri Huning Anwariningsih; Sri Ernawati

    2013-01-01

    The implementation of information and comunication technology (ICT) curriculum at elementary school is the educational sector development. ICT subject is a practical subject which require a direct practice to make easier in the student understanding. Therefore, a teacher is demanded to make a learning media which helps the student to understand the material of study. This research is aimed at describing the model of ICT study in elementary school and using of learning media. Moreover, the des...

  19. High-Quality Learning Environments for Engineering Design: Using Tablet PCs and Guidelines from Research on How People Learn

    OpenAIRE

    Enrique Palou; Lourdes Gazca; Juan Antonio Díaz García; José Andrés Rojas Lobato; Luis Geraldo Guerrero Ojeda; José Francisco Tamborero Arnal; María Teresa Jiménez Munguía; Aurelio López-Malo; Juan Manuel Garibay

    2012-01-01

    A team of several faculty members and graduate students at Universidad de las Amricas Puebla is improving engineering design teaching and learning by creating richer learning environments that promote an interactive classroom while integrating formative assessment into classroom practices by means of Tablet PCs and associated technologies. Learning environments that are knowledge-, learner-, community-, and assessment-centered as highlighted by the How People Learn framework, have been devel...

  20. On the role of high multipolarity interactions in deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Sushkov, A.V.

    1989-01-01

    The influence of interactions with the multipolarity λ=5,6,7 and 9 is studied on the mixing of two-quasineutron and two-quasineutron states with large K in doubly even deformed nuclei. The mixing of the two-quasineutron and two-quasiproton states with the same values of K π , caused by a high multipolarity interaction, is shown to be large in the case of proximity of their energies. Qualitatively correct description of experimental data on the mixing of two-quasineutron and two-quasiproton configurations in 178,176 Hf, 174 Yb, 168 Er and 158 Gd is obtained. 20 refs.; 1 tab

  1. Interactive Role of Organizational Learning and Informal Norms in Accountability and Job Performance in 2014

    Directory of Open Access Journals (Sweden)

    Abolfazl Ghasemzadeh

    2015-09-01

    Full Text Available Introduction: Although the contribution of organizational learning to employee organizational performance is well documented, the mechanisms that explain such relationship remain unclear. Accordingly, the purpose of this paper is to investigate the interactional role of organizational learning and informal norms in accountability and job performance of the staff in a medical department. Methods: The research method of the study is descriptive-correlational type. The statistical population of this study included all staff (N=315 of the Medical Department in Oshnavieh Hospital in 2014. For data gathering in this study, a sample comprising of 180 staff was selected using stratified random sampling. The data were collected through standard questionnaires of Neefe for organizational learning, informal norms of Hall, job performance of Paterson, and the questionnaire of individual accountability of Hochwarter. Pearson and moderated multiple regression analysis were used to test hypotheses. Results: Results showed that organizational learning has a positive and significant correlation with job performance and individual accountability. The results, also, showed a positive and significant correlation between informal norms, personal accountability, and job performance. Regression results showed the interactive role of learning structure dimensions, strategy, and shared vision with informal norms, predicting individual accountability of the staff. Also, interactive role of organizational learning and informal norms was confirmed in predicting job performance of the medical staff. Conclusion: The result of this study hold out that organizational learning directly and with interaction of informal norms improves staffs' performance and accountability. As a result of improved informal norms in a medical setting, we will have staff’s strong accountability and performance.

  2. DrModelica - An Interactive Environment for Learning Modelica and Modeling using MathModelica

    OpenAIRE

    Lengquist Sandelin, Eva-Lena; Monemar, Susanna; Fritzson, Peter; Bunus, Peter

    2003-01-01

    This paper states the need for interactive teaching materials for programming languages within the area of modeling and simulation. We propose an interactive teaching material for the modeling language Modelica inspired by existing tutoring systems for Java and Scheme. The purpose of this new teaching material, called DrModelica, is to facilitate the learning of Modelica through an environment that integrates programming, program documentation and visualization. The teaching material is inten...

  3. A Proposed Framework Between Internal, External and Pedagogy Dimensions in Adoption of Interactive Multimedia e-Learning

    Directory of Open Access Journals (Sweden)

    Fathia LAHWAL

    2016-10-01

    Full Text Available This study about interactive multimedia e-learning aims to improve our understanding about the dynamics of e-learning. The objective is to critical evaluate and better understand the interrelationships in the proposed framework between internal, external and the pedagogy dimensions in adoption of interactive multimedia and e-learning. It develops a tool to measure creative user adoption of interactive multimedia and e-learning services by using Partial Least Squares algorithm as the method of estimation and the major analytical tool in this study. Finding of a small scale data sampling of students in United Kingdom indicate that the proposed measurement framework is an acceptable fit with the data. Overall, the findings supply a precise tool for measuring creative user adoption of interactive multimedia and e-learning services, providing further insights for researchers and may provide to guide research and practice in interactive multimedia and e-learning by using communication media.

  4. Calibration and statistical techniques for building an interactive screen for learning of alphabets by children

    Directory of Open Access Journals (Sweden)

    Riby Abraham Boby

    2017-05-01

    Full Text Available This article focuses on the implementation details of a portable interactive device called Image-projective Desktop Varnamala Trainer. The device uses a projector to produce a virtual display on a flat surface. For enabling interaction, the information about a user’s hand movement is obtained from a single two-dimensional scanning laser range finder in contrast with a camera sensor used in many earlier applications. A generalized calibration process to obtain exact transformation from projected screen coordinate system to sensor coordinate system is proposed in this article and implemented for enabling interaction. This permits production of large interactive displays with minimal cost. Additionally, it makes the entire system portable, that is, display can be produced on any planar surface like floor, tabletop, and so on. The calibration and its performance have been evaluated by varying screen sizes and the number of points used for calibration. The device was successfully calibrated for different screens. A novel learning-based methodology for predicting a user’s behaviour was then realized to improve the system’s performance. This has been experimentally evaluated, and the overall accuracy of prediction was about 96%. An application was then designed for this set-up to improve the learning of alphabets by the children through an interactive audiovisual feedback system. It uses a game-based methodology to help students learn in a fun way. Currently, it has bilingual (Hindi and English user interface to enable learning of alphabets and elementary mathematics. A user survey was conducted after demonstrating it to school children. The survey results are very encouraging. Additionally, a study to ascertain the improvement in the learning outcome of the children was done. The results clearly indicate an improvement in the learning outcome of the children who used the device over those who did not.

  5. The development of interactive multimedia based on auditory, intellectually, repetition in repetition algorithm learning to increase learning outcome

    Science.gov (United States)

    Munir; Sutarno, H.; Aisyah, N. S.

    2018-05-01

    This research aims to find out how the development of interactive multimedia based on auditory, intellectually, and repetition can improve student learning outcomes. This interactive multimedia is developed through 5 stages. Analysis stages include the study of literature, questionnaire, interviews and observations. The design phase is done by the database design, flowchart, storyboards and repetition algorithm material while the development phase is done by the creation of web-based framework. Presentation material is adapted to the model of learning such as auditory, intellectually, repetition. Auditory points are obtained by recording the narrative material that presented by a variety of intellectual points. Multimedia as a product is validated by material and media experts. Implementation phase conducted on grade XI-TKJ2 SMKN 1 Garut. Based on index’s gain, an increasing of student learning outcomes in this study is 0.46 which is fair due to interest of student in using interactive multimedia. While the multimedia assessment earned 84.36% which is categorized as very well.

  6. Virtual Sambor Prei Kuk: An Interactive Learning Tool

    Directory of Open Access Journals (Sweden)

    Daniel Michon

    2012-06-01

    Full Text Available MUVEs (Multi-User Virtual Environments are a new media for researching the genesis and evolution of sites of cultural significance. MUVEs are able to model both the tangible and intangible heritage of a site, allowing the user to obtain a more dynamic understanding of the culture. This paper illustrates a cultural heritage project which captures and communicates the interplay of context (geography, content (architecture and artifacts and temporal activity (rituals and everyday life leading to a unique digital archive of the tangible and intangible heritage of the temple complex at Sambor Prei Kuk, Cambodia, circa seventh-eighth century CE. The MU6VE is used to provide a platform which enables the experience of weaved tangible and intangible cultural heritage. This, we argue, turns static space into meaningful place. Further, this kind of digital model has the potential to bring together Jean Lave and Etienne Wenger’s theorizing on the importance of community in education and more recent theorizing on the impact of Virtual Worlds on learning by James Paul Gee.

  7. The Harmonic Walk: An Interactive Physical Environment to Learn Tonal Melody Accompaniment

    Directory of Open Access Journals (Sweden)

    Marcella Mandanici

    2016-01-01

    Full Text Available The Harmonic Walk is an interactive physical environment designed for learning and practicing the accompaniment of a tonal melody. Employing a highly innovative multimedia system, the application offers to the user the possibility of getting in touch with some fundamental tonal music features in a very simple and readily available way. Notwithstanding tonal music is very common in our lives, unskilled people as well as music students and even professionals are scarcely conscious of what these features actually are. The Harmonic Walk, through the body movement in space, can provide all these users a live experience of tonal melody structure, chords progressions, melody accompaniment, and improvisation. Enactive knowledge and embodied cognition allow the user to build an inner map of these musical features, which can be acted by moving on the active surface with a simple step. Thorough assessment tests with musicians and nonmusicians high school students could prove the high communicative power and efficiency of the Harmonic Walk application both in improving musical knowledge and in accomplishing complex musical tasks.

  8. Interactive learning for upgrading and growth: Case of Indonesian fishery firms

    Directory of Open Access Journals (Sweden)

    Erman Aminullah

    2017-07-01

    Full Text Available This paper intends to reveal the interactive learning for upgrading and growth in Indonesian fishery firms. The main question is how learning and innovation have occurred in Indonesian fishery firms. The study was conducted in two categories of fishery firms: fish processing and aquaculture (shrimp. The interfirm interactions contain knowledge flows and feedback in local production network involving local suppliers and foreign buyers. The study found that the model of interactive learning for upgrading and growth work as a coupling of three loops: the upgrading capability, the growth formation, and limiting elements. The upgrading capability is subject to growth formation, which is determined by limiting elements.  The limiting elements will control the quantity and quality of materials supply that affect inter-firm interaction. The model suggests that the dynamics of upgrading and growth through interactive leraning will continue in a stable manner by easing the constraints of limiting elements through: combating illegal fishing, encouraging interaction with universities, shifting to higher added value products, institutional support for global trading,  preventing shrimp disease, providing infrastructure, business facilities, and regulation information.   Key words: upgrading, growth, limiting elements, knowledge flows, production network, global market.

  9. High intraocular pressure produces learning and memory impairments in rats.

    Science.gov (United States)

    Yuan, Yuxiang; Chen, Zhiqi; Li, Lu; Li, Xing; Xia, Qian; Zhang, Hong; Duan, Qiming; Zhao, Yin

    2017-11-15

    Primary open angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Previous MRI studies have revealed that POAG can be associated with alterations in hippocampal function. Thus, the aim of this study was to investigate a relationship between chronic high intraocular pressure (IOP) and hippocampal changes in a rat model. We used behavioural tests to assess learning and memory ability, and additionally investigated the hippocampal expression of pathological amyloid beta (Aβ), phospho-tau, and related pathway proteins. Chronic high IOP impaired learning and memory in rats and concurrently increased Aβ and phospho-tau expression in the hippocampus by altering the activation of different kinase (GSK-3β, BACE1) and phosphatase (PP2A) proteins in the hippocampus. This study provides novel evidence for the relationship between high IOP and hippocampal alterations, especially in the context of learning and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  11. Angular dependence of high Mach number plasma interactions

    International Nuclear Information System (INIS)

    Thomas, V.A.; Brecht, S.H.

    1987-01-01

    In this paper a 2-1/2-dimensional hybrid code is used to examine the collisionless large spatial scale (kc/ω pi ∼ 1) low-frequency (ω ∼ ω ci ) interaction initiated by a plasma shell of finite width traveling at high Alfven Mach number relative to a uniform background plasma. Particular attention is given to the angle of the relative velocity relative to the ambient magnetic field for the range of angles O < θ < π/2. An attempt is made to parameterize some of the important physics including the Alfven ion cyclotron instability, the field-aligned electromagnetic ion counter streaming instability, mixing of the plasma shell with the background ions, and structuring of the interaction region. These results are applicable to various astrophysical interactions such as bow shocks and interplanetary shocks

  12. Mobile learning and high-lighting language education

    DEFF Research Database (Denmark)

    Vinther, Jane

    Mobile learning and high-profiling language education. The number of students learning a second or foreign language and participating in instruction in languages other than English has been in decline for some time. There seems to be such a general tendency across nations albeit for a variety...... of reasons idiosyncratic to the particular national conditions. This paper gives an account of a diversified national project designed to infuse foreign language learning classes in upper secondary schools in Denmark with renewed enthusiasm through systematically experimenting with the new media by taking...... advantage of the social side in their application. The aim has been to make language classes attractive and relevant and to highlight the attractiveness and fun in learning through web 2.0 and mobile units. The overall project was supported by the Danish ministry of education as well as the individual...

  13. Hypertension module: an interactive learning tool in physiology.

    Science.gov (United States)

    Işman, C A; Gülpinar, M A; Kurtel, H; Alican, I; Yeğen, B C

    2003-12-01

    The aim of the present study was to evaluate the strong or weak aspects of an interactive study module introduced during the "Cardiovascular and Respiratory Systems Subject Committee" in the second year of the medical program. Five study groups consisting of 25 students attended two-hour module sessions for six weeks with the same tutor. According to the module assessment questionnaire, the majority of the students assessed the module as excellent or good. The students reported that they had gained not only in knowledge but also in skills development. The general opinion of the students was that both the organization and the implementation of the module met their expectations. Nearly one-half of the students reported that their expectations with regard to the educational environment and the participation of students were fully met. The major weakness in this new educational trial appears to be assessment of the module.

  14. Evaluating interactive computer-based scenarios designed for learning medical technology.

    Science.gov (United States)

    Persson, Johanna; Dalholm, Elisabeth Hornyánszky; Wallergård, Mattias; Johansson, Gerd

    2014-11-01

    The use of medical equipment is growing in healthcare, resulting in an increased need for resources to educate users in how to manage the various devices. Learning the practical operation of a device is one thing, but learning how to work with the device in the actual clinical context is more challenging. This paper presents a computer-based simulation prototype for learning medical technology in the context of critical care. Properties from simulation and computer games have been adopted to create a visualization-based, interactive and contextually bound tool for learning. A participatory design process, including three researchers and three practitioners from a clinic for infectious diseases, was adopted to adjust the form and content of the prototype to the needs of the clinical practice and to create a situated learning experience. An evaluation with 18 practitioners showed that practitioners were positive to this type of tool for learning and that it served as a good platform for eliciting and sharing knowledge. Our conclusion is that this type of tools can be a complement to traditional learning resources to situate the learning in a context without requiring advanced technology or being resource-demanding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Early grade learning: The role of teacher-child interaction and tutor-assisted intervention

    NARCIS (Netherlands)

    Zijlstra, A.H.

    2015-01-01

    The current dissertation focused on two pedagogical and instructional challenges in the beginning phases of primary school learning. First, the combination of increased classroom instruction, novice status in formal learning, and less developed self-regulatory skills makes young children highly

  16. Reflect and learn together - when two supervisors interact in the learning support process of nurse education.

    Science.gov (United States)

    Berglund, Mia; Sjögren, Reet; Ekebergh, Margaretha

    2012-03-01

    To describe the importance of supervisors working together in supporting the learning process of nurse students through reflective caring science supervision. A supervision model has been developed in order to meet the need for interweaving theory and practice. The model is characterized by learning reflection in caring science. A unique aspect of the present project was that the student groups were led by a teacher and a nurse. Data were collected through interviews with the supervisors. The analysis was performed with a phenomenological approach. The results showed that theory and practice can be made more tangible and interwoven by using two supervisors in a dual supervision. The essential structure is built on the constituents 'Reflection as Learning Support', 'Interweaving Caring Science with the Patient's Narrative', 'The Student as a Learning Subject' and 'The Learning Environment of Supervision'. The study concludes that supervision in pairs provides unique possibilities for interweaving and developing theory and practice. The supervision model offers unique opportunities for cooperation, for the development of theory and practice and for the development of the professional roll of nurses and teachers. © 2012 Blackwell Publishing Ltd.

  17. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    Science.gov (United States)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  18. Strong-coupling interaction in high-Tc superconductors

    International Nuclear Information System (INIS)

    Ray, D.K.

    1991-01-01

    Extensive experimental and theoretical work have been done to understand the mechanisms of superconductivity. Until 1986 when Bednorz and Muller discovered superconductivity in the copper oxide perovskite, the principal mechanism was found to be electron-phonon interaction and the characteristics of superconductivity vary depending on the strength of the electron-phonon interaction and the electronic structure. The essential characteristic of these conventional superconductors could be divided into two groups: wide band metals with low density of states N(E F ) at the Fermi energy E F and a rather weak electron-phonon coupling V obeying the universal characteristics of the BCS theory and narrow d band metals, compounds, and alloys with high values of N(E F ), electron-phonon coupling V and non negligible Coulomb interaction between the electrons. In this paper a short summary and the important results of these theories are discussed. The inherent limitations of these theories based on electron-phonon interaction will be discussed. The authors indicate the major characteristics of the new superconductors. These characteristics are difficult to explain on the basis of either the conventional electron-phonon theory or theories based on magnetic interactions alone

  19. Using Multitouch Collaboration Technology to Enhance Social Interaction of Children with High-Functioning Autism.

    Science.gov (United States)

    Gal, Eynat; Lamash, Liron; Bauminger-Zviely, Nirit; Zancanaro, Massimo; Weiss, Patrice L Tamar

    2016-01-01

    Children with high-functioning Autism Spectrum Disorder (HFASD) have major difficulties in social communication skills, which may impact their performance and participation in everyday life. The goal of this study was to examine whether the StoryTable, an intervention paradigm based on a collaborative narrative, multitouch tabletop interface, enhanced social interaction for children with HFASD, and to determine whether the acquired abilities were transferred to behaviors during other tasks. Fourteen boys with HFASD, aged 7-12 years, participated in a 3-week, 11-session intervention. Social interactions during two nonintervention tasks were videotaped at three points in time, one prior to the intervention (pre), a second immediately following the intervention (post) and a third three weeks after the intervention (follow-up). The video-recorded files were coded using the Friendship Observation Scale to ascertain the frequencies of positive and negative social interactions and collaborative play. Differences in these behaviors were tested for significance using nonparametric statistical tests. There were significantly higher rates of positive social interactions and collaborative play, and lower rates of negative social interactions following the intervention suggesting generalization of the social skills learned during the intervention. Improvement was maintained when tested three weeks later. These findings provide support for the use of collaborative technology-based interventions within educational settings to enhance social interaction of children with HFASD.

  20. Interaction of High Intensity Electromagnetic Waves with Plasmas: Final Report

    International Nuclear Information System (INIS)

    Shvets, G.

    2008-01-01

    The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.