WorldWideScience

Sample records for highly enriched stable

  1. Stable isotope ratio measurements on highly enriched water samples by means of laser spectrometry

    NARCIS (Netherlands)

    van Trigt, R; Kerstel, E.R.T.; Visser, GH; Meijer, H.A.J.

    2001-01-01

    We demonstrate the feasibility of using laser spectrometry (LS) to analyze isotopically highly enriched water samples (i.e., delta H-2 less than or equal to 15000 parts per thousand, delta O-18 less than or equal to 1200 parts per thousand), as often used in the biomedical doubly labeled water (DLW)

  2. Production and application of stable enriched isotopes in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Kudziev, A.G. (Institute of Stable Isotopes, Tbilisi (USSR))

    1989-10-01

    At present stable enriched isotopes are contributing essentially to the progress in many fields of sciences and national economy. The application of isotopically modified compounds and materials allowed to obtain a number of remarkable scientific results and initiated developments of great applied significance. This presentation will survey status and development activities involving enriched stable isotopes in the USSR. (orig.).

  3. Application of enriched stable isotopes as tracers in biological systems

    DEFF Research Database (Denmark)

    Stürup, Stefan; Hansen, Helle Rüsz; Gammelgaard, Bente

    2008-01-01

    The application of enriched stable isotopes of minerals and trace elements as tracers in biological systems is a rapidly growing research field that benefits from the many new developments in inorganic mass spectrometric instrumentation, primarily within inductively coupled plasma mass spectrometry......, and the development of new methodologies coupled with more advanced compartmental and mathematical models for the distribution of elements in living organisms has enabled a broader use of enriched stable isotope experiments in the biological sciences. This review discusses the current and future uses of enriched...... stable isotope experiments in biological systems....

  4. Ti(IV) carrying polydopamine-coated, monodisperse-porous SiO2 microspheres with stable magnetic properties for highly selective enrichment of phosphopeptides.

    Science.gov (United States)

    Salimi, Kouroush; Usta, Duygu Deniz; Çelikbıçak, Ömür; Pinar, Asli; Salih, Bekir; Tuncel, Ali

    2017-05-01

    A marked decrease in the saturation magnetization by the formation of functional shells around the magnetic core is an important disadvantage of magnetic core-shell nanoparticles. Another drawback of Ti(IV)-functionalized immobilized metal affinity chromatography (IMAC) sorbents is the acidic character of the binding medium used for Ti4+ attachment onto composite magnetic nanoparticles, which causes an additional decrease in the saturation magnetization owing to the chemical interaction between the acidic moiety and the magnetic core. An IMAC sorbent in the form of magnetic microspheres with superior and stable magnetic properties with respect to magnetic core-shell nanoparticles was designed for phosphopeptide enrichment. Magnetic, monodisperse-porous silica microspheres (MagSiO2) 6μm in size were synthesized by a new staged-shape template hydrolysis-condensation protocol. A porous-silica shell layer was generated around the microspheres to protect the magnetic core from the acidic medium during Ti4+ attachment (MagSiO2@SiO2). The MagSiO2@SiO2 microspheres were coated with a polydopamine shell (MagSiO2@SiO2@PDA) and Ti4+ was attached onto the composite microspheres (MagSiO2@SiO2@PDA@Ti(IV)). Formation of the PDA layer and Ti4+ attachment did not cause any significant decrease in the saturation magnetization. The platform exhibited excellent performance for phosphopeptide enrichment from the digests of phosphorylated proteins. Selectivity was investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The detection limit for phosphopeptide enrichment by the MagSiO2@SiO2@PDA@Ti(IV) microspheres from the tryptic digests of β-casein was 50 fmol/mL. Usability of the proposed magnetic sorbent with complex biological samples was demonstrated by successful enrichment of four phosphopeptides from human serum. The proposed sorbent showed stable performance over five repeated uses. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comparing DNA enrichment of proliferating cells following administration of different stable isotopes of heavy water.

    Science.gov (United States)

    Farthing, Don E; Buxbaum, Nataliya P; Lucas, Philip J; Maglakelidze, Natella; Oliver, Brittany; Wang, Jiun; Hu, Kevin; Castro, Ehydel; Bare, Catherine V; Gress, Ronald E

    2017-06-22

    Deuterated water (2H2O) is a label commonly used for safe quantitative measurement of deuterium enrichment into DNA of proliferating cells. More recently, it has been used for labeling proteins and other biomolecules. Our in vitro - in vivo research reports important stable isotopic labeling enrichment differences into the DNA nucleosides and their isotopologues (e.g. deoxyadenosine (dA) M + 1, dA M + 2, dA M + 3), as well as tumor cell proliferation effects for various forms of commercially available stable heavy water (2H2O, H218O, and 2H218O). Using an in vitro mouse thymus tumor cell line, we determined that H218O provides superior DNA labeling enrichment quantitation, as measured by GC-positive chemical ionization (PCI)-MS/MS. In addition, at higher but physiologically relevant doses, both 2H218O and 2H2O down modulated mouse thymus tumor cell proliferation, whereas H218O water had no observable effects on cell proliferation. The in vivo labeling studies, where normal mouse bone marrow cells (i.e. high turnover) were evaluated post labeling, demonstrated DNA enrichments concordant with measurements from the in vitro studies. Our research also reports a headspace-GC-NCI-MS method, which rapidly and quantitatively measures stable heavy water levels in total body water.

  6. Production of oxidatively stable fish oil enriched food emulsions

    DEFF Research Database (Denmark)

    Bruni Let, Mette

    Purpose: The objective of the project is to determine how a number of selected fish oil enriched foods can be protected against oxidation by the right choice of antioxidants, emulsifiers and optimal process conditions. Furthermore the influence of antioxidant addition to the fish oil it-self on t...

  7. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    Science.gov (United States)

    Scott Aaron, W.; Tracy, Joe G.; Collins, Emory D.

    1997-02-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies.

  8. Enrichment of high ammonia tolerant methanogenic culture

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Proietti, Nicolas

    of the current study was to isolate and identify methanogenic cultures tolerant to high ammonia concentrations. A mixed methanogenic population was stepwise exposed to ammonia concentrations (1 to 9.26 g NH4+-N L-1) during an enrichment process with successive batch cultivations. The methanogenic population...... microbial community composition. The outcome of the enrichment process was a mesophilic aceticlastic methanogenic enriched culture able to withstand high ammonia loads and utilize acetate and form methane stoichiometrically. FISH analysis showed that the methanogens of the enriched culture belonged...... exclusively to strict aceticlastic methanogens. Results obtained in this study, demonstrated for the first time that strictly aceticlastic methanogens, derived from an enriched culture, can efficiently produce methane under high ammonia levels....

  9. Ion trap mass spectrometry for kinetic studies of stable isotope labeled vitamin A at low enrichments.

    Science.gov (United States)

    Dueker, S R; Mercer, R S; Jones, A D; Clifford, A J

    1998-04-01

    The role of beta-carotene in chemoprevention of cancers and other chronic diseases generated controversy when subpopulations taking beta-carotene supplements showed increased mortality in clinical trials. Determination of the dynamics of beta-carotene in individual human subjects has emerged as a high priority. Stable isotope labeled beta-carotene tracers can be employed to determine rates of conversion to retinol (vitamin A), but tracer doses must be small to minimize perturbation of endogenous retinoid and carotenoid pools. In such cases, ratios of labeled tracer/endogenous retinol are often low, and quantitative analysis at enrichments of quantification of retinol-d4 and unlabeled retinol, as their tert-butyldimethylsilyl ethers, at low enrichments using an ion trap mass spectrometer operated in selected ion storage mode. Electron ionization of analyte takes place in the ion trap using conditions that eject ions outside the range m/z 390-420, and molecular ions at m/z 400 and 404 from retinol and retinol-d4 are quantified. Using this approach, unlabeled retinol yields a signal close to values calculated from natural isotopic abundances (approximately 0.13%), whereas several quadrupole instruments operated using selected ion monitoring yielded 2-5 times greater signal when no labeled retinol was present.

  10. Water enriched in the rare stable isotopes : Preparation, measurement and applications

    NARCIS (Netherlands)

    Faghihi, Vahideh

    2016-01-01

    The subject of this thesis is water with increased abundances of the rare stable isotopes 2H and 18O (and to some extent also 17O). Such artificially enriched (or "labelled") waters are often used in biomedicine, for establishing the total amount of body water (and thus body composition) of humans

  11. Positional enrichment by proton analysis (PEPA). A one-dimensional {sup 1}H-NMR approach for {sup 13}C stable isotope tracer studies in metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Vinaixa, Maria; Yanes, Oscar [Department of Electronic Engineering-Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Rodriguez, Miguel A.; Capellades, Jordi [Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Aivio, Suvi; Stracker, Travis H. [Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (Spain); Gomez, Josep; Canyellas, Nicolau [Department of Electronic Engineering-, Universitat Rovira i Virgili, Tarragona (Spain)

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of {sup 13}C-satellite peaks using 1D-{sup 1}H-NMR spectra. In comparison with {sup 13}C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of {sup 13}C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of {sup 1}H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  12. Functionally Stable and Phylogenetically Diverse Microbial Enrichments from Microbial Fuel Cells during Wastewater Treatment

    Science.gov (United States)

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M.; Nealson, Kenneth H.; Sekiguchi, Yuji; Gorby, Yuri A.; Bretschger, Orianna

    2012-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD) was removed after an 8–13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m2, the maximum power density was 13 mW/m2, and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s) and regular introduction of microbial competitors. These results contribute significantly toward the practical application of

  13. Functionally stable and phylogenetically diverse microbial enrichments from microbial fuel cells during wastewater treatment.

    Directory of Open Access Journals (Sweden)

    Shun'ichi Ishii

    Full Text Available Microbial fuel cells (MFCs are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD was removed after an 8-13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m(2, the maximum power density was 13 mW/m(2, and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s and regular introduction of microbial competitors. These results contribute significantly toward the

  14. [Psychoeducational intervention in high ability: intellectual functioning and extracurricular enrichment].

    Science.gov (United States)

    Sastre-Riba, Sylvia

    2014-02-24

    The 'new paradigm' defines the high intellectual ability as a potential that should crystallize progressively throughout development. Its main feature is a high intellectual initial multidimensional potential, which is transformed so that, being a person with high intellectual ability is the result of a developmental process from a neurobiological substrate and the incidence of variables (psychosocial and education) which determines its manifestation more or less stable and optimal to excellence. It is interesting to know the effectiveness of psychoeducational intervention of the extracurricular enrichment programs and their effects on the expression of differential functioning and the optimization of the management of cognitive resources that lead to excellence. An extracurricular enrichment program is described and evaluated through: 1) the stability of the intellectual measures; 2) the satisfaction level of participants and families. Participants are 58 high ability students on the enrichment program and 25 parents. Intellectual profiles are obtained on T1-T2 and calculated their stability by regression analysis, the CSA and CSA-P questionnaires were applied in order to know the participants and families' satisfaction measure. Results show the basic stability of intellectual profiles with five cases of instability among the 58 profiles obtained, and a high satisfaction with the results obtained in the domain of cognitive and personal management among the participants.

  15. Improved protein synthesis and secretion through medium enrichment in a stable recombinant yeast strain.

    Science.gov (United States)

    Wang, Z; Da Silva, N A

    1993-06-05

    Two Saccharomyces cerevisiae strains were employed to investigate the effects of medium enrichment on the expression and secretion of a recombinant protein. One was a stable autoselection strain with mutations in the ura3, fur1, and urid-k genes. The combination of these three mutations blocks both the pyrimidine nucleotide biosynthetic and salvage pathways and is lethal to the cells. Retention of the plasmid, which carries a URA3 gene, was essential for cell viability. Therefore, all media were selective, allowing cultivation of the strain in complex medium. The second strain was a nonautoselection (control) strain and is isogenic to the first except for the fur1 and urid-k mutations. The plasmid utilized contains the yeast invertase gene under the control of the MFalpha1 promoter and leader sequence. The expression and secretion of invertase for the autoselection strain were examined in batch culture for three media: a minimal medium (SD), a semidefined medium (SDC), and a rich complex medium (YPD). Biomass yields and invertase productivity (volumetric activity) increased with the complexity of the medium; total invertase volumetric activity in YPD was 100% higher than in SDC and 180% higher than in SD. Specific activity, however, was lowest in the SDC medium. Secretion efficiency was extremely high in all three media; for the majority of the culture, 80-90% of the invertase was secreted into the periplasmic space and/or culture medium. A glucose pulse at the end of batch culture in YPD facilitated the transport of residual cytoplasmic invertase. For the nonautoselection strain, invertase productivity did not improve as the medium was enriched from SDC to YPD, and plasmid stability in the complex YPD medium dropped from 54% to 34% during one batch fermentation. During long-term sequential batch culture in YPD, invertase activity decreased by 90% and the plasmid-containing fraction dropped from 56% to 8.8% over 44 generations of growth. The expression level for

  16. France: High and stable fertility

    Directory of Open Access Journals (Sweden)

    Clémentine Rossier

    2008-07-01

    Full Text Available The current total fertility rate in France is around 1.9 children per woman. This is a relatively high level by current European standards and makes France an outlier, despite the fact that its other demographic trends, especially conjugal behaviour, and social and economic trends are not very different from other Western European countries. France can serve as a counterfactual test case for some of the hypotheses advanced to explain the current low level of fertility in most European countries (delay in fertility, decline in marriage, increased birth control, greater economic uncertainty. France's fertility level can be partly explained by its active family policy introduced after the Second World War, and adapted in the 1980s to accommodate women's entry into the labour force. This policy is the result of a battle, fuelled by pro-natalism, between the conservative supporters of family values and the promoters of state-supported individual equality. French family policy thus encompasses a wide range of measures based on varying ideological backgrounds, and it is difficult to classify in comparison to the more precisely focused family policies of other European welfare states. The active family policy seems to have created especially positive attitudes towards two- or three child families in France.

  17. Shifts in rotifer life history in response to stable isotope enrichment: testing theories of isotope effects on organismal growth.

    Science.gov (United States)

    Gorokhova, Elena

    2017-03-01

    In ecology, stable isotope labelling is commonly used for tracing material transfer in trophic interactions, nutrient budgets and biogeochemical processes. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism growth and metabolism. This assumption is, however, challenged by theoretical considerations and experimental studies on kinetic isotope effects in vivo. Here, I demonstrate profound changes in life histories of the rotifer Brachionus plicatilis fed 15N-enriched algae (0.4-5.0 at%); i.e. at the enrichment levels commonly used in ecological studies. These findings support theoretically predicted effects of heavy isotope enrichment on growth, metabolism and ageing in biological systems and underline the importance of accounting for such effects when using stable isotope labelling in experimental studies.

  18. Production and use of mycotoxins uniformly enriched with stable isotopes for their dosage in biological samples: (3) Tools for pharmacokinetics and as internal standards

    Energy Technology Data Exchange (ETDEWEB)

    Bravin, F.; Delaforge, M.; Duca, R.C. [CNRS, URA 2096, F-91191 Gif Sur Yvette (France); Bravin, F.; Delaforge, M.; Duca, R.C. [CEA Saclay, DSV, DBJC, SBFM, F-91191 Gif Sur Yvette (France); Pean, M. [CEA Cadarache, DEVM, GRAP, St Paul Les Durance (France); Puel, O. [INRA, Lab Pharmacol Toxicol, UR 66, Toulouse (France)

    2007-07-01

    Pharmacological studies of exogenous compounds often encounter problems: these compounds are in such infinitesimal amount in their biological matrices, that they require particular detection method. We have implemented an alternative method to the usual radioactivity, based on incorporation of stable isotopes, through the example of biosynthesis of uniformly {sup 13}C enriched mycotoxins. The isotopic cluster obtained from a 10% {sup 13}C enrichment of several mycotoxins (and their metabolites) can be easily recovered from biological tissue samples by mass spectrometry allowing an easy discrimination from natural non-enriched compounds. We illustrate such pharmacological approaches by in vitro zearalenone metabolism. Such enriched compound can also be used as internal standard with high reliability in order to quantify mycotoxins in contaminated food samples. (authors)

  19. Synthesis and Use of Stable Isotope Enriched Retinals in the Field of Vitamin A

    Directory of Open Access Journals (Sweden)

    Johan Lugtenburg

    2010-03-01

    Full Text Available The role of vitamin A and its metabolites in the life processes starting with the historical background and its up to date information is discussed in the introduction. Also the role of 11Z-retinal in vision and retinoic acid in the biological processes is elucidated. The essential role of isotopically enriched systems in the progress of vision research, nutrition research etc. is discussed. In part B industrial commercial syntheses of vitamin A by the two leading companies Hoffmann-La Roche (now DSM and BASF are discussed. The knowledge obtained via these pioneering syntheses has been essential for the further synthetic efforts in vitamin A field by other scientific groups. The rest of the paper is devoted to the synthetic efforts of the Leiden group that gives an access to the preparation of site directed high level isotope enrichment in retinals. First the synthesis of the retinals with deuterium incorporation in the conjugated side chain is reviewed. Then, 13C-labeled retinals are discussed. This is followed by the discussion of a convergent synthetic scheme that allows a rational access to prepare any isotopomer of retinals. The schemes that provide access to prepare any possible isotope enriched chemically modified systems are discussed. Finally, nor-retinals and bridged retinals that give access to a whole (as yet incomplete library of possible isotopomers are reviewed.

  20. Structural instability, multiple stable states, and hysteresis in periphyton driven by phosphorus enrichment in the Everglades

    Science.gov (United States)

    Dong, Quan; McCormick, Paul V.; Sklar, Fred H.; DeAngelis, Donald L.

    2002-01-01

    Periphyton is a key component of the Everglades ecosystems. It is a major primary producer, providing food and habitat for a variety of organisms, contributing material to the surface soil, and regulating water chemistry. Periphyton is sensitive to the phosphorus (P) supply and P enrichment has caused dramatic changes in the native Everglades periphyton assemblages. Periphyton also affects P availability by removing P from the water column and depositing a refractory portion into sediment. A quantitative understanding of the response of periphyton assemblages to P supply and its effects on P cycling could provide critical supports to decision making in the conservation and restoration of the Everglades. We constructed a model to examine the interaction between periphyton and P dynamics. The model contains two differential equations: P uptake and periphyton growth are assumed to follow the Monod equation and are limited by a modified logistic equation. Equilibrium and stability analyses suggest that P loading is the driving force and determines the system behavior. The position and number of steady states and the stability also depend upon the rate of sloughing, through which periphyton deposits refractory P into sediment. Multiple equilibria may exist, with two stable equilibria separated by an unstable equilibrium. Due to nonlinear interplay of periphyton and P in this model, catastrophe and hysteresis are likely to occur.

  1. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer

    Energy Technology Data Exchange (ETDEWEB)

    Di Tullo, Pamela, E-mail: pamela.ditullo@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Pannier, Florence, E-mail: florence.pannier@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Thiry, Yves, E-mail: yves.thiry@andra.fr [Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Le Hécho, Isabelle, E-mail: isabelle.lehecho@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Bueno, Maïté, E-mail: maite.bueno@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France)

    2016-08-15

    A better understanding of selenium fate in soils at both short and long time scales is mandatory to consolidate risk assessment models relevant for managing both contamination and soil fertilization issues. The purpose of this study was thus to investigate Se retention processes and their kinetics by monitoring time-dependent distribution/speciation changes of both ambient and freshly added Se, in the form of stable enriched selenite-77, over a 2-years field experiment. This study clearly illustrates the complex reactivity of selenium in soil considering three methodologically defined fractions (i.e. soluble, exchangeable, organic). Time-dependent redistribution of Se-77 within solid-phases having different reactivity could be described as a combination of chemical and diffusion controlled processes leading to its stronger retention. Experimental data and their kinetic modeling evidenced that transfer towards less labile bearing phases are controlled by slow processes limiting the overall sorption of Se in soils. These results were used to estimate time needed for {sup 77}Se to reach the distribution of naturally present selenium which may extend up to several decades. Ambient Se speciation accounted for 60% to 100% of unidentified species as function of soil type whereas {sup 77}Se(IV) remained the more abundant species after 2-years field experiment. Modeling Se in the long-term without taking account these slow sorption kinetics would thus result in underestimation of Se retention. When using models based on K{sub d} distribution coefficient, they should be at least reliant on ambient Se which is supposed to be at equilibrium.

  2. Basic characterization of highly enriched uranium by gamma spectrometry

    OpenAIRE

    Nguyen, Cong Tam; Zsigrai, Jozsef

    2005-01-01

    Gamma-spectrometric methods suitable for the characterization of highly enriched uranium samples encountered in illicit trafficking of nuclear materials are presented. In particular, procedures for determining the 234U, 235U, 238U, 232U and 236U contents and the age of highly enriched uranium are described. Consequently, the total uranium content and isotopic composition can be calculated. For determining the 238U and 232U contents a low background chamber was used. In addition, age dating of...

  3. High order stiffly stable linear multistep methods

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C.N.

    1979-01-01

    Stiffly stable linear k-step methods of order k for the initial-value problem are studied. Examples for k = 1, 2, and 3 were discovered by use of Adams-type methods. A large family of stiffly stable linear 7-step methods of order 7 was also found.

  4. Highly stable six-axis alignment mechanism

    Science.gov (United States)

    Green, Evan; Zheng, Bing; Farinas, Alejandro; Arnone, Dave

    2005-08-01

    One of the major challenges for typical opto-mechanical assemblies is that they require multiple degrees of freedom with large travel (several millimeters) but very small (sub-micron) resolution. After adjustment, assemblies must be stable to a few nanometers to survive environmental and mechanical shock over a lifetime of use. Using parts with engineered mating surfaces, we have developed a low-cost and robust set of components with demonstrated sub-50-nm adjustment resolution and comparable stability after multiple environmental stress events. For this work, we have adopted -30 to +70 C temperature cycling and 10 G (15 ms) half-sine shock as our environmental qualification standards. We apply the methodologies of reliability testing learned for Telcordia qualification of passive fiber optic components to opto-mechanical components and assemblies for capital equipment instruments. Demonstration of sub-50-nm resolution and stability for our developed opto-mechanical components requires a suitable test stand, which we have developed using scanning knife-edge beam profilers and a highly-repeatable kinematic loading base with a built-in reference. We use these test results to develop system error budgets in design and manufacture based on component, assembly, and measurement tolerances. The developed opto-mechanical assemblies have been demonstrated to have sub-50 nm stability in laboratory and field tests.

  5. Extracurricular enrichment workshops for high ability students

    Directory of Open Access Journals (Sweden)

    Ángela Rojo

    2010-04-01

    Full Text Available The aim of this article is to analyze and explain attention to diversity measures for high ability (gifted and talented students. The model, developed in the Spanish region of Murcia, is based on cognitive psychology and aims to encourage thinking skills. The program is developed as a curriculum extension and the interests, motivations and abilities of children have been considered once these were identified. The article offers a theoretical approach, a set of objectives, and some of the activities that have been done with students.

  6. The Natural Enrichment of Stable Cesium in Weathered Micaceous Materials and Its Implications for 137Cs Sorption.

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W. Crawford [Georgia State Univ., Atlanta, GA (United States); Kahn, Bernd [Georgia State Univ., Atlanta, GA (United States); Rosson, Robert [Georgia State Univ., Atlanta, GA (United States); Wampler, J. Marion [Georgia State Univ., Atlanta, GA (United States); Rose, Seth E. [Georgia State Univ., Atlanta, GA (United States); Krogstad, Eirik J. [Georgia State Univ., Atlanta, GA (United States); Kaplan, Daniel [Georgia State Univ., Atlanta, GA (United States)

    2011-11-14

    In this exploratory project, we are testing two interrelated hypotheses about the sorption of Cs within weathered micaceous materials in subsurface regolith materials from the Savannah River Site (SRS) located on the Atlantic Coastal Plain: 1) that stable cesium has become significantly enriched relative to potassium in subsurface micaceous particles as a result of chemical weathering processes; and 2) that the Cs so present is sufficient to be a major factor determining the ability of the subsurface materials to take up and hold 137Cs. To test these hypotheses, we collected by hand augur soil samples corresponding to soils representative at the SRS: upland regolith (Fuquay series); soils formed on Tobacco Road Sandstone; and, soils formed on Quaternary Alluvium. From our data, the quantification of the amounts of stable cesium concentrated in various sites within 2:1 phyllosilicates by natural processes is highly relevant toward understanding the future sorption of 137Cs by the mica, illite, vermiculite, and hydroxyl interstratified vermiculite (HIV) phases present in the subsurface at and in proximity to SRS. Studying sorption and fixation of Cs in these micaceous phases interlayers potentially leads to increased knowledge to the extent that stable Cs resists exchange with ion exchange cations (Mg, NH4, or even alkyl ammonium compounds) and to the extent that Cs can become fixed over the long term. Such knowledge will help in the development of 137Cs remediation strategies for the long-term, which is a critical aspect of the SBR goals. We characterized the mineralogy, K-Ar ages of the soil and soil clay fractions (before and after acid treatment), and alkali element chemistry (K, Rb, Cs) of the clay fractions of soils collected from these three different types of soils. The clay fractions of the Fuquay soils are composed of kaolinite, and hydroxy interstratified vermiculite (HIV). Kaolinite, HIV, quartz, gibbsite and illite are

  7. Initial report on characterization of excess highly enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    DOE`s Office of Fissile Materials Disposition assigned to this Y-12 division the task of preparing a report on the 174.4 metric tons of excess highly enriched U. Characterization included identification by category, gathering existing data (assay), defining the likely needed processing steps for prepping for transfer to a blending site, and developing a range of preliminary cost estimates for those steps. Focus is on making commercial reactor fuel as a final disposition path.

  8. Stable binding of alternative protein-enriched food matrices with concentrated cranberry bioflavonoids for functional food applications.

    Science.gov (United States)

    Grace, Mary H; Guzman, Ivette; Roopchand, Diana E; Moskal, Kristin; Cheng, Diana M; Pogrebnyak, Natasha; Raskin, Ilya; Howell, Amy; Lila, Mary Ann

    2013-07-17

    Defatted soy flour (DSF), soy protein isolate (SPI), hemp protein isolate (HPI), medium-roast peanut flour (MPF), and pea protein isolate (PPI) stably bind and concentrate cranberry (CB) polyphenols, creating protein/polyphenol-enriched matrices. Proanthocyanidins (PAC) in the enriched matrices ranged from 20.75 mg/g (CB-HPI) to 10.68 mg/g (CB-SPI). Anthocyanins (ANC) ranged from 3.19 mg/g (CB-DSF) to 1.68 mg/g (CB-SPI), whereas total phenolics (TP) ranged from 37.61 mg/g (CB-HPI) to 21.29 mg/g (CB-SPI). LC-MS indicated that the enriched matrices contained all identifiable ANC, PAC, and flavonols present in CB juice. Complexation with SPI stabilized and preserved the integrity of the CB polyphenolic components for at least 15 weeks at 37 °C. PAC isolated from enriched matrices demonstrated comparable antiadhesion bioactivity to PAC isolated directly from CB juice (MIC 0.4-0.16 mg/mL), indicating their potential utility for maintenance of urinary tract health. Approximately 1.0 g of polyphenol-enriched matrix delivered the same amount of PAC available in 1 cup (300 mL) of commercial CB juice cocktail, which has been shown clinically to be the prophylactic dose for reducing recurring urinary tract infections. CB-SPI inhibited Gram-positive and Gram-negative bacterial growth. Nutritional and sensory analyses indicated that the targeted CB-matrix combinations have high potential for incorporation in functional food formulations.

  9. High precision and stable structures for particle detectors

    CERN Document Server

    Da Mota Silva, S; Hauviller, Claude

    1999-01-01

    The central detectors used in High Energy Physics Experiments require the use of light and stable structures capable of supporting delicate and precise radiation detection elements. These structures need to be highly stable under environmental conditions where external vibrations, high radiation levels, temperature and humidity gradients should be taken into account. Their main design drivers are high dimension and dynamic stability, high stiffness to mass ratio and large radiation length. For most applications, these constraints lead us to choose Carbon Fiber Reinforced Plastics ( CFRP) as structural element. The construction of light and stable structures with CFRP for these applications can be achieved by careful design engineering and further confirmation at the prototyping phase. However, the experimental environment can influence their characteristics and behavior. In this case, theuse of adaptive structures could become a solution for this problem. We are studying structures in CFRP with bonded piezoel...

  10. Stable-isotope analysis of a deep-sea benthic-fish assemblage: evidence of an enriched benthic food web.

    Science.gov (United States)

    Boyle, M D; Ebert, D A; Cailliet, G M

    2012-04-01

    In this study, fishes and invertebrates collected from the continental slope (1000 m) of the eastern North Pacific Ocean were analysed using stable-isotope analysis (SIA). Resulting trophic positions (T(P) ) were compared to known diets and habitats from the literature. Dual isotope plots indicated that most species groups (invertebrates and fishes) sorted as expected along the carbon and nitrogen axes, with less intraspecific variability than interspecific variability. Results also indicated an isotopically distinct benthic and pelagic food web, as the benthic food web was more enriched in both nitrogen and carbon isotopes. Trophic positions from SIA supported this finding, resulting in the assignment of fishes to different trophic positions from those expected based on published dietary information. These differences can be explained largely by the habitat of the prey and the percentage of the diet that was scavenged. A mixing model estimated dietary contributions of prey similar to those of the known diet of Bathyraja trachura from stomach-content analysis (SCA). Linear regressions indicated that trophic positions calculated from SIA and SCA, when plotted against B. trachura total length for 32 individuals, exhibited similar variation and patterns. Only the T(P) from SCA yielded significant results (stomach content: P 0·05). © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  11. A stable compound of helium and sodium at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; Stavrou, Elissaios; Lobanov, Sergey; Saleh, Gabriele; Qian, Guang-Rui; Zhu, Qiang; Gatti, Carlo; Deringer, Volker L.; Dronskowski, Richard; Zhou, Xiang-Feng; Prakapenka, Vitali B.; Konôpková, Zuzana; Popov, Ivan A.; Boldyrev, Alexander I.; Wang, Hui-Tian

    2017-02-06

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. We also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.

  12. Highly thermal-stable ferromagnetism by a natural composite.

    Science.gov (United States)

    Ma, Tianyu; Gou, Junming; Hu, Shanshan; Liu, Xiaolian; Wu, Chen; Ren, Shuai; Zhao, Hui; Xiao, Andong; Jiang, Chengbao; Ren, Xiaobing; Yan, Mi

    2017-01-18

    All ferromagnetic materials show deterioration of magnetism-related properties such as magnetization and magnetostriction with increasing temperature, as the result of gradual loss of magnetic order with approaching Curie temperature TC. However, technologically, it is highly desired to find a magnetic material that can resist such magnetism deterioration and maintain stable magnetism up to its TC, but this seems against the conventional wisdom about ferromagnetism. Here we show that a Fe-Ga alloy exhibits highly thermal-stable magnetization up to the vicinity of its TC, 880 K. Also, the magnetostriction shows nearly no deterioration over a very wide temperature range. Such unusual behaviour stems from dual-magnetic-phase nature of this alloy, in which a gradual structural-magnetic transformation occurs between two magnetic phases so that the magnetism deterioration is compensated by the growth of the ferromagnetic phase with larger magnetization. Our finding may help to develop highly thermal-stable ferromagnetic and magnetostrictive materials.

  13. Aronia-enriched lemon juice: a new highly antioxidant beverage.

    Science.gov (United States)

    González-Molina, Elena; Moreno, Diego A; García-Viguera, Cristina

    2008-12-10

    Lemon juice (LJ) was enriched with aronia concentrate (AC) in two different proportions (2.5 and 5%, v/v) to design new beverages rich in bioactive ingredients. The phytochemical composition (anthocyanins, flavanones, flavones, flavonols, and hydroxycinnamic acids) and stability of the beverages were analyzed by high-performance liquid chromatography with a diode array detector (HPLC-DAD), as well as color alterations and in vitro antioxidant activity (DPPH(*) assay). Results showed that, although anthocyanin degradation was higher than 90% after 60 days of storage, the new beverages retained an attractive red color. Also, the in vitro antioxidant activity of the new mixtures was 2-fold higher when 5% AC was added compared to pure LJ. Thus, an addition of only 5% AC could effectively increase the antioxidant properties of LJ, as well as improving certain organoleptic characteristics, rendering an interesting beverage in the growing market of food for health.

  14. Validation of NCSSHP for highly enriched uranium systems containing beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Krass, A.W.; Elliott, E.P.; Tollefson, D.A.

    1994-09-29

    This document describes the validation of KENO V.a using the 27-group ENDF/B-IV cross section library for highly enriched uranium and beryllium neutronic systems, and is in accordance with ANSI/ANS-8.1-1983(R1988) requirements for calculational methods. The validation has been performed on a Hewlett Packard 9000/Series 700 Workstation at the Oak Ridge Y-12 Plant Nuclear Criticality Safety Department using the Oak Ridge Y-12 Plant Nuclear Criticality Safety Software code package. Critical experiments from LA-2203, UCRL-4975, ORNL-2201, and ORNL/ENG-2 have been identified as having the constituents desired for this validation as well as sufficient experimental detail to allow accurate construction of KENO V.a calculational models. The results of these calculations establish the safety criteria to be employed in future calculational studies of these types of systems.

  15. Gravimetric enrichment of high lipid and starch accumulating microalgae.

    Science.gov (United States)

    Hassanpour, Morteza; Abbasabadi, Mahsa; Ebrahimi, Sirous; Hosseini, Maryam; Sheikhbaglou, Ahmad

    2015-11-01

    This study presents gravimetric enrichment of mixed culture to screen starch and lipid producing species separately in a sequencing batch reactor. In the enriched starch-producing mixed culture photobioreactor, the starch content at the end of steady state batch became 3.42 times the beginning of depletion. Whereas in the enriched lipid-producing photobioreactor, the lipid content at the end of steady state batch became 3 times the beginning of famine phase. The obtained results revealed that the gravimetric enrichment is a suitable screening method for specific production of storage compounds in none-sterile large-scaled condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Highly Stable and Active Catalyst for Sabatier Reactions

    Science.gov (United States)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  17. Stable Carbon Isotope Enrichment Before Late Miocene and Its Iimplication for Landscape Change in the Amazon Basin

    Science.gov (United States)

    Lee, Y. I.; Kim, D.; Hyeong, K.; Chan Min, Y.

    2016-12-01

    The appearance and development of C4 plants in the Late Miocene is well-established by various lines of evidence including stable carbon isotope data, yet the stable carbon isotope change before the global vegetation change has not been reported. Prior to the C4 plant expansion, the ecosystem may have been composed of C3 plants. Here we present the content and stable carbon isotope record of black carbon (BC) in a 470-cm-long piston core retrieved from the northeastern equatorial Pacific. Although suitable age dating method is lacking for the studied core, correlation of clay mineral composition, BC content, and stable carbon isotope data with a nearby well-studied core (Kim et al., submitted) at the same latitude suggests that the studied core contains sediment older than 15 Ma (330 cm in depth) and possibly back to 25 Ma, much prior to the major diversification of C4 plants. The older sediment was derived from Southern Hemisphere. The δ13C value of BC in the oldest sediment shows a relatively high value ( -22.7 ‰ on average), similar to that of C4 expansion event, and then decreases with time till reaching normal δ13C value of C3-dominated environment (-25.3 ‰ on average) around 13 Ma. This relatively high δ13C value reflects the presence of specific ecosystem, likely Pebas wetland that dominated western Amazonia before 17 Ma, and decreasing δ13C value suggests subsequent gradual development of closed-forest ecosystem. The BC content shows an abrupt increase around 400 cm, suggesting a significant aridity event in South America. Uplift of the North Andean region at 23 Ma seems to be the likely cause of such aridity event. From these observations, we argue that by comparing with the well-studied core data environmental record provided by BC data can be used for approximate age dating of deep-sea core sediment lacking appropriate dating tools, and that carbon isotope data before C4 development event may also provide information about specific regional

  18. Stable acetate production in extreme-thermophilic (70ºC) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    NARCIS (Netherlands)

    Zhang, F.; Zhang, Y.; Ding, J.; Dai, K.; Van Loosdrecht, M.C.M.; Zeng, R.J.

    2014-01-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in

  19. 76 FR 72984 - Revised Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2011-11-28

    ... Institut Laue-- Langevin (ILL) High Flux Reactor (HFR) in France. Dated this 17th day of November 2011 at... COMMISSION Revised Application for a License To Export High-Enriched Uranium The application for a license to export high-enriched Uranium has been revised as noted below. Notice of this application was previously...

  20. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  1. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology

    Science.gov (United States)

    Fu, Tian-Ming; Hong, Guosong; Viveros, Robert D.; Zhou, Tao

    2017-01-01

    Implantable electrical probes have led to advances in neuroscience, brain−machine interfaces, and treatment of neurological diseases, yet they remain limited in several key aspects. Ideally, an electrical probe should be capable of recording from large numbers of neurons across multiple local circuits and, importantly, allow stable tracking of the evolution of these neurons over the entire course of study. Silicon probes based on microfabrication can yield large-scale, high-density recording but face challenges of chronic gliosis and instability due to mechanical and structural mismatch with the brain. Ultraflexible mesh electronics, on the other hand, have demonstrated negligible chronic immune response and stable long-term brain monitoring at single-neuron level, although, to date, it has been limited to 16 channels. Here, we present a scalable scheme for highly multiplexed mesh electronics probes to bridge the gap between scalability and flexibility, where 32 to 128 channels per probe were implemented while the crucial brain-like structure and mechanics were maintained. Combining this mesh design with multisite injection, we demonstrate stable 128-channel local field potential and single-unit recordings from multiple brain regions in awake restrained mice over 4 mo. In addition, the newly integrated mesh is used to validate stable chronic recordings in freely behaving mice. This scalable scheme for mesh electronics together with demonstrated long-term stability represent important progress toward the realization of ideal implantable electrical probes allowing for mapping and tracking single-neuron level circuit changes associated with learning, aging, and neurodegenerative diseases. PMID:29109247

  2. Highly selective enrichment of phosphorylated peptides using titanium dioxide

    DEFF Research Database (Denmark)

    Thingholm, Tine; Jørgensen, Thomas J D; Jensen, Ole N

    2006-01-01

    a protocol for selective phosphopeptide enrichment using titanium dioxide (TiO2) chromatography. The selectivity toward phosphopeptides is obtained by loading the sample in a 2,5-dihydroxybenzoic acid (DHB) or phthalic acid solution containing acetonitrile and trifluoroacetic acid (TFA) onto a TiO2 micro...

  3. 78 FR 16303 - Request To Amend a License To Export; High-Enriched Uranium

    Science.gov (United States)

    2013-03-14

    ... COMMISSION Request To Amend a License To Export; High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public... of Energy, High-Enriched Uranium 10 kilograms uranium To manufacture HEU targets in France The Netherlands. National Nuclear Security (93.35%). (9.3 kilograms U-235). for irradiation in research reactors...

  4. 77 FR 51579 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-08-24

    ... kilograms For the export of Canada. Complex, July 30, 2012, August Uranium (93.35%). uranium-235 high-enriched 1, 2012, XSNM3726, 11006037. contained in 7.5 uranium in the kilograms uranium. form of broken... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public...

  5. 78 FR 17942 - Request To Amend a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-03-25

    ... Security material (High- kilograms U-235 LVR-15 Research will ultimately Administration. Enriched Uranium... COMMISSION Request To Amend a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public... medical isotope March 11, 2013 uranium) the list of production at the XSNM3622/02 research reactor...

  6. Highly Reflective Multi-stable Electrofluidic Display Pixels

    Science.gov (United States)

    Yang, Shu

    Electronic papers (E-papers) refer to the displays that mimic the appearance of printed papers, but still owning the features of conventional electronic displays, such as the abilities of browsing websites and playing videos. The motivation of creating paper-like displays is inspired by the truths that reading on a paper caused least eye fatigue due to the paper's reflective and light diffusive nature, and, unlike the existing commercial displays, there is no cost of any form of energy for sustaining the displayed image. To achieve the equivalent visual effect of a paper print, an ideal E-paper has to be a highly reflective with good contrast ratio and full-color capability. To sustain the image with zero power consumption, the display pixels need to be bistable, which means the "on" and "off" states are both lowest energy states. Pixel can change its state only when sufficient external energy is given. There are many emerging technologies competing to demonstrate the first ideal E-paper device. However, none is able to achieve satisfactory visual effect, bistability and video speed at the same time. Challenges come from either the inherent physical/chemical properties or the fabrication process. Electrofluidic display is one of the most promising E-paper technologies. It has successfully demonstrated high reflectivity, brilliant color and video speed operation by moving colored pigment dispersion between visible and invisible places with electrowetting force. However, the pixel design did not allow the image bistability. Presented in this dissertation are the multi-stable electrofluidic display pixels that are able to sustain grayscale levels without any power consumption, while keeping the favorable features of the previous generation electrofluidic display. The pixel design, fabrication method using multiple layer dry film photoresist lamination, and physical/optical characterizations are discussed in details. Based on the pixel structure, the preliminary

  7. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.

    Science.gov (United States)

    Koskinen, Perttu E P; Lay, Chyi-How; Puhakka, Jaakko A; Lin, Ping-Jei; Wu, Shu-Yii; Orlygsson, Jóhann; Lin, Chiu-Yue

    2008-11-01

    Dark fermentative hydrogen production from glucose by a thermophilic culture (33HL), enriched from an Icelandic hot spring sediment sample, was studied in two continuous-flow, completely stirred tank reactors (CSTR1, CSTR2) and in one semi-continuous, anaerobic sequencing batch reactor (ASBR) at 58 degrees C. The 33HL produced H2 yield (HY) of up to 3.2 mol-H2/mol-glucose along with acetate in batch assay. In the CSTR1 with 33HL inoculum, H2 production was unstable. In the ASBR, maintained with 33HL, the H2 production enhanced after the addition of 6 mg/L of FeSO4 x H2O resulting in HY up to 2.51 mol-H2/mol-glucose (H2 production rate (HPR) of 7.85 mmol/h/L). The H2 production increase was associated with an increase in butyrate production. In the CSTR2, with ASBR inoculum and FeSO4 supplementation, stable, high-rate H2 production was obtained with HPR up to 45.8 mmol/h/L (1.1 L/h/L) and HY of 1.54 mol-H2/mol-glucose. The 33HL batch enrichment was dominated by bacterial strains closely affiliated with Thermobrachium celere (99.8-100%). T. celere affiliated strains, however, did not thrive in the three open system bioreactors. Instead, Thermoanaerobacterium aotearoense (98.5-99.6%) affiliated strains, producing H2 along with butyrate and acetate, dominated the reactor cultures. This culture had higher H2 production efficiency (HY and specific HPR) than reported for mesophilic mixed cultures. Further, the thermophilic culture readily formed granules in CSTR and ASBR systems. In summary, the thermophilic culture as characterized by high H2 production efficiency and ready granulation is considered very promising for H2 fermentation from carbohydrates.

  8. Leaf water enrichment of stable water isotopes (δ18O and δD) in a mature oil palm plantation in Jambi province, Indonesia.

    Science.gov (United States)

    Bonazza, Mattia; Tjoa, Aiyen; Knohl, Alexander

    2017-04-01

    During the last few decades, Indonesia experienced rapid and large scale land-use change towards intensively managed crops, one of them is oil palm. This transition results in warmer and dryer conditions in microclimate. The impacts on the hydrological cycle and on water-use by plants are, however, not yet completely clear. Water stable isotopes are useful tracers of the hydrological processes and can provide means to partition evapotranspiration into evaporation and transpiration. A key parameter, however, is the enrichment of water stable isotope in plant tissue such as leaves that can provide estimates on the isotopic composition of transpiration. Here we present the results of a field campaign conducted in a mature oil palm plantation in Jambi province, Indonesia. We combined continuous measurements of water vapor isotopic composition and mixing ratio with isotopic analysis of water stored in different pools like oil palm leaves, epiphytes, trunk organic matter and soil collected over a three days period. Leaf enrichment varied from -2 ‰ to 10 ‰ relative to source (ground) water. The temporal variability followed Craig and Gordon model predictions for leaf water enrichment. An improved agreement was reached after considering the Péclet effect with an appropriate value of the characteristic length (L). Measured stomatal conductance (gs) on two different sets of leaves (top and bottom canopy) was mainly controlled by radiation (photosynthetically active radiation) and vapor pressure deficit. We assume that this control could be explained in conditions where soil water content is not representing a limiting factor. Understanding leaf water enrichment provides one step towards partitioning ET.

  9. Highly Photoluminescent and Stable Aqueous ZnS Quantum Dots

    Science.gov (United States)

    Li, Hui; Shih, Wan Y.; Shih, Wei-Heng

    2009-01-01

    We report an all-aqueous synthesis of highly photoluminescent and stable ZnS quantum dots (QDs) with water as the medium, i.e. first synthesizing ZnS QDs with 3-mercaptopropionic acid (MPA) as the capping molecule, followed by replacing some of MPA with (3-mercaptopropyl) trimethoxysilane (MPS). The resultant MPS-replaced ZnS QDs were about 5 nm in size with a cubic zinc blende crystalline structure, and had both MPA and MPS on the surface as confirmed by the Fourier Transform Infrared (FTIR) spectroscopy. They exhibited blue trap-state emissions around 415 nm and a quantum yield (QY) of 75% with Rhodamine 101 as the reference, and remained stable for more than 60 days under the ambient conditions. Through the capping molecule replacement procedure, the MPS-replaced ZnS QDs avoided the shortcomings of both the MPA-ZnS QDs and the MPS-ZnS QDs, and acquired the advantages of strong photoluminescence and good stability, which are important to the QDs’ applications especially for bioimaging. PMID:21954321

  10. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  11. Nitrogen loading to Pleasant Bay, Cape Cod: application of models and stable isotopes to detect incipient nutrient enrichment of estuaries

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Ruth H.; Annett, Brendan; Valiela, Ivan

    2004-01-01

    To test and refine methods to detect nutrient enrichment and resulting eutrophication, we applied the Waquoit Bay nitrogen loading model (NLM) and Estuarine loading model (ELM) to estuaries of Pleasant Bay that receive increasing but low N loads (25-199 kg N ha{sup -1} yr{sup -1}) from land. Contributions of wastewater to these estuaries increased from 7% to 63% as N loads increased, and modeled estimates of dissolved inorganic nitrogen in the water were within {approx}27% of measured values. N isotopic signatures in suspended and benthic organic matter and in tissue of quahogs increased as wastewater contributions to N loads increased, with clams {approx}4%o heavier than organic matter, indicating that even at these low N loads, N from land-derived sources moved detectably up the food web. These results extend the application of NLM and ELM to detect incipient levels of N enrichment and demonstrate that these models can be used in conjunction with isotope measurements as the basis for food web analyses in a system exposed to relatively lower N loads than previously studied.

  12. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  13. Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry.

    Science.gov (United States)

    Okumura, Takeshi; Masuda, Kenji; Watanabe, Kazuhiko; Miyadai, Kenji; Nonaka, Koichi; Yabuta, Masayuki; Omasa, Takeshi

    2015-09-01

    To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety of monoclonal antibody (mAb) expression levels was prepared by transfection of an expression vector for mAb production to a CHO cell. To enrich high-producing cells derived from a stable pool stained with a fluorescent-labeled antibody that binds to mAb presented on the cell surface, we set the cell size and intracellular density gates based on forward scatter (FSC) and side scatter (SSC), and collected the brightest 5% of fluorescein isothiocyanate (FITC)-positive cells from each group by FCM. The final product concentration in a fed-batch culture of cells sorted without FSC and SSC gates was 1.2-1.3-times higher than that of unsorted cells, whereas that of cells gated by FSC and SSC was 3.4-4.7-fold higher than unsorted cells. Surprisingly, the fraction with the highest final product concentration indicated the smallest value of FSC and SSC, and the middle value of fluorescence intensity among all fractionated cells. Our results showed that our new screening strategy by FCM based on FSC and SSC gates could achieve an efficient enrichment of high-producing cells with the smallest value of FSC and SSC. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. High frequency, realtime measurements of stable isotopes in liquid water

    Science.gov (United States)

    Weiler, M.; Herbstritt, B.; Gralher, B.

    2012-04-01

    We developed a method to measure in-situ the isotopic composition of liquid water with minimal supervision and, most important, with a temporal resolution of less than a minute. For this purpose a off-the-shelf microporous hydrophobic membrane contactor for under 200€ was combined with an isotope laser spectrometer (Picarro). The contactor, originally designed for degassing liquids, was used with nitrogen as carrier gas in order to transform a small fraction of liquid water to water vapor. The generated water vapor was then analyzed continuously by the isotope laser spectrometer. To prove the membrane's applicability we determined the specific isotope fractionation factor for the phase change through the contactor's membrane for a common temperature range and with different waters of known isotopic compositions. This fractionation factor is then used to derive the liquid water isotope ratio from the measured water vapor isotope ratios and the measured temperature at the phase change. The system was compared for breakthrough curves of isotopically enriched water and the isotope values corresponded very well with those of liquid water samples taken simultaneously and analyzed with a conventional method (CRDS). The introduced method supersedes taking liquid samples and employs only relative cheap and readily available components. This makes it a relatively inexpensive, fast, user-friendly and easily reproducible method. It can be applied in both the field and laboratory wherever a water vapor isotope analyzer can be run and whenever real-time isotope data of liquid water are required at high temporal resolution with the same accuracy as collecting individual water samples.

  15. Catalytic combustion over high temperature stable metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. [TPS Termiska Processer AB, Nykoeping (Sweden)

    1996-12-31

    This thesis presents a study of the catalytic effects of two interesting high temperature stable metal oxides - magnesium oxide and manganese substituted barium hexa-aluminate (BMA) - both of which can be used in the development of new monolithic catalysts for such applications. In the first part of the thesis, the development of catalytic combustion for gas turbine applications is reviewed, with special attention to alternative fuels such as low-BTU gas, e.g. produced in an air blown gasifier. When catalytic combustion is applied for such a fuel, the primary advantage is the possibility of decreasing the conversion of fuel nitrogen to NO{sub x}, and achieving flame stability. In the experimental work, MgO was shown to have a significant activity for the catalytic combustion of methane, lowering the temperature needed to achieve 10 percent conversion by 270 deg C compared with homogeneous combustion.The reaction kinetics for methane combustion over MgO was also studied. It was shown that the heterogeneous catalytic reactions were dominant but that the catalytically initiated homogeneous gas phase reactions were also important, specially at high temperatures. MgO and BMA were compared. The latter showed a higher catalytic activity, even when the differences in activity decreased with increasing calcination temperature. For BMA, CO{sub 2} was the only product detected, but for MgO significant amounts of CO and C{sub 2}-hydrocarbons were formed. BMA needed a much lower temperature to achieve total conversion of other fuels, e.g. CO and hydrogen, compared to the temperature for total conversion of methane. This shows that BMA-like catalysts are interesting for combustion of fuel mixtures with high CO and H{sub 2} content, e.g. gas produced from gasification of biomass. 74 refs

  16. High-Order Entropy Stable Formulations for Computational Fluid Dynamics

    Science.gov (United States)

    Carpenter, Mark H.; Fisher, Travis C.

    2013-01-01

    A systematic approach is presented for developing entropy stable (SS) formulations of any order for the Navier-Stokes equations. These SS formulations discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality. They are valid for smooth as well as discontinuous flows provided sufficient dissipation is added at shocks and discontinuities. Entropy stable formulations exist for all diagonal norm, summation-by-parts (SBP) operators, including all centered finite-difference operators, Legendre collocation finite-element operators, and certain finite-volume operators. Examples are presented using various entropy stable formulations that demonstrate the current state-of-the-art of these schemes.

  17. Thermally-Stable High Strain Deployable Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is for the development of a thermally-stable composite made of carbon fibers and elastomeric resin. This combination of materials will allow...

  18. Temperature transducer has high output, is time stable

    Science.gov (United States)

    Follett, W. H.

    1965-01-01

    Compact, lightweight temperature transducer requires no amplification of its output signal and is time stable. It uses the temperature-dependent characteristics of a silicon transistor to provide a zero-to-five-volt signal proportional to temperature.

  19. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2002-01-01

    Full Text Available This paper presents the relevant data related to the recent shipment (August 2002 of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  20. Collisionless dissociation and isotopic enrichment of SF6 using high-powered CO2 laser radiation

    Science.gov (United States)

    Gower, M. C.; Billman, K. W.

    1977-01-01

    Dissociation of S-32F6 and the resultant isotopic enrichment of S-34F6 using high-powered CO2 laser radiation has been studied with higher experimental sensitivity than previously reported. Enrichment factors have been measured as a function of laser pulse number, wavelength, energy and time duration. A geometry independent dissociation cross section is introduced and measured values are presented. Threshold energy densities, below which no dissociation was observed, were also determined.

  1. High Intellectual Ability: Extracurricular Enrichment and Cognitive Management

    Science.gov (United States)

    Sastre-Riba, Sylvia

    2013-01-01

    This study aims to provide a better understanding of high intellectual abilities and of how to address the educational needs of those who possess such abilities. Within the emergent paradigm, high intellectual abilities are understood as multidimensional and as the result of lifetime development; that is, not only are they the result of their…

  2. Development of Hf(4+)-immobilized polydopamine-coated magnetic graphene for highly selective enrichment of phosphopeptides.

    Science.gov (United States)

    Lin, Haizhu; Deng, Chunhui

    2016-01-01

    In this work, we first designed and synthesized an IMAC material with Hf(4+) immobilized on polydopamine-coated magnetic graphene and applied it to phosphopeptides enrichment successfully. The newly prepared material gathered the advantages of large specific surface area of graphene, good hydrophilicity and biocompatibility of polydopamine and superparamagnetism of Fe3O4. We investigated the performance of Hf(4+)-immobilized polydopamine-coated magnetic graphene (denoted as magG@PDA-Hf(4+)) in phosphopeptides enrichment and the results showed high selectivity and sensitivity of the new material. Finally, we successfully applied magG@PDA-Hf(4+) to phosphopeptides enrichment from non-fat milk digests and human serum, further demonstrating excellent performance of this new material in phosphopeptides enrichment. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Quasi-stable Slope-Failure Dams in High Asia

    Science.gov (United States)

    Shroder, J. F.

    2010-12-01

    Collapses of steep mountain slopes in the Himalaya, Karakoram, Pamir, Hindu Kush, and Tibetan Plateau are well known as a result of:(1) generally high seismicity in active tectonic areas; (2) prior deglaciation leaving undercut, unstable cliffs; (3) present-day debuttressing of rock cliffs by glacial down-wasting in conditions of global warming; and (4) degradation of permafrost cohesion and water-ice cementation in high mountain slopes. Landslide dams across mountain rivers are also well known worldwide and generally do not endure for long because of the common landslide-lake outburst floods (LLOF) whose discharge is commonly sufficiently large to remove much of the dam in a short time. A number of massive slope-failure dams in south High Asia, however, have endured for centuries and require explanations for the length of duration, whereas recent examples require robust assessment for better predictive hazard analysis. Three main factors contribute to longevity of slope-failure dams: (1) mega-rocks >15-30 m that inhibit dam failure in overflow breaches; (2) mega-porosity wherein incoming discharge to the landslide lake is balanced by subterranean water through-flow within the landslide dam; (3) impermeable clay fills caused by remobilization of prior lacustrine-dammed sediment that impart dam strength to allow lasting integrity for a time, and (4) climate-change induced lake-level lowering. Several examples of long-lived or unusually stable, slope-failure dams associated with pronounced structural/tectonic associations include: (1) Pangong Tso, Ladakh and Tibet; (2) Lake Shewa, Afghanistan; (3) Sarez Lake, Tajikistan; and (4) Lake Hunza, Pakistan. Pangong Tso and Lake Shewa were emplaced thousands of years ago and only Lake Shewa shows some instability of the dam front where percolating water maintains lake level but may be causing new slumping. Sarez Lake behind the Usoi landslide dam was emplaced by an earthquake in 1911 and maintains its level by seepage. Lake

  4. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uranium and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.

  5. Using enriched stable isotope technique to study Cu bioaccumulation and bioavailability in Corbicula fluminea from Taihu Lake, China.

    Science.gov (United States)

    Fan, Wenhong; Ren, Jinqian; Wu, Chenguang; Tan, Cheng; Wang, Xiaolong; Cui, Minming; Wu, Kuang; Li, Xiaomin

    2014-12-01

    In this study, we measured trace metals (Cd, Cr, Cu, Ni, Pb, and Zn) in water and sediment from representative sites of Taihu Lake, with focus on the analysis of trace metal accumulation in Corbicula fluminea (bivalve). The results showed that the quality of water in Taihu Lake was generally good and the correlation was not found between Cu bioaccumulation in C. fluminea and the concentration in water and sediment. Thus, using the stable isotope tracer method, we studied Cu uptake from the water phase, the assimilation of Cu from the food phase, and the efflux of Cu in vivo by C. fluminea. The result revealed that this species exhibited a relatively lower efflux rate constant of Cu compared with other zoobenthos species. Using a simple bioenergetics-based kinetic model, Cu concentrations in the C. fluminea were calculated with the measured efflux rate. We put forward a novel method, which was taking the influence of biological kinetic on metal bioaccumulation into account to explain the field survey data.

  6. Preliminary Accident Analyses for Conversion of the Massachusetts Institute of Technology Reactor (MITR) from Highly Enriched to Low Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, Arne P. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, Erik H. [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Kaichao S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newton, Jr., Thomas H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. This report presents the preliminary accident analyses for MITR cores fueled with LEU monolithic U-Mo alloy fuel with 10 wt% Mo. Preliminary results demonstrate adequate performance, including thermal margin to expected safety limits, for the LEU accident scenarios analyzed.

  7. Elucidating high-dimensional cancer hallmark annotation via enriched ontology.

    Science.gov (United States)

    Yan, Shankai; Wong, Ka-Chun

    2017-09-01

    Cancer hallmark annotation is a promising technique that could discover novel knowledge about cancer from the biomedical literature. The automated annotation of cancer hallmarks could reveal relevant cancer transformation processes in the literature or extract the articles that correspond to the cancer hallmark of interest. It acts as a complementary approach that can retrieve knowledge from massive text information, advancing numerous focused studies in cancer research. Nonetheless, the high-dimensional nature of cancer hallmark annotation imposes a unique challenge. To address the curse of dimensionality, we compared multiple cancer hallmark annotation methods on 1580 PubMed abstracts. Based on the insights, a novel approach, UDT-RF, which makes use of ontological features is proposed. It expands the feature space via the Medical Subject Headings (MeSH) ontology graph and utilizes novel feature selections for elucidating the high-dimensional cancer hallmark annotation space. To demonstrate its effectiveness, state-of-the-art methods are compared and evaluated by a multitude of performance metrics, revealing the full performance spectrum on the full set of cancer hallmarks. Several case studies are conducted, demonstrating how the proposed approach could reveal novel insights into cancers. https://github.com/cskyan/chmannot. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. 75 FR 15743 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-03-30

    ... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public... fabricate fuel France. Complex, March 3, 2010. Uranium (93.35%). uranium (149.36 elements in March 9, 2010 kilograms U-235). France for use as XSNM3633 fuel in the 11005854 Institut Laue-- Langevin (ILL) High Flux...

  9. High efficiency and stable white OLED using a single emitter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian [Arizona State Univ., Tempe, AZ (United States). School of Mechanical, Aerospace, Chemical and Materials Engineering

    2016-01-18

    The ultimate objective of this project was to demonstrate an efficient and stable white OLED using a single emitter on a planar glass substrate. The focus of the project is on the development of efficient and stable square planar phosphorescent emitters and evaluation of such class of materials in the device settings. Key challenges included improving the emission efficiency of molecular dopants and excimers, controlling emission color of emitters and their excimers, and improving optical and electrical stability of emissive dopants. At the end of this research program, the PI has made enough progress to demonstrate the potential of excimer-based white OLED as a cost-effective solution for WOLED panel in the solid state lighting applications.

  10. Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides.

    Science.gov (United States)

    Li, Jinan; Wang, Fangjun; Wan, Hao; Liu, Jing; Liu, Zheyi; Cheng, Kai; Zou, Hanfa

    2015-12-18

    Hydrophilic interaction chromatography (HILIC) adsorbents have drawn increasing attention in recent years due to their high efficiency in N-glycopeptides enrichment. The hydrophilicity and binding capacity of HILIC adsorbents are crucial to the enrichment efficiency and mass spectrometry (MS) detection sensitivity of N-glycopeptides. Herein, magnetic nanoparticles coated with maltose-functionalized polyethyleneimine (Fe3O4-PEI-Maltose MNPs) were prepared by one-pot solvothermal reaction coupled with "click chemistry" and utilized for N-glycopeptides enrichment. Owing to the presence of hydrophilic and branched polyethyleneimine, the amount of immobilized disaccharide units was improved about four times. The N-glycopeptides capturing capacity was about 150mg/g (IgG/MNPs) and the MS detection limitation as low as 0.5fmol for IgG and 85% average enrichment recovery were feasibly achieved by using this hybrid magnetic adsorbent. Finally, 1237 unique N-glycosylation sites and 1567 unique N-glycopeptides from 684 N-glycoproteins were reliably characterized from 60μg protein sample extracted from mouse liver. Therefore, this maltose-functionalized polyethyleneimine coated adsorbent can play a promising role in highly efficient N-glycopeptides enrichment for glycoproteomic analyses of complex protein samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. High-quality stable electron beams from laser wakefield acceleration in high density plasma

    Directory of Open Access Journals (Sweden)

    B. S. Rao

    2014-01-01

    Full Text Available High-quality, stable electron beams are produced from self-injected laser wakefield acceleration using the interaction of moderate 3 TW, 45 fs duration Ti:sapphire laser pulses with high density (>5×10^{19}   cm^{−3} helium gas jet plasma. The electron beam has virtually background-free quasimonoenergetic distribution with energy 35.6_{−2.5}^{+3.9}  MeV, charge 3.8_{−1.2}^{+2.8}  pC, divergence and pointing variation ∼10  mrad. The stable and high quality of the electron beam opens an easy way for applications of the laser wakefield accelerator in the future, particularly due to the widespread availability of sub-10 TW class lasers with a number of laser plasma laboratories around the world.

  12. Multiplex target enrichment using DNA indexing for ultra-high throughput SNP detection.

    LENUS (Irish Health Repository)

    Kenny, Elaine M

    2011-02-01

    Screening large numbers of target regions in multiple DNA samples for sequence variation is an important application of next-generation sequencing but an efficient method to enrich the samples in parallel has yet to be reported. We describe an advanced method that combines DNA samples using indexes or barcodes prior to target enrichment to facilitate this type of experiment. Sequencing libraries for multiple individual DNA samples, each incorporating a unique 6-bp index, are combined in equal quantities, enriched using a single in-solution target enrichment assay and sequenced in a single reaction. Sequence reads are parsed based on the index, allowing sequence analysis of individual samples. We show that the use of indexed samples does not impact on the efficiency of the enrichment reaction. For three- and nine-indexed HapMap DNA samples, the method was found to be highly accurate for SNP identification. Even with sequence coverage as low as 8x, 99% of sequence SNP calls were concordant with known genotypes. Within a single experiment, this method can sequence the exonic regions of hundreds of genes in tens of samples for sequence and structural variation using as little as 1 μg of input DNA per sample.

  13. 78 FR 33448 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-06-04

    ... targets Canada. Security Complex, May 13, Uranium (93.35%). uranium-235 at the National 2013, May 21, 2013, XSNM3745, contained in 7.5 Research Universal 11006098. kilograms reactor in Canada for uranium. ultimate... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public...

  14. 77 FR 73055 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-12-07

    ... kilograms To fabricate targets The Netherlands. Security Complex. Uranium uranium-235 at CERCA AREVA October... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public... XSNM3730 uranium. targets at the HFR 11006054 Research Reactor in the Netherlands, the BR-2 Reactor in...

  15. 77 FR 73056 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-12-07

    ... targets Belgium. Security Complex. Uranium (93.2%). uranium-235 at CERCA AREVA Romans October 10, 2012 contained in 6.2 in France and to October 12, 2012 kilograms irradiate targets at XSNM3729 uranium. the BR-2... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public...

  16. 78 FR 72123 - Request To Amend a License to Export High-Enriched Uranium

    Science.gov (United States)

    2013-12-02

    ... contained in 6.2 kg uranium to a new cumulative total of 12.615 kg of U-235 contained in 13.5 kg uranium; 2... COMMISSION Request To Amend a License to Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public... in Belgium. National Nuclear Security Uranium (HEU) uranium France for irradiation in Administration...

  17. 77 FR 1956 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-01-12

    ... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(b) ``Public... Netherlands. Security Complex. Uranium uranium (9.3 targets at December 21, 2011 (93.35%). kilograms U- CERCA AREVA December 22, 2011 235). Romans in XSNM3708 France for 11005974 ultimate use for production of...

  18. 75 FR 7525 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-02-19

    ... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public... fuel France; Belgium. Security Complex, February 2, Uranium (93.35%). uranium (87.3 elements in 2010, February 2, 2010, kilograms U-235). France for use XSNM3622, 11005843. as fuel in the BR-2 reactor in...

  19. 75 FR 6223 - Application For a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-02-08

    ... COMMISSION Application For a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public... fabricate Canada. Complex December 21, 2009, Uranium (93.35%). uranium (16.3 targets for December 28, 2009, XSNM3623, kilograms U-235). irradiation in 11005844. the National Research Universal (NRU) Reactor to...

  20. High Biofilm Conductivity Maintained Despite Anode Potential Changes in a Geobacter-Enriched Biofilm

    Science.gov (United States)

    This study systematically assessed intracellular electron transfer (IET) and extracellular electron transfer (EET) kinetics with respect to anode potential (Eanode) in a mixed-culture biofilm anode enriched with Geobacter spp. High biofilm conductivity (0.96–1.24 mScm^-1) was mai...

  1. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    Energy Technology Data Exchange (ETDEWEB)

    Zorla, Eyüp; Ipbüker, Cagatay [University of Tartu, Institute of Physics (Estonia); Biland, Alex [US Basalt Corp., Houston (United States); Kiisk, Madis [University of Tartu, Institute of Physics (Estonia); Kovaljov, Sergei [OÜ Basaltest, Tartu (Estonia); Tkaczyk, Alan H. [University of Tartu, Institute of Physics (Estonia); Gulik, Volodymyr, E-mail: volodymyr.gulik@gmail.com [Institute for Safety Problems of Nuclear Power Plants, Lysogirska 12, of. 201, 03028 Kyiv (Ukraine)

    2017-03-15

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  2. Antihepatitis B Virus Activity of a Protein-Enriched Fraction from Housefly (Musca domestica in a Stable HBV-Producing Cell Line

    Directory of Open Access Journals (Sweden)

    Xuemei Lu

    2014-01-01

    Full Text Available Hepatitis B virus (HBV infection remains a major public health problem. Although several vaccines and therapeutic strategies are currently being implemented to combat HBV virus, effective antiviral therapy against HBV infection has not been fully developed. Alternative strategies and new drugs to combat this disease are urged. Insects and insect derivatives are a large and unexploited source of potentially useful compounds for modern medicine. In the present study, we investigated the first anti-HBV activity of a protein-enriched fraction (PE from the larvae of the housefly (Musca domestica in a stable HBV-producing cell line. HBsAg and HBeAg in the culture medium were measured by enzyme-linked immunosorbent assay. HBV-DNA was quantified by fluorescent quantification PCR. HBV core protein was assayed by immunofluorescent staining. Results indicate PE treatment inhibited both HBsAg, HBeAg secretion, and HBV-DNA replication. Furthermore, PE could also suppress HBV core protein expression. PE could be a potential candidate for the development of a novel and effective drug for the treatment of HBV infection.

  3. DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions.

    Science.gov (United States)

    Laban, Nidal Abu; Dao, Anh; Foght, Julia

    2015-05-01

    Oil sands tailings ponds are anaerobic repositories of fluid wastes produced by extraction of bitumen from oil sands ores. Diverse indigenous microbiota biodegrade hydrocarbons (including toluene) in situ, producing methane, carbon dioxide and/or hydrogen sulfide, depending on electron acceptor availability. Stable-isotope probing of cultures enriched from tailings associated specific taxa and functional genes to (13)C6- and (12)C7-toluene degradation under methanogenic and sulfate-reducing conditions. Total DNA was subjected to isopycnic ultracentrifugation followed by gradient fraction analysis using terminal restriction fragment length polymorphism (T-RFLP) and construction of 16S rRNA, benzylsuccinate synthase (bssA) and dissimilatory sulfite reductase (dsrB) gene clone libraries. T-RFLP analysis plus sequencing and in silico digestion of cloned taxonomic and functional genes revealed that Clostridiales, particularly Desulfosporosinus (136 bp T-RF) contained bssA genes and were key toluene degraders during methanogenesis dominated by Methanosaeta. Deltaproteobacterial Desulfobulbaceae (157 bp T-RF) became dominant under sulfidogenic conditions, likely because the Desulfosporosinus T-RF 136 apparently lacks dsrB and therefore, unlike its close relatives, is presumed incapable of dissimilatory sulfate reduction. We infer incomplete oxidation of toluene by Desulfosporosinus in syntrophic association with Methanosaeta under methanogenic conditions, and complete toluene oxidation by Desulfobulbaceae during sulfate reduction. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Development of immobilized Sn(4+) affinity chromatography material for highly selective enrichment of phosphopeptides.

    Science.gov (United States)

    Lin, Haizhu; Deng, Chunhui

    2016-11-01

    In this work, we first immobilized tin(IV) ion on polydopamine-coated magnetic graphene (magG@PDA) to synthesize Sn(4+) -immobilized magG@PDA (magG@PDA-Sn(4+) ) and successfully applied the material to highly selective enrichment of phosphopeptides. The material gathered the advantages of large surface area of graphene, superparamagnetism of Fe3 O4 , good hydrophilicity and biocompatibility of polydopamine, and strong interaction between Sn(4+) and phosphopeptides. The enrichment performance of magG@PDA-Sn(4+) toward phosphopeptides from digested β-casein at different concentrations, with and without added digested BSA was investigated and compared with magG@PDA-Ti(4+) . The results showed high selectivity and sensitivity of the Sn(4+) -IMAC material toward phosphopeptides, as good as the Ti(4+) -IMAC material. Finally, magG@PDA-Sn(4+) was applied to the analysis of endogenous phosphopeptides from a real sample, human saliva, with both MALDI-TOF MS and nano-LC-ESI-MS/MS. The results indicated that the as-synthesized Sn(4+) -IMAC material not only has good enrichment performance, but also could serve as a supplement to the Ti(4+) -IMAC material and expand the phosphopeptide coverage enriched by the single Ti(4+) -IMAC material, demonstrating the broad application prospects of magG@PDA-Sn(4+) in phosphoproteome research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High performance dental resin composites with hydrolytically stable monomers.

    Science.gov (United States)

    Wang, Xiaohong; Huyang, George; Palagummi, Sri Vikram; Liu, Xiaohui; Skrtic, Drago; Beauchamp, Carlos; Bowen, Rafael; Sun, Jirun

    2018-02-01

    The objectives of this project were to: 1) develop strong and durable dental resin composites by employing new monomers that are hydrolytically stable, and 2) demonstrate that resin composites based on these monomers perform superiorly to the traditional bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) composites under testing conditions relevant to clinical applications. New resins comprising hydrolytically stable, ether-based monomer, i.e., triethylene glycol divinylbenzyl ether (TEG-DVBE), and urethane dimethacrylate (UDMA) were produced via composition-controlled photo-polymerization. Their composites contained 67.5wt% of micro and 7.5wt% of nano-sized filler. The performances of both copolymers and composites were evaluated by a battery of clinically-relevant assessments: degree of vinyl conversion (DC: FTIR and NIR spectroscopy); refractive index (n: optical microscopy); elastic modulus (E), flexural strength (F) and fracture toughness (K IC ) (universal mechanical testing); Knoop hardness (HK; indentation); water sorption (W sp ) and solubility (W su ) (gravimetry); polymerization shrinkage (S v ; mercury dilatometry) and polymerization stress (tensometer). The experimental UDMA/TEG-DVBE composites were compared with the Bis-GMA/TEGDMA composites containing the identical filler contents, and with the commercial micro hybrid flowable composite. UDMA/TEG-DBVE composites exhibited n, E, W sp , W su and S v equivalent to the controls. They outperformed the controls with respect to F (up to 26.8% increase), K IC (up to 27.7% increase), modulus recovery upon water sorption (full recovery vs. 91.9% recovery), and stress formation (up to 52.7% reduction). In addition, new composites showed up to 27.7% increase in attainable DC compared to the traditional composites. Bis-GMA/TEGDMA controls exceeded the experimental composites with respect to only one property, the composite hardness. Significantly, up to 18.1% lower HK values in

  6. Highly stable skyrmion state in helimagnetic MnSi nanowires.

    Science.gov (United States)

    Du, Haifeng; DeGrave, John P; Xue, Fei; Liang, Dong; Ning, Wei; Yang, Jiyong; Tian, Mingliang; Zhang, Yuheng; Jin, Song

    2014-01-01

    Topologically stable magnetic skyrmions realized in B20 metal silicide or germanide compounds with helimagnetic order are very promising for magnetic memory and logic devices. However, these applications are hindered because the skyrmions only survive in a small temperature-field (T-H) pocket near the critical temperature Tc in bulk materials. Here we demonstrate that the skyrmion state in helimagnetic MnSi nanowires with varied sizes from 400 to 250 nm can exist in a substantially extended T-H region. Magnetoresistance measurements under a moderate external magnetic field along the long axis of the nanowires (H∥) show transitions corresponding to the skyrmion state from Tc ∼32 K down to at least 3 K, the lowest temperature in our measurement. When the field is applied perpendicular to the wire axis (H⊥), the skyrmion state was not resolvable using the magnetoresistance measurements. Our analysis suggests that the shape-induced uniaxial anisotropy might be responsible for the stabilization of skyrmion state observed in nanowires.

  7. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    Science.gov (United States)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  8. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    Science.gov (United States)

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  9. Dimensionally Stable Membrane for High Pressure Electrolyzers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilizing high strength polymers with controlled pore dimensions as a support, a customized membrane electrode assembly (MEA) can be generated for NASA's...

  10. Combining target enrichment with barcode multiplexing for high throughput SNP discovery

    Directory of Open Access Journals (Sweden)

    Lunke Sebastian

    2010-11-01

    Full Text Available Abstract Background The primary goal of genetic linkage analysis is to identify genes affecting a phenotypic trait. After localisation of the linkage region, efficient genetic dissection of the disease linked loci requires that functional variants are identified across the loci. These functional variations are difficult to detect due to extent of genetic diversity and, to date, incomplete cataloguing of the large number of variants present both within and between populations. Massively parallel sequencing platforms offer unprecedented capacity for variant discovery, however the number of samples analysed are still limited by cost per sample. Some progress has been made in reducing the cost of resequencing using either multiplexing methodologies or through the utilisation of targeted enrichment technologies which provide the ability to resequence genomic areas of interest rather that full genome sequencing. Results We developed a method that combines current multiplexing methodologies with a solution-based target enrichment method to further reduce the cost of resequencing where region-specific sequencing is required. Our multiplex/enrichment strategy produced high quality data with nominal reduction of sequencing depth. We undertook a genotyping study and were successful in the discovery of novel SNP alleles in all samples at uniplex, duplex and pentaplex levels. Conclusion Our work describes the successful combination of a targeted enrichment method and index barcode multiplexing to reduce costs, time and labour associated with processing large sample sets. Furthermore, we have shown that the sequencing depth obtained is adequate for credible SNP genotyping analysis at uniplex, duplex and pentaplex levels.

  11. Serum cytokine profiling and enrichment analysis reveal the involvement of immunological and inflammatory pathways in stable patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Bade G

    2014-08-01

    Full Text Available Geetanjali Bade,1 Meraj Alam Khan,2 Akhilesh Kumar Srivastava,1 Parul Khare,1 Krishna Kumar Solaiappan,1 Randeep Guleria,3 Nades Palaniyar,2 Anjana Talwar1 1Department of Physiology, All India Institute of Medical Sciences, New Delhi, India; 2Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; 3Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India Abstract: Chronic obstructive pulmonary disease (COPD is a major global health problem. It results from chronic inflammation and causes irreversible airway damage. Levels of different serum cytokines could be surrogate biomarkers for inflammation and lung function in COPD. We aimed to determine the serum levels of different biomarkers in COPD patients, the association between cytokine levels and various prognostic parameters, and the key pathways/networks involved in stable COPD. In this study, serum levels of 48 cytokines were examined by multiplex assays in 30 subjects (control, n=9; COPD, n=21. Relationships between serum biomarkers and forced expiratory volume in 1 second, peak oxygen uptake, body mass index, dyspnea score, and smoking were assessed. Enrichment pathways and networks analyses were implemented, using a list of cytokines showing differential expression between healthy controls and patients with COPD by Cytoscape and GeneGo Metacore™ softwares (Thomson-Reuters Corporation, New York, NY, USA. Concentrations of cutaneous T-cell attracting chemokine, eotaxin, hepatocyte growth factor, interleukin 6 (IL-6, IL-16, and stem cell factor are significantly higher in COPD patients compared with in control patients. Notably, this study identifies stem cell factor as a biomarker for COPD. Multiple regression analysis predicts that cutaneous T

  12. A Stable Particle Filter in High-Dimensions

    OpenAIRE

    Beskos, Alex; Crisan, Dan; Jasra, Ajay; Kamatani, Kengo; Zhou, Yan

    2014-01-01

    We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in $\\mathbb{R}^d$ with $d$ large. For low dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or sequential Monte Carlo methods. However, in high dimensions, standard particle filters (e.g. the bootstrap particle filter) can have a cost that is exponential in $d$ for the algorithm...

  13. The impact of STEM enrichment programs on California's high school Latino/a seniors

    Science.gov (United States)

    Skrotzki, Gretchen

    This study seeks to determine if Science, Technology, Engineering, and Mathematics (STEM) enrichment programs, such as summer camp programs, after-school programs, or STEM-based high schools motivate Latino high school graduates to enter into STEM bachelor programs in college as compared to those students enrolled in non-STEM enrichment programs. A mixed-methods approach consisting of pre- and post- surveys and focus group interviews were used to determine students' level of interest in STEM, confidence in their ability to do well in STEM subjects, consideration to pursue advanced courses in STEM, and consideration to pursue a job in STEM. An average change (Post-Pre) across survey questions was calculated for each student. This provided an overall change across all variables and allowed for one variable called "Total Interest" to be derived.

  14. The efficacy of high-throughput sequencing and target enrichment on charred archaeobotanical remains

    DEFF Research Database (Denmark)

    Nistelberger, H. M.; Smith, O.; Wales, Nathan

    2016-01-01

    The majority of archaeological plant material is preserved in a charred state. Obtaining reliable ancient DNA data from these remains has presented challenges due to high rates of nucleotide damage, short DNA fragment lengths, low endogenous DNA content and the potential for modern contamination...... different laboratories, presenting the largest HTS assessment of charred archaeobotanical specimens to date. Rigorous analysis of our data - excluding false-positives due to background contamination or incorrect index assignments - indicated a lack of endogenous DNA in nearly all samples, except for one....... It has been suggested that high-throughput sequencing (HTS) technologies coupled with DNA enrichment techniques may overcome some of these limitations. Here we report the findings of HTS and target enrichment on four important archaeological crops (barley, grape, maize and rice) performed in three...

  15. Temperature-dependent 29Si incorporation during deposition of highly enriched 28Si films

    Science.gov (United States)

    Dwyer, K. J.; Kim, H. S.; Simons, D. S.; Pomeroy, J. M.

    2017-11-01

    In this study, we examine the mechanisms leading to 29Si incorporation into highly enriched 28Si films deposited by hyperthermal ion beams at elevated temperatures in the dilute presence of natural abundance silane (SiH4) gas. Enriched 28Si is a critical material in the development of quantum information devices because 28Si is free of nuclear spins that cause decoherence in a quantum system. We deposit epitaxial thin films of 28Si enriched in situ beyond 99.999 98% 28Si onto Si(100) using an ion-beam deposition system and seek to develop the ability to systematically vary the enrichment and measure the impact on quantum coherence. We use secondary ion mass spectrometry to measure the residual 29Si isotope fraction in enriched samples deposited from ≈250 ∘C up to 800 °C. The 29Si isotope fraction is found to increase from 4 ×10-6 at around 800 °C. From these data, we estimate the temperature dependence of the incorporation fraction s of SiH4, which increases sharply from about 2.9 ×10-4 at 500 °C to 2.3 ×10-2 at 800 °C. We determine an activation energy of 1.00(8) eV associated with the abrupt increase in incorporation and conclude that below 500 °C, a temperature-independent mechanism such as activation from ion collisions with adsorbed SiH4 molecules is the primary incorporation mechanism. Direct incorporation from the adsorbed state is found to be minimal.

  16. 78 FR 60928 - Request To Amend a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-10-02

    ... 10.1 kg uranium to a new cumulative total of 17.1 kg of U-235 contained in 18.4 kg uranium; and 2... COMMISSION Request To Amend a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public... Nuclear Security Uranium uranium (17.1 targets in France Administration, September 9, (93.35%). kilograms...

  17. Stable Carbon Isotope Fractionation During 1,2-Dichloropropane-to-Propene Transformation by an Enrichment Culture Containing Dehalogenimonas Strains and a dcpA Gene.

    Science.gov (United States)

    Martín-González, L; Mortan, S Hatijah; Rosell, M; Parladé, E; Martínez-Alonso, M; Gaju, N; Caminal, G; Adrian, L; Marco-Urrea, E

    2015-07-21

    A stable enrichment culture derived from Besòs river estuary sediments stoichiometrically dechlorinated 1,2-dichloropropane (1,2-DCP) to propene. Sequential transfers in defined anaerobic medium with the inhibitor bromoethanesulfonate produced a sediment-free culture dechlorinating 1,2-DCP in the absence of methanogenesis. Application of previously published genus-specific primers targeting 16S rRNA gene sequences revealed the presence of a Dehalogenimonas strain, and no amplification was obtained with Dehalococcoides-specific primers. The partial sequence of the 16S rRNA amplicon was 100% identical with Dehalogenimonas alkenigignens strain IP3-3. Also, dcpA, a gene described to encode a corrinoid-containing 1,2-DCP reductive dehalogenase was detected. Resistance of the dehalogenating activity to vancomycin, exclusive conversion of vicinally chlorinated alkanes, and tolerance to short-term oxygen exposure is consistent with the hypothesis that a Dehalogenimonas strain is responsible for 1,2-DCP conversion in the culture. Quantitative PCR showed a positive correlation between the number of Dehalogenimonas 16S rRNA genes copies in the culture and consumption of 1,2-DCP. Compound specific isotope analysis revealed that the Dehalogenimonas-catalyzed carbon isotopic fractionation (εC(bulk)) of the 1,2-DCP-to-propene reaction was -15.0 ± 0.7‰ under both methanogenic and nonmethanogenic conditions. This study demonstrates that carbon isotope fractionation is a valuable approach for monitoring in situ 1,2-DCP reductive dechlorination by Dehalogenimonas strains.

  18. Conductive MOF electrodes for stable supercapacitors with high areal capacitance

    Science.gov (United States)

    Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2017-02-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  19. Highly Stable Monocrystalline Silver Clusters for Plasmonic Applications

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Popok, Vladimir N.; Evlyukhin, Andrey B.

    2017-01-01

    -beam technique and characterized by linear spectroscopy, two-photon-excited photoluminescence, surface-enhanced Raman scattering microscopy, and transmission electron, helium ion, and atomic force microscopies. It is found that the fabricated ensembles of monocrystalline silver NPs preserve their plasmonic...... properties (monitored with optical spectroscopy) and strong field enhancements (revealed by surface-enhanced Raman spectroscopy) at least 5 times longer as compared to chemically synthesized silver NPs with similar sizes. The obtained results are of high practical relevance for the further development...

  20. The efficacy of high-throughput sequencing and target enrichment on charred archaeobotanical remains.

    Science.gov (United States)

    Nistelberger, H M; Smith, O; Wales, N; Star, B; Boessenkool, S

    2016-11-24

    The majority of archaeological plant material is preserved in a charred state. Obtaining reliable ancient DNA data from these remains has presented challenges due to high rates of nucleotide damage, short DNA fragment lengths, low endogenous DNA content and the potential for modern contamination. It has been suggested that high-throughput sequencing (HTS) technologies coupled with DNA enrichment techniques may overcome some of these limitations. Here we report the findings of HTS and target enrichment on four important archaeological crops (barley, grape, maize and rice) performed in three different laboratories, presenting the largest HTS assessment of charred archaeobotanical specimens to date. Rigorous analysis of our data - excluding false-positives due to background contamination or incorrect index assignments - indicated a lack of endogenous DNA in nearly all samples, except for one lightly-charred maize cob. Even with target enrichment, this sample failed to yield adequate data required to address fundamental questions in archaeology and biology. We further reanalysed part of an existing dataset on charred plant material, and found all purported endogenous DNA sequences were likely to be spurious. We suggest these technologies are not suitable for use with charred archaeobotanicals and urge great caution when interpreting data obtained by HTS of these remains.

  1. A simple method for the absolute determination of uranium enrichment by high-resolution {gamma} spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Korob, R.O. [Unidad de Actividad Radioquimica y Quimica de las Radiaciones, Comision Nacional de Energia Atomica, Centro Atomico Ezeiza, Presbitero Juan Gonzalez y Aragon No. 15 Partido de Ezeiza, Provincia de Buenos Aires (Argentina)]. E-mail: korob@cae.cnea.gov.ar; Blasiyh Nuno, G.A. [Unidad de Actividad Gestion de Residuos Radiactivos, Comision Nacional de Energia Atomica, Centro Atomico Ezeiza, Presbitero Juan Gonzalez y Aragon No. 15 Partido de Ezeiza, Provincia de Buenos Aires (Argentina)

    2006-05-15

    A simple method for the determination of uranium enrichment using high-resolution {gamma} spectrometry is presented in this paper. The method relies solely on the {gamma}-ray emission probabilities of {sup 235}U and {sup 234m}Pa, and an iterative procedure for the least squares fit of a polynomial to a set of experimentally determined data. To ensure the reliability of the {sup 234m}Pa {gamma}-ray emission probabilities employed, a new determination of these probabilities was carried out using a combination of {gamma} spectrometry and Cerenkov counting of a purified {sup 234}Th solution. Using these new data, a maximum difference of {approx}5% has been found between the experimental and declared uranium enrichment in a set of solid and liquid samples containing uranium compounds.

  2. Development of Thermally Stable and Highly Fluorescent IR Dyes

    Science.gov (United States)

    Bu, Xiu R.

    2004-01-01

    Fluorophores are the core component in various optical applications such as sensors and probes. Fluorphores with low-energy or long wavelength emission, in particular, in NIR region, possess advantages of low interference and high sensitivity. In this study, we has explored several classes of imidazole-based compounds for NIR fluorescent properties and concluded: (1) thiazole-based imidazole compounds are fluorescent; (2) emission energy is tunable by additional donor groups; (3) they also possess impressive two- photon absorption properties; and (4) fluorescence emission can be induced by two- photon input. This report summarizes (1) synthesis of new series of fluorophore; (2) impact of electron-withdrawing groups on fluorescent property; (3) unique property of two-photon absorption; and (4) on-going development.

  3. Stable switching among high-order modes in polariton condensates

    Science.gov (United States)

    Sun, Yongbao; Yoon, Yoseob; Khan, Saeed; Ge, Li; Steger, Mark; Pfeiffer, Loren N.; West, Ken; Türeci, Hakan E.; Snoke, David W.; Nelson, Keith A.

    2018-01-01

    We report multistate optical switching among high-order bouncing-ball modes ("ripples") and whispering-gallery modes ("petals") of exciton-polariton condensates in a laser-generated annular trap. By tailoring the diameter and power of the annular trap, the polariton condensate can be switched among different trapped modes, accompanied by redistribution of spatial densities and superlinear increase in the emission intensities, implying that polariton condensates in this geometry could be exploited for an all-optical multistate switch. A model based on non-Hermitian modes of the generalized Gross-Pitaevskii equation reveals that this mode switching arises from competition between pump-induced gain and in-plane polariton loss. The parameters for reproducible switching among trapped modes have been measured experimentally, giving us a phase diagram for mode switching. Taken together, the experimental result and theoretical modeling advance our fundamental understanding of the spontaneous emergence of coherence and move us toward its practical exploitation.

  4. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jaluvka, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States); Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States); McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States); Peters, N. J. [Univ. of Missouri, Columbia, MO (United States)

    2017-02-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members in the Research and Test Reactor Department at the Argonne National Laboratory (ANL) and the MURR Facility. MURR LEU conversion is part of an overall effort to develop and qualify high-density fuel within the U.S. High Performance Research Reactor Conversion (USHPRR) program conducted by the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization (M3).

  5. Low-enriched uranium high-density target project. Compendium report

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.; Gelis, Artem V.; Stepinski, Dominique C.; Wiedmeyer, Stanley; Youker, Amanda; Hebden, Andrew; Solbrekken, G; Allen, C; Robertson., D; El-Gizawy, Sherif; Govindarajan, Srisharan; Hoyer, Annemarie; Makarewicz, Philip; Harris, Jacob; Graybill, Brian; Gunn, Andy; Berlin, James; Bryan, Chris; Sherman, Steven; Hobbs, Randy; Griffin, F. P.; Chandler, David; Hurt, C. J.; Williams, Paul; Creasy, John; Tjader, Barak; McFall, Danielle; Longmire, Hollie

    2016-09-01

    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassembly of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.

  6. Stable carbon isotopic signature of methane from high-emitting wetland sites in discontinuous permafrost landscape

    Science.gov (United States)

    Marushchak, Maija; Liimatainen, Maarit; Lind, Saara; Biasi, Christina; Martikainen, Pertti

    2017-04-01

    The rising methane concentration in the atmosphere during the past years has been associated with a concurrent change in the carbon isotopic signature: The atmospheric methane is getting more and more depleted in the heavy carbon isotope. The decreasing 13C/12C ratio indicates an increasing contribution of methane from biogenic sources, most importantly wetlands and inland waters, whose global emissions are still poorly constrained. From the climate change perspective, arctic and subarctic wetlands are particularly interesting due to the strong warming and permafrost thaw predicted for these regions that will cause changes in the methane dynamics. Coupling methane flux inventories with determination of the stable isotopic signature can provide useful information about the pathways of methane production, consumption and transport in these ecosystems. Here, we present data on the emissions and carbon isotopic composition of methane from subarctic tundra wetlands at the Seida study site, Northeast European Russia. In this landscape, underlain by discontinuous permafrost, waterlogged fens represent sites of high carbon turnover and high methane release. Despite they cover less than 15% of the region, their methane emissions comprise 98% of the regional mean (± SD) release of 6.7 (± 1.8) g CH4 m-2 y-1 (Marushchak et al. 2016). The methane emission from the studied fens was clearly depleted in 13C compared to the pore water methane. The bulk mean δ13CH4 (± SD) over the growing season was -68.2 (± 2.0) ‰ which is similar to the relatively few values previously reported from tundra wetlands. We explain the depleted methane emissions by the high importance of passive transport via aerenchymous plants, a process that discriminates against the heavier isotopes. This idea is supported by the strong positive correlation observed between the methane emission and the vascular leaf area index (LAI), and the inverse relationship between the δ13CH4 of emitted methane and LAI

  7. A rapid, highly sensitive and culture-free detection of pathogens from blood by positive enrichment.

    Science.gov (United States)

    Vutukuru, Manjula Ramya; Sharma, Divya Khandige; Ragavendar, M S; Schmolke, Susanne; Huang, Yiwei; Gumbrecht, Walter; Mitra, Nivedita

    2016-12-01

    Molecular diagnostics is a promising alternative to culture based methods for the detection of bloodstream infections, notably due to its overall lower turnaround time when starting directly from patient samples. Whole blood is usually the starting diagnostic sample in suspected bloodstream infections. The detection of low concentrations of pathogens in blood using a molecular assay necessitates a fairly high starting volume of blood sample in the range of 5-10mL. This large volume of blood sample has a substantial accompanying human genomic content that interferes with pathogen detection. In this study, we have established a workflow using magnetic beads coated with Apolipoprotein H that makes it possible to concentrate pathogens from a 5.0mL whole blood sample, thereby enriching pathogens from whole blood background and also reducing the sample volume to ~200μL or less. We have also demonstrated that this method of enrichment allows detection of 1CFU/mL of Escherichia coli, Enterococcus gallinarum and Candida tropicalis from 5mL blood using quantitative PCR; a detection limit that is not possible in unenriched samples. The enrichment method demonstrated here took 30min to complete and can be easily integrated with various downstream molecular and microbiological techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Target-dependent enrichment of virions determines the reduction of high-throughput sequencing in virus discovery.

    Directory of Open Access Journals (Sweden)

    Randi Holm Jensen

    Full Text Available Viral infections cause many different diseases stemming both from well-characterized viral pathogens but also from emerging viruses, and the search for novel viruses continues to be of great importance. High-throughput sequencing is an important technology for this purpose. However, viral nucleic acids often constitute a minute proportion of the total genetic material in a sample from infected tissue. Techniques to enrich viral targets in high-throughput sequencing have been reported, but the sensitivity of such methods is not well established. This study compares different library preparation techniques targeting both DNA and RNA with and without virion enrichment. By optimizing the selection of intact virus particles, both by physical and enzymatic approaches, we assessed the effectiveness of the specific enrichment of viral sequences as compared to non-enriched sample preparations by selectively looking for and counting read sequences obtained from shotgun sequencing. Using shotgun sequencing of total DNA or RNA, viral targets were detected at concentrations corresponding to the predicted level, providing a foundation for estimating the effectiveness of virion enrichment. Virion enrichment typically produced a 1000-fold increase in the proportion of DNA virus sequences. For RNA virions the gain was less pronounced with a maximum 13-fold increase. This enrichment varied between the different sample concentrations, with no clear trend. Despite that less sequencing was required to identify target sequences, it was not evident from our data that a lower detection level was achieved by virion enrichment compared to shotgun sequencing.

  9. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Peters, N. J. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Cowherd, W. M. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program; Rickman, B. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program

    2014-12-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo

  10. Pion-Muon Concentrating System for Detectors of Highly Enriched Uranium

    CERN Document Server

    Kurennoy, Sergey; Blind, Barbara; Jason, Andrew J; Neri, Filippo

    2005-01-01

    One of many possible applications of low-energy antiprotons collected in a Penning trap can be a portable muon source. Released antiprotons annihilate on impact with normal matter producing on average about 3 charged pions per antiproton, which in turn decay into muons. Existence of such negative-muon sources of sufficient intensity would bring into play, for example, detectors of highly enriched uranium based on muonic X-rays. We explore options of collecting and focusing pions and resulting muons to enhance the muon flux toward the detector. Simulations with MARS and MAFIA are used to choose the target material and parameters of the magnetic system consisting of a few solenoids.

  11. Comparison Of A Neutron Kinetics Parameter For A Polyethylene Moderated Highly Enriched Uranium System

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, IV, George Espy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-17

    This paper examines the comparison of MCNP® code’s capability to calculate kinetics parameters effectively for a thermal system containing highly enriched uranium (HEU). The Rossi-α parameter was chosen for this examination because it is relatively easy to measure as well as easy to calculate using MCNP®’s kopts card. The Rossi-α also incorporates many other parameters of interest in nuclear kinetics most of which are more difficult to precisely measure. The comparison looks at two different nuclear data libraries for comparison to the experimental data. These libraries are ENDF/BVI (.66c) and ENDF/BVII (.80c).

  12. Preparation of highly and generally enriched mammalian tissues for solid state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Veronica Wai Ching; Reid, David G.; Chow, Wing Ying; Rajan, Rakesh [University of Cambridge, Department of Chemistry (United Kingdom); Green, Maggie [University of Cambridge, Central Biomedical Resources, School of Clinical Medicine (United Kingdom); Brooks, Roger A. [University of Cambridge, Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital (United Kingdom); Duer, Melinda J., E-mail: mjd13@cam.ac.uk [University of Cambridge, Department of Chemistry (United Kingdom)

    2015-10-15

    An appreciable level of isotope labelling is essential for future NMR structure elucidation of mammalian biomaterials, which are either poorly expressed, or unexpressable, using micro-organisms. We present a detailed protocol for high level {sup 13}C enrichment even in slow turnover murine biomaterials (fur keratin), using a customized diet supplemented with commercial labelled algal hydrolysate and formulated as a gel to minimize wastage, which female mice consumed during pregnancy and lactation. This procedure produced approximately eightfold higher fur keratin labelling in pups, exposed in utero and throughout life to label, than in adults exposed for the same period, showing both the effectiveness, and necessity, of this approach.

  13. Evidence for Stable High Temperature Ferromagnetism in Fluorine Treated C60

    Science.gov (United States)

    2013-01-01

    Evidence for Stable High Temperature Ferromagnetism in Fluorine Treated C60 Rajen Patel and Frank J. Owens...microscopy, and ferromagnetic resonance that exposure of C60 to fluorine at 160 0C produces a stable ferromagnetic material with a Curie temperature well...has C60 imbedded in it. Based on previous experimental observations and molecular orbital calculations, it is suggested that the ferromagnetism is

  14. Operation regimes, gain dynamics and highly stable operation points of Ho:YLF regenerative amplifiers

    CERN Document Server

    Kroetz, Peter; Calendron, Anne-Laure; Chatterjee, Gourab; Cankaya, Huseyin; Murari, Krishna; Kaertner, Franz X; Hartl, Ingmar; Miller, R J Dwayne

    2016-01-01

    We present a comprehensive study of laser pulse amplification with respect to operation regimes, gain dynamics, and highly stable operation points of Ho:YLF regenerative amplifiers (RAs). The findings are expected to be more generic than for this specific case. Operation regimes are distinguished with respect to pulse energy and the appearance of pulse instability as a function of the repetition rate, seed energy, and pump intensity. The corresponding gain dynamics are presented, identifying highly stable operation points related to high gain build -up during pumping and high gain depletion during pulse amplification. These operation points are studied numerically and experimentally as a function of several parameters, thereby achieving, for our Ho:YLF RA, highly stable output pulses with measured fluctuations of only 0.19% (standard deviation).

  15. Rapid and high throughput fabrication of high temperature stable structures through PDMS transfer printing

    Science.gov (United States)

    Hohenberger, Erik; Freitag, Nathan; Korampally, Venumadhav

    2017-07-01

    We report on a facile and low cost fabrication approach for structures—gratings and enclosed nanochannels, through simple solution processed chemistries in conjunction with nanotransfer printing techniques. The ink formulation primarily consisting of an organosilicate polymeric network with a small percentage of added 3-aminopropyl triethoxysilane crosslinker allows one to obtain robust structures that are not only stable towards high temperature processing steps as high as 550 °C but also exhibit exceptional stability against a host of organic solvent washes. No discernable structure distortion was observed compared to the as-printed structures (room temperature processed) when printed structures were subjected to temperatures as high as 550 °C. We further demonstrate the applicability of this technique towards the fabrication of more complex nanostructures such as enclosed channels through a double transfer method, leveraging the exceptional room temperature cross-linking ability of the printed structures and their subsequent resistance to dissolution in organic solvent washes. The exceptional temperature and physico-chemical stability of the nanotransfer printed structures makes this a useful fabrication tool that may be applied as is, or integrated with conventional lithographic techniques for the large area fabrication of functional nanostructures and devices.

  16. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells

    KAUST Repository

    Crumlin, Ethan J.

    2012-01-01

    Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situ synchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La 0.8Sr 0.2CoO 3-δ (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O 2 electrocatalysis relative to LSC powder-based electrodes. © 2012 The Royal Society of Chemistry.

  17. Stable isotope metabolic labeling with a novel N-enriched bacteria diet for improved proteomic analyses of mouse models for psychopathologies.

    Directory of Open Access Journals (Sweden)

    Elisabeth Frank

    Full Text Available The identification of differentially regulated proteins in animal models of psychiatric diseases is essential for a comprehensive analysis of associated psychopathological processes. Mass spectrometry is the most relevant method for analyzing differences in protein expression of tissue and body fluid proteomes. However, standardization of sample handling and sample-to-sample variability are problematic. Stable isotope metabolic labeling of a proteome represents the gold standard for quantitative mass spectrometry analysis. The simultaneous processing of a mixture of labeled and unlabeled samples allows a sensitive and accurate comparative analysis between the respective proteomes. Here, we describe a cost-effective feeding protocol based on a newly developed (15N bacteria diet based on Ralstonia eutropha protein, which was applied to a mouse model for trait anxiety. Tissue from (15N-labeled vs. (14N-unlabeled mice was examined by mass spectrometry and differences in the expression of glyoxalase-1 (GLO1 and histidine triad nucleotide binding protein 2 (Hint2 proteins were correlated with the animals' psychopathological behaviors for methodological validation and proof of concept, respectively. Additionally, phenotyping unraveled an antidepressant-like effect of the incorporation of the stable isotope (15N into the proteome of highly anxious mice. This novel phenomenon is of considerable relevance to the metabolic labeling method and could provide an opportunity for the discovery of candidate proteins involved in depression-like behavior. The newly developed (15N bacteria diet provides researchers a novel tool to discover disease-relevant protein expression differences in mouse models using quantitative mass spectrometry.

  18. Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2009-11-01

    An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.

  19. Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications.

    Science.gov (United States)

    Zhao, Wenqi; Li, Yibin; Wu, Shiting; Wang, Dezhi; Zhao, Xu; Xu, Fan; Zou, Mingchu; Zhang, Hui; He, Xiaodong; Cao, Anyuan

    2016-12-14

    Three-dimensional carbon nanotube (CNT) networks with high porosity and electrical conductivity have many potential applications in energy and environmental areas, but the network structure is not very stable due to weak inter-CNT interactions. Here, we coat a thin polyaniline (PANI) layer on as-synthesized CNT sponge to obtain a mechanically and electrically stable network, and enable multifunctional applications. The resulting CNT/PANI network serves as stable strain sensors, highly compressible supercapacitor electrode with enhanced volume-normalized capacitance (632 F/cm3), and reinforced nanocomposites with the PANI as intermediate layer between the CNT fillers and polymeric matrix. Our results provide a simple and controllable method for achieving high-stability porous networks composed of CNTs, graphene, or other nanostructures.

  20. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures.

    Science.gov (United States)

    Sosa, Oscar A; Gifford, Scott M; Repeta, Daniel J; DeLong, Edward F

    2015-12-01

    The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4-6% of replicate dilutions, whereas determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them.

  1. Inquiry into disintegration control of irradiated low enrichment uranium for high temperature gas cooled reactors

    Science.gov (United States)

    Reitsamer, G.; Stolba, G.; Falta, G.; Strigl, A.; Zeger, J.; Maly, V.

    1984-07-01

    The PyC-coatings of irradiated high temperature reactor (HTR) fuel particles from AVR fuel elements were burnt off by air and oxygen at 1120K (comparable to the current HTR head-end). Experiments on the solubility of this low enrichment uranium fuel prove that 99.93% of the uranium and 99.84% of the plutonium can be dissolved by 7n HNO3. After additional treatment with 7n HNO3/0.01 n NaF, only 0.01% of the original amount of uranium and 0.01% of the original amount of plutonium remain undissolved. Neither the insoluble residues nor the very small amounts of solids formed on standing (before and after concentrating the solution up to 200 g U/1 and acidity of 3 n HNO3) show any enrichment of plutonium compared with the nitric acid solution. Results indicate that LWR-PUREX-technology can be used for reprocessing HTR-LEU-fuel.

  2. Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides.

    Science.gov (United States)

    Huang, Guang; Sun, Zhen; Qin, Hongqiang; Zhao, Liang; Xiong, Zhichao; Peng, Xiaojun; Ou, Junjie; Zou, Hanfa

    2014-05-07

    Hydrazide chemistry is a powerful technique in glycopeptides enrichment. However, the low density of the monolayer hydrazine groups on the conventional hydrazine-functionalized magnetic nanoparticles limits the efficiency of glycopeptides enrichment. Herein, a novel magnetic nanoparticle grafted with poly(glycidyl methacrylate) (GMA) brushes was fabricated via reversible addition-fragmentation chain transfer (RAFT) polymerization, and a large amount of hydrazine groups were further introduced to the GMA brushes by ring-opening the epoxy groups with hydrazine hydrate. The resulting magnetic nanoparticles (denoted as Fe3O4@SiO2@GMA-NHNH2) demonstrated the high specificity of capturing glycopeptides from a tryptic digest of the sample comprising a standard non-glycosylated protein bovine serum albumin (BSA) and four standard glycoproteins with a weight ratio of 50 : 1, and the detection limit was as low as 130 fmol. In the analysis of a real complex biological sample, the tryptic digest of hepatocellular carcinoma, 179 glycosites were identified by the Fe3O4@SiO2@GMA-NHNH2 nanoparticles, surpassing that of 68 glycosites by Fe3O4@SiO2-single-NHNH2 (with monolayer hydrazine groups on the surface). It can be expected that the magnetic nanoparticles modified with hydrazine functionalized polymer brushes via RAFT technique will improve the specificity and the binding capacity of glycopeptides from complex samples, and show great potential in the analysis of protein glycosylation in biological samples.

  3. Note: Production of stable colloidal probes for high-temperature atomic force microscopy applications.

    Science.gov (United States)

    Ditscherlein, L; Peuker, U A

    2017-04-01

    For the application of colloidal probe atomic force microscopy at high temperatures (>500 K), stable colloidal probe cantilevers are essential. In this study, two new methods for gluing alumina particles onto temperature stable cantilevers are presented and compared with an existing method for borosilicate particles at elevated temperatures as well as with cp-cantilevers prepared with epoxy resin at room temperature. The durability of the fixing of the particle is quantified with a test method applying high shear forces. The force is calculated with a mechanical model considering both the bending as well as the torsion on the colloidal probe.

  4. Highly 15N-Enriched Chondritic Clasts in the Isheyevo Meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, L; Huss, G R; Krot, A N; Nagashima, K; Ishii, H A; Bradley, J P; Hutcheon, I D

    2009-01-14

    The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock {sup 15}N enrichment ({delta}{sup 15}N up to +1500{per_thousand}), similar to {delta}{sup 15}N values reported in micron-sized regions (hotspots) of Interplanetary Dust Particles (IDPs) of possibly cometary origin and fine-grained matrices of unmetamorphosed chondrites. These {sup 15}N-rich hotspots are commonly attributed to low-temperature ion-molecule reactions in the protosolar molecular cloud or in the outer part of the protoplanetary disk. The nature of the whole-rock {sup 15}N enrichment of the metal-rich chondrites is not understood. We report a discovery of a unique type of primitive chondritic clasts in the CH/CB-like meteorite Isheyevo, which provides important constraints on the origin of {sup 15}N anomaly in metal-rich chondrites and nitrogen-isotope fractionation in the Solar System. These clasts contain tiny chondrules and refractory inclusions (5-15 {micro}m in size), and abundant ferromagnesian chondrule fragments (1-50 {micro}m in size) embedded in the partly hydrated, fine-grained matrix material composed of olivines, pyroxenes, poorly-organized aromatic organics, phyllosilicates and other hydrous phases. The mineralogy and oxygen isotope compositions of chondrules and refractory inclusions in the clasts are similar to those in the Isheyevo host, suggesting formation at similar heliocentric distances. In contrast to the previously known extraterrestrial samples, the fine-grained material in the clasts is highly and rather uniformly enriched in {sup 15}N, with bulk {delta}{sup 15}N values ranging between +1000 and +1300{per_thousand}; the {delta}{sup 15}N values in rare hotspots range from +1400 to +4000{per_thousand}. Since fine-grained matrices in the lithic clasts are the only component containing thermally unprocessed (during CAI and chondrule formation or during impact melting) materials that accreted into the metal rich chondrite parent body(ies), the {sup 15}N-enriched

  5. High-performance thin-film-transistors based on semiconducting-enriched single-walled carbon nanotubes processed by electrical-breakdown strategy

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, B., E-mail: aissab@emt.inrs.ca [Centre Énergie, Matériaux et Télécommunications, INRS, 1650, boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Nedil, M. [Telebec Wireless Underground Communication Laboratory, UQAT, 675, 1" è" r" e Avenue, Val d’Or, Québec J9P 1Y3 (Canada); Habib, M.A. [Computer Sciences and Engineering Department, Yanbu University College, P.O. Box 30031 (Saudi Arabia); Abdul-Hafidh, E.H. [High Energy Physics Department, Yanbu University College, P.O. Box 30031 (Saudi Arabia); Rosei, F. [Centre Énergie, Matériaux et Télécommunications, INRS, 1650, boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2015-02-15

    Highlights: • We selectively burn metallic single wall carbon nanotubes (SWCNT) by electrical breakdown. • We successfully achieve a semiconducting enriched-SWCNT in TFT configuration. • High performance, like On/Off of 10{sup 5} and a subthreshold swing of 165 mV/decades were obtained. • After PMMA coating, the SWCNT–TFTs were found stables for more than 4 months. - Abstract: Over the past two decades, among remarkable variety of nanomaterials, single-walled carbon nanotubes (SWCNTs) remain the most intriguing and uniquely well suited materials for applications in high-performance electronics. The most advanced technologies require the ability to form purely semiconducting SWCNTs. Here, we report on our strategy based on the well known progressive electrical breakdown process that offer this capability and serves as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous random networks, deposited on silicon substrates in a thin film transistor (TFT) configuration. We demonstrate the successful achievement of semiconducting enriched-SWCNT networks in TFT scheme that reach On/Off switching ratios of ∼100,000, on-conductance of 20 μS, and a subthreshold swing of less than 165 mV/decades. The obtained TFT devices were then protected with thin film poly(methyl methacrylate) (PMMA) to keep the percolation level of the SWCNTs network spatially and temporally stable, while protecting it from atmosphere exchanges. TFT devices were found to be air-stable and maintained their excellent characteristics in ambient atmosphere for more than 4 months. This approach could work as a platform for future nanotube-based nanoelectronics.

  6. Benzoboroxole-functionalized magnetic core/shell microspheres for highly specific enrichment of glycoproteins under physiological conditions.

    Science.gov (United States)

    Zhang, Yuting; Ma, Wanfu; Li, Dian; Yu, Meng; Guo, Jia; Wang, Changchun

    2014-04-09

    Efficient enrichment of specific glycoproteins from complex biological samples is of great importance towards the discovery of disease biomarkers in biological systems. Recently, phenylboronic acid-based functional materials have been widely used for enrichment of glycoproteins. However, such enrichment was mainly carried out under alkaline conditions, which is different to the status of glycoproteins in neutral physiological conditions and may cause some unpredictable degradation. In this study, on-demand neutral enrichment of glycoproteins from crude biological samples is accomplished by utilizing the reversible interaction between the cis-diols of glycoproteins and benzoboroxole-functionalized magnetic composite microspheres (Fe3O4/PAA-AOPB). The Fe3O4/PAA-AOPB composite microspheres are deliberately designed and constructed with a high-magnetic-response magnetic supraparticle (MSP) core and a crosslinked poly(acrylic acid) (PAA) shell anchoring abundant benzoboroxole functional groups on the surface. These nanocomposites possessed many merits, such as large enrichment capacity (93.9 mg/g, protein/beads), low non-specific adsorption, quick enrichment process (10 min) and magnetic separation speed (20 s), and high recovery efficiency. Furthermore, the as-prepared Fe3O4/PAA-AOPB microspheres display high selectivity to glycoproteins even in the E. coli lysate or fetal bovine serum, showing great potential in the identify of low-abundance glycoproteins as biomarkers in real complex biological systems for clinical diagnoses. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Energy stable and high-order-accurate finite difference methods on staggered grids

    Science.gov (United States)

    O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan

    2017-10-01

    For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.

  8. Enrichment Meter Dataset from High-Resolution Gamma Spectroscopy Measurements of U3O8 Enrichment Standards and UF6 Cylinder Wall Equivalents

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, Andrew D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shephard, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The Enrichment Meter Principle (EMP) is the basis for a commonly used standard test method for the non-destructive assay of 235U enrichment in bulk compounds [1]. The technique involves determining the net count rate in the direct 186 keV peak using medium or high energy gamma-ray spectrometry in a fixed geometry. With suitable correction for wall attenuation, compound type, rate loss (live time), and peaked background (if significant), the atom fraction of 235U may be obtained from the counting rate from a linear relationship through the origin. The widespread use of this method for field verification of enrichment [2,3] together with the fact that the response function rests on fundamental physics considerations (i.e., is not represented by a convenient but arbitrary form) makes it an interesting example of uncertainty quantification, one in which one can expect a valid measurement model can be applied. When applied using NaI(Tl) and region of interest analysis, the technique is susceptible to both interference error and bias [2-4]. When implemented using high-resolution gamma-ray spectroscopy, the spectrum interpretation is considerable simplified and more robust [5]. However, a practical challenge to studying the uncertainty budget of the EMP method (for example, to test linearity, extract wall corrections and so forth using modern methods) is the availability of quality experimental data that can be referenced and shared. To fill this gap, the research team undertook an experimental campaign [6]. A measurement campaign was conducted to produce high-resolution gamma spectroscopy enrichment meter data comparable to UF6 cylinder measurements. The purpose of this report is to provide both an introduction to and quality assurance (QA) of the raw data produced. This report is intended for the analyst or researcher who uses the raw data. Unfortunately, the raw data (i.e., the spectra files) are too voluminous to include in this report

  9. Wastewater nitrogen and trace metal uptake by biota on a high-energy rocky shore detected using stable isotopes.

    Science.gov (United States)

    Oakes, Joanne M; Eyre, Bradley D

    2015-11-15

    On high-energy rocky shores receiving treated wastewater, impacts are difficult to distinguish against a highly variable background and are localised due to rapid dilution. We demonstrate that nitrogen stable isotope values (δ(15)N) of rocky shore biota are highly sensitive to wastewater inputs. For macroalgae (Ulva lactuca and Endarachne binghamiae), grazing snails (Bembicium nanum and Nerita atramentosa), and predatory snails (Morula marginalba), δ(15)N was enriched near a wastewater outfall and declined with distance, returning to background levels within 290m. Any of these species therefore indicates the extent of influence of wastewater, allowing identification of an appropriate scale for studies of ecosystem impacts. For M. marginalba, significant regressions between δ(15)N and tissue copper, manganese, and zinc concentrations indicate a possible wastewater source for these metals. This suggests that δ(15)N is a proxy for exposure to wastewater contaminants, and may help to attribute variations in rocky shore communities to wastewater impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Corneal elasticity after oxygen enriched high intensity corneal cross linking assessed using atomic force microscopy.

    Science.gov (United States)

    Diakonis, Vasilios F; Likht, Nikita Y; Yesilirmak, Nilufer; Delgado, Desiree; Karatapanis, Andreas E; Yesilirmak, Yener; Fraker, Christopher; Yoo, Sonia H; Ziebarth, Noël M

    2016-12-01

    The purpose of this study was to assess anterior and mid corneal stromal elasticity after high intensity (HI) corneal cross linking (CXL), with and without oxygen (O2) enrichment, and compare these results to conventional CXL. Experiments were performed on 25 pairs of human cadaver eyes, divided into four different groups. Group 1 included corneas that did not receive treatment and served as controls; Group 2 included corneas that received conventional CXL treatment (Dresden Protocol: corneal epithelial debridement, 30 min of riboflavin pretreatment followed by 30 min of exposure to 3 mW/cm(2) of ultraviolet light); Group 3 included corneas that received HI CXL treatment (corneal epithelial debridement, 30 min of riboflavin pretreatment followed by 3 min of exposure to 30mW/cm(2) of ultraviolet light); and Group 4 included corneas that received the same treatment as Group 3, except that they were enriched with oxygen (4 L per minute pure O2 gas stream) during ultraviolet irradiation. In each group, corneas were subdivided to assess anterior stromal elasticity and mid stromal elasticity. Corneal stromal elasticity was quantified using Atomic Force Microscopy (AFM) through micro-indentation. Young's modulus for the anterior corneal stroma was 14.5 ± 6.0 kPa, 80.7 ± 44.6 kPa, 36.6 ± 10.5 kPa, and 30.6 ± 9.2 kPa, for groups 1, 2, 3 and 4 respectively. Young's modulus for the mid corneal stroma was 5.8 ± 2.0 kPa, 20.7 ± 4.3 kPa, 12.1 ± 4.9 kPa, and 11.7 ± 3.7 kPa, for groups 1, 2, 3 and 4, respectively. In the anterior stromal region, conventional CXL demonstrated a significantly different result from the control, whereas the two HI CXL protocols were not significantly different from the control. There were no statistical differences between the two HI CXL protocols, although only the HI CXL protocol with O2 enrichment was significantly different from the conventional CXL group. In the mid stromal region, once again only

  11. RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

    2009-07-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  12. Linear Inertial-Electrostatic Fusion Neutron Sources and Highly Enriched Uranium Detection

    Science.gov (United States)

    Santarius, John; Kulcinski, Gerald; Navarro, Marcos; Fancher, Aaron; Bonomo, Richard; Emmert, Gilbert

    2017-10-01

    A newly initiated research project investigates methods for detecting shielded highly enriched uranium (HEU) and other special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. An overview of the project will be presented, and progress will be described in: (1) developing optimized, adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source configurations with neutron pulses distributed in space and/or phased in time, and (2) applying sparse data algorithms, such as principal component analysis (PCA) to enhance detection fidelity. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-ARI095 and the Grainger Foundation.

  13. Validation of the Monte Carlo Criticality Program KENO V. a for highly-enriched uranium systems

    Energy Technology Data Exchange (ETDEWEB)

    Knight, J.R.

    1984-11-01

    A series of calculations based on critical experiments have been performed using the KENO V.a Monte Carlo Criticality Program for the purpose of validating KENO V.a for use in evaluating Y-12 Plant criticality problems. The experiments were reflected and unreflected systems of single units and arrays containing highly enriched uranium metal or uranium compounds. Various geometrical shapes were used in the experiments. The SCALE control module CSAS25 with the 27-group ENDF/B-4 cross-section library was used to perform the calculations. Some of the experiments were also calculated using the 16-group Hansen-Roach Library. Results are presented in a series of tables and discussed. Results show that the criteria established for the safe application of the KENO IV program may also be used for KENO V.a results.

  14. Metal enrichment signatures of the first stars on high-z DLAs

    Science.gov (United States)

    Ma, Q.; Maio, U.; Ciardi, B.; Salvaterra, R.

    2017-12-01

    We use numerical N-body hydrodynamical simulations with varying PopIII stellar models to investigate the possibility of detecting first star signatures with observations of high-redshift damped Lyα absorbers (DLAs). The simulations include atomic and molecular cooling, star formation, energy feedback and metal spreading due to the evolution of stars with a range of masses and metallicities. Different initial mass functions (IMFs) and corresponding metal-dependent yields and lifetimes are adopted to model primordial stellar populations. The DLAs in the simulations are selected according to either the local gas temperature (temperature selected) or the host mass (mass selected). We find that 3 per cent (40 per cent) of mass (temperature)-selected high-z (z ≥ 5.5) DLAs retain signatures of pollution from PopIII stars, independent of the first star model. Such DLAs have low halo mass ( polluting stellar generation and to constrain the first star mass ranges. Comparing the abundance ratios derived from our simulations to those observed in DLAs at z ≥ 5, we find that most of these DLAs are consistent within errors with PopII star dominated enrichment and strongly disfavour the pollution pattern of very massive first stars (i.e. 100-500 M⊙). However, some of them could still result from the pollution of first stars in the mass range [0.1, 100] M⊙. In particular, we find that the abundance ratios from SDSS J1202+3235 are consistent with those expected from PopIII enrichment dominated by massive (but not extreme) first stars.

  15. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids

    Science.gov (United States)

    Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder

    2016-01-01

    Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...

  16. Program to enrich science and mathematics experiences of high school students through interactive museum internships

    Energy Technology Data Exchange (ETDEWEB)

    Reif, R.J. [State Univ. of New York, New Paltz, NY (United States); Lock, C.R. [Univ. of North Carolina, Charlotte, NC (United States)

    1998-11-01

    This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers. In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.

  17. The a(4) Scheme-A High Order Neutrally Stable CESE Solver

    Science.gov (United States)

    Chang, Sin-Chung

    2009-01-01

    The CESE development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a nondissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To provide a solid foundation for a systematic CESE development of high order schemes, in this paper we describe a new high order (4-5th order) and neutrally stable CESE solver of a 1D advection equation with a constant advection speed a. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and two points at the lower time level. Because it is associated with four independent mesh variables (the numerical analogues of the dependent variable and its first, second, and third-order spatial derivatives) and four equations per mesh point, the new scheme is referred to as the a(4) scheme. As in the case of other similar CESE neutrally stable solvers, the a(4) scheme enforces conservation laws in space-time locally and globally, and it has the basic, forward marching, and backward marching forms. Except for a singular case, these forms are equivalent and satisfy a space-time inversion (STI) invariant property which is shared by the advection equation. Based on the concept of STI invariance, a set of algebraic relations is developed and used to prove the a(4) scheme must be neutrally stable when it is stable. Numerically, it has been established that the scheme is stable if the value of the Courant number is less than 1/3

  18. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qi [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Xu, Baojian, E-mail: xbj@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Shanghai Internet of Things Co., LTD, No. 1455, Pingcheng Road, Shanghai 201899 (China); Ye, Lin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Di, Zengfeng [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Huang, Shanluo; Du, Xiaowei [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Zhang, Jishen; Jin, Qinghui [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Zhao, Jianlong, E-mail: jlzhao@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China)

    2015-10-30

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  19. Highly Stable Surface-Enhanced Raman Spectroscopy Substrates Using Few-Layer Graphene on Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jaehong Lee

    2015-01-01

    Full Text Available Graphene can be effectively applied as an ultrathin barrier for fluids, gases, and atoms based on its excellent impermeability. In this work, few-layer graphene was encapsulated on silver (Ag nanoparticles for the fabrication of highly stable surface-enhanced Raman scattering (SERS substrates, which has strong resistance to oxidation of the Ag nanoparticles. The few-layer graphene can be successfully grown on the surface of the Ag nanoparticles through a simple heating process. To prevent the agglomeration of the Ag nanoparticles in the fabrication process, poly(methyl methacrylate (PMMA layers were used as a solid carbon source instead of methane (CH4 gas generally used as a carbon source for the synthesis of graphene. X-ray diffraction (XRD spectra of the few-layer graphene-encapsulated Ag nanoparticles indicate that the few-layer graphene can protect the Ag nanoparticles from surface oxidation after intensive annealing processes in ambient conditions, giving the highly stable SERS substrates. The Raman spectra of Rhodamine 6G (R6G deposited on the stable SERS substrates exhibit maintenance of the Raman signal intensity despite the annealing process in air. The facile approach to fabricate the few-layer graphene-encapsulated Ag nanoparticles can be effectively useful for various applications in chemical and biological sensors by providing the highly stable SERS substrates.

  20. Novel stable structure of Li3PS4 predicted by evolutionary algorithm under high-pressure

    Directory of Open Access Journals (Sweden)

    S. Iikubo

    2018-01-01

    Full Text Available By combining theoretical predictions and in-situ X-ray diffraction under high pressure, we found a novel stable crystal structure of Li3PS4 under high pressures. At ambient pressure, Li3PS4 shows successive structural transitions from γ-type to β-type and from β-type to α type with increasing temperature, as is well established. In this study, an evolutionary algorithm successfully predicted the γ-type crystal structure at ambient pressure and further predicted a possible stable δ-type crystal structures under high pressure. The stability of the obtained structures is examined in terms of both static and dynamic stability by first-principles calculations. In situ X-ray diffraction using a synchrotron radiation revealed that the high-pressure phase is the predicted δ-Li3PS4 phase.

  1. Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding.

    Science.gov (United States)

    Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin

    2017-06-28

    Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.

  2. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    Science.gov (United States)

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Melting Alpine glaciers enrich high-elevation lakes with reactive nitrogen.

    Science.gov (United States)

    Saros, Jasmine E; Rose, Kevin C; Clow, David W; Stephens, Verlin C; Nurse, Andrea B; Arnett, Heather A; Stone, Jeffery R; Williamson, Craig E; Wolfe, Alexander P

    2010-07-01

    Alpine glaciers have receded substantially over the last century in many regions of the world. Resulting changes in glacial runoff not only affect the hydrological cycle, but can also alter the physical (i.e., turbidity from glacial flour) and biogeochemical properties of downstream ecosystems. Here we compare nutrient concentrations, transparency gradients, algal biomass, and fossil diatom species richness in two sets of high-elevation lakes: those fed by snowpack melt alone (SF lakes) and those fed by both glacial and snowpack meltwaters (GSF lakes). We found that nitrate (NO(3)(-)) concentrations in the GSF lakes were 1-2 orders of magnitude higher than in SF lakes. Although nitrogen (N) limitation is common in alpine lakes, algal biomass was lower in highly N-enriched GSF lakes than in the N-poor SF lakes. Contrary to expectations, GSF lakes were more transparent than SF lakes to ultraviolet and equally transparent to photosynthetically active radiation. Sediment diatom assemblages had lower taxonomic richness in the GSF lakes, a feature that has persisted over the last century. Our results demonstrate that the presence of glaciers on alpine watersheds more strongly influences NO(3)(-)concentrations in high-elevation lake ecosystems than any other geomorphic or biogeographic characteristic.

  4. Fully automated high-quality NMR structure determination of small (2)H-enriched proteins.

    Science.gov (United States)

    Tang, Yuefeng; Schneider, William M; Shen, Yang; Raman, Srivatsan; Inouye, Masayori; Baker, David; Roth, Monica J; Montelione, Gaetano T

    2010-12-01

    Determination of high-quality small protein structures by nuclear magnetic resonance (NMR) methods generally requires acquisition and analysis of an extensive set of structural constraints. The process generally demands extensive backbone and sidechain resonance assignments, and weeks or even months of data collection and interpretation. Here we demonstrate rapid and high-quality protein NMR structure generation using CS-Rosetta with a perdeuterated protein sample made at a significantly reduced cost using new bacterial culture condensation methods. Our strategy provides the basis for a high-throughput approach for routine, rapid, high-quality structure determination of small proteins. As an example, we demonstrate the determination of a high-quality 3D structure of a small 8 kDa protein, E. coli cold shock protein A (CspA), using structure is highly converged and in excellent agreement with the published crystal structure, with a backbone RMSD value of 0.5 Å, an all atom RMSD value of 1.2 Å to the crystal structure for well-defined regions, and RMSD value of 1.1 Å to crystal structure for core, non-solvent exposed sidechain atoms. Cross validation of the structure with (15)N- and (13)C-edited NOESY data obtained with a perdeuterated (15)N, (13)C-enriched (13)CH(3) methyl protonated CspA sample confirms that essentially all of these independently-interpreted NOE-based constraints are already satisfied in each of the 10 CS-Rosetta structures. By these criteria, the CS-Rosetta structure generated by fully automated analysis of data for a perdeuterated sample provides an accurate structure of CspA. This represents a general approach for rapid, automated structure determination of small proteins by NMR.

  5. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    Science.gov (United States)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  6. High-intensity aerobic interval training in a patient with stable angina pectoris.

    Science.gov (United States)

    Meyer, Philippe; Guiraud, Thibaut; Gayda, Mathieu; Juneau, Martin; Bosquet, Laurent; Nigam, Anil

    2010-01-01

    Recently, high-intensity aerobic interval training was shown to be more effective than continuous moderate-intensity exercise for improving maximal aerobic capacity and endurance in patients with coronary heart disease. However, patients with exercise-induced ischemia were not included in those studies. We present the acute cardiopulmonary responses of a 67-yr-old man with stable angina pectoris during a 34-min session of high-intensity aerobic interval training. Exercise was well tolerated with neither significant arrhythmia nor elevation of cardiac troponin-T. We observed a complete disappearance of symptoms and signs of myocardial ischemia after 24 mins of exercise. This observation is similar to the warm-up angina phenomenon, an adaptation to myocardial ischemia that remains poorly understood. We conclude that high-intensity aerobic interval training is a promising mode of training for patients with stable coronary heart disease that should also be investigated further in patients with exercise-induced ischemia.

  7. Sustaining high-energy orbits of bi-stable energy harvesters by attractor selection

    Science.gov (United States)

    Udani, Janav P.; Arrieta, Andres F.

    2017-11-01

    Nonlinear energy harvesters have the potential to efficiently convert energy over a wide frequency range; however, difficulties in attaining and sustaining high-energy oscillations restrict their applicability in practical scenarios. In this letter, we propose an actuation methodology to switch the state of bi-stable harvesters from the low-energy intra-well configuration to the coexisting high-energy inter-well configuration by controlled phase shift perturbations. The strategy is designed to introduce a change in the system state without creating distinct metastable attractors by exploiting the basins of attraction of the coexisting stable attractors. Experimental results indicate that the proposed switching strategy yields a significant improvement in energy transduction capabilities, is highly economical, enabling the rapid recovery of energy spent in the disturbance, and can be practically implemented with widely used low-strain piezoelectric transducers.

  8. Stable and high order accurate difference methods for the elastic wave equation in discontinuous media

    KAUST Repository

    Duru, Kenneth

    2014-12-01

    © 2014 Elsevier Inc. In this paper, we develop a stable and systematic procedure for numerical treatment of elastic waves in discontinuous and layered media. We consider both planar and curved interfaces where media parameters are allowed to be discontinuous. The key feature is the highly accurate and provably stable treatment of interfaces where media discontinuities arise. We discretize in space using high order accurate finite difference schemes that satisfy the summation by parts rule. Conditions at layer interfaces are imposed weakly using penalties. By deriving lower bounds of the penalty strength and constructing discrete energy estimates we prove time stability. We present numerical experiments in two space dimensions to illustrate the usefulness of the proposed method for simulations involving typical interface phenomena in elastic materials. The numerical experiments verify high order accuracy and time stability.

  9. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system

    KAUST Repository

    Lu, Xuefei

    2016-08-22

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent irrigated water is transpired by crops relative to being lost through evaporation would improve the management of increasingly limited water resources. In this study, we examined the partitioning of evapotranspiration (ET) over a field of forage sorghum (Sorghum bicolor), which was under evaluation as a potential biofuel feedstock, based on isotope measurements of three irrigation cycles at the vegetative stage. This study employed customized transparent chambers coupled with a laser-based isotope analyzer to continuously measure near-surface variations in the stable isotopic composition of evaporation (E, δ), transpiration (T, δ) and ET (δ) to partition the total water flux. Due to the extreme heat and aridity, δ and δ were very similar, which makes this system highly unusual. Contrary to an expectation that the isotopic signatures of T, E, and ET would become increasingly enriched as soils became drier, our results showed an interesting pattern that δ, δ, and δ increased initially as soil water was depleted following irrigation, but decreased with further soil drying in mid to late irrigation cycle. These changes are likely caused by root water transport from deeper to shallower soil layers. Results indicate that about 46% of the irrigated water delivered to the crop was used as transpiration, with 54% lost as direct evaporation. This implies that 28 − 39% of the total source water was used by the crop, considering the typical 60 − 85% efficiency of flood irrigation. The stable isotope technique provided an effective means of determining surface partitioning of irrigation water in this unusually harsh production environment. The results suggest the potential to further minimize unproductive water losses in these production systems.

  10. Determination of the Isotopic Enrichment of13C- and2H-Labeled Tracers of Glucose Using High-Resolution Mass Spectrometry: Application to Dual- and Triple-Tracer Studies.

    Science.gov (United States)

    Trötzmüller, Martin; Triebl, Alexander; Ajsic, Amra; Hartler, Jürgen; Köfeler, Harald; Regittnig, Werner

    2017-11-21

    Multiple-tracer approaches for investigating glucose metabolism in humans usually involve the administration of stable and radioactive glucose tracers and the subsequent determination of tracer enrichments in sampled blood. When using conventional, low-resolution mass spectrometry (LRMS), the number of spectral interferences rises rapidly with the number of stable tracers employed. Thus, in LRMS, both computational effort and statistical uncertainties associated with the correction for spectral interferences limit the number of stable tracers that can be simultaneously employed (usually two). Here we show that these limitations can be overcome by applying high-resolution mass spectrometry (HRMS). The HRMS method presented is based on the use of an Orbitrap mass spectrometer operated at a mass resolution of 100 000 to allow electrospray-generated ions of the deprotonated glucose molecules to be monitored at their exact masses. The tracer enrichment determination in blood plasma is demonstrated for several triple combinations of 13 C- and 2 H-labeled glucose tracers (e.g., [1- 2 H 1 ]-, [6,6- 2 H 2 ]-, [1,6- 13 C 2 ]glucose). For each combination it is shown that ions arising from 2 H-labeled tracers are completely differentiated from those arising from 13 C-labeled tracers, thereby allowing the enrichment of a tracer to be simply calculated from the observed ion intensities using a standard curve with curve parameters unaffected by the presence of other tracers. For each tracer, the HRMS method exhibits low limits of detection and good repeatability in the tested 0.1-15.0% enrichment range. Additionally, due to short sample preparation and analysis times, the method is well-suited for high-throughput determination of multiple glucose tracer enrichments in plasma samples.

  11. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels.

    Science.gov (United States)

    Gorodzha, Svetlana; Douglas, Timothy E L; Samal, Sangram K; Detsch, Rainer; Cholewa-Kowalska, Katarzyna; Braeckmans, Kevin; Boccaccini, Aldo R; Skirtach, Andre G; Weinhardt, Venera; Baumbach, Tilo; Surmeneva, Maria A; Surmenev, Roman A

    2016-05-01

    Enrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10(-5) mm(3) . Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization. © 2016 Wiley Periodicals, Inc.

  12. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas

    Science.gov (United States)

    Trick, Charles G.; Bill, Brian D.; Cochlan, William P.; Wells, Mark L.; Trainer, Vera L.; Pickell, Lisa D.

    2010-01-01

    Oceanic high-nitrate, low-chlorophyll environments have been highlighted for potential large-scale iron fertilizations to help mitigate global climate change. Controversy surrounds these initiatives, both in the degree of carbon removal and magnitude of ecosystem impacts. Previous open ocean enrichment experiments have shown that iron additions stimulate growth of the toxigenic diatom genus Pseudonitzschia. Most Pseudonitzschia species in coastal waters produce the neurotoxin domoic acid (DA), with their blooms causing detrimental marine ecosystem impacts, but oceanic Pseudonitzschia species are considered nontoxic. Here we demonstrate that the sparse oceanic Pseudonitzschia community at the high-nitrate, low-chlorophyll Ocean Station PAPA (50° N, 145° W) produces approximately 200 pg DA L−1 in response to iron addition, that DA alters phytoplankton community structure to benefit Pseudonitzschia, and that oceanic cell isolates are toxic. Given the negative effects of DA in coastal food webs, these findings raise serious concern over the net benefit and sustainability of large-scale iron fertilizations. PMID:20231473

  13. Molar mass of silicon highly enriched in 28Si determined by IDMS

    Science.gov (United States)

    Pramann, Axel; Rienitz, Olaf; Schiel, Detlef; Schlote, Jan; Güttler, Bernd; Valkiers, Staf

    2011-04-01

    The molar mass of a new silicon crystal material highly enriched in 28Si ('Si28', x(28Si) >99.99%) has been measured for the first time using a combination of a modified isotope dilution mass spectrometry (IDMS) technique and a high resolution multicollector-ICP-mass spectrometer. This work is related to the redetermination of the Avogadro constant NA with an intended relative measurement uncertainty urel(NA) <= 2 × 10-8. The corresponding experimental investigations of the International Avogadro Coordination (IAC) were performed using this novel 'Si28' material. One prerequisite of the redetermination of NA is the determination of the isotopic composition and thus molar mass of 'Si28' with urel(M('Si28')) <= 1 × 10-8. At PTB, a molar mass M('Si28') = 27.976 970 27(23) g mol-1 has been determined with an associated relative uncertainty urel(M('Si28')) = 8.2 × 10-9, opening the opportunity to reach the target uncertainty of NA.

  14. Using biofilms and grazing chironomids (Diptera: Chironomidae) to determine primary production, nitrogen stable isotopic baseline and enrichment within wetlands differing in anthropogenic stressors and located in the Athabasca oil sands region of Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.; Ciborowski, J.J. [Windsor Univ., Windsor, ON (Canada); Wytrykush, C.M. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2009-07-01

    This presentation reported on a study that investigated the effects of oil sands process materials (OSPM) and construction disturbances on primary production and nitrogen stable isotope enrichment in reclaimed and reference wetlands at oil sands mines in the Athabasca basin. Productivity and food web analyses were instrumental in evaluating the succession and viability of reclaimed wetlands. Primary production was estimated through chlorophyll a (Chl a) concentrations and biomass. Carbon (C) and nitrogen (N) stable isotope ratios were used to identify energy sources, storage and the magnitude and direction of energy transfer within food webs. The objectives were to determine primary productivity, the N baseline, and N enrichment from biofilms and grazing invertebrates colonizing artificial substrates immersed in the water column of two OSPM-affected, two constructed reference and two natural reference wetlands. The lower biomass and Chl a concentrations in OSPM-affected and constructed wetlands suggests that both anthropogenic disturbance and OSPM have an adverse effect on primary productivity and overall wetland function.

  15. Linarin Enriched Extract Attenuates Liver Injury and Inflammation Induced by High-Fat High-Cholesterol Diet in Rats

    Directory of Open Access Journals (Sweden)

    Zhen-Jie Zhuang

    2017-01-01

    Full Text Available The aim of this study was to explore the potential beneficial effects of linarin enriched Flos Chrysanthemi extract (Lin-extract on nonalcoholic steatohepatitis (NASH induced by high-fat high-cholesterol (HFHC diet in rats. SD rats received normal diet, HFHC diet, or HFHC diet plus different doses of Lin-extract. The liver content of triglyceride and total cholesterol markedly increased in HFHC diet-fed model rats while middle and high dose of Lin-extract lowered liver cholesterol significantly. The expression of stearoyl-CoA desaturase (SCD1 was upregulated by HFHC diet and further elevated by high dose Lin-extract. High dose of Lin-extract also markedly lowered the serum alanine aminotransferase (ALT and aspartate aminotransferase (AST and inhibited the activation of c-Jun N-terminal kinase (JNK induced by HFHC in livers. The HFHC-increased mRNA levels of hepatic inflammation cytokines, including monocyte chemotactic protein-1 (MCP-1, tumor necrosis factor-α (TNF-α, and chemokine (C-X-C motif ligand 1 (CXCL1, were suppressed by Lin-extract dose-dependently. Furthermore, pathology evaluation showed that high dose Lin-extract greatly improved lobular inflammation. Our results suggest that Lin-extract could attenuate liver injury and inflammation induced by HFHC diet in rats. Its modulatory effect on lipid metabolism may partially contribute to this protective effect.

  16. Effect of high organic enrichment of benthic polychaete population in an estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Ingole, B.S.; Parulekar, A.H.

    The benthic polychaete fauna of an estuarine region receiving domestic sewage and wastes from a nearby fish landing jetty was compared to that of a site having normal organic enrichment. The population density, biomass and species diversity were...

  17. Development of an air-stable, high energy density printed silver oxide battery for printed electronics

    OpenAIRE

    Braam, Kyle

    2014-01-01

    Printed batteries are an emerging battery technology that has the potential to enable the production of cheap, small form factor, flexible batteries capable of powering a diverse set of existing and emerging applications such as RFID tags, flexible displays, and distributed sensors. Partially printed battery systems have been demonstrated with various chemistries, but what is needed is a low cost, air stable method of fully printing a high energy density battery. The silver oxide chemistry i...

  18. High yield derivation of enriched glutamatergic neurons from suspension-cultured mouse ESCs for neurotoxicology research

    Directory of Open Access Journals (Sweden)

    Hubbard Kyle S

    2012-10-01

    . Conclusions These findings demonstrate a cost-effective, scalable and flexible method to produce a highly enriched glutamatergic neuron population. The functional characterization of pathophysiological responses to neurotropic toxins and the compatibility with multi-well plating formats were used to demonstrate the suitability of ESNs as a discovery platform for molecular mechanisms of action, moderate-throughput analytical approaches and diagnostic screening. Furthermore, for the first time we demonstrate a cell-based model that is sensitive to all seven BoNT serotypes with EC50 values comparable to those reported in primary neuron populations. These data providing compelling evidence that ESNs offer a neuromimetic platform suitable for the evaluation of molecular mechanisms of neurotoxicity.

  19. Internal correction of spectral interferences and mass bias for selenium metabolism studies using enriched stable isotopes in combination with multiple linear regression.

    Science.gov (United States)

    Lunøe, Kristoffer; Martínez-Sierra, Justo Giner; Gammelgaard, Bente; Alonso, J Ignacio García

    2012-03-01

    The analytical methodology for the in vivo study of selenium metabolism using two enriched selenium isotopes has been modified, allowing for the internal correction of spectral interferences and mass bias both for total selenium and speciation analysis. The method is based on the combination of an already described dual-isotope procedure with a new data treatment strategy based on multiple linear regression. A metabolic enriched isotope ((77)Se) is given orally to the test subject and a second isotope ((74)Se) is employed for quantification. In our approach, all possible polyatomic interferences occurring in the measurement of the isotope composition of selenium by collision cell quadrupole ICP-MS are taken into account and their relative contribution calculated by multiple linear regression after minimisation of the residuals. As a result, all spectral interferences and mass bias are corrected internally allowing the fast and independent quantification of natural abundance selenium ((nat)Se) and enriched (77)Se. In this sense, the calculation of the tracer/tracee ratio in each sample is straightforward. The method has been applied to study the time-related tissue incorporation of (77)Se in male Wistar rats while maintaining the (nat)Se steady-state conditions. Additionally, metabolically relevant information such as selenoprotein synthesis and selenium elimination in urine could be studied using the proposed methodology. In this case, serum proteins were separated by affinity chromatography while reverse phase was employed for urine metabolites. In both cases, (74)Se was used as a post-column isotope dilution spike. The application of multiple linear regression to the whole chromatogram allowed us to calculate the contribution of bromine hydride, selenium hydride, argon polyatomics and mass bias on the observed selenium isotope patterns. By minimising the square sum of residuals for the whole chromatogram, internal correction of spectral interferences and mass

  20. Hydrolytically Stable Luminescent Cationic Metal Organic Framework for Highly Sensitive and Selective Sensing of Chromate Anions in Natural Water Systems.

    Science.gov (United States)

    Liu, Wei; Wang, Yanlong; Bai, Zhuanling; Li, Yuxiang; Wang, Yaxing; Chen, Lanhua; Xu, Lin; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2017-05-17

    Effective detection of chromate anions in aqueous solution is highly desirable because of their high solubility, environmental mobility, carcinogenicity, and bioaccumulation effect. A new strategy for precise detection of chromate anions in the presence of a large excess of other anions, such as Cl - , NO 3 - , and HCO 3 - , in drinking water and natural water systems remains a challenge. Herein, a hydrolytically stable cationic luminescent europium(III)-based metal organic framework (MOF), 1, was successfully synthesized and investigated as a luminescent sensor that exhibits instant and selective luminescence quenching properties toward chromate ions in aqueous solutions. Moreover, 1 can be introduced into high-ionic-strength water system (e.g., seawater) for chromate detection as a consequence of the excellent sensing selectivity. The real environmental application of 1 as a chromate probe is studied in deionized water, lake water, and seawater. The detection limits in these aqueous media are calculated to be 0.56, 2.88, and 1.75 ppb, respectively. All of these values are far below the maximum contamination standard of Cr(VI) in drinking water of 100 ppb, defined by the U.S. Environmental Protection Agency. This excellent chromate sensing capability originates from the fast enrichment of chromate ions in solids of 1 from solutions, followed by efficient energy transfer from the MOF skeleton to the chromate anion, as demonstrated by solution absorption spectroscopy, X-ray diffraction, and chromate uptake kinetics and isotherm investigations. To the best of our knowledge, 1 possesses the lowest chromate detection limit among all reported MOFs up to date and is the only MOF material reported for chromate sensing application under environmentally relevant conditions with high ionic strengths.

  1. Isolation of microorganisms from CO2 sequestration sites through enrichments under high pCO2

    Science.gov (United States)

    Peet, K. C.; Freedman, A. J.; Boreham, C.; Thompson, J. R.

    2012-12-01

    Carbon Capture and Storage (CCS) in geologic formations has the potential to reduce greenhouse gas emissions from fossil fuel processing and combustion. However, little is known about the effects that CO2 may have on biological activity in deep earth environments. To understand microorganisms associated with these environments, we have developed a simple high-pressure enrichment methodology to cultivate organisms capable of growth under supercritical CO2 (scCO2). Growth media targeting different subsurface functional metabolic groups is added to sterilized 316 stainless steel tubing sealed with quarter turn plug valves values and pressurized to 120-136 atm using a helium-padded CO2 tank, followed by incubation at 37 °C to achieve the scCO2 state. Repeated passages of crushed subsurface rock samples and growth media under supercritical CO2 headspaces are assessed for growth via microscopic enumeration. We have utilized this method to survey sandstone cores for microbes capable of growth under scCO2 from two different geologic sites targeted for carbon sequestration activities. Reproducible growth of microbial biomass under high pCO2 has been sustained from each site. Cell morphologies consist of primarily 1-2 μm rods and oval spores, with densities from 1E5-1E7 cells per ml of culture. We have purified and characterized a bacterial strain most closely related to Bacillus subterraneus (99% 16S rRNA identity) capable of growth under scCO2. Preliminary physiological characterization of this strain indicates it is a spore-forming facultative anaerobe able to grow in 0.5 to 50 ppt salinity. Genome sequencing and analysis currently in progress will help reveal genetic mechanisms of acclimation to high pCO2 conditions associated with geologic carbon sequestration.

  2. High-resolution stable isotope signature of a land-falling atmospheric river in Southern Norway

    Science.gov (United States)

    Weng, Yongbiao; Sodemann, Harald

    2017-04-01

    Gathering observational evidence of the long-range moisture versus local source contributions remains a scientific challenge, but is critical for understanding how hydrological extremes develop. Moisture transport to the west coast of Norway is often connected to elongated meridional structures of high water vapour flux known as Atmospheric Rivers. It is still an open question how well moisture sources estimated by different numerical models for such events of long-range transport correspond with reality. In this study, we present high resolution stable isotope information collected during a land-falling Atmospheric River in Southern Norway during winter 2016, and analyse the data with the aim to differentiate between moisture source signatures and below-cloud processes affecting the stable isotope composition. The precipitation characterised by a pronounced warm front was sampled manually on a rooftop platform at a 10-20 minute interval during the 24h of the event and later measured by a laser spectrometer (Picarro L2140-i) in the lab for δ18O, δD, and d-excess. Simultaneously, the stable isotope composition of water vapor was continuously measured at high resolution. To that end, ambient air was continuously pumped from a nearby inlet at 25 m above the ground and measured by another laser spectrometer (Picarro L2130-i). Stable water isotope measurements were supplemented by detailed precipitation parameters from a laser disdrometer (OTT Parsivel2), Micro Rain Radar (MRR-2), Total Precipitation Sensor (TPS-3100), and a nearby weather station. Measurements show a signature of two depletion periods in the main stable isotope parameters that are not apparent in precipitation amount and atmospheric temperature measurements. The deuterium excess in rainfall responds differently, with first and increase and then a decrease during these depletion periods. We interpret this as a combined consequence of airmass change, cloud microphysics, and below-cloud effects

  3. Stable isotope variations in precipitation: simulations and comparison with observations (Yunnan Plateau, High Asia

    Directory of Open Access Journals (Sweden)

    X. P. Zhang

    2013-01-01

    Full Text Available Stable isotopes in precipitation, both liquid (rain and solid (snow, can be suitable tracers for hydrological cycles because their concentrations reflect the cumulative record of physical phase changes. Distribution of stable isotopes in precipitation over High-Asian monsoon regions, including Yunnan Plateau is investigated. It has two noticeable features: firstly, the stable isotopes in precipitation distinctly decrease; and secondly, the stable isotopes in precipitation demonstrate smaller concentrations during rainy seasons and higher values during dry seasons. These features were found by the MUGCM simulation developed in the Melbourne Univertisty. Quantitative effect of the stable isotopes in precipitation takes place at different time scales, i.e. in diurnal, monthly or annual variations. Relative to observations, the simulated δ¹⁸O in precipitation shows stronger dependence on precipitation. In the diurnal course, the simulated regression equations of δ¹⁸O in precipitation versus precipitation amount are in good agreement with the observed values at Tengchong and Simao, except that the simulated δ¹⁸O/P curve slope is slightly smaller than the observed one at Mingzi. In the monthly and annual courses both, the simulated and observed δ¹⁸O/P slopes are smaller than it is in the diurnal course. For individual station, the local meteoric water line (LMWL is simulated well at Mengzi and Tengchong. However, the simulated result does not reproduce truly the observed relationship between δD and δ¹⁸O in precipitation at Simao and Kunming where the LMWL inclination is larger 8.0, and a shift along the y-axis higher 10.0. In addition, all simulated LMWL slopes are higher the observed ones at four stations, suggesting that the GCM can overestimate the decreasing of Hydrogen Deuterium Oxide and, thus, underestimate the second-order parameter, i.e. the deuterium excess, in a particular region Yunnan.

  4. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weizhen; Nie, Lei; Chen, Ying; Kovarik, Libor; Liu, Jun; Wang, Yong

    2017-04-01

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  5. 10 CFR 50.64 - Limitations on the use of highly enriched uranium (HEU) in domestic non-power reactors.

    Science.gov (United States)

    2010-01-01

    ... domestic non-power reactors. 50.64 Section 50.64 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... Permits § 50.64 Limitations on the use of highly enriched uranium (HEU) in domestic non-power reactors. (a) Applicability. The requirements of this section apply to all non-power reactors. (b) Requirements. (1) The...

  6. Quantitative amino acid profiling and stable isotopically labeled amino acid tracer enrichment used for in vivo human systemic and tissue kinetics measurements

    DEFF Research Database (Denmark)

    Bornø, Andreas; van Hall, Gerrit

    2014-01-01

    . The present study describes a new sensitive liquid chromatography tandem mass-spectrometry method quantifying 20 amino acids and their tracer(s) ([ring-(13)C6]/D5Phenylalanine) in human plasma and skeletal muscle specimens. Before analysis amino acids were extracted and purified via deprotonization/ion...... exchange, derivatized using a phenylisothiocyanate reagent and each amino acid was quantitated with its own stable isotopically labeled internal standard (uniformly labeled-(13)C/(15)N). The method was validated according to general recommendations for chromatographic analytical methods. The calibration...

  7. High-order parameterization of (un)stable manifolds for hybrid maps: Implementation and applications

    Science.gov (United States)

    Naudot, Vincent; Mireles James, J. D.; Lu, Qiuying

    2017-12-01

    In this work we study, from a numerical point of view, the (un)stable manifolds of a certain class of dynamical systems called hybrid maps. The dynamics of these systems are generated by a two stage procedure: the first stage is continuous time advection under a given vector field, the second stage is discrete time advection under a given diffeomorphism. Such hybrid systems model physical processes where a differential equation is occasionally kicked by a strong disturbance. We propose a numerical method for computing local (un)stable manifolds, which leads to high order polynomial parameterization of the embedding. The parameterization of the invariant manifold is not the graph of a function and can follow folds in the embedding. Moreover we obtain a representation of the dynamics on the manifold in terms of a simple conjugacy relation. We illustrate the utility of the method by studying a planar example system.

  8. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications.

    Science.gov (United States)

    An, Xiaohong; Simmons, Trevor; Shah, Rakesh; Wolfe, Christopher; Lewis, Kim M; Washington, Morris; Nayak, Saroj K; Talapatra, Saikat; Kar, Swastik

    2010-11-10

    We present a scalable and facile technique for noncovalent functionalization of graphene with 1-pyrenecarboxylic acid that exfoliates single-, few-, and multilayered graphene flakes into stable aqueous dispersions. The exfoliation mechanism is established using stringent control experiments and detailed characterization steps. Using the exfoliated graphene, we demonstrate highly sensitive and selective conductometric sensors (whose resistance rapidly changes >10,000% in saturated ethanol vapor), and ultracapacitors with extremely high specific capacitance (∼ 120 F/g), power density (∼ 105 kW/kg), and energy density (∼ 9.2 Wh/kg).

  9. Carrier-envelope-phase stable, high-contrast, double chirped-pulse-amplification laser system.

    Science.gov (United States)

    Jullien, Aurélie; Ricci, Aurélien; Böhle, Frederik; Rousseau, Jean-Philippe; Grabielle, Stéphanie; Forget, Nicolas; Jacqmin, Hermance; Mercier, Brigitte; Lopez-Martens, Rodrigo

    2014-07-01

    We present the first carrier-envelope-phase stable chirped-pulse amplifier (CPA) featuring high temporal contrast for relativistic intensity laser-plasma interactions at 1 kHz repetition rate. The laser is based on a double-CPA architecture including cross-polarized wave (XPW) filtering technique and a high-energy grism-based compressor. The 8 mJ, 22 fs pulses feature 10⁻¹¹ temporal contrast at -20  ps and a carrier-envelope-phase drift of 240 mrad root mean square.

  10. Gold nanoparticles immobilized hydrophilic monoliths with variable functional modification for highly selective enrichment and on-line deglycosylation of glycopeptides.

    Science.gov (United States)

    Liang, Yu; Wu, Ci; Zhao, Qun; Wu, Qi; Jiang, Bo; Weng, Yejing; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2015-11-05

    The poly (glycidyl methacrylate-co-poly (ethylene glycol) diacrylate) monoliths modified with gold nanoparticles, with advantages of enhanced reactive sites, good hydrophilicity and facile modification, were prepared as the matrix, followed by variable functionalization with cysteine and PNGase F for glycopeptide enrichment and on-line deglycosylation respectively. By the cysteine functionalized monolithic column, glycopeptides could be efficiently and selectively enriched with good reproducibility based on hydrophilic interaction chromatography (HILIC). Furthermore, the enrichment was specially achieved in weak alkaline environment, with 10 mM NH4HCO3 as the elution buffer, compatible with deglycosylation conditions. Therefore, the glycopeptides could be on-line deglycosylated with high efficiency and throughput by directly coupling the PNGase F functionalized monolithic column with the enrichment column during elution without the requirement of buffer exchange and pH adjustment. By such a method, within only 70-min pretreatment, 196 N-linked glycopeptides, corresponding to 122 glycoproteins, could be identified from 5 μg of human plasma with 14 high-abundant proteins removed, and the N-linked glycopeptides occupied 81% of all identified peptides, achieving to the best of our knowledge, the highest selectivity of HILIC-based methods. All the results demonstrated the high efficiency, selectivity and throughput of our proposed strategy for the large scale glycoproteome analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Serial measurements of high-sensitivity cardiac troponin T after exercise stress test in stable coronary artery disease

    DEFF Research Database (Denmark)

    Axelsson, Anna; Ruwald, Martin Huth; Dalsgaard, Morten

    2013-01-01

    The aim was to assess serial measurements of high-sensitivity cardiac troponin T (hs-cTNT) post-exercise in patients with stable coronary artery disease (CAD).......The aim was to assess serial measurements of high-sensitivity cardiac troponin T (hs-cTNT) post-exercise in patients with stable coronary artery disease (CAD)....

  12. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    Science.gov (United States)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  13. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    Science.gov (United States)

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  14. Transmutation Analysis of Enriched Uranium and Deep Burn High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Pope

    2012-07-01

    High temperature reactors (HTRs) have been under consideration for production of electricity, process heat, and for destruction of transuranics for decades. As part of the transmutation analysis efforts within the Fuel Cycle Research and Development (FCR&D) campaign, a need was identified for detailed discharge isotopics from HTRs for use in the VISION code. A conventional HTR using enriched uranium in UCO fuel was modeled having discharge burnup of 120 GWd/MTiHM. Also, a deep burn HTR (DB-HTR) was modeled burning transuranic (TRU)-only TRU-O2 fuel to a discharge burnup of 648 GWd/MTiHM. For each of these cases, unit cell depletion calculations were performed with SCALE/TRITON. Unit cells were used to perform this analysis using SCALE 6.1. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were first set by using Serpent calculations to match a spectral index between unit cell and whole core domains. In the case of the DB-HTR, the unit cell which was arrived at in this way conserved the ratio of fuel to moderator found in a single block of fuel. In the conventional HTR case, a larger moderator-to-fuel ratio than that of a single block was needed to simulate the whole core spectrum. Discharge isotopics (for 500 nuclides) and one-group cross-sections (for 1022 nuclides) were delivered to the transmutation analysis team. This report provides documentation for these calculations. In addition to the discharge isotopics, one-group cross-sections were provided for the full list of 1022 nuclides tracked in the transmutation library.

  15. Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment.

    Directory of Open Access Journals (Sweden)

    Joseph P Peacock

    Full Text Available To characterize high-temperature cellulolytic microbial communities, two lignocellulosic substrates, ammonia fiber-explosion-treated corn stover and aspen shavings, were incubated at average temperatures of 77 and 85°C in the sediment and water column of Great Boiling Spring, Nevada. Comparison of 109,941 quality-filtered 16S rRNA gene pyrosequences (pyrotags from eight enrichments to 37,057 quality-filtered pyrotags from corresponding natural samples revealed distinct enriched communities dominated by phylotypes related to cellulolytic and hemicellulolytic Thermotoga and Dictyoglomus, cellulolytic and sugar-fermenting Desulfurococcales, and sugar-fermenting and hydrogenotrophic Archaeoglobales. Minor enriched populations included close relatives of hydrogenotrophic Thermodesulfobacteria, the candidate bacterial phylum OP9, and candidate archaeal groups C2 and DHVE3. Enrichment temperature was the major factor influencing community composition, with a negative correlation between temperature and richness, followed by lignocellulosic substrate composition. This study establishes the importance of these groups in the natural degradation of lignocellulose at high temperatures and suggests that a substantial portion of the diversity of thermophiles contributing to consortial cellulolysis may be contained within lineages that have representatives in pure culture.

  16. Enriched job design, high involvement management and organizational performance: The mediating roles of job satisfaction and well-being

    OpenAIRE

    Woods, S. A.; van Veldhoven, M.; Croon, M.; de Menezes, L. M.

    2012-01-01

    The relationship between organizational performance and two dimensions of the 'high performance work system' - enriched job design and high involvement management (HIM) - is widely assumed to be mediated by worker well-being. We outline the basis for three models: mutual-gains, in which employee involvement increases well-being and this mediates its positive relationship with performance; conflicting outcomes, which associates involvement with increased stress for workers, accounting for its ...

  17. A Balanced Approach to Building STEM College and Career Readiness in High School: Combining STEM Intervention and Enrichment Programs

    Directory of Open Access Journals (Sweden)

    Sladjana S. Rakich

    2016-12-01

    Full Text Available Often STEM schools and STEM enrichment programs attract primarily high achieving students or those with strong motivation or interest. However, to ensure that more students pursue interest in STEM, steps must be taken to provide access for all students. For a balanced and integrated career development focus, schools must provide learning opportunities that are appropriate for all students. This paper outlines two approaches to the creation of a comprehensive STEM College and Career development pathway in high schools.

  18. Stable carbon and nitrogen isotope trophic enrichment factors for Steller sea lion vibrissae relative to milk and fish/invertebrate diets

    Science.gov (United States)

    Stricker, Craig A.; Christ, Aaron M.; Wunder, Michael B.; Doll, Andrew C.; Farley, Sean D.; Rea, Lorrie D.; Rosen, David A. S.; Scherer, R. D.; Tollit, Dominic J.

    2015-01-01

    Nutritional constraints have been proposed as a contributor to population declines in the endangered Steller sea lion Eumetopias jubatus in some regions of the North Pacific. Isotopic analysis of vibrissae (whiskers) is a potentially useful approach to resolving the nutritional ecology of this species because long-term (up to 8 yr) dietary information is sequentially recorded and metabolically inert once formed. Additionally, vibrissae are grown in utero, potentially offering indirect inference on maternal diet. However, diet reconstruction using isotopic techniques requires a priori knowledge of trophic enrichment factors (TEFs), which can vary relative to diet quality and among animal species. In this study, we provide new TEF estimates for (1) maternal relative to pup vibrissae during both gestation and nursing and (2) adult vibrissae relative to a complex diet. Further, we refine vibrissa-milk TEFs based on an additional 76 animals with an age distribution ranging from 1 to 20 mo. Mother-pup vibrissae TEF values during gestation and nursing were near zero for δ13C and averaged 0.8 and 1.6‰, respectively, for δ15N. In contrast, vibrissa-fish/invertebrate TEFs averaged 3.3 (± 0.3 SD) and 3.7‰ (±0.3) for lipid-free δ13C and δ15N, respectively. Average lipid-free δ13C and δ15N vibrissa-milk TEFs were 2.5 (±0.9) and 1.8‰ (±0.8), respectively, and did not differ among metapopulations. Empirically determined TEFs are critical for accurate retrospective diet modeling, particularly for evaluating the hypothesis of nutritional deficiency contributing to the lack of Steller sea lion population recovery in some regions of Alaska.

  19. Phosphopeptide enrichment using MALDI plates modified with high-capacity polymer brushes.

    Science.gov (United States)

    Dunn, Jamie D; Igrisan, Elizabeth A; Palumbo, Amanda M; Reid, Gavin E; Bruening, Merlin L

    2008-08-01

    Matrix-assisted laser desorption/ionization plates coated with poly(2-hydroxyethyl methacrylate) (PHEMA) brushes that are derivatized with Fe(III)-nitrilotriacetate (NTA) complexes allow selective, efficient phosphopeptide enrichment prior to analysis by mass spectrometry (MS). Fe(III)-NTA-PHEMA brushes (60 nm thick) have a phosphopeptide binding capacity of 0.6 microg/cm(2) and exhibit phosphopeptide recoveries of over 70%, whereas much thinner polymer films containing Fe(III)-NTA afford a recovery of only 20%, and a monolayer of Fe(III)-NTA shows a recovery of just 10%. Recoveries are determined by comparing signals from enriched unlabeled phosphopeptides with those of their deuterium-labeled analogues that were added to the plate just prior to addition of matrix. Mass spectra of phosphopeptide-containing samples enriched using Fe(III)-NTA-PHEMA-modified plates also demonstrate higher recoveries or fewer interfering peaks than corresponding spectra obtained with enrichment using several commercially available Fe(III)-containing films and resins or metal oxide materials. When analyzing tryptic digests of beta-casein, the Fe(III)-NTA-PHEMA brushes allow detection of as little as 15 fmol of phosphopeptide. Moreover, with both ovalbumin and beta-casein digests, phosphopeptide signals dominate the mass spectra obtained using these modified plates.

  20. Highly stable, efficient Tm-doped fiber laser—a potential scalpel for low invasive surgery

    Science.gov (United States)

    Michalska, M.; Brojek, W.; Rybak, Z.; Sznelewski, P.; Mamajek, M.; Swiderski, J.

    2016-11-01

    We report an all-fiber, diode-pumped, continuous-wave Tm3+-doped fiber laser emitting 37.4 W of output power with a slope efficiency as high as 57% with respect to absorbed pump power at 790 nm. The laser operated at ~1.94 µm and the output beam quality factor M 2 was measured to be ~1.2. The output beam was very stable with power fluctuations  <1% measured over 1 h. The laser system is to be implemented as a scalpel for low-invasive soft-tissue surgery.

  1. Highly Efficient Method for Preparing Homogeneous and Stable Colloids Containing Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Wang Xinwei

    2011-01-01

    Full Text Available Abstract Phase transfer method has been developed for preparing homogeneous and stable graphene oxide colloids. Graphene oxide nanosheets (GONs were successfully transferred from water to n-octane after modification by oleylamine. Corrugation and scrolling exist dominantly in the modified GONs. GONs were single layered with the maximum solubility in n-octane up to 3.82 mg mL-1. Oleylamine molecules chemically attach onto the GONs. Compared with traditional strategies, the phase transfer method has the features of simplicity and high efficiency.

  2. An enriched stable-isotope approach to determine the gill-zinc binding properties of juvenile rainbow trout (Oncorhynchus mykiss) during acute zinc exposures in hard and soft waters

    Science.gov (United States)

    Todd, A.S.; Brinkman, S.; Wolf, R.E.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.

    2009-01-01

    The objective of the present study was to employ an enriched stable-isotope approach to characterize Zn uptake in the gills of rainbow trout (Oncorhynchus mykiss) during acute Zn exposures in hard water (???140 mg/L as CaCO 3) and soft water (???30 mg/L as CaCO3). Juvenile rainbow trout were acclimated to the test hardnesses and then exposed for up to 72 h in static exposures to a range of Zn concentrations in hard water (0-1,000 ??g/L) and soft water (0-250 ??g/L). To facilitate detection of new gill Zn from endogenous gill Zn, the exposure media was significantly enriched with 67Zn stable isotope (89.60% vs 4.1% natural abundance). Additionally, acute Zn toxicity thresholds (96-h median lethal concentration [LC50]) were determined experimentally through traditional, flow-through toxicity tests in hard water (580 ??g/L) and soft water (110 ??g/L). Following short-term (???3 h) exposures, significant differences in gill accumulation of Zn between hard and soft water treatments were observed at the three common concentrations (75, 150, and 250 ??g/L), with soft water gills accumulating more Zn than hard water gills. Short-term gill Zn accumulation at hard and soft water LC50s (45-min median lethal accumulation) was similar (0.27 and 0.20 ??g/g wet wt, respectively). Finally, comparison of experimental gill Zn accumulation, with accumulation predicted by the biotic ligand model, demonstrated that model output reflected short-term (hard and soft water rainbow trout gills. Our results indicate that measurable differences exist in short-term gill Zn accumulation following acclimation and exposure in different water hardnesses and that short-term Zn accumulation appears to be predictive of Zn acute toxicity thresholds (96-h LC50s). ?? 2009 SETAC.

  3. Preparation of a stable graphene dispersion with high concentration by ultrasound.

    Science.gov (United States)

    Zhang, Weina; He, Wei; Jing, Xinli

    2010-08-19

    With unique structure and extraordinary electronic, thermal, and mechanical properties, graphene fascinates the scientific community. Due to its hydrophobic feature, preparation of a stable and highly concentrated graphene dispersion without the assistance of dispersing agents has generally been considered a challenge. Chemical reduction of graphene oxide (GO) is one of the most important methods for preparing a graphene dispersion. The aggregation of graphene sheets is a key reason to destabilize the resulting dispersion during conversion of aqueous GO dispersion to graphene. In this study, by replacing mechanical stirring with ultrasonic irradiation, the aggregation of various intermediates is effectively suppressed during the process of reduction of GO. Hence, a stable graphene dispersion with a high concentration of 1 mg.mL(-1) and relatively pure graphene sheets are achieved, and the as-prepared graphene paper exhibits a high electric conductivity of 712 S.m(-1). Ultraviolet-visible absorption spectroscopy and X-ray photoelectron spectroscopy show that ultrasound is the essence of enhancing chemical reaction rate. Fourier transformed infrared spectra and Raman spectra indicate that ultrasound has less damage to the chemical and crystal structures of graphene.

  4. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts

    Science.gov (United States)

    Santos, Vera P.; Wezendonk, Tim A.; Jaén, Juan José Delgado; Dugulan, A. Iulian; Nasalevich, Maxim A.; Islam, Husn-Ubayda; Chojecki, Adam; Sartipi, Sina; Sun, Xiaohui; Hakeem, Abrar A.; Koeken, Ard C. J.; Ruitenbeek, Matthijs; Davidian, Thomas; Meima, Garry R.; Sankar, Gopinathan; Kapteijn, Freek; Makkee, Michiel; Gascon, Jorge

    2015-03-01

    Depletion of crude oil resources and environmental concerns have driven a worldwide research on alternative processes for the production of commodity chemicals. Fischer-Tropsch synthesis is a process for flexible production of key chemicals from synthesis gas originating from non-petroleum-based sources. Although the use of iron-based catalysts would be preferred over the widely used cobalt, manufacturing methods that prevent their fast deactivation because of sintering, carbon deposition and phase changes have proven challenging. Here we present a strategy to produce highly dispersed iron carbides embedded in a matrix of porous carbon. Very high iron loadings (>40 wt %) are achieved while maintaining an optimal dispersion of the active iron carbide phase when a metal organic framework is used as catalyst precursor. The unique iron spatial confinement and the absence of large iron particles in the obtained solids minimize catalyst deactivation, resulting in high active and stable operation.

  5. A Stable, Extreme Temperature, High Radiation, Compact. Low Power Clock Oscillator for Space, Geothermal, Down-Hole & other High Reliability Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient and stable clock signal generation requirements at extreme temperatures and high radiation are not met with the current solutions. Chronos Technology...

  6. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    Directory of Open Access Journals (Sweden)

    Charlotte Rehm

    Full Text Available In prokaryotes simple sequence repeats (SSRs with unit sizes of 1-5 nucleotides (nt are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4 structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc, Xanthomonas axonopodis pv. citri str. 306 (Xac, and Nostoc sp. strain PCC7120 (Ana. In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  7. A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks.

    Science.gov (United States)

    Liu, Xiao; Qi, Wei; Wang, Yuefei; Su, Rongxin; He, Zhimin

    2017-11-07

    Metal-organic frameworks (MOFs) have drawn extensive research interest as candidates for enzyme immobilization owing to their tunable porosity, high surface area, and excellent chemical/thermal stability. Herein, we report a facile and universal strategy for enzyme immobilization using highly stable hierarchically porous metal-organic frameworks (HP-MOFs). The HP-MOFs were stable over a wide pH range (pH = 2-11 for HP-DUT-5) and met the catalysis conditions of most enzymes. The as-prepared hierarchical micro/mesoporous MOFs with mesoporous defects showed a superior adsorption capacity towards enzymes. The maximum adsorption capacity of HP-DUT-5 for glucose oxidase (GOx) and uricase was 208 mg g(-1) and 225 mg g(-1), respectively. Furthermore, we constructed two multi-enzyme biosensors for glucose and uric acid (UA) by immobilizing GOx and uricase with horseradish peroxidase (HRP) on HP-DUT-5, respectively. These sensors were efficiently applied in the colorimetric detection of glucose and UA and showed good sensitivity, selectivity, and recyclability.

  8. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Sease, John D [ORNL; Guida, Tracey [University of Pittsburgh; Jolly, Brian C [ORNL

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  9. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  10. Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates.

    Science.gov (United States)

    Dowle, Eddy J; Pochon, Xavier; C Banks, Jonathan; Shearer, Karen; Wood, Susanna A

    2016-09-01

    Recent studies have advocated biomonitoring using DNA techniques. In this study, two high-throughput sequencing (HTS)-based methods were evaluated: amplicon metabarcoding of the cytochrome C oxidase subunit I (COI) mitochondrial gene and gene enrichment using MYbaits (targeting nine different genes including COI). The gene-enrichment method does not require PCR amplification and thus avoids biases associated with universal primers. Macroinvertebrate samples were collected from 12 New Zealand rivers. Macroinvertebrates were morphologically identified and enumerated, and their biomass determined. DNA was extracted from all macroinvertebrate samples and HTS undertaken using the illumina miseq platform. Macroinvertebrate communities were characterized from sequence data using either six genes (three of the original nine were not used) or just the COI gene in isolation. The gene-enrichment method (all genes) detected the highest number of taxa and obtained the strongest Spearman rank correlations between the number of sequence reads, abundance and biomass in 67% of the samples. Median detection rates across rare (5%) taxa were highest using the gene-enrichment method (all genes). Our data indicated primer biases occurred during amplicon metabarcoding with greater than 80% of sequence reads originating from one taxon in several samples. The accuracy and sensitivity of both HTS methods would be improved with more comprehensive reference sequence databases. The data from this study illustrate the challenges of using PCR amplification-based methods for biomonitoring and highlight the potential benefits of using approaches, such as gene enrichment, which circumvent the need for an initial PCR step. © 2015 John Wiley & Sons Ltd.

  11. Carbon dioxide enrichment: a technique to mitigate the negative effects of salinity on the productivity of high value tomatoes

    Directory of Open Access Journals (Sweden)

    Maria J. Sánchez-González

    2016-06-01

    Full Text Available The present study was conducted to determine the mitigating influence of greenhouse CO2 enrichment on the negative effects of salinity in Mediterranean conditions. Hybrid Raf (cv. Delizia tomato plants were exposed to two salinity levels of the nutrient solution (5 and 7 dS/m obtained by adding NaCl, and two CO2 concentrations (350 and 800 μmol/mol in which CO2 enrichment was applied during the daytime according to a strategy linked to ventilation. Increasing water salinity negatively affected the leaf area index (LAI, the specific leaf area (SLA, the water use efficiency (WUE, the radiation use efficiency (RUE and dry weight (DW accumulation resulting in lower marketable yield. The high salinity treatment (7 dS/m increased fruit firmness (N, total soluble solids content (SSC and titratable acidity (TA, whereas pH was reduced in the three ripening stages: mature green/breaker (G, turning (T, and pink/light red (P. Also, the increase in electrical conductivity of the nutrient solution led to a general change in intensity of the sensory characteristics of tomato fruits. On the other hand, CO2 enrichment did not affect LAI although SLA was reduced. RUE and DW accumulation were increased resulting in higher marketable yield, through positive effects on fruit number and their average weight. WUE was enhanced by CO2 supply mainly through increased growth and yield. Physical-chemical quality parameters such as fruit firmness, TA and pH were not affected by CO2 enrichment whereas SSC was enhanced. Greenhouse CO2 enrichment did mitigate the negative effect of saline conditions on productivity without compromising organoleptic and sensory fruit quality.

  12. Carbon dioxide enrichment: a technique to mitigate the negative effects of salinity on the productivity of high value tomatoes

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-González, M. J.; Sánchez-Guerrero, M.C.; Medrano, E.; Porras, M.E.; Baeza, E.J.; Lorenzo, P.

    2016-11-01

    The present study was conducted to determine the mitigating influence of greenhouse CO2 enrichment on the negative effects of salinity in Mediterranean conditions. Hybrid Raf (cv. Delizia) tomato plants were exposed to two salinity levels of the nutrient solution (5 and 7 dS/m) obtained by adding NaCl, and two CO2 concentrations (350 and 800 μmol/mol) in which CO2 enrichment was applied during the daytime according to a strategy linked to ventilation. Increasing water salinity negatively affected the leaf area index (LAI), the specific leaf area (SLA), the water use efficiency (WUE), the radiation use efficiency (RUE) and dry weight (DW) accumulation resulting in lower marketable yield. The high salinity treatment (7 dS/m) increased fruit firmness (N), total soluble solids content (SSC) and titratable acidity (TA), whereas pH was reduced in the three ripening stages: mature green/breaker (G), turning (T), and pink/light red (P). Also, the increase in electrical conductivity of the nutrient solution led to a general change in intensity of the sensory characteristics of tomato fruits. On the other hand, CO2 enrichment did not affect LAI although SLA was reduced. RUE and DW accumulation were increased resulting in higher marketable yield, through positive effects on fruit number and their average weight. WUE was enhanced by CO2 supply mainly through increased growth and yield. Physical-chemical quality parameters such as fruit firmness, TA and pH were not affected by CO2 enrichment whereas SSC was enhanced. Greenhouse CO2 enrichment did mitigate the negative effect of saline conditions on productivity without compromising organoleptic and sensory fruit quality. (Author)

  13. The librarian's role in an enrichment program for high school students interested in the health professions.

    Science.gov (United States)

    Rossini, Beverly; Burnham, Judy; Wright, Andrea

    2013-01-01

    Librarians from the University of South Alabama Biomedical Library partnered to participate in a program that targets minority students interested in health care with instruction in information literacy. Librarians participate in the summer enrichment programs designed to encourage minority students to enter health care professions by enhancing their preparation. The curriculum developed by the Biomedical Library librarians is focused on developing information searching skills. Students indicated that the library segment helped them in their library research efforts and helped them make more effective use of available resources. Librarians involved report a sense of self-satisfaction as the program allows them to contribute to promoting greater diversity in health care professions. Participating in the summer enrichment program has been beneficial to the students and librarians.

  14. A Balanced Approach to Building STEM College and Career Readiness in High School: Combining STEM Intervention and Enrichment Programs

    OpenAIRE

    Sladjana S. Rakich; Vinh Tran

    2016-01-01

    Often STEM schools and STEM enrichment programs attract primarily high achieving students or those with strong motivation or interest. However, to ensure that more students pursue interest in STEM, steps must be taken to provide access for all students. For a balanced and integrated career development focus, schools must provide learning opportunities that are appropriate for all students. This paper outlines two approaches to the creation of a comprehensive STEM College and Career developmen...

  15. High-throughput simultaneous determination of plasma water deuterium and 18-oxygen enrichment using a high-temperature conversion elemental analyzer with isotope ratio mass spectrometry.

    Science.gov (United States)

    Richelle, M; Darimont, C; Piguet-Welsch, C; Fay, L B

    2004-01-01

    This paper presents a high-throughput method for the simultaneous determination of deuterium and oxygen-18 (18O) enrichment of water samples isolated from blood. This analytical method enables rapid and simple determination of these enrichments of microgram quantities of water. Water is converted into hydrogen and carbon monoxide gases by the use of a high-temperature conversion elemental analyzer (TC-EA), that are then transferred on-line into the isotope ratio mass spectrometer. Accuracy determined with the standard light Antartic precipitation (SLAP) and Greenland ice sheet precipitation (GISP) is reliable for deuterium and 18O enrichments. The range of linearity is from 0 up to 0.09 atom percent excess (APE, i.e. -78 up to 5725 delta per mil (dpm)) for deuterium enrichment and from 0 up to 0.17 APE (-11 up to 890 dpm) for 18O enrichment. Memory effects do exist but can be avoided by analyzing the biological samples in quintuplet. This method allows the determination of 1440 samples per week, i.e. 288 biological samples per week. Copyright 2004 John Wiley & Sons, Ltd.

  16. High furosemide dose has detrimental effects on survival of patients with stable heart failure.

    Science.gov (United States)

    Kapelios, Chris J; Kaldara, Elisabeth; Ntalianis, Argyrios; Sousonis, Vasilios; Repasos, Evangelos; Sfakianaki, Titika; Vakrou, Styliani; Pantsios, Chris; Nanas, John N; Terrovitis, John V

    2015-01-01

    High doses of furosemide for heart failure (HF) have been correlated with an increased mortality, though whether they are a marker of disease severity or an independent predictor is unknown. We hypothesized that, in patients presenting with stable HF, the likelihood of long-term major adverse clinical events is increased by higher furosemide doses. We retrospectively recorded the doses of furosemide prescribed to 173 consecutive, clinically stable patients during a first ambulatory HF department visit. The low-dose group included 103 patients treated with 80 mg and the high-dose group included 70 patients treated with >80 mg of furosemide daily. Proportional hazard regression analyses were performed with single and multiple variables in search of correlates of long-term adverse clinical events. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated. The baseline characteristics of the 2 groups were similar, except for estimated glomerular filtration rate, which was higher in the low- than the high-dose group (72.9 ± 19.4 vs. 60.8 ± 22.0 mL/min/ m2, pfurosemide was an independent predictor of an adverse outcome at 3 years (adjusted HR: 15.25; 95% CI:1.06-219.39, p=0.045). The incidence of deterioration of renal function and episodes of hypokalemia during follow up was also higher in the high furosemide dose (73.2% vs. 48.3, p=0.003, and 43.1% vs. 6.5%, pfurosemide administered in order to stabilize HF patients and continued thereafter are associated with an adverse clinical outcome.

  17. Climatic signals in multiple highly resolved stable isotope records from Greenland

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Dahl-Jensen, Dorthe; Johnsen, Sigfus Johann

    2010-01-01

    are found to correspond better with winter stable isotope data than with summer or annual average stable isotope data it is suggested that a strong local Greenland temperature signal can be extracted from the winter stable isotope data even on centennial to millennial time scales. Udgivelsesdato: Feb....

  18. Conservative Management for Stable High Ankle Injuries in Professional Football Players.

    Science.gov (United States)

    Knapik, Derrick M; Trem, Anthony; Sheehan, Joseph; Salata, Michael J; Voos, James E

    High ankle "syndesmosis" injuries are common in American football players relative to the general population. At the professional level, syndesmotic sprains represent a challenging and unique injury lacking a standardized rehabilitation protocol during conservative management. PubMed, Biosis Preview, SPORTDiscus, PEDro, and EMBASE databases were searched using the terms syndesmotic injuries, American football, conservative management, and rehabilitation. Clinical review. Level 3. When compared with lateral ankle sprains, syndesmosis injuries result in significantly prolonged recovery times and games lost. For stable syndesmotic injuries, conservative management features a brief period of immobilization and protected weightbearing followed by progressive strengthening exercises and running, and athletes can expect to return to competition in 2 to 6 weeks. Further research investigating the efficacy of dry needling and blood flow restriction therapy is necessary to evaluate the benefit of these techniques in the rehabilitation process. Successful conservative management of stable syndesmotic injuries in professional American football athletes requires a thorough understanding of the anatomy, injury mechanisms, diagnosis, and rehabilitation strategies utilized in elite athletes.

  19. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes

    Science.gov (United States)

    Zou, Chen; Huang, Chun-Ying; Sanehira, Erin M.; Luther, Joseph M.; Lin, Lih Y.

    2017-11-01

    Recently, all-inorganic perovskites such as CsPbBr3 and CsPbI3, have emerged as promising materials for light-emitting applications. While encouraging performance has been demonstrated, the stability issue of the red-emitting CsPbI3 is still a major concern due to its small tolerance factor. Here we report a highly stable CsPbI3 quantum dot (QD) light-emitting diode (LED) with red emission fabricated using an improved purification approach. The device achieved decent external quantum efficiency (EQE) of 0.21% at a bias of 6 V and outstanding operational stability, with a L 70 lifetime (EL intensity decreases to 70% of starting value) of 16 h and 1.5 h under a constant driving voltage of 5 V and 6 V (maximum EQE operation) respectively. Furthermore, the device can work under a higher voltage of 7 V (maximum luminance operation) and retain 50% of its initial EL intensity after 500 s. These findings demonstrate the promise of CsPbI3 QDs for stable red LEDs, and suggest the feasibility for electrically pumped perovskite lasers with further device optimizations.

  20. Dietary silicon-enriched spirulina improves early atherosclerosis markers in hamsters on a high-fat diet.

    Science.gov (United States)

    Vidé, Joris; Virsolvy, Anne; Romain, Cindy; Ramos, Jeanne; Jouy, Nicolas; Richard, Sylvain; Cristol, Jean-Paul; Gaillet, Sylvie; Rouanet, Jean-Max

    2015-09-01

    The aim of this study was to investigate the effects of dietary silicon-enriched spirulina (SES) on atherosclerosis. Hamsters (six per group) on a high-fat (HF) diet received SES or non-enriched spirulina (both at 57 mg/kg body weight) daily. This corresponded to 0.57 mg silicon/kg body weight daily. The HF diet induced dyslipidemia, insulin resistance, oxidative stress, and vascular dysfunction. Compared with the HF group, SES attenuated increases of lipemia and prevented insulin resistance (IR) (P = 0.001). SES protected against oxidative stress through a reduction of heart (P = 0.006) and liver (P silicon were observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Disposition of highly enriched uranium obtained from the Republic of Kazakhstan. Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This EA assesses the potential environmental impacts associated with DOE`s proposal to transport 600 kg of Kazakhstand-origin HEU from Y-12 to a blending site (B&W Lynchburg or NFS Erwin), transport low-enriched UF6 blending stock from a gaseous diffusion plant to GE Wilmington and U oxide blending stock to the blending site, blending the HEU and uranium oxide blending stock to produce LEU in the form of uranyl nitrate, and transport the uranyl nitrate from the blending site to USEC Portsmouth.

  2. Supplementary Material for: High-Order Composite Likelihood Inference for Max-Stable Distributions and Processes

    KAUST Repository

    Castruccio, Stefano

    2016-01-01

    In multivariate or spatial extremes, inference for max-stable processes observed at a large collection of points is a very challenging problem and current approaches typically rely on less expensive composite likelihoods constructed from small subsets of data. In this work, we explore the limits of modern state-of-the-art computational facilities to perform full likelihood inference and to efficiently evaluate high-order composite likelihoods. With extensive simulations, we assess the loss of information of composite likelihood estimators with respect to a full likelihood approach for some widely used multivariate or spatial extreme models, we discuss how to choose composite likelihood truncation to improve the efficiency, and we also provide recommendations for practitioners. This article has supplementary material online.

  3. Stable interstitial layer to alleviate fatigue fracture of high nickel cathode for lithium-ion batteries

    Science.gov (United States)

    Yang, Chengkai; Shao, Ruiwen; Mi, Yingying; Shen, Lanyao; Zhao, Binglu; wang, Qian; Wu, Kai; Lui, Wen; Gao, Peng; Zhou, Henghui

    2018-02-01

    High nickel cathodes can deliver higher capacity with lower cost than conventional LiCoO2, however, the irreversible structural and morphology degradation with long-term cycling hinder their further application. In this paper, LiNi0.815Co0.15Al0.035O2 agglomerates are treated by LiNi0.333Co0.333Mn0.333O2 coating to get a stable interstitial layer without capacity loss. The interstitial layer is about 10 nm in thickness and has a layered (R-3m) structure, which can improve the chemical and mechanical stability of cathode materials with capacity retention of 88.5% after 200 cycles. The structural analysis and in-situ compression test proves that the morphology degradation is a fatigue process within long-term electrochemical reaction, and the coated sample has an excellent elastic recovery capacity thus leading to long cycle life.

  4. A Modified AH-FDTD Unconditionally Stable Method Based on High-Order Algorithm

    Directory of Open Access Journals (Sweden)

    Zheng Pan

    2017-01-01

    Full Text Available The unconditionally stable method, Associated-Hermite FDTD, has attracted more and more attentions in computational electromagnetic for its time-frequency compact property. Because of the fewer orders of AH basis needed in signal reconstruction, the computational efficiency can be improved further. In order to further improve the accuracy of the traditional AH-FDTD, a high-order algorithm is introduced. Using this method, the dispersion error induced by the space grid can be reduced, which makes it possible to set coarser grid. The simulation results show that, on the condition of coarse grid, the waveforms obtained from the proposed method are matched well with the analytic result, and the accuracy of the proposed method is higher than the traditional AH-FDTD. And the efficiency of the proposed method is higher than the traditional FDTD method in analysing 2D waveguide problems with fine-structure.

  5. High voltage threshold for stable operation in a dc electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Masahiro, E-mail: masahiro@post.kek.jp [High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nishimori, Nobuyuki, E-mail: n-nishim@tagen.tohoku.ac.jp [National Institutes for Quantum and Radiological Science and Technology (QST), Tokai, Naka, Ibaraki 319-1195 (Japan)

    2016-07-04

    We report clear observation of a high voltage (HV) threshold for stable operation in a dc electron gun. The HV hold-off time without any discharge is longer than many hours for operation below the threshold, while it is roughly 10 min above the threshold. The HV threshold corresponds to the minimum voltage where discharge ceases. The threshold increases with the number of discharges during HV conditioning of the gun. Above the threshold, the amount of gas desorption per discharge increases linearly with the voltage difference from the threshold. The present experimental observations can be explained by an avalanche discharge model based on the interplay between electron stimulated desorption (ESD) from the anode surface and subsequent secondary electron emission from the cathode by the impact of ionic components of the ESD molecules or atoms.

  6. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    Science.gov (United States)

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  7. High-order Composite Likelihood Inference for Max-Stable Distributions and Processes

    KAUST Repository

    Castruccio, Stefano

    2015-09-29

    In multivariate or spatial extremes, inference for max-stable processes observed at a large collection of locations is a very challenging problem in computational statistics, and current approaches typically rely on less expensive composite likelihoods constructed from small subsets of data. In this work, we explore the limits of modern state-of-the-art computational facilities to perform full likelihood inference and to efficiently evaluate high-order composite likelihoods. With extensive simulations, we assess the loss of information of composite likelihood estimators with respect to a full likelihood approach for some widely-used multivariate or spatial extreme models, we discuss how to choose composite likelihood truncation to improve the efficiency, and we also provide recommendations for practitioners. This article has supplementary material online.

  8. Thermally stable conformal encapsulation material for high-power ultraviolet light-emitting diodes

    Science.gov (United States)

    Huang, Shun-Yuan; Wang, Jau-Sheng

    2017-07-01

    A conformal encapsulation material for use in high-power, thermally stable ultraviolet (UV) light-emitting diodes was successfully developed. For silicone, thermal degradation started at ˜200°C, and the transmittance was 85.5% at 365 nm. The transmittance decreased by 55% after thermal aging at 250°C for 72 h and it decreased further by 2.5%, even at room temperature, under continuous exposure to UV light at 365 nm for 72 h. By contrast, for the sol-gel material, thermal degradation started at ˜300°C, and the transmittance was 90% at 365 nm. The transmittance decreased negligibly after thermal aging at 250°C for 72 h and it did not decrease further even at 75°C under continuous exposure to UV light at 365 nm for 72 h.

  9. Pt Monolayer Shell on Nitrided Alloy Core—A Path to Highly Stable Oxygen Reduction Catalyst

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2015-07-01

    Full Text Available The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC. Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of the PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.

  10. Very stable high molecular mass multiprotein complex with DNase and amylase activities in human milk.

    Science.gov (United States)

    Soboleva, Svetlana E; Dmitrenok, Pavel S; Verkhovod, Timofey D; Buneva, Valentina N; Sedykh, Sergey E; Nevinsky, Georgy A

    2015-01-01

    For breastfed infants, human milk is more than a source of nutrients; it furnishes a wide array of proteins, peptides, antibodies, and other components promoting neonatal growth and protecting infants from viral and bacterial infection. It has been proposed that most biological processes are performed by protein complexes. Therefore, identification and characterization of human milk components including protein complexes is important for understanding the function of milk. Using gel filtration, we have purified a stable high molecular mass (~1000 kDa) multiprotein complex (SPC) from 15 preparations of human milk. Light scattering and gel filtration showed that the SPC was stable in the presence of high concentrations of NaCl and MgCl2 but dissociated efficiently under the conditions that destroy immunocomplexes (2 M MgCl2 , 0.5 M NaCl, and 10 mM DTT). Such a stable complex is unlikely to be a casual associate of different proteins. The relative content of the individual SPCs varied from 6% to 25% of the total milk protein. According to electrophoretic and mass spectrometry analysis, all 15 SPCs contained lactoferrin (LF) and α-lactalbumin as major proteins, whereas human milk albumin and β-casein were present in moderate or minor amounts; a different content of IgGs and sIgAs was observed. All SPCs efficiently hydrolyzed Plasmid supercoiled DNA and maltoheptaose. Some freshly prepared SPC preparations contained not only intact LF but also small amounts of its fragments, which appeared in all SPCs during their prolonged storage; the fragments, similar to intact LF, possessed DNase and amylase activities. LF is found in human epithelial secretions, barrier body fluids, and in the secondary granules of leukocytes. LF is a protein of the acute phase response and nonspecific defense against different types of microbial and viral infections. Therefore, LF complexes with other proteins may be important for its functions not only in human milk. Copyright © 2014

  11. ZPR-3 Assembly 12 : A cylindrical assembly of highly enriched uranium, depleted uranium and graphite with an average {sup 235}U enrichment of 21 atom %.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; McKnight, R. D.; Perel, R. L.; Wagschal, J. J.; Nuclear Engineering Division; Racah Inst. of Physics

    2010-09-30

    Specifications and has historically been used as a data validation benchmark assembly. Loading of ZPR-3 Assembly 12 began in late Jan. 1958, and the Assembly 12 program ended in Feb. 1958. The core consisted of highly enriched uranium (HEU) plates, depleted uranium plates and graphite plates loaded into stainless steel drawers which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of two columns of 0.125 in.-wide (3.175 mm) HEU plates, seven columns of 0.125 in.-wide depleted uranium plates and seven columns of 0.125 in.-wide graphite plates. The length of each column was 9 in. (228.6 mm) in each half of the core. The graphite plates were included to produce a softer neutron spectrum that would be more characteristic of a large power reactor. The axial blanket consisted of 12 in. (304.8 mm) of depleted uranium behind the core. The thickness of the radial blanket was approximately 12 in. and the length of the radial blanket in each half of the matrix was 21 in. (533.4 mm). The assembly geometry approximated a right circular cylinder as closely as the square matrix tubes allowed. According to the logbook and loading records for ZPR-3/12, the reference critical configuration was loading 10 which was critical on Feb. 5, 1958. The subsequent loadings were very similar but less clean for criticality because there were modifications made to accommodate reactor physics measurements other than criticality. Accordingly, ZPR-3/12 loading 10 was selected as the only configuration for this benchmark. As documented below, it was determined to be acceptable as a criticality safety benchmark experiment. An accurate transformation to a simplified model is needed to make any ZPR assembly a practical criticality-safety benchmark. There is simply too much geometric detail in an exact (as-built) model of a ZPR assembly, even a clean core such as ZPR-3/12 loading 10. The transformation must reduce the detail to a

  12. ZPR-3 Assembly 6F : A spherical assembly of highly enriched uranium, depleted uranium, aluminum and steel with an average {sup 235}U enrichment of 47 atom %.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; McKnight, R. D; Schaefer, R. W.; Nuclear Engineering Division

    2010-09-30

    Assembly 6F (ZPR-3/6F), the final phase of the Assembly 6 program, simulated a spherical core with a thick depleted uranium reflector. ZPR-3/6F was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 47 at.%. Approximately 81.4% of the total fissions in this assembly occur above 100 keV, approximately 18.6% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 7 in the Cross Section Evaluation Working Group (CSEWG) Benchmark Specifications and has historically been used as a data validation benchmark assembly. Loading of ZPR-3/6F began in late December 1956, and the experimental measurements were performed in January 1957. The core consisted of highly enriched uranium (HEU) plates, depleted uranium plates, perforated aluminum plates and stainless steel plates loaded into aluminum drawers, which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of three columns of 0.125 in.-wide (3.175 mm) HEU plates, three columns of 0.125 in.-wide depleted uranium plates, nine columns of 0.125 in.-wide perforated aluminum plates and one column of stainless steel plates. The maximum length of each column of core material in a drawer was 9 in. (228.6 mm). Because of the goal to produce an approximately spherical core, core fuel and diluent column lengths generally varied between adjacent drawers and frequently within an individual drawer. The axial reflector consisted of depleted uranium plates and blocks loaded in the available space in the front (core) drawers, with the remainder loaded into back drawers behind the front drawers. The radial reflector consisted of blocks of depleted uranium loaded directly into the matrix tubes. The assembly geometry approximated a reflected sphere as closely as the square matrix tubes, the drawers and the

  13. Coxiella burnetii seropositivity is highly stable throughout gestation in lactating high-producing dairy cows.

    Science.gov (United States)

    Garcia-Ispierto, I; Almería, S; López-Gatius, F

    2011-12-01

    The aims of this study were to analyse, in high-producing dairy cows, plasma Coxiella burnetii antibody titres and seroconversion throughout gestation, along with possible factors affecting such titres. The study was performed on 65 lactating pregnant non-aborting animals in a commercial Holstein-Friesian dairy herd in northeastern Spain. Blood samples for antibody determinations were collected on days 40, 90, 120, 150, 180 and 210 of gestation. By General Linear Model (GLM) repeated measures analysis of variance, the effects of milk production and reproductive variables as well as Neospora caninum-seropositivity on C. burnetii antibody levels for all animals and for seropositive animals were established. Significant effects were observed of day of gestation, parity and N. caninum-seropositivity (between subject effects) on the C. burnetii antibody levels recorded for the whole population of animals throughout the gestation period. C. burnetii antibody levels were higher in primiparous than in multiparous cows, with titres in primiparous cows diminishing during the post-partum period. In seropositive cows, significant effects were observed of milk production and inseminating bull on gestational C. burnetii antibody levels. When the data were subjected to binary logistic regression considering C. burnetii-seropositivity as the dependent variable, the resultant odds ratios indicated that the likelihood of C. burnetii-seropositivity was lower in N. caninum-seropositive animals (OR 0.12) compared to N. caninum-seronegative animals, and in multiparous cows (OR 0.12) compared to primiparous cows. In conclusion, Coxiella-infected dams remained seropositive during the whole gestation period, though primiparous cows showed a drop in antibody titres post-partum. No seronegative cow suffered seroconversion. Presence of both, N. caninum and C. burnetii antibodies in the same animal, was associated with a decrease in antibody titres against C. burnetii, perhaps indicating some

  14. High-surface Thermally Stable Mesoporous Gallium Phosphates Constituted by Nanoparticles as Primary Building Blocks

    Energy Technology Data Exchange (ETDEWEB)

    V Parvulescu; V Parvulescu; D Ciuparu; C Hardacre; H Garcia

    2011-12-31

    In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl{sub 3} and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C{sub 16}H{sub 33}(CH{sub 3})3NBr and C{sub 16}PyCl). These highly reactive precursors have so far not been used as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl{sub 3} and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m{sup 2} g{sup -1}, and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis.

  15. Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws

    Science.gov (United States)

    Chen, Tianheng; Shu, Chi-Wang

    2017-09-01

    It is well known that semi-discrete high order discontinuous Galerkin (DG) methods satisfy cell entropy inequalities for the square entropy for both scalar conservation laws (Jiang and Shu (1994) [39]) and symmetric hyperbolic systems (Hou and Liu (2007) [36]), in any space dimension and for any triangulations. However, this property holds only for the square entropy and the integrations in the DG methods must be exact. It is significantly more difficult to design DG methods to satisfy entropy inequalities for a non-square convex entropy, and/or when the integration is approximated by a numerical quadrature. In this paper, we develop a unified framework for designing high order DG methods which will satisfy entropy inequalities for any given single convex entropy, through suitable numerical quadrature which is specific to this given entropy. Our framework applies from one-dimensional scalar cases all the way to multi-dimensional systems of conservation laws. For the one-dimensional case, our numerical quadrature is based on the methodology established in Carpenter et al. (2014) [5] and Gassner (2013) [19]. The main ingredients are summation-by-parts (SBP) operators derived from Legendre Gauss-Lobatto quadrature, the entropy conservative flux within elements, and the entropy stable flux at element interfaces. We then generalize the scheme to two-dimensional triangular meshes by constructing SBP operators on triangles based on a special quadrature rule. A local discontinuous Galerkin (LDG) type treatment is also incorporated to achieve the generalization to convection-diffusion equations. Extensive numerical experiments are performed to validate the accuracy and shock capturing efficacy of these entropy stable DG methods.

  16. Highly Stable Anion Exchange Membranes for High-Voltage Redox-Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yushan

    2018-02-26

    In this work, multiple polymer backbones were screened for oxidation resistance and multiple chemistries were explored for tethering tris(2,4,6-trimethylphenyl)phosphonium (9MeTTP+) to the selected polymer backbones. A new tethering strategy through brominated 9MeTTP+ cation was developed and used to obtain the desired 9MeTTP+−functionalized polysulfone (PSf) and hexafluoro polybenzimidazole (F6PBI) polymer. The crosslinked 9MeTTP+−functionalized hexafluoro polybenzimidazole (9MeTTP−F6PBI) polymer demonstrated excellent oxidation stability that met the go-no-go milestone of the first year. However, large-scale bromination inevitably involved multi-bromination products, which led to polymer crosslinking in the next tethering. A new synthesis strategy with diiodobutane as linker was developed to overcome the crosslinking problem. The prepared 9MeTTP+-F6PBI membrane without crosslinking showed only 3.58% water uptake and less than 1 mS/cm OH- conductivity in water at 20°C, possibly due to the hydrophobic 9MeTTP+ cation. In order to improve the conductivity, hydrophilic tris(2,4,6-trimethoxylphenyl)phosphonium (9MeOTTP+) cation was tethered to an F6PBI backbone, and a 9MeOTTP+-F6PBI PTFE reinforced membrane was prepared with 17.4% water uptake to increase the mechanical strength and durability in cerium (IV) solution. A 9MeOTTP+-F6PBI PTFE reinforced membrane had less than 20% conductivity loss during an accelerated stability test in 0.5 M cerium (IV) and 1.3 M HClO4 at 55°C for 100 hours. Moreover, a 9MeOTTP+-F6PBI PTFE reinforced membrane had more than double the lifetime of commercial FAS-30 and FAB-PK-130 AEMs during an accelerated stability test in 0.5 M cerium (IV) and 1.3 M HClO4 at 55°C. Low area specific resistance (ASR) of a 9MeOTTP+-F6PBI PTFE reinforced membrane in the sulfuric acid system was also achieved due to the high acid doping ability of the polymer structure. The cationic 9MeOTTP+-F6PBI PTFE reinforced membrane shows a cerium (IV

  17. HTSSIP: An R package for analysis of high throughput sequencing data from nucleic acid stable isotope probing (SIP) experiments.

    Science.gov (United States)

    Youngblut, Nicholas D; Barnett, Samuel E; Buckley, Daniel H

    2018-01-01

    Combining high throughput sequencing with stable isotope probing (HTS-SIP) is a powerful method for mapping in situ metabolic processes to thousands of microbial taxa. However, accurately mapping metabolic processes to taxa is complex and challenging. Multiple HTS-SIP data analysis methods have been developed, including high-resolution stable isotope probing (HR-SIP), multi-window high-resolution stable isotope probing (MW-HR-SIP), quantitative stable isotope probing (qSIP), and ΔBD. Currently, there is no publicly available software designed specifically for analyzing HTS-SIP data. To address this shortfall, we have developed the HTSSIP R package, an open-source, cross-platform toolset for conducting HTS-SIP analyses in a straightforward and easily reproducible manner. The HTSSIP package, along with full documentation and examples, is available from CRAN at https://cran.r-project.org/web/packages/HTSSIP/index.html and Github at https://github.com/buckleylab/HTSSIP.

  18. Proteogenomics Reveals Enriched Ribosome Assembly and Protein Translation in Pectoralis major of High Feed Efficiency Pedigree Broiler Males.

    Science.gov (United States)

    Bottje, Walter G; Lassiter, Kentu; Piekarski-Welsher, Alissa; Dridi, Sami; Reverter, Antonio; Hudson, Nicholas J; Kong, Byung-Whi

    2017-01-01

    Background: In production animal agriculture, the cost of feed represents 60-70% of the total cost of raising an animal to market weight. Thus, development of viable biomarkers for feed efficiency (FE, g gain/g feed) to assist in genetic selection of breeding stock remains an important goal in commercial breeding programs. Methods: Global gene (cDNA microarray, RNAseq) and protein expression (shotgun proteomics) analyses have been conducted on breast muscle samples obtained from pedigree broiler males (PedM) exhibiting high and low FE phenotypes. Using the entire datasets (i.e., no cutoffs for significance or fold difference in expression) the number of genes or proteins that were expressed numerically higher or lower in the high FE compared to the low FE phenotype for key terms or functions, e.g., ribosomal, mitochondrial ribosomal, tRNA, RNA binding motif, RNA polymerase, small nuclear ribonucleoprotein, and protein tyrosine phosphatase, were determined. Bionomial distribution analysis (exact) was then conducted on these datasets to determine significance between numerically up or down expression. Results: Processes associated with mitochondrial proteome expression (e.g., mitochondrial ribosomal proteins, mitochondrial transcription, mitochondrial tRNA, and translation) were enriched in breast muscle from the high FE compared to the low FE pedigree male broiler phenotype. Furthermore, the high FE phenotype exhibited enrichment of ribosome assembly (e.g., RNA polymerase, mitochondrial and cytosolic ribosomes, small, and heterogeneous nuclear ribonucleoproteins), as well as nuclear transport and protein translation processes compared to the low FE phenotype. Quality control processes (proteosomes and autophagy) were also enriched in the high FE phenotype. In contrast, the low FE phenotype exhibited enrichment of cytoskeletal proteins, protein tyrosine phosphatases, and tyrosine kinases compared to the high FE phenotype. These results suggest that processes of

  19. High sensitivity of Lobelia dortmanna to sediment oxygen depletion following organic enrichment.

    Science.gov (United States)

    Møller, Claus Lindskov; Sand-Jensen, Kaj

    2011-04-01

    • Lobelia dortmanna thrives in oligotrophic, softwater lakes thanks to O(2) and CO(2) exchange across roots and uptake of sediment nutrients. We hypothesize that low gas permeability of leaves constrains Lobelia to pristine habitats because plants go anoxic in the dark if O(2) vanishes from sediments. • We added organic matter to sediments and followed O(2) dynamics in plants and sediments using microelectrodes. To investigate plant stress, nutrient content and photosynthetic capacity of leaves were measured. • Small additions of organic matter triggered O(2) depletion and accumulation of NH(4)(+), Fe(2+) and CO(2) in sediments. O(2) in leaf lacunae fluctuated from above air saturation in the light to anoxia late in the dark in natural sediments, but organic enrichment prolonged anoxia because of higher O(2) consumption and restricted uptake from the water. Leaf N and P dropped below minimum thresholds for cell function in enriched sediments and was accompanied by critically low chlorophyll and photosynthesis. • We propose that anoxic stress restricts ATP formation and constrains transfer of nutrients to leaves. Brief anoxia in sediments and leaf lacunae late at night is a recurring summer phenomenon in Lobelia populations, but increased input of organic matter prolongs anoxia and reduces survival. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  20. Combination of multistep IMAC enrichment with high-pH reverse phase separation for in-depth phosphoproteomic profiling.

    Science.gov (United States)

    Yue, Xiao-Shan; Hummon, Amanda B

    2013-09-06

    Typical mass spectrometric phosphoproteome studies are complicated by the need for large amounts of starting material and extensive sample preparation to ensure sufficient phosphopeptide identifications. In this paper, we present a novel strategy to perform optimized multistep IMAC enrichment from whole cell lysates followed by high-pH reverse phase fractionation (multi-IMAC-HLB; HLB means hydrophilic-lipophilic-balanced reversed-phase cartridge). The peptide-to-IMAC ratio was optimized to maximize IMAC performance, while multistep IMAC enrichment enabled improved phosphopeptide acquisition. The addition of the HLB step further fractionates the IMAC enriched phosphopeptides while desalting the samples, which dramatically reduces the sample manipulation time and sample loss compared to other popular strategies. We compared the phosphopeptide identification results of the multi-IMAC-HLB method with 3 mg of starting material to the well-established SCX-IMAC method with 15 mg of starting material. We identified 8969 unique phosphopeptides with the multi-IMAC-HLB method, compared to 5519 unique phosphopeptides identified with the SCX-IMAC method, an increase of 62.5%. The increase in the numbers of identified phosphopeptides is due to the increase in the ratio of identified phosphopeptides out of all detected peptides, 70.5% with multi-IMAC-HLB method compared to 32.3% with the SCX-IMAC method. Multi-IMAC-HLB is a robust and efficient method for in-depth phosphoproteomic research.

  1. Research of high power and stable laser in portable Raman spectrometer based on SHINERS technology

    Science.gov (United States)

    Cui, Yongsheng; Yin, Yu; Wu, Yulin; Ni, Xuxiang; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The intensity of Raman light is very weak, which is only from 10-12 to 10-6 of the incident light. In order to obtain the required sensitivity, the traditional Raman spectrometer tends to be heavy weight and large volume, so it is often used as indoor test device. Based on the Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) method, Raman optical spectrum signal can be enhanced significantly and the portable Raman spectrometer combined with SHINERS method will be widely used in various fields. The laser source must be stable enough and able to output monochromatic narrow band laser with stable power in the portable Raman spectrometer based on the SHINERS method. When the laser is working, the change of temperature can induce wavelength drift, thus the power stability of excitation light will be affected, so we need to strictly control the working temperature of the laser, In order to ensure the stability of laser power and output current, this paper adopts the WLD3343 laser constant current driver chip of Wavelength Electronics company and MCU P89LPC935 to drive LML - 785.0 BF - XX laser diode(LD). Using this scheme, the Raman spectrometer can be small in size and the drive current can be constant. At the same time, we can achieve functions such as slow start, over-current protection, over-voltage protection, etc. Continuous adjustable output can be realized under control, and the requirement of high power output can be satisfied. Max1968 chip is adopted to realize the accurate control of the laser's temperature. In this way, it can meet the demand of miniaturization. In term of temperature control, integral truncation effect of traditional PID algorithm is big, which is easy to cause static difference. Each output of incremental PID algorithm has nothing to do with the current position, and we can control the output coefficients to avoid full dose output and immoderate adjustment, then the speed of balance will be improved observably. Variable

  2. Gold-doped graphene: A highly stable and active electrocatalysts for the oxygen reduction reaction.

    Science.gov (United States)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2015-04-21

    In addressing the growing need of renewable and sustainable energy resources, hydrogen-fuel-cells stand as one of the most promising routes to transform the current energy paradigm into one that integrally fulfills environmental sustainability. Nevertheless, accomplishing this technology at a large scale demands to surpass the efficiency and enhance the cost-effectiveness of platinum-based cathodes, which catalyze the oxygen reduction reaction (ORR). In this work, our first-principles calculations show that Au atoms incorporated into graphene di-vacancies form a highly stable and cost-effective electrocatalyst that is, at the same time, as or more (dependently of the dopant concentration) active toward ORR than the best-known Pt-based electrocatalysts. We reveal that partial passivation of defected-graphene by gold atoms reduces the reactivity of C dangling bonds and increases that of Au, thus optimizing them for catalyzing the ORR and yielding a system of high thermodynamic and electrochemical stabilities. We also demonstrate that the linear relation among the binding energies of the reaction intermediates assumed in computational high-throughput material screening does not hold, at least for this non-purely transition-metal material. We expect Au-doped graphene to finally overcome the cathode-related challenge hindering the realization of hydrogen-fuel cells as the leading means of powering transportation and portable devices.

  3. Stable high efficiency two-dimensional perovskite solar cells via cesium doping

    KAUST Repository

    Zhang, Xu

    2017-08-15

    Two-dimensional (2D) organic-inorganic perovskites have recently emerged as one of the most important thin-film solar cell materials owing to their excellent environmental stability. The remaining major pitfall is their relatively poor photovoltaic performance in contrast to 3D perovskites. In this work we demonstrate cesium cation (Cs) doped 2D (BA)(MA)PbI perovskite solar cells giving a power conversion efficiency (PCE) as high as 13.7%, the highest among the reported 2D devices, with excellent humidity resistance. The enhanced efficiency from 12.3% (without Cs) to 13.7% (with 5% Cs) is attributed to perfectly controlled crystal orientation, an increased grain size of the 2D planes, superior surface quality, reduced trap-state density, enhanced charge-carrier mobility and charge-transfer kinetics. Surprisingly, it is found that the Cs doping yields superior stability for the 2D perovskite solar cells when subjected to a high humidity environment without encapsulation. The device doped using 5% Cs degrades only ca. 10% after 1400 hours of exposure in 30% relative humidity (RH), and exhibits significantly improved stability under heating and high moisture environments. Our results provide an important step toward air-stable and fully printable low dimensional perovskites as a next-generation renewable energy source.

  4. High temperature stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility

    Science.gov (United States)

    l'Abee, Roy; DaRosa, Fabien; Armstrong, Mark J.; Hantel, Moritz M.; Mourzagh, Djamel

    2017-03-01

    We report (electro-)chemically stable, high temperature resistant and fast wetting Li-ion battery separators produced through a phase inversion process using novel polyetherimides (PEI) based on bisphenol-aceton diphthalic anhydride (BPADA) and para-phenylenediamine (pPD). In contrast to previous studies using PEI based on BPADA and meta-phenylenediamine (mPD), the separators reported herein show limited swelling in electrolytes and do not require fillers to render sufficient mechanical strength and ionic conductivity. In this work, the produced 15-25 μm thick PEI-pPD separators show excellent electrolyte compatibility, proven by low degrees of swelling in electrolyte solvents, low contact angles, fast electrolyte wicking and high electrolyte uptake. The separators cover a tunable range of morphologies and properties, leading to a wide range of ionic conductivities as studied by Electrochemical Impedance Spectroscopy (EIS). Dynamic Mechanical Analysis (DMA) demonstrated dimensional stability up to 220 °C. Finally, single layer graphite/lithium nickel manganese cobalt oxide (NMC) pouch cells were assembled using this novel PEI-pPD separator, showing an excellent capacity retention of 89.3% after 1000 1C/2C cycles, with a mean Coulombic efficiency of 99.77% and limited resistance build-up. We conclude that PEI-pPD is a promising new material candidate for high performance separators.

  5. High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Lee, Sangkyu; Eom, Wonsik; Park, Hun; Han, Tae Hee

    2017-08-02

    Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO2 crystals. As a result, high-temperature stable anatase TiO2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 °C. Finally, the resulting anatase TiO2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO2 nanofibers, the electrode prepared with anatase TiO2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g-1).

  6. Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes.

    Science.gov (United States)

    Wu, Jingjie; Yadav, Ram Manohar; Liu, Mingjie; Sharma, Pranav P; Tiwary, Chandra Sekhar; Ma, Lulu; Zou, Xiaolong; Zhou, Xiao-Dong; Yakobson, Boris I; Lou, Jun; Ajayan, Pulickel M

    2015-05-26

    The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed COOH and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.

  7. Microscopic description of the low lying and high lying electric dipole strength in stable Ca isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tertychny, G. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Institute of Physics and Power Engineering, 249020 Obninsk (Russian Federation); Tselyaev, V. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Institute of Physics St. Petersburg University (Russian Federation); Kamerdzhiev, S. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Institute of Physics and Power Engineering, 249020 Obninsk (Russian Federation); Gruemmer, F. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Krewald, S. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Speth, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany) and Institute of Nuclear Physics, PAN, PL-31-342 Cracow (Poland)]. E-mail: j.speth@fz-juelich.de; Avdeenkov, A. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Institute of Physics and Power Engineering, 249020 Obninsk (Russian Federation); Litvinova, E. [Institute of Physics and Power Engineering, 249020 Obninsk (Russian Federation)

    2007-04-05

    The properties of the low lying and high lying electric dipole strength in the stable {sup 40}Ca, {sup 44}Ca and {sup 48}Ca isotopes have been calculated within the Extended Theory of Finite Fermi Systems (ETFFS). This approach is based on the random phase approximation (RPA) and includes the single particle continuum as well as the coupling to low lying collective states which are considered in a consistent microscopic way. For {sup 44}Ca we also include pairing correlations. We obtain good agreement with the existing experimental data for the gross properties of the low lying and high lying strength. It is demonstrated that the recently measured A-dependence of the electric dipole strength below 10 MeV is well understood in our model: due to the phonon coupling some of the strength in {sup 48}Ca is simply shifted beyond 10 MeV. The predicted fragmentation of the strength can be investigated in (e,e{sup '}) and ({gamma},{gamma}{sup '}) experiments. The isovector dipole strength below 10 MeV is small in all Ca isotopes. Surprisingly, the proton and neutron transition densities of these low lying electric dipole states are in phase, which indicate isoscalar structure. We conclude that for the detailed understanding of the structure of excited nuclei e.g. the low lying and high lying electric dipole strength an approach like the present one is absolutely necessary.

  8. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications

    KAUST Repository

    Xia, Chuan

    2015-01-14

    Conducting polymers such as polyaniline (PAni) show a great potential as pseudocapacitor materials for electrochemical energy storage applications. Yet, the cycling instability of PAni resulting from structural alteration is a major hurdle to its commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD) on PAni nanofibers plays a crucial role in stabilizing the PAni pseudocapacitors and improving their energy density. The pseudocapacitors, which are based on optimized PAni-RuO2 core-shell nanostructured electrodes, exhibit very high specific capacitance (710 F g-1 at 5 mV s-1) and power density (42.2 kW kg-1) at an energy density of 10 Wh kg-1. Furthermore, they exhibit remarkable capacitance retention of ≈88% after 10 000 cycles at very high current density of 20 A g-1, superior to that of pristine PAni-based pseudocapacitors. This prominently enhanced electrochemical stability successfully demonstrates the buffering effect of ALD coating on PAni, which provides a new approach for the preparation of metal-oxide/conducting polymer hybrid electrodes with excellent electrochemical performance.

  9. Recent progress in developing highly efficient and thermally stable nonlinear optical polymers for electro-optics

    Science.gov (United States)

    Luo, Jingdong; Liu, Sen; Haller, Marnie A.; Kang, Jae-Wook; Kim, Tae-Dong; Jang, Sei-Hum; Chen, Baoquan; Tucker, Neil; Li, Hongxiang; Tang, Hong-Zhi; Dalton, Larry R.; Liao, Yi; Robinson, Bruce H.; Jen, Alex K.

    2004-06-01

    Recent development of high-performance nonlinear optical polymers for electro-optics (E-O) is reviewed in this paper. A highly efficient and thermally stable nonlinear optical (NLO) chromophore, namely 2-[4-(2-{5-[2-(4-{Bis-(tert-butyl-dimethyl-silanyloxy)-ethyl]-amino}-phenyl)-vinyl]-thiophen-2-yl}-vinyl)-3-cyano-5-trifluoromethyl-5H-furan-2-ylidene]-malononitrile, has been prepared and incorporated in amorphous polycarbonate (APC) composites. The result from high electric field poling shows a very large E-O coefficient (r33 = 94 pm/V at 1.3 μm), 80% of which can be maintained at 85 °C for more than 500 hours. In addition to this guest/host sysytem, a high Tg side-chain polymer, derived from a 3-D cardo-type polimide with dendron-encapsulated chromophores as pendent groups has also been synthesized and characterized. A high degree of chromophore dipole orientation and a large r33 of 71 pm/V at 1.3 μm can be achieved in this poled polyimide. More than 90% of its E-O activity can be maintained at 85 °C for more than 600 hours. To access the full potential of poled polymers for device applications, we have developed a new lattice-hardening approach to overcome the "nonlinearity-stability-tradeoff" of conventional thermoset methods. By using the Diels-Alder lattice-hardening process, we can achieve the same high poling efficiency and large r33value as in a guest-host system while maintaining good thermal stability seen in densely-crosslinked polymers. By modifying the electronic properties of the crosslinking reagents, we can fine-tune the processing temperature window of the Diels-Alder reactions to achieve hardened materials with optimal properties.

  10. A scalable synthesis of highly stable and water dispersible Ag 44(SR)30 nanoclusters

    KAUST Repository

    AbdulHalim, Lina G.

    2013-01-01

    We report the synthesis of atomically monodisperse thiol-protected silver nanoclusters [Ag44(SR)30] m, (SR = 5-mercapto-2-nitrobenzoic acid) in which the product nanocluster is highly stable in contrast to previous preparation methods. The method is one-pot, scalable, and produces nanoclusters that are stable in aqueous solution for at least 9 months at room temperature under ambient conditions, with very little degradation to their unique UV-Vis optical absorption spectrum. The composition, size, and monodispersity were determined by electrospray ionization mass spectrometry and analytical ultracentrifugation. The produced nanoclusters are likely to be in a superatom charge-state of m = 4-, due to the fact that their optical absorption spectrum shares most of the unique features of the intense and broadly absorbing nanoparticles identified as [Ag44(SR) 30]4- by Harkness et al. (Nanoscale, 2012, 4, 4269). A protocol to transfer the nanoclusters to organic solvents is also described. Using the disperse nanoclusters in organic media, we fabricated solid-state films of [Ag44(SR)30]m that retained all the distinct features of the optical absorption spectrum of the nanoclusters in solution. The films were studied by X-ray diffraction and photoelectron spectroscopy in order to investigate their crystallinity, atomic composition and valence band structure. The stability, scalability, and the film fabrication method demonstrated in this work pave the way towards the crystallization of [Ag44(SR)30]m and its full structural determination by single crystal X-ray diffraction. Moreover, due to their unique and attractive optical properties with multiple optical transitions, we anticipate these clusters to find practical applications in light-harvesting, such as photovoltaics and photocatalysis, which have been hindered so far by the instability of previous generations of the cluster. © 2013 The Royal Society of Chemistry.

  11. Room temperature synthesis of high temperature stable lanthanum phosphate–yttria nano composite

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Sasidharan; Raj, Athira N.; Jyothi, C.K. [Material Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Thiruvananthapuram 695019 (India); Warrier, K.G.K., E-mail: wwarrierkgk@yahoo.co.in [Material Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Thiruvananthapuram 695019 (India); Padmanabhan, P.V.A. [Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2012-07-15

    Graphical abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Highlights: ► A novel lanthanum phosphate–Y{sub 2}O{sub 3} nano composite is synthesized for the first time using a modified facile sol gel process. ► The composite becomes crystalline at 600 °C and X-ray diffraction pattern is indexed for monoclinic LaPO{sub 4} and cubic yttria. ► The composite synthesized was tested up to 1300 °C and no reaction between the phases of the constituents is observed with the morphologies of the phases being retained. -- Abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Lanthanum phosphate (80 wt%)–yttria (20 wt%) nano composite (LaPO{sub 4}–20%Y{sub 2}O{sub 3}), has an average particle size of ∼70 nm after heat treatment of precursor at 600 °C. TG–DTA analysis reveals that stable phase of the composite is formed on heating the precursor at 600 °C. The TEM images of the composite show rod shape morphology of LaPO{sub 4} in which yttria is acquiring near spherical shape. Phase identification of the composite as well as the phase stability up to 1300 °C was carried out using X-ray diffraction technique. With the phases being stable at higher temperatures, the composite synthesized should be a potential material for high temperature applications like thermal barrier coatings and metal melting applications.

  12. Chemical synthesis of highly stable PVA/PANI films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Patil, D.S.; Shaikh, J.S.; Dalavi, D.S.; Kalagi, S.S. [Thin Films Materials laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Patil, P.S., E-mail: psp_phy@unishivaji.ac.in [Thin Films Materials laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2011-08-15

    Highlights: {yields} Chemical synthesis of PVA/PANI films by spin and dip coating at room temperature. {yields} Thickness dependent supercapacitor behavior of PVA/PANI film. {yields} The synthesized film are highly stable up to 20,000 cycles. - Abstract: Polyvinyl alcohol (PVA)/polyaniline (PANI) thin films were chemically synthesized by adopting two step process: initially a thin layer (200 nm) of PVA was spin coated by using an aqueous PVA solution onto fluorine doped tin oxide (FTO) coated glass substrate, afterwards PANI was chemically polymerized from aniline monomer and dip coated onto the precoated substrate. The thickness of PANI layer was varied from 293 nm to 2367 nm by varying deposition cycles onto the precoated PVA thin film. The resultant PVA/PANI films were characterized for their optical, morphological and electrochemical properties. The FT-IR and Raman spectra revealed characteristic features of the PANI phase. The SEM study showed porous spongy structure. Electrochemical properties were studied by electrochemical impedance measurement and cyclic voltammetry. The electrochemical performance of PVA/PANI thin films was investigated in 1 M H{sub 2}SO{sub 4} aqueous electrolyte. The highest specific capacitance of 571 Fg{sup -1} was observed for the optimized thickness of 880 nm. The film was found to be stable for more than 20,000 cycles. The samples degraded slightly (25% decrement in specific capacitance) for the first 10,000 cycles. The degradation becomes much slower (10.8% decrement in specific capacitance) beyond 10,000 cycles. This dramatic improvement in the electrochemical stability of the PANI samples, without sacrificing specific capacitance was attributed to the optimized PVA layer.

  13. Dielectrophoresis-Based Protein Enrichment for a Highly Sensitive Immunoassay Using Ag/SiO2 Nanorod Arrays.

    Science.gov (United States)

    Cao, Zhen; Zhu, Yu; Liu, Yang; Dong, Shurong; Chen, Xin; Bai, Fan; Song, Shengxin; Fu, Junxue

    2018-01-26

    A nanoscale insulator-based dielectrophoresis (iDEP) technique is developed for rapid enrichment of proteins and highly sensitive immunoassays. Dense arrays of nanorods (NDs) by oblique angle deposition create a super high electric field gradient of 2.6 × 1024 V2 m-3 and the concomitant strong dielectrophoresis force successfully traps small proteins at a bias as low as 5 V. 1800-fold enrichment of bovine serum albumin protein at a remarkable rate of up to 180-fold s-1 is achieved using oxide coated Ag nanorod arrays with pre-patterned sawtooth electrodes. Based on this system, an ultrasensitive immunoassay of mouse immunoglobulin G is demonstrated with a reduction in the limit of detection from 5.8 ng mL-1 (37.6 pM) down to 275.3 fg mL-1 (1.8 f M), compared with identical assays performed on glass plates. This methodology is also applied to detect a cancer biomarker prostate-specific antigen spiked in human serum with a detection limit of 2.6 ng mL-1 . This high sensitivity results from rapid biomarker enrichment and metal enhanced fluorescence through the integration of nanostructures. The concentrated proteins also accelerate binding kinetics and enable signal saturation within 1 min. Given the easy fabrication process, this nanoscale iDEP system provides a highly sensitive detection platform for point-of-care diagnostics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High Temperature Superconducting Levitation Energy Storage Flywheel having Stable Levitation without Control and Its Vibration Control Electromagnetic Damper

    OpenAIRE

    福室, 允央; 大関, 健一郎; 斎藤, 正人; 葛, 徳梁; 村上, 岩範; 長屋, 幸助

    2004-01-01

    A simple and stable energy-storage flywheel system with high temperature superconducting levitation is presented. In order to have stable levitation, a superconductor and a permanent magnet are used, and 3 permanent magnets support the top of the shaft. In the part of drive system, 8-poles permanent magnet and 8 coils are used to cancel electromagnetic forces in the radial direction. An electromagnetic damper consisting of permanent magnet for levitation and 4 coils is presented which lies at...

  15. Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 x 3 Line Array of Nested Pairs of Tanks

    Energy Technology Data Exchange (ETDEWEB)

    James Cleaver; John D. Bess; Nathan Devine; Fitz Trumble

    2009-09-01

    A series of seven experiments were performed at the Rocky Flats Critical Mass Laboratory beginning in August, 1980 (References 1 and 2). Highly enriched uranyl nitrate solution was introduced into a 1-3 linear array of nested stainless steel annular tanks. The tanks were inside a concrete enclosure, with various moderator and absorber materials placed inside and/or between the tanks. These moderators and absorbers included boron-free concrete, borated concrete, borated plaster, and cadmium. Two configurations included placing bottles of highly enriched uranyl nitrate between tanks externally. Another experiment involved nested hemispheres of highly enriched uranium placed between tanks externally. These three configurations are not evaluated in this report. The experiments evaluated here are part of a series of experiments, one set of which is evaluated in HEU-SOL-THERM-033. The experiments in this and HEU-SOL-THERM-033 were performed similarly. They took place in the same room and used the same tanks, some of the same moderators and absorbers, some of the same reflector panels, and uranyl nitrate solution from the same location. There are probably additional similarities that existed that are not identified here. Thus, many of the descriptions in this report are either the same or similar to those in the HEU-SOL-THERM-033 report. Seventeen configurations (sixteen of which were critical) were performed during seven experiments; six of those experiments are evaluated here with thirteen configurations. Two configurations were identical, except for solution height, and were conducted to test repeatability. The solution heights were averaged and the two were evaluated as one configuration, which gives a total of twelve evaluated configurations. One of the seventeen configurations was subcritical. Of the twelve critical configurations evaluated, nine were judged as acceptable as benchmarks.

  16. High-resolution nitrogen stable isotope sclerochronology of bivalve shell carbonate-bound organics

    Science.gov (United States)

    Gillikin, David P.; Lorrain, Anne; Jolivet, Aurélie; Kelemen, Zita; Chauvaud, Laurent; Bouillon, Steven

    2017-03-01

    Nitrogen stable isotope ratios (δ15N) of organic material have successfully been used to track food-web dynamics, nitrogen baselines, pollution, and nitrogen cycling. Extending the δ15N record back in time has not been straightforward due to a lack of suitable substrates in which δ15N records are faithfully preserved, thus sparking interest in utilizing skeletal carbonate-bound organic matter (CBOM) in mollusks, corals, and foraminifera. Here we test if calcite Pecten maximus shells from the Bay of Brest and the French continental shelf can be used as an archive of δ15N values over a large environmental gradient and at a high temporal resolution (approximately weekly). Bulk CBOM δ15N values from the growing tip of shells collected over a large nitrogen isotope gradient were strongly correlated with adductor muscle tissue δ15N values (R2 = 0.99, n = 6, p fossil shells. In conclusion, bivalve shell CBOM δ15N values can be used in a similar manner to soft-tissue δ15N values, and can track various biogeochemical events at a very high-resolution.

  17. Size quantization effect in highly stable UV emitting HgTe nanoparticles: Structure and optical properties

    Science.gov (United States)

    Hussain, A. M. P.; Sarangi, S. N.; Sahu, S. N.

    2009-11-01

    We report a simple one pot aqueous chemical synthesis route to fabricate very small and highly stable HgTe nanoparticles (NPs) capped with L-cysteine ethyl ester hydrochloride (LEEH). The LEEH concentration has found to be critical for desired size NP synthesis. Structural analyses by grazing angle x-ray diffraction and high resolution electron microscopy studies indicate HgTe NPs to exhibit a fcc phase with ⟨111⟩ prominent reflection having monodispersed NP size of around 2.0 nm. A strong size quantization effect marked by a prominent excitonic absorption at 4.436 eV blueshifted by 4.586 eV from the bulk band gap value has been observed in their optical absorption studies. A strong and narrow Gaussian fluorescence emission at 3.3 eV has been observed for 2.0 nm NP size whose width is being narrowed down with increasing LEEH concentration. The strong UV range absorption and emission have been observed for the first time in HgTe NPs.

  18. Miniaturizable Ion-Selective Arrays Based on Highly Stable Polymer Membranes for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Mònica Mir

    2014-07-01

    Full Text Available Poly(vinylchloride (PVC is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs. However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene (PEDOT, where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol diglycidyl ether (PEG, thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors.

  19. Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence.

    Science.gov (United States)

    Zhang, Kun; Xie, Xiaoji; Li, Hongyu; Gao, Jiaxin; Nie, Li; Pan, Yue; Xie, Juan; Tian, Dan; Liu, Wenlong; Fan, Quli; Su, Haiquan; Huang, Ling; Huang, Wei

    2017-09-01

    Although proton conductors derived from metal-organic frameworks (MOFs) are highly anticipated for various applications including solid-state electrolytes, H2 sensors, and ammonia synthesis, they are facing serious challenges such as poor water stability, fastidious working conditions, and low proton conductivity. Herein, we report two lanthanide-oxalate MOFs that are highly water stable, with so far the highest room-temperature proton conductivity (3.42 × 10-3 S cm-1 ) under 100% relative humidity (RH) among lanthanide-based MOFs and, most importantly, luminescent. Moreover, the simultaneous response of both the proton conductivity and luminescence intensity to RH allows the linkage of proton conductivity with luminescence intensity. This way, the electric signal of proton conductivity variation versus RH will be readily translated to optical signal of luminescence intensity, which can be directly visualized by the naked eye. If proper lanthanide ions or even transition-metal ions are used, the working wavelengths of luminescence emissions can be further extended from visible to near infrared light for even wider-range applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of a silica-PVA hybrid for high density and stable silver dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Bryce, E-mail: bryce.dorin@postgrad.manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Zhu, Guangyu, E-mail: g.zhu@liverpool.ac.uk [Lairdside Laser Engineering Centre, The University of Liverpool, Campbeltown Road, Merseyside, CH41 9HP (United Kingdom); Parkinson, Patrick, E-mail: patrick.parkinson@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Perrie, Walter, E-mail: wpfemto1@liverpool.ac.uk [Lairdside Laser Engineering Centre, The University of Liverpool, Campbeltown Road, Merseyside, CH41 9HP (United Kingdom); Benyezzar, Med, E-mail: med.benyezzar@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Scully, Patricia, E-mail: patricia.scully@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-07-01

    A silica and polyvinyl alcohol (PVA) hybrid material mixed with a high density of silver ions is synthesised and characterized in this work. The hybrid material can be cast into thick films, which we determined to be homogeneous using Raman spectroscopy. We observed that the silver ions remain stable in the material over time and at temperatures of 100 °C, which represents a marked improvement over previous solid solutions of silver. Differential scanning calorimetry and thermogravimetric analysis indicate the rapid activation of silver at 173 °C, resulting in a dense formation of silver nanoparticles within the hybrid. The activation of silver was also demonstrated in 3-dimensional geometries using femtosecond duration laser pulses. These results illustrate the silica-PVA hybrid is an attractive material for developing silver-insulator composites. - Highlights: • A novel PVA-silica hybrid is developed for silver ion dissolution. • The hybrid exhibits a high silver saturation point and good silver stability. • Heating and laser irradiation are capable of converting the silver ions to metal. • The hybrid material enables the fabrication of 3D metal-insulator composites.

  1. Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain.

    Science.gov (United States)

    Shao, Yuchuan; Liu, Ye; Chen, Xiaolong; Chen, Chen; Sarpkaya, Ibrahim; Chen, Zhaolai; Fang, Yanjun; Kong, Jaemin; Watanabe, Kenji; Taniguchi, Takashi; Taylor, André; Huang, Jinsong; Xia, Fengnian

    2017-12-13

    Recently, two-dimensional (2D) organic-inorganic perovskites emerged as an alternative material for their three-dimensional (3D) counterparts in photovoltaic applications with improved moisture resistance. Here, we report a stable, high-gain phototransistor consisting of a monolayer graphene on hexagonal boron nitride (hBN) covered by a 2D multiphase perovskite heterostructure, which was realized using a newly developed two-step ligand exchange method. In this phototransistor, the multiple phases with varying bandgap in 2D perovskite thin films are aligned for the efficient electron-hole pair separation, leading to a high responsivity of ∼105 A W-1 at 532 nm. Moreover, the designed phase alignment method aggregates more hydrophobic butylammonium cations close to the upper surface of the 2D perovskite thin film, preventing the permeation of moisture and enhancing the device stability dramatically. In addition, faster photoresponse and smaller 1/f noise observed in the 2D perovskite phototransistors indicate a smaller density of deep hole traps in the 2D perovskite thin film compared with their 3D counterparts. These desirable properties not only improve the performance of the phototransistor, but also provide a new direction for the future enhancement of the efficiency of 2D perovskite photovoltaics.

  2. Ultra-small, highly stable, and membrane-impermeable fluorescent nanosensors for oxygen.

    Science.gov (United States)

    Wang, Xu-Dong; Stolwijk, Judith A; Sperber, Michaela; Meier, Robert J; Wegener, Joachim; Wolfbeis, Otto S

    2013-06-04

    We report on the preparation of ultra-small fluorescent nanosensors for oxygen via a one-pot approach. The nanoparticles have a hydrophobic core capable of firmly hosting hydrophobic luminescent oxygen probes. Their surface is composed of a dense and long-chain poly(ethylene glycol) shell, which renders them cell-membrane impermeable but yet highly sensitive to oxygen, and also highly stable in aqueous solutions and cell culture media. These features make them potentially suitable for sensing oxygen in extracellular fluids such as blood, interstitial and brain fluid, in (micro) bioreactors and micro- or nanoscale fluidic devices. Four kinds of nanosensors are presented, whose excitation spectra cover a wide spectral range (395-630 nm), thus matching many common laser lines, and with emission maxima ranging from 565 to 800 nm, thereby minimizing interference from background luminescence of biomatter. The unquenched lifetimes are on the order of 5.8-234 μs, which-in turn-enables lifetime imaging and additional background separation via time-gated methods.

  3. A versatile method for stable carbon isotope analysis of carbohydrates by high-performance liquid chromatography/isotope ratio mass spectrometry.

    Science.gov (United States)

    Boschker, H T S; Moerdijk-Poortvliet, T C W; van Breugel, P; Houtekamer, M; Middelburg, J J

    2008-12-01

    We have developed a method to analyze stable carbon isotope ((13)C/(12)C) ratios in a variety of carbohydrates using high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS). The chromatography is based on strong anion-exchange columns with low strength NaOH eluents. An eluent concentration of 1 mM resulted in low background signals and good separation of most of the typical plant neutral carbohydrates. We also show that more strongly bound carbohydrates such as acidic carbohydrates can be separated by inclusion of NO(3) (-) as an inorganic pusher ion in the eluent. Analyses of neutral carbohydrate concentrations and their stable carbon isotope ratios are shown for plant materials and marine sediment samples both at natural abundance and for (13)C-enriched samples. The main advantage of HPLC/IRMS analysis over traditional gas chromatography based methods is that no derivatization is needed resulting in simple sample treatment and improved accuracy and reproducibility.

  4. Experimental investigation and nuclear model calculations on proton-induced reactions on highly enriched 114Cd at low energies.

    Science.gov (United States)

    Said, S A; Elmaghraby, E K; Asfour, F I

    2006-12-01

    The excitation functions of both Cd(p,n)(114m)In114 and Cd(p,2n)(113m)In114 reactions were evaluated experimentally by the stacked-foil technique on highly enriched (114)Cd isotope. Two stacks were irradiated by proton beam with energies 14.7 and 18MeV on the MGC-20 cyclotron at Nuclear Research Center, AEA, Egypt. The present results support the previous measurements. The theoretical interpretations of the measured excitation functions were done by EMPIRE-II (v2.18 Mondovi) code. Compatibility with predictions of hybrid Monte Carlo simulation (HMS) pre-equilibrium mechanism was obtained.

  5. Globally Stable Microresonator Turing Pattern Formation for Coherent High-Power THz Radiation On-Chip

    Science.gov (United States)

    Huang, Shu-Wei; Yang, Jinghui; Yang, Shang-Hua; Yu, Mingbin; Kwong, Dim-Lee; Zelevinsky, T.; Jarrahi, Mona; Wong, Chee Wei

    2017-10-01

    In nonlinear microresonators driven by continuous-wave (cw) lasers, Turing patterns have been studied in the formalism of the Lugiato-Lefever equation with emphasis on their high coherence and exceptional robustness against perturbations. Destabilization of Turing patterns and the transition to spatiotemporal chaos, however, limit the available energy carried in the Turing rolls and prevent further harvest of their high coherence and robustness to noise. Here, we report a novel scheme to circumvent such destabilization, by incorporating the effect of local mode hybridizations, and we attain globally stable Turing pattern formation in chip-scale nonlinear oscillators with significantly enlarged parameter space, achieving a record-high power-conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a fractional frequency sideband nonuniformity measured at 7.3 ×10-14 . We demonstrate the simultaneous microwave and optical coherence of the Turing rolls at different evolution stages through ultrafast optical correlation techniques. The free-running Turing-roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of the highest-power THz coherent generations at room temperature, with 1.1% optical-to-THz power conversion. Its long-term stability can be further improved by more than 2 orders of magnitude, reaching an Allan deviation of 6 ×10-10 at 100 s, with a simple computer-aided slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is promising to find applications in astrophysics, medical imaging, and wireless communications.

  6. Globally Stable Microresonator Turing Pattern Formation for Coherent High-Power THz Radiation On-Chip

    Directory of Open Access Journals (Sweden)

    Shu-Wei Huang

    2017-10-01

    Full Text Available In nonlinear microresonators driven by continuous-wave (cw lasers, Turing patterns have been studied in the formalism of the Lugiato-Lefever equation with emphasis on their high coherence and exceptional robustness against perturbations. Destabilization of Turing patterns and the transition to spatiotemporal chaos, however, limit the available energy carried in the Turing rolls and prevent further harvest of their high coherence and robustness to noise. Here, we report a novel scheme to circumvent such destabilization, by incorporating the effect of local mode hybridizations, and we attain globally stable Turing pattern formation in chip-scale nonlinear oscillators with significantly enlarged parameter space, achieving a record-high power-conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a fractional frequency sideband nonuniformity measured at 7.3×10^{−14}. We demonstrate the simultaneous microwave and optical coherence of the Turing rolls at different evolution stages through ultrafast optical correlation techniques. The free-running Turing-roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of the highest-power THz coherent generations at room temperature, with 1.1% optical-to-THz power conversion. Its long-term stability can be further improved by more than 2 orders of magnitude, reaching an Allan deviation of 6×10^{−10} at 100 s, with a simple computer-aided slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is promising to find applications in astrophysics, medical imaging, and wireless communications.

  7. Performances of miniature microstrip detectors made on oxygen enriched p-type substrates after very high proton irradiation

    CERN Document Server

    Casse, G; Lozano, M; Martí i García, S; Turner, P R

    2004-01-01

    Silicon microstrip detectors with n-type implant read-out strips on FZ p-type bulk (n-in-p) show superior charge collection properties, after heavy irradiation, to the more standard p-strips in n-type silicon (p-in-n). It is also well established that oxygen-enriched n- type silicon substrates show better performance, in terms of degradation of the full depletion voltage after charged hadron irradiation, than the standard FZ silicon used for high energy physics detectors. Silicon microstrip detectors combining both the advantages of oxygenation and of n-strip read-out (n-in-n) have achieved high radiation tolerance to charged hadrons. The manufacturing of n-in-n detectors though requires double-sided processing, resulting in more complicated and expensive devices than standard p-in-n. A cheaper single-sided option, that still combines these advantages, is to use n-in-p devices. P-type FZ wafers have been oxygen-enriched by high temperature diffusion from an oxide layer and succesfully used to process miniatur...

  8. Double-beta decay investigation with highly pure enriched [Formula: see text]Se for the LUCIFER experiment.

    Science.gov (United States)

    Beeman, J W; Bellini, F; Benetti, P; Cardani, L; Casali, N; Chiesa, D; Clemenza, M; Dafinei, I; Domizio, S Di; Ferroni, F; Gironi, L; Giuliani, A; Gotti, C; Laubenstein, M; Maino, M; Nagorny, S; Nisi, S; Nones, C; Orio, F; Pagnanini, L; Pattavina, L; Pessina, G; Piperno, G; Pirro, S; Previtali, E; Rusconi, C; Schäffner, K; Tomei, C; Vignati, M

    The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of [Formula: see text]Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched [Formula: see text]Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched [Formula: see text]Se metal, measured with a high-purity germanium detector at the Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of [Formula: see text]Th, [Formula: see text]U and [Formula: see text]U are respectively: [Formula: see text]61, [Formula: see text]110 and [Formula: see text]74 [Formula: see text]Bq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the [Formula: see text]Se allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of [Formula: see text]Se to 0[Formula: see text], 2[Formula: see text] and 2[Formula: see text] excited states of [Formula: see text]Kr of 3.4[Formula: see text]10[Formula: see text], 1.3[Formula: see text]10[Formula: see text] and 1.0[Formula: see text]10[Formula: see text] y, respectively, with a 90 % C.L.

  9. On the arsenic source mobilisation and its natural enrichment in the sediments of a high mountain cirque in the Pyrenees.

    Science.gov (United States)

    Zaharescu, Dragos George; Hooda, Peter S; Fernandez, Javier; Soler, Antonio Palanca; Burghelea, Carmen Ionela

    2009-11-01

    Recently arsenic contamination and its environmental and human health problems have been raising concerns worldwide. The occurrence of natural high levels of arsenic contamination has generally been reported for low altitude environments. Here we report a study conducted to assess the extent of arsenic mobilisation/transportation from previously identified arsenic source areas in a high altitude cirque of the Pyrenees as well as the potential contribution of As by snow. The concentration of arsenic in sediments of several tributaries was enriched up to about ten folds due to mobilisation of arsenic from the source areas within the catchment. The highest arsenic enrichments were found in an area dominated by quartzite and slate formation in the southern side of the basin, and it generally diminished towards the major lake downstream, possible due to mixing with sediments from non-source areas. At these sites arsenic exceeded the hazard quotient (HQ) limits for the protection of aquatic life. The potential hazard of the As-enriched sediments may be further enhanced outside the catchment as samples collected downstream the cirque have also shown arsenic concentration exceeding HQ unity. The arsenic concentrations in the water collected at a number of sites exceeded its guide value for the protection of aquatic life. The potential As contribution by snow in the area was low and was largely of lithospheric origin. The PCA analysis showed strong association of arsenic in sediments with the sediment mineralogical composition (Fe2O3, TiO2 and Mn). Arsenic in water was positively correlated with its concentration in the sediments and could potentially increase if the environmental/climate conditions change.

  10. Mineralogy and crystallization history of a highly differentiated REE-enriched hypabyssal rhyolite: Round Top laccolith, Trans-Pecos, Texas

    Science.gov (United States)

    O'Neill, L. Christine; Elliott, Brent A.; Kyle, J. Richard

    2017-09-01

    The Round Top hypabyssal rhyolite laccolith is a highly evolved magmatic system, enriched in incompatible elements including REE [Rare Earth Element(s)], U, Be, and F. The Round Top intrusion is part of a series of Paleogene intrusions emplaced as the Sierra Blanca Complex. These intrusions are situated within long-lived, complex tectonic regimes that have been subjected to regional compression and subduction, punctuated by extensional bimodal volcanism. The enrichment in the rhyolite that comprises Round Top is the result of the prolonged removal of compatible elements from the source magma chamber through the emplacement of earlier magmatic events. With the emplacement of each sequential laccolith, the F-rich source magma became more enriched in incompatible elements, with increasing HREE [Heavy Rare Earth Elements(s)] concentrations. The emplacement of Round Top as a laccolith (versus that of an extrusive rhyolitic flow) facilitated the retention of the volatile-rich vapor phase within the magma, forming ubiquitous REE-bearing minerals, mainly yttrofluorite and yttrocerite. The high temperature mineral-vapor phase alteration of the feldspar groundmass was essential to the formation of REE minerals, where the pervasive open pore space was occupied by the late-crystallizing minerals. These late-forming REE-bearing minerals also occur as crystals associated with other accessory and trace phases, as inclusions within other phases, along grain boundaries, and along fractures and within voids. The rhyolite at Round Top and other laccolith intrusions in the Sierra Blanca Complex represent a new sub-type of magmatic rare earth element hosting system.

  11. Production of Cornstarch Granules Enriched with Quercetin Liposomes by Aggregation of Particulate Binary Mixtures Using High Shear Process.

    Science.gov (United States)

    Toniazzo, Taíse; Galeskas, Helena; Dacanal, Gustavo C; Pinho, Samantha C

    2017-11-01

    Liposomes are colloidal structures capable of encapsulating, protecting, and releasing hydrophobic bioctives, as flavonoids. Quercetin is a flavonoid with high antioxidant activity that provides benefits to health. The wet-agglomeration processes in high-shear equipment are useful to produce granules from binary mixtures, obtaining a powder with homogeneous composition and without segregation or elutriation of fine particles. In this study, the binary mixtures containing microparticles of native cornstarch and nanoparticles of quercetin liposomes were aggregated in high-shear batches, using maltodextrin solution as binder agent. The cornstarch was enriched by agglomeration with 8%, 22%, and 30% (w/w) of quercetin-loaded lyophilized liposomes and the physical properties were evaluated. The moisture of all formulations showed similar values ranging from 4.42% to 4.57%. The values of hygroscopicity (g adsorbed water/100 g of dry matter) indicated the lyophilized liposomes were able to decrease the capacity of the agglomerated cornstarch to absorb water, decreasing the possibility of microbiological contamination. The addition of quercetin-loaded lyophilized liposomes improved the flowability and turned the powder (agglomerated cornstarch) less cohesive. The pasting properties of enriched agglomerated cornstarch decreased the pasting temperature about 10 °C, and the cornstarch agglomerated with 8% (w/w) of quercetin-loaded lyophilized liposomes showed no significance difference in the peak viscosity. Agglomeration of cornstarch with more than 8% (w/w) lyophilized liposomes decreased the tendency of starch to retrograde, which is very interesting for food products which requires low levels of retrogradation of granules for their stability. This study is an unprecedent association of 2 technologies, nanoencapsulation and wet agglomeration, here used together to enrich cornstarch with quercetin. The agglomeration process was used to obtain granules of cornstarch, an

  12. Composition of chemical species of selenium contained in selenium-enriched shiitake mushroom and vegetables determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Yoshida, Munehiro; Sugihara, Satoru; Inoue, Yuki; Chihara, Yûko; Kondô, Mariko; Miyamoto, Saori; Sukcharoen, Benjama

    2005-06-01

    Selenium (Se) species in Se-enriched shiitake mushroom (Lentinula edodes) were identified and quantified by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICPMS). Two types of Se-enriched shiitake obtained from selenite- or selenate-fertilized mushroom beds were used. More than 80% of Se in both shiitake samples could not be extracted with 0.2 M HCl. Protease digestion released a large amount of selenomethionine from the shiitake enriched with selenite. However, most of the Se in the shiitake enriched with selenate was not released by protease but was released by a cell wall digestive enzyme and most of the Se released was identified as selenate. These results indicate that the main Se species in the shiitake enriched with selenite or selenate is selenomethionine bound to protein or selenate bound to polysaccharides in the cell wall, respectively. Several Se-enriched vegetables grown on a soil fertilized with selenate were also analyzed by HPLC-ICPMS. Four Se species, selenate, Se-methylselenocysteine, selenomethionine, gamma-glutamyl-Se-methylselenocysteine, and an unknown Se compound were detected in the vegetables. The composition of Se species varied with the kinds or parts of vegetables. The main Se species in bulbs, leaves or flowers of the Se-enriched garlic, onions, cabbage and ashitaba were selenate, Se-methylselenocysteine or gamma-glutamyl-Se-methylselenocysteine, while those in fruit bodies of the peppers and pumpkin were selenomethionine bound to protein. Bioavailabilities of Se in the shiitake mushroom enriched with selenite and the vegetables enriched with selenate are expected to be high, but that in shiitake enriched with selenate may be low.

  13. Synthesis of Highly Stable Cobalt Nanomaterial Using Gallic Acid and Its Application in Catalysis

    Directory of Open Access Journals (Sweden)

    Saba Naz

    2014-01-01

    Full Text Available We report the room temperature (25–30°C green synthesis of cobalt nanomaterial (CoNM in an aqueous medium using gallic acid as a reducing and stabilizing agent. pH 9.5 was found to favour the formation of well dispersed flower shaped CoNM. The optimization of various parameters in preparation of nanoscale was studied. The AFM, SEM, EDX, and XRD characterization studies provide detailed information about synthesized CoNM which were of 4–9 nm in dimensions. The highly stable CoNM were used to study their catalytic activity for removal of azo dyes by selecting methyl orange as a model compound. The results revealed that 0.4 mg of CoNM has shown 100% removal of dye from 50 μM aqueous solution of methyl orange. The synthesized CoNM can be easily recovered and recycled several times without decrease in their efficiency.

  14. Highly enhanced and temporally stable field emission from MWCNTs grown on aluminum coated silicon substrate

    Directory of Open Access Journals (Sweden)

    M. Sreekanth

    2015-06-01

    Full Text Available In this work, a detailed field emission study of multi-walled carbon nanotubes (MWCNTs grown on Si and Al coated Si substrates is reported. Morphological and microstructural studies of the films show higher entanglement of CNTs in the case of CNT/Si film as compared to CNT/Al/Si film. Raman studies show that the defect mediated peak (D is substantially suppressed as compared to graphitic peak (G resulting in significant reduction in ID/IG value in CNT/Al/Si film. Field emission (FE current density of CNT/Al/Si film (∼25 mA/cm2 is significantly higher as compared to that of CNT/Si film (∼1.6 mA/cm2. A substantial improvement in temporal stability is also observed in CNT/Al/Si film. This enhancement in field emission current is attributed to strong adhesion between substrate and CNTs, low work function, high local field enhancement factor at the CNT tips and less entanglement of CNTs grown on Al/Si. The temporally stable CNT/Al/Si cold cathode can be a potential candidate to replace conventional electron sources in prototype devices.

  15. Highly polarized light from stable ordered magnetic fields in GRB 120308A.

    Science.gov (United States)

    Mundell, C G; Kopač, D; Arnold, D M; Steele, I A; Gomboc, A; Kobayashi, S; Harrison, R M; Smith, R J; Guidorzi, C; Virgili, F J; Melandri, A; Japelj, J

    2013-12-05

    After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.

  16. Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells.

    Science.gov (United States)

    Zhao, Xingyue; Shen, Heping; Zhang, Ye; Li, Xin; Zhao, Xiaochong; Tai, Meiqian; Li, Jingfeng; Li, Jianbao; Li, Xin; Lin, Hong

    2016-03-01

    Although low-temperature, solution-processed zinc oxide (ZnO) has been widely adopted as the electron collection layer (ECL) in perovskite solar cells (PSCs) because of its simple synthesis and excellent electrical properties such as high charge mobility, the thermal stability of the perovskite films deposited atop ZnO layer remains as a major issue. Herein, we addressed this problem by employing aluminum-doped zinc oxide (AZO) as the ECL and obtained extraordinarily thermally stable perovskite layers. The improvement of the thermal stability was ascribed to diminish of the Lewis acid-base chemical reaction between perovskite and ECL. Notably, the outstanding transmittance and conductivity also render AZO layer as an ideal candidate for transparent conductive electrodes, which enables a simplified cell structure featuring glass/AZO/perovskite/Spiro-OMeTAD/Au. Optimization of the perovskite layer leads to an excellent and repeatable photovoltaic performance, with the champion cell exhibiting an open-circuit voltage (Voc) of 0.94 V, a short-circuit current (Jsc) of 20.2 mA cm(-2), a fill factor (FF) of 0.67, and an overall power conversion efficiency (PCE) of 12.6% under standard 1 sun illumination. It was also revealed by steady-state and time-resolved photoluminescence that the AZO/perovskite interface resulted in less quenching than that between perovskite and hole transport material.

  17. Unpredictably Stable

    DEFF Research Database (Denmark)

    Failla, Virgilio; Melillo, Francesca; Reichstein, Toke

    2014-01-01

    Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...

  18. [Monolithic molecularly imprinted column-high performance liquid chromatography for enrichment and determination of trace cytokinins in plant samples].

    Science.gov (United States)

    Sun, Lin; Du, Fuyou; Ruan, Guihua; Huang, Yijia

    2013-04-01

    A method based on monolithic molecularly imprinted polymer enrichment combining with high performance liquid chromatography (mMIP-HPLC) detection was developed for the selective determination of trace cytokinins (CTKs) in plant samples. Monolithic molecularly imprinted polymer (mMIP) column was prepared in stainless steel tube by using kinetin as the template, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, and toluene-dodecanol as the porogenic solvents. Compared with non-imprinted polymer (NIP) monolith, the prepared mMIP exhibited selective separation ability, good reproducibility and reusability, and high extraction efficiency in the separation and enrichment of the four CTKs. Under the optimized experimental conditions, mean recoveries were 91.9%, 80.0%, 87.5% and 50.2% for kinetin (K), kinetin glucoside (KR) , trans-zeatin (tZ) and meta-topolin (mT), respectively, with the corresponding RSDs less than 11.8%. The proposed mMIP-HPLC method was successfully applied in the separation and determination of the four cytokinins in different plant samples

  19. Highly stable layered double hydroxide colloids: a direct aqueous synthesis route from hybrid polyion complex micelles.

    Science.gov (United States)

    Layrac, Géraldine; Destarac, Mathias; Gérardin, Corine; Tichit, Didier

    2014-08-19

    Aqueous suspensions of highly stable Mg/Al layered double hydroxide (LDH) nanoparticles were obtained via a direct and fully colloidal route using asymmetric poly(acrylic acid)-b-poly(acrylamide) (PAA-b-PAM) double hydrophilic block copolymers (DHBCs) as growth and stabilizing agents. We showed that hybrid polyion complex (HPIC) micelles constituted of almost only Al(3+) were first formed when mixing solutions of Mg(2+) and Al(3+) cations and PAA3000-b-PAM10000 due to the preferential complexation of the trivalent cations. Then mineralization performed by progressive hydroxylation with NaOH transformed the simple DHBC/Al(3+) HPIC micelles into DHBC/aluminum hydroxide colloids, in which Mg(2+) ions were progressively introduced upon further hydroxylation leading to the Mg-Al LDH phase. The whole process of LDH formation occurred then within the confined environment of the aqueous complex colloids. The hydrodynamic diameter of the DHBC/LDH colloids could be controlled: it decreased from 530 nm down to 60 nm when the metal complexing ratio R (R = AA/(Mg + Al)) increased from 0.27 to 1. This was accompanied by a decrease of the average size of individual LDH particles as R increased (for example from 35 nm at R = 0.27 down to 17 nm at R = 0.33), together with a progressive favored intercalation of polyacrylate rather than chloride ions in the interlayer space of the LDH phase. The DHBC/LDH colloids have interesting properties for biomedical applications, that is, high colloidal stability as a function of time, stability in phosphate buffered saline solution, as well as the required size distribution for sterilization by filtration. Therefore, they could be used as colloidal drug delivery systems, especially for hydrosoluble negatively charged drugs.

  20. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.

    Science.gov (United States)

    Sheikhi, Amir; Yang, Han; Alam, Md Nur; van de Ven, Theo G M

    2016-07-20

    Nanoparticles, as one of the key materials in nanotechnology and nanomedicine, have gained significant importance during the past decade. While metal-based nanoparticles are associated with synthetic and environmental hassles, cellulose introduces a green, sustainable alternative for nanoparticle synthesis. Here, we present the chemical synthesis and separation procedures to produce new classes of hairy nanoparticles (bearing both amorphous and crystalline regions) and biopolymers based on wood fibers. Through periodate oxidation of soft wood pulp, the glucose ring of cellulose is opened at the C2-C3 bond to form 2,3-dialdehyde groups. Further heating of the partially oxidized fibers (e.g., T = 80 °C) results in three products, namely fibrous oxidized cellulose, sterically stabilized nanocrystalline cellulose (SNCC), and dissolved dialdehyde modified cellulose (DAMC), which are well separated by intermittent centrifugation and co-solvent addition. The partially oxidized fibers (without heating) were used as a highly reactive intermediate to react with chlorite for converting almost all aldehyde to carboxyl groups. Co-solvent precipitation and centrifugation resulted in electrosterically stabilized nanocrystalline cellulose (ENCC) and dicarboxylated cellulose (DCC). The aldehyde content of SNCC and consequently surface charge of ENCC (carboxyl content) were precisely controlled by controlling the periodate oxidation reaction time, resulting in highly stable nanoparticles bearing more than 7 mmol functional groups per gram of nanoparticles (e.g., as compared to conventional NCC bearing < 1 mmol functional group/g). Atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) attested to the rod-like morphology. Conductometric titration, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), electrokinetic-sonic-amplitude (ESA) and acoustic attenuation

  1. Generation of a Genetically Stable High-Fidelity Influenza Vaccine Strain.

    Science.gov (United States)

    Naito, Tadasuke; Mori, Kotaro; Ushirogawa, Hiroshi; Takizawa, Naoki; Nobusawa, Eri; Odagiri, Takato; Tashiro, Masato; Ohniwa, Ryosuke L; Nagata, Kyosuke; Saito, Mineki

    2017-03-15

    , vaccines must be updated to ensure a good match of the HA and NA antigens between the vaccine and the circulating strain. Here, we generated a genetically stable master virus of the A/Puerto Rico/8/1934 (H1N1) backbone encoding an engineered high-fidelity viral polymerase. Importantly, following the application of the high-fidelity PR8 backbone, no mutation resulting in antigenic change was introduced into the HA gene during propagation of the A(H1N1)pdm09 candidate vaccine virus. The low error rate of the present vaccine virus should decrease the risk of generating mutant viruses with increased virulence. Therefore, our findings are expected to be useful for the development of prepandemic vaccines and live attenuated vaccines with higher safety than that of the present candidate vaccines. Copyright © 2017 American Society for Microbiology.

  2. Graphene Folding in Si Rich Carbon Nanofibers for Highly Stable, High Capacity Li-Ion Battery Anodes.

    Science.gov (United States)

    Fei, Ling; Williams, Brian P; Yoo, Sang H; Kim, Jangwoo; Shoorideh, Ghazal; Joo, Yong Lak

    2016-03-02

    Silicon nanoparticles (Si NPs) wrapped by graphene in carbon nanofibers were obtained via electrospinning and subsequent thermal treatment. In this study, water-soluble poly(vinyl alcohol) (PVA) with low carbon yield is selected to make the process water-based and to achieve a high silicon yield in the composite. It was also found that increasing the amount of graphene helps keep the PVA fiber morphology after carbonization, while forming a graphene network. The fiber SEM and HRTEM images reveal that micrometer graphene is heavily folded into sub-micron scale fibers during electrospinning, while Si NPs are incorporated into the folds with nanospace in between. When applied to lithium-ion battery anodes, the Si/graphene/carbon nanofiber composites show a high reversible capacity of ∼2300 mAh g(-1) at a charging rate of 100 mA/g and a stable capacity of 1191 mAh g(-1) at 1 A/g after more than 200 cycles. The interconnected graphene network not only ensures the excellent conductivity but also serves as a buffering matrix for the mechanic stress caused by volume change; the nanospace between Si NPs and folded graphene provides the space needed for volume expansion.

  3. Facile synthesis of thiol-polyethylene glycol functionalized magnetic titania nanomaterials for highly efficient enrichment of N-linked glycopeptides.

    Science.gov (United States)

    Wang, Jiawen; Yao, Jizong; Sun, Nianrong; Deng, Chunhui

    2017-08-25

    As protein N-glycosylation involved in generation and development of various cancers and diseases, it is vital to capture glycopeptides from complex biological samples for biomarker discovery. In this work, by taking advantages of the interaction between titania and thiol groups, thiol-polyethylene glycol functionalized magnetic titania nanomaterials (denoted as Fe 3 O 4 @TiO 2 @PEG) were firstly fabricated as an excellent hydrophilic adsorbent of N-linked glycopeptides. On one hand, the special interaction of titanium-thiol makes the synthetic manipulation simple and provides a new idea for design and synthesis of novel nanomaterials; on the other hand, strong magnetic response could realize rapid separation and the outstanding hydrophilicity of polyethylene glycol makes Fe 3 O 4 @TiO 2 @PEG nanomaterials show superior performance for glycopeptides enrichment with ultralow limit of detection (0.1mol/μL) and high selectivity (1:100). As a result, 24 and 33 glycopeptides enriched from HRP and IgG digests were identified respectively by MALDI-TOF MS, and 300 glycopeptides corresponding to 106 glycoproteins were recognized from merely 2μL human serum, indicating a great potential of Fe 3 O 4 @TiO 2 @PEG nanomaterials for glycoproteomic research. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    Energy Technology Data Exchange (ETDEWEB)

    J.J. Horkley; K.P/ Carnery; E.M. Gantz; J.E. Davis; R.R. Lewis; J.P. Crow; C.A. Poole; T.S. Grimes; J.J. Giglio

    2015-03-01

    t Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure ‘‘spike’’ solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for ‘‘age’’ determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution,

  5. Human Milk Plasmalogens Are Highly Enriched in Long-Chain PUFAs.

    Science.gov (United States)

    Moukarzel, Sara; Dyer, Roger A; Keller, Bernd O; Elango, Rajavel; Innis, Sheila M

    2016-11-01

    Human milk contains unique glycerophospholipids, including ethanolamine-containing plasmalogens (Pls-PEs) in the milk fat globule membrane, which have been implicated in infant brain development. Brain Pls-PEs accumulate postnatally and are enriched in long-chain polyunsaturated fatty acids (LC-PUFAs), particularly docosahexaenoic acid (DHA). Fatty acid (FA) composition of Pls-PEs in milk is poorly understood because of the analytical challenges in separating Pls-PEs from other phospholipids in the predominating presence of triacylglycerols. The variability of Pls-PE FAs and the potential role of maternal diet remain unknown. Our primary objectives were to establish improved methodology for extracting Pls-PEs from human milk, enabling FA analysis, and to compare FA composition between Pls-PEs and 2 major milk phospholipids, phosphatidylcholine and phosphatidylethanolamine. Our secondary objective was to explore associations between maternal DHA intake and DHA in milk phospholipids and variability in phospholipid-DHA within a woman. Mature milk was collected from 25 women, with 4 providing 3 milk samples on 3 separate days. Lipids were extracted, and phospholipids were removed by solid phase extraction. Pls-PEs were separated by using normal-phase HPLC, recovered and analyzed for FAs by GLC. Diet was assessed by using a validated food-frequency questionnaire. Pls-PE concentration in human milk was significantly higher in LC-PUFAs than phosphatidylethanolamine and phosphatidylcholine, including arachidonic acid (AA) and DHA. The mean ± SD concentration of AAs in Pls-PEs was ∼2.5-fold higher than in phosphatidylethanolamine (10.5 ± 1.71 and 3.82 ± 0.92 g/100 g, respectively). DHA in Pls-PEs varied across women (0.95-6.51 g/100 g), likely independent of maternal DHA intake. Pls-PE DHA also varied within a woman across days (CV ranged from 9.8% to 28%). Human milk provides the infant with LC-PUFAs from multiple lipid pools, including a source from Pls-PEs. The

  6. Highly Active and Stable Large Catalase Isolated from a Hydrocarbon Degrading Aspergillus terreus MTCC 6324

    Directory of Open Access Journals (Sweden)

    Preety Vatsyayan

    2016-01-01

    Full Text Available A hydrocarbon degrading Aspergillus terreus MTCC 6324 produces a high level of extremely active and stable cellular large catalase (CAT during growth on n-hexadecane to combat the oxidative stress caused by the hydrocarbon degrading metabolic machinery inside the cell. A 160-fold purification with specific activity of around 66 × 105 U mg−1 protein was achieved. The native protein molecular mass was 368 ± 5 kDa with subunit molecular mass of nearly 90 kDa, which indicates that the native CAT protein is a homotetramer. The isoelectric pH (pI of the purified CAT was 4.2. BLAST aligned peptide mass fragments of CAT protein showed its highest similarity with the catalase B protein from other fungal sources. CAT was active in a broad range of pH 4 to 12 and temperature 25°C to 90°C. The catalytic efficiency (Kcat/Km of 4.7 × 108 M−1 s−1 within the studied substrate range and alkaline pH stability (half-life, t1/2 at pH 12~15 months of CAT are considerably higher than most of the extensively studied catalases from different sources. The storage stability (t1/2 of CAT at physiological pH 7.5 and 4°C was nearly 30 months. The haem was identified as haem b by electrospray ionization tandem mass spectroscopy (ESI-MS/MS.

  7. High genetic variation in leopards indicates large and long-term stable effective population size.

    Science.gov (United States)

    Spong, G; Johansson, M; Björklund, M

    2000-11-01

    In this paper we employ recently developed statistical and molecular tools to analyse the population history of the Tanzanian leopard (Panthera pardus), a large solitary felid. Because of their solitary lifestyle little is known of their past or present population dynamics. Eighty-one individuals were scored at 18 microsatellite loci. Overall, levels of heterozygosity were high (0.77 +/- 0.03), with a small heterozygote deficiency (0.06 +/- 0.03). Effective population size (Ne) was calculated to be 38 000-48 000. A Ne:N ratio of 0.42 (average from four cat studies) gives a present population size of about 100 000 leopards in Tanzania. Four different bottleneck tests indicated that this population has been large and stable for a minimum of several thousand years. FST values were low and no significant genetic structuring of the population could be detected. This concurs well with the large migration values (Nm) obtained (>3.3 individuals/generation). Our analysis reveals that ecological factors (e.g. disease), which are known to have had major impact on other carnivore populations, are unlikely to have impacted strongly on the population dynamics of Tanzanian leopards. The explanation may be found in their solitary life-style, their often nonconfrontational behaviour toward interspecific competitors, or that any bottlenecks have been of limited size, localized, or too short to have affected genetic variation to any measurable degree. Since the genetic structuring is weak, gene flow is not restricted to within protected areas. Local loss of genetic variation is therefore not of immediate concern.

  8. Small high-density lipoprotein is associated with monocyte subsets in stable coronary artery disease.

    Science.gov (United States)

    Krychtiuk, Konstantin A; Kastl, Stefan P; Pfaffenberger, Stefan; Pongratz, Thomas; Hofbauer, Sebastian L; Wonnerth, Anna; Katsaros, Katharina M; Goliasch, Georg; Gaspar, Ludovit; Huber, Kurt; Maurer, Gerald; Dostal, Elisabeth; Oravec, Stanislav; Wojta, Johann; Speidl, Walter S

    2014-12-01

    High-density lipoprotein (HDL) particles are heterogeneous in structure and function and the role of HDL subfractions in atherogenesis is not well understood. It has been suggested that small HDL may be dysfunctional in patients with coronary artery disease (CAD). Monocytes are considered to play a key role in atherosclerotic diseases. Circulating monocytes can be divided into three subtypes according to their surface expression of CD14 and CD16. Our aim was to examine whether monocyte subsets are associated with HDL subfractions in patients with atherosclerosis. We included 90 patients with angiographically stable CAD. Monocyte subsets were defined as classical monocytes (CD14++CD16-; CM), intermediate monocytes (CD14++CD16+; IM) and non-classical monocytes (CD14+CD16++; NCM). HDL subfractions were measured by electrophoresis on polyacrylamide gel. Serum levels of small HDL correlated with circulating pro-inflammatory NCM and showed an inverse relationship to circulating CM independently from other lipid parameters, risk factors, inflammatory parameters or statin treatment regime, respectively. IM were not associated with small HDL. In particular, patients with small HDL levels in the highest tertile showed dramatically increased levels of NCM (14.7 ± 7% vs. 10.7 ± 5% and 10.8 ± 5%; p = 0.006) and a decreased proportion of CM (79.3 ± 7% vs. 83.7 ± 6% and 83.9 ± 6%; p = 0.004) compared to patients in the two lower tertiles. In contrast, intermediate HDL, large HDL and total HDL were not associated with monocyte subset distribution. Small HDL levels are associated with pro-inflammatory NCM and inversely correlated with CM. This may suggest that small HDL could have dysfunctional anti-inflammatory properties in patients with established CAD. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. A Systematic Methodology for Constructing High-Order Energy Stable WENO Schemes

    Science.gov (United States)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2009-01-01

    A third-order Energy Stable Weighted Essentially Non{Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter [1] was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables "energy stable" modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.

  10. Stable Amplification and High Current Drop Bistable Switching in Supercritical GaAs Tills

    DEFF Research Database (Denmark)

    Izadpanah, S.H; Jeppsson, B; Jeppesen, Palle

    1974-01-01

    Bistable switching with current drops of 40% and switching times of 100 ps are obtained in pulsed operation of 10¿m supercritically doped n+ nn+ GaAs Transferred Electron Devices (TEDs). When CW-operated the same devices exhibit a 5-17 GHz bandwidth for the stable negative resistance.......Bistable switching with current drops of 40% and switching times of 100 ps are obtained in pulsed operation of 10¿m supercritically doped n+ nn+ GaAs Transferred Electron Devices (TEDs). When CW-operated the same devices exhibit a 5-17 GHz bandwidth for the stable negative resistance....

  11. Star-forming galactic contrails as a source of metal enrichment and ionizing radiation at high redshift

    Science.gov (United States)

    Rauch, Michael; Becker, George D.; Haehnelt, Martin G.; Gauthier, Jean-Rene

    2014-06-01

    A spectroscopically detected Lyman α emitting halo at redshift 3.216 in the GOODS-N field is found to reside at the convergence of several line-emitting filaments. Spatially extended emission apparently by He II 1640 Å and several metal transitions is seen within several arcseconds from the position of the central galaxy. The V = 24.9 galaxy mainly responsible for the continuum emission at the centre of the halo has broad-band colours and spectral features consistent with a z = 3.216 star-forming galaxy. Hubble Space Telescope images show that some of the filaments coincide, in projection, with several, mostly blue galaxies, with pronounced head-tail structures partly aligned with each other. These objects, for which we cannot rule that they are foreground, chance projections in front of the high-redshift halo, are seen over an area with a linear extent of at least 12 arcsec. The broad-band images of some galaxies suggest the presence of ram-pressure stripping, including possible evidence for recent star formation in the stripped contrails. Spatial gradients in the appearance of several galaxies may represent a stream of galaxies passing from a colder to a hotter intergalactic medium. The release of the enriched interstellar medium from galaxies and the occurrence of star formation and stellar feedback in the galactic contrails suggest a mechanism for the metal enrichment of the high-redshift intergalactic medium that does not require long-range galactic winds. If these galaxies are at the same redshift as the Lyα halo, their very blue colours may be a consequence of the stripping of gas. A stripped stellar population and star formation in galactic contrails suggest promising sites for the escape of ionizing radiation from high-redshift galaxies.

  12. Impact of High-Intensity-NIV on the heart in stable COPD : A randomised cross-over pilot study

    NARCIS (Netherlands)

    Duiverman, Marieke Leontine; Maagh, Petra; Magnet, Friederike Sophie; Schmoor, Claudia; Arellano-Maric, Maria Paola; Meissner, Axel; Storre, Jan Hendrik; Wijkstra, Peter Jan; Windisch, Wolfram; Callegari, Jens

    2017-01-01

    Background: Although high-intensity non-invasive ventilation has been shown to improve outcomes in stable COPD, it may adversely affect cardiac performance. Therefore, the aims of the present pilot study were to compare cardiac and pulmonary effects of 6 weeks of low-intensity non-invasive

  13. Shelf-stable egg-based products processed by high pressure thermal sterilization

    Science.gov (United States)

    Producing a thermally sterilized egg-based product with increased shelf life without losing the sensory and nutritional properties of the freshly prepared product is challenging. Until recently, all commercial shelf-stable egg-based products were sterilized using conventional thermal processing; how...

  14. High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics.

    Science.gov (United States)

    Güther, Maria Lucia S; Urbaniak, Michael D; Tavendale, Amy; Prescott, Alan; Ferguson, Michael A J

    2014-06-06

    The glycosome of the pathogenic African trypanosome Trypanosoma brucei is a specialized peroxisome that contains most of the enzymes of glycolysis and several other metabolic and catabolic pathways. The contents and transporters of this membrane-bounded organelle are of considerable interest as potential drug targets. Here we use epitope tagging, magnetic bead enrichment, and SILAC quantitative proteomics to determine a high-confidence glycosome proteome for the procyclic life cycle stage of the parasite using isotope ratios to discriminate glycosomal from mitochondrial and other contaminating proteins. The data confirm the presence of several previously demonstrated and suggested pathways in the organelle and identify previously unanticipated activities, such as protein phosphatases. The implications of the findings are discussed.

  15. Nitrogen-enriched carbon sheets derived from egg white by using expanded perlite template and its high-performance supercapacitors

    Science.gov (United States)

    Chen, Jiucun; Liu, Yinqin; Li, Wenjun; Xu, Liqun; Yang, Huan; Li, Chang Ming

    2015-08-01

    Nitrogen-enriched carbon sheets were synthesized using egg white as a unique carbon source and expanded perlite as a novel template. The as-prepared material was further used as an electrode material for supercapacitor applications, demonstrating excellent supercapacitance with a maximum gravimetric specific capacitance of 302 F g-1 at 0.5 A g-1 in a 3-electrode setup for a sample carbonized at 850 °C and activated for 6 h. Moreover, the carbon sheet-based capacitor with 2-symmetric electrodes showed an excellent cycle life (2% loss at 0.1 A g-1 after 10 000 cycles). The excellent performance may be attributed to the combination of the 3D carbon structure and the highly concentrated doped nitrogen component from the natural egg source for superior pseudocapacitance.

  16. Radiation and criticality safety analyses for the highly-enriched uranium core removal from a research reactor.

    Science.gov (United States)

    Dennis, Haile; Grant, Charles; Preston, John

    2017-11-01

    Analysis was performed to estimate radiation levels during removal and packaging of the highly-enriched uranium core of the JM-1 SLOWPOKE-2 research reactor. Due to severe limitations of space in and around the reactor pool, the core could not be removed in the conventional manner as was done for previous SLOWPOKE defuelling operations. A transfer shield, with a balance between shielding efficacy, volume and weight was designed. Fuel depletion, Monte Carlo shielding and criticality calculations were performed. Comparisons of measured and calculated dose rates as well as results of the criticality safety assessment are presented. The designed transfer shield reduced the calculated unshielded dose rate from 29Sv/h to 8mSv/h. The maximum calculated effective neutron multiplication factor of approximately 0.89 was below the 0.91 upper subricital limit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Globular Cluster Formation at High Density: A Model for Elemental Enrichment with Fast Recycling of Massive-star Debris

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2017-02-10

    The self-enrichment of massive star clusters by p -processed elements is shown to increase significantly with increasing gas density as a result of enhanced star formation rates and stellar scatterings compared to the lifetime of a massive star. Considering the type of cloud core where a globular cluster (GC) might have formed, we follow the evolution and enrichment of the gas and the time dependence of stellar mass. A key assumption is that interactions between massive stars are important at high density, including interactions between massive stars and massive-star binaries that can shred stellar envelopes. Massive-star interactions should also scatter low-mass stars out of the cluster. Reasonable agreement with the observations is obtained for a cloud-core mass of ∼4 × 10{sup 6} M {sub ⊙} and a density of ∼2 × 10{sup 6} cm{sup −3}. The results depend primarily on a few dimensionless parameters, including, most importantly, the ratio of the gas consumption time to the lifetime of a massive star, which has to be low, ∼10%, and the efficiency of scattering low-mass stars per unit dynamical time, which has to be relatively large, such as a few percent. Also for these conditions, the velocity dispersions of embedded GCs should be comparable to the high gas dispersions of galaxies at that time, so that stellar ejection by multistar interactions could cause low-mass stars to leave a dwarf galaxy host altogether. This could solve the problem of missing first-generation stars in the halos of Fornax and WLM.

  18. Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Bee Luan Khoo

    Full Text Available Circulating tumor cells (CTCs are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation.Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56 (Breast cancer samples: 12-1275 CTCs/ml; Lung cancer samples: 10-1535 CTCs/ml rapidly from clinically relevant blood volumes (7.5 ml under 5 min. Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM, fluorescence in-situ hybridization (FISH (EML4-ALK or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA, and demonstrate concordance with the original tumor-biopsy samples.We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS or proteomic analysis.

  19. High-order provably stable overset grid methods for hyperbolic problems, with application to the Euler equations

    Science.gov (United States)

    Sharan, Nek; Pantano, Carlos; Bodony, Daniel

    2015-11-01

    Overset grids provide an efficient and flexible framework to implement high-order finite difference methods for simulations of compressible viscous flows over complex geometries. However, prior overset methods were not provably stable and were applied with artificial dissipation in the interface regions. We will discuss new, provably time-stable methods for solving hyperbolic problems on overlapping grids. The proposed methods use the summation-by-parts (SBP) derivative approximations coupled with the simultaneous-approximation-term (SAT) methodology for applying boundary conditions and interface treatments. The performance of the methods will be assessed against the commonly-used approach of injecting the interpolated data onto each grid. Numerical results will be presented to confirm the stability and the accuracy of the methods for solving the Euler equations. The extension of these methods to solve the Navier-Stokes equations on overset grids in a time-stable manner will be briefly discussed.

  20. libstable: Fast, Parallel, and High-Precision Computation of α-Stable Distributions in R, C/C++, and MATLAB

    Directory of Open Access Journals (Sweden)

    Javier Royuela-del-Val

    2017-06-01

    Full Text Available α-stable distributions are a family of well-known probability distributions. However, the lack of closed analytical expressions hinders their application. Currently, several tools have been developed to numerically evaluate their density and distribution functions or to estimate their parameters, but available solutions either do not reach sufficient precision on their evaluations or are excessively slow for practical purposes. Moreover, they do not take full advantage of the parallel processing capabilities of current multi-core machines. Other solutions work only on a subset of the α-stable parameter space. In this paper we present an R package and a C/C++ library with a MATLAB front-end that permit parallelized, fast and high precision evaluation of density, distribution and quantile functions, as well as random variable generation and parameter estimation of α-stable distributions in their whole parameter space. The described library can be easily integrated into third party developments.

  1. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    Science.gov (United States)

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. HTSSIP: An R package for analysis of high throughput sequencing data from nucleic acid stable isotope probing (SIP experiments.

    Directory of Open Access Journals (Sweden)

    Nicholas D Youngblut

    Full Text Available Combining high throughput sequencing with stable isotope probing (HTS-SIP is a powerful method for mapping in situ metabolic processes to thousands of microbial taxa. However, accurately mapping metabolic processes to taxa is complex and challenging. Multiple HTS-SIP data analysis methods have been developed, including high-resolution stable isotope probing (HR-SIP, multi-window high-resolution stable isotope probing (MW-HR-SIP, quantitative stable isotope probing (qSIP, and ΔBD. Currently, there is no publicly available software designed specifically for analyzing HTS-SIP data. To address this shortfall, we have developed the HTSSIP R package, an open-source, cross-platform toolset for conducting HTS-SIP analyses in a straightforward and easily reproducible manner. The HTSSIP package, along with full documentation and examples, is available from CRAN at https://cran.r-project.org/web/packages/HTSSIP/index.html and Github at https://github.com/buckleylab/HTSSIP.

  3. Efficient ozone generator for ozone layer enrichment from high altitude balloon

    Science.gov (United States)

    Filiouguine, Igor V.; Kostiouchenko, Sergey V.; Koudriavtsev, Nikolay N.; Starikovskaya, Svetlana M.

    1994-01-01

    The possibilities of ozone production at low gas pressures by nanosecond high voltage discharge has been investigated. The measurements of ozone synthesis in N2-O2 mixtures have been performed. The explanation of experimental results is suggested. The possible ways of ozone yield growth are analyzed.

  4. Highly efficient color-stable deep-blue multilayer PLEDs: preventing PEDOT:PSS-induced interface degradation.

    Science.gov (United States)

    Nau, Sebastian; Schulte, Niels; Winkler, Stefanie; Frisch, Johannes; Vollmer, Antje; Koch, Norbert; Sax, Stefan; List, Emil J W

    2013-08-27

    Highly efficient and stable blue light emission is observed in novel copolymers that are produced from specially designed building blocks. A PEDOT:PSS-induced chemical degradation of the polymer light-emitting diodes (PLEDs) is identified at the interface, and it is found to be accompanied by a shift in the emission color. A method to prevent this highly undesirable interaction is presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Functional enrichment analyses and construction of functional similarity networks with high confidence function prediction by PFP

    Directory of Open Access Journals (Sweden)

    Kihara Daisuke

    2010-05-01

    Full Text Available Abstract Background A new paradigm of biological investigation takes advantage of technologies that produce large high throughput datasets, including genome sequences, interactions of proteins, and gene expression. The ability of biologists to analyze and interpret such data relies on functional annotation of the included proteins, but even in highly characterized organisms many proteins can lack the functional evidence necessary to infer their biological relevance. Results Here we have applied high confidence function predictions from our automated prediction system, PFP, to three genome sequences, Escherichia coli, Saccharomyces cerevisiae, and Plasmodium falciparum (malaria. The number of annotated genes is increased by PFP to over 90% for all of the genomes. Using the large coverage of the function annotation, we introduced the functional similarity networks which represent the functional space of the proteomes. Four different functional similarity networks are constructed for each proteome, one each by considering similarity in a single Gene Ontology (GO category, i.e. Biological Process, Cellular Component, and Molecular Function, and another one by considering overall similarity with the funSim score. The functional similarity networks are shown to have higher modularity than the protein-protein interaction network. Moreover, the funSim score network is distinct from the single GO-score networks by showing a higher clustering degree exponent value and thus has a higher tendency to be hierarchical. In addition, examining function assignments to the protein-protein interaction network and local regions of genomes has identified numerous cases where subnetworks or local regions have functionally coherent proteins. These results will help interpreting interactions of proteins and gene orders in a genome. Several examples of both analyses are highlighted. Conclusion The analyses demonstrate that applying high confidence predictions from PFP

  6. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor

    Directory of Open Access Journals (Sweden)

    Wang Fengping

    2011-06-01

    Full Text Available Abstract Background Anaerobic oxidation of methane coupled to sulphate reduction (SR-AOM prevents more than 90% of the oceanic methane emission to the atmosphere. In a previous study, we demonstrated that the high methane pressure (1, 4.5, and 8 MPa stimulated in vitro SR-AOM activity. However, the information on the effect of high-pressure on the microbial community structure and architecture was still lacking. Results In this study we analysed the long-term enrichment (286 days of this microbial community, which was mediating SR-AOM in a continuous high-pressure bioreactor. 99.7% of the total biovolume represented cells in the form of small aggregates (diameter less then 15 μm. An increase of the total biovolume was observed (2.5 times. After 286 days, the ANME-2 (anaerobic methanotrophic archaea subgroup 2 and SRB (sulphate reducing bacteria increased with a factor 12.5 and 8.4, respectively. Conclusion This paper reports a net biomass growth of communities involved in SR-AOM, incubated at high-pressure.

  7. Stable, high quantum efficiency silicon photodiodes for vacuum-UV applications

    Science.gov (United States)

    Korde, Raj; Canfield, L. Randall; Wallis, Brad

    1988-01-01

    Silicon photodiodes have been developed by defect-free phosphorus diffusion having practically no carrier recombination at the SiSiO2 interface or in the front diffused region. The quantum efficiency of these photodiodes was found to be around 120 percent at 100 nm. Unlike the previously tested silicon photodiodes, the developed photodiodes exhibit extremely stable quantum efficiency over extended periods of time. The possibility of using these photodiodes as vacuum ultraviolet detector standards is being currently investigated.

  8. Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors.

    Science.gov (United States)

    Bond, Alexander L; Diamond, Antony W

    2011-06-01

    Stable isotopes are now used widely in ecological studies, including diet reconstruction, where quantitative inferences about diet composition are derived from the use of mixing models. Recent Bayesian models (MixSIR, SIAR) allow users to incorporate variability in discrimination factors (delta13C or delta15N), or the amount of change in either delta13C or delta15N between prey and consumer, but to date there has been no systematic assessment of the effect of variation in delta13C or delta15N on model outputs. We used whole blood from Common Terns (Sterna hirundo) and muscle from their common prey items (fish and euphausiids) to build a series of mixing models in SIAR (stable isotope analysis in R) using various discrimination factors from the published literature for marine birds. The estimated proportion of each diet component was affected significantly by delta13C or delta15N. We also use recently published stable-isotope data on the reliance of critically endangered Balearic Shearwaters (Puffinus mauretanicus) on fisheries discards to show that discrimination factor choice can have profound implications for conservation and management actions. It is therefore crucial for researchers wishing to use mixing models to have an accurate estimate of delta13C and delta15N, because quantitative diet estimates can help to direct future research or prioritize conservation and management actions.

  9. Highly Efficient Deep-Blue Electroluminescence from a Charge-Transfer Emitter with Stable Donor Skeleton.

    Science.gov (United States)

    Chen, Wen-Cheng; Yuan, Yi; Ni, Shao-Fei; Zhu, Ze-Lin; Zhang, Jinfeng; Jiang, Zuo-Quan; Liao, Liang-Sheng; Wong, Fu-Lung; Lee, Chun-Sing

    2017-03-01

    Organic materials containing arylamines have been widely used as hole-transporting materials as well as emitters in organic light-emitting devices (OLEDs). However, it has been pointed out that the C-N bonds in these arylamines can easily suffer from degradation in excited states, especially in deep-blue OLEDs. In this work, phenanthro[9,10-d]imidazole (PI) is proposed as a potential donor with higher stability than those of arylamines. Using PI as the donor, a donor-acceptor type deep-blue fluorophore 1-phenyl-2-(4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1,1':4',1″-terphenyl]-4-yl)-1H-phenanthro[9,10-d]imidazole (BITPI) is designed and synthesized. Results from UV-aging test on neat films of BITPI and other three arylamine compounds demonstrate that PI is indeed a more stable donor comparing to common arylamines. An OLED using BITPI as an emitter exhibits good device performances (EQE over 7%) with stable deep-blue emission (color index: (0.15, 0.13)) and longer operation lifetime than the similarly structured device using arylamine-based emitter. Single-organic layer device based on BITPI also shows superior performances, which are comparable to the best results from the arylamine-based donor-acceptor emitters, suggesting that PI is a stable donor with good hole transport/injection capability.

  10. Direct enrichment of pathogens from physiological samples of high conductivity and viscosity using H-filter and positive dielectrophoresis.

    Science.gov (United States)

    Cai, Dongyang; Yi, Qiaolian; Shen, Chaohua; Lan, Ying; Urban, Gerald; Du, Wenbin

    2018-01-01

    The full potential of microfluidic techniques as rapid and accurate methods for the detection of disease-causing agents and foodborne pathogens is critically limited by the complex sample preparation process, which commonly comprises the enrichment of bacterial cells to detectable levels. In this manuscript, we describe a microfluidic device which integrates H-filter desalination with positive dielectrophoresis (pDEP) for direct enrichment of bacterial cells from physiological samples of high conductivity and viscosity, such as cow's milk and whole human blood. The device contained a winding channel in which electrolytes in the samples continuously diffused into deionized (DI) water (desalination), while the bacterial cells remained in the samples. The length of the main channel was optimized by numerical simulation and experimentally evaluated by the diffusion of fluorescein into DI water. The effects of another three factors on H-filter desalination were also investigated, including (a) the flow rate ratio between the sample and DI water, (b) sample viscosity, and (c) non-Newtonian fluids. After H-filter desalination, the samples were withdrawn into the dielectrophoresis chamber in which the bacterial cells were captured by pDEP. The feasibility of the device was demonstrated by the direct capture of the bacterial cells in 1× PBS buffer, cow's milk, and whole human blood after H-filter desalination, with the capture efficiencies of 70.7%, 90.0%, and 80.2%, respectively. We believe that this simple method can be easily integrated into portable microfluidic diagnosis devices for rapid and accurate detection of disease-causing agents and foodborne pathogens.

  11. Biosynthetic Approaches to Isotope Enrichment for Applications in Neutron Scattering and High Field NMR Spectroscopy: Methylotrophic

    Energy Technology Data Exchange (ETDEWEB)

    Mary E. lidstrom

    2004-09-15

    Limitations in current isotopic labeling methods present a substantial bottleneck for the application of advanced structural techniques to many important biochemical problems. New tools are required to efficiently produce the necessary labeling patterns in biochemical precursors and incorporate them into protein molecules for structural studies. This project proposed involved one aspect of this problem, the development of expression vectors for a methylotrophic bacterium, Methylobacterium extorquens AM1. If high-level, efficient expression could be obtained in such a bacterium, it would be possible to use low-cost {sup 2}H- and/or {sup 13}C-labeled substrates such as methanol to label proteins. The Lidstrom laboratory at the University of Washington worked closely with the collaborators at Los Alamos National Laboratories in the development and use of these vectors. (1) Overexpression of a target gene, bacterial dehalogenase--This enzyme was expressed in Methylobacterium extorquens AM1 using a high level methanol-inducible promoter, the mxaF promoter. High expression was achieved, but most was in an insoluble form. They expressed this protein in a mutant lacking polybetahydroxybutyrate granules, and high expression was achieved, up to 10% of the total soluble protein. The recombinant protein was purified and shown to be active, with characteristics similar to the enzyme produced in E. coli. (2) Development of regulated expression systems--A number of regulated promoters were tested in M. extorquens AM1, the most promising of which appeared to be the E. coli lac promoter coupled to the Laciq regulator. The repressor was shown to be active and a chromosomal insertion construct was generated that repressed the low-level lac promoter activity in M. extorquens AM1. However, IPTG induced this system only poorly. A number of studies were carried out leading to the conclusion that IPTG entered the cell but was exported by one or more export pumps. Target genes for such

  12. Highly Efficient Enrichment of Volatile Iodine by Charged Porous Aromatic Frameworks with Three Sorption Sites.

    Science.gov (United States)

    Yan, Zhuojun; Yuan, Ye; Tian, Yuyang; Zhang, Daming; Zhu, Guangshan

    2015-10-19

    The targeted synthesis of a series of novel charged porous aromatic frameworks (PAFs) is reported. The compounds PAF-23, PAF-24, and PAF-25 are built up by a tetrahedral building unit, lithium tetrakis(4-iodophenyl)borate (LTIPB), and different alkyne monomers as linkers by a Sonogashira-Hagihara coupling reaction. They possess excellent adsorption properties to organic molecules owing to their "breathing" dynamic frameworks. As these PAF materials assemble three effective sorption sites, namely the ion bond, phenyl ring, and triple bond together, they exhibit high affinity and capacity for iodine molecules. To the best of our knowledge, these PAF materials give the highest adsorption values among all porous materials (zeolites, metal-organic frameworks, and porous organic frameworks) reported to date. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of Gel-Filter Method for High Enrichment of Low-Molecular Weight Proteins from Serum

    Science.gov (United States)

    Chen, Lingsheng; Zhai, Linhui; Li, Yanchang; Li, Ning; Zhang, Chengpu; Ping, Lingyan; Chang, Lei; Wu, Junzhu; Li, Xiangping; Shi, Deshun; Xu, Ping

    2015-01-01

    The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa) difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2) from 10 μL serum. Among them, 559 (n = 2) proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses. PMID:25723528

  14. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.

    Directory of Open Access Journals (Sweden)

    Lingsheng Chen

    Full Text Available The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2 from 10 μL serum. Among them, 559 (n = 2 proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.

  15. Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides.

    Science.gov (United States)

    Ma, Wan-Fu; Zhang, Ying; Li, Lu-Lu; You, Li-Jun; Zhang, Peng; Zhang, Yu-Ting; Li, Ju-Mei; Yu, Meng; Guo, Jia; Lu, Hao-Jie; Wang, Chang-Chun

    2012-04-24

    Selective enrichment of phosphoproteins or phosphopeptides from complex mixtures is essential for MS-based phosphoproteomics, but still remains a challenge. In this article, we described an unprecedented approach to synthesize magnetic mesoporous Fe(3)O(4)@mTiO(2) microspheres with a well-defined core/shell structure, a pure and highly crystalline TiO(2) layer, high specific surface area (167.1 m(2)/g), large pore volume (0.45 cm(3)/g), appropriate and tunable pore size (8.6-16.4 nm), and high magnetic susceptibility. We investigated the applicability of Fe(3)O(4)@mTiO(2) microspheres in a study of the selective enrichment of phosphopeptides. The experiment results demonstrated that the Fe(3)O(4)@mTiO(2) possessed remarkable selectivity for phosphopeptides even at a very low molar ratio of phosphopeptides/non-phosphopeptides (1:1000), large enrichment capacity (as high as 225 mg/g, over 10 times as that of the Fe(3)O(4)@TiO(2) microspheres), extreme sensitivity (the detection limit was at the fmol level), excellent speed (the enrichment can be completed in less than 5 min), and high recovery of phosphopeptides (as high as 93%). In addition, the high magnetic susceptibility allowed convenient separation of the target peptides by magnetic separation. These outstanding features give the Fe(3)O(4)@mTiO(2) composite microspheres high benefit for mass spectrometric analysis of phosphopeptides.

  16. Essential amino acid enriched high-protein enteral nutrition modulates insulin-like growth factor-1 system function in a rat model of trauma-hemorrhagic shock.

    Directory of Open Access Journals (Sweden)

    Xianfeng Xia

    Full Text Available BACKGROUND: Nutrition support for critically ill patients supplemented with additional modular protein may promote skeletal muscle protein anabolism in addition to counteracting acute nitrogen loss. The present study was designed to investigate whether the essential amino acid (EAA enriched high-protein enteral nutrition (EN modulates the insulin-like growth factor-1 (IGF-1 system and activates the mammalian target of rapamycin (mTOR anabolic signaling pathway in a trauma-hemorrhagic shock (T-HS rat model. METHODOLOGY/PRINCIPAL FINDINGS: Male Sprague-Dawley rats (n = 90, 278.18 ± 0.94 g were randomly assigned to 5 groups: (1 normal control, (2 pair-fed, (3 T-HS, (4 T-HS and standard EN, and (5 T-HS and EAA enriched high-protein EN. Six animals from each group were harvested on days 2, 4, and 6 for serum, gastrocnemius, soleus, and extensor digitorum longus sample collection. T-HS significantly reduced muscle mass. Nutrition support maintained muscle mass, especially the EAA enriched high-protein EN. Meanwhile, a pronounced derangement in IGF-1-IGFBPs axis as well as impaired mTOR transduction was observed in the T-HS group. Compared with animals receiving standard EN, those receiving EAA enriched high-protein EN presented 18% higher serum free IGF-1 levels following 3 days of nutrition support and 22% higher after 5 days. These changes were consistent with the concomitant elevation in serum insulin and reduction in corticosterone levels. In addition, phosphorylations of downstream anabolic signaling effectors - including protein kinase B, mTOR, and ribosomal protein S6 kinase1 - increased significantly in rats receiving EAA enriched high-protein EN. CONCLUSION/SIGNIFICANCE: Our findings firstly demonstrate the beneficial effect of EAA enriched high-protein EN on the metabolic modulation of skeletal muscle protein anabolism by regulating the IGF-1 system and downstream anabolic signaling transduction.

  17. Stable high-order molecular sandwiches: Hydrocarbon polyanion pairs with multiple lithium ions inside and out

    Energy Technology Data Exchange (ETDEWEB)

    Ayalon, A.; Rabinovitz, M. (Hebrew Univ. of Jerusalem (Israel)); Sygula, A.; Rabideau, P.W. (Louisiana State Univ., Baton Rouge, LA (United States)); Cheng, P.C.; Scott, L.T. (Boston College, Chestnut Hill, MA (United States))

    1994-08-19

    Stable ten-component sandwich compounds have been characterized in which four lithium ions reside between two tetraanions derived from corannulene or its alkyl-substituted derivatives and four additional lithium ions decorate the exterior. In tetrahydrofuran solution, the four lithium ions inside the sandwich can exchange environments with the four external lithium atoms, but the two tetraanion decks of the sandwich never separate from one another on the time scale of nuclear magnetic resonance. Theoretical calculations point to a [open quotes]stacked bowl[close quotes] conformation and a low energy barrier for synchronous double inversion of the tetraanion bowls in the solvated sandwich compounds.

  18. Feasibility Study on the Use of the Seeding Growth Technique in Producing a Highly Stable Gold Nanoparticle Colloidal System

    Directory of Open Access Journals (Sweden)

    Kim Han Tan

    2015-01-01

    Full Text Available Stable colloidal gold nanoparticles (Au NPs are synthesized successfully using a seeding growth technique. The size of the nanoparticles is determined using transmission electron microscopy (TEM, and it is observed that the size of the nanoparticles ranges from 7 to 30 nm. The TEM images and optical absorption spectra of the Au NPs reveal that the suspension is well dispersed and consistent with the particle size. The feasibility of the seeding growth technique is investigated using Turbiscan Classic MA 2000 screening stability tester. Based on the peak thickness kinetics and mean value kinetics, the backscattered light profiles indicate that the suspension is highly stable without particle sedimentation as well as negligible agglomeration. In addition, the Au NPs are proven to remain stable over a period of 2 months. Particle sedimentation eventually occurs due to the weight of nanoparticles. It is concluded that the seeding growth technique is feasible in synthesizing stable Au NPs. Controlling the stability, size and shape of Au NPs are technologically important because of the strong correlation between these parameters and the optical, electrical, and catalytic properties of the nanoparticles.

  19. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis.

    Science.gov (United States)

    Banerjee, Abhinandan; Theron, Robin; Scott, Robert W J

    2012-01-09

    Gold and palladium nanoparticles were prepared by lithium borohydride reduction of the metal salt precursors in tetraalkylphosphonium halide ionic liquids in the absence of any organic solvents or external nanoparticle stabilizers. These colloidal suspensions remained stable and showed no nanoparticle agglomeration over many months. A combination of electrostatic interactions between the coordinatively unsaturated metal nanoparticle surface and the ionic-liquid anions, bolstered by steric protection offered by the bulky alkylated phosphonium cations, is likely to be the reason behind such stabilization. The halide anion strongly absorbs to the nanoparticle surface, leading to exceptional nanoparticle stability in halide ionic liquids; other tetraalkylphosphonium ionic liquids with non-coordinating anions, such as tosylate and hexafluorophosphate, show considerably lower affinities towards the stabilization of nanoparticles. Palladium nanoparticles stabilized in the tetraalkylphosphonium halide ionic liquid were stable, efficient, and recyclable catalysts for a variety of hydrogenation reactions at ambient pressures with sustained activity. Aerial oxidation of the metal nanoparticles occurred over time and was readily reversed by re-reduction of oxidized metal salts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ionic Liquid-Sulfolane Composite Electrolytes for High-Performance and Stable Dye-Sensitized Solar Cells

    OpenAIRE

    Marsalek Magdalena; Duriaux Arendse Francine; Decoppet Jean-David; Babkair Saeed Salem; Ansari Azhar Ahmad; Habib Sami S.; Wang Mingkui; Zakeeruddin Shaik M.; Graätzel Michael

    2014-01-01

    Ionic liquid electrolytes are prepared using sulfolane as a plasticizer for eutectic melts to realize highly stable and effi ciently performing dye sensi tized solar cells (DSCs) in hot climate conditions. Variations in the viscosity of the formulations with sulfolane content are measured and performance in DSCs is investigated using the ruthenium dye C106 as a sensitizer. A power conversion effi ciency (PCE) of 8.2 is achieved under standard reporting con ditions. Apart from lowering the vis...

  1. Highly Stable Nanocontainer of APTES-Anchored Layered Titanate Nanosheet for Reliable Protection/Recovery of Nucleic Acid

    OpenAIRE

    Tae Woo Kim; In Young Kim; Dae-Hwan Park; Jin-Ho Choy; Seong-Ju Hwang

    2016-01-01

    A universal technology for the encapsulative protection of unstable anionic species by highly stable layered metal oxide has been developed via the surface modification of a metal oxide nanosheet. The surface anchoring of (3-aminopropyl)triethoxysilane (APTES) on exfoliated titanate nanosheet yields a novel cationic metal oxide nanosheet, which can be universally used for the hybridization with various biological and inorganic anions. The encapsulation of deoxyribonucleic acid (DNA) in the ca...

  2. High maltose-forming, Ca2+-independent and acid stable α-amylase from a novel acidophilic bacterium, Bacillus acidicola.

    Science.gov (United States)

    Sharma, Archana; Satyanarayana, T

    2010-10-01

    Bacillus acidicola TSAS1 produced a novel acid-stable, thermostable, Ca(2+)-independent and high maltose-forming α-amylase with optimum activity at pH 4.0 and 60°C, and T(1/2) of 27 min at 90°C. The enzyme saccharified raw as well as soluble starches, and ameliorated bread quality when the dough was supplemented with the enzyme.

  3. Thermal breeder fuel enrichment zoning

    Science.gov (United States)

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  4. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn; Yang, Yu; Wang, Zhiyu; Qian, Guodong, E-mail: gdqian@zju.edu.cn

    2017-01-15

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications. - Graphical abstract: A water-stable europium-based metal-organic framework has been reported for highly selective sensing of picric acid (PA) with a detection limit of 37.6 ppb in aqueous solution. - Highlights: • A water-stable metal-organic framework (MOF) EuNDC was synthesized. • The highly selective detection of picric acid with a detection limit of 37.6 ppb was realized. • The detection mechanism were also presented and discussed.

  5. High tumour cannabinoid CB1 receptor immunoreactivity negatively impacts disease-specific survival in stage II microsatellite stable colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Sofia B Gustafsson

    Full Text Available BACKGROUND: There is good evidence in the literature that the cannabinoid system is disturbed in colorectal cancer. In the present study, we have investigated whether CB(1 receptor immunoreactive intensity (CB(1IR intensity is associated with disease severity and outcome. METHODOLOGY/PRINCIPAL FINDINGS: CB(1IR was assessed in formalin-fixed, paraffin-embedded specimens collected with a consecutive intent during primary tumour surgical resection from a series of cases diagnosed with colorectal cancer. Tumour centre (n = 483 and invasive front (n = 486 CB(1IR was scored from 0 (absent to 3 (intense staining and the data was analysed as a median split i.e. CB(1IR <2 and ≥2. In microsatellite stable, but not microsatellite instable tumours (as adjudged on the basis of immunohistochemical determination of four mismatch repair proteins, there was a significant positive association of the tumour grade with the CB(1IR intensity. The difference between the microsatellite stable and instable tumours for this association of CB(1IR was related to the CpG island methylation status of the cases. Cox proportional hazards regression analyses indicated a significant contribution of CB(1IR to disease-specific survival in the microsatellite stable tumours when adjusting for tumour stage. For the cases with stage II microsatellite stable tumours, there was a significant effect of both tumour centre and front CB(1IR upon disease specific survival. The 5 year probabilities of event-free survival were: 85±5 and 66±8%; tumour interior, 86±4% and 63±8% for the CB(1IR<2 and CB(1IR≥2 groups, respectively. CONCLUSIONS/SIGNIFICANCE: The level of CB(1 receptor expression in colorectal cancer is associated with the tumour grade in a manner dependent upon the degree of CpG hypermethylation. A high CB(1IR is indicative of a poorer prognosis in stage II microsatellite stable tumour patients.

  6. High tumour cannabinoid CB1 receptor immunoreactivity negatively impacts disease-specific survival in stage II microsatellite stable colorectal cancer.

    Science.gov (United States)

    Gustafsson, Sofia B; Palmqvist, Richard; Henriksson, Maria L; Dahlin, Anna M; Edin, Sofia; Jacobsson, Stig O P; Öberg, Åke; Fowler, Christopher J

    2011-01-01

    There is good evidence in the literature that the cannabinoid system is disturbed in colorectal cancer. In the present study, we have investigated whether CB(1) receptor immunoreactive intensity (CB(1)IR intensity) is associated with disease severity and outcome. CB(1)IR was assessed in formalin-fixed, paraffin-embedded specimens collected with a consecutive intent during primary tumour surgical resection from a series of cases diagnosed with colorectal cancer. Tumour centre (n = 483) and invasive front (n = 486) CB(1)IR was scored from 0 (absent) to 3 (intense staining) and the data was analysed as a median split i.e. CB(1)IR microsatellite stable, but not microsatellite instable tumours (as adjudged on the basis of immunohistochemical determination of four mismatch repair proteins), there was a significant positive association of the tumour grade with the CB(1)IR intensity. The difference between the microsatellite stable and instable tumours for this association of CB(1)IR was related to the CpG island methylation status of the cases. Cox proportional hazards regression analyses indicated a significant contribution of CB(1)IR to disease-specific survival in the microsatellite stable tumours when adjusting for tumour stage. For the cases with stage II microsatellite stable tumours, there was a significant effect of both tumour centre and front CB(1)IR upon disease specific survival. The 5 year probabilities of event-free survival were: 85±5 and 66±8%; tumour interior, 86±4% and 63±8% for the CB(1)IRcolorectal cancer is associated with the tumour grade in a manner dependent upon the degree of CpG hypermethylation. A high CB(1)IR is indicative of a poorer prognosis in stage II microsatellite stable tumour patients.

  7. Unusually stable abnormal karyotype in a highly aggressive melanoma negative for telomerase activity

    Directory of Open Access Journals (Sweden)

    Irminger-Finger Irmgard

    2008-08-01

    Full Text Available Abstract Malignant melanomas are characterized by increased karyotypic complexity, extended aneuploidy and heteroploidy. We report a melanoma metastasis to the peritoneal cavity with an exceptionally stable, abnormal pseudodiploid karyotype as verified by G-Banding, subtelomeric, centromeric and quantitative Fluorescence in Situ Hybridization (FISH. Interestingly this tumor had no detectable telomerase activity as indicated by the Telomere Repeat Amplification Protocol. Telomeric Flow-FISH and quantitative telomeric FISH on mitotic preparations showed that malignant cells had relatively short telomeres. Microsatellite instability was ruled out by the allelic pattern of two major mononucleotide repeats. Our data suggest that a combination of melanoma specific genomic imbalances were sufficient and enough for this fatal tumor progression, that was not accompanied by genomic instability, telomerase activity, or the engagement of the alternative recombinatorial telomere lengthening pathway.

  8. Stable, high-efficiency amorphous silicon solar cells with low hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Fortmann, C.M.; Hegedus, S.S. (Institute of Energy Conversion, Newark, DE (United States))

    1992-12-01

    Results and conclusions obtained during a research program of the investigation of amorphous silicon and amorphous silicon based alloy materials and solar cells fabricated by photo-chemical vapor and glow discharge depositions are reported. Investigation of the effects of the hydrogen content in a-si:H i-layers in amorphous silicon solar cells show that cells with lowered hydrogen content i-layers are more stable. A classical thermodynamic formulation of the Staebler-Wronski effect has been developed for standard solar cell operating temperatures and illuminations. Methods have been developed to extract a lumped equivalent circuit from the current voltage characteristic of a single junction solar cell in order to predict its behavior in a multijunction device.

  9. Zinc finger nuclease technology: A stable tool for high efficiency transformation in bloodstream form T. brucei.

    Science.gov (United States)

    Schumann, Gabriela; Kangussu-Marcolino, Monica M; Doiron, Nicholas; Käser, Sandro; de Assis Burle-Caldas, Gabriela; DaRocha, Wanderson D; Teixeira, Santuza M; Roditi, Isabel

    2017-04-01

    In Trypanosoma brucei, the generation of knockout mutants is relatively easy compared to other organisms as transfection methods are well established. These methods have their limitations, however, when it comes to the generation of genome-wide libraries that require a minimum of several hundred thousand transformants. Double-strand breaks with the meganuclease ISce-I dramatically increase transformation efficiency, but are not widely in use as cell lines need to be generated de novo before each transfection. Here we show that zinc finger nucleases are a robust and stable tool that can enhance transformation in bloodstream forms by more than an order of magnitude. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. GAME (Goals - Activity - Motor Enrichment): protocol of a single blind randomised controlled trial of motor training, parent education and environmental enrichment for infants at high risk of cerebral palsy.

    Science.gov (United States)

    Morgan, Catherine; Novak, Iona; Dale, Russell C; Guzzetta, Andrea; Badawi, Nadia

    2014-10-07

    Cerebral palsy is the most common physical disability of childhood and early detection is possible using evidence based assessments. Systematic reviews indicate early intervention trials rarely demonstrate efficacy for improving motor outcomes but environmental enrichment interventions appear promising. This study is built on a previous pilot study and has been designed to assess the effectiveness of a goal - oriented motor training and enrichment intervention programme, "GAME", on the motor outcomes of infants at very high risk of cerebral palsy (CP) compared with standard community based care. A two group, single blind randomised controlled trial (n = 30) will be conducted. Eligible infants are those diagnosed with CP or designated "at high risk of CP" on the basis of the General Movements Assessment and/or abnormal neuroimaging. A physiotherapist and occupational therapist will deliver home-based GAME intervention at least fortnightly until the infant's first birthday. The intervention aims to optimize motor function and engage parents in developmental activities aimed at enriching the home learning environment. Primary endpoint measures will be taken 16 weeks after intervention commences with the secondary endpoint at 12 months and 24 months corrected age. The primary outcome measure will be the Peabody Developmental Motor Scale second edition. Secondary outcomes measures include the Gross Motor Function Measure, Bayley Scales of Infant and Toddler Development, Affordances in the Home Environment for Motor Development - Infant Scale, and the Canadian Occupational Performance Measure. Parent well-being will be monitored using the Depression Anxiety and Stress Scale. This paper presents the background, design and intervention protocol of a randomised trial of a goal driven, motor learning approach with customised environmental interventions and parental education for young infants at high risk of cerebral palsy. This trial is registered on the Australian

  11. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  12. High intensity positive pressure ventilation and long term pulmonary function responses in severe stable COPD. A delicate and difficult balance.

    Science.gov (United States)

    Esquinas, Antonio M; Petroianni, Angelo

    2014-06-01

    Method to improve minute ventilation (MV) during spontaneous breathing (SB) in stable severe chronic obstructive pulmonary disease (COPD) have a great clinical relevant in long term outcome. In this scenario, recommendations of early use of high-Intensity non-invasive Positive pressure Ventilation (HI-NPPV) or intelligent Volume Assured Pressure (iVAP) Support in Hypercapnic COPD have been proposed by safe therapeutics options. We analyze in this letter, Ekkernkamp et al. study that described the effect of HI-NPPV compared with SB on MV in patients receiving long-term treatment. We consider that interpretation of relationships between ABG, functional parameters, and respiratory mechanics reported need clarifications. Further prospective large clinical trials identifying the best mode of ventilation according to the characteristics in severe stable COPD are necessary to balance an effective approach and response on clinical symptoms and long-term effects.

  13. Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile

    OpenAIRE

    Dorador, C.; Busekov, A.; Vila, I.; Johannes F Imhoff; Witzel, K.-P.

    2008-01-01

    We analyzed enrichment cultures of ammonia-oxidizing bacteria (AOB) collected from different areas of Salar de Huasco, a high altitude, saline, pH-neutral water body in the Chilean Altiplano. Samples were inoculated into mineral media with 10?mM NH4 + at five different salt concentrations (10, 200, 400, 800 and 1,400?mM NaCl). Low diversity (up to three phylotypes per enrichment) of beta-AOB was detected using 16S rDNA and amoA clone libraries. Growth of beta-AOB was only recorded in a few en...

  14. Los Alamos National Laboratory Support for Commercial U.S. Production of 99Mo without the Use of Highly Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    There is currently a serious shortage of 99Mo, from which to generate the medically significant isotope 99mTc. Most of the world's supply comes from the fission of highly enriched uranium targets--this is a proliferation concern. This document focuses on the technology involved in two alternative methods: electron accelerator production of 99Mo from the 100Mo(γ,n)99Mo reaction and production of 99Mo as a fission product in a subcritical, DT accelerator-driven low enriched uranium salt solution.

  15. Highly specific enrichment of N-glycoproteome through a nonreductive amination reaction using Fe3O4@SiO2-aniline nanoparticles.

    Science.gov (United States)

    Zhang, Ying; Yu, Meng; Zhang, Cheng; Wang, Yali; Di, Yi; Wang, Changchun; Lu, Haojie

    2015-04-07

    A novel method based on the conjunction of aldehydes from oxidized glycopeptides to aniline groups on magnetic nanoparticles via nonreductive amination is reported for the highly selective enrichment of N-glycopeptides. For the first time, a nonreductive amination reaction has been introduced into N-glycoproteome extraction, and correspondingly a new type of aniline-functionalized nanoparticle has been designed and synthesized.

  16. Neutron activation analysis of the 30Si content of highly enriched 28Si: proof of concept and estimation of the achievable uncertainty

    Science.gov (United States)

    D'Agostino, G.; Mana, G.; Oddone, M.; Prata, M.; Bergamaschi, L.; Giordani, L.

    2014-06-01

    We investigated the use of neutron activation to estimate the 30Si mole fraction of the ultra-pure silicon material highly enriched in 28Si for the measurement of the Avogadro constant. Specifically, we developed a relative method based on instrumental neutron activation analysis and using a natural-Si sample as a standard. To evaluate the achievable uncertainty, we irradiated a 6 g sample of a natural-Si material and modelled experimentally the signal that would be produced by a sample of the 28Si-enriched material of similar mass and subjected to the same measurement conditions. The extrapolation of the expected uncertainty from the experimental data indicates that a measurement of the 30Si mole fraction of the 28Si-enriched material might reach a 4% relative combined standard uncertainty.

  17. High satisfaction with direct switching from antimuscarinics to mirabegron in patients receiving stable antimuscarinic treatment.

    Science.gov (United States)

    Liao, Chun-Hou; Kuo, Hann-Chorng

    2016-11-01

    Mirabegron, which was the first β3-adrenoceptor agonist introduced for use in clinical practice, has been extensively evaluated in overactive bladder (OAB) patients in several phase II and III studies. However, most of the enrolled patients were treatment naive or had experienced a wash-out period before the introduction of mirabegron. No study has reported the treatment results of a direct switch from antimuscarinics to mirabegron, which may more commonly occur in clinical practice. This is an observational study to assess the therapeutic efficacy and safety of directly switching from antimuscarinics to mirabegron in patients with OAB receiving stable antimuscarinic treatment. Moreover, we sought to identify the patients who benefited more from the change.Patients aged ≥20 years with OAB receiving stable antimuscarinics for >3 months were enrolled. Antimuscarinics were discontinued in all patients and mirabegron 25 mg, once daily was initiated. Primary end-point was global response assessment (GRA) at 1 month after medication switching. Baseline parameters and parameters changed 1 month after medication switching were compared between patients with GRA ≥ 1 and GRA < 1.Of the 282 enrolled patients (209 men, 73 women; mean age, 74.4 years), 55.3% had better (GRA ≥ 1), 31.2% had similar (GRA = 0), and 10.3% had worse (GRA < 0) outcomes. The overall adverse events (AE) rate decreased from 24.1% to 12.8%. In overall patients, there was no significant improvement of OAB symptoms, but postvoid residual (PVR) urine decreased and voiding symptoms and quality of life index improved significantly. Patients with GRA ≥ 1 had significantly improved both storage and voiding symptoms. A total of 195 patients (69.1%) can maintain mirabegron without adding or resuming antimuscarinics for more than 3 months. Logistic regression analysis indicated that higher baseline OAB symptoms scores were predictor of satisfactory outcome.More than 50% patients

  18. Highly Stable and Sensitive Nucleic Acid Amplification and Cell-Phone-Based Readout.

    Science.gov (United States)

    Kong, Janay E; Wei, Qingshan; Tseng, Derek; Zhang, Jingzi; Pan, Eric; Lewinski, Michael; Garner, Omai B; Ozcan, Aydogan; Di Carlo, Dino

    2017-03-28

    Key challenges with point-of-care (POC) nucleic acid tests include achieving a low-cost, portable form factor, and stable readout, while also retaining the same robust standards of benchtop lab-based tests. We addressed two crucial aspects of this problem, identifying a chemical additive, hydroxynaphthol blue, that both stabilizes and significantly enhances intercalator-based fluorescence readout of nucleic acid concentration, and developing a cost-effective fiber-optic bundle-based fluorescence microplate reader integrated onto a mobile phone. Using loop-mediated isothermal amplification on lambda DNA we achieve a 69-fold increase in signal above background, 20-fold higher than the gold standard, yielding an overall limit of detection of 25 copies/μL within an hour using our mobile-phone-based platform. Critical for a point-of-care system, we achieve a >60% increase in fluorescence stability as a function of temperature and time, obviating the need for manual baseline correction or secondary calibration dyes. This field-portable and cost-effective mobile-phone-based nucleic acid amplification and readout platform is broadly applicable to other real-time nucleic acid amplification tests by similarly modulating intercalating dye performance and is compatible with any fluorescence-based assay that can be run in a 96-well microplate format, making it especially valuable for POC and resource-limited settings.

  19. Highly stable maintenance of a mouse artificial chromosome in human cells and mice.

    Science.gov (United States)

    Kazuki, Kanako; Takehara, Shoko; Uno, Narumi; Imaoka, Natsuko; Abe, Satoshi; Takiguchi, Masato; Hiramatsu, Kei; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2013-12-06

    Human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) display several advantages as gene delivery vectors, such as stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including the regulatory elements. Previously, we showed that a MAC vector developed from a natural mouse chromosome by chromosome engineering was more stably maintained in adult tissues and hematopoietic cells in mice than HAC vectors. In this study, to expand the utility for a gene delivery vector in human cells and mice, we investigated the long-term stability of the MACs in cultured human cells and transchromosomic mice. We also investigated the chromosomal copy number-dependent expression of genes on the MACs in mice. The MAC was stably maintained in human HT1080 cells in vitro during long-term culture. The MAC was stably maintained at least to the F8 and F4 generations in ICR and C57BL/6 backgrounds, respectively. The MAC was also stably maintained in hematopoietic cells and tissues derived from old mice. Transchromosomic mice containing two or four copies of the MAC were generated by breeding. The DNA contents were comparable to the copy number of the MACs in each tissue examined, and the expression of the EGFP gene on the MAC was dependent on the chromosomal copy number. Therefore, the MAC vector may be useful not only for gene delivery in mammalian cells but also for animal transgenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. High Sulfur Content Material with Stable Cycling in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Preefer, Molleigh B; Oschmann, Bernd; Hawker, Craig J; Seshadri, Ram; Wudl, Fred

    2017-11-20

    We demonstrate a novel crosslinked disulfide system as a cathode material for Li-S cells that is designed with the two criteria of having only a single point of S-S scission and maximizing the ratio of S-S to the electrochemically inactive framework. The material therefore maximizes theoretical capacity while inhibiting the formation of polysulfide intermediates that lead to parasitic shuttle. The material we report contains a 1:1 ratio of S:C with a theoretical capacity of 609 mAh g-1 . The cell gains capacity through 100 cycles and has 98 % capacity retention thereafter through 200 cycles, demonstrating stable, long-term cycling. Raman spectroscopy confirms the proposed mechanism of disulfide bonds breaking to form a S-Li thiolate species upon discharge and reforming upon charge. Coulombic efficiencies near 100 % for every cycle, suggesting the suppression of polysulfide shuttle through the molecular design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis and Quantum Mechanical Studies of a Highly Stable Ferrocene-Incorporated Expanded Porphyrin.

    Science.gov (United States)

    Chatterjee, Tamal; Theophall, G G; Silva, K Ishara; Lakshmi, K V; Ravikanth, Mangalampalli

    2016-07-18

    We present the first evidence for an unusual stable metallocene-containing expanded porphyrinoid macrocycle that was synthesized by condensing one equivalent of 1,1'-bis[phenyl(2-pyrroyl)methyl]ferrocene with one equivalent of 5,10-di(p-tolyl)-16-oxa-15,17-dihydrotripyrrane under acid-catalyzed conditions. The formation of ferrocene-incorporated expanded porphyrin macrocycle was confirmed by HR-MS and 1D/2D NMR spectroscopy. The macrocycle was nonaromatic and displayed absorption bands in the region of 420-550 nm. The molecular and electronic structure of the ferrocene-incorporated expanded porphyrin was investigated by DFT methods. The DFT calculations indicated a partially twisted structure of the molecule, and the extent of torsional distortion was larger than previously observed for ruthenocenoporphyrinoids and ferrocenothiaporphyrin. The HOMO and LUMO states that were obtained from the DFT calculations indicated partial charge density on all four pyrrole nitrogen atoms and the furanyl oxygen atom in the HOMO state and partial charge density on the α and β carbon atoms in the LUMO state. In addition, the ferrocene moiety displayed the presence of partial charge density on the Fe atom and the cp rings in both the HOMO and LUMO states. Moreover, DFT studies of the diprotonated form of macrocycle indicated that the diprotonated form also retained a synclinal conformation and that its torsional strain was slightly higher than its free base form.

  2. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities.

    Science.gov (United States)

    Wang, Wenjie; Zhou, Chunhua; Zhang, Tingting; Chen, Jingdong; Liu, Shaoding; Fan, Xudong

    2015-10-07

    We report the development of an optofluidic laser array fabricated on a chip using stable plano-concave Fabry-Pérot (FP) microcavities, which are far less susceptible to optical misalignment during device assembly than the commonly used plano-plano FP microcavities. The concave mirrors in our FP microcavities were created by first generating an array of microwells of a few micrometers in depth and a few tens of micrometers in diameter on a fused silica chip using a CO2 laser, followed by coating of distributed Bragg reflection (DBR) layers. The plano-concave FP microcavity had a Q-factor of 5.6 × 10(5) and finesse of 4 × 10(3), over 100 times higher than those for the FP microcavities in existing optofluidic lasers. 1 mM R6G dye in ethanol was used to test the plano-concave FP microcavities, showing an ultralow lasing threshold of only 90 nJ mm(-2), over 10 times lower than that in the corresponding unstable plano-plano FP microcavities formed by the same DBR coatings on the same chip. Simultaneous laser emission from the optofluidic laser array on the chip and single-mode lasing operation were also demonstrated. Our work will lead to the development of optofluidic laser-based biochemical sensors and novel on-chip photonic devices with extremely low lasing thresholds (nJ mm(-2)) and mode volumes (fL).

  3. Stable accretion from a cold disc in highly magnetized neutron stars

    Science.gov (United States)

    Tsygankov, S. S.; Mushtukov, A. A.; Suleimanov, V. F.; Doroshenko, V.; Abolmasov, P. K.; Lutovinov, A. A.; Poutanen, J.

    2017-11-01

    Aims: The aim of this paper is to investigate the transition of a strongly magnetized neutron star into the accretion regime with very low accretion rate. Methods: For this purpose, we monitored the Be-transient X-ray pulsar GRO J1008-57 throughout a full orbital cycle. The current observational campaign was performed with the Swift/XRT telescope in the soft X-ray band (0.5-10 keV) between two subsequent Type I outbursts in January and September 2016. Results: The expected transition to the propeller regime was not observed. However, transitions between different regimes of accretion were detected. In particular, after an outburst, the source entered a stable accretion state characterised by an accretion rate of 1014-1015 g s-1. We associate this state with accretion from a cold (low-ionised) disc of temperature below 6500 K. We argue that a transition to this accretion regime should be observed in all X-ray pulsars that have a certain combination of the rotation frequency and magnetic field strength. The proposed model of accretion from a cold disc is able to explain several puzzling observational properties of X-ray pulsars.

  4. High-Performance Hydrogen Storage Nanoparticles Inside Hierarchical Porous Carbon Nanofibers with Stable Cycling.

    Science.gov (United States)

    Xia, Guanglin; Chen, Xiaowei; Zhao, Yan; Li, Xingguo; Guo, Zaiping; Jensen, Craig M; Gu, Qinfen; Yu, Xuebin

    2017-05-10

    An effective route based on space-confined chemical reaction to synthesize uniform Li2Mg(NH)2 nanoparticles is reported. The hierarchical pores inside the one-dimensional carbon nanofibers (CNFs), induced by the creation of well-dispersed Li3N, serve as intelligent nanoreactors for the reaction of Li3N with Mg-containing precursors, resulting in the formation of uniformly discrete Li2Mg(NH)2 nanoparticles. The nanostructured Li2Mg(NH)2 particles inside the CNFs are capable of complete hydrogenation and dehydrogenation at a temperature as low as 105 °C with the suppression of ammonia release. Furthermore, by virtue of the nanosize effects and space-confinement by the porous carbon scaffold, no degradation was observed after 50 de/rehydrogenation cycles at a temperature as low as 130 °C for the as-prepared Li2Mg(NH)2 nanoparticles, indicating excellent reversibility. Moreover, the theoretical calculations demonstrate that the reduction in particle size could significantly enhance the H2 sorption of Li2Mg(NH)2 by decreasing the relative activation energy barrier, which agrees well with our experimental results. This method could represent an effective, general strategy for synthesizing nanoparticles of complex hydrides with stable reversibility and excellent hydrogen storage performance.

  5. Evaluation of a bisphosphonate enriched ultra-high molecular weight polyethylene for enhanced total joint replacement bearing surface functionality

    Science.gov (United States)

    Wright-Walker, Cassandra Jane

    Each year in the United States there is an increasing trend of patients receiving total joint replacement (TJR) procedures. Approximately a half million total knee replacements (TKRs) are performed annually in the United States with increasing prevalence attributed to baby-boomers, obesity, older, and younger patients. This trend is also seen for total hip replacements (THRs) as well. The use of ultra high molecular weight polyethylene (UHMWPE) inserts in TJRs results in wear particle-induced osteolysis, which is the predominant cause for prosthesis failure and revision surgery. Sub-micron size particle generation is inevitable despite the numerous efforts in improving this bearing material. Work by others has shown that the use of oral and intravenous systemic bisphosphonates (BP) can significantly minimize periprosthetic osteolysis. However, the systemic delivery and the high solubility of BPs results in a predominant portion of the drug being excreted via the kidney without reaching its target, bone. This doctoral research project is focused on the development and evaluation of a novel method to administer BPs locally using the inherent wear of UHMWPE for possible use as an anti-osteolysis treatment. For new materials to be considered, they must be mechanically and tribologically comparable to the current gold standard, UHMWPE. In order to evaluate this material, mechanical, drug elution and tribological experiments were performed to allow assessment of material properties. Tensile tests showed comparable yield stress and pin-on-disk testing showed comparable wear to standard virgin UHMWPE. Further, drug elution tests have shown that BP was released from the enriched material both in static and dynamic conditions. Additionally, an aggressive 2 million cycle total knee simulator experiment has shown statistically similar wear results for the two materials. Overall, this research has provided the groundwork for further characterization and development of a new

  6. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China); Wang, Yue, E-mail: euy-tokyo@umin.ac.jp [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Yingxin Lane 100, Xicheng District, Beijing 100052, People' s Republic of China (China); Liao, Guoyang, E-mail: liaogy@21cn.com [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  7. High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium

    Energy Technology Data Exchange (ETDEWEB)

    Bastami, Tahereh Rohani; Entezari, Mohammad H., E-mail: moh_entezari@yahoo.com

    2013-09-01

    Graphical abstract: - Highlights: • The sonochemical synthesis of magnetite nanoparticles was carried out in EG without any surfactant. • The nanoparticles with sizes ∼24 nm were composed of small building blocks with sizes ∼2 nm. • The hydrophilic magnetite nanoparticles were stable in ethanol even after 8 months. • Ultrasonic intensity showed a crucial role on the obtained high stable magnetite nanoparticles in ethanol. - Abstract: The sonochemical synthesis of magnetite nanoparticles was carried out at relatively low temperature (80 °C) in ethylene glycol (EG) as a polyol solvent. The particle size was determined by transmission electron microscopy (TEM). The magnetite nanoparticles with an average size of 24 nm were composed of small building blocks with an average size of 2–3 nm and the particles exhibited nearly spherical shape. The surface characterization was investigated by using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The stability of magnetite nanoparticles was studied in ethanol as a polar solvent. The nanoparticles showed an enhanced stability in ethanol which is due to the hydrophilic surface of the particles. The colloidal stability of magnetite nanoparticles in ethanol was monitored by UV–visible spectrophotometer. According to the results, the nanoparticles synthesized in 30 min of sonication with intensity of 35 W/cm{sup 2} (50%) led to a maximum stability in ethanol as a polar solvent with respect to the other applied intensities. The obtained magnetite nanoparticles were stable for more than12 months.

  8. Application of a double-enrichment procedure for microsatellite isolation and the use of tailed primers for high throughput genotyping

    Directory of Open Access Journals (Sweden)

    Fábio Mendonça Diniz

    2007-03-01

    Full Text Available The number of microsatellite loci and their allelic diversity contribute to increase accuracy and informativity of genetic estimates, however, the isolation of microsatellite loci is not only laborious but also quite expensive. We used (GATAn and (GACAn tetranucleotide probes and single- and double-enrichment hybridization to construct and screen a genomic library with an increased proportion of DNA fragments containing repeat motifs. Repeats were found using both types of hybridization but the double-enrichment procedure recovered sequences of which 100% contained (GATAn and (GACAn motifs. Microsatellite loci primers were then designed with an M13R-tail or CAG-tag to produce scorable PCR products with minimal stutter. The approach used in this study suggests that double-enrichment is a worthwhile strategy when isolating repeat motifs from eukaryotic genomes. Moreover, the use of tailed microsatellite primers provides increased resolution for compound microsatellite loci, with a significant decrease in costs.

  9. Efficiency Benchmarking of an Energy Stable High-Order Finite Difference Discretization

    NARCIS (Netherlands)

    van der Weide, Edwin Theodorus Antonius; Giangaspero, G.; Svärd, M

    2015-01-01

    In this paper, results are presented for a number of benchmark cases, proposed at the 2nd International Workshop on High-Order CFD Methods in Cologne, Germany, in 2013. A robust high-order-accurate finite difference method was used that was developed during the last 10–15 years. The robustness stems

  10. Multivoxel magnetic resonance spectroscopy identifies enriched foci of cancer stem-like cells in high-grade gliomas

    Directory of Open Access Journals (Sweden)

    He T

    2017-01-01

    samples (23.6%±3.8% vs 18.3%±3.3%, 25.2%±4.5% vs 19.8%±2.8%, 24.5%±3.8% vs 17.8%±2.2%, respectively; all P<0.001. Western blot demonstrated that relative CD133 and nestin protein expression in high Cho/Cr ratio regions was significantly higher than that in low Cho/Cr ratio tissue samples (0.50±0.17 vs 0.30±0.08, 0.45±0.13 vs 0.27±0.07, respectively; both P<0.001. The protein expression levels of CD133 and nestin were highly correlated with Cho/Cr ratios (r=0.897 and r=0.861, respectively. Conclusion: Cho/Cr ratios correlate with the distribution of CSLCs in high-grade gliomas, and this may assist in identifying foci enriched with CSLCs and thus improve the management of high-grade gliomas. Keywords: high-grade glioma, 1H-MRS, cancer stem-like cells, choline, creatine, Cho/Cr

  11. High efficiency enrichment of low-abundance peptides by novel dual-platform graphene@SiO2@PMMA

    Science.gov (United States)

    Yin, Peng; Zhao, Man; Deng, Chunhui

    2012-10-01

    For the first time, dual-platform graphene@SiO2@poly(methyl methacrylate) (PMMA) material was synthesized, and successfully applied to efficiently enrich low-abundance peptides for mass spectrometry analysis.For the first time, dual-platform graphene@SiO2@poly(methyl methacrylate) (PMMA) material was synthesized, and successfully applied to efficiently enrich low-abundance peptides for mass spectrometry analysis. Electronic supplementary information (ESI) available: Experimental details, SEM, TEM, FT-IR spectra, MALDI-TOF MS spectra, data summary. See DOI: 10.1039/c2nr31649h

  12. Carbon dioxide enrichment: a technique to mitigate the negative effects of salinity on the productivity of high value tomatoes

    OpenAIRE

    Maria J. Sánchez-González; Maria C. Sánchez-Guerrero; Evangelina Medrano; Manuel E. Porras; Esteban J. Baeza; Pilar Lorenzo

    2016-01-01

    The present study was conducted to determine the mitigating influence of greenhouse CO2 enrichment on the negative effects of salinity in Mediterranean conditions. Hybrid Raf (cv. Delizia) tomato plants were exposed to two salinity levels of the nutrient solution (5 and 7 dS/m) obtained by adding NaCl, and two CO2 concentrations (350 and 800 μmol/mol) in which CO2 enrichment was applied during the daytime according to a strategy linked to ventilation. Increasing water salinity negatively affe...

  13. Pilot Scale Production of Highly Efficacious and Stable Enterovirus 71 Vaccine Candidates

    Science.gov (United States)

    Chang, Cheng-Peng; Guo, Meng-Shin; Hsieh, Shih-Yang; Yang, Wen-Hsueh; Chao, Hsin-Ju; Wu, Chien-Long; Huang, Ju-Lan; Lee, Min-Shi; Hu, Alan Yung-Chi; Lin, Sue-Chen; Huang, Yu-Yun; Hu, Mei-Hua; Chow, Yen-Hung; Chiang, Jen-Ron; Chang, Jui-Yuan; Chong, Pele

    2012-01-01

    Background Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. Principal Finding In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7–10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30–43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37°C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4°C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and

  14. Pilot scale production of highly efficacious and stable enterovirus 71 vaccine candidates.

    Directory of Open Access Journals (Sweden)

    Ai-Hsiang Chou

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 has caused several epidemics of hand, foot and mouth diseases (HFMD in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. PRINCIPAL FINDING: In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration, a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice

  15. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    Science.gov (United States)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2017-01-01

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications.

  16. New Class of Bright and Highly Stable Chiral Cyclen Europium Complexes for Circularly Polarized Luminescence Applications.

    Science.gov (United States)

    Dai, Lixiong; Lo, Wai-Sum; Coates, Ian D; Pal, Robert; Law, Ga-Lai

    2016-09-06

    High glum values of +0.30 (ΔJ = 1, 591 nm, in DMSO) and -0.23 (ΔJ = 1, 589 nm, in H2O) were recorded in our series of newly designed macrocyclic europium(III) complexes. A sterically locking approach involving a bidentate chromophore is adopted to control the formation of one stereoisomer, giving rise to extreme rigidity, high stability, and high emission intensity. The combination of a chiral substituent on a macrocyclic chelate for lanthanide ions opens up new perspectives for the further development of circulary polarized luminescent chiral tags in optical and bioapplications.

  17. Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerospace vehicles operating at high altitudes have the potential to be less expensive and more versatile alternatives to space based systems for earth/space...

  18. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    Science.gov (United States)

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  19. Polymorphism discovery and allele frequency estimation using high-throughput DNA sequencing of target-enriched pooled DNA samples

    Directory of Open Access Journals (Sweden)

    Mullen Michael P

    2012-01-01

    Full Text Available Abstract Background The central role of the somatotrophic axis in animal post-natal growth, development and fertility is well established. Therefore, the identification of genetic variants affecting quantitative traits within this axis is an attractive goal. However, large sample numbers are a pre-requisite for the identification of genetic variants underlying complex traits and although technologies are improving rapidly, high-throughput sequencing of large numbers of complete individual genomes remains prohibitively expensive. Therefore using a pooled DNA approach coupled with target enrichment and high-throughput sequencing, the aim of this study was to identify polymorphisms and estimate allele frequency differences across 83 candidate genes of the somatotrophic axis, in 150 Holstein-Friesian dairy bulls divided into two groups divergent for genetic merit for fertility. Results In total, 4,135 SNPs and 893 indels were identified during the resequencing of the 83 candidate genes. Nineteen percent (n = 952 of variants were located within 5' and 3' UTRs. Seventy-two percent (n = 3,612 were intronic and 9% (n = 464 were exonic, including 65 indels and 236 SNPs resulting in non-synonymous substitutions (NSS. Significant (P ® MassARRAY. No significant differences (P > 0.1 were observed between the two methods for any of the 43 SNPs across both pools (i.e., 86 tests in total. Conclusions The results of the current study support previous findings of the use of DNA sample pooling and high-throughput sequencing as a viable strategy for polymorphism discovery and allele frequency estimation. Using this approach we have characterised the genetic variation within genes of the somatotrophic axis and related pathways, central to mammalian post-natal growth and development and subsequent lactogenesis and fertility. We have identified a large number of variants segregating at significantly different frequencies between cattle groups divergent for calving

  20. Pressure-induced stable BeN4 as a high-energy density material

    Science.gov (United States)

    Zhang, Shoutao; Zhao, Ziyuan; Liu, Lulu; Yang, Guochun

    2017-10-01

    Polynitrogens are the ideal rocket fuels or propellants. Due to strong triple N≡N bond in N2, the direct polymerization of nitrogen is rather difficult (i.e. extreme high temperature and high pressure). However, the use of nitrides as precursors or the reaction of N2 with other elements has been proved to be an effective way to obtain polynitrogens. Here, with assistance of the advanced first-principles swarm-intelligence structure searches, we found that P 1 bar -BeN4, containing infinite zigzag-like polymeric nitrogen chains, can be synthesized by compressing the mixture of Be3N2 and N2 at 25.4 GPa, which is greatly lower than 110 GPa for synthesizing cubic gauche nitrogen and other polynitrogen compounds (e.g. bulk CNO at 52 GPa and SN4 at 49 GPa). Its structural stability can be attributed to the coexistence of ionic Be-N and covalent N-N bonds. Intriguingly, this phase has high kinetic stability and remains metastable at ambient pressure. The exceptional properties, including high energy density (3.60 kJ g-1), high nitrogen content (86.1%), high dynamical stability, and low polymerization pressure, make P 1 bar -structured BeN4 a promising high energy material. Infinite nitrogen chains in P 1 bar -BeN4 transform to N10 rings network in P21/c phase at 115.1 GPa. P 1 bar -BeN4 is metallic, while P21/c-BeN4 is an insulator.

  1. Near-infrared roll-off-free electroluminescence from highly stable diketopyrrolopyrrole light emitting diodes

    Science.gov (United States)

    Sassi, Mauro; Buccheri, Nunzio; Rooney, Myles; Botta, Chiara; Bruni, Francesco; Giovanella, Umberto; Brovelli, Sergio; Beverina, Luca

    2016-09-01

    Organic light emitting diodes (OLEDs) operating in the near-infrared spectral region are gaining growing relevance for emerging photonic technologies, such as lab-on-chip platforms for medical diagnostics, flexible self-medicated pads for photodynamic therapy, night vision and plastic-based telecommunications. The achievement of efficient near-infrared electroluminescence from solution-processed OLEDs is, however, an open challenge due to the low photoluminescence efficiency of most narrow-energy-gap organic emitters. Diketopyrrolopyrrole-boron complexes are promising candidates to overcome this limitation as they feature extremely high photoluminescence quantum yield in the near-infrared region and high chemical stability. Here, by incorporating suitably functionalized diketopyrrolopyrrole derivatives emitting at ~760 nm in an active matrix of poly(9,9-dioctylfluorene-alt-benzothiadiazole) and without using complex light out-coupling or encapsulation strategies, we obtain all-solution-processed NIR-OLEDs with external quantum efficiency as high as 0.5%. Importantly, our test-bed devices show no efficiency roll-off even for high current densities and high operational stability, retaining over 50% of the initial radiant emittance for over 50 hours of continuous operation at 10 mA/cm2, which emphasizes the great applicative potential of the proposed strategy.

  2. High-Throughput Cysteine Scanning To Identify Stable Antibody Conjugation Sites for Maleimide- and Disulfide-Based Linkers.

    Science.gov (United States)

    Ohri, Rachana; Bhakta, Sunil; Fourie-O'Donohue, Aimee; Dela Cruz-Chuh, Josefa; Tsai, Siao Ping; Cook, Ryan; Wei, Binqing; Ng, Carl; Wong, Athena W; Bos, Aaron B; Farahi, Farzam; Bhakta, Jiten; Pillow, Thomas H; Raab, Helga; Vandlen, Richard; Polakis, Paul; Liu, Yichin; Erickson, Hans; Junutula, Jagath R; Kozak, Katherine R

    2018-02-09

    THIOMAB antibody technology utilizes cysteine residues engineered onto an antibody to allow for site-specific conjugation. The technology has enabled the exploration of different attachment sites on the antibody in combination with small molecules, peptides, or proteins to yield antibody conjugates with unique properties. As reported previously ( Shen , B. Q. , et al. ( 2012 ) Nat. Biotechnol. 30 , 184 - 189 ; Pillow , T. H. , et al. ( 2017 ) Chem. Sci. 8 , 366 - 370 ), the specific location of the site of conjugation on an antibody can impact the stability of the linkage to the engineered cysteine for both thio-succinimide and disulfide bonds. High stability of the linkage is usually desired to maximize the delivery of the cargo to the intended target. In the current study, cysteines were individually substituted into every position of the anti-HER2 antibody (trastuzumab), and the stabilities of drug conjugations at those sites were evaluated. We screened a total of 648 THIOMAB antibody-drug conjugates, each generated from a trastuzamab prepared by sequentially mutating non-cysteine amino acids in the light and heavy chains to cysteine. Each THIOMAB antibody variant was conjugated to either maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E (MC-vc-PAB-MMAE) or pyridyl disulfide monomethyl auristatin E (PDS-MMAE) using a high-throughput, on-bead conjugation and purification method. Greater than 50% of the THIOMAB antibody variants were successfully conjugated to both MMAE derivatives with a drug to antibody ratio (DAR) of >0.5 and <50% aggregation. The relative in vitro plasma stabilities for approximately 750 conjugates were assessed using enzyme-linked immunosorbent assays, and stable sites were confirmed with affinity-capture LC/MS-based detection methods. Highly stable conjugation sites for the two types of MMAE derivatives were identified on both the heavy and light chains. Although the stabilities of maleimide conjugates were

  3. High Temperature Stable Separator for Lithium Batteries Based on SiO2 and Hydroxypropyl Guar Gum

    Directory of Open Access Journals (Sweden)

    Diogo Vieira Carvalho

    2015-10-01

    Full Text Available A novel membrane based on silicon dioxide (SiO2 and hydroxypropyl guar gum (HPG as binder is presented and tested as a separator for lithium-ion batteries. The separator is made with renewable and low cost materials and an environmentally friendly manufacturing processing using only water as solvent. The separator offers superior wettability and high electrolyte uptake due to the optimized porosity and the good affinity of SiO2 and guar gum microstructure towards organic liquid electrolytes. Additionally, the separator shows high thermal stability and no dimensional-shrinkage at high temperatures due to the use of the ceramic filler and the thermally stable natural polymer. The electrochemical tests show the good electrochemical stability of the separator in a wide range of potential, as well as its outstanding cycle performance.

  4. A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Dawei; Gu, Zhi-Yuan; Chen, Ying-Pin; Park, Jihye; Wei, Zhangwen; Sun, Yujia; Bosch, Mathieu; Yuan, Shuai; Zhou, Hong-Cai

    2014-12-24

    Through a kinetically controlled synthetic process, we synthesized PCN-223, a new porphyrinic Zr-MOF constructed from the newly reported hexagonal prismatic 12-connected Zr6 cluster through an unusual disordered arrangement, giving rise to the first example of the shp-a network in MOFs. With its extremely high connectivity, PCN-223 shows high stability in aqueous solutions with a wide range of pH. Cationic PCN-223(Fe) formed by postsynthetic treatment is an excellent recyclable heterogeneous catalyst for the hetero-Diels–Alder reaction.

  5. Immobilization of molecular cobalt electrocatalyst by hydrophobic interaction with hematite photoanode for highly stable oxygen evolution

    KAUST Repository

    Joya, Khurram

    2015-07-15

    A unique modification of a hematite photoanode with perfluorinated Co-phthalocyanine (CoFPc) by strong binding associated with hydrophobic interaction is demonstrated. The resultant molecular electrocatalyst – hematite photoanode hybrid material showed significant onset shift and high stability for photoelectrochemical oxidation evolution reaction (OER).

  6. Delivering stable high-quality video: an SDN architecture with DASH assisting network elements

    NARCIS (Netherlands)

    J.W.M. Kleinrouweler (Jan Willem); S. Cabrero Barros (Sergio); P.S. Cesar Garcia (Pablo Santiago)

    2016-01-01

    textabstractDynamic adaptive streaming over HTTP (DASH) is a simple, but effective, technology for video streaming over the Internet. It provides adaptive streaming while being highly scalable at the side of the content providers. However, the mismatch between TCP and the adaptive bursty nature of

  7. Stable, fertile, high polyhydroxyalkanoate producing plants and methods of producing them

    Energy Technology Data Exchange (ETDEWEB)

    Bohmert-Tatarev, Karen; McAvoy, Susan; Peoples, Oliver P.; Snell, Kristi D.

    2015-08-04

    Transgenic plants that produce high levels of polyhydroxybutyrate and methods of producing them are provided. In a preferred embodiment the transgenic plants are produced using plastid transformation technologies and utilize genes which are codon optimized. Stably transformed plants able to produce greater than 10% dwt PHS in tissues are also provided.

  8. Stable silver/biopolymer hybrid plasmonic nanostructures for high performance surface enhanced raman scattering (SERS)

    Science.gov (United States)

    Silver/biopolymer nanoparticles were prepared by adding 100 mg silver nitrate to 2% polyvinyl alcohol solution and reduced the silver nitrate into silver ion using 2 % trisodium citrate for high performance Surface Enhanced Raman Scattering (SERS) substrates. Optical properties of nanoparticle were ...

  9. Development of Long-Term Stable and High-Performing Metal-Supported SOFCs

    DEFF Research Database (Denmark)

    Klemensø, Trine; Nielsen, Jimmi; Blennow Tullmar, Peter

    2011-01-01

    Metal-supported SOFCs are believed to have high potential for commercialization due to lower material costs and higher robustness in fabrication and operation. However, the development of the cell is challenged by the metal properties during fabrication, and the necessary lower operating temperat...

  10. Catalysts and conditions for the highly efficient, selective and stable heterogeneous oligomerisation of ethylene

    CSIR Research Space (South Africa)

    Heveling, J

    1998-10-11

    Full Text Available The oligomerisation of ethylene into products in the C-4-C-20 range over heterogeneous nickel catalysts in a fixed-bed reactor at low temperature and high pressure (LT-HP) is reported. The catalysts were obtained by Ni (II) exchange or impregnation...

  11. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  12. Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project

    Science.gov (United States)

    Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration

    2017-10-01

    The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.

  13. A novel high-efficiency stable atmospheric microwave plasma device for fluid processing based on ridged waveguide

    Science.gov (United States)

    Xiao, Wei; Huang, Kama; He, Jianbo; Wu, Ying

    2017-09-01

    The waveguide-based microwave plasma device is widely used to generate atmospheric plasma for some industrial applications. Nevertheless, the traditional tapered waveguide device has limited power efficiency and produces unstable plasma. A novel ridged waveguide with an oblique hole is proposed to produce microwave atmospheric plasma for fluid processing. By using the ridged waveguide, the microwave field can be well focused, which can sustain plasma at relatively low power. Besides, an oblique hole is used to decrease the power reflection and generate a stable plasma torch especially in the case of high flowing rates. Experiments have been performed with the air flowing rates ranging from 500 l h-1 to 1000 l h-1 and the microwave working frequency of 2.45 GHz. The results show that in comparison with the conventional tapered waveguide, this novel device can both sustain plasma at relative low power and increase the power transfer efficiency by 11% from microwave to plasma. Moreover, both devices are used to process the waste gas-CO and CH4. Significantly, the removal efficiency for CO and CH4 can be increased by 19.7% and 32% respectively in the ridged waveguide compared with the tapered waveguide. It demonstrates that the proposed device possesses a great potential in industrial applications because of its high efficiency and stable performance.

  14. Highly stable hydrazine chemical sensor based on vertically-aligned ZnO nanorods grown on electrode.

    Science.gov (United States)

    Ahmad, Rafiq; Tripathy, Nirmalya; Ahn, Min-Sang; Hahn, Yoon-Bong

    2017-05-15

    Herein, we report a binder-free, stable, and high-performance hydrazine chemical sensor based on vertically aligned zinc oxide nanorods (ZnO NRs), grown on silver (Ag) electrode via low-temperature solution route. The morphological characterizations showed that the NRs were grown vertically in high density and possess good crystallinity. The as-fabricated hydrazine chemical sensors showed an excellent sensitivity of 105.5 μAμM-1cm-2, a linear range up to 98.6μM, and low detection limit of 0.005μM. It also showed better long-term stability, good reproducibility and selectivity. Furthermore, the fabricated electrodes were evaluated for hydrazine detection in water samples. We found the approach of directly growing nanostructures as a key factor for enhanced sensing performance of our electrodes, which effectively transfers electron from ZnO NRs to conductive Ag electrode. Thus it holds future prospective applications as binder-free, cost-effective, and stable sensing devices fabrication. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Highly stable new organic-inorganic perovskite (CH₃NH₃)₂PdBr₄: synthesis, structure and physical properties.

    Science.gov (United States)

    Liu, Xixia; Huang, Tang Jiao; Zhang, Liuyang; Tang, Baoshan; Zhang, Nengduo; Shi, Diwen; Gong, Hao

    2018-01-11

    Lead halide perovskite has attracted striking attention recently due to their appealing properties. However, toxicity and stability are two main factors restricting its application. In this work, we experimentally synthesized less toxic and highly stable Pd-based hybrid perovskite after exploring different experimental conditions. This new hybrid organic-inorganic perovskite (CH₃NH₃)₂PdBr₄ was found to be an orthorhombic crystal (Cmce, Z=4) with lattice parameters a=8.00 Å, b=7.99 Å, c= 18.89 Å. The Cmce symmetry and lattices parameters were confirmed using Pawley refinement. The atoms positions were testified based on DFT calculation. This perovskite compound was determined to be a p-type semiconductor, with a resistivity of 102.9 kΩ*cm, a carrier concentration of 3.4 ×1012 /cm³ and a mobility of 23.4 cm² /(V*S). Interestingly, XRD and UV-vis measurements indicated that the phase of this new perovskite was maintained with an optical gap of 1.91 eV after leaving in air with a high humidity of 60% for 4 days, and unchanged for months in N₂ ambiance, much more stable than most existing organic-inorganic perovskites. The synthesis and various characterizations of this work further the understanding of this (CH₃NH₃)₂PdBr₄ organic-inorganic hybrid perovskite material. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enrichment of pasta with faba bean does not impact glycemic or insulin response but can enhance satiety feeling and digestive comfort when dried at very high temperature.

    Science.gov (United States)

    Greffeuille, Valérie; Marsset-Baglieri, Agnès; Molinari, Nicolas; Cassan, Denis; Sutra, Thibault; Avignon, Antoine; Micard, Valérie

    2015-09-01

    Enrichment of durum wheat pasta with legume flour enhances their protein and essential amino acid content, especially lysine content. However, despite its nutritional potential, the addition of a legume alters the rheological properties of pasta. High temperature drying of pasta reduces this negative effect by strengthening its protein network. The aim of our study was to determine if these changes in the pasta structure alter its in vitro carbohydrate digestibility, in vivo glycemic, insulin and satiety responses. We also investigated if high temperature drying of pasta can reduce the well-known digestive discomfort associated with the consumption of legume grains. Fifteen healthy volunteers consumed three test meals: durum wheat pasta dried at a low temperature (control), and pasta enriched with 35% faba bean dried at a low and at a very high temperature. When enriched with 35% legume flour, pasta maintained its nutritionally valuable low glycemic and insulin index, despite its weaker protein network. Drying 35% faba bean pasta at a high temperature strengthened its protein network, and decreased its in vitro carbohydrate digestion with no further decrease in its in vivo glycemic or insulin index. Drying pasta at a very high temperature reduced digestive discomfort and enhanced self-reported satiety, and was not associated with a modification of energy intake in the following meal.

  17. Hydrophilic Nb{sup 5+}-immobilized magnetic core–shell microsphere – A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xueni; Liu, Xiaodan; Feng, Jianan [Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203 (China); Li, Yan, E-mail: yanli@fudan.edu.cn [Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203 (China); Deng, Chunhui [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Duan, Gengli [Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203 (China)

    2015-06-23

    Highlights: • A new IMAC material (Fe{sub 3}O{sub 4}@PD-Nb{sup 5+}) was synthesized. • The strong magnetic behaviors of the microspheres ensure fast and easy separation. • The enrichment ability was tested by human serum and nonfat milk. • The results were compared with other IMAC materials including the commercial kits. • All results proved the good enrichment ability, especially for multiphosphopeptides. - Abstract: Rapid and selective enrichment of phosphopeptides from complex biological samples is essential and challenging in phosphorylated proteomics. In this work, for the first time, niobium ions were directly immobilized on the surface of polydopamine-coated magnetic microspheres through a facile and effective synthetic route. The Fe{sub 3}O{sub 4}@polydopamine-Nb{sup 5+} (denoted as Fe{sub 3}O{sub 4}@PD-Nb{sup 5+}) microspheres possess merits of high hydrophilicity and good biological compatibility, and demonstrated low limit of detection (2 fmol). The selectivity was also basically satisfactory (β-casein:BSA = 1:500) to capture phosphopeptides. They were also successfully applied for enrichment of phosphopeptides from real biological samples such as human serum and nonfat milk. Compared with Fe{sub 3}O{sub 4}@PD-Ti{sup 4+} microspheres, the Fe{sub 3}O{sub 4}@PD-Nb{sup 5+} microspheres exhibit superior selectivity to multi-phosphorylated peptides, and thus may be complementary to the conventional IMAC materials.

  18. Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile.

    Science.gov (United States)

    Dorador, Cristina; Busekow, Annika; Vila, Irma; Imhoff, Johannes F; Witzel, Karl-Paul

    2008-05-01

    We analyzed enrichment cultures of ammonia-oxidizing bacteria (AOB) collected from different areas of Salar de Huasco, a high altitude, saline, pH-neutral water body in the Chilean Altiplano. Samples were inoculated into mineral media with 10 mM NH4+ at five different salt concentrations (10, 200, 400, 800 and 1,400 mM NaCl). Low diversity (up to three phylotypes per enrichment) of beta-AOB was detected using 16S rDNA and amoA clone libraries. Growth of beta-AOB was only recorded in a few enrichment cultures and varied according to site or media salinity. In total, five 16S rDNA and amoA phylotypes were found which were related to Nitrosomonas europaea/Nitrosococcus mobilis, N. marina and N. communis clusters. Phylotype 1-16S was 97% similar with N. halophila, previously isolated from Mongolian soda lakes, and phylotypes from amoA sequences were similar with yet uncultured beta-AOB from different biofilms. Sequences related to N. halophila were frequently found at all salinities. Neither gamma-AOB nor ammonia-oxidizing Archaea were recorded in these enrichment cultures.

  19. Highly Stable Aqueous Zinc-ion Storage Using Layered Calcium Vanadium Oxide Bronze Cathode

    KAUST Repository

    Xia, Chuan

    2018-02-12

    Cost-effective aqueous rechargeable batteries are attractive alternatives to non-aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc-ion batteries (ZIBs), based on Zn2+ intercalation chemistry, stand out as they can employ high-capacity Zn metal as anode material. Herein, we report a layered calcium vanadium oxide bronze as cathode material for aqueous Zn batteries. For the storage of Zn2+ ions in aqueous electrolyte, we demonstrate that calcium based bronze structure can deliver a high capacity of 340 mAh g-1 at 0.2 C, good rate capability and very long cycling life (96% retention after 3000 cycles at 80 C). Further, we investigate the Zn2+ storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 Wh kg-1 at a power density of 53.4 W kg-1.

  20. Stable high-power saturable absorber based on polymer-black-phosphorus films

    Science.gov (United States)

    Mao, Dong; Li, Mingkun; Cui, Xiaoqi; Zhang, Wending; Lu, Hua; Song, Kun; Zhao, Jianlin

    2018-01-01

    Black phosphorus (BP), a rising two-dimensional material with a layer-number-dependent direct bandgap of 0.3-1.5 eV, is very interesting for optoelectronics applications from near- to mid-infrared wavebands. In the atmosphere, few-layer BP tends to be oxidized or degenerated during interacting with lasers. Here, we fabricate few-layer BP nanosheets based on a liquid exfoliation method using N-methylpyrrolidone as the dispersion liquid. By incorporating BP nanosheets with polymers (polyvinyl alcohol or high-melting-point polyimide), two flexible filmy BP saturable absorbers are fabricated to realize passive mode locking in erbium-doped fiber lasers. The polymer-BP saturable absorber, especially the polyimide-BP saturable absorber, can prevent the oxidation or water-induced etching under high-power laser illuminations, providing a promising candidate for Q-switchers, mode lockers, and light modulators.

  1. Thermocouples of tantalum and rhenium alloys for more stable vacuum-high temperature performance

    Science.gov (United States)

    Morris, J. F. (Inventor)

    1977-01-01

    Thermocouples of the present invention provide stability and performance reliability in systems involving high temperatures and vacuums by employing a bimetallic thermocouple sensor wherein each metal of the sensor is selected from a group of metals comprising tantalum and rhenium and alloys containing only those two metals. The tantalum, rhenium thermocouple sensor alloys provide bare metal thermocouple sensors having advantageous vapor pressure compatibilities and performance characteristics. The compatibility and physical characteristics of the thermocouple sensor alloys of the present invention result in improved emf, temperature properties and thermocouple hot junction performance. The thermocouples formed of the tantalum, rhenium alloys exhibit reliability and performance stability in systems involving high temperatures and vacuums and are adaptable to space propulsion and power systems and nuclear environments.

  2. Small high-density lipoprotein is associated with monocyte subsets in stable coronary artery disease

    OpenAIRE

    Krychtiuk, Konstantin A.; Kastl, Stefan P.; Pfaffenberger, Stefan; Pongratz, Thomas; Hofbauer, Sebastian L.; Wonnerth, Anna; Katsaros, Katharina M.; Goliasch, Georg; Gaspar, Ludovit; Huber, Kurt; Maurer, Gerald; Dostal, Elisabeth; Oravec, Stanislav; Wojta, Johann; Speidl, Walter S.

    2014-01-01

    Objective: High-density lipoprotein (HDL) particles are heterogeneous in structure and function and the role of HDL subfractions in atherogenesis is not well understood. It has been suggested that small HDL may be dysfunctional in patients with coronary artery disease (CAD). Monocytes are considered to play a key role in atherosclerotic diseases. Circulating monocytes can be divided into three subtypes according to their surface expression of CD14 and CD16. Our aim was to examine whether mono...

  3. Isolation of a Highly Thermal Stable Lama Single Domain Antibody Specific for Staphylococcus aureus Enterotoxin B

    Directory of Open Access Journals (Sweden)

    Serrano-González Joseline

    2011-09-01

    Full Text Available Abstract Background Camelids and sharks possess a unique subclass of antibodies comprised of only heavy chains. The antigen binding fragments of these unique antibodies can be cloned and expressed as single domain antibodies (sdAbs. The ability of these small antigen-binding molecules to refold after heating to achieve their original structure, as well as their diminutive size, makes them attractive candidates for diagnostic assays. Results Here we describe the isolation of an sdAb against Staphyloccocus aureus enterotoxin B (SEB. The clone, A3, was found to have high affinity (Kd = 75 pM and good specificity for SEB, showing no cross reactivity to related molecules such as Staphylococcal enterotoxin A (SEA, Staphylococcal enterotoxin D (SED, and Shiga toxin. Most remarkably, this anti-SEB sdAb had an extremely high Tm of 85°C and an ability to refold after heating to 95°C. The sharp Tm determined by circular dichroism, was found to contrast with the gradual decrease observed in intrinsic fluorescence. We demonstrated the utility of this sdAb as a capture and detector molecule in Luminex based assays providing limits of detection (LODs of at least 64 pg/mL. Conclusion The anti-SEB sdAb A3 was found to have a high affinity and an extraordinarily high Tm and could still refold to recover activity after heat denaturation. This combination of heat resilience and strong, specific binding make this sdAb a good candidate for use in antibody-based toxin detection technologies.

  4. Shelf Stable Egg-Based Products Processed By Ultra High Pressure Technology

    Science.gov (United States)

    2008-07-03

    PhD, Post-Doctoral Fellow Frank L. Younce, Food Pilot Plant Manager Pablo Juliano, Graduate Student Subba Rao Gurram, Graduate Student M...have been observed in other works involving HPP treatments of Listeria monocytogenes, Escherichia coli and spores of B. stearothermophilus suspended...low acid foods is advancing from the laboratory bench to the pilot plant , as four pilot 35 L high pressure sterilization vessels are being used in

  5. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Meili Gao

    2012-01-01

    Full Text Available Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.

  6. Phospholipase D from Allium sativum bulbs: A highly active and thermal stable enzyme.

    Science.gov (United States)

    Khatoon, Hafeeza; Talat, Sariya; Younus, Hina

    2008-05-01

    This is the first report on the identification and partial characterization of phospholipase D (EC 3.1.4.4) from Allium sativum (garlic) bulbs (PLD(GB)). The enzyme shares the phenomenon of interfacial activation with other lipolytic enzymes, i.e. the hydrolytic rate increases when the substrate changes to a more aggregated state. The enzyme activity is highly temperature tolerant and the temperature optimum was measured to be 70 degrees C. PLD(GB) unlike many plant PLDs exhibited high thermal stability. It was activated further after exposure to high temperatures, i.e. 80 degrees C, indicating that the enzyme refolds better upon cooling back to room temperature after short exposure to thermal stress. The activity of PLD(GB) is optimum in 70mM calcium ion concentration and the enzyme is activated further in the presence of phosphatidyl-4,5-bisphosphate (PIP(2)). PLD(GB) exhibited both hydrolytic and transphosphatidylation activities, both of which appear to be higher than those of PLD from cabbage leaves (PLD(CL)).

  7. A Highly Stable Microporous Covalent Imine Network Adsorbent for Natural Gas Upgrading and Flue Gas CO2 Capture

    KAUST Repository

    Das, Swapan Kumar

    2016-06-06

    The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff base condensation and exhibited superior chemical robustness under both acidic and basic conditions and high thermal stability. The material possesses a relatively uniform nanoparticle size of approximately 70 to 100 nm. This network featured permanent porosity with a high surface area (722 m2g-1) and micropores. A single-component gas adsorption study showed enhanced CO2 and CH4 uptakes of 3.32 mmol/g and 1.14 mmol/g, respectively, at 273 K and 1 bar, coupled with high separation selectivities for CO2/CH4, CH4/N2, and CO2/N2 of 23, 11.8 and 211, respectively. The enriched Lewis basicity in the porous skeletons favours the interaction of quadrupolar CO2 and polarizable CH4, resulting in enhanced CH4 and CO2 uptake and high CH4/N2, CO2/CH4 and CO2/N2 selectivities. Breakthrough experiments showed high CO2/CH4, CH4/N2 and CO2/N2 selectivities of 7.29, 40 and 125, respectively, at 298 K and 1 bar. High heats of adsorption for CH4 and CO2 (QstCH4; 32.61 kJ mol-1 and QstCO2; 42.42 kJ mol-1) provide the ultimate validation for the high selectivity. To the best of our knowledge, such a versatile adsorbent material that displays both enhanced uptake and selectivity for a variety of binary gas mixtures, including CO2/ CH4, CO2/N2 and CH4/N2, has not been extensively explored.

  8. Marinobacter sp. from marine sediments produce highly stable surface-active agents for combatting marine oil spills.

    Science.gov (United States)

    Raddadi, Noura; Giacomucci, Lucia; Totaro, Grazia; Fava, Fabio

    2017-11-02

    The application of chemical dispersants as a response to marine oil spills is raising concerns related to their potential toxicity also towards microbes involved in oil biodegradation. Hence, oil spills occurring under marine environments necessitate the application of biodispersants that are highly active, stable and effective under marine environment context. Biosurfactants from marine bacteria could be good candidates for the development of biodispersant formulations effective in marine environment. This study aimed at establishing a collection of marine bacteria able to produce surface-active compounds and evaluating the activity and stability of the produced compounds under conditions mimicking those found under marine environment context. A total of 43 different isolates were obtained from harbor sediments. Twenty-six of them produced mainly bioemulsifiers when glucose was used as carbon source and 16 were biosurfactant/bioemulsifiers producers after growth in the presence of soybean oil. Sequencing of 16S rRNA gene classified most isolates into the genus Marinobacter. The produced emulsions were shown to be stable up to 30 months monitoring period, in the presence of 300 g/l NaCl, at 4 °C and after high temperature treatment (120 °C for 20 min). The partially purified compounds obtained after growth on soybean oil-based media exhibited low toxicity towards V. fischeri and high capability to disperse crude oil on synthetic marine water. To the best of our knowledge, stability characterization of bioemulsifiers/biosurfactants from the non-pathogenic marine bacterium Marinobacter has not been previously reported. The produced compounds were shown to have potential for different applications including the environmental sector. Indeed, their high stability in the presence of high salt concentration and low temperature, conditions characterizing the marine environment, the capability to disperse crude oil and the low ecotoxicity makes them interesting for

  9. Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jiadeng, E-mail: jzhu14@ncsu.edu; Lu, Yao, E-mail: ylu14@ncsu.edu; Chen, Chen, E-mail: cchen20@ncsu.edu; Ge, Yeqian, E-mail: yge3@ncsu.edu; Jasper, Samuel, E-mail: smjasper@ncsu.edu; Leary, Jennifer D., E-mail: jdleary@ncsu.edu; Li, Dawei, E-mail: ldw19900323@163.com; Jiang, Mengjin, E-mail: mjiang5@ncsu.edu; Zhang, Xiangwu, E-mail: xiangwu_zhang@ncsu.edu

    2016-07-05

    Hematite iron oxide (α-Fe{sub 2}O{sub 3}) is considered to be a prospective anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity (1007 mAh g{sup −1}), nontoxicity, and low cost. However, the low electrical conductivity and large volume change during Li insertion/extraction of α-Fe{sub 2}O{sub 3} hinder its use in practical batteries. In this study, carbon-coated α-Fe{sub 2}O{sub 3} nanofibers, prepared via an electrospinning method followed by a thermal treatment process, are employed as the anode material for LIBs. The as-prepared porous nanofibers with a carbon content of 12.5 wt% show improved cycling performance and rate capability. They can still deliver a high and stable capacity of 715 mAh g{sup −1} even at superior high current density of 1000 mA g{sup −1} after 200 cycles with a large Coulombic efficiency of 99.2%. Such improved electrochemical performance can be assigned to their unique porous fabric structure as well as the conductive carbon coating which shorten the distance for Li ion transport, enhancing Li ion reversibility and kinetic properties. It is, therefore, demonstrated that carbon-coated α-Fe{sub 2}O{sub 3} nanofiber prepared under optimized conditions is a promising anode material candidate for LIBs. - Graphical abstract: Carbon-coated α-Fe{sub 2}O{sub 3} nanofibers are employed as anode material to achieve high and stable electrochemical performance for lithium-ion batteries, enhancing their commercial viability. - Highlights: • α-Fe{sub 2}O{sub 3}/C nanofibers were fabricated by electrospinning and thermal treatment. • α-Fe{sub 2}O{sub 3}/C nanofibers exhibit stable cyclability and good rate capability. • α-Fe{sub 2}O{sub 3}–C nanofibers maintain high capacity at 1000 mA g{sup −1} for 200 cycles. • A capacity retention of 99.2% is achieved by α-Fe{sub 2}O{sub 3}–C nanofibers after 200 cycles.

  10. Highly Active and Stable Fe-N-C Catalyst for Oxygen Depolarized Cathode Applications.

    Science.gov (United States)

    Li, Jingkun; Jia, Qingying; Ghoshal, Shraboni; Liang, Wentao; Mukerjee, Sanjeev

    2017-09-19

    Anion immunity toward the oxygen reduction reaction (ORR) has tremendous implications in electrocatalysis with applications for fuel cells, metal-air batteries, and oxygen depolarized cathodes (ODCs) in the anodic evolution of chlorine. The necessity of exploring ORR catalysts with immunity to anion adsorption is particularly significant considering that platinum group metal (PGM) catalysts are costly and highly vulnerable to impurities such as halides. Herein, we report a metal organic framework (MOF)-derived Fe-N-C catalyst that exhibits a dramatically improved half-wave potential of 240 mV compared to the state-of-the-art Rh x S y /C catalyst in a rotating disk electrode in the presence of Cl - . The Fe-N 4 active sites in Fe-N-C are intrinsically immune to Cl - poisoning, in contrast to Pt/C, which is severely susceptible to Cl - poisoning. As a result, the activity of Fe-N-C decreases only marginally in the presence of Cl - , far exceeding that of Pt/C. The viability of this catalyst as ODCs is further demonstrated in real-life hydrochloric acid electrolyzers using highly concentrated HCl solution saturated with Cl 2 gas as the electrolyte. The introduction of Fe-N-C materials as ODC catalysts here overcomes the limitations of (i) the low intrinsic ORR activity of Rh x S y /C as the state-of-the-art ODC catalyst; (ii) the vulnerability to Cl - poisoning of Pt/C as the state-of-the-art ORR catalyst; and (iii) the high cost of precious metals in these two materials, resulting in a cost-effective ODC catalyst with the overall performance exceeding that of all previously reported materials.

  11. Activated carbon derived from harmful aquatic plant for high stable supercapacitors

    Science.gov (United States)

    Li, Jiangfeng; Wu, Qingsheng

    2018-01-01

    Considering cost and environmental protection, the harmful aquatic plant altemanthera philoxeroides derived carbon material with super high specific surface area (2895 m2 g-1) is an ideal electrode material for supercapacitor. The structure and composition of these carbon materials were characterized by SEM, EDS, XPS and BET measurements. The obtained material exhibits a maximum specific capacitance of 275 F g-1 at 0.5 A g-1 and retains a capacitance of 210 F g-1 even at 50 A g-1. In addition, it also shows excellent capacity retention of 5000 cycles at 10 A g-1.

  12. Highly luminescent, stable, transparent and flexible perovskite quantum dot gels towards light-emitting diodes

    Science.gov (United States)

    Sun, Chun; Shen, Xinyu; Zhang, Yu; Wang, Yu; Chen, Xingru; Ji, Changyin; Shen, Hongzhi; Shi, Hengchong; Wang, Yiding; Yu, William W.

    2017-09-01

    By controlling the hydrolysis of alkoxysilanes, highly luminescent, transparent and flexible perovskite quantum dot (QD) gels were synthesized. The gels could maintain the structure without shrinking and exhibited excellent stability comparing to the QDs in solution. This in situ fabrication can be easily scaled up for large-area/volume gels. The gels integrated the merits of the polymer matrices to avoid the non-uniformity of light output, making it convenient for practical LED applications. Monochrome and white LEDs were fabricated using these QD gels; the LEDs exhibited broader color gamut, demonstrating better property in the backlight display application.

  13. Highly stable microtubular cells for portable solid oxide fuel cell applications

    OpenAIRE

    Monzón, Hernán; Laguna-Bercero, M. A.

    2016-01-01

    In this work, extruded support tubes based on Nickel Oxide-YSZ (yttria stabilized-zirconia) were manufactured by Powder Extrusion Moulding (PEM). An YSZ layer is then deposited by dip coating as the electrolyte and subsequently, standard La0.8Sr0.2MnO3-δ (LSM)/YSZ composites were deposited by dip coating as oxygen electrodes. Microstructure of the anode support was optimized in order to achieve the maximum fuel utilization and as a consequence, a high performance of the cells. Experiments as ...

  14. Atomic force microscope studies of fullerene films - Highly stable C60 fcc (311) free surfaces

    Science.gov (United States)

    Snyder, Eric J.; Tong, William M.; Williams, R. S.; Anz, Samir J.; Anderson, Mark S.

    1991-01-01

    Atomic force microscopy and X-ray diffractometry were used to study 1500 A-thick films of pure C60 grown by sublimation in ultrahigh vacuum onto a CaF2 (111) substrte. Topographs of the films did not reveal the expected close-packed structures, but they showed instead large regions that correspond to a face-centered cubic (311) surface and distortions of this surface. The open (311) structure may have a relatively low free energy because the low packing density contributes to a high entropy of the exposed surface.

  15. Extremely stable soluble high molecular mass multi-protein complex with DNase activity in human placental tissue.

    Directory of Open Access Journals (Sweden)

    Evgeniya E Burkova

    Full Text Available Human placenta is an organ which protects, feeds, and regulates the grooving of the embryo. Therefore, identification and characterization of placental components including proteins and their multi-protein complexes is an important step to understanding the placenta function. We have obtained and analyzed for the first time an extremely stable multi-protein complex (SPC, ∼ 1000 kDa from the soluble fraction of three human placentas. By gel filtration on Sepharose-4B, the SPC was well separated from other proteins of the placenta extract. Light scattering measurements and gel filtration showed that the SPC is stable in the presence of NaCl, MgCl2, acetonitrile, guanidinium chloride, and Triton in high concentrations, but dissociates efficiently in the presence of 8 M urea, 50 mM EDTA, and 0.5 M NaCl. Such a stable complex is unlikely to be a casual associate of different proteins. According to SDS-PAGE and MALDI mass spectrometry data, this complex contains many major glycosylated proteins with low and moderate molecular masses (MMs 4-14 kDa and several moderately abundant (79.3, 68.5, 52.8, and 27.2 kDa as well as minor proteins with higher MMs. The SPC treatment with dithiothreitol led to a disappearance of some protein bands and revealed proteins with lower MMs. The SPCs from three placentas efficiently hydrolyzed plasmid supercoiled DNA with comparable rates and possess at least two DNA-binding sites with different affinities for a 12-mer oligonucleotide. Progress in study of placental protein complexes can promote understanding of their biological functions.

  16. Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164.

    Science.gov (United States)

    Sacchi, Veronica; Mittermayr, Rainer; Hartinger, Joachim; Martino, Mikaël M; Lorentz, Kristen M; Wolbank, Susanne; Hofmann, Anna; Largo, Remo A; Marschall, Jeffrey S; Groppa, Elena; Gianni-Barrera, Roberto; Ehrbar, Martin; Hubbell, Jeffrey A; Redl, Heinz; Banfi, Andrea

    2014-05-13

    Clinical trials of therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery failed to show efficacy. Major challenges include the need to precisely control in vivo distribution of growth factor dose and duration of expression. Recombinant VEGF protein delivery could overcome these issues, but rapid in vivo clearance prevents the stabilization of induced angiogenesis. Here, we developed an optimized fibrin platform for controlled delivery of recombinant VEGF, to robustly induce normal, stable, and functional angiogenesis. Murine VEGF164 was fused to a sequence derived from α2-plasmin inhibitor (α2-PI1-8) that is a substrate for the coagulation factor fXIIIa, to allow its covalent cross-linking into fibrin hydrogels and release only by enzymatic cleavage. An α2-PI1-8-fused variant of the fibrinolysis inhibitor aprotinin was used to control the hydrogel degradation rate, which determines both the duration and effective dose of factor release. An optimized aprotinin-α2-PI1-8 concentration ensured ideal degradation over 4 wk. Under these conditions, fibrin-α2-PI1-8-VEGF164 allowed exquisitely dose-dependent angiogenesis: concentrations ≥25 μg/mL caused widespread aberrant vascular structures, but a 500-fold concentration range (0.01-5.0 μg/mL) induced exclusively normal, mature, nonleaky, and perfused capillaries, which were stable after 3 mo. Optimized delivery of fibrin-α2-PI1-8-VEGF164 was therapeutically effective both in ischemic hind limb and wound-healing models, significantly improving angiogenesis, tissue perfusion, and healing rate. In conclusion, this optimized platform ensured (i) controlled and highly tunable delivery of VEGF protein in ischemic tissue and (ii) stable and functional angiogenesis without introducing genetic material and with a limited and controllable duration of treatment. These findings suggest a strategy to improve safety and efficacy of therapeutic angiogenesis.

  17. Layered bismuth selenide utilized as hole transporting layer for highly stable organic photovoltaics

    KAUST Repository

    Yuan, Zhongcheng

    2015-11-01

    Abstract Layered bismuth selenide (L-Bi2Se3) nanoplates were implemented as hole transporting layers (HTLs) for inverted organic solar cells. Device based on L-Bi2Se3 showed increasing power conversion efficiency (PCE) during ambient condition storage process. A PCE of 4.37% was finally obtained after 5 days storage, which outperformed the ones with evaporated-MoO3 using poly(3-hexylthiophene) (P3HT) as donor material and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor. The improved device efficiency can be attributed to the high conductivity and increasing work function of L-Bi2Se3. The work function of L-Bi2Se3 increased with the storage time in ambient condition due to the oxygen atom doping. Ultraviolet photoelectron spectroscopy and high resolution X-ray photoelectron spectroscopy were conducted to verify the increased work function, which originated from the p-type doping process. The device based on L-Bi2Se3 exhibited excellent stability in ambient condition up to 4 months, which was much improved compared to the device based on traditional HTLs. © 2015 Elsevier B.V.

  18. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector

    Science.gov (United States)

    Ludwig, D. L.; Bruschi, C. V.

    1991-01-01

    The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.

  19. Novel highly dispersible, thermally stable core/shell proppants for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Childers, Ian M.; Endres, Mackenzie; Burns, Carolyne; Garcia, Benjamin J.; Liu, Jian; Wietsma, Thomas W.; Bonneville, Alain; Moore, Joseph; Leavy, Ian I.; Zhong, Lirong; Schaef, Herbert T.; Fu, Li; Wang, Hong-Fei; Fernandez, Carlos A.

    2017-11-01

    The use of proppants during reservoir stimulation in tight oil and gas plays requires the introduction of highly viscous fluids to transport the proppants (µm–mm) with the fracturing fluid. The highly viscous fluids required result in increased pump loads and energy costs. Furthermore, although proppant deployment with fracturing fluids is a standard practice for unconventional oil and gas stimulation operations, there are only a few examples in the US of the applying proppant technology to geothermal energy production. This is due to proppant dissolution, proppant flowback and loss of permeability associated with the extreme temperatures found in enhanced geothermal systems (EGS). This work demonstrates proof-of-concept of a novel, CO2-responsive, lightweight sintered-bauxite/polymer core/shell proppant. The polymer shell has two main roles; 1) increase the stability of the proppant dispersion in water without the addition of rheology modifiers, and 2) once at the fracture network react with CO2 to promote particle aggregation and prop fractures open. In this work, both of these roles are demonstrated together with the thermal and chemical stability of the materials showing the potential of these CO2-responsive proppants as an alternative proppant technology for geothermal and unconventional oil/gas applications.

  20. Formation mechanism of incorporating metal nanoparticles into highly stable metal-organic-frameworks

    Science.gov (United States)

    Tang, Yang

    Incorporating shape and size controlled metal nanoparticles (NPs) into metal-organic-frameworks (MOFs) shows great potential in heterogeneous catalysis. The combination of ordered nanoporous structure of MOFs and the well-defined surfaces of metal NPs provides a new tool to modulate the catalysis on the metal surface. Due to the large pore size, framework flexibility and selective interaction with gas molecules, MOFs have been widely used for gas storage with high selectivity. Among which have been developed to date, Zeolitic Imidazolate Frameworks-8 (ZIF-8) and UiO-66 show advantageous properties. The solvent resistivity and high thermal stability makes them stand out to be good candidates as shell materials in core shell catalysts. In our work, we developed an efficient way to create a yolk-shell structure of Pd nanoparticles in ZIF-8 and, at the same time, a method to incorporate the shape/size controlled Pt nanoparticles into well-defined octahedral UiO-66 nanocrystals with the control of concentration and dispersion. The formation mechanisms of both yolk-shell and core-shell structures were also studied in the work.

  1. Syntheses and properties of several metastable and stable hydrides derived from intermetallic compounds under high hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, S.M., E-mail: sfilipek@unipress.waw.pl [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Paul-Boncour, V. [ICMPE-CMTR, CNRS-UPEC, 2-8 rue Henri Dunant, 94320 Thiais (France); Liu, R.S. [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Jacob, I. [Unit Nuclear Eng., Ben Gurion University of the Negev, Beer-Sheva (Israel); Tsutaoka, T. [Dept. of Sci. Educ., Grad. School of Educ., Hiroshima University, Hiroshima (Japan); Budziak, A. [Institute of Nuclear Physics PAS, 31-342 Kraków (Poland); Morawski, A. [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Sugiura, H. [Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Zachariasz, P. [Institute of Electron Technology Cracow Division, ul. Zablocie 39, 30-701 Krakow (Poland); Dybko, K. [Institute of Physics, PAS, 02-668 Warsaw (Poland); Diduszko, R. [Tele and Radio Research Institute, ul. Ratuszowa 11, Warsaw (Poland)

    2016-12-01

    Brief summary of our former work on high hydrogen pressure syntheses of novel hydrides and studies of their properties is supplemented with new results. Syntheses and properties of a number of hydrides (unstable, metastable or stable in ambient conditions) derived under high hydrogen pressure from intermetallic compounds, like MeT{sub 2}, MeNi{sub 5}, Me{sub 7}T{sub 3}, Y{sub 6}Mn{sub 23} and YMn{sub 12} (where Me = zirconium, yttrium or rare earth; T = transition metal) are presented. Stabilization of ZrFe{sub 2}H{sub 4} due to surface phenomena was revealed. Unusual role of manganese in hydride forming processes is pointed out. Hydrogen induced phase transitions, suppression of magnetism, antiferromagnetic-ferromagnetic and metal-insulator or semimetal-metal transitions are described. Equations of state (EOS) of hydrides submitted to hydrostatic pressures up to 30 GPa are presented and discussed.

  2. Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4.

    Science.gov (United States)

    McKenna, Keith P; Hofer, Florian; Gilks, Daniel; Lazarov, Vlado K; Chen, Chunlin; Wang, Zhongchang; Ikuhara, Yuichi

    2014-12-10

    The complex and intriguing properties of the ferrimagnetic half metal magnetite (Fe3O4) are of continuing fundamental interest as well as being important for practical applications in spintronics, magnetism, catalysis and medicine. There is considerable speculation concerning the role of the ubiquitous antiphase boundary (APB) defects in magnetite, however, direct information on their structure and properties has remained challenging to obtain. Here we combine predictive first principles modelling with high-resolution transmission electron microscopy to unambiguously determine the three-dimensional structure of APBs in magnetite. We demonstrate that APB defects on the {110} planes are unusually stable and induce antiferromagnetic coupling between adjacent domains providing an explanation for the magnetoresistance and reduced spin polarization often observed. We also demonstrate how the high stability of the {110} APB defects is connected to the existence of a metastable bulk phase of Fe3O4, which could be stabilized by strain in films or nanostructures.

  3. New Measurements of s-Process Enrichments in Planetary Nebulae from High-Resolution Near-Infrared Spectra

    Science.gov (United States)

    Dinerstein, Harriet L.; Karakas, Amanda; Sterling, Nicholas C.; Kaplan, Kyle

    2017-06-01

    We present preliminary results from a high-spectral resolution survey of near-infrared emission lines of neutron-capture elements in planetary nebulae using the Immersion Grating Infrared Spectrometer, IGRINS (Park et al. 2014, SPIE. 9147, 1), which spans the H- and K-bands at spectral resolving power R ≈ 45,000. Both the [Kr III] and [Se IV] lines identified by Dinerstein (2001, ApJL, 550, L223) are seen in nearly all of an initial sample of ≈ 15 nebulae, with improved accuracy over earlier studies based on lower-resolution data (Sterling & Dinerstein 2008, ApJS, 174, 158; Sterling, Porter, & Dinerstein 2015, ApJS, 218, 25). Several new detections of the [Rb IV], [Cd IV], and [Ge VI] lines identified by Sterling et al. (2016, ApJL, 819, 9), as well as a [Br V] line, were made. About half the objects in this sample descend from stars with [Fe/H] = -0.7 ± 0.2 dex, while the remainder have -0.3 ≤ [Fe/H] ≤ 0. We compare the measured enhancements of Se, Kr, Rb, and Cd with predictions of their production by slow-neutron captures (the s-process) during the AGB from theoretical evolutionary models for the corresponding metallicities and various initial masses. New nucleosynthesis calculations were carried out for [Fe/H] = -0.7 for initial masses between 1.1 and 3 M⊙ using the Monash stellar evolution and post-processing codes described in Karakas & Lugaro (2016, ApJ, 825, 26), which provides the nucleosynthesis predictions for the metal-rich end of our sample. The Monash models predict enrichments larger by factors of two or more than those from FRUITY (Cristallo et al. 2015, ApJS, 219, 40) and NuGRID (Pignatari et al. 2016, ApJS, 225, 24) models for the same masses and metallicities. We find that the Monash models are in substantially better agreement than the others with the abundances derived from the IGRINS observations.This work is based on data taken at the McDonald Observatory of the University of Texas at Austin. IGRINS was developed with support from

  4. Highly Stable Porous Covalent Triazine-Piperazine Linked Nanoflower as a Feasible Adsorbent for Flue Gas CO2 Capture

    KAUST Repository

    Das, Swapan Kumar

    2016-02-11

    Here, we report a porous covalent triazine-piperazine linked polymer (CTPP) featuring 3D nanoflower morphology and enhanced capture/removal of CO2, CH4 from air (N2), essential to control greenhouse gas emission and natural gas upgrading. 13C solid-state NMR and FTIR analyses and CHN and X-ray photoelectron spectroscopy (XPS) elemental analyses confirmed the integration of triazine and piperazine components in the network. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) analyses revealed a relatively uniform particle size of approximately 400 to 500 nm with 3D nanoflower microstructure, which was formed by the self-assembly of interwoven and slight bent nanoflake components. The material exhibited outstanding chemical robustness under acidic and basic medium and high thermal stability up to 773 K. The CTPP possess high surface area (779 m2/g) and single-component gas adsorption study exhibited enhanced CO2 and CH4 uptake of 3.48 mmol/g, 1.09 mmol/g, respectively at 273 K, 1 bar; coupled with high sorption selectivities for CO2/N2 and CH4/N2 of 128 and 17, respectively. The enriched Lewis basicity of the CTPP favors the interaction with CO2, which results in an enhanced CO2 adsorption capacity and high CO2/N2 selectivity. The binary mixture breakthrough study for the flue gas composition at 298 K showed a high CO2/N2 selectivity of 82. CO2 heats of adsorption for the CTPP (34 kJ mol−1) were realized at the borderline between strong physisorption and weak chemisorption (QstCO2; 25−50 kJ mol−1) and low Qst value for N2 (22.09 kJ mol−1), providing the ultimate validation for the high selectivity of CO2 over N2.

  5. Preparation of highly aligned silicon oxide nanowires with stable intensive photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansurov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Beall, Gary W. [Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2010-02-15

    In this work we report the successful formation of highly aligned vertical silicon oxide nanowires. The source of silicon was from the substrate itself without any additional source of silicon. X-ray measurement demonstrated that our nanowires are amorphous. Photoluminescence measurements were conducted through 18 months and indicated that there is a very good intensive emission peaks near the violet regions. The FTIR measurements indicated the existence of peaks at 463, 604, 795 and a wide peak at 1111 cm{sup -1} and this can be attributed to Si-O-Si and Si-O stretching vibrations. We also report the formation of the octopus-like silicon oxide nanowires and the growth mechanism of these structures was discussed.

  6. Study of Stable Cathodes and Electrolytes for High Specific Density Lithium-Air Battery

    Science.gov (United States)

    Hernandez-Lugo, Dionne M.; Wu, James; Bennett, William; Ming, Yu; Zhu, Yu

    2015-01-01

    Future NASA missions require high specific energy battery technologies, greater than 400 Wh/kg. Current NASA missions are using "state-of-the-art" (SOA) Li-ion batteries (LIB), which consist of a metal oxide cathode, a graphite anode and an organic electrolyte. NASA Glenn Research Center is currently studying the physical and electrochemical properties of the anode-electrolyte interface for ionic liquid based Li-air batteries. The voltage-time profiles for Pyr13FSI and Pyr14TFSI ionic liquids electrolytes studies on symmetric cells show low over-potentials and no dendritic lithium morphology. Cyclic voltammetry measurements indicate that these ionic liquids have a wide electrochemical window. As a continuation of this work, sp2 carbon cathode and these low flammability electrolytes were paired and the physical and electrochemical properties were studied in a Li-air battery system under an oxygen environment.

  7. Thermally Stable Ohmic Contacts on Silicon Carbide Developed for High- Temperature Sensors and Electronics

    Science.gov (United States)

    Okojie, Robert S.

    2001-01-01

    The NASA aerospace program, in particular, requires breakthrough instrumentation inside the combustion chambers of engines for the purpose of, among other things, improving computational fluid dynamics code validation and active engine behavioral control (combustion, flow, stall, and noise). This environment can be as high as 600 degrees Celsius, which is beyond the capability of silicon and gallium arsenide devices. Silicon-carbide- (SiC-) based devices appear to be the most technologically mature among wide-bandgap semiconductors with the proven capability to function at temperatures above 500 degrees Celsius. However, the contact metalization of SiC degrades severely beyond this temperature because of factors such as the interdiffusion between layers, oxidation of the contact, and compositional and microstructural changes at the metal/semiconductor interface. These mechanisms have been proven to be device killers. Very costly and weight-adding packaging schemes that include vacuum sealing are sometimes adopted as a solution.

  8. Carbon dioxide selective adsorption within a highly stable mixed-ligand Zeolitic Imidazolate Framework

    KAUST Repository

    Huang, Lin

    2014-08-01

    A new mixed-ligand Zeolitic Imidazolate Framework Zn4(2-mbIm) 3(bIm)5·4H2O (named JUC-160, 2-mbIm = 2-methylbenzimidazole, bIm = benzimidazole and JUC = Jilin University China) was synthesized with a solvothermal reaction of Zn(NO3) 2·6H2O, bIm and 2-mbIm in DMF solution at 180 °C. Topological analysis indicated that JUC-160 has a zeolite GIS (gismondine) topology. Study of the gas adsorption and thermal and chemical stability of JUC-160 demonstrated its selective adsorption property for carbon dioxide, high thermal stability, and remarkable chemical resistance to boiling alkaline water and organic solvent for up to one week. © 2014 Elsevier B.V.

  9. Stable amorphous georgeite as a precursor to a high-activity catalyst

    DEFF Research Database (Denmark)

    Kondrat, Simon A.; Smith, Paul J.; Wells, Peter P.

    2016-01-01

    Copper and zinc form an important group of hydroxycarbonate minerals that include zincian malachite, aurichalcite, rosasite and the exceptionally rare and unstable-and hence little known and largely ignored-georgeite. The first three of these minerals are widely used as catalyst precursors...... for the industrially important methanol-synthesis and low-temperature water-gas shift (LTS) reactions, with the choice of precursor phase strongly influencing the activity of the final catalyst. The preferred phase is usually zincian malachite. This is prepared by a co-precipitation method that involves the transient...... formation of georgeite; with few exceptions it uses sodium carbonate as the carbonate source, but this also introduces sodium ions-a potential catalyst poison. Here we show that supercritical antisolvent (SAS) precipitation using carbon dioxide (refs 13, 14), a process that exploits the high diffusion rates...

  10. Stable Isolation of Phycocyanin from Spirulina platensis Associated with High-Pressure Extraction Process

    Science.gov (United States)

    Seo, Yong Chang; Choi, Woo Seok; Park, Jong Ho; Park, Jin Oh; Jung, Kyung-Hwan; Lee, Hyeon Yong

    2013-01-01

    A method for stably purifying a functional dye, phycocyanin from Spirulina platensis was developed by a hexane extraction process combined with high pressure. This was necessary because this dye is known to be very unstable during normal extraction processes. The purification yield of this method was estimated as 10.2%, whose value is 3%–5% higher than is the case from another conventional separation method using phosphate buffer. The isolated phycocyanin from this process also showed the highest purity of 0.909 based on absorbance of 2.104 at 280 nm and 1.912 at 620 nm. Two subunits of phycocyanin namely α-phycocyanin (18.4 kDa) and β-phycocyanin (21.3 kDa) were found to remain from the original mixtures after being extracted, based on SDS-PAGE analysis, clearly demonstrating that this process can stably extract phycocyanin and is not affected by extraction solvent, temperature, etc. The stability of the extracted phycocyanin was also confirmed by comparing its DPPH (α,α-diphenyl-β-picrylhydrazyl) scavenging activity, showing 83% removal of oxygen free radicals. This activity was about 15% higher than that of commercially available standard phycocyanin, which implies that the combined extraction method can yield relatively intact chromoprotein through absence of degradation. The results were achieved because the low temperature and high pressure extraction effectively disrupted the cell membrane of Spirulina platensis and degraded less the polypeptide subunits of phycocyanin (which is a temperature/pH-sensitive chromoprotein) as well as increasing the extraction yield. PMID:23325046

  11. Stable isolation of phycocyanin from Spirulina platensis associated with high-pressure extraction process.

    Science.gov (United States)

    Seo, Yong Chang; Choi, Woo Seok; Park, Jong Ho; Park, Jin Oh; Jung, Kyung-Hwan; Lee, Hyeon Yong

    2013-01-16

    A method for stably purifying a functional dye, phycocyanin from Spirulina platensis was developed by a hexane extraction process combined with high pressure. This was necessary because this dye is known to be very unstable during normal extraction processes. The purification yield of this method was estimated as 10.2%, whose value is 3%-5% higher than is the case from another conventional separation method using phosphate buffer. The isolated phycocyanin from this process also showed the highest purity of 0.909 based on absorbance of 2.104 at 280 nm and 1.912 at 620 nm. Two subunits of phycocyanin namely α-phycocyanin (18.4 kDa) and β-phycocyanin (21.3 kDa) were found to remain from the original mixtures after being extracted, based on SDS-PAGE analysis, clearly demonstrating that this process can stably extract phycocyanin and is not affected by extraction solvent, temperature, etc. The stability of the extracted phycocyanin was also confirmed by comparing its DPPH (α,α-diphenyl-β-picrylhydrazyl) scavenging activity, showing 83% removal of oxygen free radicals. This activity was about 15% higher than that of commercially available standard phycocyanin, which implies that the combined extraction method can yield relatively intact chromoprotein through absence of degradation. The results were achieved because the low temperature and high pressure extraction effectively disrupted the cell membrane of Spirulina platensis and degraded less the polypeptide subunits of phycocyanin (which is a temperature/pH-sensitive chromoprotein) as well as increasing the extraction yield.

  12. Stable Isolation of Phycocyanin from Spirulina platensis Associated with High-Pressure Extraction Process

    Directory of Open Access Journals (Sweden)

    Kyung-Hwan Jung

    2013-01-01

    Full Text Available A method for stably purifying a functional dye, phycocyanin from Spirulina platensis was developed by a hexane extraction process combined with high pressure. This was necessary because this dye is known to be very unstable during normal extraction processes. The purification yield of this method was estimated as 10.2%, whose value is 3%–5% higher than is the case from another conventional separation method using phosphate buffer. The isolated phycocyanin from this process also showed the highest purity of 0.909 based on absorbance of 2.104 at 280 nm and 1.912 at 620 nm. Two subunits of phycocyanin namely α-phycocyanin (18.4 kDa and β-phycocyanin (21.3 kDa were found to remain from the original mixtures after being extracted, based on SDS-PAGE analysis, clearly demonstrating that this process can stably extract phycocyanin and is not affected by extraction solvent, temperature, etc. The stability of the extracted phycocyanin was also confirmed by comparing its DPPH (α,α-diphenyl-β-picrylhydrazyl scavenging activity, showing 83% removal of oxygen free radicals. This activity was about 15% higher than that of commercially available standard phycocyanin, which implies that the combined extraction method can yield relatively intact chromoprotein through absence of degradation. The results were achieved because the low temperature and high pressure extraction effectively disrupted the cell membrane of Spirulina platensis and degraded less the polypeptide subunits of phycocyanin (which is a temperature/pH-sensitive chromoprotein as well as increasing the extraction yield.

  13. Using initial field campaigns for optimal placement of high resolution stable water isotope and water chemistry measurements

    Science.gov (United States)

    Sahraei, Amirhossein; Kraft, Philipp; Windhorst, David; Orlowski, Natalie; Bestian, Konrad; Holly, Hartmut; Breuer, Lutz

    2017-04-01

    Understanding hydrological processes and flow paths is of major importance for the management of catchment water resources. The power of stable isotopes as a tracer and to encoder environmental information provides the opportunity to assess hydrological flow paths, catchment residence times, landscape influences, and the origin of water resources in catchments. High resolution isotope sampling of multiple sources ensures detailed comprehension of hydrological and biogeochemical interactions within catchments. Technical advances over the last years have made it feasible to directly measure stable water isotope signatures of various sources online in a high temporal resolution during field campaigns. However, measuring long time series in a high temporal resolutions are still costly and can only be performed at few places in a study area. The identification of locations where measurements should be implemented is still challenging. Our study is conducted in the developed landscape of the Schwingbach catchment located in central Germany. A reconnaissance assessment of the spatial distribution of runoff generating areas was performed in a short time frame prior to the selection of the final sampling site. We used a combination of: water quality snapshot sampling to identify spatial differences and potential hot spots, event-based hydrograph separation to differentiate possible flow paths, consecutive runoff measurements by salt dilution to identify gaining and loosing reaches, field reconnaissance mapping of potentially variable source areas in the riparian zone, infrared imagery of stream surface temperatures to locate potential concentrated groundwater discharge to the stream, and groundwater table mapping to identify sites where different dominant processes (e.g., groundwater flow, groundwater-surface water interactions and runoff generation) can be expected. First results indicated that precipitation and stream water are significantly different in isotopic

  14. Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

    2008-07-01

    On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

  15. Investigative studies on the effects of cadmium rabbits on high enriched uranium-fueled and low enriched uranium-fueled cores of Ghana Research Reactor-1 using MCNP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Boffie, J., E-mail: jboffie@yahoo.com [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana); National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Akaho, E.H.K. [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana); Nyarko, B.J.B.; Odoi, H.C.; Tuffour-Achampong, K.; Abrefah, R.G. [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana); National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana)

    2013-12-15

    Highlights: • The operating parameters for both the HEU core and proposed LEU core were similar. • The length of the Cd in the capsules must be increased for its use in the LEU core. • Cd rabbits can emergently be used to shut down MNSRs. - Abstract: Miniature Neutron Source Reactors (MNSRs) are noted to be among highly safe research reactors. However, because of its use of one control rod for reactivity control and shutdown purposes, alternative methods of shutting it down are important. The Ghana MNSR uses four cadmium rabbits of approximate dimensions 6.5 cm × 5.0 cm × 0.1 cm and mass of 9.48 g each to emergently shut down the reactor. The Monte Carlo N-Particle code; version 5, (MCNP5) was used to design the high enriched uranium (HEU) and low enriched uranium (LEU) cores of the MNSR with four cadmium rabbits inserted in four inner irradiation sites of each core. The operating parameters and shutdown parameters for both cores with the central control rod (CCR) either fully withdrawn or fully inserted had similar results with the HEU core having slightly better results in terms of safety. However, the results show that the four inserted cadmium rabbits make the HEU core subcritical whiles in the LEU core, it still remains critical (k{sub eff} = 1.00005 ± 0.00007). The length of the cadmium material in each cadmium rabbit must therefore be increased by at least 0.5 cm in order to attain subcriticality (k{sub eff} = 0.99989 ± 0.00006) and shutdown margin of 0.11 mk when inserted in the LEU core.

  16. Highly Stable Nanocontainer of APTES-Anchored Layered Titanate Nanosheet for Reliable Protection/Recovery of Nucleic Acid

    Science.gov (United States)

    Kim, Tae Woo; Kim, In Young; Park, Dae-Hwan; Choy, Jin-Ho; Hwang, Seong-Ju

    2016-02-01

    A universal technology for the encapsulative protection of unstable anionic species by highly stable layered metal oxide has been developed via the surface modification of a metal oxide nanosheet. The surface anchoring of (3-aminopropyl)triethoxysilane (APTES) on exfoliated titanate nanosheet yields a novel cationic metal oxide nanosheet, which can be universally used for the hybridization with various biological and inorganic anions. The encapsulation of deoxyribonucleic acid (DNA) in the cationic APTES-anchored titanate lattice makes possible the reliable long-term protection of DNA against enzymatic, chemical, and UV-vis light corrosions. The encapsulated DNA can be easily released from the titanate lattice via sonication, underscoring the functionality of the cationic APTES-anchored titanate nanosheet as a stable nanocontainer for DNA. The APTES-anchored titanate nanosheet can be also used as an efficient CO2 adsorbent and a versatile host material for various inorganic anions like polyoxometalates, leading to the synthesis of novel intercalative nanohybrids with unexplored properties and useful functionalities.

  17. Highly Water-Stable Novel Lanthanide Wheel Cluster Organic Frameworks Featuring Coexistence of Hydrophilic Cagelike Chambers and Hydrophobic Nanosized Channels.

    Science.gov (United States)

    Zhou, Yuan-Yuan; Shi, Yang; Geng, Bing; Bo, Qi-Bing

    2017-02-15

    In attempts to investigate the potential luminescent sensing materials for sensitive detection of environmental pollutants, a new family of lanthanide wheel cluster organic frameworks (Ln-WCOFs) UJN-Ln4 has been constructed by employing one of the cycloalkane dicarboxylic acid derivatives. Adopting different conformations, the ligand links Ln 4 second building units (SBUs) and Ln 24 tertiary building units (TBUs) to form a unique wheel cluster layer-pillared 3D framework featuring the coexistence of hydrophobic nanosized channels and trigonal antiprism arrays with hydrophilic cagelike chambers. Apart from charming structures, isostructural UJN-Ln4 displays interesting porous, water-stable features. Systematic luminescence studies demonstrate that solvent water molecules can enhance the emission intensity of solid-state UJN-Eu4. Acting as a recyclable luminescent probe, water-stable luminescent UJN-Eu4 exhibits superior "turn-off" detection for Fe 3+ and Cu 2+ ions in aqueous solutions. Due to the nanosized hydrophobic channels, UJN-Eu4 also shows highly sensitive sensing of sodium dodecyl benzenesulfonate (SDBS) via luminescence "turn-on" respondence, representing the first example of quantitatively detecting SDBS in aqueous solutions by employing luminescent lanthanide frameworks as fluorescent sensors. The results also open up the exploration of novel luminescent Ln-WCOFs exhibiting unique applications in sensitive detecting of harmful pollutants in aquatic environments.

  18. Highly stable ceria-zirconia-yttria supported Ni catalysts for syngas production by CO2 reforming of methane

    Science.gov (United States)

    Muñoz, M. A.; Calvino, J. J.; Rodríguez-Izquierdo, J. M.; Blanco, G.; Arias, D. C.; Pérez-Omil, J. A.; Hernández-Garrido, J. C.; González-Leal, J. M.; Cauqui, M. A.; Yeste, M. P.

    2017-12-01

    Ni/CeO2/YSZ and Ni/Ce0.15Zr0.85O2 have been investigated as catalysts for the dry reforming of methane at 750 °C. Ni was incorporated by the impregnation method. The supports were previously activated by using a thermo-chemical protocol consisting on a severe reduction (H2/Ar) at 950 °C followed by a mild oxidation (O2/He) at 500 °C. According to TPR results, this protocol leads to the development of unique redox properties in the case of the CeO2/YSZ oxide. Two types of CO2 + CH4 (1:1) mixtures (helium-diluted and undiluted) were used to feed the reactor. When using the Ni/Ce0.15Zr0.85O2 catalyst with undiluted feed, the reactor became plugged by coke. By contrast, Ni/CeO2/YSZ behaved as an active and stable catalyst even under the most severe operation conditions. The characterization of the spent Ni/CeO2/YSZ using TGA, TEM, Raman and XPS spectroscopy revealed that only a limited amount of graphitic carbon, in form of nanotubes, was formed. No evidences of deactivating carbonaceous forms were obtained. The singular redox properties of the activated CeO2/YSZ oxides are proposed as a key for designing Ni catalysts highly stable in reforming processes.

  19. Utilization of Cow Milk Enriched with Conjugated Linoleic Acid to Decrease Body Weight, Cholesterol, Low Density Lipoprotein and to Increase Blood High Density Lipoprotein

    OpenAIRE

    Suhartati, FM; Suryapratama, W; Rahayu, S

    2012-01-01

    An experiment to investigate the ability of cow milk enriched with conjugated linoleic acid to decrease body weight, total cholesterol, blood Low Density Lipoprotein (LDL), and to increase blood High Density Lipoprotein (HDL) has been conducted using in vivo experimental method. Research material consisted of 40 8-week-old white female rats (Rattus norvegicus) of Wistar strain (as an animal model). The method used was an experimental method with a Completely Randomized Design. The treatments ...

  20. Microwave-Assisted Synthesis of Stable and Highly Active Ir Oxohydroxides for Electrochemical Oxidation of Water.

    Science.gov (United States)

    Massué, Cyriac; Huang, Xing; Tarasov, Andrey; Ranjan, Chinmoy; Cap, Sébastien; Schlögl, Robert

    2017-05-09

    Water splitting for hydrogen production in acidic media has been limited by the poor stability of the anodic electrocatalyst devoted to the oxygen evolution reaction (OER). To help circumvent this problem we have synthesized a class of novel Ir oxohydroxides by rapid microwave-asisted hydrothermal synthesis, which bridges the gap between electrodeposited amorphous IrOx films and crystalline IrO2 electrocatalysts prepared by calcination routes. For electrode loadings two orders of magnitude below current standards, the synthesized compounds present an unrivalled combination of high activity and stability under commercially relevant OER conditions in comparison to reported benchmarks, without need for pretreatment. The best compound achieved a lifetime 33 times longer than the best commercial Ir benchmark. Thus, the reported efficient synthesis of an Ir oxohydroxide phase with superior intrinsic OER performance constitutes a major step towards the targeted design of cost-efficient Ir based OER electrocatalysts for acidic media. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Intrinsic Flame-Retardant and Thermally Stable Epoxy Endowed by a Highly Efficient, Multifunctional Curing Agent

    Directory of Open Access Journals (Sweden)

    Chunlei Dong

    2016-12-01

    Full Text Available It is difficult to realize flame retardancy of epoxy without suffering much detriment in thermal stability. To solve the problem, a super-efficient phosphorus-nitrogen-containing reactive-type flame retardant, 10-(hydroxy(4-hydroxyphenylmethyl-5,10-dihydrophenophosphazinine-10-oxide (HB-DPPA is synthesized and characterized. When it is used as a co-curing agent of 4,4′-methylenedianiline (DDM for curing diglycidyl ether of bisphenol A (DGEBA, the cured epoxy achieves UL-94 V-0 rating with the limiting oxygen index of 29.3%. In this case, the phosphorus content in the system is exceptionally low (0.18 wt %. To the best of our knowledge, it currently has the highest efficiency among similar epoxy systems. Such excellent flame retardancy originates from the exclusive chemical structure of the phenophosphazine moiety, in which the phosphorus element is stabilized by the two adjacent aromatic rings. The action in the condensed phase is enhanced and followed by pressurization of the pyrolytic gases that induces the blowing-out effect during combustion. The cone calorimeter result reveals the formation of a unique intumescent char structure with five discernible layers. Owing to the super-efficient flame retardancy and the rigid molecular structure of HB-DPPA, the flame-retardant epoxy acquires high thermal stability and its initial decomposition temperature only decreases by 4.6 °C as compared with the unmodified one.

  2. High and stable substrate specificities of microorganisms in enhanced biological phosphorus removal plants.

    Science.gov (United States)

    Kindaichi, Tomonori; Nierychlo, Marta; Kragelund, Caroline; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2013-06-01

    Microbial communities are typically characterized by conditions of nutrient limitation so the availability of the resources is likely a key factor in the niche differentiation across all species and in the regulation of the community structure. In this study we have investigated whether four species exhibit any in situ short-term changes in substrate uptake pattern when exposed to variations in substrate and growth conditions. Microautoradiography was combined with fluorescence in situ hybridization to investigate in situ cell-specific substrate uptake profiles of four probe-defined coexisting species in a wastewater treatment plant with enhanced biological phosphorus removal. These were the filamentous 'Candidatus Microthrix' and Caldilinea (type 0803), the polyphosphate-accumulating organism 'Candidatus Accumulibacter', and the denitrifying Azoarcus. The experimental conditions mimicked the conditions potentially encountered in the respective environment (starvation, high/low substrate concentration, induction with specific substrates, and single/multiple substrates). The results showed that each probe-defined species exhibited very distinct and constant substrate uptake profile in time and space, which hardly changed under any of the conditions tested. Such niche partitioning implies that a significant change in substrate composition will be reflected in a changed community structure rather than the substrate uptake response from the different species. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. High and Stable Ionic Conductivity in 2D Nanofluidic Ion Channels between Boron Nitride Layers.

    Science.gov (United States)

    Qin, Si; Liu, Dan; Wang, Guang; Portehault, David; Garvey, Christopher J; Gogotsi, Yury; Lei, Weiwei; Chen, Ying

    2017-05-10

    Achieving a high rate of ionic transport through porous membranes and ionic channels is important in numerous applications ranging from energy storage to water desalination, but it still remains a challenge. Herein we show that ions can quickly pass through interlayer spaces in hydrated boron nitride (BN) membranes. Measurements of surface-charge governed ionic currents between BN nanosheets in a variety of salt solutions (KCl, NaCl and CaCl2) at low salt concentrations (<10-4 M) showed several orders of magnitude higher ionic conductivity compared to that of the bulk solution. Moreover, due to the outstanding chemical and thermal stability of BN, the ionic conduits remain fully functional at temperatures up to 90 °C. The BN conduits can operate in acidic and basic environments and do not degrade after immersing in solutions with extreme pH (pH ∼ 0 or 14) for 1 week. Those excellent properties make the BN ionic conduits attractive for applications in nanofluidic devices and membrane separation.

  4. On the Highly Stable Performance of Loss-Free Optical Burst Switching Networks

    Directory of Open Access Journals (Sweden)

    Milos Kozak

    2016-01-01

    Full Text Available Increase of bandwidth demand in data networks, driven by the continuous growth of the Internet and the increase of bandwidth greedy applications, raise the issue of how to support all the bandwidth requirements in the near future. Three optical switching paradigms have been defined and are being investigated: Optical Circuit Switching (OCS; Optical Packet Switching (OPS; and Optical Burst Switching (OBS. Among these paradigms, OBS is seen as the most appropriate solution today. However, OBS suffers from high burst loss as a result of contention in the bufferless mode of operation. This issue was investigated by Coutelen et al., 2009 who proposed the loss-free CAROBS framework whereby signal convertors of the optical signal to the electrical domain ensure electrical buffering. Convertors increase the network price which must be minimized to reduce the installation and operating costs of the CAROBS framework. An analysis capturing convertor requirements, with respect to the number of merging flows and CAROBS node offered load, was carried out. We demonstrated the convertor location significance, which led to an additional investigation of the shared wavelength convertors scenario. Shared wavelength convertors significantly decrease the number of required convertors and show great promise for CAROBS. Based on this study we can design a CAROBS network to contain a combination of simple and complex nodes that include none or some convertors respectively, a vital feature of network throughput efficiency and cost.

  5. Highly Stable Liquid Metal-Based Pressure Sensor Integrated with a Microfluidic Channel

    Directory of Open Access Journals (Sweden)

    Taekeon Jung

    2015-05-01

    Full Text Available Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98 using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30–1000 s−1. The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability.

  6. Crack-tips enriched platinum-copper superlattice nanoflakes as highly efficient anode electrocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Zheng, Lijun; Yang, Dachi; Chang, Rong; Wang, Chengwen; Zhang, Gaixia; Sun, Shuhui

    2017-07-06

    We have developed "crack-tips" and "superlattice" enriched Pt-Cu nanoflakes (NFs), benefiting from the synergetic effects of "crack-tips" and "superlattice crystals"; the Pt-Cu NFs exhibit 4 times higher mass activity, 6 times higher specific activity and 6 times higher stability than those of the commercial Pt/C catalyst, respectively. Meanwhile, the Pt-Cu NFs show more enhanced CO tolerance than the commercial Pt/C catalyst.

  7. Highly stable monodisperse PEGylated iron oxide nanoparticle aqueous suspensions: a nontoxic tracer for homogeneous magnetic bioassays

    Science.gov (United States)

    Lak, Aidin; Dieckhoff, Jan; Ludwig, Frank; Scholtyssek, Jan M.; Goldmann, Oliver; Lünsdorf, Heinrich; Eberbeck, Dietmar; Kornowski, Andreas; Kraken, Mathias; Litterst, F. J.; Fiege, Kathrin; Mischnick, Petra; Schilling, Meinhard

    2013-11-01

    Uniformly sized and shaped iron oxide nanoparticles with a mean size of 25 nm were synthesized via decomposition of iron-oleate. High resolution transmission electron microscopy and Mössbauer spectroscopy investigations revealed that the particles are spheres primarily composed of Fe3O4 with a small fraction of FeO. From Mössbauer and static magnetization measurements, it was deduced that the particles are superparamagnetic at room temperature. The hydrophobic particles were successfully transferred into water via PEGylation using nitrodopamine as an anchoring group. IR spectroscopy and thermogravimetric analysis showed the success and efficiency of the phase transfer reaction. After PEGylation, the particles retained monodispersity and their magnetic core remained intact as proven by photon cross-correlation spectroscopy, ac susceptibility, and transmission electron microscopy. The particle aqueous suspensions revealed excellent water stability over a month of monitoring and also against temperature up to 40 °C. The particles exhibited a moderate cytotoxic effect on in vitro cultured bone marrow-derived macrophages and no release of inflammatory or anti-inflammatory cytokines. The PEGylated particles were functionalized with Herceptin antibodies via a conjugation chemistry, their response to a rotating magnetic field was studied using a fluxgate-based setup and was compared with the one recorded for hydrophobic and PEGylated particles. The particle phase lag rose after labeling with Herceptin, indicating the successful conjugation of Herceptin antibodies to the particles.Uniformly sized and shaped iron oxide nanoparticles with a mean size of 25 nm were synthesized via decomposition of iron-oleate. High resolution transmission electron microscopy and Mössbauer spectroscopy investigations revealed that the particles are spheres primarily composed of Fe3O4 with a small fraction of FeO. From Mössbauer and static magnetization measurements, it was deduced that the

  8. Crystalline Oligo(ethylene sulfide) Domains Define Highly Stable Supramolecular Block Copolymer Assemblies.

    Science.gov (United States)

    Brubaker, Carrie E; Velluto, Diana; Demurtas, Davide; Phelps, Edward A; Hubbell, Jeffrey A

    2015-07-28

    With proper control over copolymer design and solvation conditions, self-assembled materials display impressive morphological variety that encompasses nanoscale colloids as well as bulk three-dimensional architectures. Here we take advantage of both hydrophobicity and crystallinity to mediate supramolecular self-assembly of spherical micellar, linear fibrillar, or hydrogel structures by a family of highly asymmetric poly(ethylene glycol)-b-oligo(ethylene sulfide) (PEG-OES) copolymers. Assembly structural polymorphism was achieved with modification of PEG-OES topology (linear versus multiarm) and with precise, monomer-by-monomer control of OES length. Notably, all three morphologies were accessed utilizing OES oligomers with degrees of polymerization as short as three. These exceptionally small assembly forming blocks represent the first application of ethylene sulfide oligomers in supramolecular materials. While the assemblies demonstrated robust aqueous stability over time, oxidation by hydrogen peroxide progressively converted ethylene sulfide residues to increasingly hydrophilic and amorphous sulfoxides and sulfones, causing morphological changes and permanent disassembly. We utilized complementary microscopic and spectroscopic techniques to confirm this chemical stimulus-responsive behavior in self-assembled PEG-OES colloidal dispersions and physical gels. In addition to inherent stimulus-responsive behavior, fibrillar assemblies demonstrated biologically relevant molecular delivery, as confirmed by the dose-dependent activation of murine bone marrow-derived dendritic cells following fibril-mediated delivery of the immunological adjuvant monophosphoryl lipid A. In physical gels composed of either linear or multiarm PEG-OES precursors, rheologic analysis also identified mechanical stimulus-responsive shear thinning behavior. Thanks to the facile preparation, user-defined morphology, aqueous stability, carrier functionality, and stimuli-responsive behaviors of

  9. High-temperature stable absorber coatings for linear concentrating solar thermal power plants; Hochtemperaturstabile Absorberschichten fuer linear konzentrierende solarthermische Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Christina

    2009-03-23

    This work describes the development of new absorber coatings for different applications - para-bolic trough and linear Fresnel collectors - and operating conditions - absorber in vacuum or in air. The demand for higher efficiencies of solar thermal power plants using parabolic trough technology results in higher temperatures in the collectors and on the absorber tubes. As heat losses increase strongly with increasing temperatures, the need for a lower emissivity of the absorber coating at constant absorptivity arises. The linear Fresnel application envisions ab-sorber tubes stable in air at high temperatures of about 450 C, which are to date commercially not available. This work comprises the theoretical background, the modeling and the fabrication of absorber tubes including the technology transfer to a production-size inline sputter coater. In annealing tests and accompanying optical measurements, degradation processes have been observed and specified more precisely by material characterization techniques. The simulations provided the capability of different materials used as potential IR-reflector. The highest selectivity can be achieved by applying silver which consequently has been chosen for the application in absorber coatings of the parabolic trough technology. Thin silver films how-ever need to be stabilized when used at high temperatures. Appropriate barrier layers as well as process and layer parameters were identified. A high selectivity was achieved and stability of the absorber coating for 1200 h at 500 C in vacuum has been demonstrated. For the application in air, silver was also analyzed as a potential IR-reflector. Even though the stability could be increased considerably, it nevertheless proved to be insufficient. The main factors influencing stability in a positive way are the use of higher quality polishing, additional barrier layers and adequate process parameters. This knowledge was applied for developing coatings which are stable in air at

  10. Strategy for designing stable and powerful nitrogen-rich high-energy materials by introducing boron atoms.

    Science.gov (United States)

    Wu, Wen-Jie; Chi, Wei-Jie; Li, Quan-Song; Li, Ze-Sheng

    2017-06-01

    One of the most important aims in the development of high-energy materials is to improve their stability and thus ensure that they are safe to manufacture and transport. In this work, we theoretically investigated open-chain N 4 B 2 isomers using density functional theory in order to find the best way of stabilizing nitrogen-rich molecules. The results show that the boron atoms in these isomers are aligned linearly with their neighboring atoms, which facilitates close packing in the crystals of these materials. Upon comparing the energies of nine N 4 B 2 isomers, we found that the structure with alternating N and B atoms had the lowest energy. Structures with more than one nitrogen atom between two boron atoms had higher energies. The energy of N 4 B 2 increases by about 50 kcal/mol each time it is rearranged to include an extra nitrogen atom between the two boron atoms. More importantly, our results also show that boron atoms stabilize nitrogen-rich molecules more efficiently than carbon atoms do. Also, the combustion of any isomer of N 4 B 2 releases more heat than the corresponding isomer of N 4 C 2 does under well-oxygenated conditions. Our study suggests that the three most stable N 4 B 2 isomers (BN13, BN24, and BN34) are good candidates for high-energy molecules, and it outlines a new strategy for designing stable boron-containing high-energy materials. Graphical abstract The structural characteristics, thermodynamic stabilities, and exothermic properties of nitrogen-rich N 4 B 2 isomers were investigated by means of density functional theory.

  11. Characterization of a Highly pH Stable Chi-Class Glutathione S-Transferase from Synechocystis PCC 6803.

    Directory of Open Access Journals (Sweden)

    Tripti Pandey

    Full Text Available Glutathione S-transferases (GSTs are multifunctional enzymes present in virtually all organisms. Besides having an essential role in cellular detoxification, they also perform various other functions, including responses in stress conditions and signaling. GSTs are highly studied in plants and animals; however, the knowledge regarding GSTs in cyanobacteria seems rudimentary. In this study, we report the characterization of a highly pH stable GST from the model cyanobacterium--Synechocystis PCC 6803. The gene sll0067 was expressed in Escherichia coli (E. coli, and the protein was purified to homogeneity. The expressed protein exists as a homo-dimer, which is composed of about 20 kDa subunit. The results of the steady-state enzyme kinetics displayed protein's glutathione conjugation activity towards its class specific substrate- isothiocyanate, having the maximal activity with phenethyl isothiocyanate. Contrary to the poor catalytic activity and low specificity towards standard GST substrates such as 1-chloro-2,4-dinitrobenzene by bacterial GSTs, PmGST B1-1 from Proteus mirabilis, and E. coli GST, sll0067 has broad substrate degradation capability like most of the mammalian GST. Moreover, we have shown that cyanobacterial GST sll0067 is catalytically efficient compared to the best mammalian enzymes. The structural stability of GST was studied as a function of pH. The fluorescence and CD spectroscopy in combination with size exclusion chromatography showed a highly stable nature of the protein over a broad pH range from 2.0 to 11.0. To the best of our knowledge, this is the first GST with such a wide range of pH related structural stability. Furthermore, the presence of conserved Proline-53, structural motifs such as N-capping box and hydrophobic staple further aid in the stability and proper folding of cyanobacterial GST-sll0067.

  12. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy

    KAUST Repository

    Zhang, Zhonghai

    2012-01-01

    Hydrogen generation through photoelectrochemical (PEC) water splitting using solar light as an energy resource is believed to be a clean and efficient way to overcome the global energy and environmental problems. Extensive research effort has been focused on n-type metal oxide semiconductors as photoanodes, whereas studies of p-type metal oxide semiconductors as photocathodes where hydrogen is generated are scarce. In this paper, highly efficient and stable copper oxide composite photocathode materials were successfully fabricated by a facile two-step electrochemical strategy, which consists of electrodeposition of a Cu film on an ITO glass substrate followed by anodization of the Cu film under a suitable current density and then calcination to form a Cu 2O/CuO composite. The synthesized Cu 2O/CuO composite was composed of a thin layer of Cu 2O with a thin film of CuO on its top as a protecting coating. The rational control of chemical composition and crystalline orientation of the composite materials was easily achieved by varying the electrochemical parameters, including electrodeposition potential and anodization current density, to achieve an enhanced PEC performance. The best photocathode material among all materials prepared was the Cu 2O/CuO composite with Cu 2O in (220) orientation, which showed a highly stable photocurrent of -1.54 mA cm -2 at a potential of 0 V vs reversible hydrogen electrode at a mild pH under illumination of AM 1.5G. This photocurrent density was more than 2 times that generated by the bare Cu 2O electrode (-0.65 mAcm -2) and the stability was considerably enhanced to 74.4% from 30.1% on the bare Cu 2O electrode. The results of this study showed that the top layer of CuO in the Cu 2O/CuO composite not only minimized the Cu 2O photocorrosion but also served as a recombination inhibitor for the photogenerated electrons and holes from Cu 2O, which collectively explained much enhanced stability and PEC activity of the Cu 2O/CuO composite

  13. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds

    Science.gov (United States)

    Luo, Wen; Feng, Yiyu; Qin, Chengqun; Li, Man; Li, Shipei; Cao, Chen; Long, Peng; Liu, Enzuo; Hu, Wenping; Yoshino, Katsumi; Feng, Wei

    2015-10-01

    An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg-1 by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high

  14. Correction: Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions.

    Science.gov (United States)

    Parapat, Riny Y; Wijaya, Muliany; Schwarze, Michael; Selve, Sören; Willinger, Marc; Schomäcker, Reinhard

    2016-04-07

    Correction for 'Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions' by Riny Y. Parapat et al., Nanoscale, 2013, 5, 796-805.

  15. Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers

    Science.gov (United States)

    Nazaruk, D. E.; Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Vasil'ev, A. P.; Gladyshev, A. G.; Pavlov, M. M.; Blokhin, A. A.; Kulagina, M. M.; Vashanova, K. A.; Zadiranov, Yu M.; Fefelov, A. G.; Ustinov, V. M.

    2014-12-01

    A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range.

  16. Rapid enrichment of (homo)acetogenic consortia from animal feces using a high mass-transfer gas-lift reactor fed with syngas.

    Science.gov (United States)

    Park, Shinyoung; Yasin, Muhammad; Kim, Daehee; Park, Hee-Deung; Kang, Chang Min; Kim, Duk Jin; Chang, In Seop

    2013-09-01

    A gas-lift reactor having a high mass transfer coefficient (k(L)a = 80.28 h(-1)) for a relatively insoluble gas (carbon monoxide; CO) was used to enrich (homo)acetogens from animal feces. Samples of fecal matter from cow, rabbit, chicken, and goat were used as sources of inoculum for the enrichment of CO and H(2) utilizing microbial consortia. To confirm the successful enrichment, the Hungate roll tube technique was employed to count and then isolate putative CO utilizers. The results of this work showed that CO and H(2) utilizing consortia were established for each inoculum source after 8 days. The number of colony-forming units in cow, rabbit, chicken, and goat fecal samples were 3.83 × 10(9), 1.03 × 10(9), 8.3 × 10(8), and 3.25 × 10(8) cells/ml, respectively. Forty-two colonies from the animal fecal samples were screened for the ability to utilize CO/H(2). Ten of these 42 colonies were capable of utilizing CO/H(2). Five isolates from cow feces (samples 5, 6, 8, 16, and 22) were highly similar to previously unknown (homo)acetogen, while cow-7 has shown 99 % similarity with Acetobacterium sp. as acetogens. On the other hand, four isolates from chicken feces (samples 3, 8, 10, and 11) have also shown high CO/H(2) utilizing activity. Hence, it is expected that this research could be used as the basis for the rapid enrichment of (homo)acetogenic consortia from various environmental sources.

  17. Regenerative Soot-IX: C3 as the dominant, stable carbon cluster in high pressure sooting discharges

    CERN Document Server

    Janjua, Sohail Ahmad; Khan, S D; Khalid, R; Aleem, A; Ahmad, Shoaib

    2016-01-01

    Results are presented that have been obtained while operating the graphite hollow cathode duoplasmatron ion source in dual mode under constant discharge current. This dual mode operation enabled us to obtain the mass and emission spectra simultaneously. In mass spectra C3 is the main feature but C4 and C5 are also prominent, whereas in emission spectra C2 is also there and its presence shows that it is in an excited state rather than in an ionic state. These facts provide evidence that C3 is produced due to the regeneration of a soot forming sequence and leave it in ionic state. C3 is a stable molecule and the only dominant species among the carbon clusters that survives in a regenerative sooting environment at high-pressure discharges.

  18. One-pot synthesis of polythiol ligand for highly bright and stable hydrophilic quantum dots toward bioconjugate formation

    Science.gov (United States)

    Dezhurov, Sergey V.; Krylsky, Dmitry V.; Rybakova, Anastasia V.; Ibragimova, Sagila A.; Gladyshev, Pavel P.; Vasiliev, Alexey A.; Morenkov, Oleg S.

    2018-03-01

    A fast and efficient one-pot synthesis of thiol-terminated poly(vinylpirrolidone-co-maleic anhydride-co-ethylene glycol dimethacrylate) based heterobifunctional polymer (PTVP) has been developed. The polymer was used for the modification of quantum dots (QDs) to prepare water soluble and stable QDs with emission quantum yield as high as 80%. Using carbodiimide method, PTVP-capped red light-emitting QDs were conjugated to model monoclonal antibodies specific to glycoprotein B (gB) of Aujeszky’s disease virus (ADV) and successfully used in the lateral flow assay (LFA) for the detection of ADV gB in biological fluids. A comparative analysis of the sensitivity of the method was carried out using three types of QDs emitting in the red and far-red region.

  19. Cu-Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics

    Science.gov (United States)

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Yu, Yanru; He, Dinggeng; Tang, Jinlu; Lei, Yanli; Wang, Kemin

    2016-01-01

    As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity and lower cost was introduced to generate a novel Cu-Au alloy nanostructure produced by a simple, gentle and one-pot synthetic method. Having the good qualities of both Cu and Au, the irregularly-shaped Cu-Au alloy nanostructures showed several advantages over traditional Au nanorods, including a broad and intense near-infrared (NIR) absorption band from 400 to 1100 nm, an excellent heating performance under laser irradiation at different wavelengths and even a notable photostability against melting. Then, via a simple conjugation of fluorophore-labeled aptamers on the Cu-Au alloy nanostructures, active targeting and signal output were simultaneously introduced, thus constructing a theranostic platform based on fluorophore-labeled, aptamer-coated Cu-Au alloy nanostructures. By using human leukemia CCRF-CEM cancer and Cy5-labeled aptamer Sgc8c (Cy5-Sgc8c) as the model, a selective fluorescence imaging and NIR photothermal therapy was successfully realized for both in vitro cancer cells and in vivo tumor tissues. It was revealed that Cy5-Sgc8c-coated Cu-Au alloy nanostructures were not only capable of robust target recognition and stable signal output for molecular imaging in complex biological systems, but also killed target cancer cells in mice with only five minutes of 980 nm irradiation. The platform was found to be simple, stable, biocompatible and highly effective, and shows great potential as a versatile tool for cancer theranostics.As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity

  20. Graphene controlled H- and J-stacking of perylene dyes into highly stable supramolecular nanostructures for enhanced photocurrent generation

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhong, Lijie; Engelbrekt, Christian

    2014-01-01

    We report a new method for controlling H- and J-stacking in supramolecular self-assembly. Graphene nanosheets act as structure inducers to direct the self-assembly of a versatile organic dye, perylene into two distinct types of functional nanostructures, i.e. one-dimensional nanotubes via J-stack......-junction solar cells.......We report a new method for controlling H- and J-stacking in supramolecular self-assembly. Graphene nanosheets act as structure inducers to direct the self-assembly of a versatile organic dye, perylene into two distinct types of functional nanostructures, i.e. one-dimensional nanotubes via J......-stacking and two-dimensional branched nanobuds through H-stacking. Graphene integrated supramolecular nanocomposites are highly stable and show significant enhancement of photocurrent generation in these two configurations of photosensing devices, i.e. solid-state optoelectronic constructs and liquid...

  1. Change in pulmonary mechanics and the effect on breathing pattern of high flow oxygen therapy in stable hypercapnic COPD.

    Science.gov (United States)

    Pisani, Lara; Fasano, Luca; Corcione, Nadia; Comellini, Vittoria; Musti, Muriel Assunta; Brandao, Maria; Bottone, Damiano; Calderini, Edoardo; Navalesi, Paolo; Nava, Stefano

    2017-04-01

    : We studied the effects of high flow oxygen therapy (HFOT) versus non-invasive ventilation (NIV) on inspiratory effort, as assessed by measuring transdiaphragmatic pressure, breathing pattern and gas exchange. Fourteen patients with hypercapnic COPD underwent five 30-min trials: HFOT at two flow rates, both with open and closed mouth, and NIV, applied in random order. After each trial standard oxygen therapy was reinstituted for 10 min. Compared with baseline, HFOT and NIV significantly improved breathing pattern, although to different extents, and reduced inspiratory effort; however, arterial carbon dioxide oxygen tension decreased but not significantly. These results indicate a possible role for HFOT in the long-term management of patients with stable hypercapnic COPD. NCT02363920. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.

  3. Towards Highly Performing and Stable PtNi Catalysts in Polymer Electrolyte Fuel Cells for Automotive Application

    Directory of Open Access Journals (Sweden)

    Sabrina C. Zignani

    2017-03-01

    Full Text Available In order to help the introduction on the automotive market of polymer electrolyte fuel cells (PEFCs, it is mandatory to develop highly performing and stable catalysts. The main objective of this work is to investigate PtNi/C catalysts in a PEFC under low relative humidity and pressure conditions, more representative of automotive applications. Carbon supported PtNi nanoparticles were prepared by reduction of metal precursors with formic acid and successive thermal and leaching treatments. The effect of the chemical composition, structure and surface characteristics of the synthesized samples on their electrochemical behavior was investigated. The catalyst characterized by a larger Pt content (Pt3Ni2/C presented the highest catalytic activity (lower potential losses in the activation region among the synthesized bimetallic PtNi catalysts and the commercial Pt/C, used as the reference material, after testing at high temperature (95 °C and low humidification (50% conditions for automotive applications, showing a cell potential (ohmic drop-free of 0.82 V at 500 mA·cm−2. In order to assess the electro-catalysts stability, accelerated degradation tests were carried out by cycling the cell potential between 0.6 V and 1.2 V. By comparing the electrochemical and physico-chemical parameters at the beginning of life (BoL and end of life (EoL, it was demonstrated that the Pt1Ni1/C catalyst was the most stable among the catalyst series, with only a 2% loss of voltage at 200 mA·cm−2 and 12.5% at 950 mA·cm−2. However, further improvements are needed to produce durable catalysts.

  4. Towards Highly Performing and Stable PtNi Catalysts in Polymer Electrolyte Fuel Cells for Automotive Application.

    Science.gov (United States)

    Zignani, Sabrina C; Baglio, Vincenzo; Sebastián, David; Saccà, Ada; Gatto, Irene; Aricò, Antonino S

    2017-03-21

    In order to help the introduction on the automotive market of polymer electrolyte fuel cells (PEFCs), it is mandatory to develop highly performing and stable catalysts. The main objective of this work is to investigate PtNi/C catalysts in a PEFC under low relative humidity and pressure conditions, more representative of automotive applications. Carbon supported PtNi nanoparticles were prepared by reduction of metal precursors with formic acid and successive thermal and leaching treatments. The effect of the chemical composition, structure and surface characteristics of the synthesized samples on their electrochemical behavior was investigated. The catalyst characterized by a larger Pt content (Pt₃Ni₂/C) presented the highest catalytic activity (lower potential losses in the activation region) among the synthesized bimetallic PtNi catalysts and the commercial Pt/C, used as the reference material, after testing at high temperature (95 °C) and low humidification (50%) conditions for automotive applications, showing a cell potential (ohmic drop-free) of 0.82 V at 500 mA·cm -2 . In order to assess the electro-catalysts stability, accelerated degradation tests were carried out by cycling the cell potential between 0.6 V and 1.2 V. By comparing the electrochemical and physico-chemical parameters at the beginning of life (BoL) and end of life (EoL), it was demonstrated that the Pt₁Ni₁/C catalyst was the most stable among the catalyst series, with only a 2% loss of voltage at 200 mA·cm -2 and 12.5% at 950 mA·cm -2 . However, further improvements are needed to produce durable catalysts.

  5. Copper and Zinc Ions Specifically Promote Nonamyloid Aggregation of the Highly Stable Human γ-D Crystallin.

    Science.gov (United States)

    Quintanar, Liliana; Domínguez-Calva, José A; Serebryany, Eugene; Rivillas-Acevedo, Lina; Haase-Pettingell, Cameron; Amero, Carlos; King, Jonathan A

    2016-01-15

    Cataract is the leading cause of blindness in the world. It results from aggregation of eye lens proteins into high-molecular-weight complexes, causing light scattering and lens opacity. Copper and zinc concentrations in cataractous lens are increased significantly relative to a healthy lens, and a variety of experimental and epidemiological studies implicate metals as potential etiological agents for cataract. The natively monomeric, β-sheet rich human γD (HγD) crystallin is one of the more abundant proteins in the core of the lens. It is also one of the most thermodynamically stable proteins in the human body. Surprisingly, we found that both Cu(II) and Zn(II) ions induced rapid, nonamyloid aggregation of HγD, forming high-molecular-weight light-scattering aggregates. Unlike Zn(II), Cu(II) also substantially decreased the thermal stability of HγD and promoted the formation of disulfide-bridged dimers, suggesting distinct aggregation mechanisms. In both cases, however, metal-induced aggregation depended strongly on temperature and was suppressed by the human lens chaperone αB-crystallin (HαB), implicating partially folded intermediates in the aggregation process. Consistently, distinct site-specific interactions of Cu(II) and Zn(II) ions with the protein and conformational changes in specific hinge regions were identified by nuclear magnetic resonance. This study provides insights into the mechanisms of metal-induced aggregation of one of the more stable proteins in the human body, and it reveals a novel and unexplored bioinorganic facet of cataract disease.

  6. One-Step Facile Synthesis of Aptamer-Modified Graphene Oxide for Highly Specific Enrichment of Human A-Thrombin in Plasma

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2017-09-01

    Full Text Available The enrichment of low-abundance proteins in complex biological samples plays an important role in clinical diagnostics and biomedical research. This work reports a novel one-step method for the synthesis of aptamer-modified graphene oxide (GO/Apt nanocomposites, without introducing the use of gold, for the rapid and specific separation and enrichment of human α-thrombin from buffer solutions with highly concentrated interferences. The obtained GO/Apt nanocomposites had remarkable aptamer immobilization, up to 44.8 nmol/mg. Furthermore, GO/Apt nanocomposites exhibited significant specific enrichment efficiency for human α-thrombin (>90%, even under the presence of 3000-fold interference proteins, which was better than the performance of other nanomaterials. Finally, the GO/Apt nanocomposites were applied in the specific capturing of human α-thrombin in highly concentrated human plasma solutions with negligible nonspecific binding of other proteins, which demonstrated their prospects in rare protein analysis and biosensing applications.

  7. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  8. Synthesis of highly luminescent water stable ZnO quantum dots as photoluminescent sensor for picric acid

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kulvinder; Chaudhary, G.R.; Singh, Sukhjinder; Mehta, S.K., E-mail: skmehta@pu.ac.in

    2014-10-15

    Highly luminescent, water stable (3-aminopropyl) triethoxysilane capped ZnO quantum dots (QDs) have been synthesized using a simple solution route. The synthesized ZnO QDs have been characterized using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Particle size analyzer (PSA), UV–visible (UV–vis), Photoluminescence (PL) and Fourier transform infrared (FTIR) spectroscopy. The PL studies demonstrate that the particles synthesized are highly luminescent in nature emitting yellow color on exposure to UV radiation. Further, PL emission of ZnO QDs in the presence of picric acid (PA) shows their high sensitivity and selectivity for PA. The superior response of ZnO QDs in the presence of PA makes them very effective PL sensors. The limit of detection comes out to be 2.86 µM. - Highlights: • ZnO QDs act as photoluminiscent sensor for picric acid in aqueous medium. • Sensor shows high selectivity and sensitivity with a detection limit of 2.86 μM. • More the number of nitro groups, more is the quenching in PL emission of ZnO QDs.

  9. Facile and easily popularized synthesis of L-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

    Science.gov (United States)

    Feng, Xiaoyan; Deng, Chunhui; Gao, Mingxia; Zhang, Xiangmin

    2018-01-01

    Protein glycosylation is one of the most important post-translational modifications. Also, efficient enrichment and separation of glycopeptides from complex samples are crucial for the thorough analysis of glycosylation. Developing novel hydrophilic materials with facile and easily popularized synthesis is an urgent need in large-scale glycoproteomics research. Herein, for the first time, a one-step functionalization strategy based on metal-organic coordination was proposed and Fe 3 O 4 nanoparticles were directly functionalized with zwitterionic hydrophilic L-cysteine (L-Cys), greatly simplifying the synthetic procedure. The easily synthesized Fe 3 O 4 /L-Cys possessed excellent hydrophilicity and brief composition, contributing to affinity for glycopeptides and reduction in nonspecific interaction. Thus, Fe 3 O 4 /L-Cys nanoparticles showed outstanding sensitivity (25 amol/μL), high selectivity (mixture of bovine serum albumin and horseradish peroxidase tryptic digests at a mass ratio of 100:1), good reusability (five repeated times), and stability (room temperature storage of 1 month). Encouragingly, in the glycosylation analysis of human serum, a total of 376 glycopeptides with 393 N-glycosylation sites corresponding to 118 glycoproteins were identified after enrichment with Fe 3 O 4 /L-Cys, which was superior to ever reported L-Cys modified magnetic materials. Furthermore, applying the one-step functionalization strategy, cysteamine and glutathione respectively direct-functionalized Fe 3 O 4 nanoparticles were successfully synthesized and also achieved efficient glycopeptide enrichment in human serum. The results indicated that we have presented an efficient and easily popularized strategy in glycoproteomics as well as in the synthesis of novel materials. Graphical abstract Fe 3 O 4 /L-Cys nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

  10. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition

    OpenAIRE

    Balakrishnan, M.; Diemeer, Mart; Driessen, A.; Faccini, M.; Verboom, Willem; Reinhoudt, David; Leinse, Arne; Sidorin, Y.; Waechter, C.A.

    2006-01-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (Tg) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which was reported to have a high photochemical stability has been employed in the current work. Tert-butyl-TCVDPA, having bulky side groups, was synthesized and a doubling of the electro-optic coefficie...

  11. The next generation of target capture technologies - large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity.

    Science.gov (United States)

    Dapprich, Johannes; Ferriola, Deborah; Mackiewicz, Kate; Clark, Peter M; Rappaport, Eric; D'Arcy, Monica; Sasson, Ariella; Gai, Xiaowu; Schug, Jonathan; Kaestner, Klaus H; Monos, Dimitri

    2016-07-09

    The ability to capture and sequence large contiguous DNA fragments represents a significant advancement towards the comprehensive characterization of complex genomic regions. While emerging sequencing platforms are capable of producing several kilobases-long reads, the fragment sizes generated by current DNA target enrichment technologies remain a limiting factor, producing DNA fragments generally shorter than 1 kbp. The DNA enrichment methodology described herein, Region-Specific Extraction (RSE), produces DNA segments in excess of 20 kbp in length. Coupling this enrichment method to appropriate sequencing platforms will significantly enhance the ability to generate complete and accurate sequence characterization of any genomic region without the need for reference-based assembly. RSE is a long-range DNA target capture methodology that relies on the specific hybridization of short (20-25 base) oligonucleotide primers to selected sequence motifs within the DNA target region. These capture primers are then enzymatically extended on the 3'-end, incorporating biotinylated nucleotides into the DNA. Streptavidin-coated beads are subsequently used to pull-down the original, long DNA template molecules via the newly synthesized, biotinylated DNA that is bound to them. We demonstrate the accuracy, simplicity and utility of the RSE method by capturing and sequencing a 4 Mbp stretch of the major histocompatibility complex (MHC). Our results show an average depth of coverage of 164X for the entire MHC. This depth of coverage contributes significantly to a 99.94 % total coverage of the targeted region and to an accuracy that is over 99.99 %. RSE represents a cost-effective target enrichment method capable of producing sequencing templates in excess of 20 kbp in length. The utility of our method has been proven to generate superior coverage across the MHC as compared to other commercially available methodologies, with the added advantage of producing longer sequencing

  12. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

    KAUST Repository

    Chen, Yen-Chang

    2017-10-12

    The emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.

  13. Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging.

    Science.gov (United States)

    Zhang, Jinfeng; Chen, Rui; Zhu, Zelin; Adachi, Chihaya; Zhang, Xiaohong; Lee, Chun-Sing

    2015-12-02

    Fluorescent organic nanoparticles based on small molecules have been regarded as promising candidates for bioimaging in recent years. In this study, we report a highly stable near-infrared (NIR) fluorescent organic nanoprobes based on nanoparticles of an anthraquinone derivate with strong aggregation-induced emission (AIE) characteristics and a large Stokes shift (>175 nm). These endow the nanoprobe with high fluorescent brightness and high signal-to-noise ratio. On the other hand, the nanoprobe also shows low cytotoxicity, good stability over a wide pH range, superior resistance against photodegradation and photobleaching comparing to typical commercial fluorescent organic dyes such as fluorescein sodium. Endowed with such merits in term of optical performance, biocompatibility, and stability, the nanoprobe is demonstrated to be an ideal fluorescent probe for noninvasive long-term cellular tracing and imaging applications. As an example, it is shown that strong red fluorescence from the nanoprobe can still be clearly observed in A549 human lung cancer cells after incubation for six generations over 15 days.

  14. Stable isotope ecology of land snails from a high-latitude site near Fairbanks, interior Alaska, USA

    Science.gov (United States)

    Yanes, Yurena

    2015-05-01

    Land snails have been investigated isotopically in tropical islands and mid-latitude continental settings, while high-latitude locales, where snails grow only during the summer, have been overlooked. This study presents the first isotopic baseline of live snails from Fairbanks, Alaska (64°51‧N), a proxy calibration necessary prior to paleoenvironmental inferences using fossils. δ13C values of the shell (- 10.4 ± 0.4‰) and the body (- 25.5 ± 1.0‰) indicate that snails consumed fresh and decayed C3-plants and fungi. A flux-balance mixing model suggests that specimens differed in metabolic rates, which may complicate paleovegetation inferences. Shell δ18O values (- 10.8 ± 0.4‰) were 4‰ higher than local summer rain δ18O. If calcification occurred during summer, a flux-balance mixing model suggests that snails grew at temperatures of 13°C, rainwater δ18O values of - 15‰ and relative humidity of 93%. Results from Fairbanks were compared to shells from San Salvador (Bahamas), at 24°51‧N. Average (annual) δ18O values of shells and rainwater samples from The Bahamas were both 10‰ 18O-enriched with respect to seasonal (summer) Alaskan samples. At a coarse latitudinal scale, shell δ18O values overwhelmingly record the signature of the rainfall during snail active periods. While tropical snails record annual average environmental information, high-latitude specimens only trace summer season climatic data.

  15. Evaporative fractions and elevation effects on stable isotopes of high elevation lakes and streams in arid western Himalaya

    Science.gov (United States)

    Biggs, Trent W.; Lai, Chun-Ta; Chandan, Pankaj; Lee, Raymond Mark; Messina, Alex; Lesher, Rebecca S.; Khatoon, Nisa

    2015-03-01

    Isotopes of oxygen and hydrogen in water from streams, snow, and lakes were used to model the ratio of evaporation to total inflow (E/I) of four high elevation lakes in closed basins in the Indian Himalaya. Air temperature and relative humidity (h) data from meteorological stations and global climate grids (GMAO-MERRA) were used as input to the model. A second model of the volume of inflow during snowmelt constrained the magnitude of seasonal variability in isotopic composition. Similar to other areas of the Himalaya, elevation was a strong determinant of isotopic composition of stream water, suggesting that heavier isotopes rain out at lower elevations. Deuterium excess (d) in stream water suggests that summer precipitation originating from the Bay of Bengal rather than winter precipitation from Central Asia is the dominant source of precipitation. For the largest and deepest lakes (>15 m), E/I was 77-87%, and 18-50% for two shallow lakes (GMAO also produced reasonable E/I values. The results suggest that some lakes in closed basins in the Himalaya lose a significant fraction of their inflow to groundwater, particularly shallow lakes with a low ratio of lake volume to watershed area. Isotopic values from the mainstem of the Indus River suggest that evaporatively enriched waters have limited impact on both wet and dry season discharge at the basin scale. Lakes with a high evaporative fraction may be uniquely sensitive to climate, and isotopic analysis can help identify lakes that may be vulnerable to climate fluctuations and change.

  16. Individual variation in contagious yawning susceptibility is highly stable and largely unexplained by empathy or other known factors.

    Directory of Open Access Journals (Sweden)

    Alex J Bartholomew

    Full Text Available The contagious aspect of yawning is a well-known phenomenon that exhibits variation in the human population. Despite the observed variation, few studies have addressed its intra-individual reliability or the factors modulating differences in the susceptibility of healthy volunteers. Due to its obvious biological basis and impairment in diseases like autism and schizophrenia, a better understanding of this trait could lead to novel insights into these conditions and the general biological functioning of humans. We administered 328 participants a 3-minute yawning video stimulus, a cognitive battery, and a comprehensive questionnaire that included measures of empathy, emotional contagion, circadian energy rhythms, and sleepiness. Individual contagious yawning measurements were found to be highly stable across testing sessions, both in a lab setting and if administered remotely online, confirming that certain healthy individuals are less susceptible to contagious yawns than are others. Additionally, most individuals who failed to contagiously yawn in our study were not simply suppressing their reaction, as they reported not even feeling like yawning in response to the stimulus. In contrast to previous studies indicating that empathy, time of day, or intelligence may influence contagious yawning susceptibility, we found no influence of these variables once accounting for the age of the participant. Participants were less likely to show contagious yawning as their age increased, even when restricting to ages of less than 40 years. However, age was only able to explain 8% of the variability in the contagious yawn response. The vast majority of the variability in this extremely stable trait remained unexplained, suggesting that studies of its inheritance are warranted.

  17. High stable, high efficient ultraviolet laser with angle-phase-mismatching compensation by adjusting temperature of the nonlinear crystals

    Science.gov (United States)

    Yang, Houwen; Wang, Bo; Wang, Junhua; Li, Xiaofang; Liu, Zhaojun; Cheng, Wenyong

    2017-03-01

    We demonstrated an ultraviolet laser at 355 nm using a type-I and a type-II phase-matching nonlinear optical crystal of LiB3O5 (LBO). A method of adjusting temperature for compensation is presented. The crystal temperature is controlled by proportional integral derivative (PID) thermal controllers with a  ±0.01 °C resolution. The value of wave vector mismatch, distance of light propagation in nonlinear crystals, effective nonlinear coefficient, theoretical analysis and calculation of conversion efficiency versus temperature are discussed. The experimental results show that the average output power of the 355 nm laser is 1.24 W with the pump power of 13.33 W, when the repetition frequency is 15 kHz. The pulse duration is 9.8 ns, and the beam quality factors are of Mx2   =  1.8, My2   =  1.7. The conversion efficiency from 808 nm to 355 nm laser is 9.3%, which nearly reaches the optimum value reported so far and is limited by the wavelength mismatch between the pumping and absorbing lasers. The 355 nm output power instability of the laser device is 0.45% in 2 h. A compact no-water-cooling ultraviolet laser with high stability and high efficiency is obtained.

  18. High-power, highly stable KrF laser with a 4-kHz pulse repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, V M; El' tsov, A V; Khristoforov, O B [State Research Center of Russian Federation ' Troitsk Institute for Innovation and Fusion Research' , Troitsk, Moscow Region (Russian Federation)

    2015-08-31

    An electric-discharge KrF laser (248 nm) with an average output power of 300 W is developed and studied. A number of new design features are related to the use of a laser chamber based on an Al{sub 2}O{sub 3} ceramic tube. A high power and pulse repetition rate are achieved by using a volume discharge with lateral preionisation by the UV radiation of a creeping discharge in the form of a homogeneous plasma sheet on the surface of a plane sapphire plate. Various generators for pumping the laser are studied. The maximum laser efficiency is 3.1%, the maximum laser energy is 160 mJ pulse{sup -1}, and the pulse duration at half maximum is 7.5 ns. In the case of long-term operation at a pulse repetition rate of 4 kHz and an output power of 300 W, high stability of laser output energy (σ ≤ 0.7%) is achieved using an all-solid-state pump system. (lasers)

  19. High-power, highly stable KrF laser with a 4-kHz pulse repetition rate

    Science.gov (United States)

    Borisov, V. M.; El'tsov, A. V.; Khristoforov, O. B.

    2015-08-01

    An electric-discharge KrF laser (248 nm) with an average output power of 300 W is developed and studied. A number of new design features are related to the use of a laser chamber based on an Al2O3 ceramic tube. A high power and pulse repetition rate are achieved by using a volume discharge with lateral preionisation by the UV radiation of a creeping discharge in the form of a homogeneous plasma sheet on the surface of a plane sapphire plate. Various generators for pumping the laser are studied. The maximum laser efficiency is 3.1%, the maximum laser energy is 160 mJ pulse-1, and the pulse duration at half maximum is 7.5 ns. In the case of long-term operation at a pulse repetition rate of 4 kHz and an output power of 300 W, high stability of laser output energy (σ <= 0.7%) is achieved using an all-solid-state pump system.

  20. Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits

    Science.gov (United States)

    Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Lundstrom, Craig C.; Gajos, Norbert; Bindeman, Ilya; Barra, Fernando; Munizaga, Rodrigo

    2016-03-01

    Iron oxide-apatite (IOA) ore deposits occur globally and can host millions to billions of tons of Fe in addition to economic reserves of other metals such as rare earth elements, which are critical for the expected growth of technology and renewable energy resources. In this study, we pair the stable Fe and O isotope compositions of magnetite samples from several IOA deposits to constrain the source reservoir of these elements in IOAs. Since magnetite constitutes up to 90 modal% of many IOAs, identifying the source of Fe and O within the magnetite may elucidate high-temperature and/or lower-temperature processes responsible for their formation. Here, we focus on the world-class Los Colorados IOA in the Chilean iron belt (CIB), and present data for magnetite from other Fe oxide deposits in the CIB (El Laco, Mariela). We also report Fe and O isotopic values for other IOA deposits, including Mineville, New York (USA) and the type locale, Kiruna (Sweden). The ranges of Fe isotopic composition (δ56Fe, 56Fe/54Fe relative to IRMM-14) of magnetite from the Chilean deposits are: Los Colorados, δ56Fe (±2σ) = 0.08 ± 0.03‰ to 0.24 ± 0.08‰; El Laco, δ56Fe = 0.20 ± 0.03‰ to 0.53 ± 0.03‰; Mariela, δ56Fe = 0.13 ± 0.03‰. The O isotopic composition (δ18O, 18O/16O relative to VSMOW) of the same Chilean magnetite samples are: Los Colorados, δ18O (±2σ) = 1.92 ± 0.08‰ to 3.17 ± 0.03‰; El Laco, δ18O = 4.00 ± 0.10‰ to 4.34 ± 0.10‰; Mariela, δ18O = (1.48 ± 0.04‰). The δ18O and δ56Fe values for Kiruna magnetite yield an average of 1.76 ± 0.25‰ and 0.16 ± 0.07‰, respectively. The Fe and O isotope data from the Chilean IOAs fit unequivocally within the range of magnetite formed by high-temperature magmatic or magmatic-hydrothermal processes (i.e., δ56Fe 0.06-0.49‰ and δ18O = 1.0-4.5‰), consistent with a high-temperature origin for Chilean IOA deposits. Additionally, minimum formation temperatures calculated by using the measured Δ18O

  1. Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nano-platforms.

    Science.gov (United States)

    Yang, Xiaoke; Zhou, Xiaoming; Zhu, Minjun; Xing, Da

    2017-05-15

    Pathogens pose a significant threat to public health worldwide. Despite many technological advances in the rapid diagnosis of pathogens, sensitive pathogen detection remains challenging because target pathogenic bacteria usually exist in complex samples at very low concentrations. Here, the construction of multivalent brush-like magnetic nanoprobes and their application for the efficient enriching of pathogens are demonstrated. Brush-like magnetic nanoprobes were constructed by modification with poly-L-lysine (PLL) onto amino-modified magnetic beads, followed by coupling of PEG (amine-PEG5000-COOH) to the amine sites of PLL. Subsequently, vancomycin (Van), a small-molecule antibiotic with affinity to the terminal peptide (D-alanyl-D-alanine) on the cell wall of Gram-positive bacteria, was conjugated to the carboxyl of the PEG. The use of multivalent brush-like magnetic nanoprobes (Van-PEG-PLL-MNPs) results in a high enrichment efficiency (>94%) and satisfactory purity for Listeria monocytogenes (employed as a model) within 20min, even at bacterial concentrations of only 10(2)cfumL(-1). Integrated with the enrichment of the Van-PEG-PLL-MNP nano-platform and electrochemiluminescence (ECL) detection, Listeria monocytogenes can be rapidly and accurately detected at levels as low as 10cfumL(-1). The approach described herein holds great potential for realizing rapid and sensitive pathogen detection in clinical samples. Copyright © 2016. Published by Elsevier B.V.

  2. Development of Laser Application Technology for Stable Isotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2007-04-15

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed.

  3. Volume 1, 1st Edition, Multiscale Tailoring of Highly Active and Stable Nanocomposite Catalysts, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Veser, Goetz

    2009-08-31

    Nanomaterials have gained much attention as catalysts since the discovery of exceptional CO oxidation activity of nanoscale gold by Haruta. However, many studies avoid testing nanomaterials at the high-temperatures relevant to reactions of interest for the production of clean energy (T > 700°C). The generally poor thermal stability of catalytically active noble metals has thus far prevented significant progress in this area. We have recently overcome the poor thermal stability of nanoparticles by synthesizing a platinum barium-hexaaluminate (Pt-BHA) nanocomposite which combines the high activity of noble metal nanoparticles with the thermal stability of hexaaluminates. This Pt-BHA nanocomposite demonstrates excellent activity, selectivity, and long-term stability in CPOM. Pt-BHA is anchored onto a variety of support structures in order to improve the accessibility, safety, and reactivity of the nanocatalyst. Silica felts prove to be particularly amenable to this supporting procedure, with the resulting supported nanocatalyst proving to be as active and stable for CPOM as its unsupported counterpart. Various pre-treatment conditions are evaluated to determine their effectiveness in removing residual surfactant from the active nanoscale platinum particles. The size of these particles is measured across a wide temperature range, and the resulting “plateau” of stability from 600-900°C can be linked to a particle caging effect due to the structure of the supporting ceramic framework. The nanocomposites are used to catalyze the combustion of a dilute methane stream, and the results indicate enhanced activity for both Pt-BHA as well as ceria-doped BHA, as well as an absence of internal mass transfer limitations at the conditions tested. In water-gas shift reaction, nanocomposite Pt-BHA shows stability during prolonged WGS reaction and no signs of deactivation during start-up/shut-down of the reactor. The chemical and thermal stability, low molecular weight, and

  4. Diagnostic value of exercise-induced changes in circulating high sensitive troponin T in stable chest pain patients

    DEFF Research Database (Denmark)

    Mouridsen, Mette Rauhe; Nielsen, Olav Wendelboe; Pedersen, Ole Dyg

    2013-01-01

    We investigated the diagnostic value of exercise-induced increase in cardiac Troponin T (cTnT) in stable chest pain subjects.......We investigated the diagnostic value of exercise-induced increase in cardiac Troponin T (cTnT) in stable chest pain subjects....

  5. Unusual Mesoporous Carbonaceous Matrix Loading with Sulfur as the Cathode of Lithium Sulfur Battery with Exceptionally Stable High Rate Performance.

    Science.gov (United States)

    Qian, Weiwei; Gao, Qiuming; Li, Zeyu; Tian, Weiqian; Zhang, Hang; Zhang, Qiang

    2017-08-30

    Unusual three-dimensional mesoporous carbon/reduced graphene oxide (MP-C/rGO) matrix possessing graphene nanolayer pore walls built up by three to five graphene monosheets and some carbon particles with the sizes of about 5 nm located between the graphene nanolayers was prepared by facile freeze-drying and then carbonization of the poly(vinyl alcohol) and graphene oxide mixture. The mesoporous carbonaceous MP-C/rGO sample has a high specific surface area of 661.6 m2 g-1, large specific pore volume of 1.54 m3 g-1, and focused pore size distribution of 2-10 nm. About 64 wt % sulfur could be held in the pores of the MP-C/rGO matrix. As the cathode of a Li-S battery, the MP-C/rGO/S composite showed excellent electrochemical property including a high initial specific capacity of 919 mA h g-1 at 1 C with the capacity retention ratio of 63.3% and the Coulombic efficiency above 90% after 500 cycles. Meanwhile, the initial specific capacity of 602 mA h g-1 at 5 C and remaining capacity of 391 mA h g-1 after 500 cycles with an outstanding Coulombic efficiency of 97% indicate its exceptionally stable rate performance.

  6. High nasal resistance is stable over time but poorly perceived in people with tetraplegia and obstructive sleep apnoea.

    Science.gov (United States)

    Wijesuriya, Nirupama S; Lewis, Chaminda; Butler, Jane E; Lee, Bonsan B; Jordan, Amy S; Berlowitz, David J; Eckert, Danny J

    2017-01-01

    Obstructive sleep apnoea (OSA) is highly prevalent in people with tetraplegia. Nasal congestion, a risk factor for OSA, is common in people with tetraplegia. The purpose of this study was to quantify objective and perceived nasal resistance and its stability over four separate days in people with tetraplegia and OSA (n=8) compared to able-bodied controls (n=6). Awake nasal resistance was quantified using gold standard choanal pressure recordings (days 1 and 4) and anterior rhinomanometry (all visits). Nasal resistance (choanal pressure) was higher in people with tetraplegia versus controls (5.3[6.5] vs. 2.1[2.4] cmH 2 O/L/s, p=0.02) yet perceived nasal congestion (modified Borg score) was similar (0.5[1.8] vs. 0.5[2.0], p=0.8). Nasal resistance was stable over time in both groups (CV=0.23±0.09 vs. 0.16±0.08, p=0.2). These findings are consistent with autonomic dysfunction in tetraplegia and adaptation of perception to high nasal resistance. Nasal resistance may be an important therapeutic target for OSA in this population but self-assessment cannot reliably identify those most at risk. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    Science.gov (United States)

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power, CRADA Number: CRD-14-554

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-05

    As part of a Federal Opportunity Announcement (FOA) Award, the project will be led by Colorado School of Mines (CSM) to explore and demonstrate the efficacy of highly reducible, redox-stable oxides to provide efficient thermochemical energy storage for heat release at temperatures of 900 degrees Celcius or more. NREL will support the material development for its application in a concentrating solar power (CSP) plant. In the project, NREL will provide its inventive system design, chemical looping for CSP, and use it as a platform to accommodate the chemical processes using a cost effective perovskite materials identified by CSM. NREL will design a 5-10kW particle receiver for perovskite reduction to store solar energy and help the development of a fluidized-bed reoxidation reactor and system integration. NREL will develop the demonstration receiver for on-sun test in the 5-10 kWt range in NREL's high flux solar furnace. NREL will assist in system analysis and provide techno-economic inputs for the overall system configuration.

  9. In situ Poly(methyl methacrylate)/Graphene Composite Gel Electrolytes for Highly Stable Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Kang, Yu-il; Moon, Jun Hyuk

    2015-11-01

    Dye-sensitized solar cells (DSCs) with long-term stability are produced using polymer-gel electrolytes (PGEs). In this study, we introduce the formation of PGEs using in situ gelation with poly(methyl methacrylate) (PMMA) particles and graphene fillers that are pre-deposited on the counter electrodes. We obtain a high concentration PMMA-based PGEs (i.e., over 10 wt%). A DSC composed of a PMMA/graphene composite PGEs exhibits an 8.49% photon-to-electric conversion efficiency, which is comparable to conventional liquid electrolyte DSCs. This finding is attributed to increased ion diffusivity and conductivity of the PMMA-based PGEs resulting from the incorporation of graphene nanofillers. The PMMA-based PGE DSCs exhibit highly stable long-term efficiencies, maintaining up to 90% of their initial efficiency during thermal soaking, whereas the efficiencies of liquid electrolyte cells decrease significantly, by up to 60%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Stable White Light Electroluminescence from Highly Flexible Polymer/ZnO Nanorods Hybrid Heterojunction Grown at 50°C

    Directory of Open Access Journals (Sweden)

    Zainelabdin A

    2010-01-01

    Full Text Available Abstract Stable intrinsic white light–emitting diodes were fabricated from c-axially oriented ZnO nanorods (NRs grown at 50°C via the chemical bath deposition on top of a multi-layered poly(9,9-dioctylfluorene-co–N-(4-butylpheneylaminediphenylamine/poly(9,9dioctyl-fluorene deposited on PEDOT:PSS on highly flexible plastic substrate. The low growth temperature enables the use of a variety of flexible plastic substrates. The fabricated flexible white light–emitting diode (FWLED demonstrated good electrical properties and a single broad white emission peak extending from 420 nm and up to 800 nm combining the blue light emission of the polyflourene (PFO polymer layer with the deep level emission (DLEs of ZnO NRs. The influence of the temperature variations on the FWLED white emissions characteristics was studied and the devices exhibited high operation stability. Our results are promising for the development of white lighting sources using existing lighting glass bulbs, tubes, and armature technologies.

  11. Innermost stable circular orbit near dirty black holes in magnetic field and ultra-high-energy particle collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zaslavskii, O.B. [Kharkov V.N. Karazin National University, Department of Physics and Technology, Kharkov (Ukraine); Kazan Federal University, Institute of Mathematics and Mechanics, Kazan (Russian Federation)

    2015-09-15

    We consider the behavior of the innermost stable circular orbit (ISCO) in the magnetic field near ''dirty'' (surrounded by matter) axially symmetric black holes. The cases of near-extremal, extremal, and nonextremal black holes are analyzed. For nonrotating black holes, in the strong magnetic field ISCO approaches the horizon (when backreaction of the field on the geometry is neglected). Rotation destroys this phenomenon. The angular momentum and radius of ISCO look model-independent in the main approximation. We also study the collisions between two particles that results in the ultra-high energy E{sub c.m.} in the center-of-mass frame. Two scenarios are considered - when one particle moves on the near-horizon ISCO or when collision occurs on the horizon, one particle having the energy and angular momentum typical of ISCO. If the magnetic field is strong enough and a black hole is slowly rotating, E{sub c.m.} can become arbitrarily large. The kinematics of the high-energy collision is discussed. As an example, we consider the magnetized Schwarzschild black hole for an arbitrary strength of the field (the Ernst solution). It is shown that backreaction of the magnetic field on the geometry can bound the growth of E{sub c.m.} (orig.)

  12. Stable White Light Electroluminescence from Highly Flexible Polymer/ZnO Nanorods Hybrid Heterojunction Grown at 50 degrees C.

    Science.gov (United States)

    Zainelabdin, A; Zaman, S; Amin, G; Nur, O; Willander, M

    2010-06-04

    Stable intrinsic white light-emitting diodes were fabricated from c-axially oriented ZnO nanorods (NRs) grown at 50 degrees C via the chemical bath deposition on top of a multi-layered poly(9,9-dioctylfluorene-co-N-(4-butylpheneylamine)diphenylamine)/poly(9,9dioctyl-fluorene) deposited on PEDOT:PSS on highly flexible plastic substrate. The low growth temperature enables the use of a variety of flexible plastic substrates. The fabricated flexible white light-emitting diode (FWLED) demonstrated good electrical properties and a single broad white emission peak extending from 420 nm and up to 800 nm combining the blue light emission of the polyflourene (PFO) polymer layer with the deep level emission (DLEs) of ZnO NRs. The influence of the temperature variations on the FWLED white emissions characteristics was studied and the devices exhibited high operation stability. Our results are promising for the development of white lighting sources using existing lighting glass bulbs, tubes, and armature technologies.

  13. Pilot plant demonstration of stable and efficient high rate biological nutrient removal with low dissolved oxygen conditions.

    Science.gov (United States)

    Keene, Natalie A; Reusser, Steve R; Scarborough, Matthew J; Grooms, Alan L; Seib, Matt; Santo Domingo, Jorge; Noguera, Daniel R

    2017-09-15

    Aeration in biological nutrient removal (BNR) processes accounts for nearly half of the total electricity costs at many wastewater treatment plants. Even though conventional BNR processes are usually operated to have aerated zones with high dissolved oxygen (DO) concentrations, recent research has shown that nitrification can be maintained using very low-DO concentrations (e.g., below 0.2 mg O2/L), and therefore, it may be possible to reduce energy use and costs in BNR facilities by decreasing aeration. However, the effect of reduced aeration on enhanced biological phosphorus removal (EBPR) is not understood. In this study, we investigated, at the pilot-scale level, the effect of using minimal aeration on the performance of an EBPR process. Over a 16-month operational period, we performed stepwise decreases in aeration, reaching an average DO concentration of 0.33 mg O2/L with stable operation and nearly 90% phosphorus removal. Under these low-DO conditions, nitrification efficiency was maintained, and nearly 70% of the nitrogen was denitrified, without the need for internal recycling of high nitrate aeration basin effluent to the anoxic zone. At the lowest DO conditions used, we estimate a 25% reduction in energy use for aeration compared to conventional BNR operation. Our improved understanding of the efficiency of low-DO BNR contributes to the global goal of reducing energy consumption during wastewater treatment operations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol.

    Science.gov (United States)

    Wang, Xu-dong; Stolwijk, Judith A; Lang, Thomas; Sperber, Michaela; Meier, Robert J; Wegener, Joachim; Wolfbeis, Otto S

    2012-10-17

    We report on the first dual nanosensors for imaging of pH values and oxygen partial pressure in cells. The sensors have a unique nanostructure in that a soft core structure is rigidized with a silane reagent, while poly(ethylene glycol) chains form an outer shell. Lipophilic oxygen-sensitive probes and reference dyes are encapsulated inside the hydrophobic core, while a pH-sensitive probe is covalently attached to the poly(ethylene glycol) end-group on the shell. The core/shell structure renders the nanosensors well dispersed and highly stable in various kinds of aqueous media. Their average size is 12 nm, and they respond to both pH and oxygen in the physiological range. They do not pass cell membranes, but can be internalized into the cellular cytosol by electroporation, upon which they enable sensing and imaging of pH values and oxygen with high spatial resolution. The nanosensor strategy shown here is expected to be applicable to the development of various other kinds of multiple nanosensors for in vivo studies.

  15. Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Tamaki Wada

    Full Text Available BACKGROUND: There are no cures or efficacious treatments for severe motor neuron diseases. It is extremely difficult to obtain naïve spinal motor neurons (sMNs from human tissues for research due to both technical and ethical reasons. Human embryonic stem cells (hESCs are alternative sources. Several methods for MN differentiation have been reported. However, efficient production of naïve sMNs and culture cost were not taken into consideration in most of the methods. METHODS/PRINCIPAL FINDINGS: We aimed to establish protocols for efficient production and enrichment of sMNs derived from pluripotent stem cells. Nestin+ neural stem cell (NSC clusters were induced by Noggin or a small molecule inhibitor of BMP signaling. After dissociation of NSC clusters, neurospheres were formed in a floating culture containing FGF2. The number of NSCs in neurospheres could be expanded more than 30-fold via several passages. More than 33% of HB9+ sMN progenitor cells were observed after differentiation of dissociated neurospheres by all-trans retinoic acid (ATRA and a Shh agonist for another week on monolayer culture. HB9+ sMN progenitor cells were enriched by gradient centrifugation up to 80% purity. These HB9+ cells differentiated into electrophysiologically functional cells and formed synapses with myotubes during a few weeks after ATRA/SAG treatment. CONCLUSIONS AND SIGNIFICANCE: The series of procedures we established here, namely neural induction, NSC expansion, sMN differentiation and sMN purification, can provide large quantities of naïve sMNs derived from human and monkey pluripotent stem cells. Using small molecule reagents, reduction of culture cost could be achieved.

  16. Epicardial-endocardial breakthrough during stable atrial macroreentry: Evidence from ultra-high-resolution 3-dimensional mapping.

    Science.gov (United States)

    Pathik, Bhupesh; Lee, Geoffrey; Sacher, Frédéric; Haïssaguerre, Michel; Jaïs, Pierre; Massoullié, Grégoire; Derval, Nicolas; Sanders, Prashanthan; Kistler, Peter; Kalman, Jonathan M

    2017-08-01

    Evidence for epicardial-endocardial breakthrough (EEB) is derived from mapping inferences in patients with atrial fibrillation who may also have focal activations. The purpose of this study was to investigate whether EEB could be discerned during stable right atrial (RA) macroreentry using high-density high-spatial resolution 3-dimensional mapping. Macroreentry was diagnosed using 3-dimensional mapping and entrainment. Bipolar maps were reviewed for EEB defined as (1) presence of focal endocardial activation with radial spread unaccounted for by an endocardial wavefront and (2) present with the same timing on every tachycardia cycle. The EEB site was always in proximity to a line of endocardial conduction slowing or block. Distance and conduction velocity from the line of block to the EEB site was calculated. Electrograms at EEB sites were individually analyzed for morphology and to confirm direction of activation. Entrainment was performed at EEB sites. Twenty-six patients were studied. Fourteen examples of EEB were seen: 11 at the posterior RA (4 at the superior portion of the posterior wall and 7 at the inferior section) and 1 each at the cavotricuspid isthmus postablation, RA septum, and inferolateral RA. The mean area of the EEB site was 0.6 ± 0.2 cm2. A mean of 79.5% ± 18.6% of unipolar electrograms at the EEB site demonstrated an rS morphology. The mean distance and conduction velocity from the line of endocardial block to the EEB site at the posterior RA was 13.6 ± 2.3 mm and 59.3 ± 12.3 cm/s, respectively. In 4 patients, entrainment demonstrated that EEB sites were within the circuit and in 1 of these patients critical to arrhythmia maintenance. Activation maps during tachycardia and coronary sinus pacing demonstrated EEB at the same anatomic site. EEB sites were demonstrated in stable atrial macroreentry supported by systematic entrainment confirmation and demonstration of the same phenomenon during pacing. Copyright © 2017 Heart Rhythm Society

  17. Development of a high-yielding bioprocess for 11-α hydroxylation of canrenone under conditions of oxygen-enriched air supply.

    Science.gov (United States)

    Contente, Martina Letizia; Guidi, Benedetta; Serra, Immacolata; De Vitis, Valerio; Romano, Diego; Pinto, Andrea; Lenna, Roberto; de Souza Oliveira, Ricardo Pinheiro; Molinari, Francesco

    2016-12-01

    A high yielding bioprocess for 11-α hydroxylation of canrenone (1a) using Aspergillus ochraceus ATCC 18500 was developed. The optimization of the biotransformation involved both fermentation (for achieving highly active mycelium of A. ochraceus) and biotransformation with the aim to obtain 11-α hydroxylation with high selectivity and yield. A medium based on sucrose as C-source resulted particularly suitable for conversion of canrenone into the corresponding 11-hydroxy derivative, whereas the use of O2-enriched air and dimethyl sulfoxide (DMSO) as a co-solvent for increasing substrate solubility played a crucial role for obtaining high yields (>95%) of the desired product in high chemical purity starting from 30mM (10.2g/L) of substrate. The structure of the hydroxylated product was confirmed by a combination of two-dimensional NMR proton-proton correlation techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. High-intensity physical activity, stable relationship, and high education level associate with decreasing risk of erectile dysfunction in 1,000 apparently healthy cardiovascular risk subjects.

    Science.gov (United States)

    Ettala, Otto O; Syvänen, Kari T; Korhonen, Päivi E; Kaipia, Antti J; Vahlberg, Tero J; Boström, Peter J; Aarnio, Pertti T

    2014-09-01

    Erectile dysfunction (ED) is especially common in men with cardiovascular diseases (CVDs). However, the data are scarce concerning populations without manifested CVD. The aim of this study was to describe factors associated with ED, especially those associated with decreasing risk of ED, in men with cardiovascular risk factors but without CVD, diabetes, or chronic renal disease. In 2004 to 2007, a cross-sectional population-based sample of men 45 to 70 years old in two rural towns in Finland was collected. Men with previously diagnosed CVD, diabetes, or kidney disease were not invited to the study. In total 1,000 eligible men with cardiovascular risk factors, i.e., central obesity, high scores in the Finnish Diabetes Risk Score, high blood pressure, antihypertensive medication, or family history of coronary heart disease, myocardial infarction, or stroke, were included in the analysis. Questionnaires, clinical measurements, and laboratory tests were obtained. The prevalence of ED was studied comparing the means, and risk factors were studied using multivariate logistic regression analysis. The rate of ED was defined by the International Index of Erectile Function short form (IIEF-5) and by two questions (2Q) about the ability to achieve and to maintain an erection. The prevalence of ED was 57% or 68% using IIEF-5 or 2Q, respectively. Age (odds ratio [OR]: up to 9.16; 95% confidence interval [CI], 5.00-16.79; P physical activity (OR: 0.50; 95% CI, 0.29-0.86; P = 0.045), high education (OR: 0.52; 95% CI, 0.33-0.83; P = 0.013), and stable relationship (OR: 0.43; 95% CI, 0.21-0.88; P = 0.046) were associated with ED. In apparently healthy men with cardiovascular risk factors, decreasing risk of ED is associated with high-intensity physical activity, stable relationship, and high education level. © 2014 International Society for Sexual Medicine.

  19. High-internal-phase-emulsion polymeric monolith coupled with liquid chromatography-electrospray tandem mass spectrometry for enrichment and sensitive detection of trace cytokinins in plant samples.

    Science.gov (United States)

    Du, Fuyou; Sun, Lin; Zhen, Xian; Nie, Honggang; Zheng, Yanjie; Ruan, Guihua; Li, Jianping

    2015-08-01

    High-internal-phase-emulsion polymers (polyHIPEs) show great promise as solid-phase-extraction (SPE) materials because of the tremendous porosity and highly interconnected framework afforded by the high-internal-phase-emulsion (HIPE) technique. In this work, polyHIPE monolithic columns as novel SPE materials were prepared and applied to trace enrichment of cytokinins (CKs) from complex plant samples. The polyHIPE monoliths were synthesized via the in-situ polymerization of the continuous phase of a HIPE containing styrene (STY) and divinylbenzene (DVB) in a stainless column, and revealed highly efficient and selective enrichment ability for aromatic compounds. Under the optimized experimental conditions, a method using a monolithic polyHIPE column combined with liquid chromatography-electrospray tandem mass spectrometry (LC-MS-MS) was developed for the simultaneous extraction and sensitive determination of trans-zeatin (tZ), meta-topolin (mT), kinetin (K), and kinetin riboside (KR). The proposed method had good linearity, with correlation coefficients (R (2)) from 0.9957 to 0.9984, and low detection limits (LODs, S/N = 3) in the range 2.4-47 pg mL(-1) for the four CKs. The method was successfully applied to the determination of CKs in real plant samples, and obtained good recoveries ranging from 68.8 % to 103.0 % and relative standard deviations (RSDs) lower than 16 %.

  20. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications.

    Science.gov (United States)

    Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir

    2013-08-07

    A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material

  1. An efficient strategy for producing a stable, replaceable, highly efficient transgene expression system in silkworm, Bombyx mori.

    Science.gov (United States)

    Long, Dingpei; Lu, Weijian; Zhang, Yuli; Bi, Lihui; Xiang, Zhonghuai; Zhao, Aichun

    2015-03-05

    We developed an efficient strategy that combines a method for the post-integration elimination of all transposon sequences, a site-specific recombination system, and an optimized fibroin H-chain expression system to produce a stable, replaceable, highly efficient transgene expression system in the silkworm (Bombyx mori) that overcomes the disadvantages of random insertion and post-integration instability of transposons. Here, we generated four different transgenic silkworm strains, and of one the transgenic strains, designated TS1-RgG2, with up to 16% (w/w) of the target protein in the cocoons, was selected. The subsequent elimination of all the transposon sequences from TS1-RgG2 was completed by the heat-shock-induced expression of the transposase in vivo. The resulting transgenic silkworm strain was designated TS3-g2 and contained only the attP-flanked optimized fibroin H-chain expression cassette in its genome. A phiC31/att-system-based recombinase-mediated cassette exchange (RMCE) method could be used to integrate other genes of interest into the same genome locus between the attP sites in TS3-g2. Controlling for position effects with phiC31-mediated RMCE will also allow the optimization of exogenous protein expression and fine gene function analyses in the silkworm. The strategy developed here is also applicable to other lepidopteran insects, to improve the ecological safety of transgenic strains in biocontrol programs.

  2. In-situ synthesis of high stable CdS quantum dots and their application for photocatalytic degradation of dyes

    Science.gov (United States)

    Samadi-Maybodi, Abdolraouf; Sadeghi-Maleki, Mohammad-Rasool

    2016-01-01

    Photocatalysis based on semiconductor quantum dots, which utilize the solar energy can be used for elimination of pollutants from aqueous media and applied for water purification. In this paper, high stable CdS quantum dots (QDs) with good optical properties were successfully synthesized in a facile in-situ method, using Na2S2O3 as precursor and thioglycolic acid (TGA) as a catalyst, as well as capping agent in aqueous media. The synthesis process was optimized with a 2IV7-3 fractional factorial design method. Then, we studied the degradation of some industrial dyes including: alizarin, acid violet, mordant red and thymol blue as a tool to check the photocatalytic activity of synthesized CdS QDs. Results specified that the synthesized CdS QDs are capable for degradation of organic dyes under visible light irradiation with good recycling stability during photocatalytic experiments. Structural and spectroscopic properties of the synthesized CdS QDs were studied by TEM, XRD and absorption and fluorescence spectroscopy techniques. The synthesized TGA-capped CdS QDs have sizes in the range of 2.65-2.93 nm with cubic crystalline structures.

  3. A novel strategy to produce highly stable and transparent aqueous 'nanosolutions' of water-insoluble drug molecules

    Science.gov (United States)

    Wang, Jie-Xin; Zhang, Zhi-Bing; Le, Yuan; Zhao, Hong; Chen, Jian-Feng

    2011-07-01

    A surprisingly large proportion of new drug candidates emerging from drug discovery programmes are water-insoluble and, as a result, have poor oral bioavailability. To overcome insolubility, the drug particles are usually dispersed in a medium during product formation, but large particles that are formed may affect product performance and safety. Many techniques have been used to produce nanodispersions—dispersions with nanometre-scale dimensions—that have properties similar to solutions. However, making nanodispersions requires complex processing, and it is difficult to achieve stability over long periods. In this paper, we report a generic method for preparing drug nanoparticles with a combination of antisolvent precipitation in the presence of water-soluble matrices and spray-drying. The spray-dried powder composites (solid dispersion) are microspherical, highly stable and thus form transparent nanodispersions or so-called 'nanosolutions' of water-insoluble drug when simply added to water. Aqueous nanodispersions of silybin (a kind of water-insoluble drug for liver protection) with an average size of 25 nm produced with this approach display a 10 times faster dissolution rate than that of raw drug. This has great potential to offer a novel solution for innovative drugs of the future.

  4. Highly stable aptamers selected from a 2'-fully modified fGmH RNA library for targeting biomaterials.

    Science.gov (United States)

    Friedman, Adam D; Kim, Dongwook; Liu, Rihe

    2015-01-01

    When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2' modification. This study aims to develop a novel class of highly stable, 2'-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2'-F-dG, 2'-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2'-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and specifically deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials.

  5. Highly stable phase change material emulsions fabricated by interfacial assembly of amphiphilic block copolymers during phase inversion.

    Science.gov (United States)

    Park, Hanhee; Han, Dong Wan; Kim, Jin Woong

    2015-03-10

    This study introduced a robust and promising approach to fabricate highly stable phase change material (PCM) emulsions consisting of n-tetradecane as a dispersed phase and a mixture of meso-2,3-butanediol (m-BDO) and water as a continuous phase. We showed that amphiphilic poly(ethylene oxide)-b-poly(ε-caprolactone) block copolymers assembled to form a flexible but tough polymer membrane at the interface during phase inversion from water-in-oil emulsion to oil-in-water emulsion, thus remarkably improving the emulsion stability. Although the incorporation of m-BDO into the emulsion lowered the phase changing enthalpy, it provided a useful means to elevate the melting temperature of the emulsions near to 15 °C. Interestingly, supercooling was commonly observed in our PCM emulsions. We attributed this to the fact that the PCM molecules confined in submicron-scale droplets could not effectively nucleate to grow molecular crystals. Moreover, the presence of m-BDO in the continuous phase rather dominated the heat emission of the emulsion system during freezing, which made the supercooling more favorable.

  6. Highly stable noble metal nanoparticles dispersible in biocompatible solvents: synthesis of cationic phosphonium gold nanoparticles in water and DMSO.

    Science.gov (United States)

    Ju-Nam, Yon; Abdussalam-Mohammed, Wanisa; Ojeda, Jesus J

    2016-01-01

    In this work, we report the synthesis of novel cationic phosphonium gold nanoparticles dispersible in water and dimethyl sulfoxide (DMSO) for their potential use in biomedical applications. All the cationic-functionalising ligands currently reported in the literature are ammonium-based species. Here, the synthesis and characterisation of an alternative system, based on phosphonioalkylthiosulfate zwitterions and phosphonioalkylthioacetate were carried out. We have also demonstrated that our phosphonioalkylthiosulfate zwitterions readily disproportionate into phosphonioalkylthiolates in situ during the synthesis of gold nanoparticles produced by the borohydride reduction of gold(III) salts. The synthesis of the cationic gold nanoparticles using these phosphonium ligands was carried out in water and DMSO. UV-visible spectroscopic and TEM studies have shown that the phosphonioalkylthiolates bind to the surface of gold nanoparticles which are typically around 10 nm in diameter. The resulting cationic-functionalised gold nanoparticles are dispersible in aqueous media and in DMSO, which is the only organic solvent approved by the U.S. Food and Drug Administration (FDA) for drug carrier tests. This indicates their potential future use in biological applications. This work shows the synthesis of a new family of phosphonium-based ligands, which behave as cationic masked thiolate ligands in the functionalisation of gold nanoparticles. These highly stable colloidal cationic phosphonium gold nanoparticles dispersed in water and DMSO can offer a great opportunity for the design of novel biorecognition and drug delivery systems.

  7. Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer.

    Science.gov (United States)

    Wang, Mingkui; Moon, Soo-Jin; Xu, Mingfei; Chittibabu, Kethineni; Wang, Peng; Cevey-Ha, Ngoc-Le; Humphry-Baker, Robin; Zakeeruddin, Shaik M; Grätzel, Michael

    2010-01-01

    The high-molar-extinction-coefficient heteroleptic ruthenium dye, cis-Ru (4,4'-bis(5-octylthieno[3,2-b] thiophen-2-yl)-2,2'-bipyridine) (4,4'-dicarboxyl-2,2'-bipyridine) (NCS)(2), exhibits an AM 1.5 solar (100 mW cm(-2))-to-electric power-conversion efficiency of 4.6% in a solid-state dye-sensitized solar cell (SSDSC) with 2,2', 7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)9,9'-spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. These SSDSC devices exhibit good durability during accelerated tests under visible-light soaking for 1000 h at 60 degrees C. This demonstration elucidates a class of photovoltaic devices with potential for stable and low-cost power generation. The electron recombination dynamics and charge collection that take place at the dye-sensitized heterojunction are studied by means of impedance and transient photovoltage decay techniques.

  8. Experiments and Simulations of the Use of Time-Correlated Thermal Neutron Counting to Determine the Multiplication of an Assembly of Highly Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Mathew T. Kinlaw; Scott M. Watson; Jeffrey M. Kalter; Eric C. Miller; William A. Noonan

    2014-11-01

    A series of experiments and numerical simulations using thermal-neutron time-correlated measurements has been performed to determine the neutron multiplication, M, of assemblies of highly enriched uranium available at Idaho National Laboratory. The experiments used up to 14.4 kg of highly-enriched uranium, including bare assemblies and assemblies reflected with high-density polyethylene, carbon steel, and tungsten. A small 252Cf source was used to initiate fission chains within the assembly. Both the experiments and the simulations used 6-channel and 8-channel detector systems, each consisting of 3He proportional counters moderated with polyethylene; data was recorded in list mode for analysis. 'True' multiplication values for each assembly were empirically derived using basic neutron production and loss values determined through simulation. A total of one-hundred and sixteen separate measurements were performed using fifty-seven unique measurement scenarios, the multiplication varied from 1.75 to 10.90. This paper presents the results of these comparisons and discusses differences among the various cases.

  9. High-sensitive troponin T is associated with all-cause and cardiovascular mortality in stable outpatients with type 2 diabetes (ZODIAC-37)

    NARCIS (Netherlands)

    Hendriks, Steven H; van Dijk, Peter R; van Hateren, Kornelis J J; van Pelt, Joost L; Groenier, Klaas H; Bilo, Henk J G; Bakker, Stephan J L; Landman, Gijs W D; Kleefstra, Nanne

    BACKGROUND: We aimed to investigate whether high-sensitive cardiac troponin T (hs-cTnT) is associated with all-cause and cardiovascular mortality in stable type 2 diabetes (T2D) outpatients treated in primary care. METHODS: Cardiac troponin T was measured with a high-sensitive assay at baseline in

  10. Controlled Incremental Filtration: A simplified approach to design and fabrication of high-throughput microfluidic devices for selective enrichment of particles†

    Science.gov (United States)

    Gifford, Sean C.; Spillane, Angela M.; Vignes, Seth M.; Shevkoplyas, Sergey S.

    2014-01-01

    The number of microfluidic strategies aimed at separating particles or cells of a specific size within a continuous flow system continues to grow. The wide array of biomedical and other applications that would benefit from successful development of such technology has motivated the extensive research in this area over the past 15 years. However, despite promising advancements in microfabrication capabilities, a versatile approach that is suitable for a large range of particle sizes and high levels of enrichment, with a volumetric throughput sufficient for large-scale applications, has yet to emerge. Here we describe a straightforward method that enables the rapid design of microfluidic devices that are capable of enriching/removing particles within a complex aqueous mixture, with an unprecedented range of potential cutoff diameter (below 1µm to above 100µm) and an easily scalable degree of enrichment/filtration (up to 10-fold and well beyond). A simplified model of a new approach to crossflow filtration – controlled incremental filtration – was developed and validated for its ability to generate microfluidic devices that efficiently separate particles on the order of 1–10µm, with throughputs of tens of µL/min, without the use of a pump. Precise control of the amount of fluid incrementally diverted at each filtration “gap” of the device allows for the gap size (~20µm) to be much larger than the particles of interest, while the simplicity of the model allows for many thousands of these filtration points to be readily incorporated into a desired device design. This new approach should enable truly high-throughput microfluidic particle-separation devices to be generated, even by users only minimally experienced in fluid mechanics and microfabrication techniques. PMID:25254358

  11. Controlled incremental filtration: a simplified approach to design and fabrication of high-throughput microfluidic devices for selective enrichment of particles.

    Science.gov (United States)

    Gifford, Sean C; Spillane, Angela M; Vignes, Seth M; Shevkoplyas, Sergey S

    2014-12-07

    The number of microfluidic strategies aimed at separating particles or cells of a specific size within a continuous flow system continues to grow. The wide array of biomedical and other applications that would benefit from successful development of such technology has motivated the extensive research in this area over the past 15 years. However, despite promising advancements in microfabrication capabilities, a versatile approach that is suitable for a large range of particle sizes and high levels of enrichment, with a volumetric throughput sufficient for large-scale applications, has yet to emerge. Here we describe a straightforward method that enables the rapid design of microfluidic devices that are capable of enriching/removing particles within a complex aqueous mixture, with an unprecedented range of potential cutoff diameter (below 1 μm to above 100 μm) and an easily scalable degree of enrichment/filtration (up to 10-fold and well beyond). A simplified model of a new approach to crossflow filtration - controlled incremental filtration - was developed and validated for its ability to generate microfluidic devices that efficiently separate particles on the order of 1-10 μm, with throughputs of tens of μL min(-1), without the use of a pump. Precise control of the amount of fluid incrementally diverted at each filtration "gap" of the device allows for the gap size (~20 μm) to be much larger than the particles of interest, while the simplicity of the model allows for many thousands of these filtration points to be readily incorporated into a desired device design. This new approach should enable truly high-throughput microfluidic particle-separation devices to be generated, even by users only minimally experienced in fluid mechanics and microfabrication techniques.

  12. Facile synthesis of boronate-decorated polyethyleneimine-grafted hybrid magnetic nanoparticles for the highly selective enrichment of modified nucleosides and ribosylated metabolites.

    Science.gov (United States)

    Li, Hua; Shan, Yuanhong; Qiao, Lizhen; Dou, Abo; Shi, Xianzhe; Xu, Guowang

    2013-12-03

    Ribosylated metabolites, especially modified nucleosides, have been extensively evaluated as cancer-related biomarkers. Boronate adsorbents are considered to be promising materials for extracting them from complex matrices. However, the enrichment of ribosylated metabolites in low abundance is still a challenge due to the limited capacity and selectivity of the existing boronate adsorbents. In this study, a novel type of magnetic nanoparticles named Fe3O4@SiO2@PEI-FPBA was synthesized by grafting polyethyleneimine (PEI) onto the surface of Fe3O4@SiO2 before modification by boronate groups. The high density of the amino groups on the PEI chains supplied a large number of binding sites for boronate groups. Thus, the adsorption capacity (1.34 ± 0.024 mg/g) of the nanoparticles, which is 6- to 7-fold higher than that of analogous materials, was greatly improved. The unreacted secondary amines and tertiary amines of the PEI enhanced the aqueous solubility of the nanoparticles, which could efficiently reduce nonspecific adsorption. The nanoparticles were able to capture 1,2 cis-diol nucleosides from 1000-fold interferences. Moreover, the flexible chains of PEI were favorable for effective enrichment and quick equilibration (nanoparticles. Among them, 43 were identified to be nucleosides and other ribosylated metabolites. Nine low abundance modified nucleosides were detected for the first time. In conclusion, Fe3O4@SiO2@PEI-FPBA is an attractive candidate material for the highly selective enrichment of 1,2-cis-diol compounds.

  13. Gene set enrichment analysis highlights different gene expression profiles in whole blood samples X-irradiated with low and high doses.

    Science.gov (United States)

    El-Saghire, Houssein; Thierens, Hubert; Monsieurs, Pieter; Michaux, Arlette; Vandevoorde, Charlot; Baatout, Sarah

    2013-08-01

    Health risks from exposure to low doses of ionizing radiation (IR) are becoming a concern due to the rapidly growing medical applications of X-rays. Using microarray techniques, this study aims for a better understanding of whole blood response to low and high doses of IR. Aliquots of peripheral blood samples were irradiated with 0, 0.05, and 1 Gy X-rays. RNA was isolated and prepared for microarray gene expression experiments. Bioinformatic approaches, i.e., univariate statistics and Gene Set Enrichment Analysis (GSEA) were used for analyzing the data generated. Seven differentially expressed genes were selected for further confirmation using quantitative real-time PCR (RT-PCR). Functional analysis of genes differentially expressed at 0.05 Gy showed the enrichment of chemokine and cytokine signaling. However, responsive genes to 1 Gy were mainly involved in tumor suppressor protein 53 (p53) pathways. In a second approach, GSEA showed a higher statistical ranking of inflammatory and immune-related gene sets that are involved in both responding and/or secretion of growth factors, chemokines, and cytokines. This indicates the activation of the immune response. Whereas, gene sets enriched at 1 Gy were 'classical' radiation pathways like p53 signaling, apoptosis, DNA damage and repair. Comparative RT-PCR studies showed the significant induction of chemokine-related genes (PF4, GNG11 and CCR4) at 0.05 Gy and DNA damage and repair genes at 1 Gy (DDB2, AEN and CDKN1A). This study moves a step forward in understanding the different cellular responses to low and high doses of X-rays. In addition to that, and in a broader context, it addresses the need for more attention to the risk assessment of health effects resulting from the exposure to low doses of IR.

  14. Maize Inoculation with Azospirillum brasilense Ab-V5 Cells Enriched with Exopolysaccharides and Polyhydroxybutyrate Results in High Productivity under Low N Fertilizer Input.

    Science.gov (United States)

    Oliveira, André L M; Santos, Odair J A P; Marcelino, Paulo R F; Milani, Karina M L; Zuluaga, Mónica Y A; Zucareli, Claudemir; Gonçalves, Leandro S A

    2017-01-01

    Although Azospirillum strains used in commercial inoculant formulations presents diazotrophic activity, it has been reported that their ability to produce phytohormones plays a pivotal role in plant growth-promotion, leading to a general recommendation of its use in association with regular N-fertilizer doses. In addition, a high variability in the effectiveness of Azospirillum inoculants is still reported under field conditions, contributing to the adoption of the inoculation technology as an additional management practice rather than its use as an alternative practice to the use of chemical inputs in agriculture. To investigate whether the content of stress-resistance biopolymers would improve the viability and performance of Azospirillum inoculants when used as substitute of N-fertilizers, biomass of A. brasilense strain Ab-V5 enriched in exopolysaccharides (EPS) and polyhydroxybutirate (PHB) was produced using a new culture medium developed by factorial mixture design, and the effectiveness of resulting inoculants was evaluated under field conditions. The culture medium formulation extended the log phase of A. brasilense cultures, which presented higher cell counts and increased EPS and PHB contents than observed in the cultures grown in the OAB medium used as control. An inoculation trial with maize conducted under greenhouse conditions and using the biopolymers-enriched Ab-V5 cells demonstrated the importance of EPS and PHB to the long term bacterial viability in soil and to the effectiveness of inoculation. The effectiveness of liquid and peat inoculants prepared with Ab-V5 cells enriched with EPS and PHB was also evaluated under field conditions, using maize as target crop along different seasons, with the inoculants applied directly over seeds or at topdressing under limiting levels of N-fertilization. No additive effect on yield resulted from inoculation under high N fertilizer input, while inoculated plants grown under 80% reduction in N fertilizer

  15. Maize Inoculation with Azospirillum brasilense Ab-V5 Cells Enriched with Exopolysaccharides and Polyhydroxybutyrate Results in High Productivity under Low N Fertilizer Input

    Directory of Open Access Journals (Sweden)

    André L. M. Oliveira

    2017-09-01

    Full Text Available Although Azospirillum strains used in commercial inoculant formulations presents diazotrophic activity, it has been reported that their ability to produce phytohormones plays a pivotal role in plant growth-promotion, leading to a general recommendation of its use in association with regular N-fertilizer doses. In addition, a high variability in the effectiveness of Azospirillum inoculants is still reported under field conditions, contributing to the adoption of the inoculation technology as an additional management practice rather than its use as an alternative practice to the use of chemical inputs in agriculture. To investigate whether the content of stress-resistance biopolymers would improve the viability and performance of Azospirillum inoculants when used as substitute of N-fertilizers, biomass of A. brasilense strain Ab-V5 enriched in exopolysaccharides (EPS and polyhydroxybutirate (PHB was produced using a new culture medium developed by factorial mixture design, and the effectiveness of resulting inoculants was evaluated under field conditions. The culture medium formulation extended the log phase of A. brasilense cultures, which presented higher cell counts and increased EPS and PHB contents than observed in the cultures grown in the OAB medium used as control. An inoculation trial with maize conducted under greenhouse conditions and using the biopolymers-enriched Ab-V5 cells demonstrated the importance of EPS and PHB to the long term bacterial viability in soil and to the effectiveness of inoculation. The effectiveness of liquid and peat inoculants prepared with Ab-V5 cells enriched with EPS and PHB was also evaluated under field conditions, using maize as target crop along different seasons, with the inoculants applied directly over seeds or at topdressing under limiting levels of N-fertilization. No additive effect on yield resulted from inoculation under high N fertilizer input, while inoculated plants grown under 80% reduction in

  16. Stable isotope

    African Journals Online (AJOL)

    Results of the study suggest that there are two main carbon pathways for plankton and nekton in the Kariega estuary, carbon derived from the eelgrass and its associated epiphytes and carbon which has its origins in the salt marsh riparian vegetation and zooplankton. Keywords: stable isotope analysis; temperate estuary; ...

  17. Highly Efficient and Stable Organic Solar Cells via Interface Engineering with a Nanostructured ITR-GO/PFN Bilayer Cathode Interlayer

    Directory of Open Access Journals (Sweden)

    Ding Zheng

    2017-08-01

    Full Text Available An innovative bilayer cathode interlayer (CIL with a nanostructure consisting of in situ thermal reduced graphene oxide (ITR-GO and poly[(9,9-bis(3′-(N,N-dimethylamionpropyl-2,7-fluorene-alt-2,7-(9,9-dioctyl fluorene] (PFN has been fabricated for inverted organic solar cells (OSCs. An approach to prepare a CIL of high electronic quality by using ITR-GO as a template to modulate the morphology of the interface between the active layer and electrode and to further reduce the work function of the electrode has also been realized. This bilayer ITR-GO/PFN CIL is processed by a spray-coating method with facile in situ thermal reduction. Meanwhile, the CIL shows a good charge transport efficiency and less charge recombination, which leads to a significant enhancement of the power conversion efficiency from 6.47% to 8.34% for Poly({4,8-bis[(2-ethylhexyloxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexylcarbonyl]thieno[3,4-b]thiophenediyl} (PTB7:[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM-based OSCs. In addition, the long-term stability of the OSC is improved by using the ITR-GO/PFN CIL when compared with the pristine device. These results indicate that the bilayer ITR-GO/PFN CIL is a promising way to realize high-efficiency and stable OSCs by using water-soluble conjugated polymer electrolytes such as PFN.

  18. Antigen-reactive T cell enrichment for direct, high-resolution analysis of the human naive and memory Th cell repertoire.

    Science.gov (United States)

    Bacher, Petra; Schink, Christian; Teutschbein, Janka; Kniemeyer, Olaf; Assenmacher, Mario; Brakhage, Axel A; Scheffold, Alexander

    2013-04-15

    Ag-specific CD4(+) T cells orchestrating adaptive immune responses are crucial for the development of protective immunity, but also mediate immunopathologies. To date, technical limitations often prevented their direct analysis. In this study, we report a sensitive flow cytometric assay based on magnetic pre-enrichment of CD154(+) T cells to visualize rare Ag-reactive naive and memory Th cells directly from human peripheral blood. The detection limit of ≈ 1 cell within 10(5)-10(6) permitted the direct enumeration and characterization of auto-, tumor-, or neo-Ag-reactive T cells within the naive and even memory CD4(+) T cell repertoire of healthy donors. Furthermore, the analysis of high target cell numbers after pre-enrichment of rare Ag-specific T cells from large blood samples dramatically improved the identification of small subpopulations. As exemplified in this work, the dissection of the Ag-specific memory responses into small cytokine-producing subsets revealed great heterogeneity between pathogens, but also pathogen-related microsignatures refining Th cell subset classification. The possibility to directly analyze CD4(+) T cells reactive against basically any Ag of interest at high resolution within the naive and memory repertoire will open up new avenues to investigate CD4(+) T cell-mediated immune reactions and their use for clinical diagnostics.

  19. Robust moisture and thermally stable phosphor glass plate for highly unstable sulfide phosphors in high-power white light-emitting diodes.

    Science.gov (United States)

    Lee, Jin Seok; Unithrattil, Sanjith; Kim, Sunghoon; Lee, In Jae; Lee, Hyungeui; Im, Won Bin

    2013-09-01

    Potential white light-emitting diode (LED) phosphor SrGa2S4, which remains superfluous due to its unstable nature in the presence of moisture, was successfully integrated in a high-power white LED system by developing a glass-based phosphor plate. A glass system with softening temperature at around 600°C, which lies far below the possible decomposition temperature of the sulfide phosphor, provides a stable shield. Physical properties such as thermal stability, transparency, and lower porosity along with chemical stability under operating conditions of the LEDs ensure long-term operability. H2S emission due to the decomposition of sulfide phosphors, which leads to corrosion of LED electrodes, was contained using the developed plate. Higher thermal resistivity of the developed glass system in comparison with conventional resins ensures lower thermal quenching of the luminescence and better color purity.

  20. A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes.

    Science.gov (United States)

    Harel-Beja, R; Tzuri, G; Portnoy, V; Lotan-Pompan, M; Lev, S; Cohen, S; Dai, N; Yeselson, L; Meir, A; Libhaber, S E; Avisar, E; Melame, T; van Koert, P; Verbakel, H; Hofstede, R; Volpin, H; Oliver, M; Fougedoire, A; Stalh, C; Fauve, J; Copes, B; Fei, Z; Giovannoni, J; Ori, N; Lewinsohn, E; Sherman, A; Burger, J; Tadmor, Y; Schaffer, A A; Katzir, N

    2010-08-01

    A genetic map of melon enriched for fruit traits was constructed, using a recombinant inbred (RI) population developed from a cross between representatives of the two subspecies of Cucumis melo L.: PI 414723 (subspecies agrestis) and 'Dulce' (subspecies melo). Phenotyping of 99 RI lines was conducted over three seasons in two locations in Israel and the US. The map includes 668 DNA markers (386 SSRs, 76 SNPs, six INDELs and 200 AFLPs), of which 160 were newly developed from fruit ESTs. These ESTs include candidate genes encoding for enzymes of sugar and carotenoid metabolic pathways that were cloned from melon cDNA or identified through mining of the International Cucurbit Genomics Initiative database (http://www.icugi.org/). The map covers 1,222 cM with an average of 2.672 cM between markers. In addition, a skeleton physical map was initiated and 29 melon BACs harboring fruit ESTs were localized to the 12 linkage groups of the map. Altogether, 44 fruit QTLs were identified: 25 confirming QTLs described using other populations and 19 newly described QTLs. The map includes QTLs for fruit sugar content, particularly sucrose, the major sugar affecting sweetness in melon fruit. Six QTLs interacting in an additive manner account for nearly all the difference in sugar content between the two genotypes. Three QTLs for fruit flesh color and carotenoid content were identified. Interestingly, no clear colocalization of QTLs for either sugar or carotenoid content was observed with over 40 genes encoding for enzymes involved in their metabolism. The RI population described here provides a useful resource for further genomics and metabolomics studies in melon, as well as useful markers for breeding for fruit quality.

  1. Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer.

    Science.gov (United States)

    Hsieh, Chao-Hsiang; Cheng, Yen-Ju; Li, Pei-Jung; Chen, Chiu-Hsiang; Dubosc, Martin; Liang, Ru-Meng; Hsu, Chain-Shu

    2010-04-07

    A novel PCBM-based n-type material, [6,6]-phenyl-C(61)-butyric styryl dendron ester (PCBSD), functionalized with a dendron containing two styryl groups as thermal cross-linkers, has been rationally designed and easily synthesized. In situ cross-linking of PCBSD was carried out by heating at a low temperature of 160 degrees C for 30 min to generate a robust, adhesive, and solvent-resistant thin film. This cross-linked network enables a sequential active layer to be successfully deposited on top of this interlayer to overcome the problem of interfacial erosion and realize a multilayer inverted device by all-solution processing. An inverted solar cell device based on an ITO/ZnO/C-PCBSD/P3HT:PCBM/PEDOT:PSS/Ag configuration not only achieves enhanced device characteristics, with an impressive PCE of 4.4%, but also exhibits an exceptional device lifetime without encapsulation; it greatly outperforms a reference device (PCE = 3.5%) based on an ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag configuration without the interlayer. This C-PCBSD interlayer exerts multiple positive effects on both P3HT/C-PCBSD and PCBM/C-PCBSD localized heterojunctions at the interface of the active layer, including improved exciton dissociation efficiency, reduced charge recombination, decreased interface contact resistance, and induction of vertical phase separation to reduce the bulk resistance of the active layer as well as passivation of the local shunts at the ZnO interface. Moreover, this promising approach can be applied to another inverted solar cell, ITO/ZnO/C-PCBSD/PCPDTBT:PC(71)BM/PEDOT:PSS/Ag, using PCPDTBT as the p-type low-band-gap conjugated polymer to achieve an improved PCE of 3.4%. Incorporation of this cross-linked C(60) interlayer could become a standard procedure in the fabrication of highly efficient and stable multilayer inverted solar cells.

  2. Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high Arctic.

    Science.gov (United States)

    Martineau, Christine; Whyte, Lyle G; Greer, Charles W

    2010-09-01

    The melting of permafrost and its potential impact on CH(4) emissions are major concerns in the context of global warming. Methanotrophic bacteria have the capacity to mitigate CH(4) emissions from melting permafrost. Here, we used quantitative PCR (qPCR), stable isotope probing (SIP) of DNA, denaturing gradient gel electrophoresis (DGGE) fingerprinting, and sequencing of the 16S rRNA and pmoA genes to study the activity and diversity of methanotrophic bacteria in active-layer soils from Ellesmere Island in the Canadian high Arctic. Results showed that most of the soils had the capacity to oxidize CH(4) at 4 degrees C and at room temperature (RT), but the oxidation rates were greater at RT than at 4 degrees C and were significantly enhanced by nutrient amendment. The DGGE banding patterns associated with active methanotrophic bacterial populations were also different depending on the temperature of incubation and the addition of nutrients. Sequencing of the 16S rRNA and pmoA genes indicated a low diversity of the active methanotrophic bacteria, with all methanotroph 16S rRNA and pmoA gene sequences being related to type I methanotrophs from Methylobacter and Methylosarcina. The dominance of type I methanotrophs over type II methanotrophs in the native soil samples was confirmed by qPCR of the 16S rRNA gene with primers specific for these two groups of bacteria. The 16S rRNA and pmoA gene sequences related to those of Methylobacter tundripaludum were found in all soils, regardless of the incubation conditions, and they might therefore play a role in CH(4) degradation in situ. This work is providing new information supporting the potential importance of Methylobacter spp. in Arctic soils found in previous studies and contributes to the limited body of knowledge on methanotrophic activity and diversity in this extreme environment.

  3. High-speed highly temperature stable 980 nm VCSELs operating at 25 Gb/s at up to 85 °C for short reach optical interconnects

    Science.gov (United States)

    Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter

    2011-03-01

    The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.

  4. Graphene oxide quantum dot-derived nitrogen-enriched hybrid graphene nanosheets by simple photochemical doping for high-performance supercapacitors

    Science.gov (United States)

    Xu, Yongjie; Li, Xinyu; Hu, Guanghui; Wu, Ting; Luo, Yi; Sun, Lang; Tang, Tao; Wen, Jianfeng; Wang, Heng; Li, Ming

    2017-11-01

    Nitrogen-enriched graphene was fabricated via a facile strategy. Graphene oxide (GO) nanosheets and graphene oxide quantum dots (GQDs) were used as a structure-directing agent and in situ activating agent, respectively, after photoreduction under NH3 atmosphere. The combination of photoreduction and NH3 not only reduced GO and GQD composites (GO/GQDs) within a shorter duration but also doped a high level of nitrogen on the composites (NrGO/GQDs). The nitrogen content of NrGO/GQDs reached as high as 18.86 at% within 5 min of irradiation. Benefiting from the nitrogen-enriched GO/GQDs hybrid structure, GQDs effectively prevent the agglomeration of GO sheets and increased the numbers of ion channels in the material. Meanwhile, the high levels of nitrogen improved electrical conductivity and strengthened the binding energy between GQD and GO sheets. Compared with reduced GO and low nitrogen-doped reduced GO, NrGO/GQD electrodes exhibited better electrochemical characteristics with a high specific capacitance of 344 F g-1 at a current density of 0.25 A g-1. Moreover, the NrGO/GQD electrodes exhibited 82% capacitance retention after 3000 cycles at a current density of 0.8 A g-1 in 6 M KOH electrolyte. More importantly, the NrGO/GQD electrodes deliver a high energy density of 43 Wh kg-1 at a power density of 417 W kg-1 in 1 M Li2SO4 electrolyte. The nitrogen-doped graphene and corresponding supercapacitor presented in this study are novel materials with potential applications in advanced energy storage systems.

  5. A prominent large high-density lipoprotein at birth enriched in apolipoprotein C-I identifies a new group of infancts of lower birth weight and younger gestational age

    Energy Technology Data Exchange (ETDEWEB)

    Kwiterovich Jr., Peter O.; Cockrill, Steven L.; Virgil, Donna G.; Garrett, Elizabeth; Otvos, James; Knight-Gibson, Carolyn; Alaupovic, Petar; Forte, Trudy; Farwig, Zachlyn N.; Macfarlane, Ronald D.

    2003-10-01

    Because low birth weight is associated with adverse cardiovascular risk and death in adults, lipoprotein heterogeneity at birth was studied. A prominent, large high-density lipoprotein (HDL) subclass enriched in apolipoprotein C-I (apoC-I) was found in 19 percent of infants, who had significantly lower birth weights and younger gestational ages and distinctly different lipoprotein profiles than infants with undetectable, possible or probable amounts of apoC-I-enriched HDL. An elevated amount of an apoC-I-enriched HDL identifies a new group of low birth weight infants.

  6. Application of stable isotope analysis to study temporal changes in foraging ecology in a highly endangered amphibian.

    Directory of Open Access Journals (Sweden)

    J Hayley Gillespie

    Full Text Available BACKGROUND: Understanding dietary trends for endangered species may be essential to assessing the effects of ecological disturbances such as habitat modification, species introductions or global climate change. Documenting temporal variation in prey selection may also be crucial for understanding population dynamics. However, the rarity, secretive behaviours and obscure microhabitats of some endangered species can make direct foraging observations difficult or impossible. Furthermore, the lethality or invasiveness of some traditional methods of dietary analysis (e.g. gut contents analysis, gastric lavage makes them inappropriate for such species. Stable isotope analysis facilitates non-lethal, indirect analysis of animal diet that has unrealized potential in the conservation of endangered organisms, particularly amphibians. METHODOLOGY/FINDINGS: I determined proportional contributions of aquatic macroinvertebrate prey to the diet of an endangered aquatic salamander Eurycea sosorum over a two-year period using stable isotope analysis of (13/12C and (15/14N and the Bayesian stable isotope mixing model SIAR. I calculated Strauss' dietary electivity indices by comparing these proportions with changing relative abundance of potential prey species through time. Stable isotope analyses revealed that a previously unknown prey item (soft-bodied planarian flatworms in the genus Dugesia made up the majority of E. sosorum diet. Results also demonstrate that E. sosorum is an opportunistic forager capable of diet switching to include a greater proportion of alternative prey when Dugesia populations decline. There is also evidence of intra-population dietary variation. CONCLUSIONS/SIGNIFICANCE: Effective application of stable isotope analysis can help circumvent two key limitations commonly experienced by researchers of endangered species: the inability to directly observe these species in nature and the invasiveness or lethality of traditional methods of

  7. Application of stable isotope analysis to study temporal changes in foraging ecology in a highly endangered amphibian.

    Science.gov (United States)

    Gillespie, J Hayley

    2013-01-01

    Understanding dietary trends for endangered species may be essential to assessing the effects of ecological disturbances such as habitat modification, species introductions or global climate change. Documenting temporal variation in prey selection may also be crucial for understanding population dynamics. However, the rarity, secretive behaviours and obscure microhabitats of some endangered species can make direct foraging observations difficult or impossible. Furthermore, the lethality or invasiveness of some traditional methods of dietary analysis (e.g. gut contents analysis, gastric lavage) makes them inappropriate for such species. Stable isotope analysis facilitates non-lethal, indirect analysis of animal diet that has unrealized potential in the conservation of endangered organisms, particularly amphibians. I determined proportional contributions of aquatic macroinvertebrate prey to the diet of an endangered aquatic salamander Eurycea sosorum over a two-year period using stable isotope analysis of (13/12)C and (15/14)N and the Bayesian stable isotope mixing model SIAR. I calculated Strauss' dietary electivity indices by comparing these proportions with changing relative abundance of potential prey species through time. Stable isotope analyses revealed that a previously unknown prey item (soft-bodied planarian flatworms in the genus Dugesia) made up the majority of E. sosorum diet. Results also demonstrate that E. sosorum is an opportunistic forager capable of diet switching to include a greater proportion of alternative prey when Dugesia populations decline. There is also evidence of intra-population dietary variation. Effective application of stable isotope analysis can help circumvent two key limitations commonly experienced by researchers of endangered species: the inability to directly observe these species in nature and the invasiveness or lethality of traditional methods of dietary analysis. This study illustrates the feasibility of stable isotope

  8. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency.

    Science.gov (United States)

    Jaouadi, Bassem; Ellouz-Chaabouni, Semia; Rhimi, Moez; Bejar, Samir

    2008-09-01

    We have described previously the potential use of an alkaline protease from Bacillus pumilus CBS as an effective additive in laundry detergent formulations [B. Jaouadi, S. Ellouz-Chaabouni, M. Ben Ali, E. Ben Messaoud, B. Naili, A. Dhouib, S. Bejar, A novel alkaline protease from Bacillus pumilus CBS having a high compatibility with laundry detergent and a high feather-degrading activity, Process Biochem, submitted for publication]. Here, we purified this enzyme (named SAPB) and we cloned, sequenced and over-expressed the corresponding gene. The enzyme was purified to homogeneity using salt precipitation and gel filtration HPLC. The pure protease was found to be monomeric protein with a molecular mass of 34598.19Da as determined by MALDI-TOF mass spectrometry. The NH2-terminal sequence of first 21 amino acids (aa) of the purified SAPB was AQTVPYGIPQIKAPAVHAQGY and was completely identical to proteases from other Bacillus pumilus species. This protease is strongly inhibited by PMSF and DFP, showing that it belongs to the serine proteases superfamily. Interestingly, the optimum pH is 10.6 while the optimum temperature was determined to be 65 degrees C. The enzyme was completely stable within a wide range of pH (7.0-10.6) and temperature (30-55 degrees C). One of the distinguishing properties is its catalytic efficiency (kcat/Km) calculated to be 45,265min(-1)mM(-1) and 147,000min(-1)mM(-1) using casein and AAPF as substrates, respectively, which is higher than that of Subtilisin Carlsberg, Subtilisin BPN' and Subtilisin 309 determined under the same conditions. In addition, SAPB showed remarkable stability, for 24h at 40 degrees C, in the presence of 5% Tween-80, 1% SDS, 15% urea and 10% H2O2, which comprise the common bleach-based detergent formulation. The sapB gene encoding SAPB was cloned, sequenced and over-expressed in Escherichia coli. The purified recombinant enzyme (rSAPB) has the same physicochemical and kinetic properties as the native one. SapB gene had

  9. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  10. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    Science.gov (Unit