Sample records for highly diastereoselective synthesis

  1. Highly Efficient and Diastereoselective Synthesis of New Pyrazolylpyrrolizine and Pyrazolylpyrrolidine Derivates by a Three-Component Domino Process

    Directory of Open Access Journals (Sweden)

    Jairo Quiroga


    Full Text Available Diastereoselective reactions between 4-formylpyrazoles, N-substituted maleimides and glycine derivates led to new series of pyrazolyldipyrrolo [3,4-a:3',4'-f]pyrrolizines and pyrazolylpyrrolo[3,4-c]pyrroles in good yields. The reactions proceeded by a domino process through azomethine ylides formed in situ via a 1,3-dipolar cycloaddition reaction.

  2. Diastereoselective Ugi reaction for the synthesis of unnatural amino esters

    Directory of Open Access Journals (Sweden)

    Rafael Oliveira Rocha


    Full Text Available Multicomponent Reactions (MCR are useful reactions to obtain complex products by the simple mixture of 3 or more reactants. The classic Ugi reaction (4-UCR involves a mixture of an amine, aldehyde, isocyanide and a carboxylic acid, giving peptoides as products. Some modifications of this reaction have been reported, among which the use of amino acids and Lewis acids, such as titanium (IV chloride, to induce stereoselectivity in good ratio. In this work we demonstrate the efficiency of different Lewis acids in the modified Ugi reaction and good levels of diastereoselectivity and yields in the synthesis of unnatural secondary amino esters.

  3. Highly diastereoselective conjugate addition of nitroalkanes to α,β-unsaturated sugar lactones for the efficient synthesis of chiral 2-pyrrolidones. (United States)

    Li, Yan-Ping; Li, Zhong-Jun; Meng, Xiang-Bao


    A series of 4,5-substituted chiral γ-lactams were synthesized through a highly diastereoselective addition-rearrangement approach from 2,3-unsaturated sugar lactones. The single-crystal X-ray structure of one product indicated that the sugar ring was attacked from the axial side. Partial reduction of the nitro group produced N-hydroxy-γ-lactams, which were further reduced with TiCl(3) to yield the 4,5-substituted chiral γ-lactams. The absolute configuration of C5 of the γ-lactam was determined by NOESY spectra. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Studies on the Synthesis of DMAP Derivatives by Diastereoselective Ugi Reactions

    Directory of Open Access Journals (Sweden)

    Koichi Mitsudo


    Full Text Available Diastereoselective Ugi reactions of DMAP-based aldehydes with α-amino acids and tert-butyl isocyanide were examined. The reactions of 4-(dimethylamino-2-pyridine-carboxaldehyde with various α-amino acids afforded 2-substituted DMAP derivatives with low diastereoselectivity. On the contrary, reactions with 4-(dimethylamino-3-pyridine-carboxaldehyde delivered 3-substituted DMAP derivatives with moderate to high diastereoselectivity. The combination of α-amino acid and DMAP-based aldehyde is thus important to achieve high diastereoselectivity. Kinetic resolution of a secondary alcohol using a chiral DMAP derivative obtained through these reactions was also examined.

  5. Highly efficient and diastereoselective gold(I)-catalyzed synthesis of tertiary amines from secondary amines and alkynes: substrate scope and mechanistic insights. (United States)

    Liu, Xin-Yuan; Guo, Zhen; Dong, Sijia S; Li, Xiao-Hua; Che, Chi-Ming


    An efficient method for the synthesis of tertiary amines through a gold(I)-catalyzed tandem reaction of alkynes with secondary amines has been developed. In the presence of ethyl Hantzsch ester and [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %), a variety of secondary amines bearing electron-deficient and electron-rich substituents and a wide range of alkynes, including terminal and internal aryl alkynes, aliphatic alkynes, and electron-deficient alkynes, underwent a tandem reaction to afford the corresponding tertiary amines in up to 99 % yield. For indolines bearing a preexisting chiral center, their reactions with alkynes in the presence of ethyl Hantzsch ester catalyzed by [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %) afforded tertiary amines in excellent yields and with good to excellent diastereoselectivity. All of these organic transformations can be conducted as a one-pot reaction from simple and readily available starting materials without the need of isolation of air/moisture-sensitive enamine intermediates, and under mild reaction conditions (mostly room temperature and mild reducing agents). Mechanistic studies by NMR spectroscopy, ESI-MS, isotope labeling studies, and DFT calculations on this gold(I)-catalyzed tandem reaction reveal that the first step involving a monomeric cationic gold(I)-alkyne intermediate is more likely than a gold(I)-amine intermediate, a three-coordinate gold(I) intermediate, or a dinuclear gold(I)-alkyne intermediate. These studies also support the proposed reaction pathway, which involves a gold(I)-coordinated enamine complex as a key intermediate for the subsequent transfer hydrogenation with a hydride source, and reveal the intrinsic stereospecific nature of these transformations observed in the experiments. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Efficient diastereoselective synthesis of trifarane-type sesquiterpenes, trifarienols A and B. (United States)

    Takahashi, Kazunori; Akao, Ryuichi; Honda, Toshio


    Diastereoselective total synthesis of trifarienols A and B, trifarane-type sesquiterpenes isolated from the Malaysian Cheilolejeunea trifaria, was achieved via an intramolecular Hosomi-Sakurai reaction of the aldehyde to construct a substituted bicyclo[3.3.1]nonane skeleton having the exo-methylene moiety of the target compounds in one step.

  7. Cyclisation of citronellal over heterogeneous inorganic fluorides--highly chemo- and diastereoselective catalysts for (+/-)-isopulegol. (United States)

    Coman, Simona M; Patil, Pratap; Wuttke, Stefan; Kemnitz, Erhard


    Based on a fluorolytic sol-gel synthesis, nanoscopic metal fluorides and partly hydroxylated metal fluorides were synthesized; varying the F : OH ratio inside these solids yielded catalysts with different combinations and variable strength Lewis and Brønsted acid sites, which demonstrated unexpected catalytic properties for the diastereoselective synthesis of (+/-)-isopulegol.

  8. Diastereoselective synthesis of substituted 2-amino-1,3-propanediols from Morita-Baylis-Hillman adducts

    Energy Technology Data Exchange (ETDEWEB)

    Paioti, Paulo H.S.; Rezende, Patricia; Coelho, Fernando [Laboratorio de Sintese de Produtos Naturais e Farmacos, Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP), SP (Brazil)


    We report herein a new diastereoselective approach to substituted 2-amino-1,3-propanediols with anti relative stereochemistry from Morita-Baylis-Hillman (MBH) adducts. These structural moieties have been used as intermediates for the synthesis of several compounds with relevant pharmacological and commercial interest. In this strategy, substituted anti 2-amino-1,3-propanediols were readily prepared via ozonolysis of allylic diols obtained from MBH adducts, followed by a diastereoselective reductive amination of the substituted 2-oxo-1,3-propanediols. To demonstrate the synthetic utility of these aminodiols, they were transformed into substituted oxazolidine-2-ones, which were also used in the indirect determination of the relative stereochemistry of the aminodiols. (author)

  9. Diastereoselective Three-Component Reactions of Chiral Nickel(II Glycinate for Convenient Synthesis of Novel α-Amino-β-Substituted-γ,γ-Disubstituted Butyric Acids

    Directory of Open Access Journals (Sweden)

    Rui Zhou


    Full Text Available The convenient, high yielding and diastereoselective synthesis of α-amino-β-substituted-γ,γ-disubstituted butyric acid derivatives was carried out by a three-component tandem reaction of a chiral equivalent of nucleophilic glycine. The reaction was performed smoothly under mild conditions and enabled the construction of two or three adjacent chiral centers in one step, thus affording a novel and convenient route to α-amino-β-substituted-γ,γ-disubstituted butyric acid derivatives.

  10. Thermally Stable Dialkylzirconocenes with β-Hydrogens. Synthesis and Diastereoselectivity


    Wendt, Ola F.; Bercaw, John E.


    Alkylation of Cp^r_2ZrCl_2 (Cpr = Cp (η^5-C_5H_5), Cp‘ (η^5-C_5H_4Me), Cp^* (η^5-C_5Me_5)) and CpCp^*Zr(CH_3)Cl with 1-lithio-2-methylpentane (R^1Li) gives the corresponding dialkylzirconocenes Cp^r_2ZrR^1_2 and CpCp^*Zr(CH_3)R^1, in high yields. Such alkyls have unprecedented thermal stabilities, especially for the CpCp^* ligand framework. The diastereomers of the Cp^r_2ZrR^1_2 complexes are formed in a statistical distribution, whereas the diastereomers of CpCp^*Zr(CH_3)R^1 form in a 2:3 ra...

  11. Methods for the synthesis of polyhydroxylated piperidines by diastereoselective dihydroxylation: Exploitation in the two-directional synthesis of aza-C-linked disaccharide derivatives

    Directory of Open Access Journals (Sweden)

    Nelson Adam


    Full Text Available Abstract Background: Many polyhydroxylated piperidines are inhibitors of the oligosaccharide processing enzymes, glycosidases and glycosyltransferases. Aza-C-linked disaccharide mimetics are compounds in which saturated polyhydroxylated nitrogen and oxygen heterocycles are linked by an all-carbon tether. The saturated oxygen heterocycle has the potential to mimic the departing sugar in a glycosidase-catalysed reaction and aza-C-linked disaccharide mimetics may, therefore, be more potent inhibitors of these enzymes. Results: The scope, limitations and diastereoselectivity of the dihydroxylation of stereoisomeric 2-butyl-1-(toluene-4-sulfonyl-1,2,3,6-tetrahydro-pyridin-3-ols is discussed. In the absence of a 6-substituent on the piperidine ring, the Upjohn (cat. OsO4, NMO, acetone-water and Donohoe (OsO4, TMEDA, CH2Cl2 conditions allow complementary diastereoselective functionalisation of the alkene of the (2R*,3R* diastereoisomer. However, in the presence of a 6-substituent, the reaction is largely controlled by steric effects with both reagents. The most synthetically useful protocols were exploited in the two-directional synthesis of aza-C-linked disaccharide analogues. A two-directional oxidative ring expansion was used to prepare bis-enones such as (2R,6S,2'S-6-methoxy-2-(6-methoxy-3-oxo-3,6-dihydro-2H-pyran-2-ylmethyl-1-(toluene-4-sulfonyl-1,6-dihydro-2H-pyridin-3-one from the corresponding difuran. Selective substitution of its N,O acetal was possible. The stereochemical outcome of a two-directional Luche reduction step was different in the two heterocyclic rings, and depended on the conformation of the ring. Finally, two-directional diastereoselective dihydroxylation yielded seven different aza-C-linked disaccharide analogues. Conclusion: A two-directional approach may be exploited in the synthesis of aza-C-linked disaccharide mimetics. Unlike previous approaches to similar molecules, neither of the heterocyclic rings is directly derived

  12. Post-Ugi gold-catalyzed diastereoselective domino cyclization for the synthesis of diversely substituted spiroindolines

    Directory of Open Access Journals (Sweden)

    Amit Kumar


    Full Text Available An Ugi four-component reaction of propargylamine with 3-formylindole and various acids and isonitriles produces adducts which are subjected to a cationic gold-catalyzed diastereoselective domino cyclization to furnish diversely substituted spiroindolines. All the reactions run via an exo-dig attack in the hydroarylation step followed by an intramolecular diastereoselective trapping of the imminium ion. The whole sequence is atom economic and the application of a multicomponent reaction assures diversity.

  13. Synthesis of a dialuminum-substituted silicotungstate and the diastereoselective cyclization of citronellal derivatives. (United States)

    Kikukawa, Yuji; Yamaguchi, Syuhei; Nakagawa, Yoshinao; Uehara, Kazuhiro; Uchida, Sayaka; Yamaguchi, Kazuya; Mizuno, Noritaka


    A novel dialuminum-substituted silicotungstate TBA(3)H[gamma-SiW(10)O(36){Al(OH(2))}(2)(mu-OH)(2)] x 4 H(2)O (1, TBA = tetra-n-butylammonium) was synthesized by the reaction of the potassium salt of [gamma-SiW(10)O(36)](8-) (SiW10) with 2 equiv of Al(NO(3))(3) in an acidic aqueous medium. It was confirmed by the X-ray crystallographic analysis that compound 1 was a monomer of the gamma-Keggin dialuminum-substituted silicotungstate with the {Al(2)(mu-OH)(2)} diamond core. The cluster framework of 1 maintained the gamma-Keggin structure in the solution states. The reaction of 1 with pyridine yielded TBA(3)[(C(5)H(5)N)H][gamma-SiW(10)O(36){Al(C(5)H(5)N)}(2)(mu-OH)(2)] x 2 H(2)O (2), and the molecular structure was successfully determined by the X-ray crystallographic analysis. In compound 2, two of three pyridine molecules coordinated to the axial positions of aluminum centers and one of them existed as a pyridinium cation, showing that compound 1 has two Lewis acid sites and one Brønsted acid site. Compound 1 showed high catalytic activity for the intramolecular cyclization of citronellal derivatives such as (+)-citronellal (3) and 3-methylcitronellal (4) without formation of byproduct resulting from etherification and dehydration. For the 1-catalyzed cyclization of 3, the diastereoselectivity toward (-)-isopulegol (3a) reached ca. 90% and the value was the highest level among those with reported systems so far. The reaction rate for the 1-catalyzed cyclization of 3 decreased by the addition of pyridine, and the cyclization hardly proceeded in the presence of 2 equiv of pyridine with respect to 1. On the other hand, the reaction rate and diastereoselectivity to 3a in the presence of 2,6-lutidine were almost the same as those in the absence. Therefore, the present cyclization is mainly promoted by the Lewis acid sites (aluminum centers) in 1. DFT calculations showed that the formation of the transition state to produce 3a is sterically and electronically more

  14. Preparation of chitosan nanoparticles from shrimp shells and investigation of its catalytic effect in diastereoselective synthesis of dihydropyrroles. (United States)

    Zahedi, Safura; Safaei Ghomi, Javad; Shahbazi-Alavi, Hossein


    Preparation of chitosan nanoparticles (CS-NPs) was examined from shrimp shells for their catalytic activity. The yield of crude chitosan was 87.8%. The structure of chitosan nanoparticles was determined by FT-IR, SEM and XRD analysis. Then, diastereoselective synthesis of dihydropyrroles was done using chitosan nanoparticles in water under ultrasonic irradiation. This polymeric nanocatalyst could be used instead of the old toxic commercial organic basic catalysts and could be readily isolated from the reaction mixture and recycled several times without significant loss of catalytic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Intramolecular Diaza-Diels-Alder Protocol: A New Diastereoselective and Modular One-Step Synthesis of Constrained Polycyclic Frameworks. (United States)

    Srinivasulu, Vunnam; Reddy, Amarnath; Mazitschek, Ralph; Lukens, Amanda K; Wirth, Dyann F; Li, Liang; Naumov, Panče; O'Connor, Matthew John; Al-Tel, Taleb H


    Phenotype-based screening of diverse compound collections generated by privileged substructure-based diversity-oriented synthesis (pDOS) is considered one of the prominent approaches in the discovery of novel drug leads. However, one key challenge that remains is the development of efficient and modular synthetic routes toward the facile access of privileged small-molecule libraries with skeletal and stereochemical complexity and drug-like properties. In this regard, a novel and diverse one-pot procedure for the diastereoselective synthesis of privileged polycyclic benzopyrans and benzoxepines is described herein. These unexplored chemotypes were accessed by utilizing an acid-mediated diaza-Diels-Alder reaction of 2-allyloxy- and/or homoallyloxy benzaldehyde with 2-aminoazine building blocks. Profiling of representative analogues against blood-stage Plasmodium falciparum parasites identified three lead candidates with low micromolar antimalarial activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of Enantiopure 3-Hydroxypiperidines from Sulfinyl Dienyl Amines by Diastereoselective Intramolecular Cyclization and [2,3]-Sigmatropic Rearrangement. (United States)

    Simal, Carmen; Bates, Robert H; Ureña, Mercedes; Giménez, Irene; Koutsou, Christina; Infantes, Lourdes; Fernández de la Pradilla, Roberto; Viso, Alma


    The highly diastereoselective base-promoted intramolecular cyclization of a variety of enantiopure sulfinyl dienyl amines provides novel sulfinyl tetrahydropyridines that are readily converted to 3-hydroxy tetrahydropyridines via sigmatropic rearrangement. The influence of N- and C- substituents on the process has been studied. Procedures to shorten the sequence such as the tandem cyclization followed by [2,3]-sigmatropic rearrangement, as well as cyclization of the free amine, under Boc- or ArSO- deprotection conditions have been examined. Good to excellent levels of selectivity are generally observed for the reported transformations (dr: 75/25 to >98/2). A novel protocol to access substituted amino dienyl sulfoxides is also reported.

  17. Highly enantio- and diastereoselective Brassard type hetero-Diels-Alder approach to 5-methyl-containing alpha,beta-unsaturated delta-lactones. (United States)

    Lin, Lili; Fan, Qian; Qin, Bo; Feng, Xiaoming


    Two efficient new chiral copper (II) Schiff base complexes were developed for the highly enantio- and diastereoselective HDA reaction of Brassard type diene 1b with aldehydes, to afford the corresponding 5-methyl-containing alpha,beta-unsaturated delta-lactone derivatives in moderate yields, high enantioselectivities (up to 99% ee) and excellent diastereoselectivities (up to 99:1 anti/syn). On the basis of the absolute configuration of 4a-4j disclosed by X-ray diffraction and CD analysis, a possible transition-state model for the enantio- and diastereoselective catalytic reaction has been proposed.

  18. Diastereoselective one-pot Wittig olefination-Michael addition and olefin cross metathesis strategy for total synthesis of cytotoxic natural product (+)-varitriol and its higher analogues. (United States)

    Ghosal, Partha; Sharma, Deepty; Kumar, Brijesh; Meena, Sanjeev; Sinha, Sudhir; Shaw, Arun K


    A stereoselective route for the total synthesis of anticancer marine natural product (+)-varitriol (1) is detailed herein. The impressive biological activity and interesting structural features of natural (+)-varitriol fuelled us to undertake the synthesis of some higher analogues (1a-j) of this molecule. The key features of the synthetic strategy include one-pot Wittig olefination followed by a highly diastereoselective oxa-Michael addition to assemble stereochemically pure tetrasubstituted THF moiety of the natural varitriol and olefin cross metathesis to couple the aromatic part with tetrasubstituted THF moiety. The total synthesis of title natural product is efficient with 21.8% overall yield for 9 linear steps from D-ribose and thus facilitates the more scaled-up practical route for the synthesis of 1 and its analogues as well. The synthetic (+)-varitriol (1) and its analogues were screened for their cytotoxicity. The present synthetic approach paves the way for preparation of numerous analogues of the title natural product for drug development.

  19. Highly chemo-, enantio-, and diastereoselective [4 + 2] cycloaddition of 5H-thiazol-4-ones with N-itaconimides

    Directory of Open Access Journals (Sweden)

    Shuai Qiu


    Full Text Available A dipeptide-based urea-amide tertiary amine (DP-UAA was shown to be an effective Brønsted base catalyst for the first asymmetric annulation reaction between 5H-thiazol-4-ones and N-itaconimides. High levels of enantioselectivity (up to 99% ee and diastereoselectivity (>19:1 dr were obtained for a series of spirocyclic 1,4-sulfur-bridged piperidinone-based succinimides.

  20. Short and efficient diastereoselective synthesis of pyrrolidinone-containing dipeptide analogues

    DEFF Research Database (Denmark)

    Hosseini, Masood; Grau, J.S.; Sørensen, Kresten Kjær


    The pyrrolidine-2,4-diones have been identified as a convenient starting point for the synthesis of peptide analogues. Herein we describe an optimized two-step reductive amination procedure, which provides a small library of pyrrolidinone-containing dipeptide analogues in high yield and excellent...

  1. Diastereoselective one pot five-component reaction toward 4-(tetrazole)-1,3-oxazinanes

    NARCIS (Netherlands)

    Chandgude, Ajay L.; Narducci, Daniele; Kurpiewska, Katarzyna; Kalinowska-Tluscik, Justyna; Domling, Alexander


    A diastereoselective one pot five-component reaction toward the synthesis of 4-(tetrazole)-1,3-oxazinanes has been reported. The sonication-accelerated, catalyst-free, simple, general and highly time efficient, Asinger-Ugi-tetrazole reaction was used for the synthesis of diverse

  2. Diastereoselective synthesis of γ-lactones through reaction of enediolates with α,β-unsaturated sulfoxonium salts. (United States)

    Peraino, Nicholas J; Wheeler, Kraig A; Kerrigan, Nessan J


    Studies of the reaction of lithium enediolates with α,β-unsaturated sulfoxonium salts are described. γ-Lactones were formed in very good to excellent yields (82% → 99% for 11 examples) and with very good to excellent diastereoselectivity (dr >90:10 for 10 examples), favoring the trans-diastereomer.

  3. Polycyclic ferrocenyl(dihydro)thiazepine derivatives: Diastereo-selective synthesis, characterization, electrochemical behavior, theoretical and biological investigation. (United States)

    Sánchez García, Jessica J; Toledano-Magaña, Yanis; Flores-Alamo, Marcos; Martínez-Klimova, Elena; Galindo-Murillo, Rodrigo; Hernández-Ayala, Luis F; Ortiz-Frade, Luis; García-Ramos, Juan C; Klimova, Elena I


    The reaction of E-2-ferrocenylmethylidenetetralones and E,E-2,6-bis-(ferrocenylmethylidene)-cyclohexanone with 2-aminothiophenol proceed with high diastereoselectivity, forming the ~4.5:1 mixture of trans- and cis-isomers of polycyclic ferrocenylthiazepines, respectively. The reactions of E,E-2,5-bis-(ferrocenylmethylidene)cyclopentanone and E,E-3,5-bis-(ferrocenylmethylidene)-1-methyl-4-piperidone with 2-aminothiophenol take place stereo specifically to form the diastereomeric tricyclic thiazepines of cis- and trans-configuration, respectively. The structures of the obtained compounds were established by IR, (1)H and (13)C NMR spectroscopy and mass-spectrometry. The structures of the trans-tetralino[1,2a]-, trans-5,7-dimethyltetralino[1,2a]-2-ferrocenyl [1,5]benzo-2,3-dihydrothiazepines and cis-5-ferrocenyl-methylidenecyclopentano[1,2a]-2-ferrocenyl- [1,5]benzo-2,3-dihydrothiazepine were confirmed by X-ray diffraction analysis. An electrochemical study reveals that the diferrocenyl derivatives belong to a Class I compounds of the Robin-Day classification. This behavior is explained by the analysis of frontier orbitals as calculated by density functional theory, showing that only one ferrocenyl unit participates in the generation of HOMO and LUMO orbitals. Compounds 4a and 4c showed similar capacity to inhibit the proliferation of HM1: IMSS trophozoite cultures than the first choice drug for human amoebiasis treatment, metronidazole. Morphological changes induced in the trophozoites after drug exposure suggest a redox in balance as the probable mechanism of the parasite death. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Diastereoselective noncovalent synthesis of hydrogen-bonded double-rosette assemblies

    NARCIS (Netherlands)

    Prins, L.J.; Hulst, A.J.R.L.; Timmerman, P.; Reinhoudt, David


    Chiral centers present either in the dimelamine components of calix[4]arene 1 or in the cyanurate components CA quantitatively induce one handedness (P or M) in the corresponding hydrogen-bonded assemblies 13(CA)6 (de>98 %). The high degree of chiral induction results from the presence of six chiral

  5. Practical synthesis of enantiomerically pure beta2-amino acids via proline-catalyzed diastereoselective aminomethylation of aldehydes. (United States)

    Chi, Yonggui; English, Emily P; Pomerantz, William C; Horne, W Seth; Joyce, Leo A; Alexander, Lane R; Fleming, William S; Hopkins, Elizabeth A; Gellman, Samuel H


    Proline-catalyzed diastereoselective aminomethylation of aldehydes using a chiral iminium ion, generated from a readily prepared precursor, provides alpha-substituted-beta-amino aldehydes with 85:15 to 90:10 dr. The alpha-substituted-beta-amino aldehydes can be reduced to beta-substituted-gamma-amino alcohols, the major diastereomer of which can be isolated via crystallization or column chromatography. The amino alcohols are efficiently transformed to protected beta2-amino acids, which are valuable building blocks for beta-peptides, natural products, and other interesting molecules. Because conditions for the aminomethylation and subsequent reactions are mild, beta2-amino acid derivatives with protected functional groups in the side chain, such as beta2-homoglutamic acid, beta2-homotyrosine, and beta2-homolysine, can be prepared in this way. The synthetic route is short, and purifications are simple; therefore, this method enables the preparation of protected beta2-amino acids in useful quantities.

  6. Diastereoselective synthesis of nitroso acetals from (S,E-γ-aminated nitroalkenes via multicomponent [4 + 2]/[3 + 2] cycloadditions promoted by LiCl or LiClO4

    Directory of Open Access Journals (Sweden)

    Leandro Lara de Carvalho


    Full Text Available Chiral nonracemic aminated nitroso acetals were synthesized via diastereoselective multicomponent [4 + 2]/[3 + 2] cycloadditions employing new (S,E-γ-nitrogenated nitroalkenes 5a–c as heterodienes, ethyl vinyl ether (EVE as a dienophile, and selected electron-deficient alkenes as 1,3-dipolarophiles. The employment of different organic solutions of LiClO4 or LiCl as promoter systems provided the respective nitroso acetals with yields from 34–72% and good levels of diastereoselectivity. In addition, the nitroso acetal 9c was transformed to the pyrrolizidin-3-one derivative 14c, proving the usefulness of the route in the synthesis of an interesting chiral compound. The elucidation of the stereostructures was based on 2D COSY, NOESY and HSQC NMR experiments as well as an X-ray diffraction experiment.

  7. Synthesis of C13-C25 fragment of 24-demethylbafilomycin C(1) via diastereoselective aldol reactions of a ketone boron enolate as the key step. (United States)

    Guan, Yucui; Wu, Jinlong; Sun, Liang; Dai, Wei-Min


    An efficient synthesis of the C13-C25 fragment is described for 24-demethylbafilomycin C1, a new member of the plecomacrolide family isolated from fermentation broth of Streptomyces sp. CS which is a commensal microbe of Maytenus hookeri. The targeted C13-C25 fragment possesses five oxygenated and three methyl-substituted stereogenic centers. It is obtained through formation of the C17-C18 syn aldol by using an ethyl ketone boron enolate with diastereomeric ratios of 95:5 and 83:17, respectively, for the chiral aldehydes substituted with acetoxy and methoxyacetoxy groups at C15. The results confirm the observation that the stereochemistry at C22 of the ketone is determinant to the diastereoselectivity of the aldol reaction. The synthesized C13-C25 fragment having a methoxyacetoxy group at C15 is considered as a useful precursor for construction of the 16-membered ring lactone of 24-demethylbafilomycin C1 through an aldol condensation of the methoxyacetate followed by formation of the C12-C13 double bond via a diene-ene RCM reaction.

  8. A diastereoselective one-pot, three-step cascade toward α-substituted allylboronic esters. (United States)

    Böse, Dietrich; Niesobski, Patrik; Lübcke, Marvin; Pietruszka, Jörg


    A new highly diastereoselective synthesis of chiral α-substituted allylboronic esters, based on a one-pot, three-step cascade, is presented. The palladium- and acid-cocatalyzed reaction cascade involves a desilylation of a TBS-protected allylic alcohol, borylation, and addition of an allyl group to an aldehyde. Herein we present the first application of a TBS-protected allylic alcohol in a palladium-catalyzed borylation/allylation reaction.

  9. Unprecedented one-pot, domino tertiary alcohol protection-Michael type addition of halides to Morita-Baylis-Hillman adduct of isatin with RCOX/K2CO3: diastereoselective synthesis of oxindole appended β-halo esters. (United States)

    Solaiselvi, Rajarethinam; Shanmugam, Ponnusamy; Mandal, Asit Baran


    A facile method utilizing RCOX/K2CO3 as a novel reagent for conjugate addition of hydrogen halide, in addition to tertiary (3°)-hydroxyl protection that leads to the synthesis of functionalized β-halo Morita-Baylis-Hillman ester appended oxindoles, has been developed. The diastereoselective one-pot O-acylation-hydrohalogenation observed cannot otherwise be performed by treatment with hydrohalide. Deprotection of a 3°-hydroxyl protecting group has also been demonstrated by treatment with hydrochloric acid.

  10. Asymmetric allylation/Pauson-Khand reaction: a simple entry to polycyclic amines. Application to the synthesis of aminosteroid analogues. (United States)

    Fustero, Santos; Lázaro, Rubén; Aiguabella, Nuria; Riera, Antoni; Simón-Fuentes, Antonio; Barrio, Pablo


    Asymmetric allylation of o-iodoarylsulfinylimines has been achieved in high diastereoselectivities. The thus-obtained o-iodoarylhomoallylic sulfinamides participate in a subsequent Sonogashira coupling followed by a diastereoselective intramolecular Pauson-Khand reaction. In this way, tricyclic amines showing a unique benzo-fused indenyl backbone were obtained. The methodology has been applied to the synthesis of amino steroid analogues.

  11. A new lithium alkoxide accelerated diastereoselective cyanation of ketones. (United States)

    Wilkinson, H S; Grover, P T; Vandenbossche, C P; Bakale, R P; Bhongle, N N; Wald, S A; Senanayake, C H


    [reaction: see text] A remarkably general lithium heteroatom assisted TMSCN or TBSCN addition to aldehydes and ketones has been discovered. The process provides excellent selectivities and high rates. Conformationally constrained ketones such as camphor, fenchone, and nopinone give excellent diastereoselectivities with TMSCN. Reduction of 2 provided diastereopure amino alcohol 3 in good yield. alpha- and beta-Methyl cyclohexanones with TBSCN-LiOR afford high diastereoselectivities and yields.

  12. Diastereoselective Synthesis of 5-Hydroxy-8-methoxy-1-oxaspiro[5,5]undeca-7,10-diene-9-one

    Directory of Open Access Journals (Sweden)

    Thomas W. Scully


    Full Text Available A short five steps synthesis of the title compound from vanillin is described. The racemic spiroether 7 was obtained in 61% yield and in >99% diastereomeric excess (by 1H-NMR from the corresponding phenolic derivative 3 by oxidation with lead (IV acetate.

  13. Diastereoselective radical addition to γ-alkyl-α-methylene-γ-butyrolactams and the synthesis of a chiral pyroglutamic acid derivative

    Directory of Open Access Journals (Sweden)

    Tomoko Yajima


    Full Text Available The cis- and trans-stereoselective radical additions to α-methylene-γ-alkyl- γ-lactams were investigated and the scope and limitation of the reaction were also revealed. This stereoselective radical reaction was used for synthesis of chiral pyroglutamic acid derivatives starting from a commercially available chiral amino acid.

  14. Syntheses of (+)-30-epi-, (-)-6-epi-, (±)-6,30-epi-13,14-Didehydroxyisogarcinol and (±)-6,30-epi-Garcimultiflorone A Utilizing Highly Diastereoselective, Lewis Acid-Controlled Cyclizations. (United States)

    Boyce, Jonathan H; Eschenbrenner-Lux, Vincent; Porco, John A


    The first syntheses of 13,14-didehydroxyisogarcinol (6) and garcimultiflorone A (5) stereoisomers are reported in six steps from a commercially available phloroglucinol. Lewis acid-controlled, diastereoselective cationic oxycyclizations enabled asymmetric syntheses of (-)-6-epi-6 and (+)-30-epi-6. A similar strategy enabled production of the meso-dervied isomers (±)-6,30-epi-6 and (±)-6,30-epi-5. Finally, a convenient strategy for gram scale synthesis was developed utilizing diastereomer separation at a later stage in the synthesis that minimized the number of necessary synthetic operations to access all possible stereoisomers.

  15. Diastereoselective synthesis and molecular docking studies of novel fused tetrahydropyridine derivatives as new inhibitors of HIV protease (United States)

    Mohammadi, Ali A.; Taheri, Salman; Amouzegar, Ali; Ahdenov, Reza; Halvagar, Mohammad Reza; Sadr, Ahmad Shahir


    An efficient one-pot, catalyst-free, and four-components procedure for the synthesis of novel 10b-hydroxy-4-nitro-5-phenyl-2,3,5,5a-tetrahydro-1H-imidazo[1,2-a]indeno[2,1-e]pyridin-6(10bH)-one derivatives from corresponding diamine, nitro ketene dithioacetal, aldehydes and 1,3-indandione in ethanol has been achieved upon a Knoevenagel condensation-Michael addition-tautomerism-cyclisation sequence. All the newly synthesized compounds were screened for molecular docking studies. Molecular docking studies were carried out using the crystal structure of HIV protease enzyme. Some of the compounds obtain minimum binding energy and good affinity toward the active pocket of HIV protease enzyme in compare with Saquinavir as a standard HIV protease inhibitor.

  16. Diastereoselective synthesis of aliphatic α,α-difluoro-β3-amino esters via a sonocatalyzed Reformatsky reaction. (United States)

    March, Taryn L; Johnston, Martin R; Duggan, Peter J


    (R)-2-Phenylglycine ethyl ester was found to be a cheap and effective auxiliary for the preparation of aliphatic α,α-difluoro-β(3)-amino esters via a Reformatsky reaction performed under sonication conditions. The products were obtained in good to high yield and ≥96:4 dr, thus providing a new stereoselective route to this under-represented class of compounds. A facile one-pot removal of the phenylglycine moiety and concomitant Boc protection subsequently afforded the corresponding Boc-protected β(3)-amino esters in excellent yield. © 2011 American Chemical Society

  17. Highly diastereoselective hydrogenations leading to beta-hydroxy delta-lactones in hydroxy-protected form. A modified view of delta-lactone conformations. (United States)

    Brandänge, Svante; Färnbäck, Magnus; Leijonmarck, Hans; Sundin, Anders


    Enol MEM ethers 4 and 15 and the corresponding enol acetates were hydrogenated over Pd/C with very high (>99%) diastereoselectivity to saturated delta-lactones. A stereochemical generalization can be formulated thus: trans-5,6-disubstituted 1-oxa-3-cyclohexen-2-ones (e.g. 14 and 15) are hydrogenated over Pd with high selectivity from the side trans to the C(6)-substituent. A mechanistic rationalization of the stereochemical outcome in the Pd-catalyzed hydrogenation of this as well as other types of substituted alpha,beta-unsaturated delta-lactones is presented. An analysis of X-ray crystallographic data for 67 compounds demonstrated a great conformational diversity of the saturated delta-lactone ring. Besides, ab initio calculations (HF/6-31G) indicated a very high conformational mobility. Thus, the lowest calculated transition state for the conversion of the half-chair, most stable, conformer of delta-valerolactone to the boat-type conformer lies only 1.93 kcal/mol above the former. Beside these two conformers, also chair, envelope and skew conformations are accessible; all lie less than 2 kcal/mol above the half-chair. The previous conformational paradigm comprising only boat and half-chair types is incomplete.

  18. Diastereoselective synthesis of novel heterocyclic scaffolds through tandem Petasis 3-component/intramolecular Diels-Alder and ROM-RCM reactions. (United States)

    Ishoey, Mette; Petersen, Rico G; Petersen, Michael Å; Wu, Peng; Clausen, Mads H; Nielsen, Thomas E


    A high-yielding, stereoselective and extraordinarily complexity-generating Petasis 3-component/intramolecular Diels-Alder reaction has been developed. In combination with ROM-RCM, rapid access to complex sp3-rich heterocyclic scaffolds amenable to subsequent functionalization and library synthesis is provided.

  19. Diastereoselective Synthesis of Novel Heterocyclic Scaffolds through Tandem Petasis 3-Component/Intramolecular Diels-Alder and ROM-RCM Reactions

    DEFF Research Database (Denmark)

    Ishøy, Mette; Petersen, Rico; Petersen, Michael Åxman


    A high-yielding, stereoselective and extraordinarily complexity generatingPetasis 3-component/intramolecular Diels-Alderreaction has been developed. In combination with ROM-RCM, rapid access to complex sp3-rich heterocyclic scaffolds amenableto subsequent functionalization and library synthesis i...


    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Highly enantio- and diastereoselective synthesis of β-methyl-γ- monofluoromethyl-substituted alcohols

    KAUST Repository

    Yang, Wenguo


    Enanatiopure β-methyl-γ-monofluoromethyl alcohols were prepared from the allylic alkylation between fluorobis(phenylsulfonyl)methane with Morita-Baylis-Hillman carbonates. The reaction was catalyzed by using the Cinchona alkaloid derivative, (DHQD)2AQN. The origin of the stereoselectivity was verified by DFT methods. Calculated geometries and relative energies of various transition states strongly support the observed stereoselectivity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Diastereoselective Synthesis of 6″-(Z)- and 6″-(E)-Fluoro Analogues of Anti-hepatitis B Virus Agent Entecavir and Its Evaluation of the Activity and Toxicity Profile of the Diastereomers. (United States)

    Kumamoto, Hiroki; Fukano, Misato; Nakano, Tomohiko; Iwagami, Keito; Takeyama, Chiaki; Kohgo, Satoru; Imoto, Shuhei; Amano, Masayuki; Kuwata-Higashi, Nobuyo; Aoki, Manabu; Abe, Hiroshi; Mitsuya, Hiroaki; Fukuhara, Kiyoshi; Haraguchi, Kazuhiro


    A method for the diastereoselective synthesis of 6″-(Z)- and 6″-(E)-fluorinated analogues of the anti-HBV agent entecavir has been developed. Construction of the methylenecyclopentane skeleton of the target molecules has been accomplished by radical-mediated 5-exo-dig cyclization of the selenides 6 and 15 having the phenylsulfanylethynyl structure as a radical accepting moiety. In the radical reaction of the TBS-protected precursor 6, (Z)-anti-12 was formed as a major product. On the other hand, TIPS-protected 15 gave (E)-anti-12. The sulfur-extrusive stannylation of anti-12 furnished a mixture of geometric isomers of the respective vinylstannane, whereas benzoyl-protected 17 underwent the stannylation in the manner of retention of configuration. Following XeF2-mediated fluorination, introduction of the purine base and deoxygenation of the resulting carbocyclic guanosine gave the target (E)- and (Z)-3 after deprotection. Evaluation of the anti-HBV activity of 3 revealed that fluorine-substitution at the 6″-position of entecavir gave rise to a reduction in the cytotoxicity in HepG2 cells with retention of the antiviral activity.

  3. Switchable Diastereoselectivity in the Fluoride Promoted Vinylogous Mukaiyama-Michael Reaction of 2-Trimethylsilyloxyfuran Catalyzed by Crown Ethers

    KAUST Repository

    Della Sala, Giorgio


    The fluoride promoted vinylogous Mukaiyama-Michael reaction (VMMR) of 2-trimethylsilyloxyfuran with diverse α,β-unsaturated ketones is described. The TBAF catalyzed VMMR afforded high anti-diastereoselectivity irrespective of the solvents used. The KF/crown ethers catalytic systems proved to be highly efficient in terms of yields and resulted in a highly diastereoselective unprecedented solvent/catalyst switchable reaction. Anti-adducts were obtained as single diastereomers or with excellent diastereoselectivities when benzo-15-crown-5 in CH2Cl2 was employed. On the other hand, high syn-diastereoselectivities (from 76:24 to 96:4) were achieved by employing dicyclohexane-18-crown-6 in toluene. Based on DFT calculations, the catalysts/solvents-dependent switchable diastereoselectivities are proposed to be the result of loose or tight cation-dienolate ion pairs.

  4. Vinyl quinones as Diels-Alder dienes: concise synthesis of (-)-halenaquinone. (United States)

    Kienzler, Michael A; Suseno, Sandy; Trauner, Dirk


    A concise asymmetric synthesis of (-)-halenaquinone is described. The synthesis features a diastereoselective Heck cyclization to set a quaternary center as well as a novel intramolecular inverse-electron-demand Diels-Alder reaction involving a vinyl quinone. The synthesis is highly convergent and features a minimal amount of protecting group manipulations.

  5. Developement and examination of the diastereoselective zwitterionic aza-claisen rearrangement for the synthesis of optically active nine-membererd ring lactams. Asymmetric total synthesis of the indolizidine alkaloid (-)-8a-epi-Dendroprimin


    Diederich, Michel


    Abstract: The Diastereoselective Zwitterionic Aza-Claisen Rearrangement A novel type of ketene-Claisen rearrangement was developed. Allyl amines have been used in ketene-Claisen reactions rarely. The rearrangement was restricted to activated ketenes like dichloroketene, since alkyl ketenes are apparently not electrophilic enough to attack the allyl amine. Since acetyl chloride is a synthetic equivalent for ketene, special conditions were developed f...

  6. A Brønsted base-promoted diastereoselective dimerization of azlactones

    Directory of Open Access Journals (Sweden)

    Danielle L. J. Pinheiro


    Full Text Available A novel Brønsted base system for the diastereoselective dimerization of azlactones using trichloroacetate salts and acetonitrile has been developed. Desired products were obtained in good yields (60–93% and with up to >19:1 dr after one hour of reaction. Additionally, the relative stereochemistry of the major dimer was assigned as being trans, by X-ray crystallographic analysis. The kinetic reaction profile was determined by using 1H NMR reaction monitoring and revealed a second order overall kinetic profile. Furthermore, by employing this methodology, a diastereoselective total synthesis of a functionalized analogue of streptopyrrolidine was accomplished in 65% overall yield.

  7. Iridium-Catalyzed Dynamic Kinetic Isomerization: Expedient Synthesis of Carbohydrates from Achmatowicz Rearrangement Products. (United States)

    Wang, Hao-Yuan; Yang, Ka; Bennett, Scott R; Guo, Sheng-rong; Tang, Weiping


    A highly stereoselective dynamic kinetic isomerization of Achmatowicz rearrangement products was discovered. This new internal redox isomerization provided ready access to key intermediates for the enantio- and diastereoselective synthesis of a series of naturally occurring sugars. The nature of the de novo synthesis also enables the preparation of both enantiomers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Heterogeneous Diastereoselective Catalysis--A Powerful Strategy Toward C(15) Stereoselectivity from PGF2α Analogues Structure. (United States)

    Coman, Simona M; Parvulescu, Vasile I


    A major trend in fine chemicals and pharmaceuticals is the synthesis of molecules with increased complexity. This trend translates the aim of organic syntheses to conditions in which high degrees of chemo-, regio- and stereoselectivity can be provided. In this context, the chemoselective hydrogenation of one functional group in the presence of other reactive groups is a frequently encountered problem in fine chemicals manufacture. This study provides a critical analysis including elegant examples of reactions in which high chemo- and diastereoselectivities were achieved in the hydrogenation of a C=O group in the presence of C=C double bond. A particular emphasis is addressed to the stereoselective C(15) synthesis from Cloprostenol--a PGF2α structural analogue.

  9. Catalyst-Directed Diastereoselectivity in Hydrogenative Couplings of Acetylene to α-Chiral Aldehydes: Formal Synthesis of All Eight L-Hexoses (United States)

    Han, Soo Bong; Kong, Jong Rock; Krische, Michael J.


    Hydrogenative coupling of acetylene to α-chiral aldehydes 1a–4a using enantiomeric rhodium catalysts ligated by (S)-MeO-BIPHEP and (R)-MeO-BIPHEP delivers the diastereomeric products of carbonyl-(Z)-butadienylation 1b–4b and 1c–4c, respectively, with good to excellent levels of catalyst directed diastereofacial selectivity. Diastereomeric L-glyceraldehyde acetonide adducts 1b and 1c were converted to the four isomeric enoates 6b, 8b, 6c, and 8c, representing a formal synthesis of all eight L-hexoses. PMID:18729371

  10. Synthesis of Isoiminosugars

    DEFF Research Database (Denmark)

    Hyldtoft, Lene; Godskesen, Michael Anders; Lundt, Inge


    A short synthesis of isoiminosugars have been developed. Bromolactones are diastereoselectively alkylated at C-2 followed by ring closure to the corresponding lactams. Reduction of these then gives isoiminosugars......A short synthesis of isoiminosugars have been developed. Bromolactones are diastereoselectively alkylated at C-2 followed by ring closure to the corresponding lactams. Reduction of these then gives isoiminosugars...

  11. Diastereoselective Construction of the 6-Oxa-2-azabicyclo[3.2.1]octane Scaffold from Chiral α-Hydroxyaldehyde Derivatives by the Aza-Prins Reaction. (United States)

    Mahía, Alejandro; Badorrey, Ramón; Gálvez, José A; Díaz-de-Villegas, María D


    (R)-2,3-Di-O-benzylglyceraldehyde and N-tosyl homoallylamine undergo aza-Prins cyclization to afford (1R,5S,7S)-7-[(benzyloxy)methyl]-2-tosyl-6-oxa-2-azabicyclo[3.2.1]octane in a highly diastereoselective manner through an unexpected intramolecular nucleophilic attack. Our work has opened a new route toward the asymmetric synthesis of 7-(alkyl or aryl)-6-oxa-2-azabicyclo[3.2.1]octane derivatives from chiral α-hydroxyaldehyde derivatives in one step.

  12. One-Pot Catalytic Enantio- and Diastereoselective Syntheses of anti-, syn-cis-Disubstituted, and syn-Vinyl Cyclopropyl Alcohols (United States)

    Kim, Hun Young; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.


    Highly enantio- and diastereoselective methods for the synthesis of a variety of cyclopropyl alcohols are reported. These methods represent the first one-pot approaches to syn-vinyl cyclopropyl alcohols, syn-cis-disubstituted cyclopropyl alcohols, and anti-cyclopropyl alcohols from achiral precursors. The methods begin with enantioselective C–C bond formations promoted by a MIB-based zinc catalyst to generate allylic alkoxide intermediates. The intermediates are then subjected to in situ alkoxide-directed cyclopropanation to provide cyclopropyl alcohols. In the synthesis of vinyl cyclopropyl alcohols, hydroboration of enynes is followed by transmetalation of the resulting dienylborane to zinc to provide dienylzinc reagents. Enantioselective addition to aldehydes generates the requisite dienyl zinc alkoxides, which are then subjected to in situ cyclopropanation to furnish vinyl cyclopropyl alcohols. Cyclopropanation occurs at the double bond allylic to the alkoxide. Using this method, syn-vinylcyclopropyl alcohols are obtained in 65–85% yield, 76–93% ee, and >19:1 dr. To prepare anti-cyclopropanols, enantioselective addition of alkylzinc reagents to conjugated enals provides allylic zinc alkoxides. Because direct cyclopropanation provides syn-cyclopropyl alcohols, the intermediate allylic alkoxides were treated with TMSCl/Et3N to generate intermediate silyl ethers. In situ cyclopropanation of the allylic silyl ether resulted in cyclopropanation to form the anti-cyclopropyl silyl ether. Workup with TBAF affords the anti-cyclopropyl alcohols in one-pot in 60–82% yield, 89–99% ee, and ≥10:1 dr. For the synthesis of cis-disubstituted cyclopropyl alcohols, in situ generated (Z)-vinyl zinc reagents were employed in asymmetric addition to aldehydes to generate (Z)-allylic zinc alkoxides. In situ cyclopropanation provides syn-cis-disubstituted cyclopropyl alcohols in 42–70% yield, 88–97% ee, and >19:1 dr. These one-pot procedures enable the synthesis of a

  13. An Expedient Regio- and Diastereoselective Synthesis of Hybrid Frameworks with Embedded Spiro[9,10]dihydroanthracene [9,3']-pyrrolidine and Spiro[oxindole-3,2'-pyrrolidine] Motifs via an Ionic Liquid-Mediated Multicomponent Reaction. (United States)

    Arumugam, Natarajan; Almansour, Abdulrahman I; Kumar, Raju Suresh; Menéndez, J Carlos; Sultan, Mujeeb A; Karama, Usama; Ghabbour, Hazem A; Fun, Hoong-Kun


    A series of hitherto unreported anthracene-embedded dispirooxindoles has been synthesized via a one-pot three-component 1,3-dipolar cycloaddition reaction of an azomethine ylide, generated in situ from the reaction of isatin and sarcosine to 10-benzylideneanthracen-9(10H)-one as a dipolarophile in 1-butyl-3-methylimidazolium bromide([bmim]Br), an ionic liquid. This reaction proceeded regio- and diastereoselectively, in good to excellent yields.

  14. Organocatalytic cascade aza-Michael/hemiacetal reaction between disubstituted hydrazines and α,β-unsaturated aldehydes: Highly diastereo- and enantioselective synthesis of pyrazolidine derivatives

    Directory of Open Access Journals (Sweden)

    Zhi-Cong Geng


    Full Text Available The catalytic synthesis of nitrogen-containing heterocycles is of great importance to medicinal and synthetic chemists, and also a challenge for modern chemical methodology. In this paper, we report the synthesis of pyrazolidine derivatives through a domino aza-Michael/hemiacetal sequence with chiral or achiral secondary amines as organocatalysts. Thus, a series of achiral pyrazolidine derivatives were obtained with good yields (up to 90% and high diastereoselectivities (>20:1 with pyrrolidine as an organocatalyst, and enantioenriched pyrazolidines are also achieved with good results (up to 86% yield, >10/1 regioselectivity, >20:1 dr, 99% ee in the presence of (S-diphenylprolinol trimethylsilyl ether catalyst.

  15. Diastereoselective synthesis of some novel benzopyranopyridine derivatives

    Directory of Open Access Journals (Sweden)

    Babu Moses DR


    Full Text Available Abstract Background The formation of novel N-substituted-1,2,3,4-tetrahydro[1,3]-dioxolo-[6,7]-5H-[1]benzopyrano [3,4-c]pyridines were observed unexpectedly during the acid-mediated ketal removal of ethylenedioxy ketal protected 4-piperidones. The literature revealed that benzopyranopyridine derivatives are of scientific interest and some exhibit interesting biological activities. Diastereomeric resolution was utilized to isolate optically pure chiral molecules. Results The acid catalyzed deprotection of N-substituted-4,4-ethylenedioxy-3- [(1,3-benzodioxol-5-yloxymethyl]piperidines, prepared by condensation of the corresponding phenols and mesylate derivatives, unexpectedly resulted in cyclodehydration leading to new benzopyrano derivatives, N-substituted-1,2,3,4-tetrahydro[1,3]-dioxolo-[6,7]-5H-[1]benzopyrano [3,4-c]pyridines. The process involves the deprotection of the carbonyl protecting group, and then the cyclization reaction occurs followed by dehydration to give the final product. These N-substituted-1,2,3,4-tetrahydro[1,3]-dioxolo-[6,7]-5H-[1]benzopyrano [3,4-c] pyridines were dealkylated giving the corresponding N-unsubstituted derivatives. The cis-1,3,4,4a,5,10b-hexahydro-[6,7]-2H-[1]benzopyrano [3,4-c]pyridine derivative was also obtained from the N-benzylated-1,2,3,4-tetrahydro[1,3]-dioxolo-[6,7]-5H-[1]benzopyrano [3,4-c]pyridine via catalytic hydrogenation. The resolution of the enantiomers was carried out using D-(--mandelic acid as chiral reagent. The absolute configuration of the S,S-mandelate salt derivative was determined by X-ray crystallographic analysis. Conclusion The approach led to the construction of N-substituted-1,2,3,4-tetrahydro[1,3]-dioxolo-[6,7]-5H-[1]benzopyrano [3,4-c] pyridines ring systems involving the one-pot deprotection, cyclization and dehydration of N-substituted-4,4-ethylenedioxy-3- [(1,3-benzodioxol-5-yloxymethyl]piperidines. The hydrogenation of the N-benzylated benzopyrano [3,4-c]pyridine derivative followed by resolution led to the formation of a new compound.

  16. Enantioselective synthesis of b-Amino acids. 12. experimental and theoretical study of the diastereoselectivity of alkylation of the dianion of N',N'-Bis(a-phenylethyl-N -carbobenzyloxypropionamide

    Directory of Open Access Journals (Sweden)

    Gutiérrez-García Víctor Manuel


    Full Text Available Achiral, inexpensive beta-alanine was converted into the title chiral amide 1 in 53% overall yield. C-Alkylation of (R,R-1 required formation of its dianion derivative, (R,R-1-Li2, which was best achieved by direct metallation with two equivalents of n-BuLi in THF solution and at -78°C. Treatment of (R,R-1-Li2 with various alkyl halides afforded the monoalkylated products 3-6 in 24-85% yield and 65-86% diastereoselectivity. The effect of LiCl additive or HMPA co-solvent on the diastereoselectivity of the alkylation reaction was essentially negligible, although reaction yields generally improved. Chemical correlation of the major diastereomer from the methylation reaction with (S-alpha-methyl-beta-alanine shows that addition of the electrophile takes place preferentially on the enolate's Si face. This conclusion is also supported by molecular modelling studies (ab initio HF/3-21G, which indicate that the conformation of lowest energy for (R,R-1-Li2 presents a more sterically hindered Re face of the enolate. The theoretical studies also provided useful insight into the importance of hydrogen bonding and attractive p-p interactions in (R,R-1. Furthermore, the calculations predict a determining role for N-Li-O chelation in (R,R-1-Li, as well as an interesting ion triplet configuration for dilithium dianion (R,R-1-Li2.

  17. Stereoselection in Intramolecular Diels-Alder Reactions of 2-Cyano-1-azadienes: Indolizidine and Quinolizidine Synthesis. (United States)

    Tay, Gidget C; Sizemore, Nicholas; Rychnovsky, Scott D


    Progress toward understanding the scope and diastereoselectivity of intramolecular Diels-Alder reactions using 2-cyano-1-azadienes is described herein. The resulting cyanoenamine products are underutilized intermediates in organic synthesis. Assembly of the Diels-Alder precursors was achieved using an improved imine condensation/oxidative cyanation protocol. By this method, several highly substituted indolizidine and quinolizidine architectures were constructed. Quantum mechanical DFT calculations at the B3LYP/6-31+G(d) level of theory were performed for these cyclizations and provide insights into the origins of the observed diastereoselectivities.

  18. Diastereoselective multicomponent cyclizations of Fischer carbene complexes, lithium enolates, and allylmagnesium bromide leading to highly substituted five- and six-membered carbocycles. (United States)

    Barluenga, José; Pérez-Sánchez, Iván; Suero, Marcos G; Rubio, Eduardo; Flórez, Josefa


    The one-pot sequential reaction of a chromium alkoxycarbene complex, a ketone or ester lithium enolate, and allylmagnesium bromide enabled the selective synthesis of novel diastereomerically pure pentasubstituted cyclopentanols or tetrasubstituted 1,4-cyclohexanediols, depending on the degree of substitution at the Cbeta position of the enolate anion. A few exceptions have been encountered in which tetrasubstituted cyclopentanols or pentasubstituted 1,4-cyclohexanediols were selectively formed. The use of 2-iodoethoxycarbene complexes gave access to 1,2,4-cyclohexanetriols. These multicomponent-coupling reactions involved the formation of lithium alkylpentacarbonylchromates as key intermediates, which further evolved through intramolecular processes, such as insertion of an alkene, CO insertion or addition to a carbonyl group, and, moreover, could be trapped in intermolecular reactions with different electrophiles and styrene. The substitution pattern of the alkylchromate carbon chain has been proposed to control the nature of the annulation process.

  19. Doubly diastereoselective [3,3]-sigmatropic aza-Claisen rearrangements. (United States)

    Davies, Stephen G; Garner, A Christopher; Nicholson, Rebecca L; Osborne, James; Roberts, Paul M; Savory, Edward D; Smith, Andrew D; Thomson, James E


    The doubly diastereoselective [3,3]-sigmatropic aza-Claisen rearrangement of silylketene aminals derived from 5-substituted (3S,4E,alphaR)-1-benzyloxy-3-[N-acyl-N-(alpha-methylbenzyl)amino]pent-4-enes furnishes 2,3-disubstituted (R)-N-alpha-methylbenzyl (2S,3R,4E)-7-benzyloxyhept-4-enamides in >90% de under the "matched" control of both stereogenic centres. Rearrangement of the "mismatched" diastereomeric (3R,4E,alphaR)-substrates proceeds with low diastereoselectivity. The substrate scope of the doubly diastereoselective rearrangement of the "matched" substrates in which two new stereogenic centres are created has been delineated.

  20. First diastereoselective construction of butane-type and butyrolactone-type secocyclolignane structures. (United States)

    Morita, Masao; Yamauchi, Satoshi


    The first diastereoselective construction of butane-type and butyrolactone-type secocyclolignanes was achieved by the application of a high-valency heterobimetallic Ir-Sn complex to benzyl alcohols prepared from an Evans's anti-aldol product. The elimination of an acetoxymethyl group to give a cinnamyl structure by using a high-valency heterobimetallic Ir-Sn complex was also observed in this study.

  1. Stereoselective total synthesis of the potent anti-asthmatic compound CMI-977 (LDP-977)

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Luiz Carlos; Farina, Lui Strambi; Ferreira, Marco Antonio Barbosa, E-mail: [Universidade de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica


    A short and efficient stereoselective total synthesis of CMI-977 (LDP-977), a potent and orally active anti-asthmatic compound, was developed. The key steps involve a highly diastereoselective Mukaiyama oxidative cyclization, which provides the trans-THF (tetrahydrofuran) unit and a Seyferth-Gilbert homologation to construct the triple bond in the target molecule. The synthesis of the key chiral building block was performed using Jacobsen hydrolytic kinetic resolution. (author)

  2. A Short Synthesis of (+)-Cyclophellitol

    DEFF Research Database (Denmark)

    Hansen, Flemming Gundorph; Bundgaard, Eva; Madsen, Robert


    A new synthesis of (+)-cyclophellitol, a potent b-glucosidase inhibitor, has been completed in nine steps from D-xylose. The key transformations involve a zinc-mediated fragmentation of benzyl-protected methyl 5-deoxy-5-iodo-xylofuranoside followed by a highly diastereoselective indium-mediated c......-mediated coupling with ethyl 4-bromocrotonate. Subsequent ring-closing olefin metathesis, ester reduction, olefin epoxidation, and deprotection then afford the natural product. This constitutes the shortest synthesis of (+)-cyclophellitol reported to date....

  3. N-Heterocyclic-Carbene-Catalysed Diastereoselective Vinylogous Mukaiyama/Michael Reaction of 2-(Trimethylsilyloxy)furan and Enones

    KAUST Repository

    Wang, Ying


    N-heterocyclic carbenes have been utilised as highly efficient nucleophilic organocatalysts to mediate vinylogous Mukaiyama/Michael reactions of 2-(trimethylsilyloxy)furan with enones to afford γ-substituted butenolides in 44-99% yield with 3:1-32:1 diastereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Divergent Strategy for the Diastereoselective Synthesis of the Tricyclic 6,7-Diaryltetrahydro-6H-benzo[c]chromene Core via Pt(IV)-Catalyzed Cycloaddition of o-Quinone Methides and Olefin Ring-Closing Metathesis. (United States)

    Tangdenpaisal, Kassrin; Chuayboonsong, Kanokpish; Ruchirawat, Somsak; Ploypradith, Poonsakdi


    A divergent strategy for the synthesis of the tricyclic 6,7-diaryltetrahydro-6H-benzo[c]chromene core was successfully developed. The 2,3-trans, 2,4-cis trisubstituted chroman moiety was formed via highly efficient and stereoselective Pt(IV)-catalyzed cycloaddition reactions of the corresponding quinone methides with chalcones. Subsequent steps provided the common diene alcohol, which underwent BF3·Et2O-mediated Et3SiH reduction and olefin ring-closing metathesis (RCM) using Ru(II) catalysts. The sequence of the final two steps provided a handle to diversify the stereochemical outcomes at C6 as well as C10a.

  5. The Daphniphyllum Alkaloids: Total Synthesis of (−)-Calyciphylline N (United States)


    Presented here is a full account on the development of a strategy culminating in the first total synthesis of the architecturally complex daphniphyllum alkaloid, (−)-calyciphylline N. Highlights of the approach include a highly diastereoselective, intramolecular Diels–Alder reaction of a silicon-tethered acrylate; an efficient Stille carbonylation of a sterically encumbered vinyl triflate; a one-pot Nazarov cyclization/proto-desilylation sequence; and the chemoselective hydrogenation of a fully substituted diene ester. PMID:25756504

  6. RPython high-level synthesis (United States)

    Cieszewski, Radoslaw; Linczuk, Maciej


    The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.

  7. Metal Controlled Diastereoselective Self-assembly and Circularly Polarized Luminescence of a Chiral Heptanuclear Europium Wheel (United States)

    Bozoklu, Gülay; Gateau, Christelle; Imbert, Daniel; Pécaut, Jacques; Robeyns, Koen; Filinchuk, Yaroslav; Memon, Farah; Muller, Gilles


    The chiral dissymmetric tetradentate ligand SPhbipox (6’-(4-phenyloxazolin-2-yl)-2,2’-bipyridine-6-carboxylic acid) leads to the diastereoselective assembly of a homochiral Eu(III) triangle and of a highly emissive (QY=27%) heptanuclear wheel which is the largest example of chiral luminescent complex of Eu(III) reported to date. We show that the nuclearity of the assembly is controlled by the solvent and the europium cation. All the compounds show large circularly polarized luminescence with an activity which varies with the nature of the assembly (highest for the homochiral trimer). PMID:22548280

  8. Anion Relay Chemistry: Development of an Effective Diastereoselective [3+2] Annulation Tactic Exploiting an Aldol/Brook Rearrangement/Cyclization Cascade. (United States)

    Han, Heeoon; Smith, Amos B


    An effective [3+2] annulation tactic for the construction of diverse bicyclic compounds possessing highly functionalized cyclopentane rings has been developed employing soft ketone enolates as the initial nucleophile for anion relay chemistry (ARC). The protocol entails a highly diastereoselective aldol/Brook rearrangement/cyclization cascade. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Microwave-assisted multicomponent diastereoselective 1,3-dipolar cycloaddition of ethyl glyoxylate derived azomethine ylides. (United States)

    Mancebo-Aracil, Juan; Nájera, Carmen; Sansano, José M


    The thermal multicomponent 1,3-dipolar cycloaddition (1,3-DC) of diethyl aminomalonate or α-amino esters (derived from glycine, alanine, phenylalanine, and phenylglycine) with ethyl glyoxylate and the corresponding dipolarophile such as maleimides, methyl acrylate, methyl fumarate, (E)-1,2-bis(phenylsulfonyl)ethylene, and electron deficient alkynes allows the diastereoselective synthesis of new polysubstituted pyrrolidine derivatives. Microwave-assisted heating processes give better results than conventional heating ones, affording endo-cycloadducts as major stereoisomers. In general, 2,5-cis-cycloadducts are preferentially formed according to the previous formation of the W-shaped dipole. Only in the 1,3-DC of the disulfone with phenylglycine and ethyl glyoxylate the corresponding exo-trans-cycloadduct was isolated. The compound endo-cis-4b, derived from phenylalanine, ethyl glyoxylate and N-benzylmaleimide, has been further transformed into a very complex diazabicyclo[2.2.1]octane skeleton with potential biological activity.

  10. Overview of high level synthesis tools

    CERN Document Server

    Evans, J


    High Level Synthesis takes an abstract behavioural or algorithmic description of a digital system and creates a register transfer level structure that realises the described behaviour. Various methodologies have been developed to perform such synthesis tasks. This paper presents the different HLS concepts used in the current leading tools. It makes a comparison between the different approaches and highlights their advantages and limitations. We also present a high level synthesis example.

  11. A 11-Steps Total Synthesis of Magellanine through a Gold(I)-Catalyzed Dehydro Diels-Alder Reaction. (United States)

    McGee, Philippe; Bétournay, Geneviève; Barabé, Francis; Barriault, Louis


    We have developed an innovative strategy for the formation of angular carbocycles via a gold(I)-catalyzed dehydro Diels-Alder reaction. This transformation provides rapid access to a variety of complex angular cores in excellent diastereoselectivities and high yields. The usefulness of this AuI -catalyzed cycloaddition was further demonstrated by accomplishing a 11-steps total synthesis of (±)-magellanine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei


    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields as well as excellent enantioselectivities and diastereoselectivities. The high value of the aza-Piancatelli rearrangement was demonstrated by the synthesis of a cyclopentane-based hNK1 antagonist analogue.

  13. An Expedient Regio- and Diastereoselective Synthesis of Hybrid Frameworks with Embedded Spiro[9,10]dihydroanthracene [9,3′]-pyrrolidine and Spiro[oxindole-3,2′-pyrrolidine] Motifs via an Ionic Liquid-Mediated Multicomponent Reaction

    Directory of Open Access Journals (Sweden)

    Natarajan Arumugam


    Full Text Available A series of hitherto unreported anthracene-embedded dispirooxindoles has been synthesized via a one-pot three-component 1,3-dipolar cycloaddition reaction of an azomethine ylide, generated in situ from the reaction of isatin and sarcosine to 10-benzylideneanthracen-9(10H-one as a dipolarophile in 1-butyl-3-methylimidazolium bromide([bmim]Br, an ionic liquid. This reaction proceeded regio- and diastereoselectively, in good to excellent yields.

  14. Dynamic kinetic asymmetric ring-opening/reductive amination sequence of racemic nitroepoxides with chiral amines: enantioselective synthesis of chiral vicinal diamines. (United States)

    Agut, Juan; Vidal, Andreu; Rodríguez, Santiago; González, Florenci V


    We report a highly diastereoselective synthesis of vicinal diamines by the treatment of nitroepoxides with primary amines and then a reducing agent. When using a chiral primary amine, racemic nitroepoxides are transformed into chiral diamines as a single enantiomers (>95:5 er) through a dynamic kinetic asymmetric transformation (DYKAT). The overall process is a one-pot procedure combining the exposure of nitroepoxides to chiral amines to afford diastereomeric mixtures of aminoimines and subsequent stereoselective imine reduction.

  15. One-pot Diels–Alder cycloaddition/gold(I-catalyzed 6-endo-dig cyclization for the synthesis of the complex bicyclo[3.3.1]alkenone framework

    Directory of Open Access Journals (Sweden)

    Boubacar Sow


    Full Text Available The rapid synthesis of bicyclo[m.n.1]alkanone cores possessing quaternary carbon centers adjacent to a bridged ketone represents a significant synthetic challenge. This type of architectural feature is embedded in various complex biologically active compounds such as hyperforin and garsubellin A. Herein, we report a highly diastereoselective one-pot Diels–Alder reaction/Au(I-catalyzed carbocyclization to generate bicyclo[3.3.1]alkanones in yields ranging from 48–93%.

  16. Double diastereoselective [3,3]-sigmatropic aza-Claisen rearrangements. (United States)

    Davies, Stephen G; Garner, A Christopher; Nicholson, Rebecca L; Osborne, James; Savory, Edward D; Smith, Andrew D


    Asymmetric [3,3]-sigmatropic aza-Claisen rearrangement of the (Z)-N-allyl-N,O-silylketene aminal of (3S,4E,alphaR)-1-benzyloxy-3-(N-propionyl-N-alpha-methylbenzylamino)hex-4-ene furnishes (2S,3R,4E,alphaR)-N-alpha-methylbenzyl-2,3-dimethyl-7-benzyloxyhept-4-enamide in > 92% d.e.; rearrangement of the diastereomeric (3R,4E,alphaR)-(Z)-N,O-silylketene aminal proceeds with low diastereoselectivity.

  17. Hydroxy-directed diastereoselective installation of a methyl group on indalone models and spiroketal potential precursors for the bafilomycin A(1) C15-C25 subunit. (United States)

    Poupon, Jean-Christophe; Lopez, Roman; Prunet, Joëlle; Férézou, Jean-Pierre


    Current efforts devoted to the synthesis of Bafilomycin A(1) led us to investigate a synthetic route through a spiroketal intermediate for the construction of the C15-C25 subunit. Preliminary studies for the diastereoselective installation of the methyl-16 cis with respect to the vicinal OH-15 group through radical opening of either siloxafuran intermediate 7 or cyclopropyl compounds 9 and 13 have been carried out using model compounds derived from commercial Indalone 6. In each case the expected "cis" diastereoisomer was obtained in good to excellent yield. Application of these results to Bafilomycin A(1) synthon led to the opposite "trans" stereoselectivity when alpha-carboxy- or alpha-keto-substituted spiroketals 4 or 19 were used. However, the expected potential intermediate has been obtained from the alpha-hydroxymethyl cyclopropanated synthon 21. A Barton-Motherwell xanthate radical deoxygenation-cylopropane opening methodology, followed by a hydroboration-oxidation of the exovinylic intermediate, delivered the expected product 22cis in high yield and excellent stereoselectivity.

  18. Synthetic studies on taxol: highly stereoselective construction of the taxol C-ring via SN2' reduction of an allylic phosphonium salt. (United States)

    Utsugi, Masayuki; Miyano, Masayuki; Nakada, Masahisa


    [reaction: see text] The highly stereoselective construction of the C3 stereogenic center of the taxol C-ring is described. The trans isomer at the C3-C8 position of the taxol C-ring, which is required for the total synthesis, as well as its diastereomeric cis isomer were successfully synthesized with highly diastereoselective S(N)2' reduction of the allylic phosphonium salts.

  19. Solvothermal synthesis of high molecular weight dithienogermole ...

    Indian Academy of Sciences (India)

    Solvothermal synthesis of high molecular weight dithienogermole containing conjugated polymers. FEI-BAO ZHANG∗, SU-FANG LV, JIANG-XIONG JIANG and YONG NI∗. Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou. Normal University, Hangzhou 310012, China.

  20. High chemoselectivity in the phenol synthesis

    Directory of Open Access Journals (Sweden)

    A. Stephen K. Hashmi


    Full Text Available Efforts to trap early intermediates of the gold-catalyzed phenol synthesis failed. Neither inter- nor intramolecularly offered vinyl groups, ketones or alcohols were able to intercept the gold carbenoid species. This indicates that the competing steps of the gold-catalyzed phenol synthesis are much faster than the steps of the interception reaction. In the latter the barrier of activation is higher. At the same time this explains the high tolerance of this very efficient and general reaction towards functional groups.

  1. Software Synthesis for High Productivity Exascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Bodik, Rastislav [Univ. of Washington, Seattle, WA (United States)


    Over the three years of our project, we accomplished three key milestones: We demonstrated how ideas from generative programming and software synthesis can help support the development of bulk-synchronous distributed memory kernels. These ideas are realized in a new language called MSL, a C-like language that combines synthesis features with high level notations for array manipulation and bulk-synchronous parallelism to simplify the semantic analysis required for synthesis. We also demonstrated that these high level notations map easily to low level C code and show that the performance of this generated code matches that of handwritten Fortran. Second, we introduced the idea of solver-aided domain-specific languages (SDSLs), which are an emerging class of computer-aided programming systems. SDSLs ease the construction of programs by automating tasks such as verification, debugging, synthesis, and non-deterministic execution. SDSLs are implemented by translating the DSL program into logical constraints. Next, we developed a symbolic virtual machine called Rosette, which simplifies the construction of such SDSLs and their compilers. We have used Rosette to build SynthCL, a subset of OpenCL that supports synthesis. Third, we developed novel numeric algorithms that move as little data as possible, either between levels of a memory hierarchy or between parallel processors over a network. We achieved progress in three aspects of this problem. First we determined lower bounds on communication. Second, we compared these lower bounds to widely used versions of these algorithms, and noted that these widely used algorithms usually communicate asymptotically more than is necessary. Third, we identified or invented new algorithms for most linear algebra problems that do attain these lower bounds, and demonstrated large speed-ups in theory and practice.

  2. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods (United States)


    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  3. Total synthesis of a CD-ring: side-chain building block for preparing 17-epi-calcitriol derivatives from the Hajos-Parrish dione. (United States)

    Michalak, Karol; Wicha, Jerzy


    An efficient synthesis of the key building block for 17-epi-calctriol from the Hajos-Parrish dione involving a sequence of diastereoselective transformation of the azulene core and the side-chain construction is presented.

  4. Synthesis of dimethyl gloiosiphone a by way of palladium-catalyzed domino cyclization. (United States)

    Doi, Takayuki; Iijima, Yusuke; Takasaki, Masaru; Takahashi, Takashi


    The synthesis of a spiro[4.4]nonane skeleton by the palladium-catalyzed domino cyclization of a linear 7-methylene-2,10-undecadienyl acetate is described. The pi-allylpalladium intermediate underwent intramolecular alkene insertion with high intraannular diastereoselectivity, followed by intramolecular Heck-type cyclization, leading to a spiro[4.4]nonane system. Oxidation of the allylic ether moiety and transformation of the vinyl group to an exo-methylene unit provided 3, which is the known synthetic intermediate of dimethyl gloiosiphone A (2).

  5. Asymmetric synthesis of quaternary aryl amino acid derivatives via a three-component aryne coupling reaction

    Directory of Open Access Journals (Sweden)

    Elizabeth P. Jones


    Full Text Available A method was developed for the synthesis of α-alkyl, α-aryl-bislactim ethers in good to excellent yields and high diastereoselectivities, consisting of a facile one-pot procedure in which the aryl group is introduced by means of a nucleophilic addition to benzyne and the alkyl group by alkylation of a resultant benzylic anion. Hydrolysis of the sterically less hindered adducts gave the corresponding quaternary amino acids with no racemization, whereas hydrolytic ring opening gave the corresponding valine dipeptides from bulkier bislactims.

  6. High-level Synthesis Integrated Verification

    Directory of Open Access Journals (Sweden)

    M. Dossis


    Full Text Available It is widely known in the engineering community that more than 60% of the IC design project time is spent on verification. For the very complex contemporary chips, this may prove prohibitive for the IC to arrive at the correct time in the market and therefore, valuable sales share may be lost by the developing industry. This problem is deteriorated by the fact that most of conventional verification flows are highly repetitive and a great proportion of the project time is spent on last-moment simulations. In this paper we present an integrated approach to rapid, high-level verification, exploiting the advantages of a formal High-level Synthesis tool, developed by the author. Verification in this work is supported at 3 levels: high-level program code, RTL simulation and rapid, generated C testbench execution. This paper is supported by strong experimental work with 3-4 popular design synthesis and verification that proves the principles of our methodology.

  7. Highly reproducible polyol synthesis for silver nanocubes (United States)

    Han, Hye Ji; Yu, Taekyung; Kim, Woo-Sik; Im, Sang Hyuk


    We could synthesize the Ag nanocubes highly reproducibly by conducting the polyol synthesis using HCl etchant in dark condition because the photodecomposition/photoreduction of AgCl nanoparticles formed at initial reaction stage were greatly depressed and consequently the selective self-nucleation of Ag single crystals and their selective growth reaction could be promoted. Whereas the reproducibility of the formation of Ag nanocubes were very poor when we synthesize the Ag nanocubes in light condition due to the photoreduction of AgCl to Ag.

  8. Towards catalyst compartimentation in combined chemo- and biocatalytic processes: immobilization of alcohol dehydrogenases for the diastereoselective reduction of a β-hydroxy ketone obtained from an organocatalytic aldol reaction. (United States)

    Rulli, Giuseppe; Heidlindemann, Marcel; Berkessel, Albrecht; Hummel, Werner; Gröger, Harald


    The alcohol dehydrogenases (ADHs) from Lactobacillus kefir and Rhodococcus sp., which earlier turned out to be suitable for a chemoenzymatic one-pot synthesis with organocatalysts, were immobilized with their cofactors on a commercially available superabsorber based on a literature known protocol. The use of the immobilized ADH from L. kefir in the reduction of acetophenone as a model substrate led to high conversion (>95%) in the first reaction cycle, followed by a slight decrease of conversion in the second reaction cycle. A comparable result was obtained when no cofactor was added although a water rich reaction media was used. The immobilized ADHs also turned out to be suitable catalysts for the diastereoselective reduction of an organocatalytically prepared enantiomerically enriched aldol adduct, leading to high conversion, diastereomeric ratio and enantioselectivity for the resulting 1,3-diols. However, at a lower catalyst and cofactor amount being still sufficient for biotransformations with "free" enzymes the immobilized ADH only showed high conversion and >99% ee for the first reaction cycle whereas a strong decrease of conversion was observed already in the second reaction cycle, thus indicating a significant leaching effect of catalyst and/or cofactor. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. High rate flame synthesis of highly crystalline iron oxide nanorods (United States)

    Merchan-Merchan, W.; Saveliev, A. V.; Taylor, A. M.


    Single-step flame synthesis of iron oxide nanorods is performed using iron probes inserted into an opposed-flow methane oxy-flame. The high temperature reacting environment of the flame tends to convert elemental iron into a high density layer of iron oxide nanorods. The diameters of the iron oxide nanorods vary from 10 to 100 nm with a typical length of a few microns. The structural characterization performed shows that nanorods possess a highly ordered crystalline structure with parameters corresponding to cubic magnetite (Fe3O4) with the [100] direction oriented along the nanorod axis. Structural variations of straight nanorods such as bends, and T-branched and Y-branched shapes are frequently observed within the nanomaterials formed, opening pathways for synthesis of multidimensional, interconnected networks.

  10. Diastereoselectivity in Mn(III)-promoted 4-exo-trig cyclization of enamides to beta-lactams (United States)

    D'Annibale; Nanni; Trogolo; Umani


    [reaction: see text] The effect of chiral substituents on the enamide nitrogen atom upon the diastereoselection of the Mn(III)-mediated 4-exo-trig cyclization to beta-lactams was studied. A significant level of diastereoselectivity was achieved when an amino acid ester moiety was included into the enamidic skeleton. The structure of the major diastereoisomer was suggested by semiempirical calculations.

  11. Inverting the diastereoselectivity of the mukaiyama-michael addition with graphite-based catalysts

    KAUST Repository

    Acocella, Maria Rosaria


    Here, we show that graphite-based catalysts, mainly graphite oxide (GO) and exfoliated GO, are effective recyclable catalysts for a relevant stereoselective Mukaiyama-Michael addition, outperforming currently available catalysts. Moreover, the graphite-based catalysts described here invert the diastereoselectivity relative to that observed with known catalysts, with the unprecedented large prevalence of the anti diastereoisomer. This inverted diastereoselectivity is increased when the catalyst concentration is reduced and after catalyst recycling. Density functional theory calculations suggest that the selectivity is determined by two types of supramolecular interactions operating between the catalyst and the substrates at the diastereoselectivity- determining transition state, specifically, the π-stacking of b-nitrostyrene with graphite and the van der Waals interaction between the SiMe3 group of the silyl ether and the graphite. © 2013 American Chemical Society.

  12. Palladium-catalyzed allylic transposition of (allyloxy) iminodiazaphospholidines: a formal [3,3]-aza-phospha-oxa-Cope sigmatropic rearrangement for the stereoselective synthesis of allylic amines. (United States)

    Lee, Ernest E; Batey, Robert A


    The synthesis of N-protected allylic amines has been achieved utilizing a palladium(II)-catalyzed, [3,3]-rearrangement of (allyloxy) iminodiazaphospholidines. This [3,3]-aza-phospha-oxa-Cope sigmatropic rearrangement reaction is thermodynamically driven by a P=N to P=O interconversion and is an alternative to the Overman rearrangement. The overall process involves the nucleophilic displacement of an allylic alcohol onto a P(III) precursor, followed by a Staudinger reaction to generate the (allyloxy) iminodiazaphospholidine precursors. Pd(II)-catalyzed [3,3]-aza-phospha-oxa-Cope rearrangement then gives a phosphoramide, which is readily hydrolyzed under acidic conditions to yield allylic amine derivatives. Pd(II) catalysis is believed to occur in a fashion analogous to that of the rearrangement of allylic imidates. The scope of racemic, diastereoselective, and enantioselective variants of this rearrangement is described. The use of chiral diamine auxiliaries in diastereoselective rearrangements is reported. Rearrangement of chiral N,N'-dimethyl cyclohexanediamine derived diazaphospholidines gives rise to phosphoramides with moderate diastereoselectivities (up to 3.5:1 dr). The same major diastereomeric product in these rearrangements was prepared irrespective of the starting allylic alcohol geometry. An enantioselective variant of the reaction was demonstrated for the rearrangement of cis-(allyloxy) iminodiazaphospholidines with cobalt oxazoline palladacycle (COP-X) catalysts (5 mol %) in high yield and enantioselectivity (up to 96% ee).

  13. Practical and Metal-Free Synthesis of Novel Enantiopure Amides Containing the Potentially Bioactive 5-Nitroimidazole Moiety

    Directory of Open Access Journals (Sweden)

    Cédric Spitz


    Full Text Available We report here a practical and metal-free synthesis of novel enantiopure amides containing the drug-like 5-nitroimidazole scaffold. The first step was a metal-free diastereoselective addition of 4-(4-(chloromethylphenyl-1,2-dimethyl-5-nitro-1H-imidazole to enantiomerically pure N-tert-butanesulfinimine. Then, the N-tert-butanesulfinyl–protected amine was easily deprotected under acidic conditions. Finally, the primary amine was coupled with different acid chlorides or acids to give the corresponding amides. The mild reaction conditions and high tolerance for various substitutions make this approach attractive for constructing pharmacologically interesting 5-nitroimidazoles.

  14. Hyphenating the curtius rearrangement with Morita-Baylis-Hillman adducts: synthesis of biologically active acyloins and vicinal aminoalcohols

    Energy Technology Data Exchange (ETDEWEB)

    Amarante, Giovanni W.; Cavallaro, Mayra; Coelho, Fernando, E-mail: coelho@iqm.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica. Lab. de Sintese de Produtos Naturais e Farmacos


    Using Morita-Baylis-Hillman adducts as substrates, the Curtius rearrangement was performed in a sequence that allowed the synthesis of several hydroxy-ketones (acyloins) with great structural diversity and in good overall yields. These acyloins in turn were easily transformed into 1,2-anti aminoalcohols through a highly diastereoselective reductive amination step. The synthetic utility of these approaches was exemplified by performing the syntheses of (+-)-bupropion, a drug used to treat the abstinence syndrome of smoker and (+-)-spisulosine, a potent anti-tumoral compound originally isolated from a marine source. (author)

  15. Versatile diastereoselectivity in formal [3,3]-sigmatropic shifts of substituted 1-alkenyl-3-alkylidenecyclobutanols and their silyl ethers. (United States)

    Jung, Michael E; Nishimura, Nobuko; Novack, Aaron R


    A new method for the preparation of highly substituted cyclohexenones is reported. [2 + 2] Cycloaddition of 2-silyloxydienes with allenecarboxylate affords the 1-alkenyl-3-alkylidenecyclobutanol silyl ethers. Thermolysis of these compounds affords the methylene cyclohexenyl silyl ethers with excellent exo selectivity (>95:5) when monosubstituted alkenyl groups are used, while the use of disubstituted alkenyl groups gives generally low selectivity ( approximately 2:1). However, rearrangement of the anion of the cyclobutanol (prepared by acidic hydrolysis of the TMS silyl ether) at low temperature gives the endo product with good to excellent diastereoselectivity (5-23:1). Two different mechanistic rationales are given for the two different processes: the first via a diradical and the second via a cleavage intramolecular Michael addition. Thus, the same starting material (e.g., 20) can be converted into either the exo or endo product, 22x or 22n, with good diastereocontrol by just changing the rearrangement conditions.

  16. Rh(III)-Catalyzed Diastereoselective C-H Bond Addition/Cyclization Cascade of Enone Tethered Aldehydes. (United States)

    Boerth, Jeffrey A; Ellman, Jonathan A


    The Rh(III)-catalyzed cascade addition of a C-H bond across alkene and carbonyl π-bonds is reported. The reaction proceeds under mild reaction conditions with low catalyst loading. A range of directing groups were shown to be effective as was the functionalization of alkenyl in addition to aromatic C(sp2)-H bonds. When the enone and aldehyde electrophile were tethered together, cyclic β-hydroxy ketones with three contiguous stereocenters were obtained with high diastereoselectivity. The intermolecular three-component cascade reaction was demonstrated for both aldehyde and imine electrophiles. Moreover, the first x-ray structure of a cationic Cp*Rh(III) enolate with interatomic distances consistent with an η3-bound enolate is reported.

  17. High pressure synthesis gas conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)


    The purpose of this research project is to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by Clostridium ljungdahlii. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors. A maximum operating pressure of 150 psig has been shown to be possible for C. ljungdahlli with the medium of Phillips et al. This medium was developed for atmospheric pressure operation in the CSTR to yield maximum ethanol concentrations and thus is not best for operation at elevated pressures. It is recommended that a medium development study be performed for C. ljungdahlii at increased pressure. Cell concentration, gas conversion and product concentration profiles were presented for C. ljungdahlii as a function of gas flow rate, the variable which affects bacterium performance the most. This pressure was chosen as a representative pressure over the 0--150 psig operating pressure range for the bacterium. Increased pressure negatively affected ethanol productivity probably due to the fact that medium composition was designed for atmospheric pressure operation. Medium development at increased pressure is necessary for high pressure development of the system.

  18. Diastereoselective self-assembly of dinuclear heterochiral metallosupramolecular rhombs in a self-discriminating process. (United States)

    Weilandt, Torsten; Kiehne, Ulf; Schnakenburg, Gregor; Lützen, Arne


    A racemic bis(nitrile) ligand based on the Tröger's base scaffold self-assembles into an achiral dinuclear heterochiral rhomb in a diastereoselective self-discrimination process; this occurs upon coordination to (dppp)Pd(OTf)(2) as evidenced by nmr spectroscopy and X-ray crystal structure analysis.

  19. N-Methylpyrrolidone Hydroperoxide/Cs2 CO3 as an Excellent Reagent System for the Hydroxy-Directed Diastereoselective Epoxidation of Electron-Deficient Olefins. (United States)

    Victor, Napoleon John; Gana, Janardhanan; Muraleedharan, Kannoth Manheri


    This report introduces N-methylpyrrolidone hydroperoxide (NMPOOH)/base as an excellent reagent system for hydroxy-directed syn selective epoxidation of electron-deficient olefins, characterized by high diastereoselectivity, short reaction times and remarkable chemoselectivity, especially in presence of oxidatively labile nitrogen or sulfur atoms. NMPOOH also proves efficient in the oxidation of electron-deficient aromatic aldehydes, in the removal of oxazolidinone chiral auxiliary, and in the functionalization of alkenes and alkynes, showing wide application potential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Asymmetric synthesis of chiral 2-alkyl-3,3-dinitro-1-tosylazetidines

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hui Seok; Lee, Hyo Jun; Chang, Duk Ho; Lee, Su Jeong; Cho, Chang Woo [Dept. of Chemistry, Kyungpook National University, Daegu (Korea, Republic of); Kim, Seung Hee; Kim, Jin Seuk [Agency for Defense Development, Daejeon (Korea, Republic of)


    To explore the feasibility of the diastereoselective aza- Henry reaction, we treated 1 with (S)-(E)-N-ethylidene-4- methylbenzenesulfinamide (2a) using potassium hydroxide (20 mol %) as the base at 25 .deg. C for 24 h in a variety of solvents (Table 1, entries 1–4). Among the solvents tested, CH{sub 2}Cl{sub 2} proved superior, providing the corresponding aza-Henry product 3a in 62% yield as a 12:1 mixture of diastereomers. We achieved the concise asymmetric synthesis of (S)-2-alkyl-3,3-dinitro-1-tosylazetidines 7a,c from 2,2- dimethyl-5-nitro-1,3-dioxane (1) in five steps, via a diastereo- selective aza-Henry reaction followed by Mitsunobu cyclization. The aza-Henry reaction of 1 with chiral N-sulfinyl aldimines 2a,c using potassium hydroxide as the base provided the desired chiral products 3a,c in good yields and high diastereoselectivities. The azetidine skeletons in 6a,c were constructed by the Mitsunobu cyclization of the chiral dihydroxy sulfonamides 5a,c. This is the first example of the asymmetric synthesis of chiral 2-substituted-3,3-dinitroazetidine derivatives. Further studies will be devoted to the development of new synthetic routes to these interesting chiral compounds.

  1. Self-propagating high temperature synthesis and magnetic ...

    Indian Academy of Sciences (India)


    , microstructure and magnetic properties of the combustion products. The effect of ... productivity, low external energy consumption, short synthesis time, simple facility and high quality of the products. Although there have been many attempts to.

  2. An Improved, Highly Efficient Method for the Synthesis of Bisphenols

    Directory of Open Access Journals (Sweden)

    L. S. Patil


    Full Text Available An efficient synthesis of bisphenols is described by condensation of substituted phenols with corresponding cyclic ketones in presence of cetyltrimethylammonium chloride and 3-mercaptopropionic acid as a catalyst in extremely high purity and yields.

  3. Diastereoselective anodic hetero- and homo-coupling of menthol-, 8-methylmenthol- and 8-phenylmenthol-2-alkylmalonates

    Directory of Open Access Journals (Sweden)

    Matthias C. Letzel


    Full Text Available Diastereoselective radical coupling was achieved with chiral auxiliaries. The radicals were generated by anodic decarboxylation of five malonic acid derivatives. These were prepared from benzyl malonates and four menthol auxiliaries. Coelectrolyses with 3,3-dimethylbutanoic acid in methanol at platinum electrodes in an undivided cell afforded hetero-coupling products in 22–69% yield with a diastereoselectivity ranging from 5 to 65% de. Electrolyses without a coacid led to diastereomeric homo-coupling products in 21–50% yield with ratios of diastereomers being 1.17:2.00:0.81 to 7.03:2.00. The stereochemistry of the new stereogenic centers was confirmed by X-ray structure analysis and 13C NMR data.

  4. Combustion and Plasma Synthesis of High-Temperature Materials (United States)

    Munir, Z. A.; Holt, J. B.


    KEYNOTE ADDRESS. Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings (A. Merzhanov). SOLID-STATE COMBUSTION SYNTHESIS. Recent Progress in Combustion Synthesis of High-Performance Materials in Japan (M. Koizumi & Y. Miyamoto). Modeling and Numerical Computation of a Nonsteady SHS Process (A. Bayliss & B. Matkowsky). New Models of Quasiperiodic Burning in Combustion Synthesis (S. Margolis, et al.). Modeling of SHS Operations (V. Hlavacek, et al.). Combustion Theory for Sandwiches of Alloyable Materials (R. Armstrong & M. Koszykowski). Observations on the Combustion Reaction Between Thin Foils of Ni and Al (U. Anselmi-Tamburini & Z. Munir). Combustion Synthesis of Intermetallic Compounds (Y. Kaieda, et al.). Combustion Synthesis of Nickel Aluminides (B. Rabin, et al.). Self-Propagating High-Temperature Synthesis of NiTi Intermetallics (H. Yi & J. Moore). Shock-Induced Chemical Synthesis of Intermetallic Compounds (S. Work, et al.). Advanced Ceramics Via SHS (T. DeAngelis & D. Weiss). In-Situ Formation of SiC and SiC-C Blocked Solids by Self-Combustion Synthesis (S. Ikeda, et al.). Powder Purity and Morphology Effects in Combustion-Synthesis Reactions (L. Kecskes, et al.). Simultaneous Synthesis and Densification of Ceramic Components Under Gas Pressure by SHS (Y. Miyamoto & M. Koizumi). The Use of Self-Propagating High-Temperature Synthesis of High-Density Titanium Diboride (P. Zavitsanos, et al.). Metal--Ceramic Composite Pipes Produced by a Centrifugal-Thermit Process (O. Odawara). Simultaneous Combustion Synthesis and Densification of AIN (S. Dunmead, et al.). Fabrication of a Functionally Gradient Material by Using a Self-Propagating Reaction Process (N. Sata, et al.). Combustion Synthesis of Oxide-Carbide Composites (L. Wang, et al.). Heterogeneous Reaction Mechanisms in the Si-C System Under Conditions of Solid Combustion (R. Pampuch, et al.). Experimental Modeling of Particle-Particle Interactions During SHS of TiB2 -Al2O3 (K. Logan

  5. Asymmetric total synthesis of (-)-azaspirene, a novel angiogenesis inhibitor. (United States)

    Hayashi, Yujiro; Shoji, Mitsuru; Yamaguchi, Junichiro; Sato, Kenji; Yamaguchi, Shinpei; Mukaiyama, Takasuke; Sakai, Ken; Asami, Yukihiro; Kakeya, Hideaki; Osada, Hiroyuki


    The asymmetric total synthesis of (-)-azaspirene, an angiogenesis inhibitor, has been accomplished, establishing its absolute stereochemistry. The key steps are a MgBr2.OEt2-mediated, diastereoselective Mukaiyama aldol reaction, a NaH-promoted, intramolecular cyclization of an alkynylamide, and the aldol reaction of a ketone containing functionalized gamma-lactam moiety without protection of tert-alcohol and amide functionalities.

  6. Stereoselective Catalytic Synthesis of Active Pharmaceutical Ingredients in Homemade 3D-Printed Mesoreactors. (United States)

    Rossi, Sergio; Porta, Riccardo; Brenna, Davide; Puglisi, Alessandra; Benaglia, Maurizio


    3D-printed flow reactors were designed, fabricated from different materials (PLA, HIPS, nylon), and used for a catalytic stereoselective Henry reaction. The use of readily prepared and tunable 3D-printed reactors enabled the rapid screening of devices with different sizes, shapes, and channel dimensions, aimed at the identification of the best-performing reactor setup. The optimized process afforded the products in high yields, moderate diastereoselectivity, and up to 90 % ee. The method was applied to the continuous-flow synthesis of biologically active chiral 1,2-amino alcohols (norephedrine, metaraminol, and methoxamine) through a two-step sequence combining the nitroaldol reaction with a hydrogenation. To highlight potential industrial applications of this method, a multistep continuous synthesis of norephedrine has been realized. The product was isolated without any intermediate purifications or solvent switches. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Recent Advances in the Synthesis of High Explosive Materials

    Directory of Open Access Journals (Sweden)

    Jesse J. Sabatini


    Full Text Available This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials, processing improvement and formulating aspects using these ingredients, where applicable, are discussed in detail.

  8. Highly efficient solvent-free synthesis of pyranopyrazoles by a ...

    Indian Academy of Sciences (India)

    components and show high atom economy and high selectivity.1,2 MCRs have great contribution in con- vergent synthesis of complex and important organic molecules from simple and readily available starting materials, and have emerged as powerful tools for drug discovery.3,4 The pyranopyrazole nucleus is a fer-.

  9. Auto Spell Suggestion for High Quality Speech Synthesis in Hindi (United States)

    Kabra, Shikha; Agarwal, Ritika


    The goal of Text-to-Speech (TTS) synthesis in a particular language is to convert arbitrary input text to intelligible and natural sounding speech. However, for a particular language like Hindi, which is a highly confusing language (due to very close spellings), it is not an easy task to identify errors/mistakes in input text and an incorrect text degrade the quality of output speech hence this paper is a contribution to the development of high quality speech synthesis with the involvement of Spellchecker which generates spell suggestions for misspelled words automatically. Involvement of spellchecker would increase the efficiency of speech synthesis by providing spell suggestions for incorrect input text. Furthermore, we have provided the comparative study for evaluating the resultant effect on to phonetic text by adding spellchecker on to input text.

  10. Self-propagating high temperature synthesis and magnetic ...

    Indian Academy of Sciences (India)

    Ni–Zn ferrite powders were synthesized by self-propagating high temperature synthesis (SHS) method. X-ray diffraction, TEM and vibrating sample magnetometry (VSM) were used to characterize the phase composition, microstructure and magnetic properties of the combustion products. The effect of the combustion ...

  11. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis ...

    Indian Academy of Sciences (India)

    Nickel nanoparticles: A highly efficient catalyst for one pot synthesis of tetraketones and biscoumarins. JITENDER M KHURANA. ∗ and KANIKA VIJ. Department of Chemistry, University of Delhi, Delhi 110 007, India e-mail: MS received 18 March 2011; revised 17 November 2011; accepted 20 ...

  12. Stereocontrolled Synthesis of a Potential Transition-State Inhibitor of the Salicylate Synthase MbtI from Mycobacterium tuberculosis. (United States)

    Liu, Zheng; Liu, Feng; Aldrich, Courtney C


    Mycobactins are small-molecule iron chelators (siderophores) produced by Mycobacterium tuberculosis (Mtb) for iron mobilization. The bifunctional salicylate synthase MbtI catalyzes the first step of mycobactin biosynthesis through the conversion of the primary metabolite chorismate into salicylic acid via isochorismate. We report the design, synthesis, and biochemical evaluation of an inhibitor based on the putative transition state (TS) for the isochorismatase partial reaction of MbtI. The inhibitor mimics the hypothesized charge buildup at C-4 of chorismate in the TS as well as C-O bond formation at C-6. Another important design element of the inhibitor is replacement of the labile pyruvate side chain in chorismate with a stable C-linked propionate isostere. We developed a stereocontrolled synthesis of the highly functionalized cyclohexene inhibitor that features an asymmetric aldol reaction using a titanium enolate, diastereoselective Grignard addition to a tert-butanesulfinyl aldimine, and ring closing olefin metathesis as key steps.

  13. Direct synthesis of highly substituted 2-cyclohexenones and sterically hindered benzophenones based on a [5C + 1C] annulation. (United States)

    Fu, Zhenqian; Wang, Mang; Dong, Ying; Liu, Jun; Liu, Qun


    The regiospecific [5C + 1C] annulation of readily available alpha-alkenoyl ketene (S,S)-acetals 1 with aryl methyl ketones 2, the less active methylene compounds, has been developed. Upon treatment of 1 with 2 in the presence of t-BuOK in DMF at room temperature, highly substituted 2-cyclohexenones 3 were synthesized in high to excellent diastereoselectivities with high yields. On the basis of this strategy, sterically hindered benzophenones 4 were conveniently prepared via the iodonation-aromatization of 2-cyclohexenones 3 with I(2) in MeONa/MeOH basic medium. Furthermore, benzophenones 4 were also obtained directly from 1 and 2 following a sequential [5 + 1] annulation-iodonation-aromatization procedure in a one-pot operation.

  14. High pressure synthesis of bismuth disulfide

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure contains Bi atoms in distorted square-based pyramidal coordination to five surrounding...

  15. Diastereoselective Addition of α-Metalated Sulfoxides to Imines Revisited: Mechanism, Computational Studies, and the Effect of External Chiral Ligands

    DEFF Research Database (Denmark)

    Pedersen, Brian; Rein, Tobias; Søtofte, Inger


    six-membered "flat chair") was probed by quantum mechanical calculations, which underpinned the idea of using external chiral ligands to enhance the diastereoselectivity of otherwise moderately selective reactions. In this way, the diastereomeric ratio of the product 3a could be raised from (84 : 16...

  16. Method for synthesis of high quality graphene (United States)

    Lanzara, Alessandra [Piedmont, CA; Schmid, Andreas K [Berkeley, CA; Yu, Xiaozhu [Berkeley, CA; Hwang, Choonkyu [Albany, CA; Kohl, Annemarie [Beneditkbeuern, DE; Jozwiak, Chris M [Oakland, CA


    A method is described herein for the providing of high quality graphene layers on silicon carbide wafers in a thermal process. With two wafers facing each other in close proximity, in a first vacuum heating stage, while maintained at a vacuum of around 10.sup.-6 Torr, the wafer temperature is raised to about C., whereby silicon evaporates from the wafer leaving a carbon rich surface, the evaporated silicon trapped in the gap between the wafers, such that the higher vapor pressure of silicon above each of the wafers suppresses further silicon evaporation. As the temperature of the wafers is raised to about C. or more, the carbon atoms self assemble themselves into graphene.

  17. High-pressure synthesis of tantalum dihydride (United States)

    Kuzovnikov, Mikhail A.; Tkacz, Marek; Meng, Haijing; Kapustin, Dmitry I.; Kulakov, Valery I.


    The reaction of tantalum with molecular hydrogen was studied by x-ray diffraction in a diamond-anvil cell at room temperature and pressures from 1 to 41 GPa. At pressures up to 5.5 GPa, a substoichiometric tantalum monohydride with a distorted bcc structure was shown to be stable. Its hydrogen content gradually increased with the pressure increase, reaching H /Ta =0.92 (5 ) at 5 GPa. At higher pressures, a new dihydride phase of tantalum was formed. This phase had an hcp metal lattice, and its hydrogen content was virtually independent of pressure. When the pressure was decreased, the tantalum dihydride thus obtained transformed back to the monohydride at P =2.2 GPa . Single-phase samples of tantalum dihydride also were synthesized at a hydrogen pressure of 9 GPa in a toroid-type high-pressure apparatus, quenched to the liquid-N2 temperature, and studied at ambient pressure. X-ray diffraction showed them to have an hcp metal lattice with a =3.224 (3 ) and c =5.140 (5 )Å at T =85 K . The hydrogen content determined by thermal desorption was H /Ta =2.2 (1 ) .

  18. A concise enantioselective synthesis of the guaiane sesquiterpene (−-oxyphyllol

    Directory of Open Access Journals (Sweden)

    Martin Zahel


    Full Text Available (−-Oxyphyllol was prepared in only 4 steps from an epoxy enone that already served as an intermediate for the total synthesis of the anticancer guaiane (−-englerin A. A regio- and diastereoselective Co(II-catalyzed hydration of the olefin and a transannular epoxide opening were used as the key reactions.

  19. Nonradical Zinc-Barbier Reaction for Diastereoselective Synthesis of Vicinal Amino Alcohols

    DEFF Research Database (Denmark)

    Keinicke, Lise Edelmann; Fristrup, Peter; Norrby, Per-Ola


    ratios greater than 85:15 in favor of the anti isomer. A Hammett study has been performed which strongly indicates that the allylation does not follow a radical mechanism, but instead an organometallic reagent is formed which subsequently reacts with the imine. A computational study based...


    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. High-pressure direct synthesis of aluminium nitride

    CERN Document Server

    Bockowski, M; Grzegory, I; Krukowski, S; Wróblewski, M; Porowski, S


    We report the results of direct synthesis of aluminium nitride (AlN) under high nitrogen pressure up to 1 GPa and temperatures up to 2000 K. At pressure from 10 to 650 MPa we observe the combustion synthesis of AlN. As the result of the combustion process one can obtain the AlN sintered powder or AlN/Al metal matrix composites. For N sub 2 pressure higher than 650 MPa the crystal growth of AlN from the solution of atomic nitrogen in aluminium is possible. Both needle-like and bulk AlN single crystals, up to 1 cm and 1 mm, respectively, have been obtained.

  2. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)


    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  3. System Analysis and Decision-Making During Synthesis of High-Performance Hybrid Boilers (United States)

    Safin, T. R.; Konakhina, I. A.; Khamidullina, G. R.


    The decision-making analysis for synthesis of high-performance hybrid boiler plants is based on current philosophy of system analysis and synthesis of combined heat and power plants. Energetic and exergetic utilization is used as performance criteria.

  4. Screening and synthesis: high throughput technologies applied to parasitology. (United States)

    Morgan, R E; Westwood, N J


    High throughput technologies continue to develop in response to the challenges set by the genome projects. This article discusses how the techniques of both high throughput screening (HTS) and synthesis can influence research in parasitology. Examples of the use of targeted and phenotype-based HTS using unbiased compound collections are provided. The important issue of identifying the protein target(s) of bioactive compounds is discussed from the synthetic chemist's perspective. This article concludes by reviewing recent examples of successful target identification studies in parasitology.

  5. Self-propagating high-temperature synthesis of tool steel (United States)

    Evtushenko, A. T.; Pazare, S.; Torbunov, S. S.


    The process of fabrication of a high-hardness alloy with the help of self-propagating high-temperature synthesis due to combustion of thermit from powdered cinder, aluminum, and titanium carbide is studied. The effect of the mass fraction of the titanium carbide powder and of additives of powdered titanium diboride, molybdenum, and alloy cast iron and the effect of the fineness of the blend and the heat treatment mode on the combustion process, the chemical composition, the structure, and the hardness of the alloy obtained are estimated.

  6. Microwave-assisted synthesis of high-loading, highly dispersed Pt ...

    Indian Academy of Sciences (India)

    assisted synthesis of high-loading, highly dispersed Pt/carbon aerogel catalyst for direct methanol fuel cell. Zhijun Guo Hong Zhu Xinwei Zhang Fanghui Wang Yubao Guo Yongsheng Wei. Volume 34 Issue 3 June 2011 pp 577-581 ...

  7. Towards a Reproducible Synthesis of High Aspect Ratio Gold Nanorods

    Directory of Open Access Journals (Sweden)

    Susanne Koeppl


    Full Text Available The seed-mediated method in presence of high concentrations of CTAB is frequently implemented in the preparation of high aspect ratio gold nanorods (i.e., nanorods with aspect ratios of 5 or more; however, the reproducibility has still been limited. We rendered the synthesis procedure simpler, decreased the susceptibility to impurities, and improved the reproducibility of the product distribution. As a result of the high aspect ratios, longitudinal plasmon absorptions were shifted up to very high absorption maxima of 1955 nm in UV-vis-NIR spectra (since this band is completely covered in aqueous solution by the strong absorption of water, the gold species were embedded in poly(vinyl alcohol films for UV-vis-NIR measurements. Finally, the directed particle growth in (110 direction leads to the conclusion that the adsorption of CTAB molecules at specific crystal faces accounts for nanorod growth and not cylindrical CTAB micelles, in agreement with other observations.

  8. Synthesis and Characterization of Boron Trifluoride Doped High Performance Polyaniline

    Directory of Open Access Journals (Sweden)

    K. Basavaiah


    Full Text Available We report simple synthesis of boron trifluoride (BF3 doped defect free high performance polyaniline (HPPANI in two step method. Firstly, HPPANI was prepared via self-stabilization dispersion polymerization method in a heterogeneous reaction medium. Second step involves doping of emeraldine base form of HPPANI with boron trifluoride under reduced vacuum. The resultants BF3 doped HPPANI have been well characterized by using UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM and thermogravimetry. The spectroscopic data indicated that the interaction between HPPANI and BF3.Thermogravimetry studies revealed that the BF3 doping improved the thermal stability of defects free PANI.

  9. Cu(I)/Rh(II)-Catalyzed Tandem Convergent Multicomponent Reaction for the Regio- and Stereocontrolled Synthesis of γ-Oxo-β-amino Esters. (United States)

    Jung, Da Jung; Jeon, Hyun Ji; Lee, Joo Hyun; Lee, Sang-gi


    The first example of a highly regio- and stereoselective catalytic method for the three-component one-pot synthesis of highly functionalized α-vinylated γ-oxo-β-amino esters is disclosed. In this catalytic triad, the Cu(I)-catalyst selectively catalyzes the cycloaddition of the 1-alkyne and sulfonyl azide first resulting in the corresponding 1-sulfonyl-1,2,3-triazole. An α-imino Rh(II)-carbene is generated from an open-chain α-imino diazo of the triazole, and this species reacts with γ-hydroxy α,β-unsaturated esters to form allylic (Z)-amino vinyl ethers. Rapid deconjugative [3,3]-sigmatropic rearrangement affords the α-vinyl γ-oxo-β-amino esters in high yields with high levels of diastereoselectivity.

  10. Synthesis of biolubricants with high viscosity and high oxidation stability

    Directory of Open Access Journals (Sweden)

    Bondioli Paolo


    Full Text Available The synthetic procedure as well as the main properties of obtained products of a group of complex esters are reported here. Complex esters were prepared using low molecular weight saturated fatty acids, trimethylolpropane and a dicarboxylic acid as a feedstock. By means of this procedure it is possible to obtain products having high viscosity and very good lubricating, thermal and cold properties. Thanks to the absence of unsaturations into the ester also the oxidation property is good, opening several application perspective for these products which are partly prepared from renewable source.

  11. Control of diastereoselectivity in the crotylation and cinnamylation of aldehydes by the selection of ligands on allylic indium reagents


    Tsunehisa, Hirashita; Toshiya, Kamei; Makoto, Satake; Tomoaki, HORIE; Hidetaka, Shimizu; Shuki, Araki


    Diastereoselective couplings of salicylaldehyde, anisaldehyde and 2-pyridylaldehyde with crotyl- and cinnamyl-indium reagents were studied. The synlanti selectivity was found to depend largely on the ligands on the indium atom of the allylic indium reagents. A syn-selective cinnamylation of salicylaldehyde was realized by the combination of cinnamyl acetate and indium(i) iodide, whereas an anti-selective coupling with salicylaldehyde was achieved by the indium trichloride/aluminium-mediated c...

  12. Rational design of Kluyveromyces marxianus ZJB14056 aldo-keto reductase KmAKR to enhance diastereoselectivity and activity. (United States)

    Wang, Ya-Jun; Ying, Bin-Bin; Shen, Wei; Zheng, Ren-Chao; Zheng, Yu-Guo


    t-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate ((3R,5R)-1b) is a valuable chiral synthon of atorvastatin calcium. A novel NADPH-specific aldo-keto reductase (AKR) was identified from a thermotolerant yeast Kluyveromyces marxianus ZJB14056 by genome database mining, displaying t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate ((5R)-1a) reducing activity and moderate diastereoselectivity (dep∼80.5%). Molecular homology modeling and docking studies demonstrated that the side chain of Trp297 blocks binding of (5R)-1a to KmAKR. The mutation of Trp297 to His led to dramatic conformational changes and significant improvement in both diastereoselectivity and activity. In comparison with KmAKR, KmAKR-W297H displayed strict diastereoselectivity, and 2.8-fold, 3.9-fold improvement in kcat and kcat/Km toward (5R)-1a, which were 10.36s-1 and 6.56s-1·mM-1 respectively. Coupling KmAKR-W297H with Exiguobacterium sibiricum glucose dehydrogenase (EsGDH) for coenzyme regeneration, 100mM (5R)-1a was completely reduced to (3R,5R)-1b within 12h, in a dep >99.5%. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. High yielding synthesis of N-ethyl dehydroamino acids. (United States)

    Monteiro, Luís S; Suárez, Ana S


    Recently we reported the use of a sequence of alkylation and dehydration methodologies to obtain N-ethyl-α, β-dehydroamino acid derivatives. The application of this N-alkylation procedure to several methyl esters of β,β-dibromo and β-bromo, β-substituted dehydroamino acids protected with standard amine protecting groups was subsequently reported. The corresponding N-ethyl, β-bromo dehydroamino acid derivatives were obtained in fair to high yields and some were used as substrates in Suzuki cross-coupling reactions to give N-ethyl, β,β-disubstituted dehydroalanine derivatives. Herein, we further explore N-ethylation of β-halo dehydroamino acid derivatives using triethyloxonium tetrafluoroborate as alkylating agent, but substituting N,N-diisopropylethylamine for potassium tert-butoxide as auxiliary base. In these conditions, for all β-halo dehydroamino acid derivatives, reactions were complete and the N-ethylated derivative could be isolated in high yield. This method was also applied for N-ethylation of non-halogenated dehydroamino acids. Again, with all compounds the reactions were complete and the N-ethyl dehydroamino acid derivatives could be isolated in high yields. Some of these N-ethyl dehydroamino acid methyl ester derivatives were converted in high yields to their corresponding acids and coupled to an amino acid methyl ester to give N-ethyl dehydrodipeptide derivatives in good yields. Thus, this method constitutes a general procedure for high yielding synthesis of N-ethylated dehydroamino acids, which can be further applied in peptide synthesis.

  14. A stereoselective, catalytic strategy for the in-flow synthesis of advanced precursors of rasagiline and tamsulosin. (United States)

    Brenna, Davide; Pirola, Margherita; Raimondi, Laura; Burke, Anthony J; Benaglia, Maurizio


    The diastereoselective, trichlorosilane-mediate reduction of imines, bearing different and removable chiral auxiliaries, in combination either with achiral bases or catalytic amounts of chiral Lewis bases, was investigated to afford immediate precursors of chiral APIs (Active Pharmaceutical Ingredients). The carbon-nitrogen double bond reduction was successfully performed in batch and in flow mode, in high yields and almost complete stereocontrol. By this metal-free approach, the formal synthesis of rasagiline and tamsulosin was successfully accomplished in micro(meso) flow reactors, under continuous flow conditions. The results of these explorative studies represent a new, important step towards the development of automated processes for the preparation of enantiopure biologically active compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. High-Pressure Synthesis of a Pentazolate Salt

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Brad A.; Stavrou, Elissaios; Crowhurst, Jonathan C.; Zaug, Joseph M.; Prakapenka, Vitali B.; Oleynik, Ivan I.


    The pentazolates, the last all-nitrogen members of the azole series, have been notoriously elusive for the last hundred years despite enormous efforts to make these compounds in either gas or condensed phases. Here, we report a successful synthesis of a solid state compound consisting of isolated pentazolate anions N5–, which is achieved by compressing and laser heating cesium azide (CsN3) mixed with N2 cryogenic liquid in a diamond anvil cell. The experiment was guided by theory, which predicted the transformation of the mixture at high pressures to a new compound, cesium pentazolate salt (CsN5). Electron transfer from Cs atoms to N5 rings enables both aromaticity in the pentazolates as well as ionic bonding in the CsN5 crystal. This work provides critical insight into the role of extreme conditions in exploring unusual bonding routes that ultimately lead to the formation of novel high nitrogen content species.

  16. Self-propagating high-temperature synthesis (SHS) and microwave-assisted combustion synthesis (MACS) of the thallium superconducting phases (United States)

    Bayya, S. S.; Snyder, R. L.


    This paper explores the speed of reaction as a parameter to minimizing thallium loss. Self-propagating high-temperature synthesis (SHS) and microwave-assisted combustion synthesis (MACS) were developed for the synthesis of Tl-2212 and Tl-2223 superconductors using Cu metal powder as a fuel. A kitchen microwave oven was used to carry out MACS reactions. The samples were reacted for few seconds and led to the formation of the superconducting phases. Further explorations and modifications in the processing could lead to the formation of single phases by MACS.

  17. Design and stereoselective preparation of a new class of chiral olefin metathesis catalysts and application to enantioselective synthesis of quebrachamine: catalyst development inspired by natural product synthesis. (United States)

    Sattely, Elizabeth S; Meek, Simon J; Malcolmson, Steven J; Schrock, Richard R; Hoveyda, Amir H


    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 degrees C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee).

  18. Multiple Word-Length High-Level Synthesis

    Directory of Open Access Journals (Sweden)

    Dominique Heller


    Full Text Available Digital signal processing (DSP applications are nowadays widely used and their complexity is ever growing. The design of dedicated hardware accelerators is thus still needed in system-on-chip and embedded systems. Realistic hardware implementation requires first to convert the floating-point data of the initial specification into arbitrary length data (finite-precision while keeping an acceptable computation accuracy. Next, an optimized hardware architecture has to be designed. Considering uniform bit-width specification allows to use traditional automated design flow. However, it leads to oversized design. On the other hand, considering non uniform bit-width specification allows to get a smaller circuit but requires complex design tasks. In this paper, we propose an approach that inputs a C/C++ specification. The design flow, based on high-level synthesis (HLS techniques, automatically generates a potentially pipeline RTL architecture described in VHDL. Both bitaccurate integer and fixed-point data types can be used in the input specification. The generated architecture uses components (operator, register, etc. that have different widths. The design constraints are the clock period and the throughput of the application. The proposed approach considers data word-length information in all the synthesis steps by using dedicated algorithms. We show in this paper the effectiveness of the proposed approach through several design experiments in the DSP domain.

  19. Multiple Word-Length High-Level Synthesis

    Directory of Open Access Journals (Sweden)

    Coussy Philippe


    Full Text Available Abstract Digital signal processing (DSP applications are nowadays widely used and their complexity is ever growing. The design of dedicated hardware accelerators is thus still needed in system-on-chip and embedded systems. Realistic hardware implementation requires first to convert the floating-point data of the initial specification into arbitrary length data (finite-precision while keeping an acceptable computation accuracy. Next, an optimized hardware architecture has to be designed. Considering uniform bit-width specification allows to use traditional automated design flow. However, it leads to oversized design. On the other hand, considering non uniform bit-width specification allows to get a smaller circuit but requires complex design tasks. In this paper, we propose an approach that inputs a C/C++ specification. The design flow, based on high-level synthesis (HLS techniques, automatically generates a potentially pipeline RTL architecture described in VHDL. Both bitaccurate integer and fixed-point data types can be used in the input specification. The generated architecture uses components (operator, register, etc. that have different widths. The design constraints are the clock period and the throughput of the application. The proposed approach considers data word-length information in all the synthesis steps by using dedicated algorithms. We show in this paper the effectiveness of the proposed approach through several design experiments in the DSP domain.

  20. Total Synthesis of (±)-Kuwanol E. (United States)

    Iovine, Valentina; Benni, Irene; Sabia, Rocchina; D'Acquarica, Ilaria; Fabrizi, Giancarlo; Botta, Bruno; Calcaterra, Andrea


    The total synthesis of the Diels-Alder-type adducts (±)-kuwanol E and the heptamethyl ether derivative of (±)-kuwanon Y has been accomplished via a convergent strategy involving 2'-hydroxychalcone 6 or 9 and dehydroprenylstilbene 7, in nine steps. The synthesis features, as a key step, a Lewis acid-mediated biomimetic intermolecular Diels-Alder [4+2] cycloaddition for the construction of the cyclohexene skeleton with three stereogenic centers. Notably, the endo/exo diastereoselectivity of the reaction proved to be temperature-controlled.

  1. High pressure synthesis of BiS2

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    crystal structures and electrical properties.1,2 Up until now, the most sulfur rich phase in the Bi-S phase diagram was Bi2S3.3 For BiS2 the Bi atoms have anisotropic charge distribution and more complex structures are expected when comparing the layered structures of transition metal dichalcogenides....... The possibilities of using high pressure synthesis to discover new phases in the Bi-S binary system were investigated as early as the 1960’s.4 The research led to discovery of a compound with BiS2 stoichiometry, but no structure solution of BiS2 was reported. A reason behind making this new phase is to study...

  2. High pressure and microwave based synthesis of transition metal pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Pobel, Roman Rupert


    The goal of this thesis was to explore the possibilities of synthetic methods that are not very common in current transition metal pnictide research. The substitution of the Ca-site in CaFe{sub 2}As{sub 2} with rare earth elements such as Pr the has been reported to induce superconductivity. However, some inconsistencies in the data suggested a non-intrinsic origin of the observed diamagnetic signal. Furthermore a solubility limit of 13% was found when prepared in an electrical furnace thus leaving a huge part of the physical phase diagram inaccessible. A high pressure/high temperature synthesis was developed to allow access to the whole doping range and an in-depth characterization of this compound was carried out. During the experiments concerning the high pressure synthesis of Ca{sub 1-x}Pr{sub x}Fe{sub 2}As{sub 2} the new ternary iron arsenide CaFe{sub 5}As{sub 3} was identified and classified as a member of the Ca{sub n(n+1)/2}(Fe{sub 1-x}M{sub x}){sub (2+3n)}M'{sub n(n-1)/2}As{sub (n+1)(n+2)/2} (n = 1-3; M =Nb, Pd, Pt; M' = □, Pd, Pt) family. The complete solid solution Ca{sub 1-x}Pr{sub x}Fe{sub 5}As{sub 3} (O ≤ x ≤ 1) was prepared and physically characterized. Furthermore, several useful techniques were developed to aid in future high pressure based investigations of transition metal pnictides. The second part of this thesis concerns a completely different, but equally promising synthetic approach. Microwave based synthesis is a well-established technique in many solution based fields, such as organic, medicinal or nano chemistry. For solid state and materials research several parameters and particularities have to be considered. But when successful, it allows for the reduction of reaction time by several orders of magnitude. It has very rarely been applied in the preparation of pnictides and on1y once in the context of pnictide superconductor research. The possibilities of this method were explored and employed in the preparation of several

  3. Amplification of anti-diastereoselectivity via Curtin-Hammett effects in ruthenium-catalyzed hydrohydroxyalkylation of 1,1-disubstituted allenes: diastereoselective formation of all-carbon quaternary centers. (United States)

    Zbieg, Jason R; McInturff, Emma L; Leung, Joyce C; Krische, Michael J


    Under the conditions of ruthenium-catalyzed transfer hydrogenation, 1,1-disubstituted allenes 1a-c and alcohols 2a-g engage in redox-triggered generation of allylruthenium-aldehyde pairs to form products of hydrohydroxyalkylation 3a-g, 4a-g, and 5a-g with complete branched regioselectivity. By exploiting Curtin-Hammett effects, good to excellent levels of anti-diastereoselectivity (4:1 to >20:1) are obtained. Thus, all carbon quaternary centers are formed in a diastereoselective fashion upon carbonyl addition from the alcohol oxidation level in the absence of premetalated nucleophiles or stoichiometric byproducts. Exposure of allene 1b to equimolar quantities of alcohol 2a and aldehyde 6b under standard reaction conditions delivers adducts 4a and 4b in a 1:1 ratio. Similarly, exposure of allene 1b to equimolar quantities of aldehyde 6a and alcohol 2b provides adducts 4a and 4b in an identical equimolar ratio. Exposure of allene 1b to d(2)-p-nitrobenzyl alcohol, deuterio-2a, under standard reaction conditions delivers the product of hydrohydroxyalkylation, deuterio-4a, which incorporates deuterium at the carbinol position (>95% (2)H) and the interior vinylic position (34% (2)H). Competition experiments involving exposure of allene 1b to equimolar quantities of benzylic alcohols 2a and deuterio-2a reveal no significant kinetic effect. The collective data corroborate rapid, reversible alcohol dehydrogenation, allene hydrometalation, and (E)-, (Z)-isomerization of the transient allylruthenium in advance of turnover-limiting carbonyl addition. Notably, analogous allene-aldehyde reductive C-C couplings employing 2-propanol as the terminal reductant display poor levels of anti-diastereoselectivity, suggesting that carbonyl addition is not turnover-limiting in reactions conducted from the aldehyde oxidation level.

  4. Synthesis of High-Molecular-Weight Multifunctional Glycerol Polyhydroxyurethanes PHUs

    Directory of Open Access Journals (Sweden)

    Bassam Nohra


    Full Text Available Glycerol carbonate acrylate is a 5-membered cyclic carbonate synthesized from glycerol that is used as a chemical coupling agent and has proven highly suitable for use in the synthesis of multifunctional polyhydroxyurethanes (PHUs. The multifunctionality of the structure of PHUs is determined by the density of the carbon-amine groups generated by the Aza-Michael reaction and that of the urethane groups and adjacent primary and secondary hydroxyl groups generated by aminolysis. Glycerol carbonate acrylate is polymerized with polyfunctional mono-, di-, tri, and tetra-amines, by type-AB polyaddition, either in bulk or in solution, through stepwise or one-pot reaction strategies in the absence of added catalysts. These approaches result in the generation of linear, interchain, and crosslinked structures, through the polyaddition of linear and branched amines to the ethylene and cyclic carbonate sites of glycerol carbonate acrylate. The resulting collection of organic molecules gives rise to polyethylene amino ester PHUs with a high molar mass, exceeding 20,000 g·mol−1, with uniform dispersity.

  5. High-Level Synthesis: Productivity, Performance, and Software Constraints

    Directory of Open Access Journals (Sweden)

    Yun Liang


    Full Text Available FPGAs are an attractive platform for applications with high computation demand and low energy consumption requirements. However, design effort for FPGA implementations remains high—often an order of magnitude larger than design effort using high-level languages. Instead of this time-consuming process, high-level synthesis (HLS tools generate hardware implementations from algorithm descriptions in languages such as C/C++ and SystemC. Such tools reduce design effort: high-level descriptions are more compact and less error prone. HLS tools promise hardware development abstracted from software designer knowledge of the implementation platform. In this paper, we present an unbiased study of the performance, usability and productivity of HLS using AutoPilot (a state-of-the-art HLS tool. In particular, we first evaluate AutoPilot using the popular embedded benchmark kernels. Then, to evaluate the suitability of HLS on real-world applications, we perform a case study of stereo matching, an active area of computer vision research that uses techniques also common for image denoising, image retrieval, feature matching, and face recognition. Based on our study, we provide insights on current limitations of mapping general-purpose software to hardware using HLS and some future directions for HLS tool development. We also offer several guidelines for hardware-friendly software design. For popular embedded benchmark kernels, the designs produced by HLS achieve 4X to 126X speedup over the software version. The stereo matching algorithms achieve between 3.5X and 67.9X speedup over software (but still less than manual RTL design with a fivefold reduction in design effort versus manual RTL design.

  6. High yield polyol synthesis of round- and sharp-end silver nanowires with high aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nekahi, A.; Marashi, S.P.H., E-mail:; Fatmesari, D. Haghshenas


    Long silver nanowires (average length of 28 μm, average aspect ratio of 130) with uniform diameter along their length were produced by polyol synthesis of AgNO{sub 3} in ethylene glycol in the presence of PVP as preferential growth agent. Nanowires were produced with no addition of chloride salts such as NaCl or CuCl{sub 2} (or other additives such as Na{sub 2}S) which are usually used for lowering reduction rate of Ag ions by additional etchant of O{sub 2}/Cl{sup −}. Lower reduction rate was obtained by increasing the injection time of PVP and AgNO{sub 3} solutions, which was the significant factor in the formation of nanowires. Therefore, there was enough time for reduced Ag atoms to be deposited preferentially in the direction of PVP chains, resulting in high yield (the fraction of nanowires in the products) of nanowires (more than 95%) with high aspect ratio. The produced nanowires had both round- and sharp-ends with pentagonal cross section. Higher energy level of Ag atoms in borders of MTPs, which increases the dissolution rate of precipitated atoms, in addition to partial melting of MTPs at high synthesis temperatures, leads to the curving of the surfaces of exposed (111) crystalline planes in some MTPs and the formation of round-end silver nanowires. - Highlights: • Long silver nanowires with high aspect ratio of 130 were produced. • More than 95% nanowires were produced in products. • The produced nanowires had round- and sharp-ends with pentagonal cross section. • Additives were needed neither for high yield synthesis nor for round-end nanowires. • Melting and etching of MTPs in high energy borders resulted to round-end nanowires.

  7. N-Heterocyclic Carbene-Catalysed Diastereoselective Vinylogous Michael Addition Reaction of gamma-Substituted deconjugated Butenolides

    KAUST Repository

    Guo, Hao


    An efficient N-heterocyclic carbene (NHC)-catalysed vinylogous Michael addition of deconjugated butenolides was developed. In the presence of 5 mol% of the NHC catalyst, both γ-alkyl and aryl-substituted deconjugated butenolides undergo vinylogous Michael addition with various α, β-unsaturated ketones, esters, or nitriles to afford γ,γ-disubstituted butenolides containing adjacent quaternary and tertiary carbon centers in good to excellent yields with excellent diastereoselectivities. In this process, the free carbene is assumed to act as a strong Brønsted base to promote the conjugate addition.

  8. Self propagating high temperature synthesis of ferrites in magnetic fields

    CERN Document Server

    Affleck, L


    Self propagating high temperature synthesis (SHS) reactions have been performed on mixtures of BaO sub 2 , Fe and Fe sub 2 O sub 3 to form barium ferrite, BaFe sub 1 sub 2 O sub 1 sub 9. Reactions were conducted in zero field and in an applied magnetic field of 1.1 T with the aim of exploring the influence of the field. The temperature and velocity of the reactions were measured and the products, both post-SHS and post-annealing, were characterised by techniques including X-ray diffraction, Moessbauer spectroscopy, vibrating sample magnetometry and electron microprobe analysis. The applied magnetic field was found to lead to hotter and faster reactions, a greater degree of conversion of the reactants, a needle-like microstructure in the post-SHS product, and a reduced coercive field (approx 20-30 %) in the annealed product, compared to zero field. Sodium perchlorate was used as an internal oxidising agent, and found to produce similar effects. Correlations were observed between the temperature reached in the ...

  9. Hydrothermal Synthesis of High Crystalline Silicalite from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    Chaiwat Kongmanklang


    Full Text Available The objective of this research work was to evaluate the hydrothermal synthesis of silicalite with high crystallinity within a small particle size. The current study focused on investigating the effects of silica sources such as rice husk ash (RHA and silica gel (SG, crystallization time, and ratios of NaOH/SiO2, H2O/NaOH, and SiO2/TPABr. The crystallinity, particle size, and morphology were characterized by FT-IR, XRD, particle size analyser, and SEM. The conclusion of the main findings indicated that the XRD patterns of these samples clearly showed a pure phase of MFI structure corresponding to FT-IR spectra with vibration mode at 550 and 1223 cm−1. The highest crystallinity was obtained at reaction time only 6 hours with the mole ratios of NaOH/SiO2, H2O/NaOH and SiO2/TPABr as 0.24, 155, and 30, respectively. When SG was used as a silica source, it was found that the particle size was smaller than that from RHA. The morphologies of all silicalite samples were coffin and cubic-like shape.

  10. The use of molecular beam epitaxy for the synthesis of high purity III-V nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Spirkoska, D; Colombo, C; Heiss, M; Abstreiter, G; Fontcuberta i Morral, A [Walter Schottky Institut, Technische Universitaet Muenchen, D-85748 Garching (Germany)


    The synthesis methods and properties of catalyst-free III-V nanowires with molecular beam epitaxy (MBE) are reviewed. The two main techniques are selective-area epitaxy (SAE) and gallium-assisted synthesis. The excellent structure and ultra-high purity characteristics of the grown nanowires are presented by Raman and photoluminescence spectroscopy.

  11. Self-sustained high-temperature reactions : Initiation, propagation and synthesis

    NARCIS (Netherlands)

    Martinez Pacheco, M.


    Self-Propagating High-Temperature Synthesis (SHS), also called combustion synthesis is an exothermic and self-sustained reaction between the constituents, which has assumed significance for the production of ceramics and ceramic-metallic materials (cermets), because it is a very rapid processing

  12. A high productivity and speedy synthesis process for copper nanowires via an ethylenediamine-mediated method (United States)

    Duong, Thanh-Hung; Kim, Hyun-Chul


    Generally, there are two well-known synthetic approaches for copper nanowires (Cu NWs): ethylenediamine (EDA)-mediated synthesis and alkylamine-mediated synthesis. The alkylamine-mediated synthesis produces very high ratio nanowires but requires a special environment and long reaction times, while the EDA-mediated synthesis can be carried out under normal conditions and requires from 30 min to 1 h. However, the Cu NWs produced by this method have an average aspect ratio lower than 500 and are produced in low yield. In this paper, we present a modified EDA-mediated synthesis to improve the yield and reduce the synthesis time. In previous reported EDA-mediated synthesis, sodium hydroxide (NaOH) was used as a pH adjusting element and the reaction was performed at high temperature. By replacing NaOH with potassium hydroxide (KOH) and cooling down the temperature of reaction to room temperature, the synthesis time was reduced to 15 min as well as the productivity of high aspect ratio Cu NWs was increased notably to 80%. Furthermore, the transparent electrodes which were fabricated based on the as-synthesized Cu NWs, exhibited high performance, such as 23.5 Ω/sq of sheet resistance and 81% of transmittance at λ = 550 nm.

  13. Efficient approaches to the stereoselective synthesis of cyclopropyl alcohols. (United States)

    Kim, Hun Young; Walsh, Patrick J


    Cyclopropanes occur in a diverse array of natural products, including pheromones, steroids, terpenes, fatty acid metabolites, and amino acids, and compounds that contain cyclopropanes exhibit interesting and important pharmacological properties. These valuable synthetic intermediates can be functionalized, or their rings can be opened, and the synthetic utility and unique biological activity of cyclopropanes have inspired many investigations into their preparation. One of the most powerful methods to generate cyclopropanes is the Simmons-Smith cyclopropanation. Since the original studies in the late 1950s reported that IZnCH(2)I could transform alkenes into cyclopropanes, researchers have introduced various modifications of the original procedure. Significantly, Furukawa demonstrated that diethylzinc and CH(2)I(2) react to generate carbenoids, and Shi described more reactive zinc carbenoids that contain electron-withdrawing groups on zinc (XZnCHI(2)). Despite these advances, the development of catalytic asymmetric Simmons-Smith reactions remains challenging. Although researchers have achieved catalytic asymmetric cyclopropanation of allylic alcohols, these reactions have had limited success. One attractive approach to the synthesis of cyclopropanes involves tandem reactions, where researchers carry out sequential synthetic transformations without the isolation or purification of intermediates. Such a synthetic strategy minimizes difficulties in the handling and purification of reactive intermediates and maximizes yields and the generation of molecular complexity. This Account summarizes our recent effort in the one-pot enantio- and diastereoselective synthesis of cyclopropyl alcohols. In one approach, an asymmetric alkyl addition to α,β-unsaturated aldehydes or asymmetric vinylation of aliphatic or aromatic aldehydes generates allylic zinc alkoxide intermediates. Directed diastereoselective cyclopropanation of the resulting alkoxide intermediates using in situ

  14. Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy Storage (United States)


    positioning has made high-performance, light-weight power sources of increasing importance to the US military. Polymer electrolyte membranes , which...AFRL-AFOSR-VA-TR-2016-0168 Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy...Sep 2015 4. TITLE AND SUBTITLE Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy

  15. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu


    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  16. Highly enantio- and diastereoselective reactions of γ-substituted butenolides through direct vinylogous conjugate additions

    KAUST Repository

    Zhang, Wen


    The strength of the weak: An L-tert-leucine-derived amine-thiourea catalyst (see scheme, green box) promotes the asymmetric vinylogous conjugate addition reaction between γ-aryl- and alkyl-substituted butenolides with the butenamides and enoates shown. Computational studies show the preference for the observed stereochemistry is a result of favourable weak non-bonding interactions, which stabilize the transition state. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Total Synthesis of Enantiopure (+)-γ -Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation (United States)

    Chapsal, Bruno D.; Ojima, Iwao


    Highly efficient short total synthesis of γ -lycorane (>99% ee, 41% overall yield) was achieved by using the asymmetric allylic alkylation in the key step catalyzed by palladium complexes with novel chiral biphenol-based monodentate phosphoramidite ligands. PMID:16562900

  18. Total Synthesis of Enantiopure (+)-γ -Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation


    Chapsal, Bruno D.; OJIMA, IWAO


    Highly efficient short total synthesis of γ -lycorane (>99% ee, 41% overall yield) was achieved by using the asymmetric allylic alkylation in the key step catalyzed by palladium complexes with novel chiral biphenol-based monodentate phosphoramidite ligands.

  19. On-Surface Pseudo-High Dilution Synthesis of Macrocycles: Principle and Mechanism


    Fan, Qitang; Wang, Tao; Dai, Jingya; Kuttner, Julian; Hilt, Gerhard (Prof. Dr.); Gottfried, J. Michael; Zhu, Junfa


    Macrocycles have attracted much attention due to their specific "endless" topology, which results in extraordinary properties compared to related linear (open-chain) molecules. However, challenges still remain in their controlled synthesis with well-defined constitution and geometry. Here, we report the first successful application of the (pseudo-)high dilution method to the conditions of on-surface synthesis in ultrahigh vacuum (UHV). This approach leads to high yields (up to 84%) of cyclic ...

  20. Multi-line split DNA synthesis: a novel combinatorial method to make high quality peptide libraries

    Directory of Open Access Journals (Sweden)

    Ueno Shingo


    Full Text Available Abstract Background We developed a method to make a various high quality random peptide libraries for evolutionary protein engineering based on a combinatorial DNA synthesis. Results A split synthesis in codon units was performed with mixtures of bases optimally designed by using a Genetic Algorithm program. It required only standard DNA synthetic reagents and standard DNA synthesizers in three lines. This multi-line split DNA synthesis (MLSDS is simply realized by adding a mix-and-split process to normal DNA synthesis protocol. Superiority of MLSDS method over other methods was shown. We demonstrated the synthesis of oligonucleotide libraries with 1016 diversity, and the construction of a library with random sequence coding 120 amino acids containing few stop codons. Conclusions Owing to the flexibility of the MLSDS method, it will be able to design various "rational" libraries by using bioinformatics databases.

  1. High yield synthesis of some phosphonic acid derivatives as surface ...

    African Journals Online (AJOL)

    Efficient synthesis of novel 6-(2-bromo-2-methyl propanoyloxy)hexyl phosphonic acid, dodecane di-phosphonic acid, 6-(thiophene-3-carbonyloxy)hexyl phosphonic acid, octadecyl phosphonic acid and such other derivatives are reported here. These derivatives have a potential application as tethers to nanoparticle ...

  2. Assessment of protein synthesis in highly aerobic canine species at the onset and during exercise training. (United States)

    Miller, Benjamin F; Ehrlicher, Sarah E; Drake, Joshua C; Peelor, Frederick F; Biela, Laurie M; Pratt-Phillips, Shannon; Davis, Michael; Hamilton, Karyn L


    Canis lupus familiaris, the domesticated dog, is capable of extreme endurance performance. The ability to perform sustained aerobic exercise is dependent on a well-developed mitochondrial reticulum. In this study we examined the cumulative muscle protein and DNA synthesis in groups of athletic dogs at the onset of an exercise training program and following a strenuous exercise training program. We hypothesized that both at the onset and during an exercise training program there would be greater mitochondrial protein synthesis rates compared with sedentary control with no difference in mixed or cytoplasmic protein synthesis rates. Protein synthetic rates of three protein fractions and DNA synthesis were determined over 1 wk using (2)H2O in competitive Alaskan Huskies and Labrador Retrievers trained for explosive device detection. Both groups of dogs had very high rates of skeletal muscle protein synthesis in the sedentary state [Alaskan Huskies: Mixed = 2.28 ± 0.12, cytoplasmic (Cyto) = 2.91 ± 0.10, and mitochondrial (Mito) = 2.62 ± 0.07; Labrador Retrievers: Mixed = 3.88 ± 0.37, Cyto = 3.85 ± 0.06, and Mito = 2.92 ± 0.20%/day]. Mitochondrial (Mito) protein synthesis rates did not increase at the onset of an exercise training program. Exercise-trained dogs maintained Mito protein synthesis during exercise training when mixed (Mixed) and cytosolic (Cyto) fractions decreased, and this coincided with a decrease in p-RpS6 but also a decrease in p-ACC signaling. Contrary to our hypothesis, canines did not have large increases in mitochondrial protein synthesis at the onset or during an exercise training program. However, dogs have a high rate of protein synthesis compared with humans that perhaps does not necessitate an extra increase in protein synthesis at the onset of aerobic exercise training. Copyright © 2015 the American Physiological Society.

  3. Express photolithographic DNA microarray synthesis with optimized chemistry and high-efficiency photolabile groups. (United States)

    Sack, Matej; Hölz, Kathrin; Holik, Ann-Katrin; Kretschy, Nicole; Somoza, Veronika; Stengele, Klaus-Peter; Somoza, Mark M


    DNA microarrays are a core element of modern genomics research and medical diagnostics, allowing the simple and simultaneous determination of the relative abundances of hundreds of thousands to millions of genomic DNA or RNA sequences in a sample. Photolithographic in situ synthesis, using light projection from a digitally-controlled array of micromirrors, has been successful at both commercial and laboratory scales. The advantages of this synthesis method are its ability to reliably produce high-quality custom microarrays with a very high spatial density of DNA features using a compact device with few moving parts. The phosphoramidite chemistry used in photolithographic synthesis is similar to that used in conventional solid-phase synthesis of oligonucleotides, but some unique differences require an independent optimization of the synthesis chemistry to achieve fast and low-cost synthesis without compromising microarray quality. High microarray quality could be maintained while reducing coupling time to a few seconds using DCI activator. Five coupling activators were compared, which resulted in microarray hybridization signals following the order ETT > Activator 42 > DCI ≫ BTT ≫ pyridinium chloride, but only the use of DCI led to both high signal and highly uniform feature intensities. The photodeprotection time was also reduced to a few seconds by replacing the NPPOC photolabile group with the new thiophenyl-NPPOC group. Other chemical parameters, such as oxidation and washing steps were also optimized. Highly optimized and microarray-specific phosphoramidite chemistry, along with the use of the very photosensitive thiophenyl-NPPOC protecting group allow for the synthesis of high-complexity DNA arrays using coupling times of 15 s and deprotection times of 9 s. The resulting overall cycle time (coupling to coupling) of about 50 s, results in a three-fold reduction in synthesis time.

  4. Asymmetric synthesis of first generation molecular motors. (United States)

    Neubauer, Thomas M; van Leeuwen, Thomas; Zhao, Depeng; Lubbe, Anouk S; Kistemaker, Jos C M; Feringa, Ben L


    A general enantioselective route to functionalized first generation molecular motors is described. An enantioselective protonation of the silyl enol ethers of indanones by a Au(I)BINAP complex sets the stage for a highly diastereoselective McMurry coupling as a second enhancement step for enantiomeric excess. In this way various functionalized overcrowded alkenes could be synthesized in good yields (up to 78%) and good to excellent enantiomeric excess (85% ee->98% ee) values.

  5. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    CERN Document Server

    Ahuja, Sumit; Shukla, Sandeep Kumar


    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  6. Template directed synthesis of highly organized functional biomimetic silica nanostructures


    Kind, Lucy


    Silica is an important mineral in technological and biological applications. Many protocols have been developed for the synthesis of complex silica architectures. Most prominent is the silicification approach, where polymers build up the templates for the revealed polymer/silica structures. The current thesis demonstrates that star-shaped polymers and block copolymers are efficient templates for the fabrication of silica particles with spherical or raspberry-like morphology....

  7. High-Throughput Synthesis, Screening, and Scale-Up of Optimized Conducting Indium Tin Oxides


    Marchand, P; Makwana, N. M.; Tighe, C. J.; Gruar, R. I.; Parkin, I. P.; Carmalt, C. J.; Darr, J. A.


    A high-throughput optimization and subsequent scale-up methodology has been used for the synthesis of conductive tin-doped indium oxide (known as ITO) nanoparticles. ITO nanoparticles with up to 12 at % Sn were synthesized using a laboratory scale (15 g/hour by dry mass) continuous hydrothermal synthesis process, and the as-synthesized powders were characterized by powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, and X-ray photoelectron spectroscop...

  8. Synthesis of high active catalytic systems based on double molybdenum carbides


    Dolmatov Vladimir; Kuznetsov Sergey; Rebrov Evgeny; Schouten Jacob Cornelis


    A new two-stage synthesis of double molybdenum and nickel carbides and high active and stable catalytic coatings of nickelpromoter molybdenum carbide in molten salts is developed. The first stage includes the formation of molybdenum–nickel alloys by an electrolytic method and currentless transfer in chloride melts. The second stage consists in the carbonization of the alloys in chloride-carbonate melt under various synthesis conditions. The stabilities of the nickel-promoter catalyti...

  9. Asymmetric synthesis of quaternary α-fluoro-β-keto-amines via detrifluoroacetylative Mannich reactions. (United States)

    Xie, Chen; Dai, Yanling; Mei, Haibo; Han, Jianlin; Soloshonok, Vadim A; Pan, Yi


    Efficient asymmetric detrifluoroacetylative Mannich addition reactions between 2-fluoro-1,3-di-ketones/hydrates and chiral N-sulfinyl-imines via C-C bond cleavage were reported, which afforded C-F quaternary α-fluoro-β-keto-amines with excellent yields and high diastereoselectivity.

  10. Synthesis of chiral amino epoxyaziridines: useful intermediates for the preparation of chiral trisubstituted piperidines. (United States)

    Concellón, José M; Riego, Estela; Rivero, Ignacio A; Ochoa, Adrián


    Chiral aminoalkyl epoxyaziridine 1 is synthesized in high yield and diastereoselectivity from L-serine. Ring opening of epoxyaziridine 1 with primary amines is carried out with total chemo- and regioselectivity, affording chiral polyfunctionalized piperidines 8. The structure of these trisubstituted piperidines is established by NMR studies.

  11. Self propagating high temperature synthesis of metal oxides. Reactions in external magnetic fields

    CERN Document Server

    Aguas, M D


    The preparation of metal oxides by Self-Propagating High-Temperature Synthesis is reported. The reactions are started with a point source of ignition; typically a hot wire. A synthesis wave is observed moving out from the point source and reactions terminate in seconds. Products obtained can be classified into ferrites (magnetic applications) and stannates (gas sensing applications). Ferrites were synthesised under variable external magnetic fields. The synthesis wave is hotter in the presence of an external magnetic field for hard ferrite synthesis. For spinel ferrites the opposite was observed. Materials synthesised in the field show differences in their bulk magnetic properties (coercivity and saturation magnetisation), structures and microstructures. Combustion reactions in large fields revealed changes in unit cell volume (shrinkage was observed for hard ferrites while expansion was observed for spinel ferrites). SHS synthesised hard ferrites show two distinct components; one has large grain structure co...

  12. Highly Efficient Procedure for the Synthesis of Fructone Fragrance Using a Novel Carbon based Acid

    Directory of Open Access Journals (Sweden)

    Xuezheng Liang


    Full Text Available The novel carbon based acid has been synthesized via one-step hydrothermal carbonization of furaldehyde and hydroxyethylsulfonic acid. A highly efficient procedure for the synthesis of fructone has been developed using the novel carbon based acid. The results showed that the catalyst possessed high activity for the reaction, giving a yield of over 95%. The advantages of high activity, stability, reusability and low cost for a simple synthesis procedure and wide applicability to various diols and β-keto esters make this novel carbon based acid one of the best choices for the reaction.

  13. Prodigious Effects of Concentration Intensification on Nanoparticle Synthesis: A High-Quality, Scalable Approach

    KAUST Repository

    Williamson, Curtis B.


    © 2015 American Chemical Society. Realizing the promise of nanoparticle-based technologies demands more efficient, robust synthesis methods (i.e., process intensification) that consistently produce large quantities of high-quality nanoparticles (NPs). We explored NP synthesis via the heat-up method in a regime of previously unexplored high concentrations near the solubility limit of the precursors. We discovered that in this highly concentrated and viscous regime the NP synthesis parameters are less sensitive to experimental variability and thereby provide a robust, scalable, and size-focusing NP synthesis. Specifically, we synthesize high-quality metal sulfide NPs (<7% relative standard deviation for Cu2-xS and CdS), and demonstrate a 10-1000-fold increase in Cu2-xS NP production (>200 g) relative to the current field of large-scale (0.1-5 g yields) and laboratory-scale (<0.1 g) efforts. Compared to conventional synthesis methods (hot injection with dilute precursor concentration) characterized by rapid growth and low yield, our highly concentrated NP system supplies remarkably controlled growth rates and a 10-fold increase in NP volumetric production capacity (86 g/L). The controlled growth, high yield, and robust nature of highly concentrated solutions can facilitate large-scale nanomanufacturing of NPs by relaxing the synthesis requirements to achieve monodisperse products. Mechanistically, our investigation of the thermal and rheological properties and growth rates reveals that this high concentration regime has reduced mass diffusion (a 5-fold increase in solution viscosity), is stable to thermal perturbations (64% increase in heat capacity), and is resistant to Ostwald ripening.

  14. Plasmon assisted synthesis of highly fluorescing silver quantum cluster/polymer composites for biochemical sensing

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J. P.; Mogensen, K. B.


    Plasmonics is combined with polymer synthesis for rapid fabrication of highly fluorescing silver quantum cluster/polymer composites inside microfluidic channels. UV-light assisted synthesis of polymers has been investigated by a number of groups previously [1], however, plasmon assisted synthesis...... has not been presented before. This should allow highly localized fabrication of porous polymers that are defined by the location of the nanoplasmonic metal film. Silver quantum clusters (AgQCs) consisting of 2-10 atoms can be highly fluorescing in the visible wavelength range and possess a greater...... oil-immersion microscopy through a ∼100 μm thick glass lid of the chip, while the bottom substrate contains the plasmonic silver nanoparticle film....

  15. Synthesis of the Tetracyclic ABCD Ring Domain of Calyciphylline A-Type Alkaloids via Reductive Radical Cyclizations. (United States)

    Coussanes, Guilhem; Bonjoch, Josep


    A tetracyclic compound with the ABCD ring framework of calyciphylline A-type alkaloids was synthesized from a cis-3a-methyloctahydroindole triggered by a 5-endo radical cyclization. The synthesis required two additional ring-forming steps: the construction of a seven-membered ring by aldol cyclization and the azabicyclic fragment by a radical ring closure of a trichloroacetamide-tethered enol acetate followed by a diastereoselective α-methylation of the lactam group.

  16. Optimization of enzymatic biodiesel synthesis using RSM in high pressure carbon dioxide and its scale up. (United States)

    Lee, Myunggu; Lee, Dohoon; Cho, Jaehoon; Lee, Junhac; Kim, Sangyong; Kim, Seung Wook; Park, Chulhwan


    Enzymatic synthesis of biodiesel by the transesterification of canola oil and methanol in high pressure carbon dioxide [HPCO(2): near-critical and supercritical carbon dioxide (NcCO(2) and ScCO(2))] was optimized using response surface methodology (RSM). RSM based on 5-level-5-factor central composite rotatable design (CCRD) was used to evaluate the effects of temperature, pressure, enzyme loading, substrate molar ratio, and time on the conversion to biodiesel by transesterification. Finally, batch reactions for biodiesel synthesis were preformed in a 100 mL and 7 L high-pressure stirred batch reactors.

  17. Diastereoselective Synthesis of Symmetrical and Unsymmetrical Tetrahydropyridines Catalyzed by Bi(III) Immobilized on Triazine Dendrimer Stabilized Magnetic Nanoparticles. (United States)

    Asadi, Beheshteh; Landarani-Isfahani, Amir; Mohammadpoor-Baltork, Iraj; Tangestaninejad, Shahram; Moghadam, Majid; Mirkhani, Valiollah; Amiri Rudbari, Hadi


    Unsymmetrical 1,2,5,6-tetrahydropyridine-3-carboxylates were obtained for the first time from a five-component Fe 3 O 4 @TDSN-Bi(III)-catalyzed reaction of aryl aldehydes, aryl amines, and ethyl acetoacetate. This magnetically separable catalyst enabled the selective incorporation of two different aryl amines or two different aryl aldehydes into the product, and provided excellent yields, short reaction times, mild reaction conditions, satisfactory catalyst recyclability, and low catalyst loading.

  18. Diastereoselective synthesis of cyclopentanoids: applications to the construction of the ABCD tetracyclic core of retigeranic acid A. (United States)

    Zhang, Junlin; Wang, Xiao; Li, Shuang; Li, Dian; Liu, Song; Lan, Yu; Gong, Jianxian; Yang, Zhen


    A concise and efficient approach for the construction of the tetracyclic carbon skeleton of retigeranic acid A is described. The key transformations include a novel Rh-catalyzed [3+2] cycloaddition of enyol to afford cyclopentanoid E, bearing two contiguous quaternary stereocenters at the bridgehead positions, and an intramolecular Pauson-Khand reaction to construct the advanced tetracyclic core structure of retigeranic acid A. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Facile, Regio- and Diastereoselective Synthesis of Spiro-Pyrrolidine and Pyrrolizine Derivatives and Evaluation of Their Antiproliferative Activities

    Directory of Open Access Journals (Sweden)

    Abdulrahman I. Almansour


    Full Text Available A number of novel spiro-pyrrolidines/pyrrolizines derivatives were synthesized through [3+2]-cycloaddition of azomethine ylides with 3,5-bis[(E-arylmethylidene]tetrahydro-4(1H-pyridinones 2a–n. Azomethine ylides were generated in situ from the reaction of 1H-indole-2,3-dione (isatin, 3 with N-methylglycine (sarcosine, phenylglycine, or proline. All compounds (50 μM were evaluated for their antiproliferative activity against human breast carcinoma (MDA-MB-231, leukemia lymphoblastic (CCRF-CEM, and ovarian carcinoma (SK-OV-3 cells. N-α-Phenyl substituted spiro-pyrrolidine derivatives (5a–n showed higher antiproliferative activity in MDA-MB-231 than other cancer cell lines. Among spiro-pyrrolizines 6a–n, a number of derivatives including 6a–c and 6i–m showed a comparable activity with doxorubicin in all three cell lines. Among all compounds in three classes, 6a, 6b, and 6m, were found to be the most potent derivatives showing 64%, 87%, and 74% antiproliferative activity in MDA-MB-231, SK-OV-3, and CCRF-CEM cells, respectively. Compound 6b showed an IC50 value of 3.6 mM in CCRF-CEM cells. These data suggest the potential antiproliferative activity of spiro-pyrrolidines/pyrrolizines.

  20. Facile, regio- and diastereoselective synthesis of spiro-pyrrolidine and pyrrolizine derivatives and evaluation of their antiproliferative activities. (United States)

    Almansour, Abdulrahman I; Kumar, Raju Suresh; Beevi, Farzana; Shirazi, Amir Nasrolahi; Osman, Hasnah; Ismail, Rusli; Choon, Tan Soo; Sullivan, Brian; McCaffrey, Kellen; Nahhas, Alaa; Parang, Keykavous; Ali, Mohamed Ashraf


    A number of novel spiro-pyrrolidines/pyrrolizines derivatives were synthesized through [3+2]-cycloaddition of azomethine ylides with 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones 2a-n. Azomethine ylides were generated in situ from the reaction of 1H-indole-2,3-dione (isatin, 3) with N-methylglycine (sarcosine), phenylglycine, or proline. All compounds (50 μM) were evaluated for their antiproliferative activity against human breast carcinoma (MDA-MB-231), leukemia lymphoblastic (CCRF-CEM), and ovarian carcinoma (SK-OV-3) cells. N-α-Phenyl substituted spiro-pyrrolidine derivatives (5a-n) showed higher antiproliferative activity in MDA-MB-231 than other cancer cell lines. Among spiro-pyrrolizines 6a-n, a number of derivatives including 6a-c and 6i-m showed a comparable activity with doxorubicin in all three cell lines. Among all compounds in three classes, 6a, 6b, and 6m, were found to be the most potent derivatives showing 64%, 87%, and 74% antiproliferative activity in MDA-MB-231, SK-OV-3, and CCRF-CEM cells, respectively. Compound 6b showed an IC50 value of 3.6 mM in CCRF-CEM cells. These data suggest the potential antiproliferative activity of spiro-pyrrolidines/pyrrolizines.

  1. Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Behnam, E-mail: [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of); Khodadadi, Abasali [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: [Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of); Esmaieli, Mohamad [Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of)


    We report the variation of yield and quality of carbon nanotubes (CNTs) grown by chemical vapor deposition (CVD) of methane on iron oxide-MgO at 900-1000 deg. C for 1-60 min. The catalyst was prepared by impregnation of MgO powder with iron nitrate, dried, and calcined at 300 deg. C. As calcined and unreduced catalyst in quartz reactor was brought to the synthesis temperature in helium flow in a few minutes, and then the flow was switched to methane. The iron oxide was reduced to iron nanoparticles in methane, while the CNTs were growing. TEM micrographs, in accordance with Raman RBM peaks, indicate the formation of mostly single wall carbon nanotubes of about 1.0 nm size. High quality CNTs with I{sub G}/I{sub D} Raman peak ratio of 14.5 are formed in the first minute of CNTs synthesis with the highest rate. Both the rate and quality of CNTs degrades with increasing CNTs synthesis time. Also CNTs quality sharply declines with temperature in the range of 900-1000 deg. C, while the CNTs yield passes through a maximum at 950 deg. C. About the same CNTs lengths are formed for the whole range of the synthesis times. A model of continuous emergence of iron nanoparticle seeds for CNTs synthesis may explain the data. The data can also provide information for continuous production of CNTs in a fluidized bed reactor.

  2. Synthesis and spectroscopic study of high quality alloy Cd Zn S ...

    Indian Academy of Sciences (India)

    In the present study, we report the synthesis of high quality CdZn1-S nanocrystals alloy at 150°C with changing the composition. The shifting of absorption and emission peak in shorter wavelength is obtained with increasing the mole fraction of zinc. The quantum yield (QY) value decreases with increasing the Cd mole ...

  3. Highly enantioselective synthesis of chiral cyclic allylic amines via Rh-catalyzed asymmetric hydrogenation. (United States)

    Zhou, Ming; Liu, Tang-Lin; Cao, Min; Xue, Zejian; Lv, Hui; Zhang, Xumu


    Highly regioselective and enantioselective asymmetric hydrogenation of cyclic dienamides catalyzed by an Rh-DuanPhos complex has been developed, which provides a readily accessible method for the synthesis of chiral cyclic allylic amines in excellent enantioselectivities (up to 99% ee). The products are valuable chiral building blocks and could be easily transformed to multisubstituted cyclohexane derivatives.

  4. Effects of high energy ball milling on synthesis and characteristics of Ti-Mg alloys

    CSIR Research Space (South Africa)

    Chikwanda, HK


    Full Text Available . Young-Soon Kwon, Ji-Soon Kim and Cheol-Eeh Kim, Decomposition and crystallisation induced by high energy ball-milling, Solid State Phenomena vol 119 (2007) pp 1-4. 2. Fusheng Sun and F H (Sam) Froes, Synthesis and characterisation of mechanical...

  5. Modeling and Experimental Studies on Phase and Chemical Equilibria in High-Pressure Methanol Synthesis

    NARCIS (Netherlands)

    van Bennekom, Joost G.; Winkelman, Jozef G. M.; Venderbosch, Robertus H.; Nieland, Sebastiaan D. G. B.; Heeres, Hero J.


    A solution method was developed to calculate the simultaneous phase and chemical equilibria in high-pressure methanol synthesis (P = 20 MPa, 463

  6. Rational synthesis of zerovalent iron/bamboo charcoal composites with high saturation magnetization (United States)

    Mingshan Wu; Jianfeng Ma; Zhiyong Cai; Genlin Tian; Shumin Yang; Youhong Wang; Xing' e Liu


    The synthesis of magnetic biochar composites is a major new research area in advanced materials sciences. A series of magnetic bamboo charcoal composites (MBC800, MBC1000 and MBC1200) with high saturation magnetization (Ms) was fabricated in this work by mixing bamboo charcoal powder with an aqueous ferric chloride solution and subsequently...

  7. Water-free synthesis of polyurethane foams using highly reactive diisocyanates derived from 5-hydroxymethylfurfural. (United States)

    Neumann, Christopher N D; Bulach, Winfried D; Rehahn, Matthias; Klein, Roland


    This paper reports on the synthesis of a new highly reactive diisocyanate monomer based on hydroxymethylfurfural. It further describes its catalyst-free conversion to linear-chain thermoplastic polyurethanes as well as to cross-linked polyurethane foams. In addition, a novel strategy for the synthesis of polyurethane foams without the necessity of using water is developed. Nitrogen is utilized herein as blowing agent which is formed during Curtius rearrangement of a new furan based carboxylic azide into its corresponding diisocyanate. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanochemical synthesis of PbF2 by high energy ball milling (United States)

    Heise, M.; Scholz, G.; Kemnitz, E.


    Lead(II)-fluoride was successfully prepared by high energy ball milling and for comparison by classical thermal solid state chemical reaction. The influence of different starting materials, fluorinating agents and synthesis methods on the formation of the orthorhombic α-phase and the cubic β-phase was investigated. XRD analysis provided insight of which phase was formed under varying synthesis conditions. 19F and 207Pb MAS NMR measurements delivered an even further insight into the local structures. Additional simulations of the 19F spectra were performed to identify the 19F-207Pb coupling constants of the four-fold coordinated fluorine sites in both phases.

  9. Zeolite synthesis from a high Si-Al fly ash from East China

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, R.; Umana, J.C.; Querol, X.; Lopez-Soler, A.; Plana, F.; Zhuang, X. [CAS, Beijing (China). Inst. of Geology & Geophysics


    A high Al-Si Chinese fly ash from Dou He power plant (Tangshan city, Hebei Province, Eastern China) was selected as starting material of the zeolitisation process. Zeolitic material was obtained by conventional alkaline activation using NaOH and KOH solutions. The process of synthesis was optimised by applying a wide range of reaction temperature, time and activation reagent concentrations. A high solution/fly ash ratio was used in order to dissolve highly resistant Al-Si phases such as mullite. High yields were obtained with both KOH and NaOH solutions. Final products reached a cation exchange capacity (CEC) of up to 2.3 meq g{sup 3}. Major zeolites obtained with a high CEC were: NaP1, KM and F-linde zeolite. The low contents of major impurities of this fly ash enhance the potential application for the synthesis of zeolites for waste-water treatment.

  10. Highly Loaded Fe-MCM-41 Materials: Synthesis and Reducibility Studies

    Directory of Open Access Journals (Sweden)

    Malose P. Mokhonoana


    Full Text Available Fe-MCM-41 materials were prepared by different methods. The Fe was both incorporated into the structure and formed crystallites attached to the silica. High Fe content MCM-41 (~16 wt% with retention of mesoporosity and long-range order was achieved by a range of new synthetic methodologies: (i by delaying the addition of Fe3+(aq to the stirred synthesis gel by 2 h, (ii by addition of Fe3+ precursor as a freshlyprecipitated aqueous slurry, (iii by exploiting a secondary synthesis with Si-MCM-41 as SiO2 source. For comparative purposes the MCM-41 was also prepared by incipient wetness impregnation (IWI. Although all these synthesis methods preserved mesoporosity and long-range order of the SiO2 matrix, the hydrothermally-fabricated Fe materials prepared via the secondary synthesis route has the most useful properties for exploitation as a catalyst, in terms of hydrothermal stability of the resulting support. Temperatureprogrammed reduction (TPR studies revealed a three-peak reduction pattern for this material instead of the commonly observed two-peak reduction pattern. The three peaks showed variable intensity that related to the presence of two components: crystalline Fe2O3 and Fe embedded in the SiO2 matrix (on the basis of ESR studies. The role of secondary synthesis of Si-MCM-41 on the iron reducibility was also demonstrated in IWI of sec-Si-MCM-41.

  11. A Scalable and High-Yield Strategy for the Synthesis of Sequence-Defined Macromolecules. (United States)

    Solleder, Susanne C; Zengel, Deniz; Wetzel, Katharina S; Meier, Michael A R


    The efficient synthesis of a sequence-defined decamer, its characterization, and its straightforward dimerization through self-metathesis are described. For this purpose, a monoprotected AB monomer was designed and used to synthesize a decamer bearing ten different and selectable side chains by iterative Passerini three-component reaction (P-3CR) and subsequent deprotection. The highly efficient procedure provided excellent yields and allows for the multigram-scale synthesis of such perfectly defined macromolecules. An olefin was introduced at the end of the synthesis, allowing the self-metathesis reaction of the resulting decamer to provide a sequence-defined 20-mer with a molecular weight of 7046.40 g mol(-1). The obtained oligomers were carefully characterized by NMR and IR spectroscopy, GPC and GPC coupled to ESI-MS, and mass spectrometry (FAB and orbitrap ESI-MS). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Phenylketonuria : High plasma phenylalanine decreases cerebral protein synthesis

    NARCIS (Netherlands)

    Hoeksma, Marieke; Reijngoud, Dirk-Jan; Pruim, Jan; de Valk, Harold W.; Paans, Anne M. J.; van Spronsen, Francjan J.

    Left untreated, phenylketonuria biochemically results in high phenylalanine concentrations in blood and tissues, and clinically especially in severe mental retardation. Treatment consists of severe dietary restriction of phenylalanine with more or less normal intellectual outcome as result when

  13. Nanocarbon synthesis by high-temperature oxidation of nanoparticles (United States)

    Nomura, Ken-Ichi; Kalia, Rajiv K.; Li, Ying; Nakano, Aiichiro; Rajak, Pankaj; Sheng, Chunyang; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya


    High-temperature oxidation of silicon-carbide nanoparticles (nSiC) underlies a wide range of technologies from high-power electronic switches for efficient electrical grid and thermal protection of space vehicles to self-healing ceramic nanocomposites. Here, multimillion-atom reactive molecular dynamics simulations validated by ab initio quantum molecular dynamics simulations predict unexpected condensation of large graphene flakes during high-temperature oxidation of nSiC. Initial oxidation produces a molten silica shell that acts as an autocatalytic ‘nanoreactor’ by actively transporting oxygen reactants while protecting the nanocarbon product from harsh oxidizing environment. Percolation transition produces porous nanocarbon with fractal geometry, which consists of mostly sp2 carbons with pentagonal and heptagonal defects. This work suggests a simple synthetic pathway to high surface-area, low-density nanocarbon with numerous energy, biomedical and mechanical-metamaterial applications, including the reinforcement of self-healing composites.

  14. Recent Advances in the Synthesis of High Explosive Materials (United States)


    toxic mercury fulminate (1), adopted for use in some of the first percussion primer formulations in the early 1800s [6] and later by Alfred Nobel for...high sensitivity of mercury fulminate , and its ability to lose performance under high loading pressures paved the way for lead azide (2) to replace the... mercury fulminate (1), lead azide (2) and normal lead styphnate (3) and basic lead styphnate (4). 2.2. Why “Green” Primary Explosives? Over the past two

  15. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li


    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  16. Synthesis and stability of hydrogen selenide compounds at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Edward J.; Binns, Jack; Alvarez, Miriam Pena; Dalladay-Simpson, Philip; Gregoryanz, Eugene; Howie, Ross T. (Edinburgh); (CHPSTAR- China)


    The observation of high-temperature superconductivity in hydride sulfide (H2S) at high pressures has generated considerable interest in compressed hydrogen-rich compounds. High-pressure hydrogen selenide (H2Se) has also been predicted to be superconducting at high temperatures; however, its behaviour and stability upon compression remains unknown. In this study, we synthesize H2Se in situ from elemental Se and molecular H2 at pressures of 0.4 GPa and temperatures of 473 K. On compression at 300 K, we observe the high-pressure solid phase sequence (I-I'-IV) of H2Se through Raman spectroscopy and x-ray diffraction measurements, before dissociation into its constituent elements. Through the compression of H2Se in H2 media, we also observe the formation of a host-guest structure, (H2Se)2H2, which is stable at the same conditions as H2Se, with respect to decomposition. These measurements show that the behaviour of H2Se is remarkably similar to that of H2S and provides further understanding of the hydrogen chalcogenides under pressure.

  17. Synthesis and characterization of highly purified nanosilica from pyrophyllite ores

    Energy Technology Data Exchange (ETDEWEB)

    Fuad, Abdulloh, E-mail:; Mufti, Nandang; Diantoro, Markus; Subakti,; Septa Kurniawati, S. [Jurusan Fisika FMIPA Universitas Negeri Malang. Jl. Semarang No. 5 Malang, east Java (Indonesia)


    A simple method based on alkaline extraction followed by acid precipitation and acid dissolution has been developed to produce highly purified nanosilica from pyrophyllite materials. The reaction parameters such as molar ratio NaOH/SiO{sub 2}, reaction time and reaction temperature are varied for obtaining maximum nanosilica convertion. About 99,45% highly purified precipitated nanosilica measure with ICP, 259 m{sup 2}/gr measure with BET surface area, 97% whiteness and 3 ml/gr oil absorbtion from pyrophyllite materials has been achieved in closed system at 150°C within 180 min. The physicals and chemical properties (such as X-Ray Diffraction from PANalytical, X-Ray Fluorescence Minipal4 from PANanalytical, BET surface area, Forier Transform Infra Red Spectroscopy from Hitachi, and SEM-EDS Inspect-S50 from FEI Company) of the highly purity nanosilica were studied.

  18. Sol-gel synthesis of carbon based materials reinforced ultra high temperature ceramic composites


    Wang, Xiaojing


    This Ph.D. research is based on the development of novel sol-gel techniques for synthesis of nanostructured ultra high temperature ceramics (UHTCs) and subsequent spark plasma sintering (SPS) for densifying the UHTC composites. The liquid nature of the sol-gel process offers advantages such as high purity and ability for mixing and infiltration, and thus it can overcome some shortcomings of the conventional power processing of ceramics. SPS delivers microstructures with good density and fine ...

  19. Synthesis of Fused Pyrimidinone and Quinolone Derivatives in an Automated High-Temperature and High-Pressure Flow Reactor. (United States)

    Tsoung, Jennifer; Bogdan, Andrew R; Kantor, Stanislaw; Wang, Ying; Charaschanya, Manwika; Djuric, Stevan W


    Fused pyrimidinone and quinolone derivatives that are of potential interest to pharmaceutical research were synthesized within minutes in up to 96% yield in an automated Phoenix high-temperature and high-pressure continuous flow reactor. Heterocyclic scaffolds that are either hard to synthesize or require multisteps are readily accessible using a common set of reaction conditions. The use of low-boiling solvents along with the high conversions of these reactions allowed for facile workup and isolation. The methods reported herein are highly amenable for fast and efficient heterocycle synthesis as well as compound scale-ups.

  20. Synthesis and pharmacological evaluation of a new 2-azabicyclo[3.3.0]octane derivative

    Directory of Open Access Journals (Sweden)

    Peçanha Emerson P.


    Full Text Available As part of a research program aiming at the design, synthesis and pharmacological evaluation of a novel lead-candidates of neuroactive compounds, we describe herein the synthesis and the central profile of a new nebracetam analog having a 2-aza-bicyclo[3.3.0]octane system. The new derivative, designed on the basis of the conformational restriction concept, was synthesized in good yields exploring a diastereoselective reductive-amination and cyclization one-pot sequence. The pharmacological profile of this new compound, investigated by using path-clamp techniques on neurons of the CNS, indicated no effects on these cells.

  1. Concise epoxide-based synthesis of the C14-C25 bafilomycin A(1) polypropionate chain. (United States)

    Valentín, Elizabeth M; Mulero, Marlenne; Prieto, José A


    An efficient non-aldol convergent synthesis of the C14-C25 polyketide fragment of bafilomycin A(1) was completed in 16% overall yield and 8 steps in its longest linear sequence. This synthesis highlights the formation of the key fragments using a three-step sequence of epoxide cleavage, alkyne reduction, and epoxidation developed in our laboratory; starting from suitably protected enantiomeric epoxides of trans-2,3-epoxybutanol. This chemistry represents a quick asymmetric and diastereoselective construction of the polyketide chain of bafilomycin A(1), in which every stereogenic center was constructed using solely epoxide chemistry.

  2. Asymmetric Synthesis of γ-Lactones through Koga Amine-Controlled Addition of Enediolates to α,β-Unsaturated Sulfoxonium Salts. (United States)

    Peraino, Nicholas J; Kaster, Sven H; Wheeler, Kraig A; Kerrigan, Nessan J


    A chiral Koga amine-controlled asymmetric synthesis of cis-γ-lactones through a formal [3 + 2] cycloaddition of enediolates with α,β-unsaturated sulfoxonium salts is described. The desired structural motif was formed in moderate to good yields (50-71% for 13 examples), with good to very good diastereoselectivity (dr 5:1 to 10:1 for 20 examples), favoring the cis-isomer, and good to excellent enantioselectivity (70-91% ee for 13 examples).

  3. Synthesis of tubular aluminosilicate synthesis from high- concentration inorganic solution; Chubujo aluminium keisan'en no gosei. Konodo muki yoeki kara no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.; Ohashi, F.; Inukai, K.; Maeda, M.; Watamura, S. [National Industrial Research Institute of Nagoya, Nagoya (Japan)


    Imogolite and allophane exist in soil derived from volcanic eruptions such as pumice and volcanic ash frequently, and are nano-tube or nano-capsule aluminosilicate with specific forms. These substances have a high specific surface area and excellent adsorption ability, however, since high-purity separation and refining of these natural raw materials are difficult, development of an artificial mass synthesis process is in expectation. Allophane can be synthesized from mono-silicic acid solution with a concentration as high as 100mmol/l, however, the inexpensive safe synthesis process of imogolite from high-concentration solution is not yet established from an industrial viewpoint. In this study, synthesis of imogolite from high-concentration inorganic solution was attempted. The inorganic solution of concentration nearly 5 times as high as that of previous process was used for the synthesis. The synthesis first succeeded through re-dispersion into acidic solution and hot maturing of the precursor obtained from the mixture of mono- silicic acid and aluminum chloride solutions after desalination by centrifugal separation. (NEDO)

  4. Multibeam synthesis of high-power subcycle field waveforms (United States)

    Serebryannikov, E. E.; Panchenko, V. Ya.; Zheltikov, A. M.


    We identify physical scenarios whereby high-peak-power subcycle attosecond field waveforms can be synthesized by coherently combining a multibeam high-order harmonic output generated by a laser driver consisting of a pair of few-cycle pulses with different carrier frequencies. With the relative amplitudes, phases, and group delays of these driver pulses carefully adjusted in each of the driver beams toward confining the recollisions of highest-ponderomotive-energy electrons to an extremely short time gate within a fraction of the driver field cycle, the phase-matched multibeam high-harmonic output can be tailored to yield an intense isolated subgigawatt sub-10-attosecond field waveform. As a general tendency, propagation effects are shown to limit the minimum pulse width of the multibeam high-harmonic output. Still, with appropriate optimization of the gas pressure and the beam geometry, ≈10 -as field waveforms can be synthesized at the expense of one to two orders of magnitude of the output radiation energy.

  5. Product engineering by high-temperature flame synthesis

    DEFF Research Database (Denmark)

    Johannessen, Tue; Johansen, Johnny; Mosleh, Majid

    also - coalescence of aggregated metal oxide nano-particles. As an example, it is possible produce well-defined spinel structures, e.g. zinc-aluminate (ZnAl2O4), with high specific surface area because the desired phase is formed directly without any need for post calcination. The production of other...

  6. Experimental and theoretical analysis of asymmetric induction in heterogeneous catalysis: diastereoselective hydrogenation of chiral alpha-hydroxyketones over Pt catalyst. (United States)

    Busygin, Igor; Taskinen, Antti; Nieminen, Ville; Toukoniitty, Esa; Stillger, Thomas; Leino, Reko; Murzin, Dmitry Yu


    Assessing the origin of asymmetric induction in heterogeneously catalyzed hydrogenation is a challenging task. In this work, hydrogenation of a chiral compound, (R)-1-hydroxy-1-phenyl-2-propanone [(R)-PAC], in toluene over cinchonidine modified and unmodified Pt/Al(2)O(3) was studied. To reveal the detailed reaction mechanism and the origin of stereoselectivity in the Pt-catalyzed hydrogenation of the CO double bond, the structures and energies of several adsorption modes of (R)-PAC as well as whole reaction paths for hydrogenation were investigated on Pt(111) by density functional theory (DFT). In agreement with experimental results, the theoretically obtained potential energy profiles for the studied hydrogenation mechanisms implied that (1R,2S)-1-phenyl-1,2-propanediol is formed in excess with respect to the other diastereomeric product diol, (1R,2R)-1-phenyl-1,2-propanediol. Generally, if the elementary hydrogen addition step was thermodynamically more favorable on one of the two diastereotopic faces, it was also kinetically preferred on the same face, and vice versa. Pairwise addition of hydrogen was the most energetically favorable mechanism. Adsorption and hydrogenation of other structurally similar chiral alpha-hydroxyketones, (R)-3-hydroxy-2-butanone and (R)-2-hydroxy-1-cyclohexanone, were also studied computationally on Pt(111). The results showed that cluster model DFT calculations can be used to assess (dia)stereoselectivity in metal-catalyzed hydrogenation of even such complex organic molecules as studied here.

  7. High quality voice synthesis middle ware; Kohinshitsu onsei gosei middle war

    Energy Technology Data Exchange (ETDEWEB)



    Toshiba Corp. newly developed a natural voice synthesis system, TOS Drive TTS (TOtally speaker Driven Text-To-Speech) system, in which natural high-quality read-aloud is greatly improved, and also developed as its application a voice synthesis middle ware. In the newly developed system, using as a model a narrator's voice recorded preliminarily, a metrical control dictionary is automatically learned that reproduces the characteristics of metrical patters such as intonation or rhythm of a human voice, as is a voice bases dictionary that reproduces the characteristics of a voice quality, enabling natural voice synthesis to be realized that picks up human voice characteristics. The system is high quality and also very compact, while the voice synthesis middle ware utilizing this technology is adaptable to various platforms such as MPU or OS. The system is very suitable for audio response in the ITS field having car navigation systems as the core; besides, expanded application is expected to an audio response system that used to employ a sound recording and reproducing system. (translated by NEDO)

  8. Synthesis of Highly Reduced Graphene Oxide for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Chubei Wang


    Full Text Available A facile method to synthesize highly reduced graphene oxide in solid phase was developed. The reduced graphene oxide was scarcely prepared in solid phase. Solid substances act as spacers and pillaring agents. Sheets can not be close to each other in reduction process, and sheets agglomeration might not form. After reduction reaction is complete, the spacers and pillaring agents are removed. The average interlayer spacing and surface area of product are bigger than those of reduced graphene oxide. The product has few-layered sheet, and the ratio of carbon to oxygen is high, which might imply that the product is more similar to graphene compared to reduced graphene oxide. The specific capacitance of product is almost three times higher than that of reduced graphene oxide at the same current density.

  9. Synthesis of aerogel tiles with high light scattering length

    CERN Document Server

    Danilyuk, A F; Okunev, A G; Onuchin, A P; Shaurman, S A


    The possibility of aerogel tiles production for RICH detectors is described. Monolithic blocks of silica aerogel were synthesized by two-step sol-gel processing of tetraethoxysilane Si(OEt) sub 4 followed by high temperature supercritical drying with organic solvent. The important characteristic of aerogel is the light scattering length. In the wide range of refraction indexes the light scattering length exceeds 4 cm at 400 nm.

  10. Multicomponent Hetero-[4 + 2] Cycloaddition/Allylboration Reaction: From Natural Product Synthesis to Drug Discovery. (United States)

    Hall, Dennis G; Rybak, Taras; Verdelet, Tristan


    Multicomponent reactions (MCR), transformations employing three or more simple substrates in a single and highly atom-economical operation, are very attractive in both natural product synthesis and diversity-oriented synthesis of druglike molecules. Several popular multicomponent reactions were designed by combining two well-established individual reactions that utilize mutually compatible substrates. In this regard, it is not surprising that the merging of two reactions deemed as workhorses of stereoselective synthesis, the Diels-Alder cycloaddition and carbonyl allylboration, would produce a powerful and highly versatile tandem MCR process. The idea of using 1,3-dienylboronates in [4 + 2] cycloadditions as a means to produce cyclic allylic boronates was first reported by Vaultier and Hoffmann in 1987. In their seminal study, a 1-boronodiene was reacted with electron-poor alkenes, and the intermediate cycloadducts were isolated and added to aldehydes in a separate step leading to α-hydroxyalkylated carbocycles via a highly diastereoselective allylboration reaction. The one-pot three-component variant was realized in 1999 by Lallemand and co-workers, and soon after groups led by Hall and Carboni reported heterocyclic variants of the tandem [4 + 2] cycloaddition/allylboration to prepare α-hydroxyalkylated piperidine and pyran containing compounds, respectively. These classes of heterocycles are ubiquitous in Nature and are important components of pharmaceuticals. This Account summarizes the development and evolution of this powerful multicomponent reaction for accessing nonaromatic heterocycles and its many applications in natural products synthesis and drug discovery. The aza[4 + 2]cycloaddition/allylboration MCR was first optimized in our laboratory using 4-boronylhydrazonobutadienes and N-substituted maleimides, and it was exploited in the preparation of combinatorial libraries of polysubstituted imidopiperidines that feature as many as four elements of

  11. High-level synthesis for reduction of WCET in real-time systems

    DEFF Research Database (Denmark)

    Kristensen, Andreas Toftegaard; Pezzarossa, Luca; Sparsø, Jens


    The increasing design complexity of systems-on-chip (SoCs) requires designers to work at higher levels of abstraction. High-level synthesis (HLS) is one approach towards this. It allows designers to synthesize hardware directly from code written in a high-level programming language and to more...... quickly explore alternative implementations by re-running the synthesis with different optimization parameters and pragmas. HLS is particularly interesting for FPGA circuits, where different hardware implementations can easily be loaded into the target device. Another perspective on HLS is performance....... Compared to executing the high-level language code on a processor, HLS can be used to create hardware that accelerates critical parts of the code. When discussing performance in the context or real-time systems, it is the worst-case execution time (WCET) of a task that matters. WCET obviously benefits from...

  12. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts (United States)

    Santos, Vera P.; Wezendonk, Tim A.; Jaén, Juan José Delgado; Dugulan, A. Iulian; Nasalevich, Maxim A.; Islam, Husn-Ubayda; Chojecki, Adam; Sartipi, Sina; Sun, Xiaohui; Hakeem, Abrar A.; Koeken, Ard C. J.; Ruitenbeek, Matthijs; Davidian, Thomas; Meima, Garry R.; Sankar, Gopinathan; Kapteijn, Freek; Makkee, Michiel; Gascon, Jorge


    Depletion of crude oil resources and environmental concerns have driven a worldwide research on alternative processes for the production of commodity chemicals. Fischer-Tropsch synthesis is a process for flexible production of key chemicals from synthesis gas originating from non-petroleum-based sources. Although the use of iron-based catalysts would be preferred over the widely used cobalt, manufacturing methods that prevent their fast deactivation because of sintering, carbon deposition and phase changes have proven challenging. Here we present a strategy to produce highly dispersed iron carbides embedded in a matrix of porous carbon. Very high iron loadings (>40 wt %) are achieved while maintaining an optimal dispersion of the active iron carbide phase when a metal organic framework is used as catalyst precursor. The unique iron spatial confinement and the absence of large iron particles in the obtained solids minimize catalyst deactivation, resulting in high active and stable operation.

  13. Highly dispersive α″-Fe16N2 particle synthesis using hydroxyapatite coating (United States)

    Nagai, Daisuke; Kinemuchi, Yoshiaki; Suzuki, Kazuyuki; Towata, Atsuya; Yasuoka, Masaki


    Alpha″-Fe16N2 nanoparticles (NPs) with high magnetic crystalline anisotropy are useful for practical applications such as recording media. However, due to their strongly aggregated and/or sintered form, which occurs during synthesis, the utilization of the NPs has been limited thus far. Here, we report a method for synthesizing highly dispersive α″-Fe16N2 NPs using hydroxyapatite (HAp). The chemically and thermally stable structure of the HAp coating results in the isolation of individual NPs, such that sintering is prevented during synthesis. Additionally, the acicular shape of the HAp crystal did not hinder gas diffusion during the gas reaction. Finally, HAp can be removed by a chelating agent without deteriorating the magnetic properties, resulting in highly dispersive α″-Fe16N2 NPs.

  14. High-pressure Synthesis and Physical Properties of New Filled Skutterudite Compound BaOs4P12 (United States)

    Deminami, S.; Kawamura, Y.; Chen, Y. Q.; Kanazawa, M.; Hayashi, J.; Kuzuya, T.; Takeda, K.; Matsuda, M.; Sekine, C.


    We have succeeded in synthesizing samples of new filled skutterudite compound BaOs4P12 using the high-pressure synthesis technique. The physical properties of the compound are reported for the first time. The electrical resistivity decreases with decreasing temperature, and drop sharply around 1.8K. This indicates that BaOs4P12 is a new superconductor. Before the high-pressure synthesis, using synchrotron radiation x-ray, we tried to observe synthesizing processes of BaOs4P12 in-situ at high temperature and high pressure to obtain the optimum condition for synthesis.

  15. Synthesis of highly crystalline titania nanocrystals through solvothermal technique. (United States)

    Ge, Lei; Yang, Ping; Cheng, Xin


    Highly crystalline rhombic TiO2 nanocrystals (NCs) were fabricated through a solvothermal technique in anhydrous ethanol. A Teflon cup with reaction agents including titanium (IV) isopropoxide, oleic acid (OA), oleylamine (OM), and anhydrous ethanol was put into a Teflon-lined stainless steel autoclave with ethanol and water for the purpose of controlling the hydrolytic reaction of Ti precursors. Water vapor generated from the mixture of water and ethanol was as a hydrolysis agent and oleic acid and oleylamine were as two distinct capping surfactants which have different binding strengths to control the growth of the TiO2 NCs. The molar ratios of oleic acid/oleylamine play a crucial role for the size and morphology of TiO2 NCs created through hydrolytic and nonhydrolytic processes. Highly crystalline rhombic TiO2 NCs were fabricated by combining hydrolytic and nonhydrolytic sol-gel reactions of titanium (IV) isopropoxide using a molar ratio of Ti precursors/OA/OM of 1/2/3 at 180 degrees C for 22 h. The transmission electron microscopic observations indicated that the rhombic TiO2 NCs have a uniform size distribution under optimal preparation conditions. The size and size distribution of the rhombic TiO2 NCs were adjusted by adding OM to the reaction mixture as a cosurfactant together with OA.

  16. ACBC to Balcite: Bioinspired Synthesis of a Highly Substituted High-Temperature Phase from an Amorphous Precursor. (United States)

    Whittaker, Michael L; Joester, Derk


    Energy-efficient synthesis of materials locked in compositional and structural states far from equilibrium remains a challenging goal, yet biomineralizing organisms routinely assemble such materials with sophisticated designs and advanced functional properties, often using amorphous precursors. However, incorporation of organics limits the useful temperature range of these materials. Herein, the bioinspired synthesis of a highly supersaturated calcite (Ca0.5 Ba0.5 CO3 ) called balcite is reported, at mild conditions and using an amorphous calcium-barium carbonate (ACBC) (Ca1-x Ba x CO3 ·1.2H2 O) precursor. Balcite not only contains 50 times more barium than the solubility limit in calcite but also displays the rotational disorder on carbonate sites that is typical for high-temperature calcite. It is significantly harder (30%) and less stiff than calcite, and retains these properties after heating to elevated temperatures. Analysis of balcite local order suggests that it may require the formation of the ACBC precursor and could therefore be an example of nonclassical nucleation. These findings demonstrate that amorphous precursor pathways are powerfully enabling and provide unprecedented access to materials far from equilibrium, including high-temperature modifications by room-temperature synthesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. ACBC to Balcite: Bioinspired Synthesis of a Highly Substituted High-Temperature Phase from an Amorphous Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Michael L.; Joester, Derk (NWU)


    Energy-efficient synthesis of materials locked in compositional and structural states far from equilibrium remains a challenging goal, yet biomineralizing organisms routinely assemble such materials with sophisticated designs and advanced functional properties, often using amorphous precursors. However, incorporation of organics limits the useful temperature range of these materials. Herein, the bioinspired synthesis of a highly supersaturated calcite (Ca0.5Ba0.5CO3) called balcite is reported, at mild conditions and using an amorphous calcium–barium carbonate (ACBC) (Ca1- x Ba x CO3·1.2H2O) precursor. Balcite not only contains 50 times more barium than the solubility limit in calcite but also displays the rotational disorder on carbonate sites that is typical for high-temperature calcite. It is significantly harder (30%) and less stiff than calcite, and retains these properties after heating to elevated temperatures. Analysis of balcite local order suggests that it may require the formation of the ACBC precursor and could therefore be an example of nonclassical nucleation. These findings demonstrate that amorphous precursor pathways are powerfully enabling and provide unprecedented access to materials far from equilibrium, including high-temperature modifications by room-temperature synthesis.

  18. Synthesis of Dense BC3 Phases under High-Pressure and High-Temperature (United States)

    Zinin, P.; Ming, L.; Acosta, T.; Jia, R.; Hellebrand, E.; Ishii, H.


    The finding of the new diamond-like B-C phases is of fundamental importance. These phases are potential high-temperature superconductors and their development is important for understanding the nature of high-temperature superconductivity (Moussa, Cohen, Phys. Rev. B, 77, 064518 2008). They will shed light on the nature of the bonding of the boron atoms in a diamond-like structure. Recently, theoretical simulations of pressure- and temperature-induced phase transition in the B-C system demonstrated that the incorporation of B atoms into a diamond structure should not lead to a drastic distortion of the cubic cell of a diamond (Lowther, J. Phys. Condense Matter. 17, 3221, 2005). In this report we present data on the synthesis of new dense phases cubic BC3 (c-BC3) phase from graphitic BC3 phase (g-BC3) phase under high pressure and high temperature. Two graphitic polycrystalline BCx samples were compressed in a diamond-anvil cell to about 24 GPa and 45 GPa, respectively, and then were laser-heated to ~2000 K. After quenching, each sample was decompressed gradually stepwise to the atmospheric pressure. Synchrotron-based X-ray diffraction patterns were taken before and after the laser-heating, and also at each pressure step-down. The experimental data showed that two new phases were synthesized: (a) an orthorhombic phase with a0 = 3.74 Å, b0 = 3.24 Å, c0=4.25 Å; and (b) a cubic phase with a0 = 3.587Å recovered from 24 GPa and 44 GPa, respectively. The zero-pressure lattice parameter of the cubic phase obtained in this study is larger than that of diamond (i.e., a0=3.5667 Å, ASTM # 6-0675), which is consistent with theoretical prediction The micro-Raman measurements were directly performed on the new phases. The Raman spectra excited by a green (Nd-YAG, 532-nm) laser were taken with a confocal Raman system (WiTec alpha300). The Raman spectrum of the c-BC3 phase is similar to that of diamond-like BC3 phase (Zinin et al., J. Raman Spectrosc., 38, 1362, 2007) with a

  19. Synthesis of rainfall time series in a high temporal resolution (United States)

    Callau Poduje, Ana Claudia; Haberlandt, Uwe


    In order to optimize the design and operation of urban drainage systems, long and continuous rain series in a high temporal resolution are essential. As the length of the rainfall records is often short, particularly the data available with the temporal and regional resolutions required for urban hydrology, it is necessary to find some numerical representation of the precipitation phenomenon to generate long synthetic rainfall series. An Alternating Renewal Model (ARM) is applied for this purpose, which consists of two structures: external and internal. The former is the sequence of wet and dry spells, described by their durations which are simulated stochastically. The internal structure is characterized by the amount of rain corresponding to each wet spell and its distribution within the spell. A multivariate frequency analysis is applied to analyze the internal structure of the wet spells and to generate synthetic events. The stochastic time series must reproduce the statistical characteristics of observed high resolution precipitation measurements used to generate them. The spatio-temporal interdependencies between stations are addressed by resampling the continuous synthetic series based on the Simulated Annealing (SA) procedure. The state of Lower-Saxony and surrounding areas, located in the north-west of Germany is used to develop the ARM. A total of 26 rainfall stations with high temporal resolution records, i.e. rainfall data every 5 minutes, are used to define the events, find the most suitable probability distributions, calibrate the corresponding parameters, simulate long synthetic series and evaluate the results. The length of the available data ranges from 10 to 20 years. The rainfall series involved in the different steps of calculation are compared using a rainfall-runoff model to simulate the runoff behavior in urban areas. The EPA Storm Water Management Model (SWMM) is applied for this evaluation. The results show a good representation of the

  20. Habituation to low or high protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized trial

    NARCIS (Netherlands)

    Gorissen, S.H.; Horstman, Astrid; Franssen, Rinske; Kouw, I.W.; Wall, B.T.; Burd, N.A.; Groot, de C.P.G.M.; Loon, van L.J.C.


    Background: Muscle mass maintenance is largely regulated by basal muscle protein synthesis rates and the ability to increase muscle protein synthesis after protein ingestion. To our knowledge, no previous studies have evaluated the impact of habituation to either low protein intake (LOW PRO) or high

  1. Highly efficient asymmetric synthesis of α,β-epoxy esters via one-pot organocatalytic epoxidation and oxidative esterification. (United States)

    Xuan, Yi-ning; Lin, Han-Sen; Yan, Ming


    Highly enantioselective synthesis of α,β-epoxy esters was achieved via one-pot organocatalytic epoxidation and consequent oxidative esterification. Excellent enantioselectivities (up to 99% ee) and good yields were obtained for a variety of α,β-epoxy esters. The method was readily scaled. Furthermore the product was applied towards the synthesis of (-)-clausenamide with excellent enantioselectivities (>99% ee).

  2. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity γ-Hydroxybutyrate (GHB) Binding Sites

    DEFF Research Database (Denmark)

    Vogensen, Stine B.; Marek, Ales; Bay, Tina


    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screen...

  3. Synthesis of silicon quantum dots showing high quantum efficiency. (United States)

    Cho, Bomin; Baek, Sangsoo; Woo, Hee-Gweon; Sohn, Honglae


    Quantum efficiencies of Si quantum dots (QDs) have been investigated from the reaction of magnesium silicide and ammonium chloride. The change of quantum yield and optical characterization of Si QDs are measured depending on the reaction time. Highly luminescent Si QDs were obtained as the reaction time increased. Absorption measurement indicated that the Si QDs consisted of only silicon and hydrogen atom. Optical characterizations of Si QDs were measured by UV-Vis and PL spectroscopy. The size distribution and orientation of Si QDs were measured by TEM and XRD. TEM image displays the spherical Si QDs with the size of 3-4 nm. As the reaction time increased, Si QDs grew and their emission wavelength shifted to the longer wavelength. The monotonic shift of the PL as a function of excitation wavelength resulted in the excitation of different sizes of QDs that had different optical transition energies. Photoluminescence quantum yields exceeding 60% have been achieved.

  4. New high performance nanoadditives for photocatalytic concrete: synthesis and study

    Directory of Open Access Journals (Sweden)

    FALIKMAN Vyacheslav Ruvimovich


    Full Text Available Nanotechnologies open up broad prospects for the creation of nanocatalysts, which are being more and more used in solving many problems associated with the protection of environment. Their behavior is directly related to the unique physical and chemical properties that are provided by quantum size effects, as well as the large specific surface area. It is known that the presence of photo catalysts in the construction segment of nanomaterials is becoming more prominent. One of the most significant achievements of the last years are photo catalytic active cement composites, including cements and concretes produced with the use of nanoparticles of titanium dioxide TiO₂ sensibilized through a nanotechnology . Currently they are widely used in practice to produce selfcleaning structures and to make clean an air of megacities. Further research in the field of development of new high-performance photo catalysts based on TiO₂ nanoparticles seems to be very relevant, because such R&D could significantly improve the technical characteristics of photo catalytic cements and concrete. In this paper an improved method to produce photo catalysts has been proposed. New synthesized products are based on TiO₂ nanoparticles applied on different inert carriers, including nanosilica. It was showed that these products can be used as a high performance photo catalyst in cement and cement-gypsum composites suitable for the onversion processes of nitric oxide and volatile organic substances, and air purification. It was determined that performance of the cementitious composites containing synthesized samples is 1,5…3,0 times higher than that for the commercial sample of the nanotitanium dioxide. The use of mechanical mixture of nanotitanium dioxide and inert supports is less effective and subjected to the «dilution law», in general.

  5. Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates

    Energy Technology Data Exchange (ETDEWEB)

    Mérida, Fernando [Deparment of Chemical Engineering, University of Puerto Rico, Mayagüez, P.O. Box 9046, Mayagüez, PR 00680 (United States); Chiu-Lam, Andreina [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005 (United States); Bohórquez, Ana C. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611-6131 (United States); Maldonado-Camargo, Lorena [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005 (United States); Pérez, María-Eglée; Pericchi, Luis [Department of Mathematics, University of Puerto Rico, Río Piedras, P.O. Box 70377, San Juan, PR 00936-8377 (United States); Torres-Lugo, Madeline [Deparment of Chemical Engineering, University of Puerto Rico, Mayagüez, P.O. Box 9046, Mayagüez, PR 00680 (United States); Rinaldi, Carlos, E-mail: [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005 (United States); J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611-6131 (United States)


    Magnetic Fluid Hyperthermia (MFH) uses heat generated by magnetic nanoparticles exposed to alternating magnetic fields to cause a temperature increase in tumors to the hyperthermia range (43–47 °C), inducing apoptotic cancer cell death. As with all cancer nanomedicines, one of the most significant challenges with MFH is achieving high nanoparticle accumulation at the tumor site. This motivates development of synthesis strategies that maximize the rate of energy dissipation of iron oxide magnetic nanoparticles, preferable due to their intrinsic biocompatibility. This has led to development of synthesis strategies that, although attractive from the point of view of chemical elegance, may not be suitable for scale-up to quantities necessary for clinical use. On the other hand, to date the aqueous co-precipitation synthesis, which readily yields gram quantities of nanoparticles, has only been reported to yield sufficiently high specific absorption rates after laborious size selective fractionation. This work focuses on improvements to the aqueous co-precipitation of iron oxide nanoparticles to increase the specific absorption rate (SAR), by optimizing synthesis conditions and the subsequent peptization step. Heating efficiencies up to 1048 W/g{sub Fe} (36.5 kA/m, 341 kHz; ILP=2.3 nH m{sup 2} kg{sup −1}) were obtained, which represent one of the highest values reported for iron oxide particles synthesized by co-precipitation without size-selective fractionation. Furthermore, particles reached SAR values of up to 719 W/g{sub Fe} (36.5 kA/m, 341 kHz; ILP=1.6 nH m{sup 2} kg{sup −1}) when in a solid matrix, demonstrating they were capable of significant rates of energy dissipation even when restricted from physical rotation. Reduction in energy dissipation rate due to immobilization has been identified as an obstacle to clinical translation of MFH. Hence, particles obtained with the conditions reported here have great potential for application in nanoscale thermal

  6. Recharge Rates and Chemistry Beneath Playas of the High Plains Aquifer - A Literature Review and Synthesis (United States)

    Gurdak, Jason J.; Roe, Cassia D.


    Playas are ephemeral, closed-basin wetlands that are important zones of recharge to the High Plains (or Ogallala) aquifer and critical habitat for birds and other wildlife in the otherwise semiarid, shortgrass prairie and agricultural landscape. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on ground water from the High Plains aquifer has prompted many questions regarding the contribution of recharge from playas to the regional aquifer. To address these questions and concerns, the U.S. Geological Survey, in cooperation with the Playa Lakes Joint Venture, present a review and synthesis of the more than 175 publications about recharge rates and chemistry beneath playas and interplaya settings. Although a number of questions remain regarding the controls on recharge rates and chemistry beneath playas, the results from most published studies indicate that recharge rates beneath playas are substantially (1 to 2 orders of magnitude) higher than recharge rates beneath interplaya settings. The synthesis presented here supports the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this synthesis yield science-based implications for the protection and management of playas and ground-water resources of the High Plains aquifer and directions for future research.

  7. A Scalable Gene Synthesis Platform Using High-Fidelity DNA Microchips (United States)

    Kosuri, Sriram; Eroshenko, Nikolai; LeProust, Emily; Super, Michael; Way, Jeffrey; Li, Jin Billy; Church, George M.


    Development of cheap, high-throughput, and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology1. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis2. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude3,4,5, yet efforts to scale their use have been largely unsuccessful due to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols, and enzymatic error correction to develop a highly parallel gene synthesis platform. We tested our platform by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ~35 kilo-basepairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ~2.5 megabases of DNA, which is at least 50 times larger than previously published attempts. PMID:21113165

  8. On the synthesis of multiple frequency tone burst stimuli for efficient high frequency auditory brainstem response. (United States)

    Ellingson, Roger M; Dille, Marilyn L; Leek, Marjorie R; Fausti, Stephen A


    The development and digital waveform synthesis of a multiple-frequency tone-burst (MFTB) stimulus is presented. The stimulus is designed to improve the efficiency of monitoring high-frequency auditory-brainstem-response (ABR) hearing thresholds. The pure-tone-based, fractional-octave-bandwidth MFTB supports frequency selective ABR audiometry with a bandwidth that falls between the conventional click and single-frequency tone-burst stimuli. The MFTB is being used to identify high frequency hearing threshold change due to ototoxic medication which most generally starts at the ultra-highest hearing frequencies and progresses downwards but could be useful in general limited-bandwidth testing applications. Included is a Mathcad implementation and analysis of our MFTB synthesis technique and sample performance measurements of the MFTB stimulus configuration used in a clinical research ABR system.

  9. Rapid continuous flow synthesis of high-quality silver nanocubes and nanospheres

    KAUST Repository

    Mehenni, Hakim


    We report a biphasic-liquid segmented continuous flow method for the synthesis of high-quality plasmonic single crystal silver nanocubes and nanospheres. The nanocubes were synthesized with controllable edge lengths from 20 to 48 nm. Single crystal nanospheres with a mean size of 29 nm were obtained by in-line continuous-flow etching of as-produced 39 nm nanocubes with an aqueous solution of FeNO3. In comparison to batch synthesis, the demonstrated processes represent highly scalable reactions, in terms of both production rate and endurance. The reactions were conducted in a commercially available flow-reactor system that is easily adaptable to industrial-scale production, facilitating widespread utilization of the procedure and the resulting nanoparticles. This journal is © The Royal Society of Chemistry 2013.

  10. Highly antioxidant carotene-lipid nanocarriers: synthesis and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Lacatusu, Ioana; Badea, Nicoleta, E-mail:; Ovidiu, Oprea [University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Bojin, Dionezie [Faculty of Engineering and Materials Science (Romania); Meghea, Aurelia [University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania)


    The objective of this study was to explore the potential of two natural oils (squalene-Sq and grape seed oil-GSO) to prepare biocompatible antioxidant nanostructured lipid carriers-NLCs as a safety and protective formulation for sensitive {beta}-carotene. For this purpose different oil-in-water nanoemulsions stabilized by a combination of alkylpolyoxy ethylene sorbitans, lecithin and a block copolymer, were prepared using a melt high-shear homogenization process. The physico-chemical characteristics of the carotene-loaded NLCs were firstly investigated in detail. The smaller lipid nanoparticles have been obtained by using Tween 20 as main non-ionic surfactant, with average diameters of about 85 nm for GSO and 89 nm for Sq, with a polydispersity index <0.19. The developed carotene-NLCs presented an excellent physical stability with almost all zeta potential values ranging between -29 Division-Sign -40 mV. The differential scanning calorimetry analysis showed that the {beta}-carotene incorporation has led to a perturbation of solid lipid matrix with a less ordered arrangement. By UV-Vis spectroscopy it was evidenced that after encapsulation {beta}-carotene adopts a supramolecular structure demonstrated by appearance of a shoulder at 530 nm related to a {beta}-carotene triplet-triplet absorption. The carotene-NLCs have been also evaluated in terms of in vitro antioxidant properties. The presence of Sq and GSO produced a significant effect on the antioxidant capacity of developed NLCs. The samples prepared with GSO and Tween 80 as main surfactant showed the highest antioxidant activity (AA %) against free oxygen radicals, exhibiting an enhancement of 35 % for loaded NLCs, as comparing to pure carotene. In addition to these properties, the ability of NLCs to manifest antibacterial activity was tested against Escherichiacoli bacteria. The antibacterial analysis shown that loaded-NLCs develop an effective inhibition zone against bacteria growth and it was dependent in a

  11. Additive-free hydrothermal synthesis of high aspect ratio ZnO particles from aqueous solution


    Elen, Ken; van Bael, Marlies; Van den Rul, Heidi; D'Haen, Jan; MULLENS, Jules


    In this work, a new hydrothermal process is described, in which, for the first time, an aquatic Zn2+ precursor is used for the synthesis of high aspect ratio ZnO particles, without the presence of any organic additive. Characterization of the particles is carried out by XRD, TEM, and SAED. Also the influence of different reaction times and of another reaction medium on the morphology and the dimensions of the rods is investigated.

  12. Final Report on XStack: Software Synthesis for High Productivity ExaScale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Solar-Lezama, Armando [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Computer Science and Artificial Intelligence Lab.


    The goal of the project was to develop a programming model that would significantly improve productivity in the high-performance computing domain by bringing together three components: a) Automated equivalence checking, b) Sketch-based program synthesis, and c) Autotuning. The report provides an executive summary of the research accomplished through this project. At the end of the report is appended a paper that describes in more detail the key technical accomplishments from this project, and which was published in SC 2014.

  13. Synthesis of high-surface-area spinel-type MgAl2O4 nanoparticles ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Synthesis of high-surface-area spinel-type MgAl 2 O 4 nanoparticles by [Al(sal) 2 (H 2 O) 2 ] 2 [Mg(dipic) 2 ] and [Mg(H 2 O) 6 ][Al(ox) 2 (H 2 O) 2 ] 2 ·5H 2 O: influence of inorganic precursor type. Volume 40 Issue 1 February 2017 pp 45-53 ...

  14. Highly selective and active niobia-supported cobalt catalysts for fischer-tropsch synthesis

    NARCIS (Netherlands)

    Den Otter, Jan H.|info:eu-repo/dai/nl/337238774; De Jong, Krijn P.|info:eu-repo/dai/nl/06885580X

    The performance of Co/Nb2O5 was compared to that of Co/γ-Al2O3 for the Fischer-Tropsch synthesis at 20 bar and over the temperature range of 220-260°C. The C5+ selectivity of Nb2O5-supported cobalt catalysts was found to be very high, i.e. up to 90 wt% C5+ at 220°C. The activity per unit weight

  15. Structural changes in high-temperature synthesis of luminescent alumina ceramics (United States)

    Zvonarev, S. V.; Kortov, V. S.; Ryabinina, M. V.; Kiryakov, A. N.


    Scanning electron microscopy was used to study structural changes in luminescent alumina ceramics which was synthesized from nanopowder at high temperatures in reducing environment. An effect of synthesis parameters on size-distribution of grains, their shape and a number of pores in the samples under study was determined. It was found that in a certain temperature range grains are the same ones in the precursor nanopowder, which is associated with the emergence of nanoparticles of lower aluminum oxides.

  16. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo


    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E configuration in good to excellent yields. The Michael product could also be easily prepared by tuning the β-C-substituent group of the α-methylene ester under the same reaction conditions. Calculated relative energies of various transition states by DFT methods strongly support the observed chemoselectivity and diastereoselectivity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  17. Synthesis of a macromonomer library from high-temperature acrylate polymerization. (United States)

    Zorn, Anna-Marie; Junkers, Thomas; Barner-Kowollik, Christopher


    The auto-initiated high temperature acrylate polymerization represents a versatile route for the synthesis of macromonomer building blocks. Various macromonomers were synthesized via this route based on methyl, ethyl, n-butyl, t-butyl, 2-ethylhexyl, isobornyl and 2-[[(butylamino)carbonyl]oxy]ethyl acrylate. The synthesis requires a temperature of 140 °C and is carried out in a 5 wt.-% solution of hexyl acetate. The macromonomer library is fully characterized via electrospray ionization mass spectrometry (ESI-MS). The amount of macromonomers containing the geminal double bond lies in between 82 and 95%, depending on the monomer type. The achievable molecular weight of the macromonomers is located between 800 and 2 000 g·mol(-1) with a polydispersity of close to 1.6. In addition, it is demonstrated that radical initiators are useful add-ons (to circumvent the inhibition time observed during initiator-free synthesis) without interfering in the actual polymerization as no initiator-fragment containing products are identified via high resolution mass spectrometry. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-Pressure Synthesis of Metal-Ceramic Nano-Composites (United States)

    Gierlotka, S.; Palosz, B.; Ekimov, E.; Grzanka, E.; Stelmakh, S.; Lojkowski, W.; Bismayer, U.; Palosz, W.; Rose, M. Franklin (Technical Monitor)


    The major problems in fabrication of nano-crystal line materials form nano-powders are: (1), coarsening of the initial nano-size grains, (2), insufficient densification (high concentration of pores), and, (3), conversion of diamond into graphite (for diamond-based ceramics). We have developed a novel technique of the synthesis of nano-composite materials applying very high (up to about 10 GPa) pressures. In this technique, one component is pre-compacted and placed next to another having a lower melting point temperature. The whole sample is pressed and the temperature raised above the melting point of the second component, what results in the melt getting pressed into the (nano-size) pores of the compact. Upon subsequent crystallization the melt forms the second nanophase. The process is fast, on the order of seconds, and the temperatures are relatively low what prevents, or at least significantly reduces coarsening of the starting nanophase grains. Also, conversion of diamond into graphite can be prevented. The technique allows for control of the final product properties through a proper selection of (1) the initial compact density and grain size, (2) chemical composition of the source, and (3) the temperature and pressure of the process. The application of the technique to the synthesis of SiC and diamond with Si, Ge, and different metals. Results of the in-situ investigation of the synthesis process by synchrotron X-ray diffraction technique will be presented.

  19. High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Sze Kee; Ng, Ka Ming, E-mail: [The Hong Kong University of Science and Technology, Department of Chemical and Biomolecular Engineering (Hong Kong)


    This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10{sup −5} Ω cm.Graphical Abstract.

  20. Highly Stereoselective Synthesis of a Compound Collection Based on the Bicyclic Scaffolds of Natural Products

    Directory of Open Access Journals (Sweden)

    Murali Annamalai


    Full Text Available Despite the great contribution of natural products in the history of successful drug discovery, there are significant limitations that persuade the pharmaceutical industry to evade natural products in drug discovery research. The extreme scarcity as well as structural complexity of natural products renders their practical synthetic access and further modifications extremely challenging. Although other alternative technologies, particularly combinatorial chemistry, were embraced by the pharmaceutical industry to get quick access to a large number of small molecules with simple frameworks that often lack three-dimensional complexity, hardly any success was achieved in the discovery of lead molecules. To acquire chemotypes beholding structural features of natural products, for instance high sp3 character, the synthesis of compound collections based on core-scaffolds of natural products presents a promising strategy. Here, we report a natural product inspired synthesis of six different chemotypes and their derivatives for drug discovery research. These bicyclic hetero- and carbocyclic scaffolds are highly novel, rich in sp3 features and with ideal physicochemical properties to display drug likeness. The functional groups on the scaffolds were exploited further to generate corresponding compound collections. Synthesis of two of these collections exemplified with ca. 350 compounds are each also presented. The whole compound library is being exposed to various biological screenings within the European Lead Factory consortium.

  1. Synthesis of all-silica zeolites from highly concentrated gels containing hexamethonium cations

    KAUST Repository

    Liu, Xiaolong


    A pure and highly crystalline all-silica EU-1 zeolite has been obtained from the crystallization of gels containing very low water contents in the presence of hexamethonium cations. Decreasing the water content in the gel down to H 2O/Si < 1 inhibited the formation of ZSM-48, which is usually observed under more diluted standard crystallization conditions. Moreover, addition of NH 4F to the synthesis led to the formation of "half-fluorinated" ITQ-13 in which fluoride anions occupied only the center of D4R cages. In larger cages, the charge of the template was compensated by framework connectivity defects, clearly demonstrating once more the essential role of F - in the formation of D4R units. The formation of such hybrid (F,OH) is particularly interesting from a synthesis point of view, particularly for understanding the respective roles of fluoride and hydroxide anions in the crystallization process. © 2012 Elsevier Inc. All rights reserved.

  2. High-Throughput Platform for Synthesis of Melamine-Formaldehyde Microcapsules. (United States)

    Çakir, Seda; Bauters, Erwin; Rivero, Guadalupe; Parasote, Tom; Paul, Johan; Du Prez, Filip E


    The synthesis of microcapsules via in situ polymerization is a labor-intensive and time-consuming process, where many composition and process factors affect the microcapsule formation and its morphology. Herein, we report a novel combinatorial technique for the preparation of melamine-formaldehyde microcapsules, using a custom-made and automated high-throughput platform (HTP). After performing validation experiments for ensuring the accuracy and reproducibility of the novel platform, a design of experiment study was performed. The influence of different encapsulation parameters was investigated, such as the effect of the surfactant, surfactant type, surfactant concentration and core/shell ratio. As a result, this HTP-platform is suitable to be used for the synthesis of different types of microcapsules in an automated and controlled way, allowing the screening of different reaction parameters in a shorter time compared to the manual synthetic techniques.

  3. Production of advanced materials by methods of self-propagating high-temperature synthesis

    CERN Document Server

    Tavadze, Giorgi F


    This translation from the original Russian book outlines the production of a variety of materials by methods of self-propagating high-temperature synthesis (SHS). The types of materials discussed include: hard, refractory, corrosion and wear-resistant materials, as well as other advanced and speciality materials. The authors address the issue of optimal parameters for SHS reactions occurring during processes involving a preliminary metallothermic reduction stage, and they calculate this using thermodynamic approaches. In order to confirm the effectiveness of this approach, the authors describe experiments focussing on the synthesis of elemental crysalline boron, boron carbides and nitrides. Other parts of this brief include theoretical and experimental results on single-stage production of hard alloys on the basis of titanium and zirconium borides, as well as macrokinetics of degassing and compaciton of SHS-products.This brief is suitable for academics, as well as those working in industrial manufacturing com...

  4. Chemical synthesis and characterization of highly soluble conducting polyaniline in the mixtures of common solvents

    Directory of Open Access Journals (Sweden)

    Zeghioud Hichem


    Full Text Available This work presents the synthesis and characterization of soluble and conducting polyaniline PANI-PIA according to chemical polymerization route. This polymerization pathway leads to the formation of poly(itaconic acid doped polyaniline salts, which are highly soluble in a number of mixtures between organic common polar solvents and water, the solubility reaches 4 mg mL-1. The effect of synthesis parameters such as doping level on the conductivity and the study of solubility and other properties of the resulting PANI salts were also undertaken. The maximum of conductivity was found equal to 2.48×10-4 S cm-1 for fully protonated PANI-EB. In addition, various characterizations of the synthesized materials were also done with the help of viscosity measurements, UV-vis spectroscopy, XRD, FTIR and finally TGA for the thermal properties behaviour.

  5. A method and apparatus for high-throughput controlled synthesis of fullerenes and endohedral metal fullerenes (United States)

    Churilov, G. N.; Popov, A. A.; Vnukova, N. G.; Dudnik, A. I.; Glushchenko, G. A.; Samoylova, N. A.; Dubinina, I. A.; Gulyaeva, U. E.


    A method for synthesis of carbon nanostructures in a high-frequency arc discharge in the flow of helium (3-4 L/min) is presented. It is shown that the plasma-chemical synthesis of fullerenes and endohedral metal fullerenes (EMFs) can be controlled by changing helium pressure in the chamber. Temperature and electron concentration along the line normal to the discharge axis decrease upon moving away from the axis to the periphery; the larger the pressure, the sharper is the decrease in these parameters. The optimal helium pressure of 98 kPa was found in obtaining the Gd@C82 EMF which corresponds to the maximal EMF yield of 5 wt %.

  6. Bench-scale synthesis of zeolite A from subbituminous coal ashes with high crystalline silica content

    Energy Technology Data Exchange (ETDEWEB)

    Chareonpanich, M.; Jullaphan, O.; Tang, C. [Kasetsart University, Bangkok (Thailand). Dept. of Chemical Engineering


    In this present work, fly ash and bottom ash with high crystalline silica content were obtained from the coal-fired boilers within the paper industries in Thailand. These coal ashes were used as the basic raw materials for synthetic zeolite production. The crystal type and crystallinity, specific surface area and pore size, and textural properties of zeolite products were characterized by using X-ray diffraction spectroscopy (XRD), N{sub 2} sorption analysis, and Scanning Electron Microscopy (SEM), respectively. It was found that sodalite octahydrate was selectively formed via the direct conventional (one-step) synthesis, whereas through a two-step, sodium silicate preparation and consecutive zeolite A synthesis process, 94 and 72 wt.% zeolite A products could be produced from the fly ash and bottom ash, respectively. The cation-exchange capacity (CEC) of fly ash and bottom ash-derived zeolite A products were closely similar to that of the commercial grade zeolite A.

  7. T3P- A Novel Catalyst for Aza-Diels-Alder Reaction: One-Pot Synthesis of Pyrano[3,2-c]quinolines and furano[3,2-c]quinolines

    Directory of Open Access Journals (Sweden)

    T. S. R. Prasanna


    Full Text Available T3P was found to be an efficient catalyst for the Aza-Diels–Alder reactions of aldimines with dihydropyran or dihydrofuran to afford the corresponding pyrano-and furo [3,2-c]quinolines in high yields with high diastereoselectivity in a short period of time.

  8. Concise epoxide-based synthesis of the C14–C25 bafilomycin A1 polypropionate chain (United States)

    Valentín, Elizabeth M; Mulero, Marlenne; Prieto, José A.


    An efficient non-aldol convergent synthesis of the C14–C25 polyketide fragment of bafilomycin A1 was completed in 16% overall yield and 8 steps in its longest linear sequence. This synthesis highlights the formation of the key fragments using a three-step sequence of epoxide cleavage, alkyne reduction, and epoxidation developed in our laboratory; starting from suitably protected enantiomeric epoxides of trans-2,3-epoxybutanol. This chemistry represents a quick asymmetric and diastereoselective construction of the polyketide chain of bafilomycin A1, in which every stereogenic center was constructed using solely epoxide chemistry. PMID:22500058

  9. Highly stereoselective cyclopropanation of diazo Weinreb amides catalyzed by chiral Ru(ii)-Amm-Pheox complexes. (United States)

    Chanthamath, Soda; Mandour, Hamada S A; Tong, Thu Minh Thi; Shibatomi, Kazutaka; Iwasa, Seiji


    The first highly stereoselective cyclopropanation of diazo Weinreb amides with olefins was accomplished using chiral Ru(ii)-Amm-Pheox complex to give the corresponding chiral cyclopropyl Weinreb amides in high yields (up to 99%) with excellent diastereoselectivities (up to 99 : 1 dr) and enantioselectivities (up to 96% ee).

  10. One-pot multi-component green synthesis of highly substituted piperidines

    Directory of Open Access Journals (Sweden)

    Ravi Bansal


    Full Text Available An effective and expeditious method of the synthesis of a highly functionalized piperidines, catalyzed by nontoxic, recyclable and environment friendly sodium lauryl sulfate (SLS, via one-pot multi-component condensation of aldehydes, amines and β-ketoesters in water at room temperature, has been developed. This new protocol has advantages such as moderate to high yields of products obtained after simple post reaction workup. Structure of the synthesized compounds 4a–4j have been elucidated based on the 1H NMR, 13C NMR, FT-IR spectroscopy and elemental analysis.

  11. Fe-Catalyzed Synthesis of Porous Carbons Spheres with High Graphitization Degree for High-Performance Supercapacitors (United States)

    Zhu, Jun; Shi, Hongwei; Zhuo, Xin; Hu, Yalin


    We have developed a facile and efficient Fe-catalyzed method for fabrication of porous carbons spheres with high graphitization degree (GNPCs) using glucose as carbon precursor at relatively low carbonization temperature. GNPCs not only have relatively large accessible ion surface area to accommodate greater capacity but also high graphitization degree to accelerate ion diffusion. As a typical application, we demonstrate that GNPCs exhibit excellent electrochemical performance for use in supercapacitors, with high specific capacity of 150.6 F g-1 at current density of 1 A g-1 and good rate capability and superior cycling stability over 10,000 cycles, confirming their potential application for energy storage. Moreover, it is believed that this method offers a new strategy for synthesis of porous carbons with high graphitization degree.

  12. Novel LLM series high density energy materials: Synthesis, characterization, and thermal stability (United States)

    Pagoria, Philip; Zhang, Maoxi; Tsyshevskiy, Roman; Kuklja, Maija

    Novel high density energy materials must satisfy specific requirements, such as an increased performance, reliably high stability to external stimuli, cost-efficiency and ease of synthesis, be environmentally benign, and be safe for handling and transportation. During the last decade, the attention of researchers has drifted from widely used nitroester-, nitramine-, and nitroaromatic-based explosives to nitrogen-rich heterocyclic compounds. Good thermal stability, the low melting point, high density, and moderate sensitivity make heterocycle materials attractive candidates for use as oxidizers in rocket propellants and fuels, secondary explosives, and possibly as melt-castable ingredients of high explosive formulations. In this report, the synthesis, characterization, and results of quantum-chemical DFT study of thermal stability of LLM-191, LLM-192 and LLM-200 high density energy materials are presented. Work performed under the auspices of the DOE by the LLNL (Contract DE-AC52-07NA27344). This research is supported in part by ONR (Grant N00014-12-1-0529) and NSF. We used NSF XSEDE (Grant DMR-130077) and DOE NERSC (Contract DE-AC02-05CH11231) resources.

  13. An unconventional rapid synthesis of high performance metal-organic framework membranes. (United States)

    Shah, Miral N; Gonzalez, Mariel A; McCarthy, Michael C; Jeong, Hae-Kwon


    Metal-organic frameworks (MOFs) are attractive for gas separation membrane applications due to their microporous channels with tunable pore shape, size, and functionality. Conventional MOF membrane fabrication techniques, namely in situ and secondary growth, pose challenges for their wider commercial applications. These challenges include reproducility, scalability, and high manufacturing cost. Recognizing that the coordination chemistry of MOFs is fundamentally different from the covalent chemistry of zeolites, we developed a radically different strategy for MOF membrane synthesis. Using this new technique, we were able to produce continuous well-intergrown membranes of prototypical MOFs, HKUST-1 and ZIF-8, in a relatively short period of time (tens of min). With a minimal consumption of precursors and a greatly simplified synthesis protocol, our new technique provides potential for a continuous, scalable, reproducible, and easily commercializable route for the rapid synthesis of MOF membranes. RTD-prepared MOF membranes show greatly improved gas separation performances as compared to those prepared by conventional solvothermal methods, indicating improved membrane microstructure.

  14. Synthesis of high-coercivity non-stoichiometric cobalt ferrite nanocrystals: Structural and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno-Mattei, Y., E-mail: [Department of Chemistry, University of Puerto Rico - Mayagueez Campus, Mayagueez, 00681 (Puerto Rico); Perales-Perez, O. [Department of Chemistry, University of Puerto Rico - Mayagueez Campus, Mayagueez, 00681 (Puerto Rico); Department of Engineering Science and Materials, University of Puerto Rico - Mayagueez Campus, Mayagueez, 00681 (Puerto Rico); Uwakweh, O.N.C. [Department of Engineering Science and Materials, University of Puerto Rico - Mayagueez Campus, Mayagueez, 00681 (Puerto Rico)


    Highlights: Black-Right-Pointing-Pointer Non-stoichiometric cobalt ferrite and the composition-dependence of their magnetic properties. Black-Right-Pointing-Pointer 78% of the total Fe present in starting solutions was incorporated into the ferrite. Black-Right-Pointing-Pointer Flow-rate controlled synthesis promoted crystal growth and changes in cation distribution. Black-Right-Pointing-Pointer High coercivity was attained due to surface anisotropy, cation distribution, and crystal size. - Abstract: The magnetic properties in nanoscale ferrite materials are strongly dependent on the crystal size, morphology, and cation distribution in the lattice. The present work addressed the synthesis of Co-substituted ferrite nanocrystals were attempted at various staring Fe:Co mole ratios (3:1, 2:1, 1.7:1, and 1.4:1) and the corresponding structural and magnetic properties determined. The synthesis of the ferrite powders was carried out by the conventional and modified coprecipitation method. The later consists of contacting the metal ions solution with hydroxide ions at controlled flow-rates to promote the heterogeneous nucleation, where earlier produced ferrite nuclei will act as seeds, and hence crystal growth. The actual Fe:Co mole ratios in the as-synthesized samples were determined by energy dispersive X-ray spectroscopy (EDS). Obtained nanocrystals were also characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), and Moessbauer spectroscopy techniques. Cobalt ferrite nanocrystals ranging between 11 and 19 nm exhibited coercivity values between 114 and 4412 Oe. The variation in coercivity values of cobalt ferrite nanocrystals with different compositions was mainly attributed to the remarkably enlargement of crystal size under flow-rate controlled synthesis conditions, and the particular distribution of cations between A- and B-sites in addition to surface anisotropy contribution.

  15. Synthesis and Characterization of High Aluminum Zeolite X from Technical Grade Materials

    Directory of Open Access Journals (Sweden)

    Seyed Kamal Masoudian


    Full Text Available Zeolites are widely used as ion exchangers, adsorbents, separation materials and catalyst due to their well-tailored and highly-reproducible structures; therefore, the synthesis of zeolite from low grade resources can be interested. In the present work, high aluminum zeolite X was prepared from mixing technical grade sodium aluminate and sodium silicate solutions at temperatures between 70°C and 100°C. The synthesized zeolite X was characterized by SEM and X-ray methods according to ASTM standard procedures. The results showed that aging of the synthesis medium at the room temperature considerably increased the selectivity of zeolite X formation. On the other hand, high temperature of reaction mixture during crystallization formed zeolite A in the product; therefore, it decreased the purity of zeolite X. In addition, it was found that increasing H2O/Na2O and decreasing Na2O/SiO2 molar ratios in the reaction mixture resulted product with higher purity. © 2013 BCREC UNDIP. All rights reservedReceived: 7th January 2013; Revised: 7th April 2013; Accepted: 19th April 2013[How to Cite: Masoudian, S. K., Sadighi, S., Abbasi, A. (2013. Synthesis and Characterization of High Alu-minum Zeolite X from Technical Grade Materials. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 54-60. (doi:10.9767/bcrec.8.1.4321.54-60][Permalink/DOI:] | View in  |

  16. Design of HIV-1 Protease Inhibitors with Amino-bis-tetrahydrofuran Derivatives as P2-Ligands to Enhance Backbone-Binding Interactions: Synthesis, Biological Evaluation, and Protein-Ligand X-ray Studies. (United States)

    Ghosh, Arun K; Martyr, Cuthbert D; Osswald, Heather L; Sheri, Venkat Reddy; Kassekert, Luke A; Chen, Shujing; Agniswamy, Johnson; Wang, Yuan-Fang; Hayashi, Hironori; Aoki, Manabu; Weber, Irene T; Mitsuya, Hiroaki


    Structure-based design, synthesis, and biological evaluation of a series of very potent HIV-1 protease inhibitors are described. In an effort to improve backbone ligand-binding site interactions, we have incorporated basic-amines at the C4 position of the bis-tetrahydrofuran (bis-THF) ring. We speculated that these substituents would make hydrogen bonding interactions in the flap region of HIV-1 protease. Synthesis of these inhibitors was performed diastereoselectively. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 25f, 25i, and 25j were evaluated against a number of highly-PI-resistant HIV-1 strains, and they exhibited improved antiviral activity over darunavir. Two high resolution X-ray structures of 25f- and 25g-bound HIV-1 protease revealed unique hydrogen bonding interactions with the backbone carbonyl group of Gly48 as well as with the backbone NH of Gly48 in the flap region of the enzyme active site. These ligand-binding site interactions are possibly responsible for their potent activity.

  17. Design of HIV-1 Protease Inhibitors with Amino-bis-tetrahydrofuran Derivatives as P2-Ligands to Enhance Backbone-Binding Interactions. Synthesis, Biological Evaluation, and Protein-Ligand X-ray Studies

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arun K.; Martyr, Cuthbert D.; Osswald, Heather L.; Sheri, Venkat Reddy; Kassekert, Luke A.; Chen, Shujing; Agniswamy, Johnson; Wang, Yuan-Fang; Hayashi, Hironori; Aoki, Manabu; Weber, Irene T.; Mitsuya, Hiroaki (GSU); (Kumamoto); (Purdue)


    Structure-based design, synthesis, and biological evaluation of a series of very potent HIV-1 protease inhibitors are described. In an effort to improve backbone ligand–binding site interactions, we have incorporated basic-amines at the C4 position of the bis-tetrahydrofuran (bis-THF) ring. We speculated that these substituents would make hydrogen bonding interactions in the flap region of HIV-1 protease. Synthesis of these inhibitors was performed diastereoselectively. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 25f, 25i, and 25j were evaluated against a number of highly-PI-resistant HIV-1 strains, and they exhibited improved antiviral activity over darunavir. Two high resolution X-ray structures of 25f- and 25g-bound HIV-1 protease revealed unique hydrogen bonding interactions with the backbone carbonyl group of Gly48 as well as with the backbone NH of Gly48 in the flap region of the enzyme active site. These ligand–binding site interactions are possibly responsible for their potent activity.

  18. On-Surface Pseudo-High-Dilution Synthesis of Macrocycles: Principle and Mechanism. (United States)

    Fan, Qitang; Wang, Tao; Dai, Jingya; Kuttner, Julian; Hilt, Gerhard; Gottfried, J Michael; Zhu, Junfa


    Macrocycles have attracted much attention due to their specific "endless" topology, which results in extraordinary properties compared to related linear (open-chain) molecules. However, challenges still remain in their controlled synthesis with well-defined constitution and geometry. Here, we report the successful application of the (pseudo-)high-dilution method to the conditions of on-surface synthesis in ultrahigh vacuum. This approach leads to high yields (up to 84%) of cyclic hyperbenzene ([18]-honeycombene) via an Ullmann-type reaction from 4,4″-dibromo-meta-terphenyl (DMTP) as precursor on a Ag(111) surface. The mechanism of macrocycle formation was explored in detail using scanning tunneling microscopy and X-ray photoemission spectroscopy. We propose that the dominant pathway for hyperbenzene (MTP)6 formation is the stepwise desilverization of an organometallic (MTP-Ag)6 macrocycle, which forms via cyclization of (MTP-Ag)6 chains under pseudo-high-dilution conditions. The high probability of cyclization on the stage of the organometallic phase results from the reversibility of the C-Ag bond. The case is different from that in solution, in which cyclization typically occurs on the stage of a covalently bonded open-chain precursor. This difference in the cyclization mechanism on a surface compared to that in solution stems mainly from the 2D confinement exerted by the surface template, which hinders the flipping of chain segments necessary for cyclization.

  19. Evaluation of the FIR Example using Xilinx Vivado High-Level Synthesis Compiler

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zheming [Argonne National Lab. (ANL), Argonne, IL (United States); Finkel, Hal [Argonne National Lab. (ANL), Argonne, IL (United States); Yoshii, Kazutomo [Argonne National Lab. (ANL), Argonne, IL (United States); Cappello, Franck [Argonne National Lab. (ANL), Argonne, IL (United States)


    Compared to central processing units (CPUs) and graphics processing units (GPUs), field programmable gate arrays (FPGAs) have major advantages in reconfigurability and performance achieved per watt. This development flow has been augmented with high-level synthesis (HLS) flow that can convert programs written in a high-level programming language to Hardware Description Language (HDL). Using high-level programming languages such as C, C++, and OpenCL for FPGA-based development could allow software developers, who have little FPGA knowledge, to take advantage of the FPGA-based application acceleration. This improves developer productivity and makes the FPGA-based acceleration accessible to hardware and software developers. Xilinx Vivado HLS compiler is a high-level synthesis tool that enables C, C++ and System C specification to be directly targeted into Xilinx FPGAs without the need to create RTL manually. The white paper [1] published recently by Xilinx uses a finite impulse response (FIR) example to demonstrate the variable-precision features in the Vivado HLS compiler and the resource and power benefits of converting floating point to fixed point for a design. To get a better understanding of variable-precision features in terms of resource usage and performance, this report presents the experimental results of evaluating the FIR example using Vivado HLS 2017.1 and a Kintex Ultrascale FPGA. In addition, we evaluated the half-precision floating-point data type against the double-precision and single-precision data type and present the detailed results.

  20. High yield combustion synthesis of nanomagnesia and its application for fluoride removal. (United States)

    Maliyekkal, Shihabudheen M; Anshup; Antony, K R; Pradeep, T


    We describe a novel combustion synthesis for the preparation of Nanomagnesia (NM) and its application in water purification. The synthesis is based on the self-propagated combustion of the magnesium nitrate trapped in cellulose fibers. Various characterization studies confirmed that NM formed is crystalline with high phase purity, and the particle size varied in the range of 3-7nm. The fluoride scavenging potential of this material was tested as a function of pH, contact time and adsorbent dose. The result showed that fluoride adsorption by NM is highly favorable and the capacity does not vary in the pH range usually encountered in groundwater. The effects of various co-existing ions usually found in drinking water, on fluoride removal were also investigated. Phosphate was the greatest competitor for fluoride followed by bicarbonate. The presence of other ions studied did not affect the fluoride adsorption capacity of NM significantly. The adsorption kinetics followed pseudo-second-order equation and the equilibrium data are well predicted by Frendlich equation. Our experimental evidence shows that fluoride removal happened through isomorphic substitution of fluoride in brucite. A batch household defluoridation unit was developed using precipitation-sedimentation-filtration techniques, addressing the problems of high fluoride concentration as well as the problem of alkaline pH of the magnesia treated water. The method of synthesis reported here is advantageous from the perspectives of small size of the nanoparticle, cost-effective recovery of the material and improvement in the fluoride adsorption capacity. Copyright 2010 Elsevier B.V. All rights reserved.

  1. A practical chemo-enzymatic approach to highly enantio-enriched 10-ethyl-7,8-dihydro-γ-ionone isomers: a method for the synthesis of 4,5-didehydro-α-ionone. (United States)

    Barakat, Assem; Al-Majid, Abdullah M; Mabkhot, Yahia Nasser; Al-Othman, Zeid Abdullah


    An efficient and convenient strategy for the enantioselective synthesis of enantiomerically enriched 10-ethyl-7,8-dihydro-γ-ionone isomers (R)-(+)-7, and (S)-(-)-7 are described utilizing a lipase mediated resolution protocol, and reductive elimination of the secondary allylic alcohol as the key step. The enantioselective and diastereoselective lipase kinetic acetylation of 4-hydroxy-γ-ionone derivatives 6a afforded the 4-acetyl-γ-ionone derivatives (-)-8, and the 4-hydrox-γ-ionone derivatives (+)-6a, which are suitable precursors of the desired products. Stereospecific palladium-mediated elimination of allylic acetate provides the target compounds with an excellent enantiomeric excess and yield. Additionally, the novel 4,5-didehydro-α-ionone 13 is obtained from readily prepared (2,6,6-trimethylcyclohexa-2,4-dien-1-yl) methanol 9. The structures of all newly synthesized compounds have been elucidated by (1)H, (13)C NMR, GC-MS, and IR spectrometry. These compounds represent a new class of odorants that may be of pivotal relevance in industrial perfumery.

  2. A Practical Chemo-enzymatic Approach to Highly Enantio-Enriched 10-Ethyl-7,8-dihydro-γ-ionone Isomers: A Method for the Synthesis of 4,5-Didehydro-α-Ionone

    Directory of Open Access Journals (Sweden)

    Zeid Abdullah Al-Othman


    Full Text Available An efficient and convenient strategy for the enantioselective synthesis of enantiomerically enriched 10-ethyl-7,8-dihydro-γ-ionone isomers (R-(+-7, and (S-(−-7 are described utilizing a lipase mediated resolution protocol, and reductive elimination of the secondary allylic alcohol as the key step. The enantioselective and diastereoselective lipase kinetic acetylation of 4-hydroxy-γ-ionone derivatives 6a afforded the 4-acetyl-γ-ionone derivatives (−-8, and the 4-hydrox-γ-ionone derivatives (+-6a, which are suitable precursors of the desired products. Stereospecific palladium-mediated elimination of allylic acetate provides the target compounds with an excellent enantiomeric excess and yield. Additionally, the novel 4,5-didehydro-α-ionone 13 is obtained from readily prepared (2,6,6-trimethylcyclohexa-2,4-dien-1-yl methanol 9. The structures of all newly synthesized compounds have been elucidated by 1H, 13C NMR, GC-MS, and IR spectrometry. These compounds represent a new class of odorants that may be of pivotal relevance in industrial perfumery.

  3. Highly enantioselective Friedel-Crafts reaction of thiophenes with glyoxylates: formal synthesis of duloxetine. (United States)

    Majer, Jakub; Kwiatkowski, Piotr; Jurczak, Janusz


    An efficient Friedel-Crafts reaction of a series of 2-substituted thiophenes with alkyl glyoxylates has been developed using a catalytic amount of an easy accessible 6,6'-dibromo-BINOL/Ti(IV) complex. A variety of hydroxy(thiophene-2-yl)acetates can be synthesized in high enantioselectivites (92-98% ee) and good yields. This is the first report on the efficient asymmetric F-C reaction of thiophenes with alkyl glyoxylates. Starting from simple thiophene and n-butyl glyoxylate, we demonstrated the formal synthesis of duloxetine.

  4. High-performance quantum-dot solids via elemental sulfur synthesis

    KAUST Repository

    Yuan, Mingjian


    An elemental-sulfur-based synthesis is reported, which, combined with processing to improve the size dispersion and passivation, results in a low-cost high-quality platform for small-bandgap PbS-CQD-based devices. Size-selective precipitation and cadmium chloride passivation are used to improve the power conversion efficiency of 1 eV bandgap CQD photovoltaic devices dramatically, which leads to record power conversion efficiency for a 1 eV PbS CQD solar cell of 5.4%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Determination of Charge Component Composition in Self-Propagating High-Temperature Synthesis of Intermetallic Compounds (United States)

    Evtushenko, A. T.; Lebedeva, O. A.; Torbunov, S. S.


    A method for determining the component composition of the charge for the self-propagating high-temperature synthesis of intermetallic compounds from the maximum value of the emitted heat in the combustion of thermit, which is required for melting the alloying components, is suggested. The mass composition of the alloying components is determined by solving a closed system of algebraic equations represented by regression equations derived from the results of physical experiment for obtaining specific properties of the intermetallic compound. Theoretical computations are partially confirmed by experimental results.

  6. Synthesis of Zeolite NaA from Low Grade (High Impurities) Indonesian Natural Zeolite


    Mustain, Asalil; Wibawa, Gede; Nais, Mukhammad Furoiddun; Falah, Miftakhul


    The zeolite NaA has been successfully synthesized from the low grade natural zeolite with high impurities. The synthesis method was started by mixing natural zeolite powder with NH4Cl aqueous solution in the reactor as pretreatment. The use of pretreatment was to reduce the impurities contents in the zeolite. The process was followed by alkaline fusion hydrothermal treatment to modify the framework structure of natural zeolite and reduce the SiO2/Al2O3 ratio. Finally, the synthesized zeolite ...

  7. Power Constrained High-Level Synthesis of Battery Powered Digital Systems

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Madsen, Jan


    We present a high-level synthesis algorithm solving the combined scheduling, allocation and binding problem minimizing area under both latency and maximum power per clock-cycle constraints. Our approach eliminates the large power spikes, resulting in an increased battery lifetime, a property...... of utmost importance for battery powered embedded systems. Our approach extends the partial-clique partitioning algorithm by introducing power awareness through a heuristic algorithm which bounds the design space to those of power feasible schedules. We have applied our algorithm on a set of dataflow graphs...

  8. Software and Firmware co-development using High-level Synthesis

    CERN Document Server

    Pratap Ghanathe, Nikhil


    Accelerating trigger applications on FPGAs (using VHDL/Verilog) at the CMS experiment at CERN's Large Hadron Collider at CERN warrants consistency between each trigger firmware and its corresponding C++ model. This tedious and time consuming process of convergence is exacerbated during each upgrade study. High-level synthesis, with its promise of increased productivity and C++ design entry bridges this gap exceptionally well. This paper explores the single source code approach using Vivado-HLS tool for redeveloping the upgraded CMS Endcap Muon Level-1 Track finder (EMTF). Guidelines for tight latency control, optimal resource usage and compatibility with CMS software framework are outlined in this paper.

  9. Synthesis of Disentangled Ultra-High Molecular Weight Polyethylene: Influence of Reaction Medium on Material Properties

    Directory of Open Access Journals (Sweden)

    Giuseppe Forte


    Full Text Available The polymerization of ethylene to Ultra-High Molecular Weight Polyethylene (UHMWPE in certain reaction conditions allows synthesis of nascent powders with a considerably lower amount of entanglements: the material obtained is of great interest from both academic and industrial viewpoints. From an academic point of view, it is interesting to follow the evolution of the metastable melt state with the progressive entanglements formation. Industrially, it is valuable to have a solvent-free processing route for the production of high modulus, high strength tapes. Since the polymer synthesis is performed in the presence of a solvent, it is interesting to investigate the influence that the reaction medium can have on the catalyst activity, resultant molecular characteristics, and polymer morphology at the macroscopic as wells as microscopic level. In this paper, we present the effect that two typical polymerization solvents, toluene and heptane, and mixtures of them, have on the catalytic performance and on the polymer properties. The observations are that an unexpected increase of catalyst activity, accompanied by a significant improvement in mechanical properties, is found when using a carefully chosen mixture of solvents. A tentative explanation is given on the basis of the presented results.

  10. Synthesis of high-strength microcrystalline cellulose hydrogel by viscosity adjustment. (United States)

    Choe, Deokyeong; Kim, Young Min; Nam, Jae Eun; Nam, Keonwook; Shin, Chul Soo; Roh, Young Hoon


    Developing hydrogels with enhanced mechanical strength is desirable for bio-related applications. For such applications, cellulose is a notable biopolymer for hydrogel synthesis due to its inherent strength and stiffness. Here, we report the viscosity-adjusted synthesis of a high-strength hydrogel through the physical entanglement of microcrystalline cellulose (MCC) in a solvent mixture of tetrabutylammonium fluoride/dimethyl sulfoxide (TBAF/DMSO). MCC was strategically dissolved with TBAF in DMSO at a controlled ratio to induce the formation of a liquid crystalline phase (LCP), which was closely related to the viscosity of the cellulose solution. The highest viscosity was obtained at 2.5% MCC and 3.5% TBAF, leading to the strongest high-strength MCC hydrogel (strongest HS-MCC hydrogel). The resulting hydrogel exhibited a high compressive strength of 0.38MPa and a densely packed structure. Consequently, a positive linear correlation was determined between the viscosity of the cellulose solution and the mechanical strength of the HS-MCC hydrogel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. High-yield Synthesis of Multiwalled Carbon Nanotube by Mechanothermal Method

    Directory of Open Access Journals (Sweden)

    Manafi SA


    Full Text Available Abstract This study reports on the mechanothermal synthesis of multiwalled carbon nanotube (MWCNTs from elemental graphite powder. Initially, high ultra-active graphite powder can be obtained by mechanical milling under argon atmosphere. Finally, the mechanical activation product is heat-treated at 1350°C for 2–4 h under argon gas flow. After heat-treatment, active graphite powders were successfully changed into MWCNTs with high purity. The XRD analyses showed that in the duration 150 h of milling, all the raw materials were changed to the desired materials. From the broadening of the diffraction lines in the XRD patterns, it was concluded that the graphite crystallites were nanosized, and raising the milling duration resulted in the fineness of the particles and the increase of the strain. The structure and morphology of MWCNTs were investigated using scanning electron microscopy (SEM and high-resolution transmission electron microscopy (HRTEM. The yield of MWCNTs was estimated through SEM and TEM observations of the as-prepared samples was to be about 90%. Indeed, mechanothermal method is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanotubes (CNTs. As a matter of fact, the method of mechanothermal guarantees the production of MWCNTs suitable for different applications.

  12. High-yield Synthesis of Multiwalled Carbon Nanotube by Mechanothermal Method (United States)

    Manafi, S. A.; Amin, M. H.; Rahimipour, M. R.; Salahi, E.; Kazemzadeh, A.


    This study reports on the mechanothermal synthesis of multiwalled carbon nanotube (MWCNTs) from elemental graphite powder. Initially, high ultra-active graphite powder can be obtained by mechanical milling under argon atmosphere. Finally, the mechanical activation product is heat-treated at 1350°C for 2-4 h under argon gas flow. After heat-treatment, active graphite powders were successfully changed into MWCNTs with high purity. The XRD analyses showed that in the duration 150 h of milling, all the raw materials were changed to the desired materials. From the broadening of the diffraction lines in the XRD patterns, it was concluded that the graphite crystallites were nanosized, and raising the milling duration resulted in the fineness of the particles and the increase of the strain. The structure and morphology of MWCNTs were investigated using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The yield of MWCNTs was estimated through SEM and TEM observations of the as-prepared samples was to be about 90%. Indeed, mechanothermal method is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanotubes (CNTs). As a matter of fact, the method of mechanothermal guarantees the production of MWCNTs suitable for different applications.

  13. Synthesis of High-Quality Biodiesel Using Feedstock and Catalyst Derived from Fish Wastes. (United States)

    Madhu, Devarapaga; Arora, Rajan; Sahani, Shalini; Singh, Veena; Sharma, Yogesh Chandra


    A low-cost and high-purity calcium oxide (CaO) was prepared from waste crab shells, which were extracted from the dead crabs, was used as an efficient solid base catalyst in the synthesis of biodiesel. Raw fish oil was extracted from waste parts of fish through mechanical expeller followed by solvent extraction. Physical as well as chemical properties of raw fish oil were studied, and its free fatty acid composition was analyzed with GC-MS. Stable and high-purity CaO was obtained when the material was calcined at 800 °C for 4 h. Prepared catalyst was characterized by XRD, FT-IR, and TGA/DTA. The surface structure of the catalyst was analyzed with SEM, and elemental composition was determined by EDX spectra. Esterification followed by transesterification reactions were conducted for the synthesis of biodiesel. The effect of cosolvent on biodiesel yield was studied in each experiment using different solvents such as toluene, diethyl ether, hexane, tetrahydrofuran, and acetone. High-quality and pure biodiesel was synthesized and characterized by 1 H NMR and FT-IR. Biodiesel yield was affected by parameters such as reaction temperature, reaction time, molar ratio (methanol:oil), and catalyst loading. Properties of synthesized biodiesel such as density, kinematic viscosity, and cloud point were determined according to ASTM standards. Reusability of prepared CaO catalyst was checked, and the catalyst was found to be stable up to five runs without significant loss of catalytic activity.

  14. Rapid and direct synthesis of complex perovskite oxides through a highly energetic planetary milling (United States)

    Lee, Gyoung-Ja; Park, Eun-Kwang; Yang, Sun-A.; Park, Jin-Ju; Bu, Sang-Don; Lee, Min-Ku


    The search for a new and facile synthetic route that is simple, economical and environmentally safe is one of the most challenging issues related to the synthesis of functional complex oxides. Herein, we report the expeditious synthesis of single-phase perovskite oxides by a high-rate mechanochemical reaction, which is generally difficult through conventional milling methods. With the help of a highly energetic planetary ball mill, lead-free piezoelectric perovskite oxides of (Bi, Na)TiO3, (K, Na)NbO3 and their modified complex compositions were directly synthesized with low contamination. The reaction time necessary to fully convert the micron-sized reactant powder mixture into a single-phase perovskite structure was markedly short at only 30-40 min regardless of the chemical composition. The cumulative kinetic energy required to overtake the activation period necessary for predominant formation of perovskite products was ca. 387 kJ/g for (Bi, Na)TiO3 and ca. 580 kJ/g for (K, Na)NbO3. The mechanochemically derived powders, when sintered, showed piezoelectric performance capabilities comparable to those of powders obtained by conventional solid-state reaction processes. The observed mechanochemical synthetic route may lead to the realization of a rapid, one-step preparation method by which to create other promising functional oxides without time-consuming homogenization and high-temperature calcination powder procedures.

  15. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites (United States)

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.


    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  16. Honeycomb supports with high thermal conductivity for the Tischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Visconti, C.G.; Rronconi, E.; Groppi, G.; Lietti, L. [Politecnico di Milano (Italy). Dipt. di Energia; Iovane, M.; Rossini, S.; Zennaro, R. [Eni S.p.A., San Donato Milanese (Italy). Div. Exploration and Production


    The potential of multitubular reactors loaded with washcoated structured catalysts having highly conductive honeycomb supports is investigated herein in the low temperature Fischer- Tropsch synthesis by means of a theoretical investigation. Simulation results indicate that extruded aluminum honeycomb monoliths, washcoated with a Co-based catalyst, are promising for the application at the industrial scale, in particular when adopting supports with high cell densities and catalysts with high activity. Limited temperature gradients within the reactor are in fact possible even at extreme process conditions, thus leading to interesting volumetric reactor yields with negligible pressure drop. This result is achieved without the need of cofeeding to the reactor large amounts of liquid hydrocarbons to remove the reaction heat, as opposite to existing industrial Fischer-Tropsch packed-bed reactors. (orig.)

  17. Synthesis of well-aligned boron nanowires and their structural stability under high pressure

    CERN Document Server

    Cao Li Min; Gao Cun Xiao; Li Yan Cun; Li Xiao Dong; Wang, Y Q; Zhang, Z; Cui Qi Liang; Zou Guang Tian; Sun Li; Wang Wen Kui


    Owing to its unusual bonding and vast variety of unique crystal structures, boron is one of the most fascinating elements in the periodic table. Here we report the large-scale synthesis of well-ordered boron nanowires and their structural stability at high pressure. Boron nanowires with uniform diameter and length grown vertically on silicon substrates were synthesized by radio-frequency magnetron sputtering with a target of pure boron using argon as the sputtering atmosphere without involvement of templates and catalysts. Detailed characterization by high-resolution transmission electron microscopy and electron diffraction indicates that the boron nanowires are amorphous. Structural stability of the boron nanowires at room temperature has been investigated by means of in situ high-pressure energy-dispersive x-ray powder diffraction using synchrotron radiation in a diamond anvil cell. No crystallization was observed up to a pressure of 103.5 GPa, suggesting that the amorphous structure of boron nanowires is s...

  18. Synthesis of a high specific activity methyl sulfone tritium isotopologue of fevipiprant (NVP-QAW039). (United States)

    Luu, Van T; Goujon, Jean-Yves; Meisterhans, Christian; Frommherz, Matthias; Bauer, Carsten


    The synthesis of a triple tritiated isotopologue of the CRTh2 antagonist NVP-QAW039 (fevipiprant) with a specific activity >3 TBq/mmol is described. Key to the high specific activity is the methylation of a bench-stable dimeric disulfide precursor that is in situ reduced to the corresponding thiol monomer and methylated with [(3)H3]MeONos having per se a high specific activity. The high specific activity of the tritiated active pharmaceutical ingredient obtained by a build-up approach is discussed in the light of the specific activity usually to be expected if hydrogen tritium exchange methods were applied. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp

    Energy Technology Data Exchange (ETDEWEB)

    Thambiraj, S. [Nano-Bio Materials and Sensors Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, Tamil Nadu (India); Ravi Shankaran, D., E-mail: [Nano-Bio Materials and Sensors Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, Tamil Nadu (India); National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu (India)


    Graphical abstract: Schematic representation of CQDs from sugarcane bagasse carbon. - Highlights: • CQDs were synthesised from sugarcane bagasse waste with top down approaches. • Synthesis method is green, simple and efficient process. • CQDs possess high quantum yield, good stability and highly fluorescent in nature. • The morphological and topographical study of CQDs was done by HR-TEM and AFM and was observed that the average size is 4.1 ± 0.17 nm and surface thickness is 5 nm. - Abstract: Carbon quantum dots (CQDs) have great potential due to its advantageous characteristics of highly fluorescent nature and good stability. In this study, we aimed to develop a simple and efficient method for the green synthesis of fluorescent CQDs from sugarcane bagasse, a renewable and sustainable resource. The process involves the top down approach of chemical oxidation followed by exfoliation of sugarcane carbon. The synthesized CQDs was characterized by UV–vis absorption spectroscopy, Spectrofluorophotometry, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, X-ray photon spectroscopy (XPS), Atomic force microscopy (AFM) and High-resolution transmission electron microscopy (HR-TEM). The synthesized CQDs possess stable fluorescent properties, good bio-compatibility and high quantum yield. The CQDs are highly crystalline with longitudinal dimensions of 4.1 ± 0.17 nm with an average roughness of around 5 nm. The XRD and TEM analysis indicates that the synthesized CQDs possess face centred cubic crystal structure. The results suggest that the proposed CQDs could be utilized for bio-sensor, bio-imaging and drug delivery applications.

  20. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D P; Aouadi, S M [Department of Physics, Southern Illinois University, Carbondale-62901 (United States); Polychronopoulou, K [Department of Chemistry, University of Cyprus, Nicosia, 1678 (Cyprus); Rebholz, C, E-mail:, E-mail: [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678 (Cyprus)


    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly {beta}-AgV O{sub 3}) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 {mu}m and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 deg. C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O{sub 3} completely transformed into silver vanadium oxide (Ag{sub 2}V{sub 4}O{sub 11}) and silver with an increase in temperature from RT to 700 deg. C.

  1. In vivo ATP synthesis rates in single human muscles during high intensity exercise (United States)

    Walter, Glenn; Vandenborne, Krista; Elliott, Mark; Leigh, John S


    In vivo ATP synthesis rates were measured in the human medial gastrocnemius muscle during high intensity exercise using localized 31P-magnetic resonance spectroscopy (31P-MRS). Six-second localized spectra were acquired during and following a 30 s maximal voluntary rate exercise using a magnetic resonance image-guided spectral localization technique. During 30 s maximal voluntary rate exercise, ATPase fluxes were predominantly met by anaerobic ATP sources. Maximal in vivo glycogenolytic rates of 207 ± 48 mM ATP min−1 were obtained within 15 s, decreasing to 72 ± 34 mM ATP min−1 by the end of 30 s. In contrast, aerobic ATP synthesis rates achieved 85 ± 2 % of their maximal capacity within 9 s and did not change throughout the exercise. The ratio of peak glycolytic ATP synthesis rate to maximal oxidative ATP synthesis was 2.9 ± 0.9. The non-Pi, non-CO2 buffer capacity was calculated to be 27.0 ± 6.2 slykes (millimoles acid added per unit change in pH). At the cessation of exercise, Pi, phosphomonoesters and CO2 were predicted to account for 17.2 ± 1.5, 5.57 ± 0.97 and 2.24 ± 0.34 slykes of the total buffer capacity. Over the approximately linear range of intracellular pH recovery following the post-exercise acidification, pHi recovered at a rate of 0.19 ± 0.03 pH units min−1. Proton transport capacity was determined to be 16.4 ± 4.1 mM (pH unit)−1 min−1 and corresponded to a maximal proton efflux rate of 15.3 ± 2.7 mM min−1. These data support the observation that glycogenolytic and glycolytic rates are elevated in vivo in the presence of elevated Pi levels. The data do not support the hypothesis that glycogenolysis follows Michealis-Menten kinetics with an apparent Km for [Pi]in vivo. In vivo -measured ATP utilization rates and the initial dependence on PCr and glycolysis were similar to those previously reported in in situ studies involving short duration, high intensity exercise. This experimental approach presents a non

  2. The direct oxidative diene cyclization and related reactions in natural product synthesis

    Directory of Open Access Journals (Sweden)

    Juliane Adrian


    Full Text Available The direct oxidative cyclization of 1,5-dienes is a valuable synthetic method for the (diastereoselective preparation of substituted tetrahydrofurans. Closely related reactions start from 5,6-dihydroxy or 5-hydroxyalkenes to generate similar products in a mechanistically analogous manner. After a brief overview on the history of this group of transformations and a survey on mechanistic and stereochemical aspects, this review article provides a summary on applications in natural product synthesis. Moreover, current limitations and future directions in this area of chemistry are discussed.

  3. An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance. (United States)

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; McGrail, B Peter; Motkuri, Radha Kishan


    Vapor-assisted dry-gel synthesis of the metal-organic framework-74 (MOF-74) structure, specifically Ni-MOF-74 produced from synthetic precursors using an organic-water hybrid solvent system, showed a very high yield (>90% with respect to 2,5-dihydroxyterepthalic acid) and enhanced performance. The Ni-MOF-74 obtained showed improved sorption characteristics towards CO2 and the refrigerant fluorocarbon dichlorodifluoromethane. Unlike conventional synthesis, which takes 72 hours using the tetrahydrofuran-water system, this kinetic study showed that Ni-MOF-74 forms within 12 hours under dry-gel conditions with similar performance characteristics, and exhibits its best performance characteristics even after 24 hours of heating. In the dry-gel conversion method, the physical separation of the solvent and precursor mixture allows for recycling of the solvent. We demonstrated efficient solvent recycling (up to three times) that resulted in significant cost benefits. The scaled-up manufacturing cost of Ni-MOF-74 synthesized via our dry-gel method is 45% of conventional synthesis cost. Thus, for bulk production of the MOFs, the proposed vapor-assisted, dry-gel method is efficient, simple, and inexpensive when compared to the conventional synthesis method.


    Microwave-assisted reaction of 2'-hydroxychalcones in the presence of DBU resulted in the formation of hitherto unknown dimers by conjugate addition of the intermediate cyclic ketone to the starting enone.


    Substituted 2'-hydroxychalcones were found to give an equilibrium mixture of the starting chalcone and the corresponding flavanone in 4:6 - 1:3 ratio in the presence of various supports and MW irradiation. MW irradiation of 2'-hydroxychalcones in the presence of DBU gave two hit...

  6. High-Throughput Synthesis, Screening, and Scale-Up of Optimized Conducting Indium Tin Oxides. (United States)

    Marchand, Peter; Makwana, Neel M; Tighe, Christopher J; Gruar, Robert I; Parkin, Ivan P; Carmalt, Claire J; Darr, Jawwad A


    A high-throughput optimization and subsequent scale-up methodology has been used for the synthesis of conductive tin-doped indium oxide (known as ITO) nanoparticles. ITO nanoparticles with up to 12 at % Sn were synthesized using a laboratory scale (15 g/hour by dry mass) continuous hydrothermal synthesis process, and the as-synthesized powders were characterized by powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, and X-ray photoelectron spectroscopy. Under standard synthetic conditions, either the cubic In2O3 phase, or a mixture of InO(OH) and In2O3 phases were observed in the as-synthesized materials. These materials were pressed into compacts and heat-treated in an inert atmosphere, and their electrical resistivities were then measured using the Van der Pauw method. Sn doping yielded resistivities of ∼ 10(-2) Ω cm for most samples with the lowest resistivity of 6.0 × 10(-3) Ω cm (exceptionally conductive for such pressed nanopowders) at a Sn concentration of 10 at %. Thereafter, the optimized lab-scale composition was scaled-up using a pilot-scale continuous hydrothermal synthesis process (at a rate of 100 g/hour by dry mass), and a comparable resistivity of 9.4 × 10(-3) Ω cm was obtained. The use of the synthesized TCO nanomaterials for thin film fabrication was finally demonstrated by deposition of a transparent, conductive film using a simple spin-coating process.

  7. One-step synthesis of highly reduced graphene hydrogels for high power supercapacitor applications (United States)

    Banda, Harish; Aradilla, David; Benayad, Anass; Chenavier, Yves; Daffos, Barbara; Dubois, Lionel; Duclairoir, Florence


    Graphene hydrogels with high electrical conductivity were prepared by a one-step process using hydrazine hydrate as gel assembly agent (GH-HD). Conventional two-step process of gel formation and further reduction to prepare highly conducting gels was replaced by a single step involving equivalent amount of hydrazine. Optimized graphene oxide concentration was established to facilitate such monolith formation. Extensive characterization and control studies enabled understanding of the material properties and gel formation mechanism. The synthesized gel shows a high electrical conductivity of 1141 S/m. The supercapacitor based on GH-HD delivers a high specific capacitance of 190 F/g at a current density of 0.5 A/g and 123 F/g at very high current density of 100 A/g. Furthermore, excellent power capability and cyclic stability were also observed. 3D macroporous morphology of GH-HD makes it ideal for high rate supercapacitor applications.

  8. An expeditious route to both enantiomers of all carbon quaternary stereocenters at C-3 carbon of lactams via [3,3]-sigmatropic rearrangement: total synthesis of (-)-physostigmine. (United States)

    Pandey, Ganesh; Khamrai, Jagadish; Mishra, Akash


    A diastereoselective route to all carbon quaternary stereocenters at the C-3 position of cyclic lactams has been developed via Johnson-Claisen rearrangement of γ-hydroxy-α, β-unsaturated lactams. It has been observed that olefin geometry plays an important role in the development of the absolute stereochemistry of the product. The dependence of the product configuration on the olefin geometry is explained by postulating probable transition states. The success of this method has been shown for the multigram scale synthesis of these substituted lactams from commercially available cheap starting materials. The synthetic usefulness of this method is also demonstrated by carrying out the total synthesis of (-)-physostigmine.

  9. Organobase catalyzed 1,4-conjugate addition of 4-hydroxycoumarin on chalcones: Synthesis, NMR and single-crystal X-ray diffraction studies of novel warfarin analogues (United States)

    Talhi, Oualid; Fernandes, José A.; Pinto, Diana C. G. A.; Almeida Paz, Filipe A.; Silva, Artur M. S.


    The synthesis of a new series of warfarin analogues by convenient organobase catalyzed 1,4-conjugate addition of 4-hydroxycoumarin to chalcone derivatives is described. 1H NMR spectroscopy evidenced the presence of a predominant acyclic open-form together with the cyclic hemiketal tautomers of the resulting Michael adducts. The acyclic open-form has been unequivocally proved by single-crystal X-ray diffraction analysis. The use of the B ring ortho-hydroxychalcone synthons in this reaction has led to a diastereoselective synthesis of warfarin bicyclo[3.3.1]nonane ketal derivatives.

  10. Synthesis and characterization of high performance superabsorbent hydrogels using bis[2-(methacryloyloxyethyl] phosphate as crosslinker

    Directory of Open Access Journals (Sweden)

    A. A. L. Goncalves


    Full Text Available Various superabsorbent polymers (SAPs were synthesized by free radical copolymerization at 70°C using acrylic acid (AA, potassium acrylate (KA, N-isopropyl acrylamide (NIPAM and sulfopropyl methacrylate potassium salt (SPM as monomers, bis[2-(methacryloyloxyethyl] phosphate (BMEP as crosslinker and potassium persulfate (KPS as initiator. The optimization of the synthesis led to the preparation of a SAP with very high water absorption ability, with a maximum swelling of 2618 g water/g dry hydrogel. The most promising SAP was fully characterized and the absorption capacities were studied at different pH and ionic strengths. When this SAP was mixed with soil, the mixture was able to lose water more slowly. Also, this material revealed high loading capacity and showed good releasing profiles using urea as model fertilizer. Due to these advantageous properties, the synthesized SAP can be used in agricultural applications.

  11. Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock. (United States)

    Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Hu, Liangbing


    High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.

  12. Synthesis of high-quality mesoporous silicon particles for enhanced lithium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chundong, E-mail: [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Ren, Jianguo [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Chen, Hao [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Zhang, Yi [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073 (China); Ostrikov, Kostya [School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, QLD (Australia); Manufacturing Flagship, CSIRO, P. O. Box 218, Lindfield, NSW 2070 (Australia); Zhang, Wenjun [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Li, Yi, E-mail: [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China)


    Silicon has been considered as one of the most promising anode materials for high-capacity lithium-ion batteries (LIBs) due to its ultrahigh theoretical capacity, abundance, and environmentally benign nature. Nonetheless, the severe break during the prolonged cycling results in poor electrochemical performance, which hinders its practical application. Herein, we report the synthesis of novel mesoporous silicon particles with a facile template method by using a magnesiothermic reduction for LIBs. The obtained silicon nanoparticles are highly porous with densely porous cavities (20–40 nm) on the wall, of which it presents good crystallization. Electrochemical measurements showed that the mesoporous silicon nanoparticles delivered a high reversible specific capacity of 910 mA h g{sup −1} at a high current density of 1200 mA g{sup −1} over 50 cycles. The specific capacity at such high current density is still over twofold than that of commercial graphite anode, suggesting that the nanoporous Si architectures is suitable for high-performance Si-based anodes for lithium ion batteries in terms of capacity, cycle life, and rate capacity. - Highlights: • Silica nanotubes were prepared with a facile template method. • Novel mesoporous silicon particles were obtained by magnesiothermic reduction. • High-Performance LIBs were achieved by using mesoporous Si particle Electrodes.

  13. Microwave-Assisted Synthesis of Stable and Highly Active Ir Oxohydroxides for Electrochemical Oxidation of Water. (United States)

    Massué, Cyriac; Huang, Xing; Tarasov, Andrey; Ranjan, Chinmoy; Cap, Sébastien; Schlögl, Robert


    Water splitting for hydrogen production in acidic media has been limited by the poor stability of the anodic electrocatalyst devoted to the oxygen evolution reaction (OER). To help circumvent this problem we have synthesized a class of novel Ir oxohydroxides by rapid microwave-asisted hydrothermal synthesis, which bridges the gap between electrodeposited amorphous IrOx films and crystalline IrO2 electrocatalysts prepared by calcination routes. For electrode loadings two orders of magnitude below current standards, the synthesized compounds present an unrivalled combination of high activity and stability under commercially relevant OER conditions in comparison to reported benchmarks, without need for pretreatment. The best compound achieved a lifetime 33 times longer than the best commercial Ir benchmark. Thus, the reported efficient synthesis of an Ir oxohydroxide phase with superior intrinsic OER performance constitutes a major step towards the targeted design of cost-efficient Ir based OER electrocatalysts for acidic media. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High-Level Synthesis of DSP Applications Using Adaptive Negative Cycle Detection

    Directory of Open Access Journals (Sweden)

    Nitin Chandrachoodan


    Full Text Available The problem of detecting negative weight cycles in a graph is examined in the context of the dynamic graph structures that arise in the process of high level synthesis (HLS. The concept of adaptive negative cycle detection is introduced, in which a graph changes over time and negative cycle detection needs to be done periodically, but not necessarily after every individual change. We present an algorithm for this problem, based on a novel extension of the well-known Bellman-Ford algorithm that allows us to adapt existing cycle information to the modified graph, and show by experiments that our algorithm significantly outperforms previous incremental approaches for dynamic graphs. In terms of applications, the adaptive technique leads to a very fast implementation of Lawlers algorithm for the computation of the maximum cycle mean (MCM of a graph, especially for a certain form of sparse graph. Such sparseness often occurs in practical circuits and systems, as demonstrated, for example, by the ISCAS 89/93 benchmarks. The application of the adaptive technique to design-space exploration (synthesis is also demonstrated by developing automated search techniques for scheduling iterative data-flow graphs.

  15. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.


    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  16. Minute-made and low carbon fingerprint microwave synthesis of high quality templated mesoporous silica

    KAUST Repository

    Chaignon, J.


    © The Royal Society of Chemistry 2015. Hexagonal mesostructured templated silicas were produced in less than 10 minutes using an ultra-fast microwave assisted hydrothermal synthesis. Typically, 10 g can be prepared at once in a commercial microwave device usually devoted to analytical digestion. Undesired alcohol side-products were avoided using inexpensive water colloidal silica instead of silicon alkoxides as the silicon source. In comparison with classical heating activation, the absence of pore expansion and pore wall thickening even for synthesis temperatures as high as 190 °C evidenced that heat transfer and diffusion of matter had no time to take place. Comparison between the chemically extracted and calcined samples shows that the structure was better stabilized for autoclaving above 150 °C. However, a fast temperature ramping and final temperatures above 180 °C were required to sear structures of the highest quality comparable to that of the best conventional methods. This is rationalized by assuming a sequential flake-by-flake assembly of the pore-wall at the micelle palisade. Notably, tosylate counterions yielded better structural characteristics than bromide counterions and allowed better opportunities for surfactant recycling.

  17. Synthesis of belt-like BiOBr hierarchical nanostructure with high photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiping [National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100 (China); Liu, Jingyi; Hu, Tingxia [Environment Research Institute, Shandong University, Jinan 250100 (China); Du, Na; Song, Shue [Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100 (China); Hou, Wanguo, E-mail: [Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100 (China)


    Highlights: • BiOBr hierarchical nanobelts (NBs) were solvothermally prepared. • NBs show higher specific surface area and photoabsorption than BiOBr nanosheets. • NBs exhibit higher photoactivity than the nanosheets. - Abstract: One-dimensional (1D) bismuth oxyhalide (BiOX) hierarchical nanostructures are always difficult to prepare. Herein, we report, for the first time, a simple synthesis of BiOBr nanobelts (NBs) via a facile solvothermal route, using bismuth subsalicylate as the template and bismuth source. The BiOBr nanobelts are composed of irregular single crystal nanoparticles with highly exposed (0 1 0) facets. Compared with the BiOBr nanosheets (NSs) with dominant exposed (0 0 1) facets, they exhibit higher photocatalytic activity toward degradation of Rhodamine B and Methylene Blue under visible light irradiation. The higher photocatalytic performance of BiOBr NBs arises from their larger specific surface area and higher photoabsorption capability. This study provides a simple route for synthesis of belt-like Bi-based hierarchical nanostructures.

  18. Improved high-pressure enzymatic biodiesel batch synthesis in near-critical carbon dioxide. (United States)

    Lee, Myunggu; Lee, Dohoon; Cho, Jin Ku; Cho, Jaehoon; Han, Jinmi; Park, Chulhwan; Kim, Sangyong


    The enzymatic synthesis of biodiesel by a high-pressure semi-continuous process in near-critical carbon dioxide (NcCO(2)) was studied. Biodiesel synthesis was evaluated in both batch and semi-continuous systems to develop an effective process. Batch processing demonstrated the advantageous properties of NcCO(2) as an alternative reaction medium. Three immobilized lipases (Novozym 435, Lipozyme RM IM, and Lipozyme TL IM from Novozymes) were tested, with Lipozyme TL IM the most effective, showing the highest conversion. Biodiesel conversion from several edible and non-edible oil feedstocks reached >92%. Higher conversion (99.0%) was obtained in a shorter time by employing repeated batch processes with optimized conditions: 44.3 g (500 mM) canola oil, a substrate molar ratio (methanol:oil) of 3:1, an enzyme loading of 20 wt% (of the oil used), at 30 °C, 100 bar, and 300 rpm agitation. The enzyme maintained 80.2% of its initial stability after being reused eight times. These results suggest that this method produces biodiesel energy-efficiently and environment-friendly.

  19. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations. (United States)

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A


    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  20. High Pressure Diels Alder Reactions of 1-Vinyl-2,2,6-trimethylcyclohexene Catalyzed by Chiral Lewis Acids; An Enantioselective Route to a Drimane Sesquiterpene Precursor.

    NARCIS (Netherlands)

    Knol, Joop; Meetsma, Auke; Feringa, Bernard


    The Diels Alder reaction of 1-vinyl-2,2,6-trimethylcyclohexene and 3-((E)-3-(methoxycarbonyl)propenoyl)-1,3-oxazolidin-2-one under high pressure, catalyzed by a chiral bis-imine copper(II) complex, yields a drimane sesquiterpene precursor in a highly regio- and diastereoselective manner with

  1. In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes. (United States)

    Sun, Yongming; Lee, Hyun-Wook; Zheng, Guangyuan; Seh, Zhi Wei; Sun, Jie; Li, Yanbin; Cui, Yi


    The initial lithium loss during the formation stage is a critical issue that significantly reduces the specific capacity and energy density of current rechargeable lithium-ion batteries (LIBs). An effective strategy to solve this problem is using electrode prelithiation additives that can work as a secondary lithium source and compensate the initial lithium loss. Herein we show that nanocomposites of lithium fluoride and metal (e.g., LiF/Co and LiF/Fe) can be efficient cathode prelithiation materials. The thorough mixing of ultrafine lithium fluoride and metal particles (∼5 nm) allows lithium to be easily extracted from the nanocomposites via an inverse conversion reaction. The LiF/Co nanocomposite exhibits an open circuit voltage (OCV, 1.5 V) with good compatibility with that of existing cathode materials and delivers a high first-cycle "donor" lithium-ion capacity (516 mA h g(-1)). When used as an additive to a LiFePO4 cathode, the LiF/Co nanocomposite provides high lithium compensation efficiency. Importantly, the as-formed LiF/metal nanocomposites possess high stability and good compatibility with the regular solvent, binder, and existing battery processing conditions, in contrast with the anode prelithiation materials that usually suffer from issues of high chemical reactivity and instability. The facile synthesis route, high stability in ambient and battery processing conditions, and high "donor" lithium-ion capacity make the LiF/metal nanocomposites ideal cathode prelithiation materials for LIBs.

  2. Fibers innovative burning and reuse by Self-propagating High temperature Synthesis (SHS) (United States)

    Caratto, Valentina; Belfortini, Claudio; Musi, Luigi; Gaggero, Laura; Ferretti, Maurizio


    The treatment of asbestos containing waste deriving from civil building and industrial applications is a social alert and an environmental problem. The project LIFE12 ENV/IT 000295 FIBERS "Fibers innovative burning and reuse by Self-propagating High temperature Synthesis (SHS)" has developed an innovative technique alternative to conventional high T processes. The University of Genoa has developed an apparatus and a technique for triggering the breakdown reaction of chrysotile by means of an alumino-thermic reaction in a process of combustion synthesis well known as Self-propagating High temperature Synthesis or SHS. This approach yielded interesting results and allowed the development of an efficient method for inerting natural asbestos fibers and man-made products carrying fibers at the scale of some grams [1]. The experiments were based on the couples Fe2O3/Mg by implementation of two prototype plants. The varying parameters were: 1) different Asbestos-Containing Waste (ACW) massive (Eternit, linoleum) and friable asbestos; 2) ACW abundance; 3) size of the pellet 4) under two triggering systems (induction by a W coil and oxyacetylene torch). The reactions were carried in two configurations: a) discontinuous, allowed us to obtain data for the development and fine-tuning of the reaction, b) continuous, was indispensable for the development and fine-tuning of the process parameters towards industrial scale up. After the combustive reaction all samples were characterized by SEM-EDS and XRPD analysis. All experiments demonstrated effective in destructing the fibrous habit of chrysotile, turning its composition to stubby olivine grains. We optimized the parameters to achieve complete conversion of the asbestos to mineral grains in all the cases. The efficiency of the SHS reaction in the discontinuous and continuous configurations was highlighted by the characterization of the post-combustion material under SEM-EDS and XRPD that verified the absence of fibers within


    Substituted 2'-hydroxychalcones were found to give an equilibrium mixture of the starting chalcone and the corresponding flavanone inf 4.6-1:3 ratio in the presence of DBU gave two hitherto unknown diasteromeric dimers in a highly diastereoselective Michael addition of the carban...

  4. High yield polycarbosilane precursors to stoichiometric SiC. Synthesis, pyrolysis and application

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, L.V.; Wu, H.J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemistry; Whitmarsh, C.W.; Sherwood, W. [Starfire Systems, Inc., Glenville, NY (United States); Lewis, R.; Maciel, G. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry


    The synthesis and properties of two polycarbosilanes that have essentially a ``SiH{sub 2}CH{sub 2}`` composition is described. One of these polymers is a highly branched hydridopolycarbosilane (HPCS) derived from Grignard coupling of Cl{sub 3}SiCH{sub 2}Cl followed by LiAlH{sub 4} reduction. This synthesis is amenable to large scale production and the authors are exploring applications of HPCS as a source of SiC coatings and its allyl-derivative, AHPCS, as a matrix source for SiC and C-fiber reinforced composites. These polymers thermoset on heating at 200--400 C (or at 100 C with a catalyst) and give near stoichiometric SiC with low O content in ca. 80% yield on pyrolysis to 1,000 C. The second method involves ring-opening polymerization of 1,1,3,3-tetrachlorodisilacyclobutane and yields a high molecular weight, linear polymer that can be reduced to [SiH{sub 2}CH{sub 2}]{sub n} (PSE), the monosilicon analog of polyethylene. In contrast to high density polyethylene which melts at 135 C, PSE is a liquid at room temperature which crystallizes at ca. 5 C. On pyrolysis to 1,000 C, PSE gives stoichiometric, nanocrystalline, SiC in virtually quantitative yield. The polymer-to-ceramic conversion was examined for PSE by using TGA, mass spec., solid state NMR, and IR methods yielding information regarding the cross-linking and structural evolution processes. The results of these studies of the polymer-to-ceramic conversion process and their efforts to employ the AHPCS polymer as a source of SiC matrices are described.

  5. Preparation of neuroprotective condensed 1,4-benzoxazepines by regio- and diastereoselective domino Knoevenagel–[1,5]-hydride shift cyclization reaction

    Directory of Open Access Journals (Sweden)

    László Tóth


    Full Text Available Condensed O,N-heterocycles containing tetrahydro-1,4-benzoxazepine and tetrahydroquinoline moieties were prepared by a regio- and diastereoselective domino Knoevenagel–[1,5]-hydride shift cyclization reaction of a 4-aryl-2-phenyl-1,4-benzoxazepine derivative obtained from flavanone. The relative configuration of products were determined by the correlation of 3JH,H coupling data with the geometry of major conformers accessed by DFT conformational analysis. Separated enantiomers of the products were characterized by HPLC-ECD data, which allowed their configurational assignment on the basis of TDDFT-ECD calculation of the solution conformers. Two compounds showed neuroprotective activities against hydrogen peroxide (H2O2 or β-amyloid25–35 (Aβ25–35-induced cellular injuries in human neuroblastoma SH-SY5Y cells in the range of those of positive controls.

  6. Tuning high aqueous phase uptake in nonionic water-in-oil microemulsions for the synthesis of Mn-Zn ferrite nanoparticles: phase behavior, characterization, and nanoparticle synthesis. (United States)

    Aubery, Carolina; Solans, Conxita; Sanchez-Dominguez, Margarita


    In this work, the formation of water-in-oil (w/o) microemulsions with high aqueous phase uptake in a nonionic surfactant system is investigated as potential media for the synthesis of Mn-Zn ferrite nanoparticles. A comprehensive study based on the phase behavior of systems containing precursor salts, on one hand, and precipitating agent, on the other hand, was carried out to identify key regions on (a) pseudoternary phase diagrams at constant temperature (50 °C), and (b) pseudobinary phase diagrams at constant surfactant (S):oil(O) weight ratio (S:O) as a function of temperature. The internal structure and dynamics of microemulsions were studied systematically by conductivity and self-diffusion coefficient determinations (FT PGSE (1)H NMR). It was found that nonpercolated w/o microemulsions could be obtained by appropriate tuning of composition variables and temperature, with aqueous phase concentrations as high as 36 wt % for precursor salts and 25 wt % for precipitating agent systems. Three compositions with three different dynamic behaviors (nonpercolated and percolated w/o, as well as bicontinuous microemulsions) were selected for the synthesis of Mn-Zn ferrites, resulting in nanoparticles with different characteristics. Spinel structure and superparamagnetic behavior were obtained. This study sets firm basis for a systematic study of Mn-Zn ferrite nanoparticle synthesis via different scenarios of microemulsion dynamics, which will contribute to a better understanding on the relationship of the characteristics of the obtained materials with the properties of the reaction media. © 2011 American Chemical Society

  7. A Novel and Highly Regioselective Synthesis of New Carbamoylcarboxylic Acids from Dianhydrides

    Directory of Open Access Journals (Sweden)

    Adrián Ochoa-Terán


    Full Text Available A regioselective synthesis has been developed for the preparation of a series of N,N′-disubstituted 4,4′-carbonylbis(carbamoylbenzoic acids and N,N′-disubstituted bis(carbamoyl terephthalic acids by treatment of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (1 and 1,2,4,5-benzenetetracarboxylic dianhydride (2 with arylalkyl primary amines (A-N. The carbamoylcarboxylic acid derivatives were synthesized with good yield and high purity. The specific reaction conditions were established to obtain carbamoyl and carboxylic acid functionalities over the thermodynamically most favored imide group. Products derived from both anhydrides 1 and 2 were isolated as pure regioisomeric compounds under innovative experimental conditions. The chemo- and regioselectivity of products derived from dianhydrides were determined by NMR spectroscopy and confirmed by density functional theory (DFT. All products were characterized by NMR, FTIR, and MS.

  8. Palladium-tin catalysts for the direct synthesis of H₂O₂ with high selectivity. (United States)

    Freakley, Simon J; He, Qian; Harrhy, Jonathan H; Lu, Li; Crole, David A; Morgan, David J; Ntainjua, Edwin N; Edwards, Jennifer K; Carley, Albert F; Borisevich, Albina Y; Kiely, Christopher J; Hutchings, Graham J


    The direct synthesis of hydrogen peroxide (H2O2) from H2 and O2 represents a potentially atom-efficient alternative to the current industrial indirect process. We show that the addition of tin to palladium catalysts coupled with an appropriate heat treatment cycle switches off the sequential hydrogenation and decomposition reactions, enabling selectivities of >95% toward H2O2. This effect arises from a tin oxide surface layer that encapsulates small Pd-rich particles while leaving larger Pd-Sn alloy particles exposed. We show that this effect is a general feature for oxide-supported Pd catalysts containing an appropriate second metal oxide component, and we set out the design principles for producing high-selectivity Pd-based catalysts for direct H2O2 production that do not contain gold. Copyright © 2016, American Association for the Advancement of Science.

  9. Light-induced catalyst and solvent-free high pressure synthesis of high density polyethylene at ambient temperature. (United States)

    Ceppatelli, Matteo; Bini, Roberto


    The combined effect of high pressure and electronic photo-excitation has been proven to be very efficient in activating extremely selective polymerisations of small unsaturated hydrocarbons in diamond anvil cells (DAC). Here we report an ambient temperature, large volume synthesis of high density polyethylene based only on high pressure (0.4-0.5 GPa) and photo-excitation (~350 nm), without any solvent, catalyst or radical initiator. The reaction conditions are accessible to the current industrial technology and the laboratory scale pilot reactor can be scaled up to much larger dimensions for practical applications. FTIR and Raman spectroscopy, and X-ray diffraction, indicate that the synthesised material is of comparable quality with respect to the outstanding crystalline material obtained in the DAC. The polydispersity index is comparable to that of IV generation Ziegler-Natta catalysts. Moreover the crystalline quality of the synthesised material can be further enhanced by a thermal annealing at 373 K and ambient pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Highly dispersive α″-Fe{sub 16}N{sub 2} particle synthesis using hydroxyapatite coating

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Daisuke; Kinemuchi, Yoshiaki, E-mail:; Suzuki, Kazuyuki; Towata, Atsuya; Yasuoka, Masaki


    Alpha″-Fe{sub 16}N{sub 2} nanoparticles (NPs) with high magnetic crystalline anisotropy are useful for practical applications such as recording media. However, due to their strongly aggregated and/or sintered form, which occurs during synthesis, the utilization of the NPs has been limited thus far. Here, we report a method for synthesizing highly dispersive α″-Fe{sub 16}N{sub 2} NPs using hydroxyapatite (HAp). The chemically and thermally stable structure of the HAp coating results in the isolation of individual NPs, such that sintering is prevented during synthesis. Additionally, the acicular shape of the HAp crystal did not hinder gas diffusion during the gas reaction. Finally, HAp can be removed by a chelating agent without deteriorating the magnetic properties, resulting in highly dispersive α″-Fe{sub 16}N{sub 2} NPs. - Graphical abstract: Synthesis process of highly dispersive α″-Fe{sub 16}N{sub 2} particles using hydroxyapatite coating and SEM images of nanoparticles. - Highlights: • Highly dispersed α″-Fe{sub 16}N{sub 2} NPs were synthesized using hydroxyapatite (HAp). • HAp coating was stable chemically and thermally during gas reaction of α″-Fe{sub 16}N{sub 2} synthesis. • The magnetic property of the resultant Fe{sub 16}N{sub 2} NPs are M{sub s} of 170 emu/g and H{sub C} of 2450 Oe.

  11. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp (United States)

    Thambiraj, S.; Ravi Shankaran, D.


    Carbon quantum dots (CQDs) have great potential due to its advantageous characteristics of highly fluorescent nature and good stability. In this study, we aimed to develop a simple and efficient method for the green synthesis of fluorescent CQDs from sugarcane bagasse, a renewable and sustainable resource. The process involves the top down approach of chemical oxidation followed by exfoliation of sugarcane carbon. The synthesized CQDs was characterized by UV-vis absorption spectroscopy, Spectrofluorophotometry, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, X-ray photon spectroscopy (XPS), Atomic force microscopy (AFM) and High-resolution transmission electron microscopy (HR-TEM). The synthesized CQDs possess stable fluorescent properties, good bio-compatibility and high quantum yield. The CQDs are highly crystalline with longitudinal dimensions of 4.1 ± 0.17 nm with an average roughness of around 5 nm. The XRD and TEM analysis indicates that the synthesized CQDs possess face centred cubic crystal structure. The results suggest that the proposed CQDs could be utilized for bio-sensor, bio-imaging and drug delivery applications.

  12. Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure (United States)

    Ma, Yanbin; Duan, Defang; Shao, Ziji; Yu, Hongyu; Liu, Hanyu; Tian, Fubo; Huang, Xiaoli; Li, Da; Liu, Bingbing; Cui, Tian


    We predict a new ternary hydride MgSiH6 under high pressures, which is a metal with an ionic feature and takes on a simple cubic structure with space group P m -3 above 250 GPa. Our first-principles calculations show that the cubic MgSiH6 is a potential high-temperature superconductor with a superconducting transition temperature Tc of ˜63 K at 250 GPa. Further analysis suggests that phonon softening along mainly Γ -X and Γ -M directions induced by Fermi surface nesting plays a crucial role in the high-temperature superconductivity. Herein we propose the "triangle straight-line method" which provides a clear guide to determine the specific A + B → D type formation routes for ternary hydrides of the Mg-Si-H system and it effectively reveals two divergent paths to obtain MgSiH6 under high pressures: MgH2+SiH4→MgSiH6 and MgSi + 3 H2→MgSiH6 . This method might be applicable to all ternary compounds, which will be very significant for further experimental synthesis.

  13. Method of synthesis of abstract images with high self-similarity (United States)

    Matveev, Nikolay V.; Shcheglov, Sergey A.; Romanova, Galina E.; Koneva, Ð.¢atiana A.


    Abstract images with high self-similarity could be used for drug-free stress therapy. This based on the fact that a complex visual environment has a high affective appraisal. To create such an image we can use the setup based on the three laser sources of small power and different colors (Red, Green, Blue), the image is the pattern resulting from the reflecting and refracting by the complicated form object placed into the laser ray paths. The images were obtained experimentally which showed the good therapy effect. However, to find and to choose the object which gives needed image structure is very difficult and requires many trials. The goal of the work is to develop a method and a procedure of finding the object form which if placed into the ray paths can provide the necessary structure of the image In fact the task means obtaining the necessary irradiance distribution on the given surface. Traditionally such problems are solved using the non-imaging optics methods. In the given case this task is very complicated because of the complicated structure of the illuminance distribution and its high non-linearity. Alternative way is to use the projected image of a mask with a given structure. We consider both ways and discuss how they can help to speed up the synthesis procedure for the given abstract image of the high self-similarity for the setups of drug-free therapy.

  14. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction (United States)

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan


    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials’ high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs). PMID:28240234

  15. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction (United States)

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan


    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials’ high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs).

  16. High-pressure synthesis and structural behavior of sodium orthonitrate Na 3NO 4 (United States)

    Quesada Cabrera, R.; Sella, A.; Bailey, E.; Leynaud, O.; McMillan, P. F.


    Sodium orthonitrate (Na 3NO 4) is an unusual phase containing the first example of isolated tetrahedrally bonded NO 43- groups. This compound was obtained originally by heating together mixtures of Na 2O and NaNO 3 for periods extending up to >14 days in evacuated chambers. Considering the negative volume change between reactants and products, it was inferred that a high-pressure synthesis route might favor the formation of the Na 3NO 4 compound. We found that the recovered sample is likely to be a high-pressure polymorph, containing NO 43- groups as evidenced by Raman spectroscopy. The high-pressure behavior of Na 3NO 4 was studied using Raman spectroscopy and synchrotron X-ray diffraction in a diamond anvil cell above 60 GPa. We found no evidence for major structural transformations, even following laser heating experiments carried out at high pressure, although broadening of the Raman peaks could indicate the onset of disordering at higher pressure.

  17. Rational design and synthesis of freestanding photoelectric nanodevices as highly efficient photocatalysts. (United States)

    Qu, Yongquan; Liao, Lei; Cheng, Rui; Wang, Yue; Lin, Yung-Chen; Huang, Yu; Duan, Xiangfeng


    Photocatalysts are of significant interest in solar energy harvesting and conversion into chemical energy. However, the photocatalysts available to date are limited by either poor efficiency in the visible light range or insufficient photoelectrochemical stability. Here we report the rational design of a new generation of freestanding photoelectric nanodevices as highly efficient and stable photocatalysts by integrating a nanoscale photodiode with two redox catalysts in a single nanowire heterostructure. We show that a platinum-silicon-silver nanowire heterostructure can be synthesized to integrate a nanoscale metal-semiconductor Schottky diode encased in a protective insulating shell with two exposed metal catalysts. We further demonstrated that the Schottky diodes exhibited a pronounced photovoltaic effect with nearly unity internal quantum efficiency and that the integrated nanowire heterostructures could be used as highly efficient photocatalysts for a wide range of thermodynamically downhill and uphill reactions including the photocatalytic degradation of organic dyes and the reduction of metal ions and carbon dioxide using visible light. Our studies for the first time demonstrated the integration of multiple distinct functional components into a single nanostructure to form a standalone active nanosystem and for the first time successfully realized a photoelectric nanodevice that is both highly efficient and highly stable throughout the entire solar spectrum. It thus opens a rational avenue to the design and synthesis of a new generation of photoelectric nanosystems with unprecedented efficiency and stability and will have a broad impact in areas including environmental remediation, artificial photosynthesis and solar fuel production.

  18. Controllable synthesis of nickel bicarbonate nanocrystals with high homogeneity for a high-performance supercapacitor (United States)

    Gu, Jianmin; Liu, Xin; Wang, Zhuang; Bian, Zhenpan; Jin, Cuihong; Sun, Xiao; Yin, Baipeng; Wu, Tianhui; Wang, Lin; Tang, Shoufeng; Wang, Hongchao; Gao, Faming


    The electrochemical performance of supercapacitors might be associated with the homogeneous structure of the electrode materials. However, the relationship between the degree of uniformity for the electrode materials and the electrochemical performance of the supercapacitor is not clear. Herein, we synthesize two types of nickel bicarbonate nanocrystals with different degrees of uniformity to investigate this relationship. As the electroactive material, the nickel bicarbonate nanocrystals with a homogeneous structure could provide a larger space and offer more exposed atoms for the electrochemical reaction than the nanocrystals with a heterogeneous structure. The homogeneous nickel bicarbonate nanocrystals exhibit better electrochemical performance and show excellent specific capacitance (1596 F g-1 at 2 A g-1 and 1260 F g-1 at 30 A g-1), which is approximately twice that of the heterogeneous nickel bicarbonate nanocrystals. The cycling stability for the homogeneity (˜80%) is higher than the inhomogeneity (˜61%) at a high current density of 5 A g-1.

  19. Phase controlled synthesis of (Mg, Ca, Ba)-ferrite magnetic nanoparticles with high uniformity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.F., E-mail: [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Science and technology on vacuum technology and physics laboratory, Lanzhou Institute of Physics, Lanzhou 730000, Gansu (China); Li, Q. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Zu, X.T., E-mail: [Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Xiang, X.; Liu, W. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Li, S., E-mail: [School of Material Science and Engineering, University of New South Wales, Sydney 2052 (Australia)


    (Mg, Ca, Ba)-ferrite magnetic nanoparticles were successfully synthesized through modifying the atomic ratio of polysaccharide and chelating agent at an optimal sintering temperature. In the process, the polysaccharide plays an important role in drastically shrinking the precursor during the gel drying process. In the metal-complex structure, M{sup 2+} ion active sites were coordinated by −OH of the water molecules except for EDTA anions. The MFe{sub 2}O{sub 4} magnetic nanoparticles exhibited enhanced magnetic properties when compared with nano-MFe{sub 2}O{sub 4} of similar particle size synthesized by other synthesis route reported in the literature. In particular, the sintering temperature improves the crystallinity and increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles significantly. - Graphical abstract: Schematic representation of the proposed model for MFe{sub 2}O{sub 4} nanoparticle synthesis, starting from EDTA-chelated M{sup 2+} (M=Mg, Ca, or Ba) cations (left). High dispersion (Mg, Ca, Ba)-ferrite magnetic nanoparticles were prepared by a modified polyacrylamide gel route. Optimized utilization of polysaccharide, chelating agent, and sintering temperature allowed the formation of (Mg, Ca, Ba)-ferrite nanoparticles with a narrow diameter distribution. - Highlights: • We report a modified polyacrylamide gel route to synthesize (Mg, Ca, Ba)-ferrite magnetic nanoparticles. • Chelate mechanism of metal ions (Mg, Ca, Ba) and EDTA has been discussed. • Phase transformation process of (Mg, Ca, Ba)-ferrites has been discussed. • The preparation method increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles.

  20. Synthesis and Enantiomeric Separation of a Novel Spiroketal Derivative: A Potent Human Telomerase Inhibitor with High in Vitro Anticancer Activity

    NARCIS (Netherlands)

    Fuggetta, Maria Pia; De Mico, Antonella; Cottarelli, Andrea; Morelli, Franco; Zonfrillo, Manuela; Ulgheri, Fausta; Peluso, Paola; Mannu, Alberto; Deligia, Francesco; Marchetti, Mauro; Roviello, Giovanni; Reyes Romero, Atilio; Dömling, Alexander; Spanu, Pietro


    The synthesis, the enantiomeric separation, and the characterization of new simple spiroketal derivatives have been performed. The synthesized compounds have shown a very high anticancer activity. Cell proliferation assay showed that they induce a remarkable inhibition of cell proliferation in all

  1. Highly efficient one-pot three-component synthesis of naphthopyran derivatives in water catalyzed by hydroxyapatite (United States)

    An expeditious and efficient protocol for the synthesis of naphthopyrans has been developed that proceeds via one-pot three-component sequential reaction in water catalyzed by hydroxyapatite or sodium-modified-hydroxyapatite. The title compounds have been obtained in high yield a...

  2. Three-component synthesis of highly functionalized aziridines containing a peptide side chain and their one-step transformation into β-functionalized α-ketoamides. (United States)

    Huck, Lena; González, Juan F; de la Cuesta, Elena; Menéndez, J Carlos


    A sequential three-component process is described, starting from 3-arylmethylene-2,5-piperazinediones and involving a one-pot sequence of reactions achieving regioselective opening of the 2,5-diketopiperazine ring and diastereoselective generation of an aziridine ring. This method allows the preparation of N-unprotected, trisubstituted aziridines bearing a peptide side chain under mild conditions. Their transformation into β-trifluoroacetamido-α-ketoamide and α,β-diketoamide frameworks was also achieved in a single step.

  3. Facile Synthesis Polyethylene Glycol Coated Magnetite Nanoparticles for High Colloidal Stability

    Directory of Open Access Journals (Sweden)

    Mun Foong Tai


    Full Text Available Polyethylene glycol (PEG is one of the most frequently used synthetic polymers for surface modifications of magnetite nanoparticles (MNPs to provide a new opportunity for constructing high colloidal stability. Herein, a facile in situ coprecipitation technique is described for the synthesis of PEG coated MNPs using ammonium hydroxide as the precipitating agent. The structure and morphology of the prepared PEG coated MNPs samples were characterized by Fourier transform infrared (FTIR spectroscopy, X-ray spectroscopy, thermogravimetric analysis (TGA, and the high resolution transmission electron microscopy (HRTEM. In this study, all samples demonstrated hydrodynamic size in the range of 32 to 43 nm with narrow size distribution. In addition, the magnetic properties of resultant samples were investigated using a vibrating sample magnetometer (VSM to reveal the superparamagnetic behaviour with saturation magnetization. The saturation magnetization of PEG coated MNPs samples was in the range of 63 to 66 emu/g at 300 K. Interestingly, it was found that 1.0 g of PEG coated MNPs exhibited high colloidal stability in a basic solution (pH = 10 and nitrile (NBR latex up to 21 days as compared to the unmodified MNPs during the sedimentation test.

  4. Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA (United States)

    Butova, V. V.; Budnyk, A. P.; Bulanova, E. A.; Lamberti, C.; Soldatov, A. V.


    In this paper we present, for the first time, a simple hydrothermal recipe for the synthesis of ZIF-8 Metal-Organic Framework (MOF) with a large specific surface area (1340 m2/g by BET). An important feature of the method is that the product forms in aqueous medium under standard hydrothermal conditions without DMF and great excess of linker with the use of TEA as structure directing agent. The ZIF-8 crystal phase of the product was confirmed by XRD; this technique has been also exploited to check the crystallinity and to follow the changes in the MOF structure induced by heating. TGA and temperature dependent XRD testify the high thermal stability of the material (470 °C in N2 and at 400 °C in air). The IR spectral profile of the material provides a complete picture of vibrations assigned to the linker and the metal center. The systematic investigation of the products obtained by increasing the TEA amount in the reacting medium from 0 to 25.5 mol equivalent Zn2+, allowed us to understand its role and to find 2.6 mol equivalent Zn2+ as the minimum amount needed to obtain a single phase ZIF-8 material with the high standard reported above. The stability of the material under severe basic conditions makes it a promising candidate in heterogeneous catalysis. The material has shown high capacity in I2 uptake, making it interesting also for selective molecular adsorption.

  5. A hardware acceleration based on high-level synthesis approach for glucose-insulin analysis (United States)

    Daud, Nur Atikah Mohd; Mahmud, Farhanahani; Jabbar, Muhamad Hairol


    In this paper, the research is focusing on Type 1 Diabetes Mellitus (T1DM). Since this disease requires a full attention on the blood glucose concentration with the help of insulin injection, it is important to have a tool that able to predict that level when consume a certain amount of carbohydrate during meal time. Therefore, to make it realizable, a Hovorka model which is aiming towards T1DM is chosen in this research. A high-level language is chosen that is C++ to construct the mathematical model of the Hovorka model. Later, this constructed code is converted into intellectual property (IP) which is also known as a hardware accelerator by using of high-level synthesis (HLS) approach which able to improve in terms of design and performance for glucose-insulin analysis tool later as will be explained further in this paper. This is the first step in this research before implementing the design into system-on-chip (SoC) to achieve a high-performance system for the glucose-insulin analysis tool.

  6. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO2 Uptake

    Directory of Open Access Journals (Sweden)

    Dilshod Shakarova


    Full Text Available Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na2O-SiO2-Al2O3-H2O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD, and scanning electron microscopy (SEM shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO2 uptake capacity (4.9 mmol/g at 293 K at 100 kPa and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  7. Disubstituted 1-aryl-4-aminopiperidine library synthesis using computational drug design and high-throughput batch and flow technologies. (United States)

    Bryan, Marian C; Hein, Christopher D; Gao, Hua; Xia, Xiaoyang; Eastwood, Heather; Bruenner, Bernd A; Louie, Steven W; Doherty, Elizabeth M


    A platform that incorporates computational library design, parallel solution-phase synthesis, continuous flow hydrogenation, and automated high throughput purification and reformatting technologies was applied to the production of a 120-member library of 1-aryl-4-aminopiperidine analogues for drug discovery screening. The application described herein demonstrates the advantages of computational library design coupled with a flexible, modular approach to library synthesis. The enabling technologies described can be readily adopted by the traditional medicinal chemist without extensive training and lengthy process development times.

  8. Highly stable noble metal nanoparticles dispersible in biocompatible solvents: synthesis of cationic phosphonium gold nanoparticles in water and DMSO. (United States)

    Ju-Nam, Yon; Abdussalam-Mohammed, Wanisa; Ojeda, Jesus J


    In this work, we report the synthesis of novel cationic phosphonium gold nanoparticles dispersible in water and dimethyl sulfoxide (DMSO) for their potential use in biomedical applications. All the cationic-functionalising ligands currently reported in the literature are ammonium-based species. Here, the synthesis and characterisation of an alternative system, based on phosphonioalkylthiosulfate zwitterions and phosphonioalkylthioacetate were carried out. We have also demonstrated that our phosphonioalkylthiosulfate zwitterions readily disproportionate into phosphonioalkylthiolates in situ during the synthesis of gold nanoparticles produced by the borohydride reduction of gold(III) salts. The synthesis of the cationic gold nanoparticles using these phosphonium ligands was carried out in water and DMSO. UV-visible spectroscopic and TEM studies have shown that the phosphonioalkylthiolates bind to the surface of gold nanoparticles which are typically around 10 nm in diameter. The resulting cationic-functionalised gold nanoparticles are dispersible in aqueous media and in DMSO, which is the only organic solvent approved by the U.S. Food and Drug Administration (FDA) for drug carrier tests. This indicates their potential future use in biological applications. This work shows the synthesis of a new family of phosphonium-based ligands, which behave as cationic masked thiolate ligands in the functionalisation of gold nanoparticles. These highly stable colloidal cationic phosphonium gold nanoparticles dispersed in water and DMSO can offer a great opportunity for the design of novel biorecognition and drug delivery systems.

  9. Combining Two Methods of Sequence Definition in a Convergent Approach: Scalable Synthesis of Highly Defined and Multifunctionalized Macromolecules. (United States)

    Solleder, Susanne C; Martens, Steven; Espeel, Pieter; Du Prez, Filip; Meier, Michael A R


    The straightforward convergent synthesis of sequence-defined and multifunctionalized macromolecules is described herein. The first combination of two efficient approaches for the synthesis of sequence-defined macromolecules is reported: thiolactone chemistry and the Passerini three-component reaction (P-3CR). The thiolactone moiety was used as protecting group for the thiol, allowing the synthesis of a library of sequence-defined α,ω-functionalized building blocks. These building blocks were subsequently efficiently coupled to oligomers with carboxylic acid functionalities in a P-3CR. Thus, larger oligomers with molecular weights of up to 4629.73 g mol-1 were obtained in gram quantities in a convergent approach along with the introduction of independently selectable side chains (up to 15), thus clearly demonstrating the high versatility and the efficiency of the reported approach. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A sequential high-yielding large-scale solution-method for synthesis of philanthotoxin analogues

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Jaroszewski, Jerzy W; Hansen, Steen Honoré


    A general, improved procedure for rapid synthesis of philanthotoxin analogues, a pharmacologically important class of polyamine conjugates, is described. The solution-phase procedure is illustrated by gram-scale synthesis of philanthotoxins PhTX-343 and PhTX-12. Selectively protected polyamines a...

  11. High pressure synthesis of novel, zeolite based nano-composite materials (United States)

    Santoro, Mario


    Meso/micro-porous solids such as zeolites are complex materials exhibiting an impressive range of applications, including molecular sieve, gas storage, catalysis, electronics and photonics. We used these materials, particularly non catalytic zeolites in an entirely different fashion. In fact, we performed high pressure (0.5-30 GPa) chemical reactions of simple molecules on a sub-nanometer scale in the channels of a pure SiO2 zeolite, silicalite to obtain unique nano-composite materials with drastically modified physical and chemical properties. Our material investigations are based on a combination of X-ray diffraction and optical spectroscopy techniques in the diamond anvil cell. I will first briefly show how silicalite can be easily filled by simple molecules such as Ar, CO2 and C2H4 among others from the fluid phase at high pressures, and how this efficient filling removes the well known pressure induced amorphization of the silica framework (Haines et al., JACS 2010). I will then present on a silicon carbonate crystalline phase synthesized by reacting silicalite and molecular CO2 that fills the nano-pores, at 18-26 GPa and 600-980 K; after the synthesis the compound is temperature quenched and it results to be slightly metastable at room conditions (Santoro et al., PNAS 2011). On the other hand, a stable at room condition spectacular crystalline nano-composite is obtained by photo-polymerizing ethylene at 0.5-1.5 GPa under UV (351-364 nm) irradiation in the channels of silicalite (Santoro et al., Nat. Commun, in press 2013). For this composite we obtained a structure with single polyethylene chains adapting very well to the confining channels, which results in significant increases in bulk modulus and density, and the thermal expansion coefficient changes sign from negative to positive with respect to the original silicalite host. Mechanical properties may thus be tuned by varying the amount of polymerized ethylene. We then think our findings could allow the

  12. Synthesis and characterization of ES/Cu(OH)2 nanocomposite: a novel and high effective catalyst in the green synthesis of pyrano[4,3-b]pyrans. (United States)

    Mosaddegh, Elaheh; Hassankhani, Asadollah; Karimi-Maleh, Hassan


    The eggshell (ES) supported Cu(OH)2 nanoribbons containing 8 wt.% Cu(2+) as a novel and heterogeneous catalyst was synthesized by simply adding an aqueous solution of CuSO4 on the eggshell support at ambient temperature. The nanocomposite system was characterized by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy and BET surface area analysis. Also, electrochemical impedance spectroscopy was used as powerful techniques for an electrical conductivity investigation. The loading of copper on the mesoporous supports provides high catalytic activity for the green synthesis of pyrano[4,3-b]pyrans. The reaction proceeds to completion in 5 min with excellent yields of 93-97%. The suggested strategy for synthesis of pyrano[4,3-b]pyrans is very interesting due to application of a green and low cost composite as a heterogeneous catalyst and its simplicity in preparation, short reaction time, high yields without further purification and high reusability without any loss of catalytic activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A high-throughput and quantitative method to assess the mutagenic potential of translesion DNA synthesis (United States)

    Taggart, David J.; Camerlengo, Terry L.; Harrison, Jason K.; Sherrer, Shanen M.; Kshetry, Ajay K.; Taylor, John-Stephen; Huang, Kun; Suo, Zucai


    Cellular genomes are constantly damaged by endogenous and exogenous agents that covalently and structurally modify DNA to produce DNA lesions. Although most lesions are mended by various DNA repair pathways in vivo, a significant number of damage sites persist during genomic replication. Our understanding of the mutagenic outcomes derived from these unrepaired DNA lesions has been hindered by the low throughput of existing sequencing methods. Therefore, we have developed a cost-effective high-throughput short oligonucleotide sequencing assay that uses next-generation DNA sequencing technology for the assessment of the mutagenic profiles of translesion DNA synthesis catalyzed by any error-prone DNA polymerase. The vast amount of sequencing data produced were aligned and quantified by using our novel software. As an example, the high-throughput short oligonucleotide sequencing assay was used to analyze the types and frequencies of mutations upstream, downstream and at a site-specifically placed cis–syn thymidine–thymidine dimer generated individually by three lesion-bypass human Y-family DNA polymerases. PMID:23470999

  14. Single-step, high yield synthesis of gold nanoworms and their surface enhanced Raman scattering properties (United States)

    Ahmed, Waqqar; van Ruitenbeek, Jan M.

    Rod-shaped gold nanoparticles have attracted enormous attention owing to their interesting optical properties arising from the surface plasmon resonances. Slight deviation from the rod morphology can markedly change the optical properties. For-example, worm-shaped gold nanoparticles can have more than two plasmon peaks. Furthermore, they show much higher local field enhancements as compared to their rod-shaped counterparts. We have devised a simple seedless, high-yield protocol for the synthesis of gold nanoworms (NWs). NWs were grown simply by reducing HAuCl4 with ascorbic acid in a high pH reaction medium, and in the presence of growth directional agents, cetyltrimethylammonium bromide and AgNO3. In contrast to the seed-mediated growth of gold nanorods where a seed grows into a rod, NWs grow by oriental attachment of nanoparticles. By varying different reaction parameters we were able to control the length of NWs from a few nanometers to micrometers. Furthermore, the aspect ratio can also be tuned over a wide range. Gold NWs show excellent surface enhanced Raman scattering (SERS) properties. Ultra-low concentrations of various target molecules were detected using NWs based SERS substrates.

  15. Synthesis, characterization, and cytotoxicity evaluation of high-magnetization multifunctional nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Petran, Anca; Radu, Teodora; Nan, Alexandrina [National Institute for Research and Development of Isotopic and Molecular Technologies (Romania); Olteanu, Diana; Filip, Adriana, E-mail:; Clichici, Simona; Baldea, Ioana [Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology (Romania); Suciu, Maria; Turcu, Rodica, E-mail: [National Institute for Research and Development of Isotopic and Molecular Technologies (Romania)


    The paper presents the synthesis, characterization, and in vitro cytotoxicity tests of Fe{sub 3}O{sub 4} magnetic nanoclusters coated with ethylenediaminetetraacetic acid disodium salt (EDTA). Electron microscopy analysis (SEM) evidences that magnetite nanoparticles are closely packed into the clusters stabilized with EDTA with well-defined near spherical shapes and sizes in the range 100–200 nm. From XRD measurements, we determined the mean size of the crystallites inside the magnetic cluster about 36 nm. The saturation magnetization determined for the magnetic clusters stabilized with EDTA has high value, about 81.7 emu/g at 300 K. X-ray photoelectron spectroscopy has been used to determine both the elemental and chemical structure of the magnetic cluster surface. In vitro studies have shown that the magnetic clusters at low doses did not induce toxicity on human umbilical vein endothelial cells or lesions of the cell membrane. In contrast, at high doses, the magnetic clusters increased the lipid peroxidation and reduced the leakage of a cytoplasmic enzyme, lactate dehydrogenase (LDH), in parallel with increasing the antioxidant defense.

  16. Synthesis of ultra high molecular weight polyethylene: A differentiate material for specialty applications

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Sudhakar, E-mail: [Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited, Vadodara, 391 346, Gujarat (India); Sarma, Krishna R.; Rupak, Kishor; Sharma, Shashikant [Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited, Vadodara, 391 346, Gujarat (India)


    Tailoring the synthesis of a suitable Ziegler-Natta (ZN) catalyst coupled with optimized polymerization conditions using a suitable activator holds the key for an array of differentiated polymers with diverse and unique properties. Ultra high molecular weight polyethylene (UHMWPE) is one such polymer which we have synthesized using TiCl{sub 4} anchored on MgCl{sub 2} as the support and activated using AlRR'{sub 2} (where R, R' = iso-prenyl or isobutyl) under specific conditions. Here in we have accomplished a process for synthesizing UHMWPE in hydrocarbon as the medium with molecular weights ranging from 5 to 10 million g/mole. The differentiated polymers exhibited the desired properties such as particle size distribution (PSD), average particle size (APS), bulk density (BD) and molecular weight (MW) with controlled amount of fine and coarse particles. Scanning electron micrographs (SEM) reflected the material to have uniform particle size distribution with a spherical morphology. The extent of entanglement was determined from thermal studies and it was found to be highly entangled.

  17. MW-assisted synthesis of LiFePO{sub 4} for high power applications

    Energy Technology Data Exchange (ETDEWEB)

    Beninati, Sabina; Damen, Libero; Mastragostino, Marina [University of Bologna, Department of Metal Science, Electrochemistry and Chemical Techniques, Via San Donato 15, 40127 Bologna (Italy)


    LiFePO{sub 4}/C was prepared by solid-state reaction from Li{sub 3}PO{sub 4}, Fe{sub 3}(PO{sub 4}){sub 2}.8H{sub 2}O, carbon and glucose in a few minutes in a scientific MW (microwave) oven with temperature and power control. The material was characterized by X-ray diffraction, scanning electron microscopy and by TGA analysis to evaluate carbon content. The electrochemical characterization as positive electrode in EC (ethylene carbonate)-DMC (dimethylcarbonate) 1 M LiPF{sub 6} was performed by galvanostatic charge-discharge cycles at C/10 to evaluate specific capacity and by sequences of 10 s discharge-charge pulses, at different high C-rates (5-45C) to evaluate pulse-specific power in simulate operative conditions for full-HEV application. The maximum pulse-specific power and, particularly, pulse efficiency values are quite high and make MW synthesis a very promising route for mass production of LiFePO{sub 4}/C for full-HEV batteries at low energy costs. (author)

  18. Facile Synthesis of Highly Crystalline and Large Areal Hexagonal Boron Nitride from Borazine Oligomers (United States)

    Park, Sungchan; Seo, Tae Hoon; Cho, Hyunjin; Min, Kyung Hyun; Lee, Dong Su; Won, Dong-Il; Kang, Sang Ook; Kim, Myung Jong


    A novel and facile synthetic method for h-BN films from borazine oligomer (B3N3H4)x precursors has been developed. This method only includes spin-coating of borazine oligomer onto nickel catalysts and a subsequent annealing step. Large areal and highly crystalline h-BN films were obtained. The stoichiometric B/N ratio of borazine oligomer precursor was preserved in the final h-BN product such that it was close to 1 as revealed by XPS. Catalytic effect of nickel for h-BN formation was clearly demonstrated by lowering crystallization temperature compared to the growth condition in the absence of catalyst. The graphene field effect transistor (GFET) characterization has proved the high quality synthesis of h-BN films, showing the shift of neutrality point and the increase of the mobility. This method can also provide functional h-BN coating on various surfaces by annealing Ni-coated borazine oligomer films and subsequent removal of Ni catalyst. PMID:28074854

  19. FPGA-Based Channel Coding Architectures for 5G Wireless Using High-Level Synthesis

    Directory of Open Access Journals (Sweden)

    Swapnil Mhaske


    Full Text Available We propose strategies to achieve a high-throughput FPGA architecture for quasi-cyclic low-density parity-check codes based on circulant-1 identity matrix construction. By splitting the node processing operation in the min-sum approximation algorithm, we achieve pipelining in the layered decoding schedule without utilizing additional hardware resources. High-level synthesis compilation is used to design and develop the architecture on the FPGA hardware platform. To validate this architecture, an IEEE 802.11n compliant 608 Mb/s decoder is implemented on the Xilinx Kintex-7 FPGA using the LabVIEW FPGA Compiler in the LabVIEW Communication System Design Suite. Architecture scalability was leveraged to accomplish a 2.48 Gb/s decoder on a single Xilinx Kintex-7 FPGA. Further, we present rapidly prototyped experimentation of an IEEE 802.16 compliant hybrid automatic repeat request system based on the efficient decoder architecture developed. In spite of the mixed nature of data processing—digital signal processing and finite-state machines—LabVIEW FPGA Compiler significantly reduced time to explore the system parameter space and to optimize in terms of error performance and resource utilization. A 4x improvement in the system throughput, relative to a CPU-based implementation, was achieved to measure the error-rate performance of the system over large, realistic data sets using accelerated, in-hardware simulation.

  20. Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology (United States)

    Zhang, Yue-Biao; Zhou, Hao-Long; Lin, Rui-Biao; Zhang, Chi; Lin, Jian-Bin; Zhang, Jie-Peng; Chen, Xiao-Ming


    Porous coordination polymers are well known for their easily tailored framework structures and corresponding properties. Although systematic modulations of pore sizes of binary prototypes have gained great success, simultaneous adjustment of both pore size and shape of ternary prototypes remains unexplored, owing to the difficulty in controlling the self-assembly of multiple molecular building blocks. Here we show that simple geometry analysis can be used to estimate the influence of the linker lengths and length ratios on the synthesis/construction difficulties and framework stabilities of a highly symmetric, ternary prototype composed of a typical trinuclear metal cluster and two types of bridging carboxylate ligands. As predicted, systematic syntheses with 5×5 ligand combinations produced 13 highly porous isoreticular frameworks, which show not only systematic adjustment of pore volumes (0.49–2.04 cm3 g−1) and sizes (7.8–13.0 Å; 5.2–12.0 Å; 7.4–17.4 Å), but also anisotropic modulation of the pore shapes. PMID:22273680

  1. Synthesis, characterization, and cytotoxicity evaluation of high-magnetization multifunctional nanoclusters (United States)

    Petran, Anca; Radu, Teodora; Nan, Alexandrina; Olteanu, Diana; Filip, Adriana; Clichici, Simona; Baldea, Ioana; Suciu, Maria; Turcu, Rodica


    The paper presents the synthesis, characterization, and in vitro cytotoxicity tests of Fe3O4 magnetic nanoclusters coated with ethylenediaminetetraacetic acid disodium salt (EDTA). Electron microscopy analysis (SEM) evidences that magnetite nanoparticles are closely packed into the clusters stabilized with EDTA with well-defined near spherical shapes and sizes in the range 100-200 nm. From XRD measurements, we determined the mean size of the crystallites inside the magnetic cluster about 36 nm. The saturation magnetization determined for the magnetic clusters stabilized with EDTA has high value, about 81.7 emu/g at 300 K. X-ray photoelectron spectroscopy has been used to determine both the elemental and chemical structure of the magnetic cluster surface. In vitro studies have shown that the magnetic clusters at low doses did not induce toxicity on human umbilical vein endothelial cells or lesions of the cell membrane. In contrast, at high doses, the magnetic clusters increased the lipid peroxidation and reduced the leakage of a cytoplasmic enzyme, lactate dehydrogenase (LDH), in parallel with increasing the antioxidant defense.

  2. A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase. (United States)

    Dasari, Anvesh; Deodhar, Tejal; Berdis, Anthony J


    Translesion DNA synthesis (TLS) is the ability of DNA polymerases to incorporate nucleotides opposite and beyond damaged DNA. TLS activity is an important risk factor for the initiation and progression of genetic diseases such as cancer. In this study, we evaluate the ability of a high-fidelity DNA polymerase to perform TLS with 8-oxo-guanine (8-oxo-G), a highly pro-mutagenic DNA lesion formed by reactive oxygen species. Results of kinetic studies monitoring the incorporation of modified nucleotide analogs demonstrate that the binding affinity of the incoming dNTP is controlled by the overall hydrophobicity of the nucleobase. However, the rate constant for the polymerization step is regulated by hydrogen-bonding interactions made between the incoming nucleotide with 8-oxo-G. Results generated here for replicating the miscoding 8-oxo-G are compared to those published for the replication of the non-instructional abasic site. During the replication of both lesions, binding of the nucleotide substrate is controlled by energetics associated with nucleobase desolvation, whereas the rate constant for the polymerization step is influenced by the physical nature of the DNA lesion, that is, miscoding versus non-instructional. Collectively, these studies highlight the importance of nucleobase desolvation as a key physical feature that enhances the misreplication of structurally diverse DNA lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Synthesis of site-heterologous haptens for high-affinity anti-pyraclostrobin antibody generation. (United States)

    Mercader, Josep V; Agulló, Consuelo; Abad-Somovilla, Antonio; Abad-Fuentes, Antonio


    The design and synthesis of functional chemical derivatives of small organic molecules is usually a key step for the intricate production of a variety of bioconjugates. In this respect, the derivatization site at which the spacer arm is introduced in immunizing conjugates constitutes a highly critical parameter for the generation of high-affinity and selective antibodies. However, due to the usual complexity of the required synthetic procedures, the appropriate comparison of alternative tethering positions has often been neglected. In the present study, meticulous strategies were followed to prepare synthetic derivatives of pyraclostrobin with the same linkers located at diverse rationally-chosen sites. Activity appraisal of antibodies and bioconjugates was carried out by bidimensional competitive direct and indirect immunoassays, and a superior performance of two of the three synthesized haptens was found. Finally, a detailed analysis of the conformations of the target molecule and the synthesized haptens in aqueous solution was done using computer assisted molecular modeling techniques. This study suggested that the lower titers and affinities of one set of antibodies are most probably due to conformational effects of the spacer arm in the immunizing bioconjugate.

  4. High-pressure synthesis of Mg{sub 2}FeH{sub 6} complex hydride

    Energy Technology Data Exchange (ETDEWEB)

    Retuerto, M.; Sanchez-Benitez, J.; Alonso, J.A. [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco E-28049 Madrid (Spain); Rodriguez-Canas, E. [Servicio Interdepartamental de Investigacion, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco E-28049 Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile)


    We have designed a new synthesis method for the ternary metal hydride Mg{sub 2}FeH{sub 6} based on the direct reaction of simple hydrides under high-pressure conditions. Well-crystallized samples were prepared in a piston-cylinder hydrostatic press at 2 GPa and temperatures around 750 C from mixtures of MgH{sub 2} and Fe enclosed in gold or platinum capsules. Seven different samples have been prepared under different conditions. X-ray powder diffraction analysis was used to identify and assess the purity of the samples, through Rietveld analyses of the crystal structure (K{sub 2}PtCl{sub 6}-type). Mg{sub 2}FeH{sub 6} shows a cubic symmetry with space group Fm-3m. SEM images show an average particle size of 1-2 {mu}m for Mg{sub 2}FeH{sub 6}; the microcrystals present well-grown faces and display a high homogeneity of shapes and sizes. Thermogravimetric analysis has been carried out to determine not only the hydrogen desorption temperature but also the hydrogen contents. (author)

  5. Smart synthesis of high performance thermosets based on ortho-(amide-co-imide functional benzoxazines

    Directory of Open Access Journals (Sweden)

    Hatsuo eIshida


    Full Text Available High performance thermosets via amide-imide functional benzoxazine resins as precursors have been synthesized. The structures of synthesized monomers have been confirmed by 1H NMR and FT-IR. Among these two benzoxazine monomers, the ortho-amide-imide functional benzoxazine resin shows powerful features both in the synthesis of benzoxazine monomers and the properties of the corresponding thermosets. For the cross-linked poly(amide-co-imide based on ortho-amide-imide functional benzoxazine, a smart route is adopted to develop a more thermally stable cross-linked poly(benzoxazole-co-imide. Besides, the poly(benzoxazole-co-imide can also undergo a further thermal treatment to form polybenzoxazole. Furthermore, a main-chain type ortho-functional polybenzoxazine with amide-co-imide and benzoxazine groups as repeating units has also been prepared. Both the ortho-amide-imide functional benzoxazine and main-chain type polybenzoxazine resins show the possibility to form high performance thermosets with low cost and easy processability .

  6. High-throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram. (United States)

    Weng, Xiaole; Cockcroft, Jeremy K; Hyett, Geoffrey; Vickers, Martin; Boldrin, Paul; Tang, Chiu C; Thompson, Stephen P; Parker, Julia E; Knowles, Jonathan C; Rehman, Ihtesham; Parkin, Ivan; Evans, Julian R G; Darr, Jawwad A


    A novel High-Throughput Continuous Hydrothermal (HiTCH) flow synthesis reactor was used to make directly and rapidly a 66-sample nanoparticle library (entire phase diagram) of nanocrystalline Ce(x)Zr(y)Y(z)O(2-delta) in less than 12 h. High resolution PXRD data were obtained for the entire heat-treated library (at 1000 degrees C/1 h) in less than a day using the new robotic beamline I11, located at Diamond Light Source (DLS). This allowed Rietveld-quality powder X-ray diffraction (PXRD) data collection of the entire 66-sample library in <1 day. Consequently, the authors rapidly mapped out phase behavior and sintering behaviors for the entire library. Out of the entire 66-sample heat-treated library, the PXRD data suggests that 43 possess the fluorite structure, of which 30 (out of 36) are ternary compositions. The speed, quantity and quality of data obtained by our new approach, offers an exciting new development which will allow structure-property relationships to be accessed for nanoceramics in much shorter time periods.

  7. Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. (United States)

    Yu, Yue; Zhang, Qingbo; Liu, Bo; Lee, Jim Yang


    The shape-controlled synthesis of noble metal nanocrystals (NCs) bounded by high-index facets is a current research interest because the products have the potential of significantly improving the catalytic performance of NCs in industrially important reactions. This study reports a versatile method for synthesizing polyhedral NCs enclosed by a variety of high-index Pd facets. The method is based on the heteroepitaxial growth of Pd layers on concave trisoctahedral (TOH) gold NC seeds under careful control of the growth kinetics. Polyhedral Au@Pd NCs with three different classes of high-index facets, including concave TOH NCs with {hhl} facets, concave hexoctahedral (HOH) NCs with {hkl} facets, and tetrahexahedral (THH) NCs with {hk0} facets, can be formed in high yield. The Miller indices of NCs are also modifiable, and we have used the THH NCs as a demonstrative example. The catalytic activities of these NCs were evaluated by the structure-sensitive reaction of formic acid electro-oxidation. The results showed that the high-index facets are generally more active than the low-index facets. In summary, a seeded growth process based on concave high-index faceted monometallic TOH NC templates and careful control of the growth kinetics is a simple and effective strategy for the synthesis of noble metal NCs with high-index facets. It also offers tailorability of the surface structure in shape-controlled synthesis.

  8. Scalable Self-Propagating High-Temperature Synthesis of Graphene for Supercapacitors with Superior Power Density and Cyclic Stability. (United States)

    Li, Chen; Zhang, Xiong; Wang, Kai; Sun, Xianzhong; Liu, Guanghua; Li, Jiangtao; Tian, Huanfang; Li, Jianqi; Ma, Yanwei


    An ultrafast self-propagating high-temperature synthesis technique offers scalable routes for the fabrication of mesoporous graphene directly from CO2 . Due to the excellent electrical conductivity and high ion-accessible surface area, supercapacitor electrodes based on the obtained graphene exhibit superior energy and power performance. The capacitance retention is higher than 90% after one million charge/discharge cycles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Efficient synthesis of enantiopure conduritols by ring-closing metathesis

    DEFF Research Database (Denmark)

    Jørgensen, Morten; Iversen, Erik Høgh; Paulsen, Andreas Lundtang


    Two short synthetic approaches to enantiopure conduritols are described starting from the chiral pool. In both cases, the cyclohexene ring is assembled via ring-closing olefin metathesis. The terminal diene precursers for the metathesis reaction are prepared either from octitols or from tartaric...... acids. The farmer route involves a new method for selective bromination of the primary positions in long-chain carbohydrate polyols. Subsequent reductive elimination with zinc then generates the diene. The latter route uses a highly diastereoselective addition of divinylzinc to tartaric dialdehydes...

  10. Efficient synthesis of enantiopure conduritols by ring-closing metathesis

    DEFF Research Database (Denmark)

    Jørgensen, Morten; Iversen, Erik Høgh; Paulsen, Andreas Lundtang


    acids. The farmer route involves a new method for selective bromination of the primary positions in long-chain carbohydrate polyols. Subsequent reductive elimination with zinc then generates the diene. The latter route uses a highly diastereoselective addition of divinylzinc to tartaric dialdehydes......Two short synthetic approaches to enantiopure conduritols are described starting from the chiral pool. In both cases, the cyclohexene ring is assembled via ring-closing olefin metathesis. The terminal diene precursers for the metathesis reaction are prepared either from octitols or from tartaric...

  11. Highly Stereoselective Cobalt(III)-Catalyzed Three-Component C-H Bond Addition Cascade. (United States)

    Boerth, Jeffrey A; Hummel, Joshua R; Ellman, Jonathan A


    A highly stereoselective three-component C(sp(2) )-H bond addition across alkene and polarized π-bonds is reported for which Co(III) catalysis was shown to be much more effective than Rh(III) . The reaction proceeds at ambient temperature with both aryl and alkyl enones employed as efficient coupling partners. Moreover, the reaction exhibits extremely broad scope with respect to the aldehyde input; electron rich and poor aromatic, alkenyl, and branched and unbranched alkyl aldehydes all couple in good yield and with high diastereoselectivity. Multiple directing groups participate in this transformation, including pyrazole, pyridine, and imine functional groups. Both aromatic and alkenyl C(sp(2) )-H bonds undergo the three-component addition cascade, and the alkenyl addition product can readily be converted into diastereomerically pure five-membered lactones. Additionally, the first asymmetric reactions with Co(III) -catalyzed C-H functionalization are demonstrated with three-component C-H bond addition cascades employing N-tert-butanesulfinyl imines. These examples represent the first transition metal catalyzed C-H bond additions to N-tert-butanesulfinyl imines, which are versatile and extensively used intermediates for the asymmetric synthesis of amines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Acute high-caffeine exposure increases autophagic flux and reduces protein synthesis in C2C12 skeletal myotubes. (United States)

    Hughes, M A; Downs, R M; Webb, G W; Crocker, C L; Kinsey, S T; Baumgarner, Bradley L


    Caffeine is a highly catabolic dietary stimulant. High caffeine concentrations (1-10 mM) have previously been shown to inhibit protein synthesis and increase protein degradation in various mammalian cell lines. The purpose of this study was to examine the effect of short-term caffeine exposure on cell signaling pathways that regulate protein metabolism in mammalian skeletal muscle cells. Fully differentiated C2C12 skeletal myotubes either received vehicle (DMSO) or 5 mM caffeine for 6 h. Our analysis revealed that caffeine promoted a 40% increase in autolysosome formation and a 25% increase in autophagic flux. In contrast, caffeine treatment did not significantly increase the expression of the skeletal muscle specific ubiquitin ligases MAFbx and MuRF1 or 20S proteasome activity. Caffeine treatment significantly reduced mTORC1 signaling, total protein synthesis and myotube diameter in a CaMKKβ/AMPK-dependent manner. Further, caffeine promoted a CaMKII-dependent increase in myostatin mRNA expression that did not significantly contribute to the caffeine-dependent reduction in protein synthesis. Our results indicate that short-term caffeine exposure significantly reduced skeletal myotube diameter by increasing autophagic flux and promoting a CaMKKβ/AMPK-dependent reduction in protein synthesis.

  13. Depression of leukocyte protein synthesis, immune function and growth performance induced by high environmental temperature in broiler chickens (United States)

    Kamel, Nancy N.; Ahmed, Ayman M. H.; Mehaisen, Gamal M. K.; Mashaly, Magdi M.; Abass, Ahmed O.


    In tropical and semitropical regions, raising broiler chickens out of their thermal comfort zone can cause an added economic loss in the poultry industry. The cause for the deleterious effects on immunity and growth performance of broilers under high environmental temperatures is still poorly understood. Therefore, the aim of the current investigation was to evaluate the effect of heat stress on leukocytes protein synthesis and immune function as a possible direct cause of low performance in broiler chickens under such condition. In this study, 300 one-day-old male broiler chicks (Cobb500™) were randomly assigned into 2 groups with 5 replicates of 30 chicks each. From 21 to 42 days of age, one group was exposed to non-stressed condition at 24 °C and 50% relative humidity (control group), while the other group was exposed to heat stress at 35 °C and 50% relative humidity (HS group). At 42 days of age, blood samples were collected from each group to evaluate stress indicators, immune function, and leukocytes protein synthesis. Production performance was also recorded. Noteworthy, protein synthesis in leukocytes was significantly ( P leukocyte protein synthesis through increasing the level of eEF2 Thr56 phosphorylation may play a key role in the observed decrease in immune function and growth performance with the high mortality rate encountered in broiler chickens under heat stress environment.

  14. Effects of n-3 polyunsaturated fatty acids high fat diet intervention on the synthesis of hepatic high-density lipoprotein cholesterol in obesity-insulin resistance rats. (United States)

    Xie, Xianxing; Zhang, Tao; Zhao, Shuang; Li, Wei; Ma, Lanzhi; Ding, Ming; Liu, Yuan


    n-3 polyunsaturated fatty acids (PUFA) have previously been demonstrated in association with a reduced risk of chronic diseases, including insulin resistance, cancer and cardiovascular disease. In the present study, we analyzed the effects of n-3 PUFA-rich perilla oil (PO) and fish oil (FO) high fat diet intervention against the synthesis of hepatic high-density lipoprotein cholesterol (HDL-c) in obesity-insulin resistance model rats. In the modeling period, the male SD rats were randomly divided into 2 groups. The rats in the high fat (HF) group were given a high fat pure diet containing 20.62% lard. In the intervention period, the model rats were intervened with purified high-fat diets rich in PO or FO, containing same energy content with high fat pure diet in HF. After the intervention, the protein and mRNA expressions status of the key genes involved in synthesis of hepatic HDL-c were measured for further analytic comparison. The obesity-insulin resistance model rats were characterized by surprisingly high levels of serum triglyceride (TG) and increased body weight (P increase the level of serum apolipoprotein A-1 (apoA-1) (P fat diets promoted the synthesis of HDL-c in the obesity-insulin resistance rats.

  15. Investigation on synthesis of a low cost no-bake furan resin system with a high strength

    Directory of Open Access Journals (Sweden)

    Liu Weihua


    Full Text Available The synthesis of a low cost no-bake furan resin with a high strength was researched in this paper. Through the analysis of main factors influencing the strength of furan resin, an orthogonal experiment was conducted to optimize synthesis of urea-formaldehyde furan resin with 3% nitrogen. The critical factors and their optimal levels were confirmed, and high strength property was obtained. Subsequently, some active substitute materials, including polyols A agent, methyl alcohol, mother liquid of xylitol, polyols B agent and ethanol, were used for partly substitution of furfural alcohol, the main material component of furan resin. A good combination of the substitute materials was determined to achieve a high strength, and the overall proportion of substitute materials to the resin is 20%. In this study, the substitution mechanism on furan resin was also characterized and analyzed by IR.

  16. Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Hennes


    Full Text Available Magnetically anisotropic as well as magnetic core–shell nanoparticles (CS-NPs with controllable properties are highly desirable in a broad range of applications. With this background, a setup for the synthesis of heterostructured magnetic core–shell nanoparticles, which relies on (optionally pulsed DC plasma gas condensation has been developed. We demonstrate the synthesis of elemental nickel nanoparticles with highly tunable sizes and shapes and Ni@Cu CS-NPs with an average shell thickness of 10 nm as determined with scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. An analytical model that relies on classical kinetic gas theory is used to describe the deposition of Cu shell atoms on top of existing Ni cores. Its predictive power and possible implications for the growth of heterostructured NP in gas condensation processes are discussed.

  17. Effects of Tobacco Taxation and Pricing on Smoking Behavior in High Risk Populations: A Knowledge Synthesis

    Directory of Open Access Journals (Sweden)

    David Boisclair


    Full Text Available Tobacco taxation is an essential component of a comprehensive tobacco control strategy. However, to fully realize the benefits it is vital to understand the impact of increased taxes among high-risk subpopulations. Are they influenced to the same extent as the general population? Do they need additional measures to influence smoking behavior? The objectives of this study were to synthesize the evidence regarding differential effects of taxation and price on smoking in: youth, young adults, persons of low socio-economic status, with dual diagnoses, heavy/long-term smokers, and Aboriginal people. Using a better practices approach, a knowledge synthesis was conducted using a systematic review of the literature and an expert advisory panel. Experts were involved in developing the study plan, discussing findings, developing policy recommendations, and identifying priorities for future research. Most studies found that raising cigarette prices through increased taxes is a highly effective measure for reducing smoking among youth, young adults, and persons of low socioeconomic status. However, there is a striking lack of evidence about the impact of increasing cigarette prices on smoking behavior in heavy/long-term smokers, persons with a dual diagnosis and Aboriginals. Given their high prevalence of smoking, urgent attention is needed to develop effective policies for the six subpopulations reviewed. These findings will be of value to policy-makers and researchers in their efforts to improve the effectiveness of tobacco control measures, especially with subpopulations at most risk. Although specific studies are needed, tobacco taxation is a key policy measure for driving success.

  18. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bhavani, P.; Rajababu, C.H. [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India); Arif, M.D. [Environmental Magnetism Laboratory, Indian Institute of Geomagnetism (IIG), Navi Mumbai 410218, Mumbai (India); Reddy, I. Venkata Subba [Department of Physics, Gitam University, Hyderabad Campus, Rudraram, Medak 502329 (India); Reddy, N. Ramamanohar, E-mail: [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India)


    Iron oxide nanoparticles (IONPs) were synthesized through a simple low temperature hydrothermal approach to obtain with high saturation magnetization properties. Two series of iron precursors (sulfates and chlorides) were used in synthesis process by varying the reaction temperature at a constant pH. The X-ray diffraction pattern indicates the inverse spinel structure of the synthesized IONPs. The Field emission scanning electron microscopy and high resolution transmission electron microscopy studies revealed that the particles prepared using iron sulfate were consisting a mixer of spherical (16–40 nm) and rod (diameter ~20–25 nm, length <100 nm) morphologies that synthesized at 130 °C, while the IONPs synthesized by iron chlorides are found to be well distributed spherical shapes with size range 5–20 nm. On other hand, the IONPs synthesized at reaction temperature of 190 °C has spherical (16–46 nm) morphology in both series. The band gap values of IONPs were calculated from the obtained optical absorption spectra of the samples. The IONPs synthesized using iron sulfate at temperature of 130 °C exhibited high saturation magnetization (M{sub S}) of 103.017 emu/g and low remanant magnetization (M{sub r}) of 0.22 emu/g with coercivity (H{sub c}) of 70.9 Oe{sub ,} which may be attributed to the smaller magnetic domains (d{sub m}) and dead magnetic layer thickness (t). - Highlights: • Comparison of iron oxide materials prepared with Fe{sup +2}/Fe{sup +3} sulfates and chlorides at different temperatures. • We prepared super-paramagnetic and soft ferromagnetic magnetite nanoparticles. • We report higher saturation magnetization with lower coercivity.

  19. Synthesis of Highly Stable Cobalt Nanomaterial Using Gallic Acid and Its Application in Catalysis

    Directory of Open Access Journals (Sweden)

    Saba Naz


    Full Text Available We report the room temperature (25–30°C green synthesis of cobalt nanomaterial (CoNM in an aqueous medium using gallic acid as a reducing and stabilizing agent. pH 9.5 was found to favour the formation of well dispersed flower shaped CoNM. The optimization of various parameters in preparation of nanoscale was studied. The AFM, SEM, EDX, and XRD characterization studies provide detailed information about synthesized CoNM which were of 4–9 nm in dimensions. The highly stable CoNM were used to study their catalytic activity for removal of azo dyes by selecting methyl orange as a model compound. The results revealed that 0.4 mg of CoNM has shown 100% removal of dye from 50 μM aqueous solution of methyl orange. The synthesized CoNM can be easily recovered and recycled several times without decrease in their efficiency.

  20. High throughput methodology for synthesis, screening, and optimization of solid state lithium ion electrolytes. (United States)

    Beal, Mark S; Hayden, Brian E; Le Gall, Thierry; Lee, Christopher E; Lu, Xiaojuan; Mirsaneh, Mehdi; Mormiche, Claire; Pasero, Denis; Smith, Duncan C A; Weld, Andrew; Yada, Chihiro; Yokoishi, Shoji


    A study of the lithium ion conductor Li(3x)La(2/3-x)TiO(3) solid solution and the surrounding composition space was carried out using a high throughput physical vapor deposition system. An optimum total ionic conductivity value of 5.45 × 10(-4) S cm(-1) was obtained for the composition Li(0.17)La(0.29)Ti(0.54) (Li(3x)La(2/3-x)TiO(3)x = 0.11). This optimum value was calculated using an artificial neural network model based on the empirical data. Due to the large scale of the data set produced and the complexity of synthesis, informatics tools were required to analyze the data. Partition analysis was carried out to determine the synthetic parameters of importance and their threshold values. Multivariate curve resolution and principal component analysis were applied to the diffraction data set. This analysis enabled the construction of phase distribution diagrams, illustrating both the phases obtained and the compositional zones in which they occur. The synthetic technique presented has significant advantages over other thin film and bulk methodologies, in terms of both the compositional range covered and the nature of the materials produced.

  1. Mechanochemical synthesis of high coercivity Nd2(Fe,Co)14B magnetic particles. (United States)

    Zhong, Y; Chaudhary, V; Tan, X; Parmar, H; Ramanujan, R V


    With increasing demand for magnets in energy conversion systems, the quest for the development and understanding of novel processing routes to produce permanent magnets has become urgent. We report a novel mechanochemical process for the synthesis of Nd 2 (Fe,Co) 14 B magnetic particles with a high coercivity of 12.4 kOe. This process involves the reduction of neodymium oxide, iron oxide, cobalt oxide and boron anhydride in the presence of a calcium reducing agent and a CaO diluent. The formation mechanism of Nd 2 (Fe,Co) 14 B changed with increasing CaO content, and the average crystal size of the Nd 2 (Fe,Co) 14 B particles also increased, resulting in an increase in the coercivity values. The reaction mechanism during milling was revealed through a study of the phase transformations as a function of milling time. It was found that unlike self-propagating reactions, this reduction reaction during milling requires continuous input of mechanical energy to reach a steady state.

  2. Facile Synthesis of High Quality Graphene Oxide from Graphite Flakes Using Improved Hummer's Technique. (United States)

    Low, Foo Wah; Lai, Chin Wei; Abd Hamid, Sharifah Bee


    Graphene is a promising candidate for making next-generation nanotechnology devices due to its outstanding properties in terms of physical, chemical, mechanical aspects. Based on the theoretical point of view, graphene is a two-dimensional (2D) crystal structure with sp2 hybridized carbon atoms arrangement and has attracted extensive attention in a considerable number of applications such as solar energy, sensor and energy storage, naming a few. Herein, graphene oxide (GO) is synthesized from graphite flakes using the Improved Hummer's method. The results demonstrated the comparison of synthesized GO samples based on stirred duration of 6 h and 72 h. The FTIR results proved that the 72 h GO sample was well-bonded with the C-O functional group, signifying the successful synthesis of GO under an extended stirred duration. The FESEM images showed that the synthesized GO was well-arranged in crystal lattice of graphene sheets whereas the EDX result showed that higher atomic % of Oxygen, O2 was obtained with a longer stirred duration due to the high opportunity for oxygenated bonded to occur on the C-C functional group.

  3. Optimized Synthesis of FeS Nanoparticles with a High Cr(VI Removal Capability

    Directory of Open Access Journals (Sweden)

    Yuanyuan Liu


    Full Text Available FeS nanoparticles were synthesized using chemical precipitation method involving sulfide and ferrous solutions. Effects of important synthesis parameters including stabilizer, time taken for titration, horizontal oscillation speed, and initial salt concentration on the size of synthesized FeS nanoparticles were investigated by Orthogonal Array design. Increasing the CMC dosage significantly made the hydrodynamic diameter decrease between 0.05 wt.% and 0.15 wt.% while Na2S titration, oscillation rate, and Na2S concentration did not show significant influence on the hydrodynamic diameter of FeS nanoparticles. The synthesized FeS nanoparticles were characterized by using XRD (X-ray diffraction, TEM (transmission electron microscopy, and XPS (X-ray photoelectron spectroscopy. The as-synthesized FeS nanoparticles had an average size of 25 ± 10 nm and had a better long-term stability after storage for 150 days compared to bare FeS particles. Because of the optimized process parameters, the synthesized FeS nanoparticles had a higher Cr(VI removal capacity of 683 mg per gram of FeS in comparison to the previously reported cases, and up to 92.48% Cr(VI was removed from aqueous solutions. The small size, special surface property, and high reactivity make the synthesized FeS nanoparticles a promising tool for the remediation of Cr(VI contaminated soil and groundwater.

  4. High-throughput synthesis of carbohydrates and functionalization of polyanhydride nanoparticles. (United States)

    Carrillo-Conde, Brenda R; Roychoudhury, Rajarshi; Chavez-Santoscoy, Ana V; Narasimhan, Balaji; Pohl, Nicola L B


    Transdisciplinary approaches involving areas such as material design, nanotechnology, chemistry, and immunology have to be utilized to rationally design efficacious vaccines carriers. Nanoparticle-based platforms can prolong the persistence of vaccine antigens, which could improve vaccine immunogenicity. Several biodegradable polymers have been studied as vaccine delivery vehicles(1); in particular, polyanhydride particles have demonstrated the ability to provide sustained release of stable protein antigens and to activate antigen presenting cells and modulate immune responses. The molecular design of these vaccine carriers needs to integrate the rational selection of polymer properties as well as the incorporation of appropriate targeting agents. High throughput automated fabrication of targeting ligands and functionalized particles is a powerful tool that will enhance the ability to study a wide range of properties and will lead to the design of reproducible vaccine delivery devices. The addition of targeting ligands capable of being recognized by specific receptors on immune cells has been shown to modulate and tailor immune responses. C-type lectin receptors (CLRs) are pattern recognition receptors (PRRs) that recognize carbohydrates present on the surface of pathogens. The stimulation of immune cells via CLRs allows for enhanced internalization of antigen and subsequent presentation for further T cell activation. Therefore, carbohydrate molecules play an important role in the study of immune responses; however, the use of these biomolecules often suffers from the lack of availability of structurally well-defined and pure carbohydrates. An automation platform based on iterative solution-phase reactions can enable rapid and controlled synthesis of these synthetically challenging molecules using significantly lower building block quantities than traditional solid-phase methods. Herein we report a protocol for the automated solution-phase synthesis of

  5. The synthesis, characterization and reactivity of high oxidation state nickel fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, L.C. [Univ. of Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.


    The research described in this thesis has mainly addressed the challenge of the synthesis of thermodynamically unstable nickel fluorides, which cannot be made by traditional thermal methods. A low-temperature approach towards the synthesis of such transition metal fluorides exploits the greater thermodynamic stability of high oxidation states in anions and involves the use of anhydrous hydrogen fluoride (aHF) as a solvent. The general method consists of combining an aHF soluble starting material (e.g., K{sub 2}NiF{sub 6}) with a Lewis fluoroacid (e.g., BF{sub 3}), which precipitates a neutral polymeric solid state fluoride: 2 K{sup +} + NiF{sub 6}{sup 2{minus}} + BF{sub 3} {r_arrow} NiF{sub 4} + 2 BF{sub 4}{sup {minus}} + 2 K{sup +}. At room temperature, this reaction yields a different structural phase, with composition K{sub x}NiF{sub 3} (x {approx} 0.18). This material has a pseudo-hexagonal tungsten bronze structure (H{sub 0}-K{sub x}NiF{sub 3}), and is an ionic conductor, probably due to K{sup +} ions hosted in the lattice channels. R-NiF{sub 3} is capable of fluorinating a wide range of inorganic and organic substrates. These reactions have probably shed light on the mechanism of the Simons Electrochemical Fluorination (ECF) Process, an important industrial method of fluorinating organic compounds. It has long been speculated that NiF{sub 3} plays a role in the ECF process, which uses nickel electrodes in aHF solvent. K{sub 2}NiF{sub 6} also fluorinates organic compounds in aHF, but interestingly, yields different fluorinated products. The reduction of R-NiF{sub 3} and K{sub 2}NiF{sub 6} during fluorination reactions yields NiF{sub 2}. A method has been developed to regenerate NiF{sub 6}{sup 2{minus}} from NiF{sub 2}.

  6. Bicontinuous microemulsions for high yield, wet synthesis of ultrafine nanoparticles : A general approach

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.


    The design of a synthesis strategy for metal nanoparticles by templating dense microemulsions is proposed. Particle size is controlled by surfactant size rather than by microemulsion composition. The strategy was demonstrated with various systems with different surfactant: cationic, anionic and

  7. Numerical investigation of high temperature synthesis gas premixed combustion via ANSYS Fluent


    Pashchenko Dmitry


    A numerical model of the synthesis gas pre-mixed combustion is developed. The research was carried out via ANSYS Fluent software. Verification of the numerical results was carried out using experimental data. A visual comparison of the flame contours that obtained by the synthesis gas combustion for Re = 600; 800; 1000 was performed. A comparison of the wall temperature of the combustion chamber, obtained with the help of the developed model, with the results of a physical experiment was also...

  8. A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. (United States)

    Duarte, Joao A G; Carvalho, Filipa; Pearson, Mackenzie; Horton, Jay D; Browning, Jeffrey D; Jones, John G; Burgess, Shawn C


    Intracellular lipids and their synthesis contribute to the mechanisms and complications of obesity-associated diseases. We describe an NMR approach that provides an abbreviated lipidomic analysis with concurrent lipid biosynthetic fluxes. Following deuterated water administration, positional isotopomer analysis by deuterium NMR of specific lipid species was used to examine flux through de novo lipogenesis (DNL), FA elongation, desaturation, and TG-glycerol synthesis. The NMR method obviated certain assumptions regarding sites of enrichment and exchangeable hydrogens required by mass isotope methods. The approach was responsive to genetic and pharmacological gain or loss of function of DNL, elongation, desaturation, and glyceride synthesis. BDF1 mice consuming a high-fat diet (HFD) or matched low-fat diet for 35 weeks were examined across feeding periods to determine how flux through these pathways contributes to diet induced fatty liver and obesity. HFD mice had increased rates of FA elongation and glyceride synthesis. However DNL was markedly suppressed despite insulin resistance and obesity. We conclude that most hepatic TGs in the liver of HFD mice were formed from the reesterification of existing or ingested lipids, not DNL. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. Synthesis of highly active and dual-functional electrocatalysts for methanol oxidation and oxygen reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi; Zhang, Geng; Xu, Guangran; Li, Yingjun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Liu, Baocang [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Gong, Xia [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Zheng, Dafang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Zhang, Jun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Wang, Qin, E-mail: [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China)


    Graphical abstract: Ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities (NDs) catalysts, are successfully synthesized by using a facile method. The as-obtained ternary catalysts manifest superior catalytic activity and stability both in terms of surface and mass specific activities toward the methanol oxidation and oxygen reduction reactions, as compared to the binary catalysts and the commercial Pt/C catalysts. - Highlights: • Ternary RuMPt catalysts are synthesized by using a facile method. • The catalysts manifest superior catalytic activity towards the MOR and ORR. • High activities are attributed to enhanced electron density and synergistic effects. - Abstract: The promising Pt-based ternary catalyst is crucial for polymer electrolyte membrane fuel cells (PEMFCs) due to improving catalytic activity and durability for both methanol oxidation reaction and oxygen reduction reaction. In this work, a facile strategy is used for the synthesis ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities catalysts. The ternary RuMPt alloys exhibit enhanced specific and mass activity, positive half-wave potential, and long-term stability, compared with binary Pt-based alloy and the commercial Pt/C catalyst, which is attributed to the high electron density and upshifting of the d-band center for Pt atoms, and synergistic catalytic effects among Pt, M, and Ru atoms by introducing a transition metal. Impressively, the ternary RuCoPt catalyst exhibits superior mass activity (801.59 mA mg{sup −1}) and positive half-wave potential (0.857 V vs. RHE) towards MOR and ORR, respectively. Thus, the RuMPt nanocomposite is a very promising material to be used as dual electrocatalyst in the application of PEMFCs.

  10. Effects of Fuel to Synthesis of CaTiO3 by Solution Combustion Synthesis for High-Level Nuclear Waste Ceramics. (United States)

    Jung, Choong-Hwan; Kim, Yeon-Ku; Han, Young-Min; Lee, Sang-Jin


    A solution combustion process for the synthesis of perovskite (CaTiO3) powders is described. Perovskite is one of the crystalline host matrics for the disposal of high-level radioactive wastes (HLW) because it immobilizes Sr and Lns elements by forming solid solutions. Solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between nitrate and organic fuel, the exothermic reaction, and the heat evolved convert the precursors into their corresponding oxide products above 1100 degrees C in air. To investigate the effects of amino acid on the combustion reaction, various types of fuels were used; a glycine, amine and carboxylic ligand mixture. Sr, La and Gd-nitrate with equivalent amounts of up to 20% of CaTiO3 were mixed with Ca and Ti nitrate and amino acid. X-ray diffraction analysis, SEM and TEM were conducted to confirm the formed phases and morphologies. While powders with an uncontrolled shape are obtained through a general oxide-route process, Ca(Sr, Lns)TiO3 powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using this method.

  11. The synthesis of amphipathic prodrugs of 1,2-diol drugs with saccharide conjugates by high regioselective enzymatic protocol. (United States)

    Quan, Jing; Chen, Zhichun; Han, Chengyou; Lin, Xianfu


    A facile, high regioselective enzymatic synthesis approach for the preparation of amphipathic prodrugs with saccharides of mephenesin and chlorphenesin was developed. Firstly, transesterification of two drugs with divinyl dicarboxylates with different carbon chain length was performed under the catalysis of Candida antarctica lipase acrylic resin and Lipozyme in anhydrous acetone at 50 degrees C, respectively. A series of lipophilic derivatives with vinyl groups of mephenesin and chlorphenesin were prepared. The influences of different organic solvents, enzyme sources, reaction time, and the acylation reagents on the synthesis of vinyl esters were investigated. And then, protease-catalyzed high regioselective acylation of D-glucose and D-mannose with vinyl esters of mephenesin and chlorphenesin gave drug-saccharide derivatives in good yields. The studies of lipophilicity and hydrolysis in vitro of prodrugs verified that drug-saccharide derivatives had amphipathic properties, and both lipophilic and amphipathic drug derivatives had obvious controlled release characteristics.

  12. Self-Propagating High-Temperature Synthesis of Titanium Carbosilicide and Electrically Conductive Composite Coatings on its Basis (United States)

    Shulpekov, A. M.; Lepakova, O. K.; Golobokov, N. N.; Dyukarev, M. A.


    Titanium carbosilicide is obtained by the method of self-propagating high-temperature synthesis with titanium and ferrosilicon (with silicon content of 80 mass %) used as initial products. Addition of TiSi2 to the endproduct with the subsequent heat treatment allows the content of titanium silicide to be increased. The materials based on titanium carbosilicide provide electroconductivity of polymer composite coatings at temperatures exceeding 350°C.

  13. High-pressure and high-temperature synthesis of rhenium carbide using rhenium and nanoscale amorphous two-dimensional carbon nitride

    Directory of Open Access Journals (Sweden)

    Nozomu Yasui


    Full Text Available Both Re2C and Re2N are ultra incompressible and have a bulk modulus of about 400 GPa. These materials are synthesized under high pressure and high temperature. The synthesis pressures are about 10 GPa or below for Re2C and 20–30 GPa for Re2N. If the synthesis pressure of Re2N was about 10 GPa or below, a large volume high-pressure cell like a multi-anvil apparatus can be used to synthesize Re2N. To realize this, a proper solid nitrogen source is needed instead of liquid or gas nitrogen. We used a precursor of a mixture of rhenium and home-made nanoscale amorphous two-dimensional carbon nitride as a solid nitrogen source. Consequently, the synthesis reaction produced Re2C but not Re2N. We characterized the synthesized Re2C by various techniques including high-pressure x-ray diffraction (XRD. The bulk modulus B0 of the synthesized Re2C under hydrostatic conditions was estimated to be 385.7 ± 18.0 GPa. This value is a little smaller than the previous data. When the pressure medium became non-hydrostatic, the peculiar compression behaviour occurred; the rate of broadening of XRD lines increased and the compression became negligible in the range of a few GPa. The reason for this peculiar behaviour is not known.

  14. Study of composite adsorbent synthesis and characterization for the removal of Cs in the high-salt and high-radioactive wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jimin; Lee, Keun Young; Kim, Kwang Wook; Lee, Eil Hee; Chung, Dong Yong; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hyun, Jae Hyuk [Chungnam National University, Daejeon (Korea, Republic of)


    For the removal of cesium (Cs) from high radioactive/high salt-laden liquid waste, this study synthesized a highly efficient composite adsorbent (potassium cobalt ferrocyanide (PCFC)-loaded chabazite (CHA)) and evaluated its applicability. The composite adsorbent used CHA, which could accommodate Cs as well as other molecules, as a supporting material and was synthesized by immobilizing the PCFC in the pores of CHA through stepwise impregnation/precipitation with CoCl{sub 2} and K{sub 4}Fe (CN){sub 6} solutions. When CHA, with average particle size of more than 10 μm, is used in synthesizing the composite adsorbent, the PCFC particles were immobilized in a stable form. Also, the physical stability of the composite adsorbent was improved by optimizing the washing methodology to increase the purity of the composite adsorbent during the synthesis. The composite adsorbent obtained from the optimal synthesis showed a high adsorption rate of Cs in both fresh water (salt-free condition) and seawater (high-salt condition), and had a relatively high value of distribution coefficient (larger than 10{sup 4} mL·g{sup -1}) regardless of the salt concentration. Therefore, the composite adsorbent synthesized in this study is an optimized material considering both the high selectivity of PCFC on Cs and the physical stability of CHA. It is proved that this composite adsorbent can remove rapidly Cs contained in high radioactive/high salt-laden liquid waste with high efficiency.

  15. High-pressure Synthesis and Bulk Modulus of Non-centrosymmetric Superconductor Mo3Al2C (United States)

    Sekine, C.; Sai, U.; Hayashi, J.; Kawamura, Y.; Bauer, E.


    Mo3Al2C is a superconductor without inversion symmetry (the transition temperature T C ∼ 9K). We have succeeded in preparing high-quality samples of Mo3Al2C using the high-pressure synthesis technique. The samples were characterized by powder x-ray diffraction (XRD) analysis. Furthermore, powder XRD patterns for the samples with synchrotron radiation have been studied under high pressures up to around 10 GPa and the volume versus pressure curve for the compound has been investigated. A bulk modulus was estimated to be 221 GPa.

  16. Α-amino-β-fluorocyclopropanecarboxylic acids as a new tool for drug development: synthesis of glutamic acid analogs and agonist activity towards metabotropic glutamate receptor 4. (United States)

    Lemonnier, Gérald; Lion, Cédric; Quirion, Jean-Charles; Pin, Jean-Philippe; Goudet, Cyril; Jubault, Philippe


    Herein we describe the diastereoselective synthesis of glutamic acid analogs and the evaluation of their agonist activity towards metabotropic glutamate receptor subtype 4 (mGluR4). These analogs are based on a monofluorinated cyclopropane core substituted with an α-aminoacid function. The potential of this new building block as a tool for the development of a novel class of drugs is demonstrated with racemic analog 11a that displayed the best agonist activity with an EC50 of 340 nM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A new synthesis of carbon encapsulated Fe5C2 nanoparticles for high-temperature Fischer-Tropsch synthesis (United States)

    Hong, Seok Yong; Chun, Dong Hyun; Yang, Jung-Il; Jung, Heon; Lee, Ho-Tae; Hong, Sungjun; Jang, Sanha; Lim, Jung Tae; Kim, Chul Sung; Park, Ji Chan


    Using a simple thermal treatment under a CO flow, uniform micrometer-sized iron oxalate dihydrate cubes prepared by hydrothermal reaction were transformed into Fe5C2@C nanoparticles to form a mesoporous framework; the final structure was successfully applied to the high-temperature Fischer-Tropsch reaction and it showed high activity (CO conversion = 96%, FTY = 1.5 × 10-4 molCO gFe-1 s-1) and stability.Using a simple thermal treatment under a CO flow, uniform micrometer-sized iron oxalate dihydrate cubes prepared by hydrothermal reaction were transformed into Fe5C2@C nanoparticles to form a mesoporous framework; the final structure was successfully applied to the high-temperature Fischer-Tropsch reaction and it showed high activity (CO conversion = 96%, FTY = 1.5 × 10-4 molCO gFe-1 s-1) and stability. Electronic supplementary information (ESI) available: Details of experimental procedures, SEM images of FeNi and FeCo oxalate hydrate particles, particle size and pore size distributions, FT activity and selectivity, hydrocarbon product distribution, ASF plot, and Mössbauer parameters of the Fe5C2@C catalyst. See DOI: 10.1039/c5nr05787f

  18. A scalable synthesis of highly stable and water dispersible Ag 44(SR)30 nanoclusters

    KAUST Repository

    AbdulHalim, Lina G.


    We report the synthesis of atomically monodisperse thiol-protected silver nanoclusters [Ag44(SR)30] m, (SR = 5-mercapto-2-nitrobenzoic acid) in which the product nanocluster is highly stable in contrast to previous preparation methods. The method is one-pot, scalable, and produces nanoclusters that are stable in aqueous solution for at least 9 months at room temperature under ambient conditions, with very little degradation to their unique UV-Vis optical absorption spectrum. The composition, size, and monodispersity were determined by electrospray ionization mass spectrometry and analytical ultracentrifugation. The produced nanoclusters are likely to be in a superatom charge-state of m = 4-, due to the fact that their optical absorption spectrum shares most of the unique features of the intense and broadly absorbing nanoparticles identified as [Ag44(SR) 30]4- by Harkness et al. (Nanoscale, 2012, 4, 4269). A protocol to transfer the nanoclusters to organic solvents is also described. Using the disperse nanoclusters in organic media, we fabricated solid-state films of [Ag44(SR)30]m that retained all the distinct features of the optical absorption spectrum of the nanoclusters in solution. The films were studied by X-ray diffraction and photoelectron spectroscopy in order to investigate their crystallinity, atomic composition and valence band structure. The stability, scalability, and the film fabrication method demonstrated in this work pave the way towards the crystallization of [Ag44(SR)30]m and its full structural determination by single crystal X-ray diffraction. Moreover, due to their unique and attractive optical properties with multiple optical transitions, we anticipate these clusters to find practical applications in light-harvesting, such as photovoltaics and photocatalysis, which have been hindered so far by the instability of previous generations of the cluster. © 2013 The Royal Society of Chemistry.

  19. Study on synthesis of ultrafine Cu-Ag core-shell powders with high electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng Yuhsien [Department of Environmental Engineering, Dayeh University, 168 University Rd., Dacun, Changhua 515, Taiwan (China); Department of Research and Development, Oriental Happy Enterprise Co., No. 27, Xin' ai Rd., South Dist., Tainan 702, Taiwan (China); Center for General Education, Kun Shan University, No. 949, Dawan Rd., Yongkang Dist., Tainan 710, Taiwan (China); Yang Chihhao [Department of Research and Development, Oriental Happy Enterprise Co., No. 27, Xin' ai Rd., South Dist., Tainan 702, Taiwan (China); Chen Kuanting, E-mail: [Department of Resources Engineering, National Cheng Kung University, No.1, Da-Hsueh Road, Tainan 701, Taiwan (China); Popuri, Srinivasa R. [Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus 11000 (Barbados); Lee, Ching-Hwa [Department of Environmental Engineering, Dayeh University, 168 University Rd., Dacun, Changhua 515, Taiwan (China); Tang, Bo-Shin [Department of Research and Development, Oriental Happy Enterprise Co., No. 27, Xin' ai Rd., South Dist., Tainan 702, Taiwan (China)


    Highlights: Black-Right-Pointing-Pointer This synthesis method is relatively facile, novel and eco-friendly. Black-Right-Pointing-Pointer Toxic agents were not used for chelating agent, reductant or dispersant in our method. Black-Right-Pointing-Pointer The reaction can under room temperature for energy saving purpose. Black-Right-Pointing-Pointer Cu-Ag core-shell powders with homogeneous cover-silver layer. Black-Right-Pointing-Pointer The resistivity of Cu-Ag core-shell powders has the same value as the pure silver. - Abstract: Cu-Ag composite powders with high electrical conductivity were synthesized by electroless plating of silver sulfate, copper powders with eco-friendly sodium citrate as reducing agent, dispersant and chelating agent in an aqueous system. The influences of sodium citrate/Ag ratio on Ag coatings of Cu powders were investigated. Ag was formed a dense coating on the surface of Cu powders at a molar ratio of sodium citrate/Ag = 0.07/1. SEM showed an uniformity of Ag coatings on Cu powders. SEM-EDX also revealed that Cu cores were covered by Ag shells on the whole. The surface composition analysis by XPS indicated that without Cu or Ag atoms in the surface were oxidized. The resistivity measurements of Cu-Ag paste shows that they have closer resistivity as the pure silver paste's after 250 Degree-Sign C for 30 min heat-treatment (2.55 Multiplication-Sign 10{sup -4} {Omega} cm) and 350 Degree-Sign C for 30 min heat-treatment (1.425 Multiplication-Sign 10{sup -4} {Omega} cm).

  20. Self-propagating high-temperature synthesis brazing for emergency repair (United States)

    Bai, Yang; Luo, Zhen; Fan, Naifeng; Ao, Sansan


    It is of great significance to fast weld and repair damaged parts in electroless and gasless field. So, based on Selfpropagating High-temperature Synthesis (SHS), this paper investigates the SHS brazing of thermit reaction. It is found that the heat obtained by SHS thermit reaction can not melt the base metal, however the silver solder with the melting temperature of 595°C to 605°C can all just melt in the middle of the base metal to achieve SHS brazing. In the experiment, as the surface tension, the molten solder is more likely to wet the slag which is with a larger surface tension, resulting in the poor wettability between solder and base metal. By adding a certain amount of silver brazing flux into the powder can solve the problem of base metal wetting. When the silver brazing flux and the powder are in a ratio of 10:1, solder melt completely, and can be separated with slag, there is a good weld surface. With the increase of silver brazing flux, the slag is more loose and easy to removal. The solder and base metal coating is better. However, with further increase in silver brazing flux, the heat from the reaction reduces, solder can not melt. And with the increase of the powder, the slag and the solder can not be separated. SHS brazing combines the thermit reaction heat with the brazing technology to achieve the low carbon steel welding. Using the heat of thermit reaction to melt the solder then weld the steel can overcome the defects of poor quality of traditional welding which use the reaction products. And the operation is simple. SHS brazing achieve the emergency equipment welding under the condition of no electricity, no gas and equipment.

  1. Chemical synthesis of highly stable PVA/PANI films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Patil, D.S.; Shaikh, J.S.; Dalavi, D.S.; Kalagi, S.S. [Thin Films Materials laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Patil, P.S., E-mail: [Thin Films Materials laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)


    Highlights: {yields} Chemical synthesis of PVA/PANI films by spin and dip coating at room temperature. {yields} Thickness dependent supercapacitor behavior of PVA/PANI film. {yields} The synthesized film are highly stable up to 20,000 cycles. - Abstract: Polyvinyl alcohol (PVA)/polyaniline (PANI) thin films were chemically synthesized by adopting two step process: initially a thin layer (200 nm) of PVA was spin coated by using an aqueous PVA solution onto fluorine doped tin oxide (FTO) coated glass substrate, afterwards PANI was chemically polymerized from aniline monomer and dip coated onto the precoated substrate. The thickness of PANI layer was varied from 293 nm to 2367 nm by varying deposition cycles onto the precoated PVA thin film. The resultant PVA/PANI films were characterized for their optical, morphological and electrochemical properties. The FT-IR and Raman spectra revealed characteristic features of the PANI phase. The SEM study showed porous spongy structure. Electrochemical properties were studied by electrochemical impedance measurement and cyclic voltammetry. The electrochemical performance of PVA/PANI thin films was investigated in 1 M H{sub 2}SO{sub 4} aqueous electrolyte. The highest specific capacitance of 571 Fg{sup -1} was observed for the optimized thickness of 880 nm. The film was found to be stable for more than 20,000 cycles. The samples degraded slightly (25% decrement in specific capacitance) for the first 10,000 cycles. The degradation becomes much slower (10.8% decrement in specific capacitance) beyond 10,000 cycles. This dramatic improvement in the electrochemical stability of the PANI samples, without sacrificing specific capacitance was attributed to the optimized PVA layer.

  2. Synthesis, structure, spectroscopic, and electrochemical properties of highly fluorescent phosphorus(V)-meso-triarylcorroles. (United States)

    Ghosh, Avijit; Ravikanth, Mangalampalli


    The synthesis, spectroscopic, and electrochemical properties of seven new P(V)-meso-triarylcorroles (1-7) are reported. Compounds 1-7 were prepared by heating the corresponding free-base corroles with POCl(3) at reflux in pyridine. Hexacoordinate P(V) complexes of meso-triarylcorroles were isolated that contained two axial hydroxy groups, unlike the P(V) complex of 8,12-diethyl-2,3,7,13,17,18-hexamethylcorrole, which was pentacoordinate, or the P(V) complex of meso-tetraphenylporphyrin, which was hexacoordinate with two axial chloro groups. (1)H and (31)P NMR spectroscopy in CDCl(3) indicated that the hexacoordinated P(V)-meso-triarylcorroles were prone to axial-ligand dissociation to form pentacoordinated P(V)-meso-triarylcorroles. However, in the presence of strongly coordinating solvents, such as CH(3)OH, THF, and DMSO, the P(V)-meso-triarylcorroles preferred to exist in a hexacoordinated geometry in which the corresponding solvent molecules acted as axial ligands. X-ray diffraction of two complexes confirmed the hexacoordination environment for P(V)-meso-triarylcorroles. Their absorption spectra in two coordinating solvents revealed that P(V)-meso-triarylcorroles showed a strong band at about 600 nm together with other bands, in contrast to P(V)-porphyrins, which showed weak bands in the visible region. These compounds were easier to oxidize and more difficult to reduce compared to P(V)-porphyrins. These compounds were brightly fluorescent, unlike the weakly fluorescent P(V)-porphyrins, and the quantum yields for selected P(V)-corroles were as high as Al(III) and Ga(III) corroles, which are the best known fluorescent compounds among oligopyrrolic macrocycles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High density lipoprotein (HDL promotes glucose uptake in adipocytes and glycogen synthesis in muscle cells.

    Directory of Open Access Journals (Sweden)

    Qichun Zhang

    Full Text Available BACKGROUND: High density lipoprotein (HDL was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. METHODS AND RESULTS: Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1-[(3H]-2-deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3 phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK α were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-α were diminished in SR-BI knock-down 3T3-L1 cells. CONCLUSIONS: HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells through promoting GSK3 phosphorylation.

  4. Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. (United States)

    Antonopoulou, Io; Varriale, Simona; Topakas, Evangelos; Rova, Ulrika; Christakopoulos, Paul; Faraco, Vincenza


    Cosmeceuticals are cosmetic products containing biologically active ingredients purporting to offer a pharmaceutical therapeutic benefit. The active ingredients can be extracted and purified from natural sources (botanicals, herbal extracts, or animals) but can also be obtained biotechnologically by fermentation and cell cultures or by enzymatic synthesis and modification of natural compounds. A cosmeceutical ingredient should possess an attractive property such as anti-oxidant, anti-inflammatory, skin whitening, anti-aging, anti-wrinkling, or photoprotective activity, among others. During the past years, there has been an increased interest on the enzymatic synthesis of bioactive esters and glycosides based on (trans)esterification, (trans)glycosylation, or oxidation reactions. Natural bioactive compounds with exceptional theurapeutic properties and low toxicity may offer a new insight into the design and development of potent and beneficial cosmetics. This review gives an overview of the enzymatic modifications which are performed currently for the synthesis of products with attractive properties for the cosmeceutical industry.

  5. Combinatorial synthesis and high-throughput screening of alkyl amines for nonviral gene delivery. (United States)

    Li, Linxian; Wang, Fengjian; Wu, Yihang; Davidson, Gary; Levkin, Pavel A


    Efficient delivery of plasmid DNA and siRNA into cells is essential for biological and biomedical research. Although significant efforts have been made to develop efficient nonviral vectors, such as cationic lipids and polymers, most of the vectors require multistep synthesis, which complicates both fast structural optimizations and combinatorial synthesis of such vectors. Here, we present a facile, single-step method based on an alkylation of amines, allowing for the fast parallel synthesis of libraries of cationic lipid-like molecules (lipidoids). We exploited the method to synthesize 200 lipidoids, which were screened for their transfection efficiency in HEK293T cells. The screen resulted in about 2% of new lipidoids capable of efficient cell transfection similar or higher than the efficiency of Lipofectamine 2000. In addition, we observed an enhancement of cellular transfection by combining single- with double-chain lipidoids, which was attributed to the different roles of the single- and double-tailed lipids in the mixed liposomes.

  6. Depression of leukocyte protein synthesis, immune function and growth performance induced by high environmental temperature in broiler chickens. (United States)

    Kamel, Nancy N; Ahmed, Ayman M H; Mehaisen, Gamal M K; Mashaly, Magdi M; Abass, Ahmed O


    In tropical and semitropical regions, raising broiler chickens out of their thermal comfort zone can cause an added economic loss in the poultry industry. The cause for the deleterious effects on immunity and growth performance of broilers under high environmental temperatures is still poorly understood. Therefore, the aim of the current investigation was to evaluate the effect of heat stress on leukocytes protein synthesis and immune function as a possible direct cause of low performance in broiler chickens under such condition. In this study, 300 one-day-old male broiler chicks (Cobb500™) were randomly assigned into 2 groups with 5 replicates of 30 chicks each. From 21 to 42 days of age, one group was exposed to non-stressed condition at 24 °C and 50% relative humidity (control group), while the other group was exposed to heat stress at 35 °C and 50% relative humidity (HS group). At 42 days of age, blood samples were collected from each group to evaluate stress indicators, immune function, and leukocytes protein synthesis. Production performance was also recorded. Noteworthy, protein synthesis in leukocytes was significantly (P broiler performance indicate that HS birds had a significant (P growth performance with the high mortality rate encountered in broiler chickens under heat stress environment.

  7. Synthesis and morphological examination of high-purity Ca(OH)2 nanoparticles suitable to consolidate porous surfaces (United States)

    Madrid, Juan Antonio; Lanzón, Marcos


    Adequate synthetic methods to obtain pure Ca(OH)2 nanoparticles are scarcely documented in the literature. This paper presents a complete methodology to obtain highly-pure Ca(OH)2 nanoparticles that are appropriate for strengthening heritage materials. The precipitation synthesis was operated in controlled atmosphere to avoid carbonation by atmospheric CO2. A complete purification method was developed to eliminate the sodium chloride generated in the reaction. Several analytical techniques, such as electrical conductivity, pH, ion chromatography, X-ray diffraction (XRD) and thermogravimetric analysis coupled to mass spectrometry (TGA-MS) were used to analyse both the aqueous medium and solid phase. The amount of material obtained in the synthesis (yield) was quantified throughout the purification procedure. The influence of temperature on the nanoparticles' size and stability was studied by transmission electron microscopy (HRTEM) and sedimentation tests (light scattering). It was found that the synthesis yielded high-purity nanoparticles, whose morphological features were greatly affected by the reaction temperature.

  8. Transcriptome analysis suggests that starch synthesis may proceed via multiple metabolic routes in high yielding potato cultivars.

    Directory of Open Access Journals (Sweden)

    Kacper Piotr Kaminski

    Full Text Available BACKGROUND: Glucose-6-phosphate is imported into the amyloplast of potato tubers and thought to constitute the precursor for starch synthesis in potato tubers. However, recently it was shown that glucose-1-phosphate can also be imported into the amyloplast and incorporated into starch via an ATP independent mechanism under special conditions. Nonetheless, glucose-6-phosphate is believed to be the quantitatively important precursor for starch synthesis in potato. PRINCIPAL FINDING: Potato tubers of the high yielding cv Kuras had low gene expression of plastidial phophoglucomutase (PGM and normal levels of transcripts for other enzymes involved in starch metabolism in comparison with medium and low yielding cultivars as determined by DeepSAGE transcriptome profiling. The decrease in PGM activity in Kuras was confirmed by measuring the enzyme activity from potato tuber extracts. Contrary to expectations, this combination lead to a higher level of intracellular glucose-1-phosphate (G1P in Kuras suggesting that G1P is directly imported into plastids and can be quantitatively important for starch synthesis under normal conditions in high yielding cultivars. SIGNIFICANCE: This could open entirely new possibilities for metabolic engineering of the starch metabolism in potato via the so far uncharacterized G1P transporter. The perspectives are to increase yield and space efficiency of this important crop. In the light of the increasing demands imposed on agriculture to support a growing global population this presents an exciting new possibility.

  9. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films. (United States)

    Tao, Li; Lee, Jongho; Chou, Harry; Holt, Milo; Ruoff, Rodney S; Akinwande, Deji


    We report new findings on the chemical vapor deposition (CVD) of monolayer graphene with negligible defects (≥95% negligible defect-peak over 200 μm × 200 μm areas) on evaporated copper films. Compared to copper foils used in the CVD of graphene, several new unexpected results have been observed including high-quality monolayer synthesis at temperatures graphene grains on underlying copper grains. These thermal, chemical, and physical growth characteristics of graphene on copper films can be attributed to the distinct differences in the dominant crystal orientation of copper films (111) versus foils (100), and consequent dissimilar interplay with the precursor gas. This study suggests that reduced temperature, hydrogen-free synthesis of defect-negligible monolayer graphene is feasible, with the potential to shape and scale graphene grains by controlling the size and crystal orientation of the underlying copper grains. © 2012 American Chemical Society

  10. Transcriptome Analysis Suggests That Starch Synthesis May Proceed via Multiple Metabolic Routes in High Yielding Potato Cultivars

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Høgh Petersen, Annabeth; Sønderkær, Mads


    new possibilities for metabolic engineering of the starch metabolism in potato via the so far uncharacterized G1P transporter. The perspectives are to increase yield and space efficiency of this important crop. In the light of the increasing demands imposed on agriculture to support a growing global......Background: Glucose-6-phosphate is imported into the amyloplast of potato tubers and thought to constitute the precursor for starch synthesis in potato tubers. However, recently it was shown that glucose-1-phosphate can also be imported into the amyloplast and incorporated into starch via an ATP...... independent mechanism under special conditions. Nonetheless, glucose 6-phosphate is believed to be the quantitatively important precursor for starch synthesis in potato. Principal Finding: Potato tubers of the high yielding cv Kuras had low gene expression of plastidial phophoglucomutase (PGM) and normal...

  11. Coating with mesoporous silica remarkably enhances the stability of the highly active yet fragile flower-like MgO catalyst for dimethyl carbonate synthesis. (United States)

    Cui, Zhi-Min; Chen, Zhe; Cao, Chang-Yan; Song, Wei-Guo; Jiang, Lei


    Flower-like MgO is a highly effective catalyst for the synthesis of dimethyl carbonate through the transesterification method, and coating the catalyst with mesoporous silica significantly enhances the stability of the MgO catalyst.

  12. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    Directory of Open Access Journals (Sweden)

    Marlise I Klein

    Full Text Available Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA and glucan-binding (gbpB during this transition (P<0.05. Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism, and molecular chaperones (GroEL. Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms demonstrating fundamental differences in the matrix assembly, survival and biofilm

  13. Streptococcus mutans Protein Synthesis during Mixed-Species Biofilm Development by High-Throughput Quantitative Proteomics (United States)

    Klein, Marlise I.; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M.; Yates, John R.; Koo, Hyun


    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (Pmutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other

  14. Synthesis of oxygenate products for high volume fuels applications. Quarterly technical progress report, November 1, 1994--January 31, 1995

    Energy Technology Data Exchange (ETDEWEB)



    The objective of this project is to develop high yield syntheses of oxygenate products that are liquid at room temperature using as starting materials dimethy ether (DME) or methanol. The identified products include: Dimethyl Carbonate (DMC), 1,1-Dimethoxyethane (DMOE), C{sub 2}{sup +} Alcohols/Ethers (C{sub 2}AE). The technical strategy is outlined below: (A) Synthesis of DMC via oxidative carbonylation of DME instead of methanol. Since this synthesis would not co-produce water as a byproduct, there is a potential for very high DME conversions in contrast to the low (ca 20%) conversions obtained in conventional plants. Technical emphasis will be placed on development of a supported copper catalyst with a capability for cleavage of DME into its chemisorbed organic moieties. (B) Synthesis of 1,1-dimethoxymethane (DMOE) from acetylene/CO/H{sub 2} process streams obtained from commercial methane oxidative pyrolysis processes. In the overall processing scheme the syngas would be converted to DME. The wet acetylene stream would be partially condensed to retain an equivalent of water and then condensed with DME to produce EMOE. (C) Direct conversion of DME or DME/methanol to ethanol/propanol or their methyl ethers. Under the influence of functionalized alcohol condensation catalysts developed exclusively at Amoco it should be possible to achieve direct conversion of dimethyl ether (or methanol) to ethanol/propanol and/or the methyl ethers of these alcohols. Although this reaction is not currently known, a combination of key catalyst components from identified systems should result in a DME conversion catalyst to C{sub 2}+ oxygenates. (D) Reaction of DME or acetylene with synthesis gas (CO/H{sub 2}) or methanol. A variety of catalysts will be tested for conversion of acetylene/CO/H{sub 2} or acetylene/methanol to propylene and conversion of DME/CO/H{sub 2} or DME/methanol to dimenthyoxymethane (DMM) and/or other oxygenates.

  15. Highly efficient enzymatic synthesis of 3'-deoxyapionucleic acid (apioNA) having the four natural nucleobases


    Kataoka, Mayumi; Kouda, Yasuo; Sato, Kousuke; Minakawa, Noriaki; Matsuda, Akira


    The synthesis of the 3'-deoxyapionucleoside 3"-triphosphates (apioNTPs) having the four natural nucleobases and their enzymatic incorporation into a DNA-DNA primer-template have been tried. Therminator DNA polymerase was shown to incorporate these apioNTPs effectively giving 43mer DNA-apioNA chimera.

  16. Synthesis and properties of highly branched Jatropha curcas L. oil derivatives

    NARCIS (Netherlands)

    Daniel, Louis; Ardiyanti, Agnes R.; Schuur, Boelo; Manurung, Robert; Broekhuis, Antonius A.; Heeres, Hero J.

    The synthesis and properties of a number of novel branched Jatropha curcas L. oil (JO) derivatives containing vicinal di-ester units in the fatty acid chains are reported. Both the length (acetyl vs. hexanoyl) and the stereochemistry of the vicinal di-ester units (cis vs. trans) were varied. The

  17. NGC 6302: high-ionization permitted lines. Applying X-SSN synthesis to VLT-UVES spectra (United States)

    Péquignot, Daniel; Morisset, Christophe; Casassus, Simon


    A preliminary VLT-UVES spectrum of NGC 6302 (Casassus et al. 2002, MN), which hosts one of the hottest PN nuclei known (T eff ~ 220000 K; Wright et al. 2011, MN), has been recently analysed by means of X-SSN, a spectrum synthesis code for nebulae (Morisset and Péquignot). Permitted recombination lines from highly-ionized species are detected/identified for the first time in a PN, and some of them probably for the first time in (astro)physics. The need for a homogeneous, high signal-to-noise UVES spectrum for NGC 6302 is advocated.

  18. Acute high-caffeine exposure increases autophagic flux and reduces protein synthesis in C2C12 skeletal myotubes


    Hughes, M. A.; Downs, R. M.; Webb, G. W.; Crocker, C. L.; Kinsey, S.T.; Baumgarner, Bradley L.


    Caffeine is a highly catabolic dietary stimulant. High caffeine concentrations (1–10 mM) have previously been shown to inhibit protein synthesis and increase protein degradation in various mammalian cell lines. The purpose of this study was to examine the effect of short-term caffeine exposure on cell signaling pathways that regulate protein metabolism in mammalian skeletal muscle cells. Fully differentiated C2C12 skeletal myotubes either received vehicle (DMSO) or 5 mM caffeine for 6 h. Our ...

  19. Total synthesis of (-)-aritasone via the ultra-high pressure hetero-Diels-Alder dimerisation of (-)-pinocarvone. (United States)

    Uroos, Maliha; Pitt, Phillip; Harwood, Laurence M; Lewis, William; Blake, Alexander J; Hayes, Christopher J


    This paper describes a total synthesis of the terpene-derived natural product aritasone via the hetero-Diels-Alder [4 + 2] cyclodimerisation of pinocarvove, which represents the proposed biosyntheic route. The hetero-Diels-Alder dimerisation of pinocarvone did not proceed under standard conditions, and ultra-high pressure (19.9 kbar) was required. As it seems unlikely that these ultra-high pressures are accessible within a plant cell, we suggest that the original biosynthetic hypothesis be reconsidered, and alternatives are discussed.

  20. Rhodium-catalyzed [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes and CO: reaction design, development, application in natural product synthesis, and inspiration for developing new reactions for synthesis of eight-membered carbocycles. (United States)

    Wang, Yi; Yu, Zhi-Xiang


    Practical syntheses of natural products and their analogues with eight-membered carbocyclic skeletons are important for medicinal and biological investigations. However, methods and strategies to construct the eight-membered carbocycles are limited. Therefore, developing new methods to synthesize the eight-membered carbocycles is highly desired. In this Account, we describe our development of three rhodium-catalyzed cycloadditions for the construction of the eight-membered carbocycles, which have great potential in addressing the challenges in the synthesis of medium-sized ring systems. The first reaction described in this Account is our computationally designed rhodium-catalyzed two-component [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes (ene-VCPs) and CO for the diastereoselective construction of bi- and tricyclic cyclooctenones. The design of this reaction is based on the hypothesis that the C(sp(3))-C(sp(3)) reductive elimination of the eight-membered rhodacycle intermediate generated from the rhodium-catalyzed cyclopropane cleavage and alkene insertion, giving Wender's [5 + 2] cycloadduct, is not easy. Under CO atmosphere, CO insertion may occur rapidly, converting the eight-membered rhodacycle into a nine-membered rhodacycle, which then undergoes an easy C(sp(2))-C(sp(3)) reductive elimination process and furnishes the [5 + 2 + 1] product. This hypothesis was supported by our preliminary DFT studies and also served as inspiration for the development of two [7 + 1] cycloadditions: the [7 + 1] cycloaddition of buta-1,3-dienylcyclopropanes (BDCPs) and CO for the construction of cyclooctadienones, and the benzo/[7 + 1] cycloaddition of cyclopropyl-benzocyclobutenes (CP-BCBs) and CO to synthesize the benzocyclooctenones. The efficiency of these rhodium-catalyzed cycloadditions can be revealed by the application in natural product synthesis. Two eight-membered ring-containing natural products, (±)-asterisca-3(15),6-diene and (+)-asteriscanolide, have been

  1. Three-component synthesis of highly functionalized aziridines containing a peptide side chain and their one-step transformation into β-functionalized α-ketoamides

    Directory of Open Access Journals (Sweden)

    Lena Huck


    Full Text Available A sequential three-component process is described, starting from 3-arylmethylene-2,5-piperazinediones and involving a one-pot sequence of reactions achieving regioselective opening of the 2,5-diketopiperazine ring and diastereoselective generation of an aziridine ring. This method allows the preparation of N-unprotected, trisubstituted aziridines bearing a peptide side chain under mild conditions. Their transformation into β-trifluoroacetamido-α-ketoamide and α,β-diketoamide frameworks was also achieved in a single step.

  2. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Aras, Neny Rasnyanti M., E-mail:; Arcana, I Made, E-mail: [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)


    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm{sup −1} which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese

  3. Laser-induced incandescence (LII) diagnostic for in situ monitoring of nanoparticle synthesis in a high-pressure arc discharge (United States)

    Yatom, Shurik; Vekselman, Vladislav; Mitrani, James; Stratton, Brentley; Raitses, Yevgeny; LaboratoryPlasma Nanosynthesis Team


    A DC arc discharge is commonly used for synthesis of carbon nanoparticles, including buckyballs, carbon nanotubes, and graphene flakes. In this work we show the first results of nanoparticles monitored during the arc discharge. The graphite electrode is vaporized by high current (60 A) in a buffer Helium gas leading to nanoparticle synthesis in a low temperature plasma. The arc was shown to oscillate, which can possibly influence the nano-synthesis. To visualize the nanoparticles in-situ we employ the LII technique. The nanoparticles with radii >50 nm, emerging from the arc area are heated with a short laser pulse and incandesce. The resulting radiation is captured with an ICCD camera, showing the location of the generated nanoparticles. The images of incandescence are studied together with temporally synchronized fast-framing imaging of C2 emission, to connect the dynamics of arc instabilities, C2 molecules concentration and nanoparticles. The time-resolved incandescence signal is analyzed with combination of ex-situ measurements of the synthesized nanoparticles and LII modeling, to provide the size distribution of produced nanoparticles. This work was supported by US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  4. Surface-Casting Synthesis of Mesoporous Zirconia with a CMK-5-Like Structure and High Surface Area. (United States)

    Gu, Dong; Schmidt, Wolfgang; Pichler, Christian M; Bongard, Hans-Josef; Spliethoff, Bernd; Asahina, Shunsuke; Cao, Zhengwen; Terasaki, Osamu; Schüth, Ferdi


    About 15 years ago, the Ryoo group described the synthesis of CMK-5, a material consisting of a hexagonal arrangement of carbon nanotubes. Extension of the surface casting synthesis to oxide compositions, however, was not possible so far, in spite of many attempts. Here it is demonstrated, that crystalline mesoporous hollow zirconia materials with very high surface areas up to 400 m2  g-1 , and in selected cases in the form of CMK-5-like, are indeed accessible via such a surface casting process. The key for the successful synthesis is an increased interaction between the silica hard template surface and the zirconia precursor species by using silanol group-rich mesoporous silica as a hard template. The surface areas of the obtained zirconias exceed those of conventionally hard-templated ones by a factor of two to three. The surface casting process seems to be applicable also to other oxide materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Historical Perspective and Contribution of U.S. Researchers Into the Field of Self-Propagating High-Temperature Synthesis (SHS)/Combustion Synthesis (CS): Personal Reflections (United States)


    simultaneous combustion synthesis and densification, (e) and (f) SEM images of single- walled carbon nanotubes reinforced nickel aluminide- alumina ...articles with nanosize grains. The starting powders were obtained by plasma, mechanical alloying, or sol - gel techniques. A very important modification...Mines and Technology where he has been continuing SHS-related work. His research has been focused on combustion synthesis of nanopowders and

  6. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. (United States)

    Wang, Junzhong; Manga, Kiran Kumar; Bao, Qiaoliang; Loh, Kian Ping


    High-yield production of few-layer graphene flakes from graphite is important for the scalable synthesis and industrial application of graphene. However, high-yield exfoliation of graphite to form graphene sheets without using any oxidation process or super-strong acid is challenging. Here we demonstrate a solution route inspired by the lithium rechargeable battery for the high-yield (>70%) exfoliation of graphite into highly conductive few-layer graphene flakes (average thickness graphene sheets with the aid of sonication. The dispersible graphene can be ink-brushed to form highly conformal coatings of conductive films (15 ohm/square at a graphene loading of <1 mg/cm(2)) on commercial paper. © 2011 American Chemical Society

  7. Large-scale synthesis of palladium concave nanocubes with high-index facets for sustainable enhanced catalytic performance. (United States)

    Xie, Xiaobin; Gao, Guanhui; Pan, Zhengyin; Wang, Tingjun; Meng, Xiaoqing; Cai, Lintao


    The catalytic activity of palladium (Pd) nanostructures highly relies on their size and morphology, especially enclosed with high-index facets, which provide more active sites so as to enhance their catalytic performance comparing with their low-index facet counterparts. Herein, Pd concave nanocubes enclosed with {730} facets by a one-pot scalable liquid method, with various high-index facets are synthesized via tuning reduction kinetics. Due to their high-index facets, the Pd concave nanocubes exhibit much higher electrocatalytic activity and stability for methanol oxidation than the Pd nanocubes enclosed by {100} facets and commercial Pd/C. Furthermore, we scale up synthesis of Pd concave nanocubes by expanding the volume of all species to fifty times with high-yield production.

  8. Quick high-temperature hydrothermal synthesis of mesoporous materials with 3D cubic structure for the adsorption of lysozyme. (United States)

    Lawrence, Geoffrey; Baskar, Arun V; El-Newehy, Mohammed H; Cha, Wang Soo; Al-Deyab, Salem S; Vinu, Ajayan


    Three-dimensional cage-like mesoporous FDU-12 materials with large tuneable pore sizes ranging from 9.9 to 15.6 nm were prepared by varying the synthesis temperature from 100 to 200 °C for the aging time of just 2 h using a tri-block copolymer F-127(EO106PO70EO106) as the surfactant and 1,3,5-trimethyl benzene as the swelling agent in an acidic condition. The mesoporous structure and textural features of FDU-12-HX (where H denotes the hydrothermal method and X denotes the synthesis temperature) samples were elucidated and probed using x-ray diffraction, N2 adsorption, (29)Si magic angle spinning nuclear magnetic resonance, scanning electron microscopy and transmission electron microscopy. It has been demonstrated that the aging time can be significantly reduced from 72 to 2 h without affecting the structural order of the FDU-12 materials with a simple adjustment of the synthesis temperature from 100 to 200 °C. Among the materials prepared, the samples prepared at 200 °C had the highest pore volume and the largest pore diameter. Lysozyme adsorption experiments were conducted over FDU-12 samples prepared at different temperatures in order to understand their biomolecule adsorption capacity, where the FDU-12-HX samples displayed high adsorption performance of 29 μmol g(-1) in spite of shortening the actual synthesis time from 72 to 2 h. Further, the influence of surface area, pore volume and pore diameter on the adsorption capacity of FDU-12-HX samples has been investigated and results are discussed in correlation with the textural parameters of the FDU-12-HX and other mesoporous adsorbents including SBA-15, MCM-41, KIT-5, KIT-6 and CMK-3.

  9. Numerical investigation of high temperature synthesis gas premixed combustion via ANSYS Fluent

    Directory of Open Access Journals (Sweden)

    Pashchenko Dmitry


    Full Text Available A numerical model of the synthesis gas pre-mixed combustion is developed. The research was carried out via ANSYS Fluent software. Verification of the numerical results was carried out using experimental data. A visual comparison of the flame contours that obtained by the synthesis gas combustion for Re = 600; 800; 1000 was performed. A comparison of the wall temperature of the combustion chamber, obtained with the help of the developed model, with the results of a physical experiment was also presented. For all cases, good convergence of the results is observed. It is established that a change in the temperature of the syngas/air mixture at the inlet to the combustion chamber does not significantly affect the temperature of the combustion products due to the dissipation of the H2O and CO2 molecules. The obtained results are of practical importance for the design of heat engineering plants with thermochemical heat recovery.

  10. High-Throughput Synthesis of Support Materials for Olefin Polymerization Catalyst. (United States)

    Chammingkwan, Patchanee; Terano, Minoru; Taniike, Toshiaki


    Rational catalyst design necessitates fundamental knowledge on the structure-performance relationship, while the synthetic throughput for heterogeneous Ziegler-Natta olefin polymerization catalysts has long prevented the acquisition of a statistical database. In this contribution, an in-house reactor system was developed to realize the parallel synthesis of support materials for Ziegler-Natta catalysts for the first time. The developed system enabled parallel synthesis of 24 magnesium ethoxide samples with excellent reproducibility and morphological control comparable to a conventional experiment. Our demonstration revealed that the generation of diverse particle characteristics could be achieved through the addition of a third component as a structural modulator, in which the in-house parallel reactor system combined with the first principle component analysis enabled fast screening of effective modulators.

  11. Synthesis of Energetic Nitrocarbamates from Polynitro Alcohols and Their Potential as High Energetic Oxidizers. (United States)

    Axthammer, Quirin J; Krumm, Burkhard; Klapötke, Thomas M


    A new synthesis strategy for the preparation of energetic carbamates and nitrocarbamates starting from readily available polynitro alcohols is introduced. The efficient synthesis of mainly new carbamates was performed with the reactive chlorosulfonyl isocyanate (CSI) reagent. The carbamates were nitrated using mixed acid to form the corresponding primary nitrocarbamates. The thermal stability of all synthesized compounds was studied using differential scanning calorimetry, and the energies of formation were calculated on the CBS-4 M level of theory. Detonation parameters and propulsion properties were determined with the software package EXPLO5 V6.02. Furthermore, for all new substances single-crystal X-ray diffraction studies were performed and are presented and discussed as Supporting Information.

  12. One-Step Synthesis of Microporous Carbon Monoliths Derived from Biomass with High Nitrogen Doping Content for Highly Selective CO2 Capture. (United States)

    Geng, Zhen; Xiao, Qiangfeng; Lv, Hong; Li, Bing; Wu, Haobin; Lu, Yunfeng; Zhang, Cunman


    The one-step synthesis method of nitrogen doped microporous carbon monoliths derived from biomass with high-efficiency is developed using a novel ammonia (NH3)-assisted activation process, where NH3 serves as both activating agent and nitrogen source. Both pore forming and nitrogen doping simultaneously proceed during the process, obviously superior to conventional chemical activation. The as-prepared nitrogen-doped active carbons exhibit rich micropores with high surface area and high nitrogen content. Synergetic effects of its high surface area, microporous structure and high nitrogen content, especially rich nitrogen-containing groups for effective CO2 capture (i.e., phenyl amine and pyridine-nitrogen) lead to superior CO2/N2 selectivity up to 82, which is the highest among known nanoporous carbons. In addition, the resulting nitrogen-doped active carbons can be easily regenerated under mild conditions. Considering the outstanding CO2 capture performance, low production cost, simple synthesis procedure and easy scalability, the resulting nitrogen-doped microporous carbon monoliths are promising candidates for selective capture of CO2 in industrial applications.

  13. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications (United States)

    Johnson, Sylvia; Feldman, Jay


    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  14. Organogel-assisted topochemical synthesis of multivalent glyco-polymer for high-affinity lectin binding. (United States)

    Krishnan, Baiju P; Raghu, Sreedevi; Mukherjee, Somnath; Sureshan, Kana M


    An organogelator, 2,4-undeca-diynyl-4',6'-O-benzylidene-β-d-galactopyranoside, which aligns its diacetylene upon gelation, has been synthesized. UV irradiation of its gel resulted in topochemical polymerization of the gelator forming polydiacetylene (PDA). We have used this gel-state reaction for the synthesis of surface-immobilized multi-valent glycoclusters, which showed 1000-fold enhanced binding, compared to monomers, with various galactose-binding lectins.

  15. Synthesis, characterization and thermal properties of polymers based composites materials for High Power Electronic Packaging Applications


    Spitaleri, Fabiola


    As devices evolve, it s necessary that also interconnections and all hardware circuits evolve, including packaging. Nowadays are required significant improvement in packaging properties: low resistance interconnections, less noise, less parasitic oscillations, increased reliability and improved thermal behaviour. For these purpose has designed a research activity for the synthesis of new composites materials capable to dissipating heat better in relation to the current ones. These material...

  16. Synthesis and Enantiomeric Separation of a Novel Spiroketal Derivative: A Potent Human Telomerase Inhibitor with High in Vitro Anticancer Activity. (United States)

    Fuggetta, Maria Pia; De Mico, Antonella; Cottarelli, Andrea; Morelli, Franco; Zonfrillo, Manuela; Ulgheri, Fausta; Peluso, Paola; Mannu, Alberto; Deligia, Francesco; Marchetti, Mauro; Roviello, Giovanni; Reyes Romero, Atilio; Dömling, Alexander; Spanu, Pietro


    The synthesis, the enantiomeric separation, and the characterization of new simple spiroketal derivatives have been performed. The synthesized compounds have shown a very high anticancer activity. Cell proliferation assay showed that they induce a remarkable inhibition of cell proliferation in all cell lines treated, depending on culture time and concentration. The compounds have also shown a potent nanomolar human telomerase inhibition activity and apoptosis induction. CD melting experiments demonstrate that spiroketal does not affect the G-quadruplex (G4) thermal stability. Docking studies showed that telomerase inhibition could be determined by a spiroketal interaction with the telomerase enzyme.

  17. One-step Synthesis of Core-Gold/Shell-Ceria Nanomaterial and Its Catalysis for Highly Selective Semihydrogenation of Alkynes. (United States)

    Mitsudome, Takato; Yamamoto, Masaaki; Maeno, Zen; Mizugaki, Tomoo; Jitsukawa, Koichiro; Kaneda, Kiyotomi


    We report a facile synthesis of new core-Au/shell-CeO2 nanoparticles (Au@CeO2) using a redox-coprecipitation method, where the Au nanoparticles and the nanoporous shell of CeO2 are simultaneously formed in one step. The Au@CeO2 catalyst enables the highly selective semihydrogenation of various alkynes at ambient temperature under additive-free conditions. The core-shell structure plays a crucial role in providing the excellent selectivity for alkenes through the selective dissociation of H2 in a heterolytic manner by maximizing interfacial sites between the core-Au and the shell-CeO2.

  18. Zinc oxide nanoparticle promoted highly efficient one pot three-component synthesis of 2,3-disubstituted benzofurans

    Directory of Open Access Journals (Sweden)

    Javad Safaei-Ghomi


    Full Text Available A convenient one-pot synthesis of 2,3-disubstituted benzo[b]furan derivatives has been developed using zinc oxide nanoparticles. The present approach provides a novel, effective and improved procedure for the three-component coupling of aldehydes, secondary amines and alkyne with several advantages such as short reaction times, high yields and little catalyst loading. ZnO nanoparticles are cheap, stable and can be easily recovered for several circles with consistent activity. Characterization and structural elucidation of the products have been done on the basis of chemical, analytical and spectral analyses.

  19. High-Throughput Continuous Hydrothermal Synthesis of Transparent Conducting Aluminum and Gallium Co-doped Zinc Oxides. (United States)

    Howard, Dougal P; Marchand, Peter; McCafferty, Liam; Carmalt, Claire J; Parkin, Ivan P; Darr, Jawwad A


    High-throughput continuous hydrothermal flow synthesis was used to generate a library of aluminum and gallium-codoped zinc oxide nanoparticles of specific atomic ratios. Resistivities of the materials were determined by Hall Effect measurements on heat-treated pressed discs and the results collated into a conductivity-composition map. Optimal resistivities of ∼9 × 10-3 Ω cm were reproducibly achieved for several samples, for example, codoped ZnO with 2 at% Ga and 1 at% Al. The optimum sample on balance of performance and cost was deemed to be ZnO codoped with 3 at% Al and 1 at% Ga.

  20. A highly facile and efficient one-step synthesis of N6-adenosine and N6-2'-deoxyadenosine derivatives. (United States)

    Wan, Zhao-Kui; Binnun, Eva; Wilson, Douglas P; Lee, Jinbo


    [reaction: see text] A highly facile and efficient one-step synthesis of N6-adenosine and N6-2'-deoxyadenosine derivatives has been developed. Treatment of inosine or 2'-deoxyinosine, without protection of sugar hydroxyl groups, with alkyl or arylamines, in the presence of BOP and DIPEA in DMF, led to the formation of N6-adenosine and N6-2'-deoxyadenosine derivatives in good to excellent yields. Carcinogenic polyaromatic hydrocarbon (PAH) N6-2'-deoxyadenosine adduct 10 and a rare DNA constituent 11 were thus synthesized directly from 2'-deoxyinosine both in 98% yield.

  1. Promising bulk nanostructured Cu2Se thermoelectrics via high throughput and rapid chemical synthesis

    DEFF Research Database (Denmark)

    Tafti, Mohsen Y.; Ballikaya, Sedat; Khachatourian, Adrine Malek


    analyses. Scanning electron microscopy analysis reveals the presence of secondary globular nanostructures in the order of 200 nm consisting of electron microscopy analysis confirmed the highly crystalline nature of the primary particles with irregular...... of Cu2Se were synthesized. Powder samples and compacted pellets have been characterized in detail for their structural, microstructural and transport properties. α to β phase transition of Cu2Se was confirmed using temperature dependent X-ray powder diffraction and differential scanning calorimetry...... synthesis scheme as well as the consolidation could lead to reliable production of large scale thermoelectric nanopowders for niche applications....

  2. One-pot synthesis of well-defined polyether/polyester block copolymers and terpolymers by a highly efficient catalyst switch approach

    KAUST Repository

    Alamri, Haleema


    A highly efficient methodology, based on a novel catalyst switch approach with rapid crossover characteristics, was developed for the one-pot synthesis of block co/terpolymers of cyclic ethers and esters. This new approach, which takes advantage of one of the best catalysts for epoxide (t-BuP4) and cyclic ester (t-BuP2) polymerization, opens new horizons toward the synthesis of cyclic ether/ester complex macromolecular architectures. © The Royal Society of Chemistry 2016.

  3. A confined "microreactor" synthesis strategy to three dimensional nitrogen-doped graphene for high-performance sodium ion battery anodes (United States)

    Li, Jiajie; Zhang, Yumin; Gao, Tangling; Han, Jiecai; Wang, Xianjie; Hultman, Benjamin; Xu, Ping; Zhang, Zhihua; Wu, Gang; Song, Bo


    In virtue of abundant sodium resources, sodium ion batteries (SIBs) have been regarded as one of the most promising alternatives for large-scale energy storage applications. However, the absence of a suitable anode material makes it difficult to realize these applications. Here, we demonstrate an effective synthesis strategy of using a "microreactor" consisting of melamine fiber (inside) and graphene oxide (GO, outside) to fabricate three dimensional (3D) nitrogen doped (N-doped) graphene as high-performance anode materials for sodium ion batteries. Through a controlled pyrolysis, the inside melamine fiber and the outside GO layer has been converted into N-doped graphene and reduced graphene oxide (r-GO) respectively, and thus the "microreactor" is transformed into interconnected 3D N-doped graphene structures. Such highly desired 3D graphene structures show reversible sodium storage capacities up to ∼305 mA h g-1 after 500 cycles at a current density of 0.2 A g-1 and promising long cycling stability with a stable capacity of ∼198 mA h g-1 at 5 A g-1 after 5000 cycles. The high capacity and superior durability in combination with the facile synthesis procedure of the 3D graphene structure make it a promising anode material for SIBs and other energy storage applications.

  4. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites. (United States)

    Wang, Xue-Bin; Weng, Qunhong; Wang, Xi; Li, Xia; Zhang, Jun; Liu, Fei; Jiang, Xiang-Fen; Guo, Hongxuan; Xu, Ningsheng; Golberg, Dmitri; Bando, Yoshio


    Electrically insulating boron nitride (BN) nanosheets possess thermal conductivity similar to and thermal and chemical stabilities superior to those of electrically conductive graphenes. Currently the production and application of BN nanosheets are rather limited due to the complexity of the BN binary compound growth, as opposed to massive graphene production. Here we have developed the original strategy "biomass-directed on-site synthesis" toward mass production of high-crystal-quality BN nanosheets. The strikingly effective, reliable, and high-throughput (dozens of grams) synthesis is directed by diverse biomass sources through the carbothermal reduction of gaseous boron oxide species. The produced BN nanosheets are single crystalline, laterally large, and atomically thin. Additionally, they assemble themselves into the same macroscopic shapes peculiar to original biomasses. The nanosheets are further utilized for making thermoconductive and electrically insulating epoxy/BN composites with a 14-fold increase in thermal conductivity, which are envisaged to be particularly valuable for future high-performance electronic packaging materials.

  5. Facile Synthesis and High performance of a New Carbazole-Based Hole Transporting Material for Hybrid Perovskite Solar Cells

    KAUST Repository

    Wang, Hong


    Perovskite solar cells are very promising for practical applications owing to their rapidly rising power conversion efficiency and low cost of solution-based processing. 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9’-spirobifluorene (Spiro-OMeTAD) is most widely used as hole transporting material (HTM) in perovskite solar cells. However, the tedious synthesis and high cost of Spiro-OMeTAD inhibit its commercial-scale application in the photovoltaic industry. In this article, we report a carbazole-based compound (R01) as a new HTM in efficient perovskite solar cells. R01 is synthesized via a facile route consisting of only two steps from inexpensive commercially available materials. Furthermore, R01 exhibits higher hole mobility and conductivity than the state-of-the-art Spiro-OMeTAD. Perovskite solar cells fabricated with R01 produce a power conversion efficiency of 12.03%, comparable to that obtained in devices using Spiro-OMeTAD in this study. Our findings underscore R01 as a highly promising HTM with high performance, and its facile synthesis and low cost may facilitate the large-scale applications of perovskite solar cells.

  6. Measurement of cross-linked elastin synthesis in bleomycin-induced pulmonary fibrosis using a highly sensitive assay for desmosine and isodesmosine

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, J.O.; Osman, M.; Keller, S.; Cerreta, J.M.; Mandl, I.; Turino, G.M.


    Cross-linked elastin synthesis was measured in the intratracheal bleomycin model of interstitial pulmonary fibrosis by incorporation of 14C-lysine into the elastin-specific crosslinks, desmosine and isodesmosine. Detection of the labeled crosslinks was facilitated by development of a highly sensitive assay utilizing thin-layer electrophoresis. The results indicate that crosslinked elastin synthesis is significantly elevated from controls (p less than 0.05) at 1 to 3 weeks after exposure to bleomycin and returns to normal by 5 weeks. The increases in labeled elastin synthesis are not directly related to changes in either total lung protein synthesis or the pool size of the 14C-lysine. In comparison with collagen and glycosaminoglycan synthesis in this model of lung injury, maximal increases in cross-linked elastin formation occur later, but overlap with the elevated synthesis of these other connective tissue components. The marked increase from normal in cross-linked elastin synthesis in this model suggests that this tissue component is an important part of the fibrotic response of the pulmonary parenchyma and may play a role in the observed alterations in lung structure and function.

  7. Bioenergetics of the heart at high altitude: environmental hypoxia imposes profound transformations on the myocardial process of ATP synthesis. (United States)

    Reynafarje, Baltazar D; Marticorena, Emilio


    The low concentration of O2 in the thin air at high altitude is undoubtedly the reason for the remarkable modifications in the structure and function of the heart, lung, and blood of humans permanently living under these conditions. The effect of natural hypoxia on the energy metabolism of the cell is however not well understood. Here we study the proces of ATP synthesis in the heart of guinea pigs native to high altitude (4500 m) as compared with those native to sea level. The following are the novel findings of this study. (1) The rates and extents of ATP synthesis in the presence of low concentrations of ADP (<30 microM) are significantly higher at high altitude than at sea level. (2) The Hill coefficient, i.e. the degree of cooperativity between the three catalytic sites of the ATP synthase, is lower at high altitude (n = 1.36) than at sea level (n = 1.94). (3) Both, the affinity for ADP and the fractional occupancy of the catalytic sites by ATP, are higher at high altitude than at sea level but the P50, i.e. the concentration of ADP at which 50% of the catalytic sites are filled with ADP and/or ATP, is the same (approximately 74.7 microM). (4) In the physiological range of ADP concentrations, the phosphorylation potential deltaGp is significantly higher at high altitude than at sea level. It is concluded that the molecular mechanism of energy transduction is profoundly modified at high altitude in order to readily and efficiently generate ATP in the presence of low concentrations of O2 and ADP.

  8. A facile method for high yield synthesis of carbon nano onions for designing binder-free flexible supercapacitor (United States)

    Mohapatra, Debananda; Badrayyana, Subramanya; Parida, Smrutiranjan


    Carbon nano onion (CNO) is a promising material for diverse application areas such as energy devices, catalysis, lubrication, biology and gas storage, etc. However, its implementation is fraught with the production of high-quality powders in bulk quantity. Herein, we report a facile scalable and one-step "wick-and-oil" flame synthesis of pure and water dispersible CNO nanopowder. Other forms of carbon did not contaminate the as-prepared CNO; hence, a post processing purification procedure was not necessary. Brunauer Emmett Teller (BET) specific surface area of as-prepared CNO was 218 m2/g, which is higher as compared to other reported flame synthesis methods. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by "dipping and drying" process providing outstanding strechability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102.16 F/g, energy density 14.18 Wh/kg and power density 2448 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge -discharge cycles. Simple preparation of high-purity CNOs and excellent electrochemical behavior of functionalized CNOs make them a promising electrode material for supercapacitor applications. Furthermore, this unique method not only affords binder free - freestanding electrode, but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium ion batteries.

  9. Formation of alloys in Ti-V system in hydride cycle and synthesis of their hydrides in self-propagating high-temperature synthesis regime

    Energy Technology Data Exchange (ETDEWEB)

    Aleksanyan, A.G., E-mail: [A.B. Nalbandyan Institute of Chemical Physics of Armenian NAS, 5/2 P.Sevak Str., Yerevan 0014 (Armenia); Dolukhanyan, S.K. [A.B. Nalbandyan Institute of Chemical Physics of Armenian NAS, 5/2 P.Sevak Str., Yerevan 0014 (Armenia); Shekhtman, V.Sh. [Institute of Solid State Physics, RAS, Chernogolovka, Moscow District 142432 (Russian Federation); Huot, J., E-mail: [Institut de recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres (Canada); Ter-Galstyan, O.P.; Mnatsakanyan, N.L. [A.B. Nalbandyan Institute of Chemical Physics of Armenian NAS, 5/2 P.Sevak Str., Yerevan 0014 (Armenia)


    Research highlights: > We synthesize Ti-V alloys by new 'hydride cycle' method. Structural characteristics of formed alloys we investigate by X-ray diffraction. > We show that the alloys contain mainly BCC crystal structure. > We investigate the interaction of the synthesized alloys with hydrogen in combustion regime. > We study the properties of hydrides by X-ray, DTA and DSC analyses. - Abstract: In the present work, the possibility of formation of titanium and vanadium based alloys of BCC structure using hydride cycle was investigated. The mechanism of formation of alloys in Ti-V system from the powders of hydrides TiH{sub 2} and VH{sub 0.9} (or of V) by compaction followed by dehydrogenation was studied. Then, the interaction of the synthesized alloys with hydrogen in combustion regime (self-propagating high-temperature synthesis, SHS) resulting in hydrides of these alloys was investigated. DTA and DSC analyses of some alloys and their hydrides were performed and their thermal characteristics were measured.

  10. Large-scale green chemical synthesis of adjacent quaternary chiral centers by continuous flow photodecarbonylation of aqueous suspensions of nanocrystalline ketones. (United States)

    Hernández-Linares, María Guadalupe; Guerrero-Luna, Gabriel; Pérez-Estrada, Salvador; Ellison, Martha; Ortin, Maria-Mar; Garcia-Garibay, Miguel A


    To demonstrate the ease of scale-up and synthetic potential of some organic solid state reactions, we report the synthesis, crystallization, and solid state photochemistry of acyclic, homochiral, hexasubstituted (+)-(2R,4S)-2-carbomethoxy-4-cyano-2,4-diphenyl-3-pentanone 1. We demonstrate that solid state photodecarbonylation of (+)-(2R,4S)-1 affords (+)-(2R,3R)-2-carbomethoxy-3-cyano-2,3-diphenyl-butane 2 with two adjacent stereogenic, all-carbon substituted quaternary centers, in quantitative chemical yield and 100% diastereoselectivity and enantiomeric excess. The efficient multigram photodecarbonylation of (+)-(2R,4S)-1 as a nanocrystalline suspension in water using a continuous flow photoreactor shows that the large-scale synthesis of synthetically challenging compounds using photochemical synthesis in the solid state can be executed in a remarkably simple manner.

  11. HBTU mediated 1-hydroxybenzotriazole (HOBt) conjugate addition: synthesis and stereochemical analysis of β-benzotriazole N-oxide substituted γ-amino acids and hybrid peptides. (United States)

    Mali, Sachitanand M; Ganesh Kumar, Mothukuri; Katariya, Mona M; Gopi, Hosahudya N


    HBTU is a standard coupling agent commonly used for the activation of free carboxylic acids during the solution and solid phase peptide synthesis. 1-Hydroxybenzotriazole (HOBt) plays a significant role in reducing the racemization during peptide synthesis; hence it is regularly used as a coupling additive. Here, we are reporting the mild and facile conjugate addition of HOBt to E-vinylogous γ-amino acids mediated by the HBTU. The reaction is moderately diastereoselective and novel β-benzotriazole N-oxide (β-BtO) substituted γ-amino acids were isolated in moderate to good yields. The single crystal analysis of methyl esters of major (anti) and minor (syn) conjugate addition products infers the formation of exclusively N-alkylated benzotriazole N-oxides instead of O-alkylation of HOBt. In addition, we showed the utilization of β-BtO substituted γ-amino acids in peptide synthesis and studied their conformations in single crystals.

  12. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ju Won [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Texas A & M Univ., College Station, TX (United States); Sharma, Ronish [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meduri, Praveen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arey, Bruce W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schaef, Herbert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutkenhaus, Jodie [Texas A & M Univ., College Station, TX (United States); Lemmon, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nandasiri, Manjula I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nune, Satish K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism wholly depends on adsorption of electrolyte on electrode. We present a novel method for the synthesis of nitrogen -doped porous carbons and address the drawback by precisely controlling composition and surface area. Nitrogen-doped porous carbon was synthesized using a self-sacrificial template technique without any additional nitrogen and carbon sources. They exhibited exceptionally high capacitance (239 Fg-1) due to additional pseudocapacitance originating from doped nitrogen. Cycling tests showed no obvious capacitance decay even after 10,000 cycles, which meets the requirement of commercial supercapacitors. Our method is simple and highly efficient for the production of large quantities of nitrogen-doped porous carbons.

  13. Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high-fat feeding regardless of insulin-sensitizing treatment. (United States)

    Newsom, Sean A; Miller, Benjamin F; Hamilton, Karyn L; Ehrlicher, Sarah E; Stierwalt, Harrison D; Robinson, Matthew M


    Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial, with reports varying from decreases to increases in mitochondrial respiration. We investigated the impact of changes in insulin sensitivity on long-term rates of mitochondrial protein synthesis as a mechanism for changes to mitochondrial respiration in skeletal muscle. Insulin resistance was induced in C57BL/6J mice using 4 wk of a high-fat compared with a low-fat diet. For 8 additional weeks, diets were enriched with pioglitazone to restore insulin sensitivity compared with nonenriched control low-fat or high-fat diets. Skeletal muscle mitochondrial protein synthesis was measured using deuterium oxide labeling during weeks 10-12 High-resolution respirometry was performed using palmitoyl-l-carnitine, glutamate+malate, and glutamate+malate+succinate as substrates for mitochondria isolated from quadriceps. Mitochondrial protein synthesis and palmitoyl- l-carnitine oxidation were increased in mice consuming a high-fat diet, regardless of differences in insulin sensitivity with pioglitazone treatment. There was no effect of diet or pioglitazone treatment on ADP-stimulated respiration or H2O2 emission using glutamate+malate or glutamate+malate+succinate. The results demonstrate no impairments to mitochondrial protein synthesis or respiration following induction of insulin resistance. Instead, mitochondrial protein synthesis was increased with a high-fat diet and may contribute to remodeling of the mitochondria to increase lipid oxidation capacity. Mitochondrial adaptations with a high-fat diet appear driven by nutrient availability, not intrinsic defects that contribute to insulin resistance. Copyright © 2017 the

  14. Simple, mild, and highly efficient synthesis of 2-substituted benzimidazoles and bis-benzimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Eren, Bilge, E-mail: [Faculty of Science and Arts, Department of Chemistry, Bilecik Seyh Edebali University, (Turkey); Bekdemir, Yunus [Faculty of Science and Arts, Canik Basari University, Samsun (Turkey)


    A new convenient method for preparation of 2-substituted benzimidazoles and bis-benzimidazoles is presented. In this method, o-phenylenediamines were condensed with bisulfite adducts of various aldehydes and di-aldehydes under neat conditions by microwave heating. The results were also compared with results of synthesis by conventional heating under reflux. Structures of the products were confirmed by infrared, {sup 1}H- and {sup 13}C-NMR spectroscopy. Short reaction times, good yields, easy purification of products, and mild reaction conditions are the main advantages of this method. (author)

  15. In Situ Synthesis of Uranium Carbide and its High Temperature Cubic Phase

    Energy Technology Data Exchange (ETDEWEB)

    Reiche, Helmut Matthias [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    New in situ data for the U-C system are presented, with the goal of improving knowledge of the phase diagram to enable production of new ceramic fuels. The none quenchable, cubic, δ-phase, which in turn is fundamental to computational methods, was identified. Rich datasets of the formation synthesis of uranium carbide yield kinetics data which allow the benchmarking of modeling, thermodynamic parameters etc. The order-disorder transition (carbon sublattice melting) was observed due to equal sensitivity of neutrons to both elements. This dynamic has not been accurately described in some recent simulation-based publications.

  16. Highly efficient and eco-friendly gold-catalyzed synthesis of homoallylic ketones

    KAUST Repository

    Gómez-Suárez, Adrián


    We report a new catalytic protocol for the synthesis of γ,δ-unsaturated carbonyl units from simple starting materials, allylic alcohols and alkynes, via a hydroxalkoxylation/Claisen rearrangement sequence. This new process is more efficient (higher TON and TOF) and more eco-friendly (increased mass efficiency) than the previous state-of-the-art technique. In addition, this method tolerates both terminal and internal alkynes. Moreover, computational studies have been carried out in order to shed light on how the Claisen rearrangement is initiated. © 2014 American Chemical Society.

  17. High yield synthesis of high specific activity R-(-)-[[sup 11]C]epinephrine for routine PET studies in humans

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, P.K.; Gildersleeve, D.L.; Jewett, D.M.; Toorongian, S.A.; Kilbourn, M.R.; Schwaiger, M.; Wieland, D.M. (Michigan Univ., Ann Arbor, MI (United States). Div. of Nuclear Medicine)


    R-(-)-[[sup 11]C]Epinephrine ([[sup 11]C]EPI) has been synthesized from R-(-)-norepinephrine by direct methylation with [[sup 11]C]methyl iodide or [[sup 11]C]methyl triflate. The total synthesis time including HPLC purification was 35-40 min. The radiochemical yields (EOB) were 5-10% for [[sup 11]C]methyl iodide and 15-25% for [[sup 11]C]methyl triflate. Radiochemical purity was >98%; optical purity determined by radio-chiral HPLC was > 97%. The [[sup 11]C]methyl triflate technique produces R-(-)-[[sup 11]C]epinephrine in quantities (80-170 mCi) sufficient for multiple positron emission tomography studies in humans. The two synthetic methods are generally applicable to the production of other N-[[sup 11]C]methyl phenolamines and N-[[sup 11]C]methyl catecholamines. (Author).

  18. Low intensity-ultrasonic irradiation for highly efficient, eco-friendly and fast synthesis of graphene oxide. (United States)

    Soltani, Tayyebeh; Lee, Byeong-Kyu


    High quality graphene oxide (GO) with low layer number (less than five layers) and large inter-layer space was produced via a new and efficient method using environmentally friendly, fast and economic ultrasonic radiation. The ultrasonic method neither generated any toxic gas nor required any NaNO 3 , which have been the main drawbacks of the Hummers methods. The major obstacles of the recently reported improved Hummers method for GO synthesis, such as high reaction temperature (50°C) and long reaction time (12h), were successfully solved using a low intensity-ultrasonic bath for 45min at 30°C, which significantly reduced the reaction time and energy consumption for GO synthesis. Furthermore, ultrasonic GO exhibited higher surface area, higher crystallinity and higher oxidation efficiency with many hydrophilic groups, fewer sheets with higher spaces between them, a higher sp 3 /sp 2 ratio, and more uniform size distribution than classically prepared GO. Therefore, the new ultrasonic method could be applicable for the sustainable and large-scale production of GO. The production yield of the ultrasonic-assisted GO was 1.25-fold greater than the GO synthesized with the improved Hummers method. Furthermore, the required production cost based on total energy consumption for ultrasonic GO was only 6.5% of that for classical GO. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties

    KAUST Repository

    Liu, Yunyang


    A seeded growth procedure was successfully developed to synthesize highly c-oriented and well-intergrown zeolitic imidazolate framework-69 (ZIF-69) membranes on porous α-alumina substrates. The synthesis conditions were optimized both for seed preparation and for secondary growth. For seeding, a facile method was developed to prepare smaller and flat ZIF-69 microcrystals in order to make thin and c-oriented seed layers. While for secondary growth, a synthesis condition that favored the growth along the c-direction was chosen in order to form highly c-oriented ZIF-69 membranes after growth. As a result, the majority of ZIF-69 grains inside the membrane have their straight channels along the crystallographic c-axis aligned perpendicularly to the substrate surface. Such alignment was confirmed by both XRD and pole figure analysis. The mixture-gas separation studies that were carried out at room temperature and 1atm gave separation factors of 6.3, 5.0, 4.6 for CO2/N2, CO2/CO and CO2/CH4 respectively, and a permeance of ∼1.0×10-7molm-2s-1Pa-1 for CO2 in almost all mixtures. Both the separation factor and permeance were better than the performance of the ZIF-69 membranes prepared by the in situ solvothermal method due to improvement in the membrane microstructure by the seeded growth method. © 2011 Elsevier B.V.

  20. Microwave-Hydrothermal Synthesis and Characterization of High-Purity Nb Doped BaTiO3 Nanocrystals

    Directory of Open Access Journals (Sweden)

    A. Khanfekr


    Full Text Available The synthesis of Nb doped BaTiO3 has been investigated under Microwave-Hydrothermal (MH conditions in the temperature of 150°C for only 2 h using C16H36O4Ti, BaH2O2.8H2O and NbCl5 as Ba, Ti and  Nb sources, respectively.  Typical experiments performed on MH processing have not yet reported for Nb doped BaTiO3.  In the MH process, the formation of high purity nano tetragonal Nb-BaTiO3 was strongly enhanced. New hydrothermal method was used instead of the previous solid state reaction for the BaTiO3±Nb2O3 system. The new method uses high pressure to create nano dimension particles in a lower time and temperature. In case of the phase evolution studies, the XRD pattern measurements and Raman spectroscopy were performed. TEM and FE-SEM images were taken for the detailed analysis of the particle size, surface and morphology.  Synthesis of Nb doped BaTiO3 with the Microwave-hydrothermal provides an advantage of fast crystallization and reduced crystal size when compared to existing methods.

  1. Straightforward high-pressure synthesis and characterization of indium-based thiospinels: photocatalytic potential for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Falcon, Horacio [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco (Spain); NANOTEC (Centro de Investigacion en Nanociencia y Nanotecnologia), Universidad Tecnologica Nacional-Facultad Regional Cordoba, Cordoba (Argentina); Tartaj, Pedro; Alonso, Jose Antonio [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco (Spain); Vaquero, Fernando; Navarro, Rufino M.; Fierro, Jose Luis G. [Instituto de Catalisis y Petroleoquimica, CSIC, Cantoblanco, Madrid (Spain); Bolletta, Juan P.; Paoli, Juan M. de; Carbonio, Raul E. [INFIQC - CONICET, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (Argentina); Fernandez-Diaz, Maria Teresa [Institut Laue Langevin, Grenoble (France)


    Ternary chalcogenides (AB{sub 2}X{sub 4}) based on the spinel structure are gaining a great deal of attention because of the possibility of tuning their magnetic and optoelectronic properties not only by changing chemical composition but also by altering their degree of inversion. Here we report a rapid high-pressure synthetic method for the synthesis of MIn{sub 2}S{sub 4} powders starting from commercially available solid sulfides. We prove the versatility of our method by reporting the synthesis of six members of the MIn{sub 2}S{sub 4} family (M = Mn, Fe, Co, Ni, Zn, and Cd) under high-pressure conditions (3.5 GPa); these compounds show complete to moderate degrees of inversion. Furthermore, this family covers a spectral region that includes visible band gaps. Interestingly, the structural refinement carried out by X-ray and neutron diffraction allows one to establish positive correlations between the gap and different parameters, including the degree of inversion. Finally, as a proof-of-concept, these ternary chalcogenides show moderate photocatalytic hydrogen production from aqueous solutions. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Highly efficient isocyanate-free microwave-assisted synthesis of [6]-oligourea

    KAUST Repository

    Qaroush, Abdussalam K.


    A new eco-friendly, isocyanate-free, energy-saving method for the production of [6]-oligourea, utilizing a green carbonylating agent, viz. propylene carbonate, is reported. It comprises an organocatalyzed, microwave-assisted, solvent-free synthesis. Two modes of microwave-assisted synthesis, viz. dynamic and fixed energy modes, were applied. Upon optimization, the dynamic mode gave 79% yields of [6]-oligourea. On the other hand, almost quantitative yields were obtained using the fixed mode, within 20 min, at 10 W and with the same catalyst loading. Combination of both organocatalysis and microwave energy input appears to be a key issue for the efficiency of the reaction, with the fixed energy mode being best suited. It should be noted that all data reported are reproducible (due to the homogeneous microwave technology used by CEM Discover S-Class of microwave reactors). To the best of our knowledge, this is the best eco-friendly synthetic approach for the preparation of the title oligomers. It paves the way for using more of the biorenewable and sustainable chemicals as a feedstock for the production of polyureas. The oligomer produced was analyzed by EA, ATR-FTIR, XRD, 1H and 13CNMR. Furthermore, thermal properties of the resulting [6]-oligourea were analyzed using TGA and DSC. © The Royal Society of Chemistry 2013.

  3. Role of polymers and surfactants in synthesis of high quantum yield upconverting nanoparticles (United States)

    Newcombe, Kevin; Yust, Brian

    Rare earth doped fluoride nanoparticles with a size of about 25 nm have been synthesized by either solvothermal or microwave assisted techniques. The role of differing biocompatible polymeric compounds to act as nucleation agents and surfactants, including polyethylene glycol, polyvinylpyrollidone, and polyethylene oxide, in the final size, crystallinity, and optical properties is investigated in depth. These upconverting nanoparticles which can be excited in the near-infrared (NIR) are ideal for biomedical applications because of the low absorption of these excitation wavelengths by soft tissues in the body. Their fluorescence can be used for NIR imaging as well as non-invasive activation of drugs conjugated to the surface for cancer therapy. After optimizing the synthesis parameters, wide angle x-ray diffraction, FTIR, Raman, and Vis-NIR spectroscopy are used to characterize the samples. By varying the polymer added to the precursor solution, we can elucidate the primary mechanisms of interaction during the synthesis process and optimize for the best possible optical properties. Finally, the dependence of the fluorescence intensity on the biocompatible polymer type and concentration will also be investigated.

  4. Native promoter strategy for high-yielding synthesis and engineering of fungal secondary metabolites. (United States)

    Kakule, Thomas B; Jadulco, Raquel C; Koch, Michael; Janso, Jeffrey E; Barrows, Louis R; Schmidt, Eric W


    Strategies are needed for the robust production of cryptic, silenced, or engineered secondary metabolites in fungi. The filamentous fungus Fusarium heterosporum natively synthesizes the polyketide equisetin at >2 g L(-1) in a controllable manner. We hypothesized that this production level was achieved by regulatory elements in the equisetin pathway, leading to the prediction that the same regulatory elements would be useful in producing other secondary metabolites. This was tested by using the native eqxS promoter and eqxR regulator in F. heterosporum, synthesizing heterologous natural products in yields of ∼1 g L(-1). As proof of concept for the practical application, we resurrected an extinct pathway from an endophytic fungus with an initial yield of >800 mg L(-1), leading to the practical synthesis of a selective antituberculosis agent. Finally, the method enabled new insights into the function of polyketide synthases in filamentous fungi. These results demonstrate a strategy for optimally employing native regulators for the robust synthesis of secondary metabolites.

  5. Petit-High Pressure Carbon Dioxide stress increases synthesis of S-Adenosylmethionine and phosphatidylcholine in yeast Saccharomyces cerevisiae. (United States)

    Niu, Liyuan; Nomura, Kazuki; Iwahashi, Hitoshi; Matsuoka, Hiroyuki; Kawachi, Satoshi; Suzuki, Yoshihisa; Tamura, Katsuhiro


    Petit-High Pressure Carbon Dioxide (p-HPCD) is a promising nonthermal technology for foods pasteurization. Cluster analysis of gene expression profiles of Saccharomyces cerevisiae exposed to various stresses exhibited that gene expression profile for p-HPCD stress (0.5MPa, 25°C) was grouped into a cluster including profiles for Sodium Dodecyl Sulfate and Roundup herbicide. Both are detergents that can disorder membrane structurally and functionally, which suggests that cell membrane may be a target of p-HPCD stress to cause cell growth inhibition. Through metabolomic analysis, amount of S-Adenosylmethionine (AdoMet) that is used as methyl donor to participate in phosphatidylcholine synthesis via phosphatidylethanolamine (PE) methylation pathway, was increased after p-HPCD treatment for 2h. The key gene OPI3 encoding phospholipid methyltransferase that catalyzes the last two steps in PE methylation pathway was confirmed significantly induced by RT-PCR. Transcriptional expression of genes (MET13, MET16, MET10, MET17, MET6 and SAM2) related to AdoMet biosynthesis was also significantly induced. Choline as the PC precursor and ethanolamine as PE precursor in Kennedy pathway were also found increased under p-HPCD condition. We also found that amounts of most of amino acids involving protein synthesis were found decreased after p-HPCD treatment for 2h. Moreover, morphological changes on cell surface were observed by scanning electron microscope. In conclusion, the effects of p-HPCD stress on cell membrane appear to be a very likely cause of yeast growth inhibition and the enhancement of PC synthesis could contribute to maintain optimum structure and functions of cell membrane and improve cell resistance to inactivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Planar interfaces: Synthesis and high resolution chemistry and structure analysis. Progress report, March 1, 1997--February 28, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R.W.; Kim, M.J.


    The interface synthesis unit is operational and working well. The authors have synthesized interfaces between substrates of austenitic stainless steel, silicon, silicon/niobium, and alumina with and without addition of other materials in the interfaces. Early in the synthesis work it was apparent that substrate surface preparation was critical, along with the usual variables: temperature, time, and pressure. After suitable surface preparation successful interfaces were bonded. Substrate surface preparation requires surface cleaning, to activate the surface and polishing to flatten the bonding surfaces. Flatness has two components: large scale flatness and short wavelength near atomic scale flatness. Analytical TEM electron energy loss (ELS) and energy dispersive x-ray (EDS) nanospectroscopies showed that no detectable oxygen contamination occurred in any of the interfaces they have synthesized, in particular in the stainless steel interfaces containing Ti or Cu. Those two interfaces were especially stringent tests of the synthesis unit because of the high reactivity of Ti and Cu with oxygen. Single crystal Si {l_brace}100{r_brace} substrates are more useful than polycrystalline stainless steel for determining the effect of ion cleaning induced roughness on interface morphology. Nb was deposited at room temperature on ion-cleaned and as-received Si wafers to evaluate this effect in edge-on transmission geometry. The authors have extended their work on contacts for GaN to TiN/GaN interfaces and Au/Ti/GaN multilayer interfaces. Some recent results from the GaN contact research are given in Smith et. al. (1996a) and Smith et. al. (1996b). The authors have evaluated the usefulness of one of the new oxygen plasma cleaning units for prevention of carbonaceous contamination build-up on TEM specimens. It proved very successful.

  7. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume

    Energy Technology Data Exchange (ETDEWEB)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of); Sethuraman, Mathur Gopalakrishnan, E-mail: [Department of Chemistry, Gandhigram Rural Institute-Deemed University, Gandhigram 624 302, Tamilnadu (India); Lee, Yong Rok, E-mail: [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of)


    Graphical abstract: The green synthesis of highly fluorescent N-CDs was achieved using the extract of unripe P. mume fruit as a carbon precursor by a one-pot simple hydrothermal-carbonization method. The resulting N-CDs were used as a staining agent for the fluorescence imaging of MDA-MB-231 cells. Display Omitted - Highlights: • The green synthesis of highly fluorescent N-CDs using the extract of unripe P. mume. • The N-CDs were synthesized by one-pot hydrothermal-carbonization method. • This method of synthesis is a simple, cost effective and eco-friendly route. • N-CDs will be a good alternative for fluorescent dyes and SQDs for bio-applications. - Abstract: Highly fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized using the extract of unripe Prunus mume (P. mume) fruit by a simple one step hydrothermal-carbonization method. The N-CDs were synthesized at different pH ranges, 2.3, 5, 7, and 9. The pH of the P. mume extract was adjusted using an aqueous ammonia solution (25%). The optical properties of N-CDs were examined by UV–vis and fluorescence spectroscopy. The N-CDs synthesized at pH 9 emitted high fluorescence intensity compared to other obtained N-CDs. The N-CDs synthesized at pH 9 was further characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform-infra red (FT-IR) spectroscopy. HR-TEM showed that the average size of the synthesized N-CDs was approximately 9 nm and the interlayer distance was 0.21 nm, which was validated by XRD. The graphitic nature of the synthesized N-CDs were confirmed by Raman spectroscopy. XPS and FT-IR spectroscopy confirmed the doping of the nitrogen moiety over the synthesized CDs. The synthesized nitrogen doped CDs (N-CDs) were low toxicity and were used as a staining probe for fluorescence cell imaging.

  8. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men.

    Directory of Open Access Journals (Sweden)

    Nicholas A Burd

    Full Text Available BACKGROUND: We aimed to determine the effect of resistance exercise intensity (%1 repetition maximum-1RM and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Fifteen men (21+/-1 years; BMI=24.1+/-0.8 kg/m2 performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM until volitional failure (90FAIL, 30% 1RM work-matched to 90%FAIL (30WM, or 30% 1RM performed until volitional failure (30FAIL. Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX, myofibrillar (MYO, and sarcoplasmic (SARC protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121% and MYO (87% protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199% above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P=0.023 and mTORSer2448 phosphorylation at 4 h post-exercise (P=0.025. Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05 only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237% and 30FAIL (312% conditions. Pax7 mRNA expression increased at 24 h post-exercise (P=0.02 regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. CONCLUSIONS/SIGNIFICANCE: These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes.

  9. Catalytic enantioselective olefin metathesis in natural product synthesis. Chiral metal-based complexes that deliver high enantioselectivity and more. (United States)

    Hoveyda, Amir H; Malcolmson, Steven J; Meek, Simon J; Zhugralin, Adil R


    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations.

  10. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity (United States)

    Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an


    Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

  11. Fast, high-yield synthesis of amphiphilic Ag nanoclusters and the sensing of Hg(2+) in environmental samples. (United States)

    Xia, Nan; Yang, Jie; Wu, Zhikun


    We report the high-yield (74%) synthesis of Ag30(Capt)18 (abbreviated as Ag30) in a very time-saving fashion (half an hour). The cluster composition was determined by high-resolution mass spectrometry combined with TG analysis, and the structure was probed by 1D and 2D NMR. Interestingly, the nanoclusters can dissolve in water and methanol, as well as in most organic solvents such as ethanol, acetone, acetonitrile, dichloromethane and ethyl acetate with the assistance of acetic acid. Such a good solubility in a range of various polar solvents was not reported previously in nanoclusters' research and is important for applications. An important result from this work is that Ag30 can sense a low concentration of Hg(2+) in environmental samples (including lake water and soil solution), indicating that Ag30 can be a potential colorimetric probe for Hg(2+). The sensing mechanism was revealed to be related to the anti-galvanic reduction process.

  12. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xingyuan Zhang


    Full Text Available Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode for lithium-ion batteries.

  13. The dynamic atmospheres of red giant stars. Spectral synthesis in high resolution (United States)

    Nowotny, W.


    Light is the only source of information we have to study distant stars. Our knowledge about the state of the matter inside stars has been gathered by analysing star light (photometry, spectroscopy, interferometry, polarimetry, etc.). Of central importance in this context are stellar atmospheres, which are the transition regions from the optically thick stellar interiors where the electromagnetic radiation is generated to the optically thin outer layers from where the photons can leave the star. However, the atmosphere of a star is not only the region where most of the observable radiation is emitted or in other words the layers which are "visible from outside". The atmosphere also leaves an imprint on the stellar spectrum as the radiation passes through, most of the line spectrum is formed there. Thus, the light serves as a probe for the physical processes within stellar atmospheres, especially spectroscopy is one of the major tools in stellar astrophysics. Applying the underlying physical principles in numerical simulations (model atmospheres, synthetic spectra) is the second -- complementary and necessary -- step towards a deeper understanding of stellar atmospheres and for deriving stellar parameters (e.g. T_eff, L, log g, chemical composition) of observed objects. This thesis is dedicated to the outer layers of Asymptotic Giant Branch (AGB) stars, which have rather remarkable properties compared to atmospheres of most other types of stars. AGB stars represent low- to intermediate mass stars at a late stage of their evolution. Forming a sub-group among all red giants, they exhibit large extensions, low effective temperatures and high luminosities. The evolutionary phase of the AGB -- complex but decisive for stellar evolution -- is characterised by several important phenomena as for example nucleo-synthesis in explosively burning shells (thermal pulses), convective processes (dredge up), large-amplitude pulsations with long periods or a pronounced mass loss. Red

  14. High-Quality ZnCdS Nanosheets Prepared Using Solvothermal Synthesis

    Directory of Open Access Journals (Sweden)

    M. A. Mahdi


    Full Text Available For the first time, ZnxCd1-xS nanosheets with different Zn and Cd ion concentrations were prepared using solvothermal synthesis at 200°C for 4 and 24 h. The crystalline structure of the nanosheets was wurtzite. The optical band gaps of the nanosheets increased with increasing Zn ratio; this increase is consistent with the band gaps estimated using Vegard’s formula. The photoluminescence spectra for the 24 h nanosheets had higher emission intensities than those for the 4 h nanosheets. The emission band corresponding to intrinsic near-band-edge emission and a broad peak associated with extrinsic deep-level emission were observed in the photoluminescence spectra.

  15. High-rate synthesis of Si nanowires using modulated induction thermal plasmas (United States)

    Ishisaka, Yosuke; Kodama, Naoto; Kita, Kentaro; Tanaka, Yasunori; Uesugi, Yoshihiko; Ishijima, Tatsuo; Sueyasu, Shiori; Watanabe, Shu; Nakamura, Keitaro


    Using 20 kW Ar-H2 pulse-modulated induction thermal plasma (PMITP) with time-controlled feeding of feedstock (TCFF), numerous Si nanowires were synthesized rapidly at 1,000 mg h-1 without the intentional addition of catalysts. The PMITP + TCFF method is our original method for nanomaterial synthesis. The PMITP periodically provides a unique field including higher-temperature plasma during “on-time” and a lower-temperature plasma during “off-time”. For rapid and efficient evaporation, metal-grade Si powder feedstock was intermittently injected synchronously into the generated Ar-H2 PMITP. The synthesized products were analyzed using various analytical techniques. The synthesized products were Si nanowires 10-30 nm in diameter with a SiO x surface layer.

  16. Synthesis and characterisation of highly fluorescent core-shell nanoparticles based on Alexa dyes

    Energy Technology Data Exchange (ETDEWEB)

    Natte, Kishore; Behnke, Thomas; Orts-Gil, Guillermo, E-mail:; Wuerth, Christian; Friedrich, Joerg F.; Oesterle, Werner; Resch-Genger, Ute, E-mail: [BAM Federal Institute for Materials Research and Testing (Germany)


    Current and future developments in the emerging field of nanobiotechnology are closely linked to the rational design of novel fluorescent nanomaterials, e.g. for biosensing and imaging applications. Here, the synthesis of bright near infrared (NIR)-emissive nanoparticles based on the grafting of silica nanoparticles (SNPs) with 3-aminopropyl triethoxysilane (APTES) followed by covalent attachment of Alexa dyes and their subsequent shielding by an additional silica shell are presented. These nanoparticles were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and fluorescence spectroscopy. TEM studies revealed the monodispersity of the initially prepared and fluorophore-labelled silica particles and the subsequent formation of raspberry-like structures after addition of a silica precursor. Measurements of absolute fluorescence quantum yields of these scattering particle suspensions with an integrating sphere setup demonstrated the influence of dye labelling density-dependent fluorophore aggregation on the signaling behaviour of such nanoparticles.

  17. Block-copolymer-assisted synthesis of hydroxyapatite nanoparticles with high surface area and uniform size

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Huang, Masataka Imura, Yoshihiro Nemoto, Chao-Hung Cheng and Yusuke Yamauchi


    Full Text Available We report the synthesis of hydroxyapatite nanoparticles (HANPs by the coprecipitation method using calcium D-gluconate and potassium hydrogen phosphate as the sources of calcium and phosphate ions, respectively, and the triblock copolymer F127 as a stabilizer. The HANPs were characterized using scanning electron microscopy, x-ray diffraction, and nitrogen adsorption/desorption isotherms. Removal of F127 by solvent extraction or calcination alters the structure of HANPs. The solvent-extracted HANPs were single crystals with their lang001rang axis oriented along the rod axis of the HANP, whereas the calcined HANPs contained two crystal phases that resulted in a spherical morphology. The calcined HANPs had much higher surface area (127 m2 g−1 than the solvent-extracted HANPs (44 m2 g−1.

  18. Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth (United States)

    Magrez, Arnaud; Seo, Jin Won; Smajda, Rita; Mionić, Marijana; Forró, László


    The catalytic chemical vapor deposition (CCVD) is currently the most flexible and economically attractive method for the growth of carbon nanotubes. Although its principle is simple, the precisely controlled growth of carbon nanotubes remains very complex because many different parameters influence the growth process. In this article, we review our recent results obtained on the synthesis of carbon nanotubes via CCVD. We discuss the role of the catalyst and the catalyst support. Our recent results obtained from the water assisted growth and the equimolar C2H2-CO2 reaction are also discussed. Both procedures lead to significantly enhanced carbon nanotube growth. In particular, the latter allows growing carbon nanotubes on diverse substrate materials at low temperatures. PMID:28883358

  19. High resolution earth observation from geostationary orbit by optical aperture synthesys (United States)

    Mesrine, M.; Thomas, E.; Garin, S.; Blanc, P.; Alis, C.; Cassaing, F.; Laubier, D.


    In this paper, we describe Optical Aperture Synthesis (OAS) imaging instrument concepts studied by Alcatel Alenia Space under a CNES R&T contract in term of technical feasibility. First, the methodology to select the aperture configuration is proposed, based on the definition and quantification of image quality criteria adapted to an OAS instrument for direct imaging of extended objects. The following section presents, for each interferometer type (Michelson and Fizeau), the corresponding optical configurations compatible with a large field of view from GEO orbit. These optical concepts take into account the constraints imposed by the foreseen resolution and the implementation of the co-phasing functions. The fourth section is dedicated to the analysis of the co-phasing methodologies, from the configuration deployment to the fine stabilization during observation. Finally, we present a trade-off analysis allowing to select the concept wrt mission specification and constraints related to instrument accommodation under launcher shroud and in-orbit deployment.

  20. Rhodium-Catalyzed Oxidative Benzannulation of N-Pivaloylanilines with Internal Alkynes through Dual C-H Bond Activation: Synthesis of Highly Substituted Naphthalenes. (United States)

    Zhang, Xuan; Yu, Xiaoqiang; Feng, Xiujuan; Yamamoto, Yoshinori; Almansour, Abdulrahman I; Arumugam, Natarajan; Kumar, Raju Suresh; Bao, Ming


    An efficient method was developed for the synthesis of highly substituted naphthalenes through rhodium-catalyzed oxidative benzannulation of N-pivaloylanilines with internal alkynes. The benzannulation reaction proceeded smoothly through dual C-H bond activation to produce the corresponding highly substituted naphthalene products in satisfactory to good yields. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Highly concise routes to epothilones: the total synthesis and evaluation of epothilone 490. (United States)

    Biswas, Kaustav; Lin, Hong; Njardarson, Jon T; Chappell, Mark D; Chou, Ting-Chao; Guan, Yongbiao; Tong, William P; He, Lifeng; Horwitz, Susan B; Danishefsky, Samuel J


    A concise modular laboratory construction of the epothilone class of promising antitumor agents has been accomplished. For the first time in the epothilone area, the new synthesis exploits the power of ring-closing olefin metathesis (RCM) in a stereospecific way. Previous attempts at applying RCM to epothilone syntheses have been repeatedly plagued by complete lack of stereocontrol in the generation of the desired 12,13-olefin geometry in the products. The isolation of epothilone 490 (3) prompted us to reevaluate the utility of the RCM procedure for fashioning the 10,11-olefin, with the Z-12,13-olefin geometry already in place. Olefin metathesis of the triene substrate 12 afforded the product diene macrolide in stereoselective fashion. For purposes of greater synthetic convergency, the C3-(S)-alcohol was fashioned late in the synthesis, using chiral titanium-mediated aldol conditions with the entire O-alkyl fragment as a C15 acetate as the enolate component. Examination of the effects of protecting groups on the RCM process showed that deprotection of the C7 alcohol has a beneficial effect on the reaction yield. Performing the RCM as the last synthetic step in the sequence afforded a 64% yield of only the desired E-olefin. Selective diimide reduction of the new 10,11-olefin yielded 12,13-desoxyepothilone B, our current clinical candidate, demonstrating the utility of this new RCM-reduction protocol in efficiently generating the epothilone framework. Furthermore, the new olefin was selectively funtionalized to demonstrate the advantage conferred by this route for the construction of new analogues for SAR studies, in cytoxicity and microtubule affinity screens. Also described is the surprisingly poor in vivo performance of epothilone 490 in xenografts in the light of very promising in vitro data. This disappointing outcome was traced to unfavorable pharmacokinetic features of the drug in murine plasma. By the pharmacokinetic criteria, the prognosis for the

  2. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2Adsorption Membrane. (United States)

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan


    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO 2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO 2 and 99% N 2 . Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO 2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO 2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO 2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  3. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase. (United States)

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan


    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  4. Structured superparamagnetic nanoparticles for high performance mediator of magnetic fluid hyperthermia: synthesis, colloidal stability and biocompatibility evaluation. (United States)

    Thorat, N D; Otari, S V; Bohara, R A; Yadav, H M; Khot, V M; Salunkhe, A B; Phadatare, M R; Prasad, A I; Ningthoujam, R S; Pawar, S H


    Core-shell structures with magnetic core and metal/polymer shell provide a new opportunity for constructing highly efficient mediator for magnetic fluid hyperthermia. Herein, a facile method is described for the synthesis of superparamagnetic LSMO@Pluronic F127 core-shell nanoparticles. Initially, the surface of the LSMO nanoparticles is functionalized with oleic acid and the polymeric shell formation is achieved through hydrophobic interactions with oleic acid. Each step is optimized to get good dispersion and less aggregation. This methodology results into core-shell formation, of average diameter less than 40 nm, which was stable under physiological conditions. After making a core-shell formulation, a significant increase of specific absorption rate (up to 300%) has been achieved with variation of the magnetization (shell MNPs. The mechanism of cell death by necrosis and apoptosis is studied with sequential staining of acridine orange and ethidium bromide using fluorescence and confocal microscopy. The present work reports a facile method for the synthesis of core-shell structure which significantly improves SAR and biocompatibility of bare LSMO MNPs, indicating potential application for hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure

    CERN Document Server

    Dong Shu Shan; Cheng Hai Yong; Yang Hai Bin; Zou Guang Tian


    By using aluminium nanopowder prepared by wire electrical explosion, pure monophase NiAl compound with fine crystallites (<=10 mu m) and good densification (98% of the theoretical green density) was successfully fabricated by means of self-propagating high-temperature synthesis (SHS) under a high pressure of 50 MPa. Investigation shows that, due to the physical and chemical characteristics of the nanoparticles, the SHS reaction mode and mechanism are distinct from those when using conventional coarse-grained reactants. The SHS reaction process depends on the thermal conditions related to pressure and can occur at a dramatically low temperature of 308 sup o C, which cannot be expected in conventional SHS reaction. With increasing pressure, the SHS explosive ignition temperature (T sub i sub g) of forming NiAl decreases due to thermal and kinetic effects.

  6. Facile Synthesis of Monodispersed Polysulfide Spheres for Building Structural Colors with High Color Visibility and Broad Viewing Angle. (United States)

    Li, Feihu; Tang, Bingtao; Wu, Suli; Zhang, Shufen


    The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of High-Purity alpha-and beta-PbO and Possible Applications to Synthesis and Processing of Other Lead Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Dale L.; Wilkinson, T. J.


    The red, tetragonal form of lead oxide, alpha-PbO, litharge, and the yellow, orthorhombic form, beta-PbO, massicot, have been synthesized from lead(II) salts in aqueous media at elevated temperature. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the size, morphology, and crystallographic structural forms of the products. The role of impurities in the experimental synthesis of the materials and microstructural variations in the final products are described, and the implications of these observations with respect to the synthesis of different conducting lead oxides and other related materials are discussed.

  8. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis

    KAUST Repository

    Oar-Arteta, Lide


    High productivity towards C-2-C-4 olefins together with high catalyst stability are key for optimum operation in high temperature Fischer-Tropsch synthesis (HT-FTS). Here, we report the fabrication of Fe@C/Al composites that combine both the outstanding catalytic properties of the Fe-BTC MOF-derived Fe catalyst and the excellent mechanical resistance and textural properties provided by the inorganic AlOOH binder. The addition of AlOOH to Fe-BTC followed by pyrolysis in N-2 atmosphere at 500 degrees C results in composites with a large mesoporosity, a high Fe/Fe3O4 ratio, 10-35 nm average Fe crystallite size and coordinatively unsaturated Al3+ sites. In catalytic terms, the addition of AlOOH binder gives rise to enhanced C-2-C-4 selectivity and catalyst mechanical stability in HT-FTS, but at high Al contents the activity decreases. Altogether, the productivity of these Fe@C/Al composites is well above most known Fe catalysts for this process.

  9. Facile Fabrication of BCN Nanosheet-Encapsulated Nano-Iron as Highly Stable Fischer-Tropsch Synthesis Catalyst. (United States)

    Wu, Jianghong; Wang, Liancheng; Lv, Baoliang; Chen, Jiangang


    The few layered boron carbon nitride nanosheets (BCNNSs) have attracted widespread attention in the field of heterogeneous catalysis. Herein, we report an innovative one-pot route to prepare the catalyst of BCNNSs-encapsulated sub-10 nm highly dispersed nanoiron particles. Then the novel catalyst was used in Fischer-Tropsch synthesis for the first time and it exhibited high activity and superior stability. At a high temperature of 320 °C, CO conversion could reach 88.9%, corresponding catalytic activity per gram of iron (iron time yield, FTY) of 0.9 × 10-4 molCO gFe-1 s-1, more than 200 times higher than that of pure iron. Notably, no obvious deactivation was observed after 1000 h running. The enhanced stability of the catalyst can be ascribed to the special encapsulated structure. Furthermore, the formation mechanism of highly dispersed iron nanoparticle also was elaborated. This approach opens the way to designing metal nanoparticles with both high stability and reactivity for nanocatalysts in hydrogenation application.

  10. Facile Synthesis of Silver Nanowires with Different Aspect Ratios and Used as High-Performance Flexible Transparent Electrodes (United States)

    Xue, Qingwen; Yao, Weijing; Liu, Jun; Tian, Qingyong; Liu, Li; Li, Mengxiao; Lu, Qiang; Peng, Rui; Wu, Wei


    Silver nanowires (Ag NWs) are the promising materials to fabricate flexible transparent electrodes, aiming to replace indium tin oxide (ITO) in the next generation of flexible electronics. Herein, a feasible polyvinylpyrrolidone (PVP)-mediated polyol synthesis of Ag NWs with different aspect ratios is demonstrated and high-quality Ag NWs transparent electrodes (NTEs) are fabricated without high-temperature thermal sintering. When employing the mixture of PVP with different average molecular weight as the capping agent, the diameters of Ag NWs can be tailored and Ag NWs with different aspect ratios varying from ca. 30 to ca. 1000 are obtained. Using these as-synthesized Ag NWs, the uniform Ag NWs films are fabricated by repeated spin coating. When the aspect ratios exceed 500, the optoelectronic performance of Ag NWs films improve remarkably and match up to those of ITO films. Moreover, an optimal Ag NTEs with low sheet resistance of 11.4 Ω/sq and a high parallel transmittance of 91.6% at 550 nm are achieved when the aspect ratios reach almost 1000. In addition, the sheet resistance of Ag NWs films does not show great variation after 400 cycles of bending test, suggesting an excellent flexibility. The proposed approach to fabricate highly flexible and high-performance Ag NTEs would be useful to the development of flexible devices.

  11. High Performance Liquid Crystalline Polymers from 2,5- furandicarboxylic acid; : Synthesis, Characterization and Properties

    NARCIS (Netherlands)

    Wilsens, Karel


    Thermotropic polyesters are an important class of materials for high performance applications.Their low melt viscosities, low thermal expansion coefficients, high use temperatures, and ease in processing allow for the production of high strength and high modulus fibers, films, or compressionmolded

  12. A highly efficient magnetic solid acid catalyst for synthesis of 2,4,5-trisubstituted imidazoles under ultrasound irradiation. (United States)

    Safari, Javad; Zarnegar, Zohre


    Fe(3)O(4) nanoparticles were prepared by chemical coprecipitation method and subsequently coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction. Grafting of chlorosulfuric acid on the amino-functionalized Fe(3)O(4) nanoparticles afforded sulfamic acid-functionalized magnetic nanoparticles (SA-MNPs). SA-MNPs was found to be a mild and effective solid acid catalyst for the efficient, one-pot, three-component synthesis of 2,4,5-trisubstituted imidazoles under ultrasound irradiation. This protocol afforded corresponding imidazoles in shorter reaction durations, and in high yields. This green procedure has many obvious advantages compared to those reported in the previous literatures, including avoiding the use of harmful catalysts, easy and quick isolation of the products, excellent yields, short routine, and simplicity of the methodology. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Facile synthesis of Co3O4 spheres and their unexpected high specific discharge capacity for Lithium-ion batteries (United States)

    Wang, Zhengdong; Qu, Shaohua; Cheng, Yonghong; Zheng, Chenghui; Chen, Siyu; Wu, Hongjing


    We report a facile, one-pot hydrothermal synthesis of Co3O4 solid spheres and multi-shelled Co3O4 hollow spheres with a controlled number of movable internal Co3O4 shells. Moreover, the magnetic properties of the multi-shelled Co3O4 hollow spheres were first investigated by the SQUID magnetometer. Interestingly, the Co3O4 solid spheres calcined at 430 °C deliver an unexpected high specific discharge capacity of 1976 and 1129 mAh g-1 for the 17th and 100th cycle at 100 mA g-1, respectively. In addition, the Co3O4 solid spheres calcined at 430 °C also show good capacity retention (i.e., 1129 mAh g-1 after 100 cycles). The significant performance improvement offers the potential to open up an avenue for next-generation LIBs.

  14. One-pot synthesis of polythiol ligand for highly bright and stable hydrophilic quantum dots toward bioconjugate formation (United States)

    Dezhurov, Sergey V.; Krylsky, Dmitry V.; Rybakova, Anastasia V.; Ibragimova, Sagila A.; Gladyshev, Pavel P.; Vasiliev, Alexey A.; Morenkov, Oleg S.


    A fast and efficient one-pot synthesis of thiol-terminated poly(vinylpirrolidone-co-maleic anhydride-co-ethylene glycol dimethacrylate) based heterobifunctional polymer (PTVP) has been developed. The polymer was used for the modification of quantum dots (QDs) to prepare water soluble and stable QDs with emission quantum yield as high as 80%. Using carbodiimide method, PTVP-capped red light-emitting QDs were conjugated to model monoclonal antibodies specific to glycoprotein B (gB) of Aujeszky’s disease virus (ADV) and successfully used in the lateral flow assay (LFA) for the detection of ADV gB in biological fluids. A comparative analysis of the sensitivity of the method was carried out using three types of QDs emitting in the red and far-red region.

  15. Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups. (United States)

    Liu, Zhiting; Duan, Xuezhi; Qian, Gang; Zhou, Xinggui; Yuan, Weikang


    An eco-friendly, facile and scalable hydrothermal approach, in which the reduction and functionalization of graphite oxide (GO) are completed in one pot, is proposed for the synthesis of monolayer 3-aminopropyltriethoxysilane (APTES)-functionalized graphenes (A-FGs). Atomic force microscopy, transmission electron microscopy and x-ray diffraction analyses indicate that the as-synthesized A-FGs consist of only one or a few layered graphenes, while x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis reveal that APTES is bonded to graphene by the dehydration reaction between the Si-OH (produced by APTES hydration) and the -OH on the GO surface. As a result, free amino groups are left on the A-FGs. Moreover, A-FGs are highly dispersible in dimethylsulfoxide, APTES and ethylene glycol, and their solubilities are up to 0.89, 4.03 and 0.90 mg ml(-1), respectively.

  16. High-speed vibration-milling-promoted synthesis of symmetrical frameworks containing two or three pyrrole units

    Directory of Open Access Journals (Sweden)

    Marco Leonardi


    Full Text Available The pseudo-five-component reaction between β-dicarbonyl compounds (2 molecules, diamines and α-iodoketones (2 molecules, prepared in situ from aryl ketones, was performed efficiently under mechanochemical conditions involving high-speed vibration milling with a single zirconium oxide ball. This reaction afforded symmetrical frameworks containing two pyrrole or fused pyrrole units joined by a spacer, which are of interest in the exploration of chemical space for drug discovery purposes. The method was also extended to the synthesis of one compound containing three identical pyrrole fragments via a pseudo-seven-component reaction. Access to compounds having a double bond in their spacer chain was achieved by a different approach involving the homodimerization of 1-allyl- or 1-homoallylpyrroles by application of cross-metathesis chemistry.

  17. Cu(II) /TEMPO-promoted one-pot synthesis of highly substituted pyrimidines from amino acid esters. (United States)

    Zhou, Nini; Xie, Tao; Li, Zhongle; Xie, Zhixiang


    A novel, Cu(OAc)2/TEMPO promoted one-step approach for the preparation of fully substituted pyrimidines from readily available amino acid esters has been described. In this reaction, the amino acid esters act as the only N-C sources for the construction of corresponding pyrimidines. The mechanism of this process includes oxidative dehydrogenation, the generation of an imine radical, and a formal [3+3] cycloaddition. This methodology proves to be a high atom-economic and straightforward strategy for the synthesis of pyrimidines and diverse substrates which are substituted by various functional groups have been afforded in moderate to good yield. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis and characterization of CoFe{sub 2}O{sub 4} nanoparticles with high coercivity

    Energy Technology Data Exchange (ETDEWEB)

    Gandha, Kinjal; Elkins, Kevin; Poudyal, Narayan; Ping Liu, J., E-mail: [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)


    Single crystalline CoFe{sub 2}O{sub 4} nanoparticles with high coercivity were prepared via a one-step hydrothermal method. The shape and size of the nanocrystals (in the range of 20–100 nm) can be controlled by varying synthesis parameters such as the concentration of NaOH and CTAB. X-ray diffraction and Raman spectra analysis confirmed that all the as-synthesized nanoparticles have a face centered cubic spinel crystal structure. HRTEM observation of particles shows interlayer spacing 0.48 nm of (111) lattice planes. A coercive force up to 5.0 kOe and saturation magnetization of 73 emu/g was achieved at room temperature for the 40 nm CoFe{sub 2}O{sub 4} nanoparticles.

  19. Catalysis. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO₂. (United States)

    Graciani, Jesús; Mudiyanselage, Kumudu; Xu, Fang; Baber, Ashleigh E; Evans, Jaime; Senanayake, Sanjaya D; Stacchiola, Darío J; Liu, Ping; Hrbek, Jan; Fernández Sanz, Javier; Rodriguez, José A


    The transformation of CO2 into alcohols or other hydrocarbon compounds is challenging because of the difficulties associated with the chemical activation of CO2 by heterogeneous catalysts. Pure metals and bimetallic systems used for this task usually have low catalytic activity. Here we present experimental and theoretical evidence for a completely different type of site for CO2 activation: a copper-ceria interface that is highly efficient for the synthesis of methanol. The combination of metal and oxide sites in the copper-ceria interface affords complementary chemical properties that lead to special reaction pathways for the CO2→CH3OH conversion. Copyright © 2014, American Association for the Advancement of Science.

  20. High-Order Dimension Synthesis of Planar/Spatial Mechanisms with One-DoF by CAD Variational Geometry

    Directory of Open Access Journals (Sweden)

    Yi Lu


    Full Text Available This paper proposes a (computer aided design CAD variational geometry approach for the high-order dimension synthesis of one-DoF mechanisms based on the given velocity/acceleration of a moving platform along a prescribed trajectory. The objective of this approach is to determine the reasonable dimensions of the mechanisms when given the velocity or/and the acceleration of the moving platform along a prescribed trajectory. First, some concepts and mathematical foundations are explained for constructing the velocity/acceleration simulation mechanism of a general mechanism. Second, the inverse velocity/acceleration simulation mechanisms of the planar/spatial four-bar mechanisms with one-DoF are constructed by the CAD variational geometry. Third, when given the position and the velocity/acceleration of the coupler along a prescribed trajectory, all the reasonable dimensions of the planar/spatial four-bar mechanisms are solved from their simulation mechanisms.

  1. Microwave-Hydrothermal Synthesis and Characterization of High-Purity Nb Doped BaTiO3 Nanocrystals


    A. Khanfekr; Tamizifar, M.; R. Naghizadeh


    The synthesis of Nb doped BaTiO3 has been investigated under Microwave-Hydrothermal (MH) conditions in the temperature of 150°C for only 2 h using C16H36O4Ti, BaH2O2.8H2O and NbCl5 as Ba, Ti and  Nb sources, respectively.  Typical experiments performed on MH processing have not yet reported for Nb doped BaTiO3.  In the MH process, the formation of high purity nano tetragonal Nb-BaTiO3 was strongly enhanced. New hydrothermal method was used instead of the previous solid state reaction for the ...

  2. A robust microfluidic device for the synthesis and crystal growth of organometallic polymers with highly organized structures. (United States)

    Liu, Xiao; Yi, Qiaolian; Han, Yongzhen; Liang, Zhenning; Shen, Chaohua; Zhou, Zhengyang; Sun, Jun-Liang; Li, Yizhi; Du, Wenbin; Cao, Rui


    A simple and robust microfluidic device was developed to synthesize organometallic polymers with highly organized structures. The device is compatible with organic solvents. Reactants are loaded into pairs of reservoirs connected by a 15 cm long microchannel prefilled with solvents, thus allowing long-term counter diffusion for self-assembly of organometallic polymers. The process can be monitored, and the resulting crystalline polymers are harvested without damage. The device was used to synthesize three insoluble silver acetylides as single crystals of X-ray diffraction quality. Importantly, for the first time, the single-crystal structure of silver phenylacetylide was determined. The reported approach may have wide applications, such as crystallization of membrane proteins, synthesis and crystal growth of organic, inorganic, and polymeric coordination compounds, whose single crystals cannot be obtained using traditional methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of process variables on synthesis of MgB2 by a high energy ball mill

    Directory of Open Access Journals (Sweden)

    Kurama Haldun


    Full Text Available The discovery of superconductivity of MgB2 in 2001, with a critical temperature of 39 K, offered the promise of important large-scale applications at around 20 K. Except than the other featured synthesis methods, mechanical activation performed by high energy ball mills, as bulk form synthesis or as a first step of wire and thin film productions, has considered as an effective alternative production route in recent years. The process of mechanical activation (MA starts with mixing the powders in the right proportion and loading the powder mixture into the mill with the grinding media. The milled powder is then consolidated into a bulk shape and heat-treated to obtain desired microstructure and properties. Thus, the important components of the MA process are the raw materials, mill type and process variables. During the MA process, heavy deformation of particles occure. This is manifested by the presence of a variety of crystal defects such as dislocations, vacancies, stacking faults and increased number of particle boundaries. The presence of this defect structure enhances the diffusivity of solute hence the critical currents and magnetic flux pinning ability of MgB2 are improved. The aim of the present study is to determine the effects of process variables such as ball-to-powder mass ratio, size of balls, milling time, annealing temperature and contribution of process control agent (toluene on the product size, morphology and conversion level of precursor powders to MgB2 after subsequent heat treatment. The morphological analyses of the samples were performed by a high vacuum electron microscope ZEISS SUPRA VP 50. The phase compositions of the samples were performed with an Rigaku-Rint 2200 diffractometer, with nickel filtered Cu Kα radiation and conversion level. The MgB2 phase wt % was calculated by the Rietveld refinement method. The obtained results were discussed according to the process variables to find out their affect on the structure

  4. Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries. (United States)

    Zhang, Zailei; Wang, Yanhong; Ren, Wenfeng; Tan, Qiangqiang; Chen, Yunfa; Li, Hong; Zhong, Ziyi; Su, Fabing


    Despite the promising application of porous Si-based anodes in future Li ion batteries, the large-scale synthesis of these materials is still a great challenge. A scalable synthesis of porous Si materials is presented by the Rochow reaction, which is commonly used to produce organosilane monomers for synthesizing organosilane products in chemical industry. Commercial Si microparticles reacted with gas CH3 Cl over various Cu-based catalyst particles to substantially create macropores within the unreacted Si accompanying with carbon deposition to generate porous Si/C composites. Taking advantage of the interconnected porous structure and conductive carbon-coated layer after simple post treatment, these composites as anodes exhibit high reversible capacity and long cycle life. It is expected that by integrating the organosilane synthesis process and controlling reaction conditions, the manufacture of porous Si-based anodes on an industrial scale is highly possible. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. One-Pot Two-Step Organocatalytic Asymmetric Synthesis of Spirocyclic Piperidones via Wolff Rearrangement–Amidation–Michael–Hemiaminalization Sequence

    Directory of Open Access Journals (Sweden)

    Yanqing Liu


    Full Text Available A highly enantioselective organocatalytic Wolff rearrangement–amidation–Michael–hemiaminalization stepwise reaction is described involving a cyclic 2-diazo-1,3-diketone, primary amine and α,β-unsaturated aldehyde. Product stereocontrol can be achieved by adjusting the sequence of steps in this one-pot multicomponent reaction. This approach was used to synthesize various optically active spirocyclic piperidones with three stereogenic centers and multiple functional groups in good yields up to 76%, moderate diastereoselectivities of up to 80:20 and high enantioselectivities up to 97%.

  6. Synthesis of novel lupane triterpenoid-indazolone hybrids with oxime ester linkage. (United States)

    Khlebnicova, Tatyana S; Piven, Yuri A; Baranovsky, Alexander V; Lakhvich, Fedor A; Shishkina, Svetlana V; Zicāne, Daina; Tetere, Zenta; Rāviņa, Irisa; Kumpiņš, Viktors; Rijkure, Inese; Mieriņa, Inese; Peipiņš, Uldis; Turks, Māris


    An efficient protocol for the synthesis of novel lupane triterpenoid-indazolone hybrids with oxime ester linkage has been developed from naturally accessible precursor betulin. For the first time a series of betulonic acid-indazolone hybrids have been synthesized via an acylation of corresponding 6,7-dihydro-1H-indazol-4(5H)-one oximes with betulonic acid chloride. Diastereoselective reduction of the obtained betulonic acid conjugates with NaBH 4 resulted in a formation of betulinic acid-indazolone hybrids in excellent yields. The configuration of the key compounds has been fully established by X-ray and 2D NMR analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Petasis-type reactions for the synthesis of substituted pyrrolidin-2-ones

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas Eiland


    . By implementing a reductive cyclization reaction, linear L -malic acid derivatives were rapidly converted into cyclic N -acyliminium ions. Under the optimized conditions, entailing the use of HFIP as solvent, both electron-rich and electron-deficient boronic acids were successfully added to a range of cyclic N...... for the formation of substituted pyrrolidin-2-ones. Only few studies on the nucleoph ic addition of organoboronic acids to N -acyliminium ions have been reported. Herein, we disclose our re cent efforts for the synthesis of substituted pyrro lidin- 2-ones through Lewis-acid-mediated Petasis-type rea ctions...... -acyliminium ions, typically with excellent diastereoselectivity with electron-deficient boroni c acids....

  8. High yield lipase-catalyzed synthesis of Engkabang fat esters for the cosmetic industry. (United States)

    Abd Rahman, Nur Fariza; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul; Rahman, Raja Noor Zaliha Raja Abdul; Salleh, Abu Bakar


    Engkabang fat esters were produced via alcoholysis reaction between Engkabang fat and oleyl alcohol, catalyzed by Lipozyme RM IM. The reaction was carried out in a 500 ml Stirred tank reactor using heptane and hexane as solvents. Response surface methodology (RSM) based on a four-factor-five-level Central composite design (CCD) was applied to evaluate the effects of synthesis parameters, namely temperature, substrate molar ratio (oleyl alcohol: Engkabang fat), enzyme amount and impeller speed. The optimum yields of 96.2% and 91.4% were obtained for heptane and hexane at the optimum temperature of 53.9°C, impeller speeds of 309.5 and 309.0 rpm, enzyme amounts of 4.82 and 5.65 g and substrate molar ratios of 2.94 and 3.39:1, respectively. The actual yields obtained compared well with the predicted values of 100.0% and 91.5%, respectively. Meanwhile, the properties of the esters show that they are suitable to be used as ingredient for cosmetic applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. A Simple and High Yield Solvothermal Synthesis of Uniform Silver Nanowires with Controllable Diameters

    Directory of Open Access Journals (Sweden)

    M. Khademalrasool


    Full Text Available Silver nanowires were synthesized by solvothermal method through reducing silver nitrate (AgNO3 with ethylene glycol (EG in the presence of polyvinylpyrrolidone (PVP. In order to prevent the agglomeration of Ag+ in the initial Ag seeds formation, sodium chloride (NaCl was added into the solution to form AgCl colloids. By dissolving AgCl in the late stages, Ag+ ions were released into the solution. So the diameters of silver nanowires could be controlled by modifying the PVP concentration. The effect of reaction time, reaction temperature, and for first time purity of EG over the shape of resulted silver nanowires were investigated. The wire, sphere and tree-like nanostructures were formed with changing these parameters. The structural and optical properties of the silver nanostructures were studied by X-ray diffraction (XRD, scanning electron microscopy (SEM, field emission scanning electron microscopy (FESEM, Fourier transform infrared spectroscopy (FTIR, and UV–visible absorption spectrophotometer. In order to synthesis silver nanowires with smaller diameters and longer lengths, the optimum molar ratio of PVP/AgNO3, reaction time, reaction temperature, and EG purity were found to be 1.5, 2.5 h, 160 °C, and 99.5%, respectively.

  10. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.


    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

  11. Highly fluorescent Ag nanoclusters: microwave-assisted green synthesis and Cr3+ sensing. (United States)

    Liu, Shanhu; Lu, Feng; Zhu, Jun-Jie


    Highly fluorescent Ag nanoclusters were prepared in aqueous solution via a rapid microwave-assisted green approach and used as a novel fluorescence probe for the determination of Cr(3+) ions with high sensitivity and excellent selectivity.

  12. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high-viscosity polymerization solvents. (United States)

    Renkecz, Tibor; László, Krisztina; Horváth, Viola


    There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N₂ porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 µm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm⁻²  hr⁻¹  bar⁻¹. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S., E-mail:


    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  14. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. (United States)

    Lee, Kang Hyuck; Shin, Hyeon-Jin; Lee, Jinyeong; Lee, In-yeal; Kim, Gil-Ho; Choi, Jae-Young; Kim, Sang-Woo


    Hexagonal boron nitride (h-BN) has received a great deal of attention as a substrate material for high-performance graphene electronics because it has an atomically smooth surface, lattice constant similar to that of graphene, large optical phonon modes, and a large electrical band gap. Herein, we report the large-scale synthesis of high-quality h-BN nanosheets in a chemical vapor deposition (CVD) process by controlling the surface morphologies of the copper (Cu) catalysts. It was found that morphology control of the Cu foil is much critical for the formation of the pure h-BN nanosheets as well as the improvement of their crystallinity. For the first time, we demonstrate the performance enhancement of CVD-based graphene devices with large-scale h-BN nanosheets. The mobility of the graphene device on the h-BN nanosheets was increased 3 times compared to that without the h-BN nanosheets. The on-off ratio of the drain current is 2 times higher than that of the graphene device without h-BN. This work suggests that high-quality h-BN nanosheets based on CVD are very promising for high-performance large-area graphene electronics. © 2012 American Chemical Society

  15. Synthesis of Disentangled Ultra-High Molecular Weight Polyethylene for Ultimate Tensile Properties

    NARCIS (Netherlands)

    Romano, Dario; Rastogi, Sanjay; Ronca, Sara


    Ultra-High Molecular Weight PolyEthylene (UHMWPE) is known to be an engineering material rather than a commodity plastic due to its excellent mechanical properties together with the chemical and high abrasion resistance. The main drawback of this material is the processability due to the very high

  16. Synthesis of trapezohedral indium oxide nanoparticles with high-index {211} facets and high gas sensing activity. (United States)

    Han, Xiguang; Han, Xiao; Sun, Linqiang; Gao, Shengguang; Li, Liang; Kuang, Qin; Xie, Zhaoxiong; Wang, Chao


    Nanocrystals with high-index facets usually exhibit higher catalytic activities than those with only low-index facets. Trapezohedron-shaped (TS) In2O3 particles with exposed high-index {211} facets were successfully synthesized in an oleic acid (OA) and trioctylamine (TOA) system. It has been demonstrated that the gas sensing activity of TS In2O3 particles with exposed high-index {211} facets is higher than that of octahedron-shaped In2O3 particles with exposed low-index {111} facets.

  17. Synthesis of copolymerized porous organic frameworks with high gas storage capabilities at both high and low pressures. (United States)

    Pei, Cuiying; Ben, Teng; Li, Yanqiang; Qiu, Shilun


    A series of copolymerized porous organic frameworks (C-POFs) were synthesized with monomers of tetrakis(4-bromophenyl)methane and tris(4-bromophenyl)amine in different ratios by a Yamamoto-type Ullmann cross-coupling reaction. These C-POFs exhibit high physicochemical stability, large surface areas and excellent H2, CH4 and CO2 adsorption properties both at low and high pressures.

  18. Synthesis of copolymerized porous organic frameworks with high gas storage capabilities at both high and low pressures

    KAUST Repository

    Pei, Cuiying


    A series of copolymerized porous organic frameworks (C-POFs) were synthesized with monomers of tetrakis(4-bromophenyl)methane and tris(4-bromophenyl)amine in different ratios by a Yamamoto-type Ullmann cross-coupling reaction. These C-POFs exhibit high physicochemical stability, large surface areas and excellent H2, CH4 and CO 2 adsorption properties both at low and high pressures. This journal is © the Partner Organisations 2014.

  19. Molten salts activated by high-energy milling: A useful, low-temperature route for the synthesis of multiferroic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Ramírez, Anayantzin; Martínez-Luévanos, Antonia [Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, V. Carranza s/n, Saltillo, Coahuila 25280 (Mexico); Fuentes, Antonio F. [CINVESTAV Unidad Saltillo, Apdo. Postal 663, Saltillo, Coahuila 25000 (Mexico); Earth and Environmental Science, University of Michigan, 3514 C.C. Little Building, 1100 N. University Avenue, Ann Arbor, MI 48109-1005 (United States); Nelson, Anna-Gay D.; Ewing, Rodney C. [Earth and Environmental Science, University of Michigan, 3514 C.C. Little Building, 1100 N. University Avenue, Ann Arbor, MI 48109-1005 (United States); Montemayor, Sagrario M., E-mail: [Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, V. Carranza s/n, Saltillo, Coahuila 25280 (Mexico); Earth and Environmental Science, University of Michigan, 3514 C.C. Little Building, 1100 N. University Avenue, Ann Arbor, MI 48109-1005 (United States)


    Highlights: • The synthesis route purposed demonstrates the formation of BiFeO{sub 3} at only 500 °C. • The magnetic and ferroelectric properties are comparable to those of bulk BiFeO{sub 3}. • By this route, several phases in Bi{sub 1−x}La{sub x}FeO{sub 3} system are obtained at only 500 °C. • The route developed here could be useful to synthesize other perovskite-type oxides. -- Abstract: There are only a few multiferroic compounds, among which BiFeO{sub 3} is the most important. Research the synthesis of bismuth ferrite, with novel and improved magnetic and electrical properties, has been mainly based on the use of hydrothermal or sol gel methods. However, these methods require either rather extreme conditions or several steps for synthesis. We demonstrate that the use of molten salts, activated by high energy milling, results in pure nanometric BiFeO{sub 3}, LaFeO{sub 3} and intermediate phases in the Bi{sub 1−x}La{sub x}FeO{sub 3} system. The chemical reagents used are Bi(NO{sub 3}){sub 3}⋅5H{sub 2}O, La(NO{sub 3}){sub 3}⋅6H{sub 2}O, Fe(NO{sub 3}){sub 3}⋅9H{sub 2}O and NaOH. A brief milling process of the reagents creates an amorphous precursor and crystalline NaNO{sub 3}. The thermal treatment of the precursors, at 500 °C for two hours, produces a crystalline mixture of Bi{sub 1−x}La{sub x}FeO{sub 3} and NaNO{sub 3}. Simple washing eliminates the NaNO{sub 3}. The characterization of intermediates and final products, through thermal analysis, X-ray diffraction and scanning electronic microscopy, allows the inference of possible mechanism. In addition, vibrating sample magnetometry (VSM) and ferroelectric tests show the typical magnetic and electric polarization loops characteristic of these materials even when formed at the nano-scale.

  20. Synthesis of high-purity Na-A and Na-X zeolite from coal fly ash. (United States)

    Panitchakarn, Panu; Laosiripojana, Navadol; Viriya-Umpikul, Nawin; Pavasant, Prasert


    Coal fly ash (CFA) was used as a raw material for the synthesis of zeolite molecular sieve. The synthesis began with the pretreatment of CFA to remove impurities (e.g., Fe2O3, CaO, etc.) under various acid types (HCl, H2SO4, and HNO3) and acid/CFA ratios (5-25 mL(acid)/g(CFA)). High product purity (up to 97%) was achieved with HCl (20%wt), and acid/CFA ratio of 20 mL(HCl)/g(CFA). The treated CFA was then converted to zeolite by the fusion reaction under various Si/Al molar ratios (0.54-1.84). Zeolite type A was synthesized when the Si/Al molar ratios were lower than 1, whereas sodium aluminum silicate hydrate was formed when the Si/Al molar ratio were higher than 1. The highest water adsorption performance of the zeolite product, i.e., the outlet ethanol concentration of 99.9%wt and the specific adsorption capacity of 2.31 x 10(-2) g(water)/g(zeolite), was observed with the Si/Al molar ratio of 0.82. The zeolite was tested for its water adsorption capacity repeatedly 10 times without deactivation. This work evaluated the technical feasibility in the conversion of CFA to zeolite, which would help reduce the quantity of waste needed to be landfilled. This adds value to the unwanted material by converting it into something that can be further used. The synthesized products were shown to be quite stable as water adsorbent for the dehydration of ethanol solution.