WorldWideScience

Sample records for highly conserved glycine

  1. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-01-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. 14 CO 2 production from the catabolism of 14 C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. 14 CO 2 formation from [1- 14 C]- and [2- 14 C]glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate

  2. Contributions of conserved residues at the gating interface of glycine receptors

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Leung, Ada W Y; Galpin, Jason D

    2011-01-01

    and the in vivo nonsense suppression method to incorporate unnatural amino acids to probe the electrostatic and hydrophobic contributions of five highly conserved side chains near the interface, Glu-53, Phe-145, Asp-148, Phe-187, and Arg-218. Our results suggest a salt bridge between Asp-148 in loop 7 and Arg-218......Glycine receptors (GlyRs) are chloride channels that mediate fast inhibitory neurotransmission and are members of the pentameric ligand-gated ion channel (pLGIC) family. The interface between the ligand binding domain and the transmembrane domain of pLGICs has been proposed to be crucial...

  3. The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion

    International Nuclear Information System (INIS)

    Liao Maofu; Kielian, Margaret

    2005-01-01

    The alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered fusion reaction mediated by the viral E1 protein. Both the E1 fusion peptide and transmembrane (TM) domain are essential for membrane fusion, but the functional requirements for the TM domain are poorly understood. Here we explored the role of the five TM domain glycine residues, including the highly conserved glycine pair at E1 residues 415/416. SFV mutants with alanine substitutions for individual or all five glycine residues (5G/A) showed growth kinetics and fusion pH dependence similar to those of wild-type SFV. Mutants with increasing substitution of glycine residues showed an increasingly more stringent requirement for cholesterol during fusion. The 5G/A mutant showed decreased fusion kinetics and extent in fluorescent lipid mixing assays. TM domain glycine residues thus are not required for efficient SFV fusion or assembly but can cause subtle effects on the properties of membrane fusion

  4. Utilization of [1-14C]carbon of glycine of high glycine diet fed young and old rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Medovar, B.Ya.; Pisarczuk, K.L.; Grigorov, Yu.G.

    1987-01-01

    The incorporation of radioactivity from [1- 14 C]glycine was studied in various organ (serum, liver, muscle) fractions (acid soluble, proteins, lipids, liver glycogen) and carbon dioxide in rats fed with isonitrogenous isocaloric purfied diets. The diets contained 30% casein (control), gelatin (exchange of half of the 30% casein) or glycine (corresponding level of glycine in relation to the gelatin diet). The incorporation of radioactivity into proteins was reduced by feeding high glycine diets in young (20-weeks-old) and old (18-month-old) rats in relation to the control diet. The modifications of the results for old animals may be partially explained on the base of a reduced protein turnover rate and adaptation to a high gelatin (glycine) diet. (author)

  5. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity

    DEFF Research Database (Denmark)

    Kostenis, Evi; Martini, Lene; Ellis, James

    2004-01-01

    Numerous studies have attested to the importance of the extreme C terminus of G protein alpha subunits in determining their selectivity of receptor recognition. We have previously reported that a highly conserved glycine residue within linker I is important for constraining the fidelity of receptor...... recognition by Galpha(q) proteins. Herein, we explored whether both modules (linker I and extreme C terminus) interact cooperatively in switching G protein-coupled receptor (GPCR)-to-effector specificity and created as models mutant Galpha(q) proteins in which glycine was replaced with various amino acids...... and the C-terminal five Galpha(q) residues with the corresponding Galpha(i) or Galpha(s) sequence. Coupling properties of the mutated Galpha(q) proteins were determined after coexpression with a panel of 13 G(i)-and G(s) -selective receptors and compared with those of Galpha proteins modified in only one...

  6. Identification of a highly conserved valine-glycine-phenylalanine amino acid triplet required for HIV-1 Nef function

    Directory of Open Access Journals (Sweden)

    Meuwissen Pieter J

    2012-04-01

    Full Text Available Abstract Background The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region. Results The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2 and non-canonical (B2 and C1422 HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2, the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck. Conclusion Based on these findings, we

  7. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins.

    Directory of Open Access Journals (Sweden)

    Marcin Michalik

    Full Text Available An intimate interaction between a pair of amino acids, a tyrosine and glycine on neighboring β-strands, has been previously reported to be important for the structural stability of autotransporters. Here, we show that the conservation of this interacting pair extends to nearly all major families of outer membrane β-barrel proteins, which are thought to have originated through duplication events involving an ancestral ββ hairpin. We analyzed the function of this motif using the prototypical outer membrane protein OmpX. Stopped-flow fluorescence shows that two folding processes occur in the millisecond time regime, the rates of which are reduced in the tyrosine mutant. Folding assays further demonstrate a reduction in the yield of folded protein for the mutant compared to the wild-type, as well as a reduction in thermal stability. Taken together, our data support the idea of an evolutionarily conserved 'folding core' that affects the folding, membrane insertion, and thermal stability of outer membrane protein β-barrels.

  8. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  9. A glycine residue essential for high ivermectin sensitivity in Cys-loop ion channel receptors

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Lynch, Joseph W.

    2010-01-01

    Ivermectin exerts its anthelmintic effect by activating nematode Cys-loop glutamate-gated receptors. Here we show that a glycine residue at a specific transmembrane domain location is essential for high ivermectin sensitivity in both glycine- and glutamate-gated Cys-loop receptors. We also show...

  10. Glycine in the conserved motif III modulates the thermostability and oxidative stress resistance of peptide deformylase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Narayanan, Sai Shyam; Sokkar, Pandian; Ramachandran, Murugesan; Nampoothiri, Kesavan Madhavan

    2011-07-01

    Peptide deformylase (PDF) catalyses the removal of the N-formyl group from the nascent polypeptide during protein maturation. The PDF of Mycobacterium tuberculosis H37Rv (MtbPDF), overexpressed and purified from Escherichia coli, was characterized as an iron-containing enzyme with stability towards H(2) O(2) and moderate thermostability. Substitution of two conserved residues (G49 and L107) from MtbPDF with the corresponding residues found in human PDF affected its deformylase activity. Among characterized PDFs, glycine (G151) in motif III instead of conserved aspartate is characteristic of M. tuberculosis. Although the G151D mutation in MtbPDF increased its deformylase activity and thermostability, it also affected enzyme stability towards H(2) O(2) . Molecular dynamics and docking results confirmed improved substrate binding and catalysis for the G151D mutant and the study provides another possible molecular basis for the stability of MtbPDF against oxidizing agents. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  12. Localization of high affinity [3H]glycine transport sites in the cerebellar cortex

    International Nuclear Information System (INIS)

    Wilkin, G.P.; Csillag, A.; Balazs, R.; Kingsbury, A.E.; Wilson, J.E.; Johnson, A.L.

    1981-01-01

    A study was made of [ 3 H ]glycine uptake sites in a preparation greatly enriched in large pieces of the cerebellar glomeruli (glomerulus particles) and in morphologically well preserved slices of rat cerebellum. Electron microscopic autoradiography revealed that of the neurones in the cerebellar cortex only Golgi cells transported [ 3 H]glycine at the low concentration used. Glial cells also took up [ 3 H]glycine but to a lesser extent than the Golgi neurons. It was also confirmed that under comparable conditions Golgi cells transport [ 3 H]GABA. Kinetic studies utilizing the Golgi axon terminal-containing glomerulus particles showed that glycine is a weak non-competitive inhibitor of [ 3 H]GABA uptake (Ksub(i) over 600 μM vs the Ksub(t) of about 20 μM) and that GABA is an even weaker inhibitor of [ 3 H]glycine uptake. (Auth.)

  13. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    Science.gov (United States)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  14. Synthesis and distribution of N-benzyloxycarbonyl-[14C]-glycine, a lipophilic derivative of glycine

    International Nuclear Information System (INIS)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H.

    1995-01-01

    N-benzyloxycarbonyl[ 14 C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U- 14 C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author)

  15. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max reveals extensive chromosome rearrangements in the genus Glycine.

    Directory of Open Access Journals (Sweden)

    Sungyul Chang

    Full Text Available Soybean (Glycine max L. Mer., like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth. Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib. de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L. chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean

  16. Habitat affinity of resident natural enemies of the invasive Aphis glycines (Hemiptera: Aphididae), on soybean, with comments on biological control.

    Science.gov (United States)

    Brewer, Michael J; Noma, Takuji

    2010-06-01

    We integrated a natural enemy survey of the broader landscape into a more traditional survey for Aphis glycines Matsumura (Hemiptera: Aphididae), parasitoids and predatory flies on soybean using A. glycines-infested soybean, Glycine max (L.) Merr., placed in cropped and noncropped plant systems to complement visual field observations. Across three sites and 5 yr, 18 parasitoids and predatory flies in total (Hymenoptera: Aphelinidae [two species] and Bracondae [seven species], Diptera: Cecidomyiidae [one species], Syrphidae [seven species], Chamaemyiidae [one species]) were detected, with significant variability in recoveries detected across plant system treatments and strong contrasts in habitat affinity detected among species. Lysiphlebus testaceipes Cresson was the most frequently detected parasitoid, and no differences in abundance were detected in cropped (soybean, wheat [Triticum aestivum L.], corn [Zea mays L.], and alfalfa [Medicago sativa L.]) and noncropped (poplar [Populus euramericana (Dode) Guinier] and early successional vegetation) areas. In contrast, Binodoxys kelloggensis Pike, Starý & Brewer had strong habitat affinity for poplar and early successional vegetation. The low recoveries seasonally and across habitats of Aphelinus asychis Walker, Aphelinus sp., and Aphidius colemoni Viereck make their suitability to A. glycines on soybean highly suspect. The widespread occurrence of many of the flies reflects their broad habitat affinity and host aphid ranges. The consistent low field observations of parasitism and predation suggest that resident parasitoids and predatory flies are unlikely to contribute substantially to A. glycines suppression, at least during the conventional time period early in the pest invasion when classical biological control activities are considered. For selected species that were relatively well represented across plant systems (i.e., L. testaceipes and Aphidoletes aphidimyza Rondani), conservation biological control efforts

  17. Synthesis and distribution of N-benzyloxycarbonyl-[{sup 14}C]-glycine, a lipophilic derivative of glycine

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H. [Universite Catholique de Louvain, Brussels (Belgium). Dept. des Sciences Pharmaceutiques

    1995-12-31

    N-benzyloxycarbonyl[{sup 14}C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U-{sup 14}C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author).

  18. High efficient removal of chromium (VI) using glycine doped polypyrrole adsorbent from aqueous solution

    CSIR Research Space (South Africa)

    Ballav, N

    2012-08-01

    Full Text Available Glycine doped polypyrrole (PPy-gly) adsorbent was prepared via in situ polymerization of pyrrole (Py) monomer in the presence of glycine (gly) for the removal of Cr(VI). Formation of PPy homopolymer and inclusion of gly in the PPy matrix were...

  19. Formation of intercalation compound of kaolinite-glycine via displacing guest water by glycine.

    Science.gov (United States)

    Zheng, Wan; Zhou, Jing; Zhang, Zhenqian; Chen, Likun; Zhang, Zhongfei; Li, Yong; Ma, Ning; Du, Piyi

    2014-10-15

    The kaolinite-glycine intercalation compound was successfully formed by displacing intercalated guest water molecules in kaolinite hydrate as a precursor. The microstructure of the compound was characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope. Results show that glycine can only be intercalated into hydrated kaolinite to form glycine-kaolinite by utilizing water molecules as a transition phase. The intercalated glycine molecules were squeezed partially into the ditrigonal holes in the silicate layer, resulting in the interlayer distance of kaolinite reaching 1.03nm. The proper intercalation temperature range was between 20°C and 80°C. An intercalation time of 24h or above was necessary to ensure the complete formation of kaolinite-glycine. The highest intercalation degree of about 84% appeared when the system was reacted at the temperature of 80°C for 48h. There were two activation energies for the intercalation of glycine into kaolinite, one being 21kJ/mol within the temperature range of 20-65°C and the other 5.8kJ/mol between 65°C and 80°C. The intercalation degree (N) and intercalation velocity (v) of as a function of intercalation time (t) can be empirically expressed as N=-79.35e(-)(t)(/14.8)+80.1 and v=5.37e(-)(t)(/14.8), respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Removal of brownish-black tarnish on silver–copper alloy objects with sodium glycinate

    Energy Technology Data Exchange (ETDEWEB)

    Cura D’Ars de Figueiredo, João, E-mail: joaoc@ufmg.br; Asevedo, Samara Santos, E-mail: samaranix@hotmail.com; Barbosa, João Henrique Ribeiro, E-mail: joaohrb@yahoo.com.br

    2014-10-30

    Highlights: • The use of glycinate to remove brownish-black tarnish on silver–copper alloy objects is studied. • The method is easy to use and harmless. It is based in the coordination of Ag and Cu in tarnish with glycinate. • The surface of corroded silver objects and products of reaction were studied and glycinate showed to be very selective for Ag(I) and Cu(II). The selectivity for Ag(I) was studied by means of quantum chemical calculations. - Abstract: This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver–copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver–copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver–copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver–copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver–copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver–copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish

  1. Removal of brownish-black tarnish on silver–copper alloy objects with sodium glycinate

    International Nuclear Information System (INIS)

    Cura D’Ars de Figueiredo, João; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro

    2014-01-01

    Highlights: • The use of glycinate to remove brownish-black tarnish on silver–copper alloy objects is studied. • The method is easy to use and harmless. It is based in the coordination of Ag and Cu in tarnish with glycinate. • The surface of corroded silver objects and products of reaction were studied and glycinate showed to be very selective for Ag(I) and Cu(II). The selectivity for Ag(I) was studied by means of quantum chemical calculations. - Abstract: This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver–copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver–copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver–copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver–copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver–copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver–copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish

  2. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    Directory of Open Access Journals (Sweden)

    J Pedro Fernández-Murray

    2016-01-01

    Full Text Available Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  3. Structure-activity relationships of strychnine analogues at glycine receptors

    DEFF Research Database (Denmark)

    Mohsen, A.M.Y.; Heller, Eberhard; Holzgrabe, Ulrike

    2014-01-01

    Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best...... pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21)[DOUBLE BOND]C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine...

  4. Production of 1-carbon units from glycine is extensive in healthy men and women.

    Science.gov (United States)

    Lamers, Yvonne; Williamson, Jerry; Theriaque, Douglas W; Shuster, Jonathan J; Gilbert, Lesa R; Keeling, Christine; Stacpoole, Peter W; Gregory, Jesse F

    2009-04-01

    Glycine undergoes decarboxylation in the glycine cleavage system (GCS) to yield CO(2), NH(3), and a 1-carbon unit. CO(2) also can be generated from the 2-carbon of glycine by 10-formyltetrahydrofolate-dehydrogenase and, after glycine-to-serine conversion by serine hydroxymethyltransferase, from the tricarboxylic acid cycle. To evaluate the relative fates of glycine carbons in CO(2) generation in healthy volunteers (3 male, 3 female, aged 21-26 y), primed, constant infusions were conducted using 9.26 micromol x h(-1) x kg(-1) of [1,2-(13)C]glycine and 1.87 micromol x h(-1) x kg(-1) of [5,5,5-(2)H(3)]leucine, followed by an infusion protocol using [1-(13)C]glycine as the glycine tracer. The time period between the infusion protocols was >6 mo. In vivo rates of whole-body glycine and leucine flux were nearly identical in protocols with [1,2-(13)C]glycine and [5,5,5-(2)H(3)]leucine and with [1-(13)C]glycine and [5,5,5-(2)H(3)]leucine tracers, which showed high reproducibility between the tracer protocols. Using the [1-(13)C]glycine tracer, breath CO(2) data showed a total rate of glycine decarboxylation of 96 +/- 8 micromol x h(-1) x kg(-1), which was 22 +/- 3% of whole-body glycine flux. In contrast, infusion of [1,2-(13)C]glycine yielded a glycine-to-CO(2) flux of 146 +/- 37 micromol x h(-1) x kg(-1) (P = 0.026). By difference, this implies a rate of CO(2) formation from the glycine 2-carbon of 51 +/- 40 micromol x h(-1) x kg(-1), which accounts for approximately 35% of the total CO(2) generated in glycine catabolism. These findings also indicate that approximately 65% of the CO(2) generation from glycine occurs by decarboxylation, primarily from the GCS. Further, these results suggest that the GCS is responsible for the entry of 5,10-methylenetetrahydrofolate into 1-carbon metabolism at a very high rate ( approximately 96 micromol x h(-1) x kg(-1)), which is approximately 20 times the demand for methyl groups for homocysteine remethylation.

  5. Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis

    International Nuclear Information System (INIS)

    Castric, P.A.

    1977-01-01

    Hydrogen cyanide (HCN) production by Pseudomonas aeruginosa in a synthetic medium is stimulated by the presence of glycine. Methionine enhances this stimulation but will not substitute for glycine as a stimulator of cyanogenesis. Threonine and phenylalanine are effective substitutes for glycine in the stimulation of HCN production. Glycine, threonine, and serine are good radioisotope precursors of HCN, but methionine and phenylalanine are not. Cell extracts of P. aeruginosa convert [ 14 C]threonine to [ 14 C]glycine. H14CN is produced with low dilution of label from either [1- 14 C]glycine or [2- 14 C]glycine, indicating a randomization of label either in the primary or secondary metabolism of glycine. When whole cells were fed [1,2- 14 C]glycine, cyanide and bicarbonate were the only radioactive extracellular products observed

  6. Interaction of Heterodera glycines and Glomus mosseae on Soybean.

    Science.gov (United States)

    Todd, T C; Winkler, H E; Wilson, G W

    2001-12-01

    The effects of the arbuscular mycorrhizal (AM) fungus Glomus mosseae on Heterodera glycines-soybean interactions were investigated in greenhouse experiments. Mycorrhizal and nonmycorrhizal soybean cultivars that were either resistant or susceptible to H. glycines were exposed to initial nematode population densities (Pi) of 0, 100, 1,000, or 10,000 eggs and infective juveniles. Soybean growth, nematode reproduction, and AM fungal colonization were determined after 35 (experiment I) and 83 (experiment II) days. Soybean shoot and root weights were reduced an average 29% across H. glycines Pi but were 36% greater overall in the presence of G. mosseae. Analyses of variance indicated that root colonization and stimulation of soybean growth by G. mosseae were inhibited at high H. glycines Pi, while the combined effects of the nematode and fungus on soybean growth were best described as additive in linear regression models. No evidence for increased nematode tolerance of mycorrhizal soybean plants was observed. Nematode population densities and reproduction were lower on a nematode-resistant soybean cultivar than on a susceptible cultivar, but reproduction was comparable on mycorrhizal and nonmycorrhizal plants. Root colonization by G. mosseae was reduced at high nematode Pi. The results suggest that nematode antagonism to the mycorrhizal symbiosis is a more likely consequence of interactions between H. glycines and AM fungi on soybean than is nematode suppression by the fungus.

  7. Crystallization of glycine with ultrasound

    DEFF Research Database (Denmark)

    Louhi-Kultanen, Marjatta; Karjalainen, Milja; Rantanen, Jukka

    2006-01-01

    Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound with an ultr...... ultrasound power. This study also showed, the higher the ultrasound amplitude the smaller the crystals obtained.......Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound...... with an ultrasound frequency of 20kHz at two temperature ranges 40-50 and 20-30 degrees C in a jacketed 250-ml cooling crystallizer equipped with a stirrer. The polymorph composition of the obtained crystals was analyzed with a temperature variable X-ray powder diffractometer (XRPD). XRPD results showed that...

  8. 76 FR 8771 - Glycine From China

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-718 (Third Review)] Glycine From China... order on glycine from China. SUMMARY: The Commission hereby gives notice that it will proceed with a... determine whether revocation of the antidumping duty order on glycine from China would be likely to lead to...

  9. 76 FR 55109 - Glycine From China

    Science.gov (United States)

    2011-09-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-718 (Third Review)] Glycine From China... U.S.C. 1675(c)), that revocation of the antidumping duty order on glycine from China would be likely... contained in USITC Publication 4255 (August 2011), entitled Glycine from China: Investigation No. 731-TA-718...

  10. Glycine uptake by microvillous and basal plasma membrane vesicles from term human placentae.

    Science.gov (United States)

    Dicke, J M; Verges, D; Kelley, L K; Smith, C H

    1993-01-01

    Like most amino acids, glycine is present in higher concentrations in the fetus than in the mother. Unlike most amino acids, animal studies suggest fetal concentrations of glycine are minimally in excess of those required for protein synthesis. Abnormal glycine utilization has also been demonstrated in small-for-gestational age human fetuses. The mechanism(s) of glycine uptake in the human placenta are unknown. In other mammalian cells glycine is a substrate for the A, ASC and Gly amino acid transport systems. In this study human placental glycine uptake was characterized using microvillous and basal plasma membrane vesicles each prepared from the same placenta. In both membranes glycine uptake was mediated predominantly by the sodium-dependent A system. Competitive inhibition studies suggest that in microvillous vesicles the small percentage of sodium-dependent glycine uptake not inhibited by methylaminoisobutyric acid (MeAIB) shares a transport system with glycine methyl ester and sarcosine, substrates of the Gly system in other tissues. In addition there are mediated sodium-independent and non-selective transport mechanisms in both plasma membranes. If fetal glycine availability is primarily contingent upon the common and highly regulated A system, glycine must compete with many other substrates potentially resulting in marginal fetal reserves, abnormal utilization and impaired growth.

  11. Glycine serine interconversion in the rooster

    International Nuclear Information System (INIS)

    Sugahara, Michihiro; Kandatsu, Makoto

    1976-01-01

    Serine was isolated by the column chromatography from the hydrolyzates of proteins of the serum, the liver and the pectoral muscle which were obtained from the roosters fed a diet containing 2- 14 C glycine for 16 - 17 days. The carbon chain of serine was cut off by treating with sodium periodate. The specific activity of each carbon (as barium carbonate) was estimated. Carboxyl carbon had little radioactivity. The specific activity of hydroxymethyl carbon was 10 - 19% of that of methylene carbon. Glycine isolated from the same hydrolyzates was degraded by ninhydrin oxidation. Formaldehyde produced from 2-C was oxidized to carbon dioxide by treating with mercuric chloride. Carboxyl carbon had little radioactivity. The specific activities of 2-C of glycine and 2-C of serine in the same tissue protein were compared. The ratio of serine 2-C/glycine 2-C was between 0.7 - 1.5. These results seem to indicate that glycine directly converts to serine in the rooster. The quantitative significance of the pathways of glycine (serine) biosynthesis is discussed. (auth.)

  12. The fate of 13C15N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems

    DEFF Research Database (Denmark)

    Ravn, Nynne Marie Rand; Elberling, Bo; Michelsen, Anders

    2017-01-01

    Background and aim: Nutrient distribution and carbon fluxes upon spring thaw are compared in mesocosms from high arctic and subarctic ecosystems dominated by Cassiope tetragona or Salix hastata/Salix arctica, in order to evaluate the possibility of plant and microbial utilization of an organic...... compound in thawing permafrost and surface soil. Methods: Double labeled glycine (13C15N) was added to soil columns with vegetation and to permafrost. During thaw conditions ecosystem respiration 13C was measured and 13C and 15N distribution in the ecosystem pools was quantified one day and one month after...... glycine addition. Results: Near-surface soil microbes were more efficient in the uptake of intact glycine immediately upon thaw than plants. After one month plants had gained more 15N whereas microbes seemed to lose 15N originating from glycine. We observed a time lag in glycine degradation upon...

  13. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story

    Directory of Open Access Journals (Sweden)

    Magdalena Czolpinska

    2018-03-01

    Full Text Available Seed plants are sessile organisms that have developed a plethora of strategies for sensing, avoiding, and responding to stress. Several proteins, including the glycine-rich protein (GRP superfamily, are involved in cellular stress responses and signaling. GRPs are characterized by high glycine content and the presence of conserved segments including glycine-containing structural motifs composed of repetitive amino acid residues. The general structure of this superfamily facilitates division of GRPs into five main subclasses. Although the participation of GRPs in plant stress response has been indicated in numerous model and non-model plant species, relatively little is known about the key physiological processes and molecular mechanisms in which those proteins are engaged. Class I, II, and IV members are known to be involved in hormone signaling, stress acclimation, and floral development, and are crucial for regulation of plant cells growth. GRPs of class IV [RNA-binding proteins (RBPs] are involved in alternative splicing or regulation of transcription and stomatal movement, seed, pollen, and stamen development; their accumulation is regulated by the circadian clock. Owing to the fact that the overexpression of GRPs can confer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth at low temperatures, these proteins could play a promising role in agriculture through plant genetic engineering. Consequently, isolation, cloning, characterization, and functional validation of novel GRPs expressed in response to the diverse stress conditions are expected to be growing areas of research in the coming years. According to our knowledge, this is the first comprehensive review on participation of plant GRPs in the response to diverse stress stimuli.

  14. Characterization and regulation of glycine transport in Fusarium oxysporum var. lini.

    Science.gov (United States)

    Castro, I M; Lima, A A; Nascimento, A F; Ruas, M M; Nicoli, J R; Brandão, R L

    1996-08-01

    Glycine was transported in Fusarium oxysporum cells, grown on glycine as the sole source of carbon and nitrogen, by a facilitated diffusion transport system with a half-saturation constant (Ks) of 11 mM and a maximum velocity (Vmax) of 1.2 mM (g dry weight)-1 h-1 at pH 5.0 and 26 degrees C. Under conditions of nitrogen starvation, the same system was present together with a high-affinity one (Ks) of about 47 microM and Vmax of about 60 microM (g dry weight)-1 h-1). The low-affinity system was more specific than the high-affinity system. Cells grown on gelatine showed the same behavior. In cells grown on glucose-gelatine medium, the low-affinity system was poorly expressed even after carbon and nitrogen starvation. Moreover, addition of glucose to cells grown on glycine and resuspended in mineral medium caused an increase of the glycine transport probably due to a boost in protein synthesis. This stimulation did not affect the Ks of the low-affinity system. These results demonstrate that, as is the case for other eukaryotic systems, F. oxysporum glycine transport is under control of nitrogen sources but its regulation by carbon sources appears to be more complex.

  15. Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids.

    Directory of Open Access Journals (Sweden)

    Gonzalo E Yévenes

    Full Text Available Glycine receptors (GlyRs are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA are positive modulators of α(1, α(2 and α(3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly potentiate α(1 GlyRs but inhibit α(2 and α(3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM region 2 and intracellular lysine 385 determine the positive modulation of α(1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1 GlyRs, without affecting inhibition of α(2 and α(3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.

  16. Do glycine-extended hormone precursors have clinical significance?

    DEFF Research Database (Denmark)

    Rehfeld, Jens Frederik

    2014-01-01

    Half of the known peptide hormones are C-terminally amidated. Subsequent biogenesis studies have shown that the immediate precursor is a glycine-extended peptide. The clinical interest in glycine-extended hormones began in 1994, when it was suggested that glycine-extended gastrin stimulated cancer...... and clinical effects of glycine-extended precursors for most other amidated hormones than gastrin and cholecystokinin (CCK). The idea of glycine-extended peptides as independent messengers was interesting. But clinical science has to move ahead from ideas that cannot be supported at key points after decades...

  17. 21 CFR 520.550 - Dextrose/glycine/electrolyte.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dextrose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Dextrose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and dextrose 44.0 grams. (b) Sponsor...

  18. Functional reconstitution of the glycine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Calvo, M.; Ruiz-Gomez, A.; Vazquez, J.; Morato, E.; Valdivieso, F.; Mayor, F. Jr. (Universidad Autonoma de Madrid (Spain))

    1989-07-25

    The functional reconstitution of the chloride channel coupled glycine receptor is described. Glycine receptors were purified from the cholate extract of rat spinal cord membranes by affinity chromatography and incorporated into phospholipid vesicles by the addition of phosphatidylcholine and removal of detergent by gel filtration. The reconstituted vesicles showed the same polypeptide composition as the purified receptor. The pharmacological characteristics of the glycine receptor were also preserved in the proteoliposomes, as demonstrated by the displacement of ({sup 3}H)strychnine binding by several glycinergic ligands and by photoaffinity labeling experiments. In order to observe functional responses (i.e., specific agonist-induced anion translocation), the authors have developed an assay based on the fluorescence quenching of an anion-sensitive entrapped probe, SPQ (6-methoxy-N-(3-sulfopropyl)quinolinium). Reconstituted vesicles were loaded with the fluorescent probe during a freeze-thaw-sonication cycle in the presence of added liposomes containing cholesterol. In such a reconstituted system, glycine receptor agonists are able to increase the rate of anion influx into the vesicles. The action of agonists is blocked by the simultaneous presence of strychnine or other glycine antagonists. The results show that the purified 48,000- and 58,000-dalton polypeptides reconstituted into phospholipid vesicles can bind ligands and promote specific ion translocation in a way similar to the glycine receptor in its native environment.

  19. Glycine

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.

    2013-01-01

    With the advent of the use of precise ion accelerators for medical purposes, it becomes ever more important to understand the interaction of biomolecules with fast ions.  Glycine is both a protein component and a model biomolecule, and is thus an important test system.    In this report, we discu...

  20. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    Science.gov (United States)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  1. Glycine phases formed from frozen aqueous solutions: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, N. V. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Adichtchev, S. V.; Malinovsky, V. K. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ogienko, A. G.; Manakov, A. Yu. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Drebushchak, V. A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ancharov, A. I.; Boldyreva, E. V. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Solid Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Yunoshev, A. S. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Lavrentiev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation)

    2012-08-14

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I{sub h} was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into {beta}-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I{sub h} and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine 'X-phase') at 209-216 K, which at 218-226 K transformed into {beta}-polymorph of glycine. The 'X-phase' was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a= 6.648 A, b= 25.867 A, c= 5.610 A, {beta}= 113.12 Masculine-Ordinal-Indicator ); the formation of 'X-phase' from the glycine glassy phase and its transformation into {beta}-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  2. Glycine phases formed from frozen aqueous solutions: Revisited

    Science.gov (United States)

    Surovtsev, N. V.; Adichtchev, S. V.; Malinovsky, V. K.; Ogienko, A. G.; Drebushchak, V. A.; Manakov, A. Yu.; Ancharov, A. I.; Yunoshev, A. S.; Boldyreva, E. V.

    2012-08-01

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice Ih was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into β-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice Ih and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into β-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 Å, b = 25.867 Å, c = 5.610 Å, β = 113.12°); the formation of "X-phase" from the glycine glassy phase and its transformation into β-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  3. The function of glycine decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its reaction products

    DEFF Research Database (Denmark)

    Bykova, Natalia V; Møller, Ian Max; Gardeström, Per

    2014-01-01

    oxidase. We discuss here possible mechanisms of high photorespiratory flux maintenance in mitochondria and suggest that it is fulfilled under conditions where the concentrations of glycine decarboxylase reaction products NADH and CO2 achieve an equilibrium provided by malate dehydrogenase and carbonic...

  4. A cation-π interaction at a phenylalanine residue in the glycine receptor binding site is conserved for different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Hanek, Ariele P; Price, Kerry L

    2011-01-01

    . In the current study, we investigated whether the lower efficacy agonists of the human GlyR β-alanine and taurine also form cation-π interactions with Phe159. By incorporating a series of unnatural amino acids, we found cation-π interactions between Phe159 and the amino groups of β-alanine and taurine....... The strengths of these interactions were significantly weaker than for glycine. Modeling studies suggest that β-alanine and taurine are orientated subtly differently in the binding pocket, with their amino groups further from Phe159 than that of glycine. These data therefore show that similar agonists can have...... similar but not identical orientations and interactions in the binding pocket and provide a possible explanation for the lower potencies of β-alanine and taurine....

  5. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review

    Directory of Open Access Journals (Sweden)

    Meerza Abdul Razak

    2017-01-01

    Full Text Available Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as precursor for several key metabolites of low molecular weight such as creatine, glutathione, haem, purines, and porphyrins. Glycine is very effective in improving the health and supports the growth and well-being of humans and animals. There are overwhelming reports supporting the role of supplementary glycine in prevention of many diseases and disorders including cancer. Dietary supplementation of proper dose of glycine is effectual in treating metabolic disorders in patients with cardiovascular diseases, several inflammatory diseases, obesity, cancers, and diabetes. Glycine also has the property to enhance the quality of sleep and neurological functions. In this review we will focus on the metabolism of glycine in humans and animals and the recent findings and advances about the beneficial effects and protection of glycine in different disease states.

  6. Preferential Pathway for Glycine Formation in Star-Forming Regions

    Science.gov (United States)

    Pilling, S.; Boechat-Roberty, H. M.; Baptista, L.; Santos A. C., F.

    Interstellar clouds, similar to that from which the solar system was formed, contain many organic molecules including aldehydes, acids, ketones, and sugars Ehrenfreund & Charnley (2000). Those organic compounds have important functions in terrestrial biochemistry and could also have been important in prebiotic synthesis. The simplest amino acid, glycine (NH2CH2COOH), was recently detected in the hot molecular cores Sgr B2(N-LMH), Orion KL, and W51 e1/e2 Kuan et al. (2003). The formic acid (HCOOH) and acetic acid(CH3COOH) have also been detected in those regions Liu et al. (2002), Remijan et al. (2004). The goal of this work is to study experimentally photoionization and photodissociation processes of glycine precursor molecules, acetic acid and formic acid to elucidate a possible preferentially in the glycine synthesis between ice and gas phase. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator TGM) beamline (100 - 310 eV). The experimental set up consists of a high vacuum chamber with a Time-Of-Flight Mass Spectrometer (TOF-MS). Mass spectra were obtained using PhotoElectron PhotoIon Coincidence (PEPICO) technique. Kinetic energy distributions and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Dissociative and non-dissociative photoionization cross sections for both molecules were also determined Boechat-Roberty, Pilling & Santos (2005). Due to the high photodissociation cross section of formic acid it is possible that in PDRs regions, just after molecules evaporation from the grains surface, it is almost destructed by soft X-rays, justifying the observed low abundance of HCOOH in gaseous phase Ehrenfreund et al. (2001). Acetic acid have shown to be more stable to the ionizing field, and its main outcomes from dissociation process were the reactive ionic fragments COOH+ and CH3CO+. To

  7. Sensitization of glycine (spectrophotometric read-out) dosimetric system using sorbitol

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mukherjee, T.

    2009-01-01

    Glycine spectrophotometric read-out systems have a useful dose range of 15-4000 Gy. An attempt was made to sensitize it using sorbitol as a sensitizer. Optimum compositions of aqueous acidic solutions of ferrous ammonium sulphate-xylenol orange (XO), i.e. FX and sorbitol-ferrous ammonium sulphate-xylenol orange, i.e. SFX, for 400 mg of glycine, which gives maximum dosimetric response for any given dose, were established. Molar absorption coefficient values of ferric-XO-glycine complex, i.e. ε-values, were determined for glycine system in FX and SFX. These values were found to be 8410 and 15,000 m 2 mol -1 respectively, indicating that an enhancement or sensitivity factor of about 1.78 can be achieved by sorbitol for glycine in SFX. This factor was further confirmed by measuring the gamma dose response of glycine in FX and in SFX for four different doses, viz. 37.8, 75.5, 151 and 302 Gy. It was observed that dose response of glycine in SFX is about 77% more than that of glycine in FX. The maximum variation observed in response of glycine in FX or SFX was found to be within ±1.5%.

  8. Glycine receptor: light microscopic autoradiographic localization with [3H]strychnine

    International Nuclear Information System (INIS)

    Zarbin, M.A.; Wamsley, J.K.; Kuhar, M.J.

    1981-01-01

    Glycine receptors have been localized by autoradiography in the rat central nervous system (CNS) using [ 3 H]strychnine. The gross distribution of receptors is in excellent accord with the distribution determined by filtration binding assays. Specifically, the density of glycine receptors is greatest in the gray matter of the spinal cord and decreases progressively in regions more rostral in the neuraxis. Glycine receptors were found to be associated with both sensory and motor systems in the CNS. Moreover, there is a striking correlation between areas of high strychnine binding site density and areas in which glycine has been found to be electrophysiologically active. Finally, the anatomic localization of strychnine binding sites may help explain many of the signs and symptoms of strychnine ingestion. For example, individuals consuming subconvulsive doses of strychnine frequently experience altered cutaneous and auditory sensation. We have localized strychnine receptors in areas of the acoustic system known to influence discriminative aspects of audition and in areas of the spinal cord and trigeminal nuclei which modulate discriminative aspects of cutaneous sensation. The alteration of visceral functions (e.g., blood pressure and respiratory rate) associated with strychnine ingestion may be accounted for in a similar manner

  9. Kinetic study of carbon dioxide absorption into glycine promoted diethanolamine (DEA)

    Science.gov (United States)

    Pudjiastuti, Lily; Susianto, Altway, Ali; IC, Maria Hestia; Arsi, Kartika

    2015-12-01

    In industry, especially petrochemical, oil and natural gas industry, required separation process of CO2 gas which is a corrosive gas (acid gas). This characteristic can damage the plant utility and piping systems as well as reducing the caloric value of natural gas. Corrosive characteristic of CO2 will appear in areas where there is a decrease in temperature and pressure, such as at the elbow pipe, tubing, cooler and injector turbine. From disadvantages as described above, then it is important to do separation process in the CO2 gas stream, one of the method for remove CO2 from the gas stream is reactive absorption using alkanolamine based solution with promotor. Therefore, this study is done to determine the kinetics constant of CO2 absorption in diethanolamine (DEA) solution using a glycine promoter. Glycine is chosen as a promoter because glycine is a primary amine compound which is reactive, moreover, glycine has resistance to high temperatures so it will not easy to degradable and suitable for application in industry. The method used in this study is absorption using laboratory scale wetted wall column equipment at atmospheric of pressure. This study will to provide the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that rising temperatures from 303,15 - 328,15 K and the increase of concentration of glycine from 1% - 3% weight will increase the absorption rate of carbon dioxide in DEA promoted with glycine by 24,2% and 59,764% respectively, also the reaction kinetic constant is 1.419 × 1012 exp (-3634/T) (m3/kmol.s). This result show that the addition of glycine as a promoter can increase absorption rate of carbon dioxide in diethanolamine solution and cover the weaknesses of diethanolamine solution.

  10. Characterisation of the human NMDA receptor subunit NR3A glycine binding site

    DEFF Research Database (Denmark)

    Nilsson, A; Duan, J; Mo-Boquist, L-L

    2007-01-01

    In this study, we characterise the binding site of the human N-methyl-d-aspartate (NMDA) receptor subunit NR3A. Saturation radioligand binding of the NMDA receptor agonists [(3)H]-glycine and [(3)H]-glutamate showed that only glycine binds to human NR3A (hNR3A) with high affinity (K(d)=535nM (277...

  11. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists

    DEFF Research Database (Denmark)

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita

    2016-01-01

    of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment...

  12. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935

    Directory of Open Access Journals (Sweden)

    Helga eHöifödt Lidö

    2011-03-01

    Full Text Available AbstractAccumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935-ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol’s effects within this system.

  13. Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics.

    Science.gov (United States)

    Ji, Y; Hebbring, S; Zhu, H; Jenkins, G D; Biernacka, J; Snyder, K; Drews, M; Fiehn, O; Zeng, Z; Schaid, D; Mrazek, D A; Kaddurah-Daouk, R; Weinshilboum, R M

    2011-01-01

    Major depressive disorder (MDD) is a common psychiatric disease. Selective serotonin reuptake inhibitors (SSRIs) are an important class of drugs used in the treatment of MDD. However, many patients do not respond adequately to SSRI therapy. We used a pharmacometabolomics-informed pharmacogenomic research strategy to identify citalopram/escitalopram treatment outcome biomarkers. Metabolomic assay of plasma samples from 20 escitalopram remitters and 20 nonremitters showed that glycine was negatively associated with treatment outcome (P = 0.0054). This observation was pursued by genotyping tag single-nucleotide polymorphisms (SNPs) for genes encoding glycine synthesis and degradation enzymes, using 529 DNA samples from SSRI-treated MDD patients. The rs10975641 SNP in the glycine dehydrogenase (GLDC) gene was associated with treatment outcome phenotypes. Genotyping for rs10975641 was carried out in 1,245 MDD patients in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, and its presence was significant (P = 0.02) in DNA taken from these patients. These results highlight a possible role for glycine in SSRI response and illustrate the use of pharmacometabolomics to "inform" pharmacogenomics.

  14. Glycine transporter 1 is a target for the treatment of epilepsy

    NARCIS (Netherlands)

    Shen, Hai-Ying; van Vliet, Erwin A.; Bright, Kerry-Ann; Hanthorn, Marissa; Lytle, Nikki K.; Gorter, Jan; Aronica, Eleonora; Boison, Detlev

    2015-01-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-D-aspartate receptor (NMDAR). In hippocampus, the

  15. Glycine transporter 1 is a target for the treatment of epilepsy

    NARCIS (Netherlands)

    Shen, H-Y; van Vliet, E.A.; Bright, K-A.; Hanthorn, M.; Lytle, N.K.; Gorter, J.; Aronica, E.; Boison, D.

    2015-01-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-d-aspartate receptor (NMDAR). In hippocampus, the

  16. Readings in Wildlife and Fish Conservation, High School Conservation Curriculum Project.

    Science.gov (United States)

    Ensminger, Jack

    This publication is a tentative edition of readings on Wildlife and Fish Conservation in Louisiana, and as such it forms part of one of the four units of study designed for an experimental high school course, the "High School Conservation Curriculum Project." The other three units are concerned with Forest Conervation, Soil and Water…

  17. Gbu Glycine Betaine Porter and Carnitine Uptake in Osmotically Stressed Listeria monocytogenes Cells

    Science.gov (United States)

    Mendum, Mary Lou; Smith, Linda Tombras

    2002-01-01

    The food-borne pathogen Listeria monocytogenes grows actively under high-salt conditions by accumulating compatible solutes such as glycine betaine and carnitine from the medium. We report here that the dominant transport system for glycine betaine uptake, the Gbu porter, may act as a secondary uptake system for carnitine, with a Km of 4 mM for carnitine uptake and measurable uptake at carnitine concentrations as low as 10 μM. This porter has a Km for glycine betaine uptake of about 6 μM. The dedicated carnitine porter, OpuC, has a Km for carnitine uptake of 1 to 3 μM and a Vmax of approximately 15 nmol/min/mg of protein. Mutants lacking either opuC or gbu were used to study the effects of four carnitine analogs on growth and uptake of osmolytes. In strain DP-L1044, which had OpuC and the two glycine betaine porters Gbu and BetL, triethylglycine was most effective in inhibiting growth in the presence of glycine betaine, but trigonelline was best at inhibiting growth in the presence of carnitine. Carnitine uptake through OpuC was inhibited by γ-butyrobetaine. Dimethylglycine inhibited both glycine betaine and carnitine uptake through the Gbu porter. Carnitine uptake through the Gbu porter was inhibited by triethylglycine. Glycine betaine uptake through the BetL porter was strongly inhibited by trigonelline and triethylglycine. These results suggest that it is possible to reduce the growth of L. monocytogenes under osmotically stressful conditions by inhibiting glycine betaine and carnitine uptake but that to do so, multiple uptake systems must be affected. PMID:12406761

  18. Antibody conjugated glycine doped polyaniline nanofilms as efficient biosensor for atrazine

    Science.gov (United States)

    Bhardwaj, Sanjeev K.; Sharma, Amit L.; Kim, Ki-Hyun; Deep, Akash

    2017-12-01

    Atrazine is an important member of triazine family of pesticides. The development of its detection methods gained great attention due to the potential health risks associated with its contamination in various media including water, soil, and food. The contamination of atrazine in drinking water beyond the legal permissible limit of EPA (e.g. 3 ng ml-1) may cause various damages to living organisms (e.g. heart, urinary, and limb defects). In this research, we discuss the potential significance of a highly sensitive conductometric immunosensor for sensing the atrazine pesticide. To this end, electrochemical assembly of glycine doped polyaniline (PAni) nanofilms on silicon (Si) substrate was built and modified further with anti-atrazine antibodies. The herein developed immunosensor offered highly sensitive detection of atrazine with a low detection limit of 0.07 ng ml-1. The proposed biosensor was simple in design with excellent performance in terms of its sensitivity, stability and specificity. Highlights •Glycine doped PAni nanofilms have been electropolymerized on Silicon substrates. •Functionality of the above thin films provides opportunity to develop an immunosensing platform. •Highly sensitive and specific detection of atrazine has been realized over a wide concentration range with a LOD of 0.07 ng ml-1. Novelty statement Atrazine is a widely used pesticide in the agriculture sector. It is highly recommended to develop simple biosensing systems for enabling the prospect of routine monitoring. The present research for the first time proposes the design of a glycine doped PAni based simple and highly effective biosensor for the atrazine pesticide. The doping of glycine has easily generated functional groups on the nano-PAni material for further convenient immobilization of anti-atrazine antibodies. The proposed sensor can be highlighted with advantages like ease of fabrication, use of environment friendly functionalization agent, specificity, wide

  19. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance.

    Science.gov (United States)

    Kim, Dohoon; Fiske, Brian P; Birsoy, Kivanc; Freinkman, Elizaveta; Kami, Kenjiro; Possemato, Richard L; Chudnovsky, Yakov; Pacold, Michael E; Chen, Walter W; Cantor, Jason R; Shelton, Laura M; Gui, Dan Y; Kwon, Manjae; Ramkissoon, Shakti H; Ligon, Keith L; Kang, Seong Woo; Snuderl, Matija; Vander Heiden, Matthew G; Sabatini, David M

    2015-04-16

    Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition.

  20. The light activated alkylation of glycine

    International Nuclear Information System (INIS)

    Knowles, H.S.

    2001-04-01

    The work contained in this thesis focuses on the light-initiated alkylation of the α-centre of glycine compounds. The elaboration of the glycines in this manner represents a versatile, clean and cost effective alternative to ionic routes to higher α-amino acids. Preliminary investigations demonstrated that a range of nitrogen protecting groups were compatible with the radical alkylation. A variety of solvents could also be used although solvents with easily removable hydrogen atoms were found to interfere with the alkylation. Furthermore, a number of photo-initiators were investigated and the use of di-tert-butyl peroxide was found to afford the desired phenylalanine products in up to 27% yield (54% based on recovered starting material) when toluene was used as the alkylating agent. A range of different precursor concentrations was investigated and it was found that the optimum concentration of the glycine precursor was 0.13 mol dm -3 ; the phenylalanine yields were reduced when the concentration was less than this value. Owing to the poor UV absorption by di-tert-butyl peroxide, benzophenone (an effective photosensitiser) was added to the reaction mixture and this was shown to increase the alkylation yields. The ratio of reagents which produced the highest yield of phenylalanine products was found to be 1 : 5 : 5 : 10 for glycine : di-tert-butyl peroxide : benzophenone : toluene. This produced the phenylalanine product in up to 37% yield (57% based on recovered starting material). A number of substituents. (e.g. F, Cl etc.) could be attached to the aromatic ring of the toluene alkylating agent, affording substituted phenylalanines in 5 - 36% under these conditions. The formation of chiral phenylalanine products was probed by reacting glycine precursors bearing chiral auxiliaries. However, low diastereoselectivities were observed; the d.r. ranged from 1 : 1.1 to 1 : 1.5 only when chiral ester and amide protecting groups were used. In the final chapter, the

  1. Energy pattern and conservations of condiment produced from soybean (Glycine max)

    OpenAIRE

    Ismaila B. Anjorin; Rahman Akinoso; Mayowa S. Sanusi

    2018-01-01

    Energy being one of the largest operating expenses in most organizations especially manufacturing and processing industries leading to considerable scope for energy conservation and hence cost. Information on energy utilization and conservation pattern were obtained based on time taken, number of person involved and sources of energy using standard energy equations. A total of 445.40 ± 17.32MJkg-1 where thermal energy (420MJ ≈ 94%) and manual energy (25.40MJ ≈ 6%) were the only forms of energ...

  2. Presynaptic Glycine Receptors Increase GABAergic Neurotransmission in Rat Periaqueductal Gray Neurons

    Directory of Open Access Journals (Sweden)

    Kwi-Hyung Choi

    2013-01-01

    Full Text Available The periaqueductal gray (PAG is involved in the central regulation of nociceptive transmission by affecting the descending inhibitory pathway. In the present study, we have addressed the functional role of presynaptic glycine receptors in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs were recorded in mechanically dissociated rat PAG neurons using a conventional whole-cell patch recording technique under voltage-clamp conditions. The application of glycine (100 µM significantly increased the frequency of sEPSCs, without affecting the amplitude of sEPSCs. The glycine-induced increase in sEPSC frequency was blocked by 1 µM strychnine, a specific glycine receptor antagonist. The results suggest that glycine acts on presynaptic glycine receptors to increase the probability of glutamate release from excitatory nerve terminals. The glycine-induced increase in sEPSC frequency completely disappeared either in the presence of tetrodotoxin or Cd2+, voltage-gated Na+, or Ca2+ channel blockers, suggesting that the activation of presynaptic glycine receptors might depolarize excitatory nerve terminals. The present results suggest that presynaptic glycine receptors can regulate the excitability of PAG neurons by enhancing glutamatergic transmission and therefore play an important role in the regulation of various physiological functions mediated by the PAG.

  3. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    International Nuclear Information System (INIS)

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-01

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo

  4. Glycine-U-14C metabolism in young rats fed the 10% casein diets containing excess glycine

    International Nuclear Information System (INIS)

    Takeuchi, Hisanao; Wakatsuki, Tetsuo; Muramatsu, Keiichiro

    1975-01-01

    Nine hours after rats fed ad libitum for 14 days a 10% casein diet (10C), a 10% casein diet containing 7% glycine (10C7G) and a 10% casein diet containing 7% glycine with 1.4% L-arginine.HCl and 0.9% L-methionine (10C7GArgMet) were force-fed 10 ml of each diet suspension containing 5μCi of glycine-U- 14 C per 100 g of body weight, the radioactivity recoveries of 14 C in expired CO 2 , tissue components and urine were determined. The radioactivity recovery of 14 C in the expired CO 2 of the 10C7G group was generally higher than that of the 10C7GArgMet group. The recovery of 14 C in the trichloroacetic acid (TCA) soluble fraction of muscle of the 10C7G and the 10C7GArgMet groups were greater than that of the 10C group. The recoveries of 14 C in the TCA soluble fraction and protein of plasma and liver, and the muscle protein were negligible in all the groups. The amount of glycine- 14 C incorporated into the carcass lipids of the 10C7GArgMet group was larger than that of other groups. The recoveries of 14 C in the liver and muscle glycogen, and liver lipids were remarkably small in all the groups. From the above results, it was suggested that the degradation of glycine- 14 C to expiratory CO 2 was not accelerated, but the rate of incorporation of the isotope into carcass lipids was increased by the supplementation of L-arginine and L-methionine to the 10C7G diet as compared with that of rats fed the 10C7G diet. (JPN)

  5. Processing of pro-opiomelanocortin-derived amidated joining peptide and glycine-extended precursor in monkey pituitary

    DEFF Research Database (Denmark)

    Fenger, M

    1991-01-01

    The molecular forms of proopiomelanocortin (POMC) derived amidated and C-terminal glycine-extended joining peptide from monkey (Macaca mulatta) pituitary were determined. The predominant forms of joining peptide found were the low molecular peptides POMC(76-105) and POMC(76-106), respectively...... sequence of monkey and human POMC extremely conserved, but also the processing patterns are similar. The monkey therefore serves as a suitable model for studying regulation of the processing of POMC and the hypothalamus-pituitary-adrenal axis in man....

  6. Fast heavy-ion radiation damage of glycine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Shinji [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Tsuchida, Hidetsugu, E-mail: tsuchida@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan); Furuya, Ryosuke [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Majima, Takuya; Itoh, Akio [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan)

    2016-12-15

    Fast heavy-ion radiolysis of biomolecules in aqueous solution is investigated for an atomistic understanding of radiation damage to normal cells during heavy-particle beam therapy. The smallest amino acid glycine was used as a model biomaterial. Microjets of aqueous glycine solutions under vacuum were irradiated with 4.0-MeV carbon ions corresponding to energies in the Bragg peak region. To understand the effects of the water environment on molecular damage, the yield of glycine dissociation was measured by secondary ion mass spectroscopy. The yield was significantly reduced relative to gas-phase glycine targets. This implies that the numerous water molecules surrounding a single glycine molecule act as a buffer that suppresses dissociation. This is an environmental effect similar to that observed for other biomolecular cluster targets.

  7. [3H]CGP 61594, the first photoaffinity ligand for the glycine site of NMDA receptors

    International Nuclear Information System (INIS)

    Benke, D.; Honer, M.; Mohler, H.; Heckendorn, R.; Pozza, M.F.; Allgeier, H.; Angst, C.

    1999-01-01

    Activation of NMDA receptors requires the presence of glycine as a coagonist which binds to a site that is allosterically linked to the glutamate binding site. To identify the protein constituents of the glycine binding site in situ the photoaffinity label [ 3 H]CGP 61594 was synthesized. In reversible binding assays using crude rat brain membranes, [ 3 H]CGP 61594 labeled with high affinity (K D =23 nM) the glycine site of the NMDA receptor. This was evident from the Scatchard analysis, the displacing potencies of various glycine site ligands and the allosteric modulation of [ 3 H]CGP 61594 binding by ligands of the glutamate and polyamine sites. Electrophysiological experiments in a neocortical slice preparation identified CGP 61594 as a glycine antagonist. Upon UV-irradiation, a protein band of 115 kDa was specifically photolabeled by [ 3 H]CGP 61594 in brain membrane preparations. The photolabeled protein was identified as the NR1 subunit of the NMDA receptor by NR1 subunit-specific immunoaffinity chromatography. Thus, [ 3 H]CGP 61594 is the first photoaffinity label for the glycine site of NMDA receptors. It will serve as a tool for the identification of structural elements that are involved in the formation of the glycine binding domain of NMDA receptors in situ and will thereby complement the mutational analysis of recombinant receptors. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. 15N-labelled glycine synthesis

    International Nuclear Information System (INIS)

    Tavares, Claudineia R.O.; Bendassolli, Jose A.; Sant'Ana Filho, Carlos R.; Prestes, Clelber V.; Coelho, Fernando

    2006-01-01

    This work describes a method for 15 N-isotope-labeled glycine synthesis, as well as details about a recovery line for nitrogen residues. To that effect, amination of α-haloacids was performed, using carboxylic chloroacetic acid and labeled aqueous ammonia ( 15 NH 3 ). Special care was taken to avoid possible 15 NH 3 losses, since its production cost is high. In that respect, although the purchase cost of the 13 N-labeled compound (radioactive) is lower, the stable tracer produced constitutes an important tool for N cycling studies in living organisms, also minimizing labor and environmental hazards, as well as time limitation problems in field studies. The tests were carried out with three replications, and variable 15 NH 3(aq) volumes in the reaction were used (50, 100, and 150 mL), in order to calibrate the best operational condition; glycine masses obtained were 1.7, 2, and 3.2 g, respectively. With the development of a system for 15 NH 3 recovery, it was possible to recover 71, 83, and 87% of the ammonia initially used in the synthesis. With the required adaptations, the same system was used to recover methanol, and 75% of the methanol initially used in the amino acid purification process were recovered. (author)

  9. Functional characterisation of human glycine receptors in a fluorescence-based high throughput screening assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.

    2005-01-01

    The human glycine receptor subtypes alpha1beta and alpha2 have been expressed stably in HEK293 cells, and the functional characteristics of the receptors have been characterised in the FLIPR Membrane Potential Assay. The pharmacological properties obtained for nine standard ligands at the two rec...

  10. Electrodeposition of CoNiMo thin films using glycine as additive: anomalous and induced codeposition

    International Nuclear Information System (INIS)

    Esteves, Marcos C.; Sumodjo, Paulo T.A.; Podlaha, Elizabeth J.

    2011-01-01

    Highlights: → Mixed/induced codeposition of CoNiMo from a glycine containing bath. → Deposition in a rotating cylinder Hull cell. → The mechanism is explained in term of the complex species that can be formed. - Abstract: The present study focuses on the behavior of the CoNiMo mixed anomalous/induced codeposition process, using glycine as a probe to influence the coverage of adsorbed intermediates. In order to facilitate the investigation of a wide variation of parameters the electrodeposition of the alloy films was performed using a rotating cylinder Hull cell. Alloy composition, current efficiency and partial currents of each metal were analyzed. The partial current densities and hence alloy composition was affected by the amount of glycine in the electrolyte: increasing glycine enhanced both cobalt and molybdenum deposition rates and hindered nickel deposition. It is suggested that the glycine facilitates the adsorption of M(I) adsorbed intermediates that control the anomalous and induced codeposition behavior. The current efficiency ranged from 30 up to 75% and was only slightly affected by glycine at high applied current densities. Films with a tridimensional porous structure were obtained applying current densities higher than 200 mA cm -2 , formed as a consequence of the large hydrogen evolution side reaction, presenting conditions for a novel Mo-alloy electrode structure.

  11. Genetics Home Reference: glycine encephalopathy

    Science.gov (United States)

    ... seizures. As they get older, many develop intellectual disability, abnormal movements, and behavioral problems. Other atypical types of glycine encephalopathy appear later in childhood or adulthood ...

  12. First-principles study of the formation of glycine-producing radicals from common interstellar species

    Science.gov (United States)

    Sato, Akimasa; Kitazawa, Yuya; Ochi, Toshiro; Shoji, Mitsuo; Komatsu, Yu; Kayanuma, Megumi; Aikawa, Yuri; Umemura, Masayuki; Shigeta, Yasuteru

    2018-03-01

    Glycine, the simplest amino acid, has been intensively searched for in molecular clouds, and the comprehensive clarification of the formation path of interstellar glycine is now imperative. Among all the possible glycine formation pathways, we focused on the radical pathways revealed by Garrod (2013). In the present study, we have precisely investigated all the chemical reaction steps related to the glycine formation processes based on state-of-the-art density functional theory (DFT) calculations. We found that two reaction pathways require small activation barriers (ΔE‡ ≤ 7.75 kJ mol-1), which demonstrates the possibility of glycine formation even at low temperatures in interstellar space if the radical species are generated. The origin of carbon and nitrogen in the glycine backbone and their combination patterns are further discussed in relation to the formation mechanisms. According to the clarification of the atomic correspondence between glycine and its potential parental molecules, it is shown that the nitrogen and two carbons in the glycine can originate in three common interstellar molecules, methanol, hydrogen cyanide, and ammonia, and that the source molecules of glycine can be described by any of their combinations. The glycine formation processes can be categorized into six patterns. Finally, we discussed two other glycine formation pathways expected from the present DFT calculation results.

  13. [{sup 3}H]CGP 61594, the first photoaffinity ligand for the glycine site of NMDA receptors

    Energy Technology Data Exchange (ETDEWEB)

    Benke, D.; Honer, M.; Mohler, H. [Institute of Pharmacology, ETH and University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland); Heckendorn, R.; Pozza, M.F.; Allgeier, H.; Angst, C. [NS Research, Novartis Pharma AG, CH-4002 Basle (Switzerland)

    1999-02-01

    Activation of NMDA receptors requires the presence of glycine as a coagonist which binds to a site that is allosterically linked to the glutamate binding site. To identify the protein constituents of the glycine binding site in situ the photoaffinity label [{sup 3}H]CGP 61594 was synthesized. In reversible binding assays using crude rat brain membranes, [{sup 3}H]CGP 61594 labeled with high affinity (K{sub D}=23 nM) the glycine site of the NMDA receptor. This was evident from the Scatchard analysis, the displacing potencies of various glycine site ligands and the allosteric modulation of [{sup 3}H]CGP 61594 binding by ligands of the glutamate and polyamine sites. Electrophysiological experiments in a neocortical slice preparation identified CGP 61594 as a glycine antagonist. Upon UV-irradiation, a protein band of 115 kDa was specifically photolabeled by [{sup 3}H]CGP 61594 in brain membrane preparations. The photolabeled protein was identified as the NR1 subunit of the NMDA receptor by NR1 subunit-specific immunoaffinity chromatography. Thus, [{sup 3}H]CGP 61594 is the first photoaffinity label for the glycine site of NMDA receptors. It will serve as a tool for the identification of structural elements that are involved in the formation of the glycine binding domain of NMDA receptors in situ and will thereby complement the mutational analysis of recombinant receptors. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Growth and antimicrobial studies of γ-glycine crystal grown using CuSO4

    Science.gov (United States)

    Vijayalakshmi, V.; Dhanasekaran, P.

    2018-05-01

    In the current work single crystals of pure and 1M of CuSO4-added glycine were grown by slow evaporation method and its optical and antimicrobial properties were studied. The Polymorph of glycine transforms from a-glycine to γ-glycine due to the incorporation of CuSO4 on glycine was affirmed by the PXRD and FTIR studies. The impact of CuSO4 on the antimicrobial action of the grown samples was deliberate by utilizing the agar diffusion method.

  15. Glycine as Alternative Fuel in Making Hydrotalcite Compound by Means of Combustion Method

    International Nuclear Information System (INIS)

    Shamsudin, I.K.; Helwani, Z.; Abdullah, A.Z.

    2013-01-01

    Hydrotalcite is anion compound capable of exchanging ions; it has the potential as a catalyst and adsorbent for variety of applications. Hydrotalcite can be prepared through several approaches, depending on the specific need and the characteristics of the compound. In this study, hydrotalcite was prepared through combustion method using glycine as fuel for the first time. Glycine was selected as opposed to urea so that hydrotalcite is safe for use in food processing or health. Hydrotalcite that was successfully obtained via combustion technique using glycine as fuel showed interesting characteristics. The compound demonstrated high thermal endurance and highest alkalinity, which suited the application for bio diesel production from vegetable oil and hydrogenation in the making of fats. However, the surface area was low in comparison with the same compound obtained from co-precipitation and sol-gel techniques. (author)

  16. Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone.

    Science.gov (United States)

    Nagy, Katalin; Marko, Bernadett; Zsilla, Gabriella; Matyus, Peter; Pallagi, Katalin; Szabo, Geza; Juranyi, Zsolt; Barkoczy, Jozsef; Levay, Gyorgy; Harsing, Laszlo G

    2010-12-01

    The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D(2) dopamine receptors. N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D(2) dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced

  17. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex

    Science.gov (United States)

    Kunz, Portia A; Burette, Alain C; Weinberg, Richard J; Philpot, Benjamin D

    2012-01-01

    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl− gradient maintained by the Na+–K+–2Cl− cotransporter and requires Ca2+ entry through voltage-gated Ca2+ channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex. PMID:22988142

  18. SHMT2 drives glioma cell survival in the tumor microenvironment but imposes a dependence on glycine clearance

    Science.gov (United States)

    Kim, Dohoon; Fiske, Brian P.; Birsoy, Kivanc; Freinkman, Elizaveta; Kami, Kenjiro; Possemato, Richard; Chudnovsky, Yakov; Pacold, Michael E.; Chen, Walter W.; Cantor, Jason R.; Shelton, Laura M.; Gui, Dan Y.; Kwon, Manjae; Ramkissoon, Shakti H.; Ligon, Keith L.; Kang, Seong Woo; Snuderl, Matija; Heiden, Matthew G. Vander; Sabatini, David M.

    2015-01-01

    SUMMARY Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumor microenvironment1–3. Here, we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischemic zones of gliomas. In human glioblastoma multiforme (GBM), mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumor regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumor environment, but also renders these cells sensitive to glycine cleavage system inhibition. PMID:25855294

  19. A weak link in metabolism: the metabolic capacity for glycine ...

    Indian Academy of Sciences (India)

    Prakash

    2009-12-03

    Dec 3, 2009 ... glyoxylate, threonine and trimethyllysine (carnitine synthesis), most of them ...... Participation of glycine in porphyrin biosynthesis. Eight glycine ...... normal and streptozotocin-induced diabetic rats; J. Dent. Res. 63 23–27.

  20. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    International Nuclear Information System (INIS)

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-01-01

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO 3 with NaBH 4 in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility

  1. Functional identification of conserved residues involved in Lactobacillus rhamnosus strain GG sortase specificity and pilus biogenesis.

    Science.gov (United States)

    Douillard, François P; Rasinkangas, Pia; von Ossowski, Ingemar; Reunanen, Justus; Palva, Airi; de Vos, Willem M

    2014-05-30

    In Gram-positive bacteria, sortase-dependent pili mediate the adhesion of bacteria to host epithelial cells and play a pivotal role in colonization, host signaling, and biofilm formation. Lactobacillus rhamnosus strain GG, a well known probiotic bacterium, also displays on its cell surface mucus-binding pilus structures, along with other LPXTG surface proteins, which are processed by sortases upon specific recognition of a highly conserved LPXTG motif. Bioinformatic analysis of all predicted LPXTG proteins encoded by the L. rhamnosus GG genome revealed a remarkable conservation of glycine residues juxtaposed to the canonical LPXTG motif. Here, we investigated and defined the role of this so-called triple glycine (TG) motif in determining sortase specificity during the pilus assembly and anchoring. Mutagenesis of the TG motif resulted in a lack or an alteration of the L. rhamnosus GG pilus structures, indicating that the TG motif is critical in pilus assembly and that they govern the pilin-specific and housekeeping sortase specificity. This allowed us to propose a regulatory model of the L. rhamnosus GG pilus biogenesis. Remarkably, the TG motif was identified in multiple pilus gene clusters of other Gram-positive bacteria, suggesting that similar signaling mechanisms occur in other, mainly pathogenic, species. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Molecular characterisation of a recombinant bovine glycine N-acyltransferase / Christoffel Petrus Stephanus Badenhorst

    OpenAIRE

    Badenhorst, Christoffel Petrus Stephanus

    2010-01-01

    Conjugation of glycine to organic acids is an important detoxification mechanism. Metabolites of aspirin and industrial solvents, benzoic acid found in plant material and many endogenous metabolites are detoxified by conjugation to glycine. The enzyme responsible for glycine conjugation, glycine N-acyltransferase (GL YAT), is investigated in this study. The enzyme is also important for the management of organic acidemias which are inherited metabolic diseases. However, not all ...

  3. Nitrogen functionality of glucose-glycine condensate; Glucose to glycine tono shukugo hanno (shukugobutsuchu no chisso kagobutsu no keitai bunseki)

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, C.; Yoshioka, T.; Komano, T.; Mashimo, K.; Wainai, T. [Nihon University, Tokyo (Japan). College of Science and Technology; Sugimoto, Y.; : Miki, Y. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1996-10-28

    In order to clarify a humification process in the early stage of coalification, the nitrogen functionality of prepared glucose-glycine condensate was studied experimentally. In experiment, the condensate was prepared by heating the mixture of glucose, glycine and water in a autoclave at 130{degree}C for 50 hours, and furthermore heating the produced solid material in water at 300{degree}C. After the condensate was hydrocracked, the fraction, condensate and hydrocracking residue were analyzed by elementary analyzer, {sup 13}C-NMR, XPS, FT-IR, capillary GC-FID/NPD and GC-MS. As a result, the glucose-glycine condensate could be arranged on the basis of three types of nitrogen such as pyridine, pyrrole and quaternary amine type. Pyridine type nitrogen increased, while quaternary amine type one decreased with an increase in heating treatment temperature. Rich pyrrole type nitrogen and poor pyridine type one were found in light nitrogen compounds in hydrocracked products. 2 refs., 4 figs., 2 tabs.

  4. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period.

    Directory of Open Access Journals (Sweden)

    Claire N J Meunier

    Full Text Available N-methyl-D-aspartate receptors (NMDARs play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.

  5. Glycine facilitates gamma-glutamylcysteinylethyl ester-mediated increase in liver glutathione level.

    Science.gov (United States)

    Nishida, K; Ohta, Y; Ishiguro, I

    1997-08-27

    gamma-Glutamylcysteinylethyl ester (gamma-GCE) increases reduced glutathione (GSH) levels in GSH-depleted rat hepatocytes. Because glycine, a constituent of GSH, exists at 0.3 to 0.4 mM in rat plasma, we examined the influence of glycine added to the medium on the action of gamma-GCE to increase GSH levels in the rat hepatocytes. Glycine (0.2-0.8 mM) dose-dependently enhanced gamma-GCE-mediated increase in intracellular GSH levels with an increase in intracellular gamma-GCE levels. These results indicate that exogenous glycine facilitates gamma-GCE-mediated increase in intracellular GSH levels in rat hepatocytes possibly by enhancing the uptake of gamma-GCE into the cells.

  6. Impaired absorption of marked oligopeptide Glycine-I Tyrosine-Glycine after successful autologous-allotopic ileal mucosa transplantation in beagles.

    Science.gov (United States)

    Beiler, H A; Steinorth, J; Witt, A; Mier, W; Mohammed, A; Waag, K L; Zachariou, Z

    2004-10-01

    After establishing a method for ileal mucosa transplantation in an animal model, the authors investigated the absorptive capacity for oligopeptides of the transplanted mucosa. In 14 beagle dogs the authors transplanted ileal mucosa in a vascularized demucosed segment of the transverse colon. The colonic wall-ileal mucosa complex then was integrated in the ileal continuity. Six animals were lost owing to operative complications. Absorptive capacity for oligopeptides was measured in the remaining 8 animals with the iodine 131 (131I)-marked tripeptide glycine-tyrosine-glycine before and 4 weeks after transplantation. The results were compared and analyzed with the Student's t test for matched pairs. Blood concentrations of the marked tripeptide with P value less than .05 were considered as a significant reduction in the absorptive capacity of the transplanted ileal mucosa. After fixation with glutaraldehyd graft, uptake of the colonic wall-ileal mucosa complex was evaluated histologically in 8 animals. In all 8 animals, a 100% graft uptake was verified in all sections. Fifteen minutes after application of 15 MBc Glycine-131I-Tyrosine-Glycine there was no significant difference in the absorption between normal and transplanted ileal mucosa. After 30 minutes, the absorption of the transplanted ileal mucosa showed a tendency (P < .1) for an impaired uptake of the marked tripeptide. However, 60 minutes after application the difference in the absorptive capacity of the transplanted ileal mucosa was significant (P < .05). Autologous allotopic ileal mucosa transplantation is feasible; however, an impaired absorption of oligopeptides of the transplanted mucosa 4 weeks after transplantation could be observed.

  7. The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site.

    Directory of Open Access Journals (Sweden)

    Suneeth F Mathew

    Full Text Available HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon' contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.

  8. Synthesis and Characterization of Novel Acyl-Glycine Inhibitors of GlyT2.

    Science.gov (United States)

    Mostyn, Shannon N; Carland, Jane E; Shimmon, Susan; Ryan, Renae M; Rawling, Tristan; Vandenberg, Robert J

    2017-09-20

    It has been demonstrated previously that the endogenous compound N-arachidonyl-glycine inhibits the glycine transporter GlyT2, stimulates glycinergic neurotransmission, and provides analgesia in animal models of neuropathic and inflammatory pain. However, it is a relatively weak inhibitor with an IC 50 of 9 μM and is subject to oxidation via cyclooxygenase, limiting its therapeutic value. In this paper we describe the synthesis and testing of a novel series of monounsaturated C18 and C16 acyl-glycine molecules as inhibitors of the glycine transporter GlyT2. We demonstrate that they are up to 28 fold more potent that N-arachidonyl-glycine with no activity at the closely related GlyT1 transporter at concentrations up to 30 μM. This novel class of compounds show considerable promise as a first generation of GlyT2 transport inhibitors.

  9. A kinetic model for the glucose/glycine Maillard reaction pathways

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A comprehensive kinetic model for the glucose/glycine Maillard reaction is proposed based on an approach called multiresponse kinetic modelling. Special attention was paid to reactants, intermediates and end products: -fructose, N-(1-deoxy--fructos-1-yl)-glycine (DFG), 1-deoxy-2,3-hexodiulose and

  10. Orally administered L-arginine and glycine are highly effective against acid reflux esophagitis in rats

    Science.gov (United States)

    Nagahama, Kenji; Nishio, Hikaru; Yamato, Masanori; Takeuchi, Koji

    2012-01-01

    Summary Background Reflux esophagitis is caused mainly by excessive exposure of the mucosa to gastric contents. In the present study, we examined the effect of several amino acids on acid reflux esophagitis in rats. Material/Methods After 18 h of fasting, acid reflux esophagitis was induced by ligating both the pylorus and the transitional region between the forestomach and the corpus under ether anesthesia, and the animals were killed 4 h later. The severity of esophagitis was reduced by the oral administration of omeprazole, a proton pump inhibitor, or pepstatin, a specific pepsin inhibitor. Results The development of esophageal lesions was dose-dependently prevented by L-arginine and glycine, given intragastrically (i.g.) after the ligation, with complete inhibition obtained at 250 mg/kg and 750 mg/kg, respectively, and these effects were not influenced by the prior s.c. administration of indomethacin or L-NAME. By contrast, both L-alanine and L-glutamine given i.g. after the ligation aggravated these lesions in a dose-dependent manner. These amino acids had no effect on acid secretion but increased the pH of the gastric contents to 1.8~2.3 due to their buffering action. Conclusions The results confirmed an essential role for acid and pepsin in the pathogenesis of acid reflux esophagitis in the rat model and further suggested that various amino acids affect the severity of esophagitis in different ways, due to yet unidentified mechanisms; L-alanine and L-glutamine exert a deleterious effect on the esophagitis, while L-arginine and glycine are highly protective, independent of endogenous prostaglandins and nitric oxide. PMID:22207112

  11. Rapid Methods to Distinguish Heterodera schachtii from Heterodera glycines Using PCR Technique

    Directory of Open Access Journals (Sweden)

    Hyoung Rai Ko

    2017-09-01

    Full Text Available The purpose of this study was to develop rapid methods for distinguishing between Heterodera schachtii and H. glycines detected from chinese cabbage fields of highland in Gangwon, Korea. To do this, we performed PCR-RFLP and PCR with the primers set developed in this study for GC147, GC408 and PM001 population, H. schachtii, and YS224, DA142 and BC115 population, H. glycines. Eight restriction enzymes generated RFLP profiles of mtDNA COI region for populations of H. schachtii and H. glycines, repectively. As a result, treatment of two restriction enzymes, RsaI and HinfI, were allowed to distinguish H. schachtii from H. glycines based on the differences of DNA band patterns. The primer set, #JBS1, #JBG1 and #JB3R, amplified specific fragments with 277 and 339 bp of H. schachtii, 339 bp of H. glycines, respectively, while it did not amplify fragments from three root-knot nematodes and two root-lesion nematodes. Thus, the primer set developed in this study could be a good method, which is used to distinguish between H. schachtii and H. glycines.

  12. A DFT study of adsorption of glycine onto the surface of BC_2N nanotube

    International Nuclear Information System (INIS)

    Soltani, Alireza; Azmoodeh, Zivar; Javan, Masoud Bezi; Lemeski, E. Tazikeh; Karami, Leila

    2016-01-01

    Highlights: • Glycine adsorption over the pristine BC_2N nanotubes is investigated by DFT calculations. • Adsorption of glycine in its zwitterionic form is stronger in comparison with the radical form. • Adsorption of glycine from its amine head on adsorbent leads to a significant decrease in the electronic properties. - Abstract: A theoretical study of structure and the energy interaction of amino acid glycine (NH_2CH_2COOH) with BC_2N nanotube is crucial for apperception behavior occurring at the nanobiointerface. Herein, we studied the adsorption of glycine in their radical and zwitterionic forms upon the surface of BC_2N nanotube using M06 functional and 6-311G** standard basis set. We also considered the different orientations of the glycine amino acid on the surface of adsorbent. Further, we found out that the stability of glycine from its carbonyl group is higher than hydroxyl and amine groups. Our results also indicated that the electronic structure of BC_2N nanotube on the adsorption of glycine from its amine group is more altered than the other groups. Our study exhibits that opto-electronic property of adsorbent is changed after the glycine adsorption.

  13. Zwitterionization of glycine in water environment: Stabilization mechanism and NMR spectral signatures

    Science.gov (United States)

    Valverde, Danillo; da Costa Ludwig, Zélia Maria; da Costa, Célia Regina; Ludwig, Valdemir; Georg, Herbert C.

    2018-01-01

    At physiological conditions, myriads of biomolecules (e.g., amino acids, peptides, and proteins) exist predominantly in the zwitterionic structural form and their biological functions will result in these conditions. However these geometrical structures are inaccessible energetically in the gas phase, and at this point, stabilization of amino-acids in physiological conditions is still under debate. In this paper, the electronic properties of a glycine molecule in the liquid environment were studied by performing a relaxation of the glycine geometry in liquid water using the free energy gradient method combined with a sequential quantum mechanics/molecular mechanics approach. A series of Monte Carlo Metropolis simulations of the glycine molecule embedded in liquid water, followed by only a quantum mechanical calculation in each of them were carried out. Both the local and global liquid environments were emphasized to obtain nuclear magnetic resonance (NMR) parameters for the glycine molecule in liquid water. The results of the equilibrium structure in solution and the systematic study of the hydrogen bonds were used to discard the direct proton transfer from the carboxyl group to the ammonium group of the glycine molecule in water solution. The calculations of the Density Functional Theory (DFT) were performed to study the polarization of the solvent in the parameters of nuclear magnetic resonance of the glycine molecule in liquid water. DFT calculations predicted isotropic chemical changes on the H, C, N, and O atoms of glycine in liquid water solution which agree with the available experimental data.

  14. A critical role for glycine transporters in hyperexcitability disorders

    Directory of Open Access Journals (Sweden)

    Robert J Harvey

    2008-03-01

    Full Text Available Defects in mammalian glycinergic neurotransmission result in a complex motor disorder characterized by neonatal hypertonia and an exaggerated startle refl ex, known as hyperekplexia (OMIM 149400. This affects newborn children and is characterized by noise or touch-induced seizures that result in muscle stiffness and breath-holding episodes. Although rare, this disorder can have serious consequences, including brain damage and/or sudden infant death. The primary cause of hyperekplexia is missense and nonsense mutations in the glycine receptor (GlyR α1 subunit gene (GLRA1 on chromosome 5q33.1, although we have also discovered rare mutations in the genes encoding the GlyR β subunit (GLRB and the GlyR clustering proteins gephyrin (GPNH and collybistin (ARHGEF9. Recent studies of the Na+ /Cl--dependent glycine transporters GlyT1 and GlyT2 using mouse knockout models and human genetics have revealed that mutations in GlyT2 are a second major cause of hyperekplexia, while the phenotype of the GlyT1 knockout mouse resembles a devastating neurological disorder known as glycine encephalopathy (OMIM 605899. These findings highlight the importance of these transporters in regulating the levels of synaptic glycine.

  15. Hydrogen bonded nonlinear optical γ-glycine: Crystal growth and characterization

    Science.gov (United States)

    Narayana Moolya, B.; Jayarama, A.; Sureshkumar, M. R.; Dharmaprakash, S. M.

    2005-07-01

    Single crystals of γ-glycine(GG) were grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and ammonium nitrate at ambient temperature. X-ray diffraction, thermogravimetric/differential thermal analysis, Fourier transform infrared spectral techniques were employed to characterize the crystal. The lattice parameters were calculated and they agree well with the reported values. GG exists as dipolar ions in which the carboxyl group is present as a carboxylate ion and the amino group as an ammonium ion. Due to this dipolar nature, glycine has a high decomposition temperature. The UV cutoff of GG is below 300 nm and has a wide transparency window, which is suitable for second harmonic generation of laser in the blue region. Nonlinear optical characteristics of GG were studied using Q switched Nd:YAG laser ( λ=1064 nm). The second harmonic generation conversion efficiency of GG is 1.5 times that of potassium dihydrogen phosphate . The X-ray diffraction and Fourier transform infrared spectral studies show the presence of strong hydrogen bonds which create and stabilize the crystal structure in GG. The main contributions to the nonlinear optical properties in GG results from the presence of the hydrogen bond and from the vibrational part due to very intense infrared bands of the hydrogen bond vibrations. GG is thermally stable up to 441 K.

  16. MK-801, but not drugs acting at strychnine-insensitive glycine receptors, attenuate methamphetamine nigrostriatal toxicity.

    Science.gov (United States)

    Layer, R T; Bland, L R; Skolnick, P

    1993-10-15

    Repeated administration of methamphetamine (METH) results in damage to nigrostriatal dopaminergic neurons. Both competitive N-methyl-D-aspartate (NMDA) receptor antagonists and use-dependent cation channel blockers attenuate METH-induced damage. The objectives of the present study were to examine whether comparable reductions in METH-induced damage could be obtained by compounds acting at strychnine-insensitive glycine receptors on the NMDA receptor complex. Four injections of METH (5 mg/kg i.p.) resulted in a approximately 70.9% depletion of striatal dopamine (DA) and approximately 62.7% depletion of dihydroxyphenylacetic acid (DOPAC) content, respectively. A significant protection against METH-induced DA and DOPAC depletion was afforded by the use-dependent channel blocker, MK-801. The competitive glycine antagonist 7-chlorokynurenic acid (7-Cl-KA), the low efficacy glycine partial agonist (+)-3-amino-1-hydroxy-2-pyrrolidone ((+)-HA-966), and the high efficacy partial glycine agonist 1-aminocyclopropane-carboxylic acid (ACPC) were ineffective against METH-induced toxicity despite their abilities to attenuate glutamate-induced neurotoxicity under both in vivo and in vitro conditions. These results indicate that glycinergic ligands do not possess the same broad neuroprotective spectrum as other classes of NMDA antagonists.

  17. L-Glycine Alleviates Furfural-Induced Growth Inhibition during Isobutanol Production in Escherichia coli.

    Science.gov (United States)

    Song, Hun-Suk; Jeon, Jong-Min; Choi, Yong Keun; Kim, Jun-Young; Kim, Wooseong; Yoon, Jeong-Jun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun

    2017-12-28

    Lignocellulose is now a promising raw material for biofuel production. However, the lignin complex and crystalline cellulose require pretreatment steps for breakdown of the crystalline structure of cellulose for the generation of fermentable sugars. Moreover, several fermentation inhibitors are generated with sugar compounds, majorly furfural. The mitigation of these inhibitors is required for the further fermentation steps to proceed. Amino acids were investigated on furfural-induced growth inhibition in E. coli producing isobutanol. Glycine and serine were the most effective compounds against furfural. In minimal media, glycine conferred tolerance against furfural. From the IC₅₀ value for inhibitors in the production media, only glycine could alleviate growth arrest for furfural, where 6 mM glycine addition led to a slight increase in growth rate and isobutanol production from 2.6 to 2.8 g/l under furfural stress. Overexpression of glycine pathway genes did not lead to alleviation. However, addition of glycine to engineered strains blocked the growth arrest and increased the isobutanol production about 2.3-fold.

  18. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    Science.gov (United States)

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  19. The effects of glycine on subjective daytime performance in partially sleep-restricted healthy volunteers

    Directory of Open Access Journals (Sweden)

    Makoto eBannai

    2012-04-01

    Full Text Available Approximately 30% of the general population suffers from insomnia. Given that insomnia causes many problems, amelioration of the symptoms is crucial. Recently, we found that a nonessential amino acid, glycine subjectively and objectively improves sleep quality in humans who have difficulty sleeping. We evaluated the effects of glycine on daytime sleepiness, fatigue and performances in sleep-restricted healthy subjects. Sleep was restricted to 25% less than the usual sleep time for three consecutive nights. Before bedtime, 3 g of glycine or placebo were ingested, sleepiness and fatigue were evaluated using the visual analogue scale (VAS and a questionnaire, and performance were estimated by personal computer (PC performance test program on the following day. In subjects given glycine, the VAS data showed a significant reduction in fatigue and a tendency toward reduced sleepiness. These observations were also found via the questionnaire, indicating that glycine improves daytime sleepiness and fatigue induced by acute sleep restriction. PC performance test revealed significant improvement in psychomotor vigilance test. We also measured plasma melatonin and the expression of circadian-modulated genes expression in the rat suprachiasmatic nucleus (SCN to evaluate the effects of glycine on circadian rhythms. Glycine did not show significant effects on plasma melatonin concentrations during either the dark or light period. Moreover, the expression levels of clock genes such as Bmal1 and Per2 remained unchanged. However, we observed a glycine-induced increase in the neuropeptides arginine vasopressin and vasoactive intestinal polypeptide in the light period. Although no alterations in the circadian clock itself were observed, our results indicate that glycine modulated SCN function. Thus, glycine modulates certain neuropeptides in the SCN and this phenomenon may indirectly contribute to improving the occasional sleepiness and fatigue induced by sleep

  20. Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis

    International Nuclear Information System (INIS)

    Tao, Yu-gui; Xu, Yan-qiu; Pan, Jun; Gu, Hao; Qin, Chang-yun; Zhou, Peng

    2012-01-01

    Graphical abstract: Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. The obtained TiO 2 sample showed good photocatalytic activity of decomposition of methyl orange under sunlight. Highlights: ► Flower-like TiO 2 hierarchical spheres were synthesized by glycine assistant. ► Reaction time, temperature, solution pH and glycine dosage were studied. ► The formation of the flower-like TiO 2 spheres is an Ostwald ripening process. ► Flower-like TiO 2 showed high photocatalytic activity under sunlight. - Abstract: Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2 O 2 ). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2 .

  1. Effect of Glycine on Lead Mobilization, Lead-Induced Oxidative Stress, and Hepatic Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    Yolanda Alcaraz-Contreras

    2011-01-01

    Full Text Available The effectiveness of glycine in treating experimental lead intoxication was examined in rats. Male Wistar rats were exposed to 3 g/L lead acetate in drinking water for 5 weeks and treated thereafter with glycine (100 and 500 mg/kg, orally once daily for 5 days or glycine (1000 mg/kg, orally once daily for 28 days. The effect of these treatments on parameters indicative of oxidative stress (glutathione and malondialdehyde levels, the activity of blood -aminolevulinic acid dehydratase, and lead concentration in blood, liver, kidney, brain, and bone were investigated. Liver samples were observed for histopathological changes. Glycine was found to be effective in (1 increasing glutathione levels; (2 reducing malondialdehyde levels; (3 decreasing lead levels in bone with the highest dose. However, glycine had no effect on lead mobilization when 100 and 500 mg/kg glycine were administered. In microscopic examination, glycine showed a protective effect against lead intoxication.

  2. Generation of monoclonal antibodies against highly conserved antigens.

    Directory of Open Access Journals (Sweden)

    Hongzhe Zhou

    Full Text Available BACKGROUND: Therapeutic antibody development is one of the fastest growing areas of the pharmaceutical industry. Generating high-quality monoclonal antibodies against a given therapeutic target is very crucial for the success of the drug development. However, due to immune tolerance, some proteins that are highly conserved between mice and humans are not very immunogenic in mice, making it difficult to generate antibodies using a conventional approach. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the impaired immune tolerance of NZB/W mice was exploited to generate monoclonal antibodies against highly conserved or self-antigens. Using two highly conserved human antigens (MIF and HMGB1 and one mouse self-antigen (TNF-alpha as examples, we demonstrate here that multiple clones of high affinity, highly specific antibodies with desired biological activities can be generated, using the NZB/W mouse as the immunization host and a T cell-specific tag fused to a recombinant antigen to stimulate the immune system. CONCLUSIONS/SIGNIFICANCE: We developed an efficient and universal method for generating surrogate or therapeutic antibodies against "difficult antigens" to facilitate the development of therapeutic antibodies.

  3. Kinetics and mechanism of oxidation of glycine by iron(III)

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. Hence it can be inferred that the ...

  4. Potassium-stimulated release of radiolabelled taurine and glycine from the isolated rat retina

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.F.; Pycock, C.J.

    1982-09-01

    The release of preloaded (/sup 3/H)glycine and (/sup 3/H)taurine in response to a depolarising stimulus (12.5-50 mM KCl) has been studied in the superfused rat retina. High external potassium concentration immediately increased the spontaneous efflux of (/sup 3/H)glycine, the effect of 50 mM K+ apparently being abolished by omitting calcium from the superfusing medium. In contrast, although high potassium concentrations increased the spontaneous efflux of (/sup 3/H)taurine from the superfused rat retina, this release was not evident until the depolarising stimulus was removed from the superfusing medium. The magnitude of this late release of (/sup 3/H)taurine was dependent on external K+ concentrations, and appeared immediately after cessation of the stimulus irrespective of whether it was applied for 4, 8, or 12 min. Potassium (50 mM)-induced release of taurine appeared partially calcium-dependent, being significantly reduced (p less than 0.01) but not abolished by replacing calcium with 1 mM EDTA in the superfusate. High-affinity uptake systems for both (/sup 3/H)glycine and (/sup 3/H)taurine were demonstrated in the rat retina in vitro (Km values, 1.67 microM and 2.97 microM; Vmax values, 19.3 and 23.1 nmol/g wet weight tissue/h, respectively). The results are discussed with respect to the possible neurotransmitter roles of both amino acids in the rat retina.

  5. Equilibria in aqueous cadmium-chloroacetate-glycinate systems. A convolution-deconvolution cyclic voltammetric study

    International Nuclear Information System (INIS)

    Abdel-Hamid, R.; Rabia, M.K.M.

    1994-01-01

    Stability constants and composition of cadmium-glycinate binary complexes were determined using cyclic voltammetry. Furthermore, binary and ternary complex equilibria for chloroacetates and glycinate with cadmium in 0.1 M aqueous KNO 3 at pH 10.4 and 298 K were investigated. Cadmium forms binary complexes with chloroacetates of low stability and ternary ones with chloroacetate-glycinate of significant stability. (author)

  6. Contributions of Fusarium virguliforme and Heterodera glycines to the Disease Complex of Sudden Death Syndrome of Soybean

    Science.gov (United States)

    Westphal, Andreas; Li, Chunge; Xing, Lijuan; McKay, Alan; Malvick, Dean

    2014-01-01

    Background Sudden death syndrome (SDS) of soybean caused by Fusarium virguliforme spreads and reduces soybean yields through the North Central region of the U.S. The fungal pathogen and Heterodera glycines are difficult to manage. Methodology/Principal Findings The objective was to determine the contributions of H. glycines and F. virguliforme to SDS severity and effects on soybean yield. To quantify DNA of F. virguliforme in soybean roots and soil, a specific real time qPCR assay was developed. The assay was used on materials from soybean field microplots that contained in a four-factor factorial-design: (i) untreated or methyl bromide-fumigated; (ii) non-infested or infested with F. virguliforme; (iii) non-infested or infested with H. glycines; (iv) natural precipitation or additional weekly watering. In years 2 and 3 of the trial, soil and watering treatments were maintained. Roots of soybean ‘Williams 82’ were collected for necrosis ratings at the full seed growth stage R6. Foliar symptoms of SDS (area under the disease progress curve, AUDPC), root necrosis, and seed yield parameters were related to population densities of H. glycines and the relative DNA concentrations of F. virguliforme in the roots and soil. The specific and sensitive real time qPCR was used. Data from microplots were introduced into models of AUDPC, root necrosis, and seed yield parameters with the frequency of H. glycines and F. virguliforme, and among each other. The models confirmed the close interrelationship of H. glycines with the development of SDS, and allowed for predictions of disease risk based on populations of these two pathogens in soil. Conclusions/Significance The results modeled the synergistic interaction between H. glycines and F. virguliforme quantitatively in previously infested field plots and explained previous findings of their interaction. Under these conditions, F. virguliforme was mildly aggressive and depended on infection of H. glycines to cause highly

  7. Secondary Emission From Synthetic Opal Infiltrated by Colloidal Gold and Glycine

    International Nuclear Information System (INIS)

    Dovbeshko, G.I.; Fesenko, O.M.; Boyko, V.V.; Romanyuk, V.R.; Gorelik, V.S.; Moiseyenko, V.N.; Sobolev, V.B.; Shvalagin, V.V.

    2012-01-01

    A comparison of the secondary emission (photoluminescence) and Bragg reflection spectra of photonic crystals (PC), namely, synthetic opals, opals infiltrated by colloidal gold, glycine, and a complex of colloidal gold with glycine is performed. The infiltration of colloidal gold and a complex of colloidal gold with glycine into the pores of PC causes a short-wavelength shift (about 5-15 nm) of the Bragg reflection and increases the intensity of this band by 1.5-3 times. In photoluminescence, the infiltration of PC by colloidal gold and colloidal gold with glycine suppresses the PC emission band near 375-450 nm and enhances the shoulder of the stop-zone band of PC in the region of 470-510 nm. The shape of the observed PC emission band connected with defects in synthetic opal is determined by the type of infiltrates and the excitation wavelength. Possible mechanisms of the effects are discussed.

  8. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION.

    Science.gov (United States)

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2012-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.

  9. Effects of Glycine, Water, Ammonia, and Ammonium Bicarbonate on the Oligomerization of Methionine

    Science.gov (United States)

    Huang, Rui; Furukawa, Yoshihiro; Otake, Tsubasa; Kakegawa, Takeshi

    2017-06-01

    The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively. In this study, we investigated the effects of water, ammonia, ammonium bicarbonate, pH, and glycine on the oligomerization and degradation of methionine under high pressure (150 MPa) and high temperature conditions (175 °C) for 96 h. Methionine is more difficult to oligomerize than glycine and methionine dimer was formed in the incubation of dry powder of methionine. Methionine oligomers as long as trimers, as well as methionylglycine and glycylmethionine, were formed under every condition with these additional compounds. Among the compounds tested, the oligomerization reaction rate was accelerated by the presence of water and by an increase in pH. Ammonia also increased the oligomerization rate but consumed methionine by side reactions and resulted in the rapid degradation of methionine and its peptides. Similarly, glycine accelerated the oligomerization rate of methionine and the degradation of methionine, producing water, ammonia, and bicarbonate through its decomposition. With Gly, heterogeneous dimers (methionylglycine and glycylmethionine) were formed in greater amounts than with other additional compounds although smaller amount of these heterogeneous dimers were formed with other additional compounds. These results suggest that accelerated reaction rates induced by water and co-existing reactive compounds promote the oligomerization

  10. Crystal lattice dependency of the free radicals found in irradiated glycine

    NARCIS (Netherlands)

    Bie, M.J.A. de; Braams, R.

    1969-01-01

    The EPR spectra, and hence the stable free radicals, are different for the - or γ-irradiated α-, β- and γ-crystal forms of polycrystalline glycone. Therefore comparisons of the trideutero-glycine EPR spectrum with the EPR spectra of non-deuterated glycine are open to question

  11. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION

    OpenAIRE

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2012-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:...

  12. A DFT study of adsorption of glycine onto the surface of BC{sub 2}N nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Alireza, E-mail: Alireza.soltani46@yahoo.com [Joints, Bones and Connective Tissue Research Center, Golestan University of Medical Sciences, Gorgan (Iran, Islamic Republic of); Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Azmoodeh, Zivar [Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Javan, Masoud Bezi [Physics Department, Faculty of Sciences, Golestan University, Gorgan (Iran, Islamic Republic of); Lemeski, E. Tazikeh [Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Karami, Leila [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Glycine adsorption over the pristine BC{sub 2}N nanotubes is investigated by DFT calculations. • Adsorption of glycine in its zwitterionic form is stronger in comparison with the radical form. • Adsorption of glycine from its amine head on adsorbent leads to a significant decrease in the electronic properties. - Abstract: A theoretical study of structure and the energy interaction of amino acid glycine (NH{sub 2}CH{sub 2}COOH) with BC{sub 2}N nanotube is crucial for apperception behavior occurring at the nanobiointerface. Herein, we studied the adsorption of glycine in their radical and zwitterionic forms upon the surface of BC{sub 2}N nanotube using M06 functional and 6-311G** standard basis set. We also considered the different orientations of the glycine amino acid on the surface of adsorbent. Further, we found out that the stability of glycine from its carbonyl group is higher than hydroxyl and amine groups. Our results also indicated that the electronic structure of BC{sub 2}N nanotube on the adsorption of glycine from its amine group is more altered than the other groups. Our study exhibits that opto-electronic property of adsorbent is changed after the glycine adsorption.

  13. Effects of glycine on motor performance in rats after traumatic spinal cord injury.

    Science.gov (United States)

    Gonzalez-Piña, Rigoberto; Nuño-Licona, Alberto

    2007-01-01

    It has been reported that glycine improves some functions lost after spinal cord injury (SCI). In order to assess the effects of glycine administration on motor performance after SCI, we used fifteen male Wistar rats distributed into three groups: sham (n = 3), spinal-cord injury (n = 6,) and spinal cord injury + glycine (n = 6). Motor performance was assessed using the beam-walking paradigm and footprint analysis. Results showed that for all animals with spinal-cord injury, scores in the beam-walking increased, which is an indication of increased motor deficit. In addition, footprint analysis showed a decrease in stride length and an increase in stride angle, additional indicators of motor deficit. These effects trended towards recovery after 8 weeks of recording and trended toward improvement by glycine administration; the effect was not significant. These results suggest that glycine replacement alone is not sufficient to improve the motor deficits that occur after SCI.

  14. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-03

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Affinity of hydroxyapatite for furfural and a brown pigment formed by furfural and glycine.

    Science.gov (United States)

    Nordbö, H; Eriksen, H M; Rölla, G

    1979-10-01

    The affinity of hydroxyapatite for furfural and a brown pigment formed by furfural and glycine was studied. A series of mixtures containing 1 M furfural and 0.25-2.0 M glycine were incubated at 37 degrees C and aliquots of hydroxyapatite added. The apatite showed a strong affinity for the brown pigment formed, and an excess of glycine in the mixtures appeared to enhance the binding. The adsorption of furfural to hydroxyapatite was estimated by a spectrophotometric method. The data revealed that pretreatment with CaCl2 and glycine significantly increased the adsorption of furfural.

  16. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors

    Directory of Open Access Journals (Sweden)

    de la Roche Jeanne

    2012-09-01

    Full Text Available Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively. Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.

  17. Direct growth of vertically aligned carbon nanotubes on silicon substrate by spray pyrolysis of Glycine max oil

    Directory of Open Access Journals (Sweden)

    K. T. Karthikeyan

    2017-11-01

    Full Text Available Vertically aligned carbon nanotubes have been synthesized by spray pyrolysis from Glycine max oil on silicon substrate using ferrocene as catalyst at 650 °C. Glycine max oil, a plant-based hydrocarbon precursor was used as a source of carbon and argon as a carrier gas. The as-grown vertically aligned carbon nanotubes were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. Scanning electron microscopic images reveal that the dense bundles of aligned carbon nanotubes. High resolution transmission electron microscopy and Raman spectroscopy observations indicate that as-grown aligned carbon nanotubes are well graphitized.

  18. Investigations on the nucleation kinetics of γ-glycine single crystal

    International Nuclear Information System (INIS)

    Yogambal, C.; Rajan Babu, D.; Ezhil Vizhi, R.

    2014-01-01

    Single crystals of γ-glycine were grown by slow evaporation technique. The crystalline system was confirmed by single crystal X-ray diffraction analysis. The optical absorption study has shown that the grown crystal possesses lower cut-off wavelength. Solubility and metastable zone width were estimated for different temperatures. The induction period of title compound was determined by varying the temperature and concentration. Nucleation parameters such as Gibbs volume free energy change (ΔG v ), interfacial tension (γ), critical free energy change of the nucleus (ΔG ⁎ ), nucleation rate (J), number of molecules in the critical nucleus (i ⁎ ) have been calculated for the aqueous solution grown γ-glycine single crystals. The second harmonic generation (SHG) of γ-glycine was confirmed by Q-switched Nd:YAG laser technique

  19. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    Science.gov (United States)

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-03

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases.

  20. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W. [Ohio State Univ., Columbus, OH (United States)

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  1. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  2. Interactions of Heterodera glycines, Macrophomina phaseolina, and Mycorrhizal Fungi on Soybean in Kansas.

    Science.gov (United States)

    Winkler, H E; Hetrick, B A; Todd, T C

    1994-12-01

    The impact of naturally occurring arbuscular mycorrhizal fungi on soybean growth and their interaction with Heterodera glycines were evaluated in nematode-infested and uninfested fields in Kansas. Ten soybean cultivars from Maturity Groups III-V with differential susceptibility to H. glycines were treated with the fungicide benomyl to suppress colonization by naturally occurring mycorrhizal fungi and compared with untreated control plots. In H. glycines-infested soil, susceptible cultivars exhibited 39% lower yields, 28% lower colonization by mycorrhizal fungi, and an eightfold increase in colonization by the charcoal rot fungus, Macrophomina phaseolina, compared with resistant cultivars. In the absence of the nematode, susceptible cultivars exhibited 10% lower yields than resistant cultivars, root colonization of resistant vs. susceptible soybean by mycorrhizal fungi varied with sampling date, and there were no differences in colonization by M. phaseolina between resistant and susceptible cultivars. Benomyl application resulted in 19% greater root growth and 9% higher seed yields in H. glycines-infested soil, but did not affect soybean growth and yield in the absence of the nematode. Colonization of soybean roots by mycorrhizal fungi was negatively correlated with H. glycines population densities due to nematode antagonism to the mycorrhizal fungi rather than suppression of nematode populations. Soybean yields were a function of the pathogenic effects of H. glycines and M. phaseolina, and, to a lesser degree, the stimulatory effects of mycorrhizal fungi.

  3. Distinct transcriptional profiles of ozone stress in soybean (Glycine max) flowers and pods

    Science.gov (United States)

    Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 ([O3] have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the world's most important legume...

  4. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-12-01

    Full Text Available Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce (Lactuca sativa L., one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  5. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Yang, Xiao; Cui, Xiaoxian; Zhao, Li; Guo, Doudou; Feng, Lei; Wei, Shiwei; Zhao, Chao; Huang, Danfeng

    2017-01-01

    Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce ( Lactuca sativa L.), one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control) for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa) significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol) and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  6. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR on soybean.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13 reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13 increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  7. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean.

    Science.gov (United States)

    Xiang, Ni; Lawrence, Kathy S; Kloepper, Joseph W; Donald, Patricia A; McInroy, John A

    2017-01-01

    Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  8. First report of the Soybean Cyst Nematode, Heterodera glycines, in New York

    Science.gov (United States)

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the most damaging pathogen of soybean (Glycine max (L.) Merr.), causing more than $1 billion in yield losses annually in the United States (Koenning and Wrather 2010). The SCN distribution map updated in 2014 showed that SCN were dete...

  9. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    Science.gov (United States)

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    , and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...... in the inner beta-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded...

  11. Protonation–deprotonation of the glycine backbone as followed by Raman scattering and multiconformational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Belén; Pflüger, Fernando [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France); Kruglik, Sergei G. [Laboratoire Jean Perrin, FRE 3231, Université Pierre et Marie Curie (Paris 6), Case courrier 138, 75252 Paris Cedex 05 (France); Ghomi, Mahmoud, E-mail: mahmoud.ghomi@univ-paris13.fr [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France)

    2013-11-08

    Highlights: • New pH-dependent Raman spectra in the middle wavenumber region (1800-300 cm{sup −1}). • New quantum mechanical calculations for exploring the Gly conformational landscape. • Construction of muticonformation based theoretical Raman spectra. - Abstract: Because of the absence of the side chain in its chemical structure and its well defined Raman spectra, glycine was selected here to follow its backbone protonation–deprotonation. The scan of the recorded spectra in the 1800–300 cm{sup −1} region led us to assign those obtained at pH 1, 6 and 12 to the cationic, zwitterionic and anionic species, respectively. These data complete well those previously published by Bykov et al. (2008) [16] devoted to the high wavenumber Raman spectra (>2500 cm{sup −1}). To reinforce our discussion, DFT calculations were carried out on the clusters of glycine + 5H{sub 2}O, mimicking reasonably the first hydration shell of the amino acid. Geometry optimization of 141 initial clusters, reflecting plausible combinations of the backbone torsion angles, allowed exploration of the conformational features, as well as construction of the theoretical Raman spectra by considering the most stable clusters containing each glycine species.

  12. Somatic embryogenesis in cell cultures of Glycine species.

    Science.gov (United States)

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  13. High-Dose Glycine Treatment of Refractory Obsessive-Compulsive Disorder and Body Dysmorphic Disorder in a 5-Year Period

    Directory of Open Access Journals (Sweden)

    W. Louis Cleveland

    2009-01-01

    Full Text Available This paper describes an individual who was diagnosed with obsessive-compulsive disorder (OCD and body dysmorphic disorder (BDD at age 17 when education was discontinued. By age 19, he was housebound without social contacts except for parents. Adequate trials of three selective serotonin reuptake inhibitors, two with atypical neuroleptics, were ineffective. Major exacerbations following ear infections involving Group A -hemolytic streptococcus at ages 19 and 20 led to intravenous immune globulin therapy, which was also ineffective. At age 22, another severe exacerbation followed antibiotic treatment for H. pylori. This led to a hypothesis that postulates deficient signal transduction by the N-methyl-D-aspartate receptor (NMDAR. Treatment with glycine, an NMDAR coagonist, over 5 years led to robust reduction of OCD/BDD signs and symptoms except for partial relapses during treatment cessation. Education and social life were resumed and evidence suggests improved cognition. Our findings motivate further study of glycine treatment of OCD and BDD.

  14. Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose

    Science.gov (United States)

    Aboelezz, E.; Hassan, G. M.

    2018-04-01

    The dosimetric properties of the simplest amino acid "glycine"- using EPR technique- were investigated in comparison to reference standard alanine dosimeter. The EPR spectrum of glycine at room temperature is complex, but immediately after irradiation, it appears as a triplet hyperfine structure probably due to the dominant contribution of the (•CH2COO-) radical. The dosimetric peak of glycine is at g-factor 2.0026 ± 0.0015 and its line width is 9 G at large modulation amplitude (7 G). The optimum microwave was studied and was found to be as alanine 8 mW; the post-irradiation as well as the dose rate effects were discussed. Dosimetric peak intensity of glycine fades rapidly to be about one quarter of its original value during 20 days for dried samples and it stabilizes after that. The dose response study in an intermediate range (2-1000 Gy) reveals that the glycine SNR is about 2 times more than that of alanine pellets when measured immediately after irradiation and 4 times more than that of glycine itself after 22 days of irradiation. The effect of energy dependence was studied and interpreted theoretically by calculation of mass energy absorption coefficient. The calculated combined uncertainties for glycine and alanine are nearly the same and were found to be 2.42% and 2.33%, respectively. Glycine shows interesting dosimetric properties in the range of ionizing radiation doses investigated.

  15. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.

    Science.gov (United States)

    Crook, J; Hendrickson, A; Robinson, F R

    2006-09-15

    Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density

  16. Synthesis of Nb-doped SrTiO3 by a modified glycine-nitrate process

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L.R.

    2007-01-01

    The objective of the present investigation was to develop a technique to synthesize submicronic particles of Nb-doped strontium titanate with a homogeneous composition. This was achieved by a modified glycine-nitrate process, using Ti-lactate, Nb-oxalate, and Sr(NO3)(2) as starting materials....... A combination of both citric acid and glycine was needed in order to integrate the useful features of both complexation and combustion natures of citric acid and glycine, respectively. The amount of citric acid, glycine, and nitrates in the starting solution, as well as the source for extra nitrates...

  17. Effect of amount of glycine as fuel in obtaining nanocomposite Ni/NiO

    International Nuclear Information System (INIS)

    Simoes, A.N.; Simoes, V.N.; Neiva, L.S.; Quirino, M.R.; Vieira, D.A.; Gama, L.

    2010-01-01

    This paper proposes to investigate the effect of the amount of glycine in obtaining nanocomposite Ni/NiO synthesized by combustion reaction technique. The amount of glycine used was calculated on the stoichiometric composition of 50% and 100%. Characterizations by X-ray diffraction (XRD), N2 adsorption by the BET method and scanning electron microscopy (SEM) were performed with powder of Ni/NiO result. The analysis of X-ray diffraction showed the presence of crystalline NiO phase in the presence of nickel as a secondary phase, whose amount increased with the amount of glycine. Increasing the concentration of glycine also caused an increase in surface area, which ranged from 1.1 to 1.4 m 2 /g. The micrographs revealed the formation of soft agglomerates with porous appearance and easy dispersions. It can be concluded that the synthesis is effective to obtain nanosized powders. (author)

  18. Metabolism of L-leucine-U-14C in young rats fed excess glycine diets

    International Nuclear Information System (INIS)

    Takeuchi, Hisanao; Tadauchi, Nobuo; Muramatsu, Keiichiro

    1975-01-01

    As reported previously, while the growth-depressing effect of excess glycine was prevented by supplementing L-arginine and L-methionine, the degradation of glycine-U-(SUP 14)C into expired carbon dioxide was not accelerated by the supplement of both amino acids. However, it was found that the incorporation of the isotope into the lipids of livers and carcasses increased in the rats fed the excess glycine diet containing both amino acids. The lipid synthesis utilizing excess glycine may be accelerated by adding both amino acids to the 10% casein diet containing excess glycine. In the present experiment, the metabolic fate of L-leucine-U-(SUP 14)C was studied with the rats fed the excess glycine diet with or without L-arginine and L-methionine. 10% casein (10C), 10% casein diet containing 7% glycine (10C7G), or 10C7G Supplemented with 1.4% L-arginine-HCL and 0.9% L-methionine (10C7GArgMet) was fed to each rat, and the diet suspension containing 4 sup(μ)Ci of L-leucine-U-(SUP 14)C per 100 g of body weight was fed forcibly after 12 hr fast. The radioactivity in expired carbon dioxide, TCA soluble fraction, protein, glycogen, lipids and urine, and the concentration of free amino acids in blood plasma, livers and urine were measured. The body weight gain and food intake of the 10C7G group were much smaller than those of the other groups. The recovery of (SUP 14)C-radioactivity in expired carbon dioxide was much lower in the 10C7GArgMet group than that of the other groups. (Kako, I.)

  19. Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels.

    Science.gov (United States)

    Islam, Robiul; Lynch, Joseph W

    2012-04-01

    Docking studies predict that the insecticides, lindane and fipronil, block GABA(A) receptors by binding to 6' pore-lining residues. However, this has never been tested at any Cys-loop receptor. The neurotoxic effects of these insecticides are also thought to be mediated by GABA(A) receptors, although a recent morphological study suggested glycine receptors mediated fipronil toxicity in zebrafish. Here we investigated whether human α1, α1β, α2 and α3 glycine receptors were sufficiently sensitive to block by either compound as to represent possible neurotoxicity targets. We also investigated the mechanisms by which lindane and fipronil inhibit α1 glycine receptors. Glycine receptors were recombinantly expressed in HEK293 cells and insecticide effects were studied using patch-clamp electrophysiology. Both compounds completely inhibited all tested glycine receptor subtypes with IC(50) values ranging from 0.2-2 µM, similar to their potencies at vertebrate GABA(A) receptors. Consistent with molecular docking predictions, both lindane and fipronil interacted with 6' threonine residues via hydrophobic interactions and hydrogen bonds. In contrast with predictions, we found no evidence for lindane interacting at the 2' level. We present evidence for fipronil binding in a non-blocking mode in the anaesthetic binding pocket, and for lindane as an excellent pharmacological tool for identifying the presence of β subunits in αβ heteromeric glycine receptors. This study implicates glycine receptors as novel vertebrate toxicity targets for fipronil and lindane. Furthermore, lindane interacted with pore-lining 6' threonine residues, whereas fipronil may have both pore and non-pore binding sites. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    International Nuclear Information System (INIS)

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-01-01

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH . radical and H 3 O + surface defects. The coupling of incoming CO molecules with the surface OH . radicals on the ice clusters yields the formation of the COOH . radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol –1 and –22 kcal mol –1 , respectively. The COOH . radicals couple with incoming NH=CH 2 molecules (experimentally detected in the ISM) to form the NHCH 2 COOH . radical glycine through energy barriers of 12 kcal mol –1 , exceedingly high at ISM cryogenic temperatures. Nonetheless, when H 3 O + is present, one proton may be barrierless transferred to NH=CH 2 to give NH 2 =CH 2 + . This latter may react with the COOH . radical to give the NH 2 CH 2 COOH +. glycine radical cation which can then be transformed into the NH 2 CHC(OH) 2 +. species (the most stable form of glycine in its radical cation state) or into the NH 2 CHCOOH . neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh-physical conditions of the ISM may trigger reactions of cosmochemical interest. The relevance of surface H 3 O

  1. Computational Study of Interstellar Glycine Formation Occurring at Radical Surfaces of Water-ice Dust Particles

    Science.gov (United States)

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-07-01

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH• radical and H3O+ surface defects. The coupling of incoming CO molecules with the surface OH• radicals on the ice clusters yields the formation of the COOH• radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol-1 and -22 kcal mol-1, respectively. The COOH• radicals couple with incoming NH=CH2 molecules (experimentally detected in the ISM) to form the NHCH2COOH• radical glycine through energy barriers of 12 kcal mol-1, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H3O+ is present, one proton may be barrierless transferred to NH=CH2 to give NH2=CH2 +. This latter may react with the COOH• radical to give the NH2CH2COOH+• glycine radical cation which can then be transformed into the NH2CHC(OH)2 +• species (the most stable form of glycine in its radical cation state) or into the NH2CHCOOH• neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh-physical conditions of the ISM may trigger reactions of cosmochemical interest. The relevance of surface H3O+ ions to facilitate chemical

  2. Potentiation of glycine-gated NR1/NR3A NMDA receptors relieves Ca2+-dependent outward rectification

    Directory of Open Access Journals (Sweden)

    Christian Madry

    2010-03-01

    Full Text Available Glycine has diverse functions within the mammalian central nervous system. It inhibits postsynaptic neurons via strychnine-sensitive glycine receptors (GlyRs and enhances neuronal excitation through co-activation of N-methyl-D-aspartate (NMDA receptors. Classical Ca2+-permeable NMDA receptors are composed of glycine-binding NR1 and glutamate-binding NR2 subunits, and hence require both glutamate and glycine for efficient activation. In contrast, recombinant receptors composed of NR1 and the glycine binding NR3A and/or NR3B subunits lack glutamate binding sites and can be activated by glycine alone. Therefore these receptors are also named excitatory glycine receptors. Co-application of antagonists of the NR1 glycine-binding site or of the divalent cation Zn2+ markedly enhances the glycine responses of these receptors. To gain further insight into the properties of these glycine-gated NMDA receptors, we investigated their current-voltage (I-V dependence. Whole-cell current-voltage relations of glycine currents recorded from NR1/NR3B and NR1/NR3A/NR3B expressing oocytes were found to be linear under our recording conditions. In contrast, NR1/NR3A receptors displayed a strong outwardly rectifying I-V relation. Interestingly, the voltage-dependent inward current block was abolished in the presence of NR1 antagonists, Zn2+ or a combination of both. Further analysis revealed that Ca2+ (1.8 mM present in our recording solutions was responsible for the voltage-dependent inhibition of ion flux through NR1/NR3A receptors. Since physiological concentrations of the divalent cation Mg2+ did not affect the I-V dependence, our data suggest that relief of the voltage-dependent Ca2+ block of NR1/NR3A receptors by Zn2+ may be important for the regulation of excitatory glycinergic transmission, according to the Mg2+-block of conventional NR1/NR2 NMDA receptors.

  3. Enhanced attachment and growth of periodontal cells on glycine-arginine-glycine-aspartic modified chitosan membranes

    Directory of Open Access Journals (Sweden)

    Hsiao-Pei Tu

    2016-01-01

    Full Text Available Background: Chitosan, a polymeric carbohydrate derived from the exoskeleton of arthropod, has been suggested to be an excellent biomaterial for improving wound healing, especially for bones. To improve the periodontal cell attachment and growth, the cell adhesive peptide glycine-arginine-glycine-aspartic acid (Gly-Arg-Gly-Asp, GRGD grafted chitosan membrane was introduced in this study. Materials and Methods: Two types of commercial chitosan, three types of primary cultured cells, and two established cell lines were used. Human gingival and periodontal fibroblasts (hGF and hPDL, human root derived cell (hRDC, and rat calvaria bone cell (rCalB were cultured on the GRGD-fixed by ultraviolet light photochemical method on the chitosan membrane. With (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium assay and propidium iodine (PI staining, the cell adhesion and growth on GRGD-grafted chitosan were examined. Basal mRNA expressions of the receptors for GRGD, integrin αv (ITG αv and ITG β3, in the human gingival fibroblast cell line and mouse osteoblast cell line (MC3T3-E1 were examined with real-time polymerase chain reaction. Results: Because the cell adhesion/growth patterns on two chitosan membranes were similar, the GRGD modification was performed on one membrane (Primex only. For periodontal cells (hGFs, hPDLs, and hRDCs, the number of attached cells were increased on the membrane with the high concentration of GRGD than those on the membrane unmodified or modified with low concentration GRGD. For rCalBs cells, a different pattern was noted: GRGD modification did not enhance the calvaria cells attachment or growth. Moreover, mRNA expressions of ITG αv and β3 in AG09319 cells were significantly higher than those in MC3T3-E1 cells. Conclusions: With the limitation of this study, we suggested that GRGD-modified chitosan, especially at high concentration, could enhance the growth of various periodontal

  4. Thermodynamics of proton dissociations from aqueous glycine at temperatures from 278.15 to 393.15 K, molalities from 0 to 1.0 mol . kg-1, and at the pressure 0.35 MPa: Apparent molar heat capacities and apparent molar volumes of glycine, glycinium chloride, and sodium glycinate

    International Nuclear Information System (INIS)

    Ziemer, S.P.; Niederhauser, T.L.; Merkley, E.D.; Price, J.L.; Sorenson, E.C.; McRae, B.R.; Patterson, B.A.; Origlia-Luster, M.L.; Woolley, E.M.

    2006-01-01

    We have measured the densities of aqueous solutions of glycine, glycine plus equimolal HCl, and glycine plus equimolal NaOH at temperatures 278.15 ≤ T/K ≤ 368.15, molalities 0.01 ≤ m/mol . kg -1 ≤ 1.0, and at p = 0.35 MPa, using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15 ≤ T/K ≤ 393.15 and at the same m and p using a fixed-cell differential scanning calorimeter. We used the densities to calculate apparent molar volumes V φ and the heat capacities to calculate apparent molar heat capacities C p,φ for these solutions. We used our results and values of V φ (T, m) and C p,φ (T, m) for HCl(aq), NaOH(aq), NaCl(aq) from the literature to calculate parameters for Δ r C p,m (T, m) for the first and second proton dissociations from protonated aqueous cationic glycine. We then integrated this value of Δ r C p,m (T, m) in an iterative algorithm, using Young's Rule to account for the effects of speciation and chemical relaxation on the observed V φ and C p,φ of the solutions. This procedure yielded parameters for V φ (T, m) and C p,φ (T, m) for glycinium chloride {H 2 Gly + Cl - (aq)} and sodium glycinate {Na + Gly - (aq)} which successfully modeled our observed results. We have then calculated values of Δ r C p,m , Δ r H m , Δ r V m , and pQ a for the first and second proton dissociations from protonated aqueous glycine as functions of T and m

  5. THE INCORPORATION OF RADIOACTIVITY FROM GLYCINE-C$sup 14$ BY MAMMALIAN SPERMATOZOA

    Energy Technology Data Exchange (ETDEWEB)

    Graves, C. N.

    1962-05-15

    The metabolic pathways of glycine incorporation were investigated by biochemical and radibautographic methods. Results show that glycine is utilized hy bovine spermatoza and is incorporated into all fractions of the sperm cell. Incorporation into the nucleic acid fraction and especially into thymine indicates that there is a turnover in the desoxyribenucleic acid during storage of bovine spermatoza. (C.H.)

  6. Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2.

    Directory of Open Access Journals (Sweden)

    Nandhitha Subramanian

    Full Text Available The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1' site. We hypothesized that the third Na+ binding site (Na3 site of GlyT2 corresponds to the BetP Na1' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD simulations. Surprisingly, a Na+ placed at the location consistent with the Na1' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10.

  7. Atração e penetração de Meloidogyne javanica e Heterodera glycines em raízes excisadas de soja Attraction and penetration of Meloidogyne javanica and Heterodera glycines in excised soybean roots

    Directory of Open Access Journals (Sweden)

    Hercules Diniz Campos

    2011-09-01

    Full Text Available Com vista ao estudo de atração e penetração de Meloidogyne javanica (Treub Chitwood e Heterodera glycines (Ichinoe em soja (Glycine max L., desenvolveu-se uma técnica empregando-se segmento de raiz com 2cm de comprimento. Nos segmentos de raiz de soja infectados, observou-se que a penetração de juvenis de segundo estádio (J2 de M. javanica ocorre pela coifa seguida de migração entre os feixes vasculares do cilindro central. Juvenis de H. glycines penetraram, aproximadamente, 15mm da coifa. A região seccionada da raiz de soja atraiu três vezes mais J2 de M. javanica do que a região da coifa, mas esta não foi tão atrativa para J2 de H. glycines. A obstrução conjunta da coifa e do local seccionado reduziu (83% a penetração de J2, tanto de M. javanica quanto de H. glycines. Quando apenas um desses locais foi obstruído, a outra extremidade livre compensou o processo atrativo. Portanto, as substâncias atrativas são liberadas por essas extremidades. A penetração de J2 de M. javanica foi maior no segmento de raiz quando comparada com a plântula intacta de soja. Entretanto, os J2 de H. glycines penetraram menos em segmentos de raiz e em plântulas sem folhas, quando comparados com plântulas intactas e com as seccionadas no colo. Portanto, na cultivar de soja "Embrapa 20", a atração e os locais de penetração de J2 de H. glycines e M. javanica são diferenciados. Esta técnica poderá ser útil nos estudos de atração e penetração de outros nematoides endoparasitas.To study the attraction and penetration of Meloidogyne javanica (Treub Chitwood and Heterodera glycines (Ichinoe in soybean (Glycine max L., a technique using 2-cm long root segments was developed. In infected soybean root segments penetration of second stage juveniles (J2 of M. javanica occured through the root cap following migration between the vascular bundles of the central cylinder. Juveniles of H. glycines penetrated about 15mm from the root cap. The cut

  8. Unlike pregnant adult women, pregnant adolescent girls cannot maintain glycine flux during late pregnancy because of decreased synthesis from serine.

    Science.gov (United States)

    Hsu, Jean W; Thame, Minerva M; Gibson, Raquel; Baker, Tameka M; Tang, Grace J; Chacko, Shaji K; Jackson, Alan A; Jahoor, Farook

    2016-03-14

    During pregnancy, glycine and serine become more important because they are the primary suppliers of methyl groups for the synthesis of fetal DNA, and more glycine is required for fetal collagen synthesis as pregnancy progresses. In an earlier study, we reported that glycine flux decreased by 39% from the first to the third trimester in pregnant adolescent girls. As serine is a primary precursor for glycine synthesis, the objective of this study was to measure and compare glycine and serine fluxes and inter-conversions in pregnant adolescent girls and adult women in the first and third trimesters. Measurements were made after an overnight fast by continuous intravenous infusions of 2H2-glycine and 15N-serine in eleven adolescent girls (17·4 (se 0·1) years of age) and in ten adult women (25·8 (se 0·5) years of age) for 4 h. Adolescent girls had significantly slower glycine flux and they made less glycine from serine in the third (Padolescent girls (P=0·04) and was significantly associated with third trimester glycine flux. These findings suggest that the pregnant adolescent cannot maintain glycine flux in late pregnancy compared with early pregnancy because of decreased synthesis from serine. It is possible that the inability to maintain glycine synthesis makes her fetus vulnerable to impaired cartilage synthesis, and thus linear growth.

  9. Synthesis, structure and topological analysis of glycine templated highly stable cadmium sulfate framework: A New Lewis Acid catalyst

    Science.gov (United States)

    Paul, Avijit Kumar

    2018-04-01

    One new open-framework two-dimensional layer, [Cd(NH3CH2COO)(SO4)], I, has been synthesized using amino acid as templating agent. Single crystal structural analysis shows that the compound crystallizes in monoclinic cell with non-centrosymmetric space group P21, a = 4.9513(1) Å, b = 7.9763(2) Å, c = 8.0967(2) Å, β = 105.917(1)° and V = 307.504(12) Å3. The compound has connectivity between the Cd-centers and the sulfate units forming a two-dimensional layer structure. Sulfate unit is coordinated to metal center with η3, μ4 mode possessing a coordination free oxygen atom. The zwitterionic form of glycine molecule is present in the structure bridging with two metal centers through μ2-mode by carboxylate oxygens. The topological analysis reveals that the two-dimensional network is formed with a novel 4- and 6-connected binodal net of (32,42,52)(34,44,54,63) topology. Although one end of the glycine molecule is free from coordination, the structure is highly stable up to 350 °C. Strong N-H⋯ O hydrogen bonding interactions play an important role in the stabilization and formation of three-dimensional supramolecular structure. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicates good catalytic behavior. The present study illustrates the usefulness of the amino acid for the structure building in less studied sulfate based framework materials as well as designing of new heterogeneous catalysts for the broad application. The compound has also been characterized through elemental analysis, PXRD, IR, SEM and TG-DT studies.

  10. Trimethylamine N-oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine

    Science.gov (United States)

    Liao, Yi-Ting; Manson, Anthony C.; DeLyser, Michael R.; Noid, William G.; Cremer, Paul S.

    2017-01-01

    We report experimental and computational studies investigating the effects of three osmolytes, trimethylamine N-oxide (TMAO), betaine, and glycine, on the hydrophobic collapse of an elastin-like polypeptide (ELP). All three osmolytes stabilize collapsed conformations of the ELP and reduce the lower critical solution temperature (LSCT) linearly with osmolyte concentration. As expected from conventional preferential solvation arguments, betaine and glycine both increase the surface tension at the air–water interface. TMAO, however, reduces the surface tension. Atomically detailed molecular dynamics (MD) simulations suggest that TMAO also slightly accumulates at the polymer–water interface, whereas glycine and betaine are strongly depleted. To investigate alternative mechanisms for osmolyte effects, we performed FTIR experiments that characterized the impact of each cosolvent on the bulk water structure. These experiments showed that TMAO red-shifts the OH stretch of the IR spectrum via a mechanism that was very sensitive to the protonation state of the NO moiety. Glycine also caused a red shift in the OH stretch region, whereas betaine minimally impacted this region. Thus, the effects of osmolytes on the OH spectrum appear uncorrelated with their effects upon hydrophobic collapse. Similarly, MD simulations suggested that TMAO disrupts the water structure to the least extent, whereas glycine exerts the greatest influence on the water structure. These results suggest that TMAO stabilizes collapsed conformations via a mechanism that is distinct from glycine and betaine. In particular, we propose that TMAO stabilizes proteins by acting as a surfactant for the heterogeneous surfaces of folded proteins. PMID:28228526

  11. Application of Glycine-TTC dosimeter in gamma radiation processing facility

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mondal, S.; Kulkarni, M.S.

    2018-01-01

    Glycine-TTC dosimeter was found to have a useful dose range of 5 to 30 kGy using spectro-photometric read-out method. Potential use of this dosimeter was demonstrated by measuring dose-rate in gamma chamber GC 900. The aim of the present study was to verify the performance of this dosimeter in actual industrial processing conditions encountered in radiation processing facility such as Gamma Radiation Processing Plant for Spices (GRPPS), BRIT, Vashi. Accordingly, glycine-TTC dosimeters were irradiated along with routine dosimeter viz. ceric-cerous of GRPPS and reference standard dosimeter viz. alanine EPR

  12. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Rimola, Albert; Sodupe, Mariona [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Ugliengo, Piero, E-mail: albert.rimola@uab.cat [Dipartimento di Chimica, NIS Centre of Excellence and INSTM (Materials and Technology National Consortium), UdR Torino, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2012-07-20

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH{sup .} radical and H{sub 3}O{sup +} surface defects. The coupling of incoming CO molecules with the surface OH{sup .} radicals on the ice clusters yields the formation of the COOH{sup .} radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol{sup -1} and -22 kcal mol{sup -1}, respectively. The COOH{sup .} radicals couple with incoming NH=CH{sub 2} molecules (experimentally detected in the ISM) to form the NHCH{sub 2}COOH{sup .} radical glycine through energy barriers of 12 kcal mol{sup -1}, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H{sub 3}O{sup +} is present, one proton may be barrierless transferred to NH=CH{sub 2} to give NH{sub 2}=CH{sub 2}{sup +}. This latter may react with the COOH{sup .} radical to give the NH{sub 2}CH{sub 2}COOH{sup +.} glycine radical cation which can then be transformed into the NH{sub 2}CHC(OH){sub 2}{sup +.} species (the most stable form of glycine in its radical cation state) or into the NH{sub 2}CHCOOH{sup .} neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh

  13. New insights into the catalytic mechanism of human glycine N-acyltransferase.

    Science.gov (United States)

    van der Sluis, Rencia; Ungerer, Vida; Nortje, Carla; A van Dijk, Alberdina; Erasmus, Elardus

    2017-11-01

    Even though the glycine conjugation pathway was one of the first metabolic pathways to be discovered, this pathway remains very poorly characterized. The bi-substrate kinetic parameters of a recombinant human glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13) were determined using the traditional colorimetric method and a newly developed HPLC-ESI-MS/MS method. Previous studies analyzing the kinetic parameters of GLYAT, indicated a random Bi-Bi and/or ping-pong mechanism. In this study, the hippuric acid concentrations produced by the GLYAT enzyme reaction were analyzed using the allosteric sigmoidal enzyme kinetic module. Analyses of the initial rate (v) against substrate concentration plots, produced a sigmoidal curve (substrate activation) when the benzoyl-CoA concentrations was kept constant, whereas the plot with glycine concentrations kept constant, passed through a maximum (substrate inhibition). Thus, human GLYAT exhibits mechanistic kinetic cooperativity as described by the Ferdinand enzyme mechanism rather than the previously assumed Michaelis-Menten reaction mechanism. © 2017 Wiley Periodicals, Inc.

  14. Tilapia and human CLIC2 structures are highly conserved.

    Science.gov (United States)

    Zeng, Jiao; Li, Zhengjun; Lui, Eei Yin; Lam, Siew Hong; Swaminathan, Kunchithapadam

    2018-01-08

    Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  16. Isolation, Characterization, and Distribution of a Biocontrol Fungus from Cysts of Heterodera glycines.

    Science.gov (United States)

    Kim, D G; Riggs, R D; Correll, J C

    1998-05-01

    ABSTRACT Seventy-six populations of Heterodera glycines were collected from 33 counties in 10 states of the United States along the Mississippi and Missouri Rivers in 1992 and 1993. A sterile hyphomycete fungus of an unnamed taxon, designated ARF18 and shown to be a parasite of eggs of H. glycines, was isolated from eggs and cysts of 10 of the populations from Kentucky, Louisiana, Mississippi, and Tennessee. Ten isolates of ARF18 obtained in this study and seven isolates obtained in earlier studies were characterized for cultural morphology on several growth media, the ability to produce sclerotium-like structures (SLS) on cornmeal agar, growth rates, pathogenicity to eggs of H. glycines in vitro, and mitochondrial (mt) DNA restriction fragment length polymorphisms (RFLPs). All 17 isolates of ARF18 readily grew on potato dextrose agar, cornmeal agar, and nutrient agar. Based on colony morphology and SLS appearance on cornmeal agar, the isolates could be grouped into two morphological phenotypes. Isolates that produced SLS that were composed of a compact mass of hyphae were designated ARF18-C, whereas isolates that produced SLS composed of a mass of loosely clumped hyphae were designated ARF18-L. Only minor differences in growth rates were detected among the ARF18-C and ARF18-L isolates. All 10 ARF18-C isolates, which were from Arkansas, Louisiana, Mississippi, and Tennessee, belonged to a single mtDNA RFLP haplotype. The seven ARF18-L isolates shared many comigrating mtDNA restriction fragments with one another, but belonged to three distinct mtDNA RFLP haplotypes. Ability to infect eggs of H. glycines in vitro varied considerably among the various isolates of ARF18. In particular, several of the ARF18-C isolates were consistently able to infect over 50% (mean = 70.0%, standard deviation = 16%) of the eggs of H. glycines, whereas ARF18-L infected eggs to a lesser degree (mean = 25%, standard deviation = 27%). ARF18-C was isolated only from H. glycines populations

  17. Temporal alteration of spreading depression by the glycine transporter type-1 inhibitors NFPS and Org-24461 in chicken retina.

    Science.gov (United States)

    Kertesz, Szabolcs; Szabo, Geza; Udvari, Szabolcs; Levay, Gyorgy; Matyus, Peter; Harsing, Laszlo G

    2013-01-25

    We used isolated chicken retina to induce spreading depression by the glutamate receptor agonist N-methyl-d-aspartate. The N-methyl-d-aspartate-induced latency time of spreading depression was extended by the glycine(B) binding site competitive antagonist 7-chlorokynurenic acid. Addition of the glycine transporter type-1 inhibitors NFPS and Org-24461 reversed the inhibitory effect of 7-chlorokynurenic acid on N-methyl-d-aspartate-evoked spreading depression. The glycine uptake inhibitory activity of Org-24461, NFPS, and some newly synthesized analogs of NFPS was determined in CHO cells stably expressing human glycine transporter type-1b isoform. Compounds, which failed to inhibit glycine transporter type-1, also did not have effect on retinal spreading depression. These experiments indicate that the spreading depression model in chicken retina is a useful in vitro test to determine activity of glycine transporter type-1 inhibitors. In addition, our data serve further evidence for the role of glycine transporter type-1 in retinal neurotransmission and light processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. XPS/NEXAFS spectroscopic and conductance studies of glycine on AlGaN/GaN transistor devices

    Science.gov (United States)

    Myers, Matthew; Khir, Farah Liyana Muhammad; Home, Michael A.; Mennell, Christopher; Gillbanks, Jeremy; Tadich, Anton; Baker, Murray V.; Nener, Brett D.; Parish, Giacinta

    2018-03-01

    We report on a study using a combination of XPS/NEXAFS and conductivity measurements to develop a fundamental understanding of how dipolar molecules interact with the heterostructure device surface and affect the device conductivity of AlGaN/GaN heterostructure-based transistors. In such structures, which are increasingly being investigated for chemical and biological sensing, a 2-dimensional electron gas spontaneously forms at the layer interface that is sensitive to the charge characteristics of the exposed surface. Glycine, chosen for this study because it is the simplest of the amino acids and is known to form a zwitterionic configuration when stabilized through intermolecular interactions, was evaporated under ultra-high vacuum conditions onto the device surface and subsequently both XPS/NEXAFS and conductivity measurements were conducted. NEXAFS spectra show a preferential orientation for the Glycine molecules on the surface and evidence for both neutral and zwitterionic species on the surface. In situ conductivity measurements suggest that the negatively charged carboxylate group is closest to the surface. These results are a unique and pivotal contribution to the previous and at times conflicting literature on the zwitterionic nature of Glycine.

  19. A novel liquid chromatography/tandem mass spectrometry method for the quantification of glycine as biomarker in brain microdialysis and cerebrospinal fluid samples within 5min.

    Science.gov (United States)

    Voehringer, Patrizia; Fuertig, René; Ferger, Boris

    2013-11-15

    Glycine is an important amino acid neurotransmitter in the central nervous system (CNS) and a useful biomarker to indicate biological activity of drugs such as glycine reuptake inhibitors (GRI) in the brain. Here, we report how a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the fast and reliable analysis of glycine in brain microdialysates and cerebrospinal fluid (CSF) samples has been established. Additionally, we compare this method with the conventional approach of high performance liquid chromatography (HPLC) coupled to fluorescence detection (FD). The present LC-MS/MS method did not require any derivatisation step. Fifteen microliters of sample were injected for analysis. Glycine was detected by a triple quadrupole mass spectrometer in the positive electrospray ionisation (ESI) mode. The total running time was 5min. The limit of quantitation (LOQ) was determined as 100nM, while linearity was given in the range from 100nM to 100μM. In order to demonstrate the feasibility of the LC-MS/MS method, we measured glycine levels in striatal in vivo microdialysates and CSF of rats after administration of the commercially available glycine transporter 1 (GlyT1) inhibitor LY 2365109 (10mg/kg, p.o.). LY 2365109 produced 2-fold and 3-fold elevated glycine concentrations from 1.52μM to 3.6μM in striatal microdialysates and from 10.38μM to 36μM in CSF, respectively. In conclusion, we established a fast and reliable LC-MS/MS method, which can be used for the quantification of glycine in brain microdialysis and CSF samples in biomarker studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Growth of glycine ethyl ester hydrochloride and its characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, G.; Pari, S., E-mail: sparimyur@gmail.com

    2016-11-15

    Single crystal of glycine ethyl ester hydrochloride by slow evaporation method is reported. The grown crystal characterized by single crystal X-ray diffraction, FT-IR, UV–Vis–NIR and fluorescence spectroscopy. It is established that the crystal falls under the monoclinic system and space group P21/c with the cell parameters as: a=8.565 Å, b=12.943 Å, c=6.272 Å, α=γ=90°, β=103.630º. UV–Vis–NIR spectrum shows indirect allowed transition with a band gap of 5.21 eV and other optical properties are measured. The crystal is also shown to have a high transmittance in the visible region. The third order nonlinear property and optical limiting have been investigated using Z-Scan technique. Complex impedance spectrum measured at the dc conductivity. Dependence of dielectric constant, dielectric loss and ac conductivity on frequency at different temperature of applied ac field is analyzed. The mechanical behavior has been assessed by Vickers microhardness indenter. The thermal behavior of glycine ethyl ester hydrochloride was analyzed using TG/DTA thermal curves. From the thermal study, the material was found to possess thermal stability up to 174 °C. The predicted NLO properties, UV–Vis transmittance and Z-scan studies indicate that is an attractive material for photonics optical limiting applications.

  1. The discovery of glycine and related amino acid-based factor Xa inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kohrt, Jeffrey T.; Filipski, Kevin J.; Cody, Wayne L.; Bigge, Christopher F.; La, Frances; Welch, Kathleen; Dahring, Tawny; Bryant, John W.; Leonard, Daniele; Bolton, Gary; Narasimhan, Lakshmi; Zhang, Erli; Peterson, J. Thomas; Haarer, Staci; Sahasrabudhe, Vaishali; Janiczek, Nancy; Desiraju, Shrilakshmi; Hena, Mostofa; Fiakpui, Charles; Saraswat, Neerja; Sharma, Raman; Sun, Shaoyi; Maiti, Samarendra N.; Leadley, Robert; Edmunds, Jeremy J. (Naeja); (Pfizer)

    2010-12-03

    Herein, we report on the identification of three potent glycine and related amino acid-based series of FXa inhibitors containing a neutral P1 chlorophenyl pharmacophore. A X-ray crystal structure has shown that constrained glycine derivatives with optimized N-substitution can greatly increase hydrophobic interactions in the FXa active site. Also, the substitution of a pyridone ring for a phenylsulfone ring in the P4 sidechain resulted in an inhibitor with enhanced oral bioavailability.

  2. Kinetics and mechanism of oxidation of glycine by iron(III)–1,10 ...

    Indian Academy of Sciences (India)

    Unknown

    An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. ... bon dioxide and ammonia with K2S2O8, KMnO4, po- ... 2. Experimental. A 1⋅0 mol dm–3 solution of glycine is prepared afresh by dissolving glycine (E-Merck) in water and its strength is determined by the acetuous perchloric.

  3. Highly conserved non-coding sequences are associated with vertebrate development.

    Directory of Open Access Journals (Sweden)

    Adam Woolfe

    2005-01-01

    Full Text Available In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH, in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development

  4. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins.

    Science.gov (United States)

    Hespen, Charles W; Bruegger, Joel J; Guo, Yirui; Marletta, Michael A

    2018-06-15

    Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.

  5. Extraction optimization, preliminary characterization and antioxidant activities of polysaccharides from Glycine soja.

    Science.gov (United States)

    Jing, Changliang; Yuan, Yuan; Tang, Qi; Zou, Ping; Li, Yiqiang; Zhang, Chengsheng

    2017-10-01

    Single-factor experiment and Central Composite Design (CCD) was applied to optimize the ultrasound-assisted extraction (UAE) conditions of polysaccharides from Glycine soja (CGPS), and a preliminary characterization of three polysaccharide fractions (CGPS, GPS-1, and GPS-2) and their antioxidant activities were investigated. Under the optimal conditions: ratio of liquid to solid 42.7mL/g, extraction power 293.7W, extraction temperature 68.9°C, and extraction time 34.7min, the experimental CGPS yield was 6.04mg/g. CGPS was further purified by DEAE-cellulose and Sephadex-100 chromatography to obtain two fractions (GPS-1 and GPS-2), and their monosaccharides compositions were characterized by HPLC. Fourier-transform infrared spectra (FT-IR) indicated the chemical structures of them. Moreover, they exhibited high antioxidant activities in a concentration-dependent manner in vitro. In summary, the present study suggested that UAE was a very effective method to extract polysaccharides from Glycine soja and the polysaccharides could be explored as potential antioxidant agents for medicine and function food. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  7. The effect of dietary glycine on the hepatic tumor promoting activity of polychlorinated biphenyls (PCBs) in rats

    International Nuclear Information System (INIS)

    Bunaciu, Rodica Petruta; Tharappel, Job C.; Lehmler, Hans-Joachim; Kania-Korwel, Izabela; Robertson, Larry W.; Srinivasan, Cidambi; Spear, Brett T.; Glauert, Howard P.

    2007-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitious lipophilic environmental pollutants. Some of the PCB congeners and mixtures of congeners have tumor promoting activity in rat liver. The mechanism of their activity is not fully understood and is likely to be multifactorial. The aim of this study was to investigate if the resident liver macrophages, Kupffer cells, are important in the promoting activity of PCBs. The hypothesis of this study was that the inhibition of Kupffer cell activity would inhibit hepatic tumor promotion by PCBs in rats. To test our hypothesis, we studied the effects of Kupffer cell inhibition by dietary glycine (an inhibitor of Kupffer cell secretory activity) in a rat two-stage hepatocarcinogenesis model using 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153, a non-dioxin-like PCB) or 3,3',4,4'-tetrachlorobiphenyl (PCB-77, a dioxin-like PCB) as promoters. Diethylnitrosamine (DEN, 150 mg/kg) was administered to female Sprague-Dawley rats, which were then placed on an unrefined diet containing 5% glycine (or casein as nitrogen control) starting two weeks after DEN administration. On the third day after starting the diets, rats received PCB-77 (300 μmol/kg), PCB-153 (300 μmol/kg), or corn oil by i.p. injection. The rats received a total of 4 PCB injections, administered every 14 days. The rats were euthanized on the 10th day after the last PCB injection, and the formation of altered hepatic foci expressing placental glutathione S-transferase (PGST) and the rate of DNA synthesis in these foci and in the normal liver tissue were determined. Glycine did not significantly affect foci number or volume. PCB-153 did not significantly increase the focal volume, but increased the number of foci per liver, but only in the rats not fed glycine; PCB-77 increased both the foci number and their volume in both glycine-fed and control rats. Glycine did not alter the PCB content of the liver, but did increase the activity of 7-benzyloxyresorufin O-dealkylase (BROD

  8. Efficient production of transgenic soybean (Glycine max [L] Merrill ...

    African Journals Online (AJOL)

    Efficient production of transgenic soybean (Glycine max [L] Merrill) plants mediated via whisker-supersonic (WSS) method. MM Khalafalla, HA El-Shemy, SM Rahman, M Teraishi, H Hasegawa, T Terakawa, M Ishimoto ...

  9. Characterization of Human and Yeast Mitochondrial Glycine Carriers with Implications for Heme Biosynthesis and Anemia.

    Science.gov (United States)

    Lunetti, Paola; Damiano, Fabrizio; De Benedetto, Giuseppe; Siculella, Luisa; Pennetta, Antonio; Muto, Luigina; Paradies, Eleonora; Marobbio, Carlo Marya Thomas; Dolce, Vincenza; Capobianco, Loredana

    2016-09-16

    Heme is an essential molecule in many biological processes, such as transport and storage of oxygen and electron transfer as well as a structural component of hemoproteins. Defects of heme biosynthesis in developing erythroblasts have profound medical implications, as represented by sideroblastic anemia. The synthesis of heme requires the uptake of glycine into the mitochondrial matrix where glycine is condensed with succinyl coenzyme A to yield δ-aminolevulinic acid. Herein we describe the biochemical and molecular characterization of yeast Hem25p and human SLC25A38, providing evidence that they are mitochondrial carriers for glycine. In particular, the hem25Δ mutant manifests a defect in the biosynthesis of δ-aminolevulinic acid and displays reduced levels of downstream heme and mitochondrial cytochromes. The observed defects are rescued by complementation with yeast HEM25 or human SLC25A38 genes. Our results identify new proteins in the heme biosynthetic pathway and demonstrate that Hem25p and its human orthologue SLC25A38 are the main mitochondrial glycine transporters required for heme synthesis, providing definitive evidence of their previously proposed glycine transport function. Furthermore, our work may suggest new therapeutic approaches for the treatment of congenital sideroblastic anemia. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Collective vibrational spectra of α- and γ-glycine studied by terahertz and Raman spectroscopy

    International Nuclear Information System (INIS)

    Shi Yulei; Wang Li

    2005-01-01

    Terahertz time-domain spectroscopy is used to investigate the absorption and dispersion of polycrystalline α- and γ-glycine in the spectral region 0.5-3.0 THz. The spectra exhibit distinct features in these two crystalline phases. The observed far-infrared responses are attributed to intermolecular vibrational modes mediated by hydrogen bonds. We also measure the Raman spectra of the polycrystalline and dissolved glycine in the frequency range 28-3900 cm -1 . The results show that all the vibrational modes below 200 cm -1 are nonlocalized but are of a collective (phonon-like) nature. Furthermore, the temperature dependence of the Raman spectra of α-glycine agrees with the anharmonicity mechanism of the vibrational potentials

  11. Computer simulation and experimental self-assembly of irradiated glycine amino acid under magnetic fields: Its possible significance in prebiotic chemistry.

    Science.gov (United States)

    Heredia, Alejandro; Colín-García, María; Puig, Teresa Pi I; Alba-Aldave, Leticia; Meléndez, Adriana; Cruz-Castañeda, Jorge A; Basiuk, Vladimir A; Ramos-Bernal, Sergio; Mendoza, Alicia Negrón

    2017-12-01

    Ionizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields. γ-glycine polymorph formation increases in irradiated samples interacting with static magnetic fields. The increase in γ-glycine polymorph agrees with the computer simulations. The AM1 semi-empirical simulations show a change in the catalyst behavior and dipole moment values in α and γ-glycine interaction with the static magnetic field. The simulated crystal lattice energy in α-glycine is also affected by the free radicals under the magnetic field, which decreases its stability. Therefore, solid α and γ-glycine containing free radicals under static magnetic fields might have affected the prebiotic scenario on ancient Earth by causing the oligomerization of glycine in prebiotic reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of a Competent and Trouble Free DNA Isolation Protocol for Downstream Genetic Analyses in Glycine Species

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Nawaz

    2016-08-01

    Full Text Available Extraction of deoxyribose nucleic acid (DNA from plants is preliminary step in molecular biology. Fast and cost effective genomic DNA isolation from Glycine species for downstream application is a major bottleneck. Here we report a high throughput and trouble free method for genomic DNA extraction from leaf and seeds of Glycine species with high quality and quantity. Protocol reports the optimization by employing different concentrations of CTAB and PVP in extraction buffer. Efficiency of optimized protocol was compared with frequently used DNA extraction methods. Wide adoptability and utility of this protocol was confirmed by DNA extraction from leaves as well as seeds of G. max, G. soja, G. tomentella and G. latifolia. Extracted DNA was successfully subjected to PCR amplification of five microsatellite markers and four putative glycosyltransferase genes. DNA extraction protocol is reproducible, trouble free, rapid and can be adopted for plant molecular biology applications.

  13. Study by electron spin resonance of the free radicals created under irradiation in glycine; Etude par la technique de resonance paramagnetique electronique des radicaux crees sous irradiation dans la glycine

    Energy Technology Data Exchange (ETDEWEB)

    Thomet, P; Rassat, A; Servoz-Gavin, P; Choudens, H de [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-07-01

    The free radicals created by different radiations in glycine are measured by electron spin resonance and their number is evaluated in function of the absorbed dose. This number decreases when the LET of the radiations increases ; in other words,high LET radiations gives less radiochemical effects; in contrary with the fact that high LET radiations creates more damage in biological materials. The decreasing with time of the number of free radicals and the speed of this decrease is a function of temperature; by the study of the kinetics of this decrease, an attempt has been made to prove the presence of three radicals. (authors) [French] Les radicaux crees par divers rayonnements dans la glycine sont detectes par resonance paramagnetique electronique et leur nombre est evalue en fonction de la dose. Ce nombre varie dans le sens inverse du T.E.L moyen, c'est-a-dire que les rayonnements de T.E.L eleves donnent des effets radiochimiques plus petits alors que les effets radiobiologiques sont importants avec des T.E.L eleves. La decroissance dans le temps du nombre de radicaux est observee et la vitesse de diminution des radicaux est liee a la temperature. Etudiant la cinetique de recombinaison, on peut faire l'hypothese de l'existence de 3 radicaux. (auteurs)

  14. Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents

    Science.gov (United States)

    Moroni, Mirko; Biro, Istvan; Giugliano, Michele; Vijayan, Ranjit; Biggin, Philip C.; Beato, Marco; Sivilotti, Lucia G.

    2011-01-01

    In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mM). Our main finding is that glycine and GABA receptors “sense” chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation-selective, or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage-dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane. PMID:21976494

  15. Dietary intakes of glutamic acid and glycine are associated with stroke mortality in Japanese adults.

    Science.gov (United States)

    Nagata, Chisato; Wada, Keiko; Tamura, Takashi; Kawachi, Toshiaki; Konishi, Kie; Tsuji, Michiko; Nakamura, Kozue

    2015-04-01

    Dietary intakes of glutamic acid and glycine have been reported to be associated with blood pressure. However, the link between intakes of these amino acids and stroke has not been studied. We aimed to examine the association between glutamic acid and glycine intakes and the risk of mortality from stroke in a population-based cohort study in Japan. The analyses included 29,079 residents (13,355 men and 15,724 women) of Takayama City, Japan, who were aged 35-101 y and enrolled in 1992. Their body mass index ranged from 9.9 to 57.4 kg/m(2). Their diets were assessed by a validated food frequency questionnaire. Deaths from stroke were ascertained over 16 y. During follow-up, 677 deaths from stroke (328 men and 349 women) were identified. A high intake of glutamic acid in terms of a percentage of total protein was significantly associated with a decreased risk of mortality from total stroke in women after controlling for covariates; the HR (95% CI) for the highest vs. lowest quartile was 0.72 (0.53, 0.98; P-trend: 0.03). Glycine intake was significantly associated with an increased risk of mortality from total and ischemic stroke in men without history of hypertension at baseline; the HRs (95% CIs) for the highest vs. lowest tertile were 1.60 (0.97, 2.51; P-trend: 0.03) and 1.88 (1.01, 3.52; P-trend: 0.02), respectively. There was no association between animal or vegetable protein intake and mortality from total and any subtype of stroke. The data suggest that glutamic acid and glycine intakes may be associated with risk of stroke mortality. Given that this is an initial observation, our results need to be confirmed. © 2015 American Society for Nutrition.

  16. Serum glycine is associated with regional body fat and insulin resistance in functionally-limited older adults.

    Directory of Open Access Journals (Sweden)

    Michael S Lustgarten

    Full Text Available Metabolic profiling may provide insight into biologic mechanisms related to age-related increases in regional adiposity and insulin resistance.The objectives of the current study were to characterize the association between mid-thigh intermuscular and subcutaneous adipose tissue (IMAT, SCAT, respectively and, abdominal adiposity with the serum metabolite profile, to identify significant metabolites as further associated with the homeostasis model assessment of insulin resistance (HOMA-IR, and, to develop a HOMA-IR associated metabolite predictor set representative of regional adiposity, in 73 functionally-limited (short physical performance battery ≤10; SPPB older adults (age range, 70-85 y.Fasting levels of 181 total metabolites, including amino acids, fatty acids and acylcarnitines were measured with use of an untargeted mass spectrometry-based metabolomic approach. Multivariable-adjusted linear regression was used in all analyses.Thirty-two, seven and one metabolite(s were found to be associated with IMAT, abdominal adiposity and, SCAT, respectively, including the amino acid glycine, which was positively associated with SCAT and, negatively associated with both IMAT and abdominal adiposity. Glycine and four metabolites found to be significantly associated with regional adiposity were additionally associated with HOMA-IR. Separate stepwise regression models identified glycine as a HOMA-IR associated marker of both IMAT (model R(2 = 0.51, p<0.0001 and abdominal adiposity (model R(2 = 0.41, p<0.0001.Our findings for a positive association between glycine with SCAT but, a negative association between glycine with IMAT and abdominal adiposity supports the hypothesis that SCAT metabolic processes are different from that found in other fat depots. In addition, because of the significant associations found between glycine with HOMA-IR, IMAT, SCAT and abdominal adiposity, our results suggest glycine as a serum biomarker of both insulin sensitivity

  17. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    Energy Technology Data Exchange (ETDEWEB)

    Seyedhosseini, E., E-mail: Seyedhosseini@ua.pt; Ivanov, M. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Bdikin, I. [TEMA and Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Vasileva, D. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Kudryavtsev, A. [Moscow State Institute of Radioengineering, Electronics and Automation, 119454 Moscow (Russian Federation); Rodriguez, B. J. [Conway Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin (Ireland); Kholkin, A. L. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  18. Glycine does not add to the beneficial effects of perioperative oral immune-enhancing nutrition supplements in high-risk cardiac surgery patients

    NARCIS (Netherlands)

    Tepaske, Robert; te Velthuis, Henk; Oudemans-van Straaten, Heleen M.; Bossuyt, Patrick M. M.; Schultz, Marcus J.; Eijsman, Leon; Vroom, Margreeth

    2007-01-01

    Background: Elderly patients and patients with a poor cardiac function have increased morbidity rates when undergoing cardiac surgery. The aim of this study was to determine whether addition of glycine to a standard preoperative oral immune-enhancing nutrition supplement (OIENS) improves outcome.

  19. Quantitative evaluation of the biosynthetic pathways leading to δ-aminolevulinic acid from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus by analysis of 13C-labeled coproporphyrinogen III biosynthesized from [2-13C]glycine, [1-13C]acetate, and [2-13C]acetate using 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Katsumi Iida

    2013-01-01

    The biosynthetic pathways leading to δ-aminolevulinic acid (ALA) from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus were quantitatively evaluated by means of feeding experiments with [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate, followed by analysis of the labeling patterns of coproporphyrinogen III (Copro'gen III) (biosynthesized from ALA) using 13 C NMR spectroscopy. Two biosynthetic pathways leading to ALA from glycine via the C5 pathway were identified: i.e., transformation of glycine to l-serine catalyzed by glycine hydroxymethyltransferase, and glycine synthase-catalyzed catabolism of glycine to N 5 , N 10 -methylene-tetrahydrofolic acid (THF), which reacts with another molecule of glycine to afford l-serine. l-Serine is transformed to acetyl-CoA via pyruvic acid. Acetyl-CoA enters the tricarboxylic acid cycle, affording 2-oxoglutaric acid, which in turn is transformed to l-glutamic acid. The l-glutamic acid enters the C5 pathway, affording ALA in A. hyalinus. A 13 C NMR spectroscopic comparison of the labeling patterns of Copro'gen III obtained after feeding of [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate showed that [2- 13 C]glycine transformation and [2- 13 C]glycine catabolism in A. hyalinus proceed in the ratio of 52 and 48 %. The reaction of [2- 13 C]glycine and N 5 , N 10 -methylene-THF, that of glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF generated from the [2- 13 C]glycine catabolism, and that of [2- 13 C]glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF transformed the fed [2- 13 C]glycine to [1- 13 C]acetyl-CoA, [2- 13 C]acetyl-CoA, and [1,2- 13 C 2 ]acetyl-CoA in the ratios of 42, 37, and 21 %, respectively. These labeled acetyl-CoAs were then incorporated into ALA. Our results provide a quantitative picture of the pathways of biosynthetic transformation to ALA from glycine in A. hyalinus. (author)

  20. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Dibas, Mohammed I; Lester, Henry A

    2007-01-01

    change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine...... and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus...

  1. A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase

    Directory of Open Access Journals (Sweden)

    Overall Christopher C

    2007-04-01

    Full Text Available Abstract Background Heterodera glycines (soybean cyst nematode [SCN], the major pathogen of Glycine max (soybean, undergoes muscle degradation (sarcopenia as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia. Results We developed a bioinformatics database that compares expressed sequence tag (est and genomic data of C. elegans and H. glycines (CeHg database. We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin, unc-89, unc-15 (paromyosin, unc-27 (troponin I, unc-54 (myosin, and the potassium channel unc-110 (twk-18. Less reduction is observed for the focal adhesion complex gene Hg-unc-97. Conclusion The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.

  2. Effects of odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves.

    Science.gov (United States)

    Zhou, Lanxi; Ohata, Motoko; Arihara, Keizo

    2016-06-15

    Effects of the odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves were investigated in the present study. Equimolar solutions of glucose and glycine were adjusted to pH 7 and pH 9 and heated at 90 °C for 30 min. The odor generated from the glycine/glucose Maillard reaction significantly decreased negative moods. Its effects on brainwaves differed according to pH; alpha brainwave distribution was increased after inhalation of the odor generated at pH 7, whereas it was decreased by the odor generated at pH 9. The effects on mood and brainwaves were also measured after inhalation of model solutions, which comprised of potent odorants determined by aroma extract dilution analysis (AEDA), and the results were similar to those obtained with the Maillard reaction samples. Therefore, odors constructed by potent odorants could influence human mood and brainwaves. Among all potent odorants, 2,3-dimethylpyrazine and 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) were identified as the strongest, and high pH values resulted in higher yields of these odorants. Furthermore, DMHF was identified as the putative agent responsible for the decrease in alpha brainwave distribution after smelling the pH-9 Maillard reaction sample since higher concentrations of DMHF resulted in a similar effect.

  3. Beneficial effects of cod protein on inflammatory cell accumulation in rat skeletal muscle after injury are driven by its high levels of arginine, glycine, taurine and lysine.

    Directory of Open Access Journals (Sweden)

    Junio Dort

    muscle mass recovery, are driven by its high levels of arginine, glycine, taurine and lysine.

  4. High-resolution satellite imagery is an important yet underutilized resource in conservation biology.

    Science.gov (United States)

    Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.

  5. Conserved ABC Transport System Regulated by the General Stress Response Pathways of Alpha- and Gammaproteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Herrou, Julien; Willett, Jonathan W.; Czy; #380; , Daniel M.; Babnigg, Gyorgy; Kim, Youngchang; Crosson, Sean (UC)

    2016-12-19

    ABSTRACT

    Brucella abortusσE1is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon,bab1_0223-bab1_0226, is among the most highly activated gene sets in the σE1regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription ofyehZYXWis activated by the general stress sigma factor σSinEnterobacteriaceae, which suggests a functional role for this transport system in bacterial stress response across the classesAlphaproteobacteriaandGammaproteobacteria. We present evidence thatB. abortusYehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σE1-null strain. The solein vitrophenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li+ion concentrations. A crystal structure ofB. abortusYehZ revealed a class II periplasmic binding protein fold with significant structural homology toArchaeoglobus fulgidusProX, which binds glycine betaine. However, the structure

  6. Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Zhang Daquan; Xie Bin; Gao Lixin; Cai Qirui; Joo, Hyung Goun; Lee, Kang Yong

    2011-01-01

    The corrosion protection of copper by glutamic acid, cysteine, glycine and their derivative (glutathione) in 0.5 M hydrochloric acid solution has been studied by the electrochemical impedance spectroscopy and cyclic voltammetry. The inhibition efficiency of the organic inhibitors on copper corrosion increases in the order: glutathione > cysteine > cysteine + glutamic acid + glycine > glutamic acid > glycine. Maximum inhibition efficiency for cysteine reaches about 92.9% at 15 mM concentration level. The glutathione can give 96.4% inhibition efficiency at a concentration of 10 mM. The molecular structure parameters were obtained by PM3 (Parametric Method 3) semi-empirical calculation. The intramolecular synergistic effect of glutamic acid, cysteine and glycine moieties in glutathione is attributed to the lower energy of the lowest unoccupied molecular orbital (E LUMO ) level and to the excess hetero-atom adsorption centers and the bigger coverage on the copper surface.

  7. Melatonin potentiates glycine currents through a PLC/PKC signalling pathway in rat retinal ganglion cells.

    Science.gov (United States)

    Zhao, Wen-Jie; Zhang, Min; Miao, Yanying; Yang, Xiong-Li; Wang, Zhongfeng

    2010-07-15

    In vertebrate retina, melatonin regulates various physiological functions. In this work we investigated the mechanisms underlying melatonin-induced potentiation of glycine currents in rat retinal ganglion cells (RGCs). Immunofluorescence double labelling showed that rat RGCs were solely immunoreactive to melatonin MT(2) receptors. Melatonin potentiated glycine currents of RGCs, which was reversed by the MT(2) receptor antagonist 4-P-PDOT. The melatonin effect was blocked by intracellular dialysis of GDP-beta-S. Either preincubation with pertussis toxin or application of the phosphatidylcholine (PC)-specific phospholipase C (PLC) inhibitor D609, but not the phosphatidylinositol (PI)-PLC inhibitor U73122, blocked the melatonin effect. The protein kinase C (PKC) activator PMA potentiated the glycine currents and in the presence of PMA melatonin failed to cause further potentiation of the currents, whereas application of the PKC inhibitor bisindolylmaleimide IV abolished the melatonin-induced potentiation. The melatonin effect persisted when [Ca(2+)](i) was chelated by BAPTA, and melatonin induced no increase in [Ca(2+)](i). Neither cAMP-PKA nor cGMP-PKG signalling pathways seemed to be involved because 8-Br-cAMP or 8-Br-cGMP failed to cause potentiation of the glycine currents and both the PKA inhibitor H-89 and the PKG inhibitor KT5823 did not block the melatonin-induced potentiation. In consequence, a distinct PC-PLC/PKC signalling pathway, following the activation of G(i/o)-coupled MT(2) receptors, is most likely responsible for the melatonin-induced potentiation of glycine currents of rat RGCs. Furthermore, in rat retinal slices melatonin potentiated light-evoked glycine receptor-mediated inhibitory postsynaptic currents in RGCs. These results suggest that melatonin, being at higher levels at night, may help animals to detect positive or negative contrast in night vision by modulating inhibitory signals largely mediated by glycinergic amacrine cells in the inner

  8. Melanoidins extinction coefficient in the glucose/glycine Maillard reaction

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2003-01-01

    Melanoidins (brown, nitrogenous polymers and co-polymers) are the final products of the Maillard reaction. The glucose/glycine melanoidins extinction coefficient was determined using C-14-labelled glucose at three different reaction conditions. The absorbance was measured at different wavelengths

  9. Functional characterisation of the human alpha1 glycine receptor in a fluorescence-based membrane potential assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Kristiansen, Uffe

    2004-01-01

    In the present study, we have created a stable HEK293 cell line expressing the human homomeric alpha1 glycine receptor (GlyR) and characterised its functional pharmacology in a conventional patch-clamp assay and in the FLIPR Membrane Potential (FMP) assay, a fluorescence-based high throughput scr...... not be suited for sophisticated studies of GlyR pharmacology and kinetics. However, the assay offers several advantages in studies of ligand-receptor interactions. Furthermore, the assay could be highly useful in the search for structurally novel ligands acting at GlyRs.......In the present study, we have created a stable HEK293 cell line expressing the human homomeric alpha1 glycine receptor (GlyR) and characterised its functional pharmacology in a conventional patch-clamp assay and in the FLIPR Membrane Potential (FMP) assay, a fluorescence-based high throughput...... ion did not appear to potentiate GlyR function at lower concentrations. Analogously, whereas pregnenolone sulphate inhibited alpha1 GlyR function, the potentiation of alpha1 GlyR by pregnenolone in electrophysiological studies could not be reproduced in the assay. In conclusion, the FMP assay may...

  10. Single Channel Analysis of Isoflurane and Ethanol Enhancement of Taurine-Activated Glycine Receptors.

    Science.gov (United States)

    Kirson, Dean; Todorovic, Jelena; Mihic, S John

    2018-01-01

    The amino acid taurine is an endogenous ligand acting on glycine receptors (GlyRs), which is released by astrocytes in many brain regions, such as the nucleus accumbens and prefrontal cortex. Taurine is a partial agonist with an efficacy significantly lower than that of glycine. Allosteric modulators such as ethanol and isoflurane produce leftward shifts of glycine concentration-response curves but have no effects at saturating glycine concentrations. In contrast, in whole-cell electrophysiology studies these modulators increase the effects of saturating taurine concentrations. A number of possible mechanisms may explain these enhancing effects, including modulator effects on conductance, channel open times, or channel closed times. We used outside-out patch-clamp single channel electrophysiology to investigate the mechanism of action of 200 mM ethanol and 0.55 mM isoflurane in enhancing the effects of a saturating concentration of taurine. Neither modulator enhanced taurine-mediated conductance. Isoflurane increased the probability of channel opening. Isoflurane also increased the lifetimes of the two shortest open dwell times while both agents decreased the likelihood of occurrence of the longest-lived intracluster channel-closing events. The mechanism of enhancement of GlyR functioning by these modulators is dependent on the efficacy of the agonist activating the receptor and the concentration of agonist tested. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  11. High-quality permanent draft genome sequence of the Bradyrhizobium elkanii type strain USDA 76T, isolated from Glycine max (L.) Merr

    Science.gov (United States)

    Bradyrhizobium elkanii USDA 76T (INSCD = ARAG00000000), the type strain for Bradyrhizobium elkanii, is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Glycine max (L. Merr) grown in the USA. Because of its significance as a ...

  12. Enzymatic properties of the glycine D-alanine [corrected] aminopeptidase of Aspergillus oryzae and its activity profiles in liquid-cultured mycelia and solid-state rice culture (rice koji).

    Science.gov (United States)

    Marui, Junichiro; Matsushita-Morita, Mayumi; Tada, Sawaki; Hattori, Ryota; Suzuki, Satoshi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei; Takeuchi, Michio; Kusumoto, Ken-Ichi

    2012-01-01

    The gdaA gene encoding S12 family glycine-D-alanine aminopeptidase (GdaA) was found in the industrial fungus Aspergillus oryzae. GdaA shares 43% amino acid sequence identity with the D-aminopeptidase of the Gram-negative bacterium Ochrobactrum anthropi. GdaA purified from an A. oryzae gdaA-overexpressing strain exhibited high D-stereospecificity and efficiently released N-terminal glycine and D-alanine of substrates in a highly specific manner. The optimum pH and temperature were 8 to 9 and 40°C, respectively. This enzyme was stable under alkaline conditions at pH 8 to 11 and relatively resistant to acidic conditions until pH 5.0. The chelating reagent EDTA, serine protease inhibitors such as AEBSF, benzamidine, TPCK, and TLCK, and the thiol enzyme inhibitor PCMB inhibited the enzyme. The aminopeptidase inhibitor bestatin did not affect the activity. GdaA was largely responsible for intracellular glycine and D-alanine aminopeptidase activities in A. oryzae during stationary-phase growth in liquid media. In addition, the activity increased in response to the depletion of nitrogen or carbon sources in the growth media, although the GdaA-independent glycine aminopeptidase activity highly increased simultaneously. Aminopeptidases of A. oryzae attract attention because the enzymatic release of a variety of amino acids and peptides is important for the enhancement of the palatability of fermented foods. GdaA activity was found in extracts of a solid-state rice culture of A. oryzae (rice koji), which is widely used as a starter culture for Japanese traditional fermented foods, and was largely responsible for the glycine and D-alanine aminopeptidase activity detected at a pH range of 6 to 9.

  13. Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genes.

    Science.gov (United States)

    Kumar Dubey, Arvind; Kumar, Navin; Ranjan, Ruma; Gautam, Ambedkar; Pande, Veena; Sanyal, Indraneel; Mallick, Shekhar

    2018-02-01

    The present study was intended to investigate the role of amino acid glycine in detoxification of As in Oryza sativa L. The growth parameters such as, shoot length and fresh weight were decreased during As(III) and As(V) toxicity. However, the application of glycine recovered the growth parameters against As stress. The application of glycine reduced the As accumulation in all the treatments, and it was more effective against As(III) treatment and reduced the accumulation by 68% in root and 71% in shoot. Similarly, the translocation of As from root to shoot, was higher against As(III) and As(V) treatments, whereas, reduced upon glycine application. The translocation of Fe and Na was also affected by As, which was lower under As(III) and As(V) treatments. However, the application of glycine significantly enhanced the translocation of Fe and Na in the shoot. Besides, the expression of lower silicon transporters i.e. Lsi-1 and Lsi-2 was observed to be significantly suppressed in the root with the application of glycine against As treatment. Similarly, the expression of three GRX and two GST gene isoforms were found to be significantly increased with glycine application. Simultaneously, the activities of antioxidant enzymes i.e. l-arginine dependent NOS, SOD, NTR and GRX were found to be significantly enhanced in the presence of glycine. Increased activities of antioxidant enzymes coincided with the decreased level of TBARS and H 2 O 2 in rice seedlings. Overall, the results suggested that the application of glycine reduces As accumulation through suppressing the gene expression of lower silicon transporters and ameliorates As toxicity by enhancing antioxidants defense mechanism in rice seedlings. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    Science.gov (United States)

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  15. Improving glyphosate oxidation activity of glycine oxidase from Bacillus cereus by directed evolution.

    Directory of Open Access Journals (Sweden)

    Tao Zhan

    Full Text Available Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO, we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg(51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops.

  16. 75 FR 66352 - Glycine From the People's Republic of China: Initiation of Antidumping Anti-circumvention Inquiry

    Science.gov (United States)

    2010-10-28

    ..., submission at 5 and 6. Domestic interested parties argue that an analysis of the relevant statutory factors... merchandise imported into the United States. The domestic interested parties' analysis of these factors... sieve and then repackage the processed PRC-origin glycine for export as Indian glycine. Id at 9-10...

  17. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    Science.gov (United States)

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on s...

  18. The critical mission of glycine as a surfactant in the improvement of structural, morphological and optoelectronic features of CdO films

    Science.gov (United States)

    Aydin, Raşit

    2018-05-01

    The main aim of this study is to examine the effect of glycine as a surfactant agent on the physical properties of CdO films. For this purpose nanostructured CdO films with and without different glycine aggregations (0.5, 1.0 and 2.0 M %) were synthesized on glass bases by SILAR technique. The morphological, structural and optical characteristics of these films have been investigated using MM, SEM, XRD and UV-visible spectroscopy respectively. The MM results showed homogeneous and smooth all films. The SEM graphs showed that by using different glycine concentrations as surfactant, the particle thickness decreased from 366.25 nm to 241.10 nm. XRD results showed that the all CdO films with glycine display a (111) and (200) preferential orientations similar to that of the CdO film without glycine. The direct band gap energy of these films is found to increase from 2.05 to 2.35 eV with increasing the glycine concentration in the bath solution.

  19. GABA and glycine as neurotransmitters: a brief history.

    Science.gov (United States)

    Bowery, N G; Smart, T G

    2006-01-01

    gamma-Aminobutyric acid (GABA) emerged as a potentially important brain chemical just over 50 years ago, but its significance as a neurotransmitter was not fully realized until over 16 years later. We now know that at least 40% of inhibitory synaptic processing in the mammalian brain uses GABA. Establishing its role as a transmitter was a lengthy process and it seems hard to believe with our current knowledge that there was ever any dispute about its role in the mammalian brain. The detailed information that we now have about the receptors for GABA together with the wealth of agents which facilitate or reduce GABA receptor mechanisms make the prospects for further research very exciting. The emergence of glycine as a transmitter seems relatively painless by comparison to GABA. Perhaps this is appropriate for the simplest of transmitter structures! Its discovery within the spinal cord and brainstem approximately 40 years ago was followed only 2 years later by the proposal that it be conferred with 'neurotransmitter' status. It was another 16 years before the receptor was biochemically isolated. Now it is readily accepted as a vital spinal and supraspinal inhibitory transmitter and we know many details regarding its molecular structure and trafficking around neurones. The pharmacology of these receptors has lagged behind that of GABA. There is not the rich variety of allosteric modulators that we have come to readily associate with GABA receptors and which has provided us with a virtual treasure trove of important drugs used in anxiety, insomnia, epilepsy, anaesthesia, and spasticity, all stemming from the actions of the simple neutral amino acid GABA. Nevertheless, the realization that glycine receptors are involved in motor reflexes and nociceptive pathways together with the more recent advent of drugs that exhibit some subtype selectivity make the goal of designing selective therapeutic ligands for the glycine receptor that much closer.

  20. Comparative studies of vertebrate scavenger receptor class B type 1: a high-density lipoprotein binding protein

    Directory of Open Access Journals (Sweden)

    Holmes RS

    2012-06-01

    Full Text Available Roger S Holmes,1,2 Laura A Cox11Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA; 2School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, AustraliaAbstract: Scavenger receptor class B type 1 protein (SCARB1 plays an essential role in cholesterol homeostasis and functions in binding high density lipoprotein cholesterol (HDL in liver and other tissues of the body. SCARB1 also functions in lymphocyte homeostasis and in the uptake of hepatitis C virus (HCV by the liver. A genetic deficiency of this protein results in autoimmune disorders and significant changes in blood cholesterol phenotype. Comparative SCARB1 amino acid sequences and structures and SCARB1 gene locations were examined using data from several vertebrate genome projects. Vertebrate SCARB1 sequences shared 50%–99% identity as compared with 28%–31% sequence identities with other CD36-like superfamily members, ie, SCARB2 and SCARB3 (also called CD36. At least eight N-glycosylation sites were conserved among most of the vertebrate SCARB1 proteins examined. Sequence alignments, key amino acid residues, and conserved predicted secondary structures were also studied, including: cytoplasmic, transmembrane, and exoplasmic sequences; conserved N-terminal and C-terminal transmembrane glycines which participate in oligomer formation; conserved cystine disulfides and a free SH residue which participates in lipid transport; carboxyl terminal PDZ-binding domain sequences (Ala507-Arg/Lys508-Leu509; and 30 conserved proline and 18 conserved glycine residues, which may contribute to short loop formation within the exoplasmic HDL-binding sequence. Vertebrate SCARB1 genes usually contained 12 coding exons. The human SCARB1 gene contained CpG islands, micro RNA binding sites, and several transcription factor binding sites (including PPARG which may contribute to the high level (13.7 times

  1. Glycine post-synthetic modification of MIL-53(Fe) metal-organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing.

    Science.gov (United States)

    Dong, Wenfei; Yang, Liaoyuan; Huang, Yuming

    2017-05-15

    A facile and rapid post-synthetic strategy was proposed to prepare a glycine functionalized MIL-53(Fe), namely glycine-MIL-53(Fe), by a simple mixing of water dispersible MIL-53(Fe) and glycine. The FT-IR, SEM, XRD and zeta potential were used to characterize the glycine-MIL-53(Fe). The result showed that glycine post-synthetic modification of MIL-53(Fe) did not change in the morphology and crystal structure of MIL-53(Fe). Interestingly, compared with MIL-53(Fe), the glycine-MIL-53(Fe) exhibits an enhanced peroxidase-like activity, which could catalyze the oxidation of TMB by H 2 O 2 to produce an intensive color reaction. Kinetic analysis indicated that the K m of glycine-MIL-53(Fe) for TMB was one-tenth of that of MIL-53(Fe). The glycine-MIL-53(Fe) as peroxidase mimetic displays better stability under alkaline or acidic conditions than MIL-53(Fe). The good performance of glycine-MIL-53(Fe) over MIL-53(Fe) may be attributed to the increase of affinity between TMB and the glycine-MIL-53(Fe). With these characteristics, a simple and sensitive method was developed for the detection of H 2 O 2 and glucose. The linear detection range for H 2 O 2 is 0.10-10μM with a detection limit of 49nM, and glucose could be linearly detected in the range from 0.25 to 10μM with a detection limit of 0.13μM. The proposed method was successfully used for glucose detection in human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation.

    Science.gov (United States)

    Chen, Liang; Zheng, Yuhong; Dong, Zhimin; Meng, Fanfan; Sun, Xingmiao; Fan, Xuhong; Zhang, Yunfeng; Wang, Mingliang; Wang, Shuming

    2018-04-01

    Soybean is the world's most important leguminous crop producing high-quality protein and oil. Elevating oil accumulation in soybean seed is always many researchers' goal. WRINKLED1 (WRI1) encodes a transcription factor of the APETALA2/ethylene responsive element-binding protein (AP2/EREBP) family that plays important roles during plant seed oil accumulation. In this study, we isolated and characterized three distinct orthologues of WRI1 in soybean (Glycine max) that display different organ-specific expression patterns, among which GmWRI1a was highly expressed in maturing soybean seed. Electrophoretic mobility shift assays and yeast one-hybrid experiments demonstrated that the GmWRI1a protein was capable of binding to AW-box, a conserved sequence in the proximal upstream regions of many genes involved in various steps of oil biosynthesis. Transgenic soybean seeds overexpressing GmWRI1a under the control of the seed-specific napin promoter showed the increased total oil and fatty acid content and the changed fatty acid composition. Furthermore, basing on the activated expressions in transgenic soybean seeds and existence of AW-box element in the promoter regions, direct downstream genes of GmWRI1a were identified, and their products were responsible for fatty acid production, elongation, desaturation and export from plastid. We conclude that GmWRI1a transcription factor can positively regulate oil accumulation in soybean seed by a complex gene expression network related to fatty acid biosynthesis.

  3. In vivo NMR analysis of incorporation of [2-13C] glycine into silk fibroin

    International Nuclear Information System (INIS)

    Asakura, Tetsuo; Nagashima, Mariko; Demura, Makoto; Osanai, Minoru.

    1990-01-01

    The biosynthetic mechanism of silk fibroin in silkworms, Bombyx mori, is unique because this fibrous protein composed mainly of glycine, alanine and serine is produced very rapidly in large quantity in the posterior silk glands. It is very meaningful to investigate into the biosynthesis of silk protein under nondestructive condition by in vivo NMR and C-13 labeling techniques. The sugar metabolism related to the production of silk fibroin was analyzed by monitoring the change in the C-13 labeled peaks in the NMR spectra for silkworms. In this paper, the monitoring of the 2-(C-13) glycine metabolism in Bombyx mori by the C-13 NMR in vivo is reported. In particular, the in vivo transport of glycine from the midgut to the posterior silk gland was measured, and the rate constants were determined with the course of the peak intensity in the C-13 NMR spectra. It is possible to discuss quantitatively the in vivo production of silk fibroin with these rate constants. The experiment and the results are reported. The in vivo C-13 NMR spectra of a 5 day old, 5th instar larva of Bombyx mori after the oral administration of 2-(C-13) glycine are shown. The significant increase of the peak intensity occurred. (K.I.)

  4. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss.

    Directory of Open Access Journals (Sweden)

    Donna Vanhauteghem

    Full Text Available Our previous work described a clear loss of Escherichia coli (E. coli membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine and N,N-dimethylglycine (DMG, but not N,N,N-trimethylglycine (betaine, under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH.

  5. Exposure to the Proton Scavenger Glycine under Alkaline Conditions Induces Escherichia coli Viability Loss

    Science.gov (United States)

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH. PMID:23544135

  6. The ribose and glycine Maillard reaction in the interstellar medium ...

    Indian Academy of Sciences (India)

    WINTEC

    mechanics are briefly addressed in this work. Keywords. Density functional computational study; ribose; glycine; Maillard reaction; gaseous phase .... following the total mass balance of the reaction. Thus, ..... Jalbout A F Origin Life Evol. Biosph ...

  7. Electrochemical Performance of LixMn2-yFeyO4-zClz Synthesized Through In-Situ Glycine Nitrate Combustion

    Science.gov (United States)

    2016-06-13

    Electrochemical Performance of LixMn2-yFeyO4-zClz Synthesized Through In-Situ Glycine Nitrate Combustion Ashley L. Ruth, Paula C. Latorre, and...sites as well as the formation of Mn3+ ions via the Jahn- Teller effect. The use of the glycine nitrate combustion synthesis produces small particles at...advantage of submicron ceramic synthesis, namely the glycine nitrate combustion process (GNP), we propose the capability for in-situ B-site doping

  8. Synthetic and mechanistic insight into nosylation of glycine residues

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Sølling, Theis Ivan; Strømgaard, Kristian

    2013-01-01

    The Fukuyama-Mitsunobu alkylation procedure is widely used to introduce alkyl substituents to amino groups in general and N-alkylation of peptides in particular. Here we have investigated the procedure in detail for N-alkylation of peptides with N-terminal glycine residues, based on the observati...

  9. Soybean ( Glycine max ) as a versatile biocatalyst for organic ...

    African Journals Online (AJOL)

    A series of aliphatic and aromatic aldehydes and ketones were reduced using plant cell preparations of Glycine max seeds (soybean). The biotransformation of five aromatic aldehydes in water, at room temperature afforded the corresponding alcohols in excellent yields varying from 89 to 100%. Two prochiral aromatic ...

  10. Glycine: an alternative transmitter candidate of the pallidosubthalamic projection neurons in the rat

    International Nuclear Information System (INIS)

    Takada, M.; Hattori, T.

    1987-01-01

    Autoradiographic retrograde tracing techniques with radioactive transmitters were used to analyse the identity of a putative transmitter in the rat pallidosubthalamic (GP-STN) pathway. One to 2 hours after the stereotaxic injection of 3 H-glycine restricted to the STN, a large number of neuronal somata were radiolabeled in the GP. No comparable labeling was observed following the injection of 3 H-gamma-aminobutyric acid ( 3 H-GABA) into the same nucleus even with survival times as long as 6 hours. Specifically, no significant somatic labeling was detected either in the GP or in the caudoputamen (CPU). Only when 3 H-GABA was injected into the substantia nigra did CPU and GP neurons become labeled. On the contrary, STN neuronal somata were invariably labeled 6 hours after the intrapallidal injection of 3 H-GABA, whereas no perikaryal labeling was observed in the STN after 3 H-glycine injection into the GP. The perikaryal labeling was prevented in all cases by intraventricular administration of colchicine 1 day before the isotope injections. The observations suggest that 3 H-glycine was preferentially transported retrogradely through the GP-STN pathway, and 3 H-GABA through the STN-GP projection. In view of the recent controversy on the role of GABA as a putative transmitter of the GP-STN projection, we now propose glycine as an alternative transmitter candidate of these critically situated neurons in the basal ganglia

  11. L-arginine and glycine supplementation in the repair of the irradiated colonic wall of rats.

    Science.gov (United States)

    de Aguiar Picanço, Etiene; Lopes-Paulo, Francisco; Marques, Ruy G; Diestel, Cristina F; Caetano, Carlos Eduardo R; de Souza, Mônica Vieira Mano; Moscoso, Gabriela Mendes; Pazos, Helena Maria F

    2011-05-01

    Radiotherapy is widely used for cancer treatment but has harmful effects. This study aimed to assess the effects of L-arginine and glycine supplementation on the colon wall of rats submitted to abdominal irradiation. Forty male Wistar rats were randomly divided into four groups: I-healthy, II-irradiated with no amino acid supplementation, III-irradiated and supplemented with L-arginine, and IV-irradiated and supplemented with glycine. The animals received supplementation for 14 days, with irradiation being applied on the eighth day of the experiment. All animals underwent laparotomy on the 15th day for resection of a colonic segment for stereologic analysis. Parametric and nonparametric tests were used for statistical analysis, with the level of significance set at p ≤0.05. Stereologic analysis showed that irradiation induced a reduction of the total volume of the colon wall of group II and III animals compared to healthy controls, but not of group IV animals supplemented with glycine. The mucosal layer of the irradiated animals of all groups was reduced compared to healthy group I animals, but supplementation with L-arginine and glycine was effective in maintaining the epithelial surface of the mucosal layer. The present results suggest that glycine supplementation had a superior effect on the irradiated colon wall compared to L-arginine supplementation since it was able to maintain the thickness of the wall and the epithelial surface of the mucosa, whereas L-arginine maintained the partial volume of the epithelium and the epithelial surface, but not the total volume of the intestinal wall.

  12. Influence of foliar application of glycine betaine on gas exchange characteristics of cotton (gossypium Hirsutum L.)

    International Nuclear Information System (INIS)

    Makhdum, M.I.; Din, S.U.

    2007-01-01

    Water is the most limiting factor in cotton production and numerous efforts are being made to improve crop drought tolerance. A field study was conducted with the objectives to determine the effects of different application rates of glycine betaine in field grown cotton at Central Cotton Research Institute, Multan. Four levels of glycine betaine (0.0, 1.0, 3.0 and 6.0 kg ha-1) were applied at three physiological growth stages i.e. at squaring, first flower and peak flowering. Cotton cultivar CIM-448 was used as test crop. Results showed that crop sprayed with glycine betaine at the rate of 6.0 kg ha-1 maintained 120.0, 62.1, 69.7 and 35.5 percent higher net CO/sub 2/ assimilation rate (PN), transpiration rate (E), stomatal resistance (gs) and water use efficiency (PN/E), respectively over that of untreated crop. Crop spayed with glycine betaine at peak flowering stage maintained higher PN, E, gs and PN/E compared to at other stages of growth. (author)

  13. Synthesis and Characterization of Chromium (III) Complexes with L-Glutamic Acid, Glycine and LCysteine

    OpenAIRE

    Kun Sri Budiasih; Chairil Anwar; Sri Juari Santosa; Hilda Ismail

    2013-01-01

    Some Chromium (III) complexes were synthesized with three amino acids: L Glutamic Acid, Glycine, and L-cysteine as the ligands, in order to provide a new supplement containing Cr(III) for patients with type 2 diabetes mellitus. The complexes have been prepared by refluxing a mixture of Chromium(III) chloride in aqueous solution with L-glutamic acid, Glycine, and L-cysteine after pH adjustment by sodium hydroxide. These complexes were characterized by Infrared and Uv-Vis s...

  14. Electrophysiological evidence of increased glycine receptor-mediated phasic and tonic inhibition by blockade of glycine transporters in spinal superficial dorsal horn neurons of adult mice

    Directory of Open Access Journals (Sweden)

    Misa Oyama

    2017-03-01

    Full Text Available To understand the synaptic and/or extrasynaptic mechanisms underlying pain relief by blockade of glycine transporter subtypes GlyT1 and GlyT2, whole-cell recordings were made from dorsal horn neurons in spinal slices from adult mice, and the effects of NFPS and ALX-1393, selective GlyT1 and GlyT2 inhibitors, respectively, on phasic evoked or miniature glycinergic inhibitory postsynaptic currents (eIPSCs or mIPSCs were examined. NFPS and ALX-1393 prolonged the decay phase of eIPSCs without affecting their amplitude. In the presence of tetrodotoxin to record mIPSCs, NFPS and ALX-1393 induced a tonic inward current that was reversed by strychnine. Although NFPS had no statistically significant influences on mIPSCs, ALX-1393 significantly increased their frequency. We then further explored the role of GlyTs in the maintenance of glycinergic IPSCs. To facilitate vesicular release of glycine, repetitive high-frequency stimulation (HFS was applied at 10 Hz for 3 min during continuous recordings of eIPSCs at 0.1 Hz. Prominent suppression of eIPSCs was evident after HFS in the presence of ALX-1393, but not NFPS. Thus, it appears that phasic and tonic inhibition may contribute to the analgesic effects of GlyT inhibitors. However, reduced glycinergic inhibition due to impaired vesicular refilling could hamper the analgesic efficacy of GlyT2 inhibitors.

  15. An improved synthesis of α-13C glycine and heteronuclear NMR studies of its incorporation into thioredoxin

    International Nuclear Information System (INIS)

    Wishart, D.S.; Sykes, B.D.; Richards, F.M.

    1992-01-01

    We present an improved method to easily prepare gram quantities of α- 13 C glycine beginning from K 13 CN. The four step synthesis involves the production of an N, N-diphenyl-cyanoformamidine intermediate through the coupling of cyanide to N, N-diphenylcarbodiimide. Subsequent reduction by LiAlH 4 and hydrolysis of the resulting amidine produces fully enriched α- 13 C labelled glycine with a 45-50% yield. This relatively fast and simple synthesis uses only commonly available compounds and requires no special equipment, making the process easy to perform in any well equipped biochemistry laboratory. We further demonstrate that the product may be used, without extensive purification, to specifically label bacterially expressed proteins (E. coli thioredoxin) through standard biosynthetic procedures. We also show that the 13 C glycine-labelled protein may be readily analyzed using commonly available heteronuclear NMR techniques. Complete assignments for all 9 glycines of native E. coli thoredoxin are presented. (Author)

  16. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.

    Science.gov (United States)

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.

  17. Glycine-containing selective medium for isolation of Legionellaceae from environmental specimens.

    Science.gov (United States)

    Wadowsky, R M; Yee, R B

    1981-11-01

    Glycine, at a final concentration of 0.3%, has been shown to be an excellent selective agent for the isolation of Legionellaceae. Stock cultures of Legionella pneumophila were not inhibited on buffered charcoal-yeast extract agar containing the amino acid. Among the other Legionellaceae tested, only one of two strains of L. dumoffii and two of six strains of L. micdadei were appreciably inhibited. This medium permitted the isolation of L. pneumophila from environmental specimens with marked inhibition of many non-Legionellaceae bacteria. The selectivity of the medium was subsequently improved by the incorporation of vancomycin (5 microgram/ml) and polymyxin B (100 U/ml). This selective medium, glycine-vancomycin-polymyxin B agar, should facilitate the recovery of Legionellaceae from environmental sources.

  18. Pre-synaptic glycine GlyT1 transporter--NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions.

    Science.gov (United States)

    Musante, Veronica; Summa, Maria; Cunha, Rodrigo A; Raiteri, Maurizio; Pittaluga, Anna

    2011-05-01

    Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis in 1.2 mM Mg(2+), while dizocilpine, cis-4-[phosphomethyl]-piperidine-2-carboxylic acid and 7-Cl-kynurenic acid prevented it, indicating that occupation of both agonist sites is needed for receptor activation. D-serine mimicked glycine but also inhibited the NMDA/glycine-induced release of [(3H]D-aspartate, thus behaving as a partial agonist. The NMDA/glycine-induced release in 1.2 mM Mg(2+) strictly depended on glycine uptake through the glycine transporter type 1 (GlyT1), because the GlyT1 blocker N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine hydrochloride, but not the GlyT2 blocker Org 25534, prevented it. Accordingly, [(3)H]glycine was taken up during superfusion, while lowering the external concentration of Na(+), the monovalent cation co-transported with glycine by GlyT1, abrogated the NMDA-induced effect. Western blot analysis of subsynaptic fractions confirms that GlyT1 and NMDA autoreceptors co-localize at the pre-synaptic level, where GluN3A subunits immunoreactivity was also recovered. It is proposed that GlyT1s coexist with NMDA autoreceptors on rat hippocampal glutamatergic terminals and that glycine taken up by GlyT1 may permit physiological activation of NMDA pre-synaptic autoreceptors. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  19. Evaluation of iron transport from ferrous glycinate liposomes using ...

    African Journals Online (AJOL)

    Background: Iron fortification of foods is currently a strategy employed to fight iron deficiency in countries. Liposomes were assumed to be a potential carrier of iron supplements. Objective: The objective of this study was to investigate the iron transport from ferrous glycinate liposomes, and to estimate the effects of liposomal ...

  20. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains

    Directory of Open Access Journals (Sweden)

    Wang Yiguo

    2008-10-01

    Full Text Available Abstract Background Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs. Accurate prediction of SLiMs has been difficult because they are short (often Results Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. Conclusion The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains.

  1. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2017-12-01

    Full Text Available Soybean [Glycine max (L. Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines, one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s of the soybean cyst nematode (HG type 2.5.7 for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M high quality (Q > 30 raw sequence reads (125 bp in length for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.

  2. Low-temperature phase transition in γ-glycine single crystal. Pyroelectric, piezoelectric, dielectric and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tylczyński, Zbigniew, E-mail: zbigtyl@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Busz, Piotr [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-11-01

    Temperature changes in the pyroelectric, piezoelectric, elastic and dielectric properties of γ-glycine crystals were studied in the range 100 ÷ 385 K. The pyroelectric coefficient increases monotonically in this temperature range and its value at RT was compared with that of other crystals having glycine molecules. A big maximum in the d14 component of piezoelectric tensor compared by maximum in attenuation of the resonant face-shear mode were observed at 189 K. The components of the elastic stiffness tensor and other components of the piezoelectric tensor show anomalies at this temperature. The components of electromechanical coupling coefficient determined indicate that γ-glycine is a weak piezoelectric. The real and imaginary part of the dielectric constant measured in the direction perpendicular to the trigonal axis show the relaxation anomalies much before 198 K and the activation energies were calculated. These anomalies were interpreted as a result of changes in the NH{sub 3}{sup +} vibrations through electron-phonon coupling of the so called “dynamical transition”. The anomalies of dielectric constant ε*{sub 11} and piezoelectric tensor component d{sub 14} taking place at 335 K are associated with an increase in ac conductivity caused by charge transfer of protons. - Graphical abstract: Imaginary part of dielectric constant in [100] direction. - Highlights: • Piezoelectric, elastic and dielectric constants anomalies were discovered at 189 K. • These anomalies were interpreted as a result of so called “dynamical transition”. • Relaxational dielectric anomaly was explained by the dynamics of glycine molecules. • Pyroelectric coefficient of γ-glycine was determined in a wide temperature range. • Complex dielectric & piezoelectric anomalies at 335 K were caused by protons hopping.

  3. Evidence on How a Conserved Glycine in the Hinge Region of HapR Regulates Its DNA Binding Ability: LESSONS FROM A NATURAL VARIANT.

    Energy Technology Data Exchange (ETDEWEB)

    M Dongre; N Singh; C Dureja; N Peddada; A Solanki; F Ashish; S Raychaudhuri

    2011-12-31

    HapR has been recognized as a quorum-sensing master regulator in Vibrio cholerae. Because it controls a plethora of disparate cellular events, the absence of a functional HapR affects the physiology of V. cholerae to a great extent. In the current study, we pursued an understanding of an observation of a natural protease-deficient non-O1, non-O139 variant V. cholerae strain V2. Intriguingly, a nonfunctional HapR (henceforth designated as HapRV2) harboring a substitution of glycine to aspartate at position 39 of the N-terminal hinge region has been identified. An in vitro gel shift assay clearly suggested the inability of HapRV2 to interact with various cognate promoters. Reinstatement of glycine at position 39 restores DNA binding ability of HapRV2 (HapRV2G), thereby rescuing the protease-negative phenotype of this strain. The elution profile of HapRV2 and HapRV2G proteins in size-exclusion chromatography and their circular dichroism spectra did not reflect any significant differences to explain the functional discrepancies between the two proteins. To gain insight into the structure-function relationship of these two proteins, we acquired small/wide angle x-ray scattering data from samples of the native and G39D mutant. Although Guinier analysis and indirect Fourier transformation of scattering indicated only a slight difference in the shape parameters, structure reconstruction using dummy amino acids concluded that although HapR adopts a 'Y' shape similar to its crystal structure, the G39D mutation in hinge drastically altered the DNA binding domains by bringing them in close proximity. This altered spatial orientation of the helix-turn-helix domains in this natural variant provides the first structural evidence on the functional role of the hinge region in quorum sensing-related DNA-binding regulatory proteins of Vibrio spp.

  4. The radiation stability of glycine in solid CO2 - In situ laboratory measurements with applications to Mars

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-05-01

    The detection of biologically important, organic molecules on Mars is an important goal that may soon be reached. However, the current small number of organic detections at the martian surface may be due to the harsh UV and radiation conditions there. It seems likely that a successful search will require probing the subsurface of Mars, where penetrating cosmic rays and solar energetic particles dominate the radiation environment, with an influence that weakens with depth. Toward the goal of understanding the survival of organic molecules in cold radiation-rich environments on Mars, we present new kinetics data on the radiolytic destruction of glycine diluted in frozen carbon dioxide. Rate constants were measured in situ with infrared spectroscopy, without additional sample manipulation, for irradiations at 25, 50, and 75 K with 0.8-MeV protons. The resulting half-lives for glycine in CO2-ice are compared to previous results for glycine in H2O-ice and show that glycine in CO2-ice is much less stable in a radiation environment, with destruction rate constants ∼20-40 times higher than glycine in H2O-ice. Extrapolation of these results to conditions in the martian subsurface results in half-lives estimated to be less than 100-200 Myr even at depths of a few meters.

  5. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Gharagozloo, Parviz; Birdsall, Nigel J M

    2006-01-01

    of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain...... of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization...... of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight...

  6. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, Mikhail [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Ioffe Physical Technical Institute, Russian Academy of Sciences, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Lahtonen, Kimmo; Vuori, Leena [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Sánchez-de-Armas, Rocío [Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S75120 Uppsala (Sweden); Hirsimäki, Mika, E-mail: mikahirsi@gmail.com [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Valden, Mika [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland)

    2017-07-01

    Highlights: • Deprotonation reaction of glycine and self-assembly of glycinate is observed on Cu. • Bias-dependent scanning tunneling microscopy indicates two glycinate geometries. • Density functional theory calculations confirm the two non-identical configurations. • Non-identical adsorption explains the anisotropy in adlayer’s electronic structure. - Abstract: Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH{sub 2}(CH{sub 2})COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH{sub 2}(CH{sub 2})COO–]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  7. The Hepatoprotection Provided by Taurine and Glycine against Antineoplastic Drugs Induced Liver Injury in an Ex Vivo Model of Normothermic Recirculating Isolated Perfused Rat Liver

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2016-03-01

    Full Text Available Taurine (2-aminoethane sulfonic acid is a non-protein amino acid found in high concentration in different tissues. Glycine (Amino acetic acid is the simplest amino acid incorporated in the structure of proteins. Several investigations indicate the hepatoprotective properties of these amino acids. On the other hand, antineoplastic agents-induced serum transaminase elevation and liver injury is a clinical complication. The current investigation was designed to screen the possible hepatoprotective properties of taurine and glycine against antineoplastic drugs-induced hepatic injury in an ex vivo model of isolated perfused rat liver. Rat liver was perfused with different concentration (10 μM, 100 μM and 1000 μM of antineoplastic drugs (Mitoxantrone, Cyclophosphamide, Cisplatin, 5 Fluorouracil, Doxorubicin and Dacarbazine via portal vein. Taurine and glycine were administered to drug-treated livers and liver perfusate samples were collected for biochemical measurements (ALT, LDH, AST, and K+. Markers of oxidative stress (reactive oxygen species formation, lipid peroxidation, total antioxidant capacity and glutathione were also assessed in liver tissue. Antineoplastic drugs caused significant pathological changes in perfusate biochemistry. Furthermore, markers of oxidative stress were significantly elevated in drug treated livers. It was found that taurine (5 and 10 mM and glycine (5 and 10 mM administration significantly mitigated the biomarkers of liver injury and attenuated drug induced oxidative stress. Our data indicate that taurine and glycine supplementation might help as potential therapeutic options to encounter anticancer drugs-induced liver injury.

  8. ABCE1 is a highly conserved RNA silencing suppressor.

    Directory of Open Access Journals (Sweden)

    Kairi Kärblane

    Full Text Available ATP-binding cassette sub-family E member 1 (ABCE1 is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference.

  9. Induced mutation in soybean (Glycine max L.) breeding

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Menten, J.O.M.; Ando, A.

    1984-01-01

    The induced mutation in soybean (Glycine max, L.) breeding is studied. Seed treatment with gamma-rays or methanesulfonic acid ethyl ester (EMs) is used in the following varieties: Parana, Santa Rosa, UFV-1, Foscarin 31 and IAC-8. The study to obtain resistance to the soybean bud blight virus and mutants resistant to rust was done. Early mutants are also researched. (M.A.C.) [pt

  10. RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome

    Directory of Open Access Journals (Sweden)

    Severin Andrew J

    2010-08-01

    Full Text Available Abstract Background Next generation sequencing is transforming our understanding of transcriptomes. It can determine the expression level of transcripts with a dynamic range of over six orders of magnitude from multiple tissues, developmental stages or conditions. Patterns of gene expression provide insight into functions of genes with unknown annotation. Results The RNA Seq-Atlas presented here provides a record of high-resolution gene expression in a set of fourteen diverse tissues. Hierarchical clustering of transcriptional profiles for these tissues suggests three clades with similar profiles: aerial, underground and seed tissues. We also investigate the relationship between gene structure and gene expression and find a correlation between gene length and expression. Additionally, we find dramatic tissue-specific gene expression of both the most highly-expressed genes and the genes specific to legumes in seed development and nodule tissues. Analysis of the gene expression profiles of over 2,000 genes with preferential gene expression in seed suggests there are more than 177 genes with functional roles that are involved in the economically important seed filling process. Finally, the Seq-atlas also provides a means of evaluating existing gene model annotations for the Glycine max genome. Conclusions This RNA-Seq atlas extends the analyses of previous gene expression atlases performed using Affymetrix GeneChip technology and provides an example of new methods to accommodate the increase in transcriptome data obtained from next generation sequencing. Data contained within this RNA-Seq atlas of Glycine max can be explored at http://www.soybase.org/soyseq.

  11. Theoretical study of the possibility of glycin with thiotriazoline complexes formation

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-10-01

    Full Text Available Brain strokes are widely spread all over the world and are among the most dangerous for the population. Often it leads to death, complete or partial loss of ability to work. The correction of imbalance of Excitatory and inhibitory neurotransmitter systems by activation of natural inhibitory processes is a promising direction of primary neuroprotection in cerebral ischemia. Particular attention is drawn to the natural inhibitory neurotransmitter – glycine and its role in the mechanisms of acute cerebral ischemia. There are data on the ability of the thiotriazoline antioxidant to potentiate the therapeutic effect of neurometabolic cerebroprotectors. Therefore, the creation of new combined preparation based on glycine with thiotriazoline is important today. Objective: to study the structure, and estimate the energy of formation and geometric characteristics of the intermolecular hydrogen bonds for complexes which are formed with glycine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA and morpholine. Method of calculation. The initial approximation to the structure of the complexes was obtained with the help of molecular docking procedure using the AutoDock Vina program. The resulting three-component complexes were preliminarily optimized by the semiempirical PM7 method, taking into account the outward influences, which was simulated by the COSMO method. The calculations were carried out using the MOPAC2012 program. The complexes were optimized using the density functional method with the empirical dispersion correction B97-D3/SVP+COSMO (Water using geometric correction for the incompleteness of the gCP basic set. A more accurate calculation of the solvation energy was carried out by SMD method. Calculations by the density functional method were carried out using the ORCA 3.0.3 program. The energy of formation of complexes in solution was calculated as the difference between the free Gibbs energies of the solvated complex and its individual solvated

  12. Incorporation of glycine and serine into sporulating cells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Mitani, Takahiko; Kadota, Hajime

    1976-01-01

    The changes during growth and sporulation in activities of cells of Bacillus subtilis to incorporate various amino acids were investigated with wild-type strain and its asporogenous mutant. In the case of wild type strain the uptake of valine, phenylalanine, and proline was largest during the logarithmic growth period. The uptake of these amino acids decreased rapidly during the early stationary phase. The uptake of valine and cysteine increased again to some extent just prior to the forespore stage. The uptake of glycine and serine, however, was largest at the forespore stage at which the formation of spore coat took place. From these observed phenomena it was assumed that the remarkable incorporation of glycine and serine into the wild type strain during sporulation was closely related to the formation of spore coat. (auth.)

  13. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    Science.gov (United States)

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  14. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases. In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7. A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7 were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2 and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi. Similarly, this procedure reduced the number of female adults at 40 dpi

  15. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.

    Science.gov (United States)

    Shang, Lijun; Tucker, Stephen J

    2008-02-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K(+) channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the "helix-bundle crossing". However, in the inwardly rectifying (Kir) potassium channel family, the role of this "hinge" residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper "hinge" residues are in close contact with the base of the pore alpha-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the "lower" gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue.

  16. Measurement and modelling of mean activity coefficients of aqueous mixed electrolyte solution containing glycine

    Energy Technology Data Exchange (ETDEWEB)

    Dehghani, M.R. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) ; Modarress, H. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) ]. E-mail: hmodares@aut.ac.ir; Monirfar, M. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2006-08-15

    Electrochemical measurements were made on (H{sub 2}O + NaBr + K{sub 3}PO{sub 4} + glycine) mixtures at T = 298.15 K by using ion selective electrodes. The mean ionic activity coefficients of NaBr at molality 0.1 were determined at five K{sub 3}PO{sub 4} molalities (0.01, 0.03, 0.05, 0.07, and 0.1) mol . kg{sup -1}. The activity coefficients of glycine were evaluated from mean ionic activity coefficients of NaBr. The modified Pitzer equation was used to model the experimental data.

  17. Homologous high-throughput expression and purification of highly conserved E coli proteins

    Directory of Open Access Journals (Sweden)

    Duchmann Rainer

    2007-06-01

    Full Text Available Abstract Background Genetic factors and a dysregulated immune response towards commensal bacteria contribute to the pathogenesis of Inflammatory Bowel Disease (IBD. Animal models demonstrated that the normal intestinal flora is crucial for the development of intestinal inflammation. However, due to the complexity of the intestinal flora, it has been difficult to design experiments for detection of proinflammatory bacterial antigen(s involved in the pathogenesis of the disease. Several studies indicated a potential association of E. coli with IBD. In addition, T cell clones of IBD patients were shown to cross react towards antigens from different enteric bacterial species and thus likely responded to conserved bacterial antigens. We therefore chose highly conserved E. coli proteins as candidate antigens for abnormal T cell responses in IBD and used high-throughput techniques for cloning, expression and purification under native conditions of a set of 271 conserved E. coli proteins for downstream immunologic studies. Results As a standardized procedure, genes were PCR amplified and cloned into the expression vector pQTEV2 in order to express proteins N-terminally fused to a seven-histidine-tag. Initial small-scale expression and purification under native conditions by metal chelate affinity chromatography indicated that the vast majority of target proteins were purified in high yields. Targets that revealed low yields after purification probably due to weak solubility were shuttled into Gateway (Invitrogen destination vectors in order to enhance solubility by N-terminal fusion of maltose binding protein (MBP, N-utilizing substance A (NusA, or glutathione S-transferase (GST to the target protein. In addition, recombinant proteins were treated with polymyxin B coated magnetic beads in order to remove lipopolysaccharide (LPS. Thus, 73% of the targeted proteins could be expressed and purified in large-scale to give soluble proteins in the range of 500

  18. Enhancing Conservation with High Resolution Productivity Datasets for the Conterminous United States

    Science.gov (United States)

    Robinson, Nathaniel Paul

    Human driven alteration of the earth's terrestrial surface is accelerating through land use changes, intensification of human activity, climate change, and other anthropogenic pressures. These changes occur at broad spatio-temporal scales, challenging our ability to effectively monitor and assess the impacts and subsequent conservation strategies. While satellite remote sensing (SRS) products enable monitoring of the earth's terrestrial surface continuously across space and time, the practical applications for conservation and management of these products are limited. Often the processes driving ecological change occur at fine spatial resolutions and are undetectable given the resolution of available datasets. Additionally, the links between SRS data and ecologically meaningful metrics are weak. Recent advances in cloud computing technology along with the growing record of high resolution SRS data enable the development of SRS products that quantify ecologically meaningful variables at relevant scales applicable for conservation and management. The focus of my dissertation is to improve the applicability of terrestrial gross and net primary productivity (GPP/NPP) datasets for the conterminous United States (CONUS). In chapter one, I develop a framework for creating high resolution datasets of vegetation dynamics. I use the entire archive of Landsat 5, 7, and 8 surface reflectance data and a novel gap filling approach to create spatially continuous 30 m, 16-day composites of the normalized difference vegetation index (NDVI) from 1986 to 2016. In chapter two, I integrate this with other high resolution datasets and the MOD17 algorithm to create the first high resolution GPP and NPP datasets for CONUS. I demonstrate the applicability of these products for conservation and management, showing the improvements beyond currently available products. In chapter three, I utilize this dataset to evaluate the relationships between land ownership and terrestrial production

  19. Magnitude of a conformational change in the glycine receptor beta1-beta2 loop is correlated with agonist efficacy

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    associated with the closed-flip transition in the alpha1-glycine receptor. We employed voltage-clamp fluorometry to compare ligand-binding domain conformational changes induced by the following agonists, listed from highest to lowest affinity and efficacy: glycine > beta-alanine > taurine. Voltage...

  20. Revision of standard molar enthalpies of formation of glycine and L-alanine in the gaseous phase on the basis of theoretical calculations

    International Nuclear Information System (INIS)

    Dorofeeva, Olga V.; Ryzhova, Oxana N.

    2009-01-01

    The standard molar enthalpies of formation of urea, glycine, and L-alanine in the gaseous phase at 298.15 K were calculated by the high-level Gaussian-3X method. The agreement with the available experimental data is very good for urea and glycine and, thus, supports the high accuracy of calculated values. A significant discrepancy between theoretical and experimental enthalpy of formation values for L-alanine provides a reason to reconsider the experimental data previously used to derive the standard molar enthalpy of formation of L-alanine in the gaseous phase at 298.15 K. To obtain a more reliable value of enthalpy of sublimation at 298.15 K, the heat capacity values of gaseous L-alanine were calculated by standard statistical thermodynamics formulae using molecular parameters determined from B3LYP/cc-pVTZ calculations. With the obtained value of C p,m 0 (L-alanine, g, 298.15 K) = 112.6 ± 4.0 J . K -1 . mol -1 the original published experimental values of enthalpy of sublimation of L-alanine were readjusted to the reference temperature: Δ cr g H m (L-alanine, 298.15 K) = 135.2 ± 2.0 kJ . mol -1 . This value, together with the experimental enthalpy of formation of solid L-alanine, Δ f H m 0 (L-alanine, cr, 298.15 K) = -560.0 ± 1.0 kJ . mol -1 [S.N. Ngauv, R. Sabbah, M. Laffitte, Thermochim. Acta 20 (1977) 371-380; I. Contineanu, D.I. Marchidan, Rev. Roum. Chim. 29 (1984) 43-48], gives a new value for the enthalpy of formation of L-alanine in the gaseous phase, Δ f H m 0 (L-alanine, g, 298.15 K) = -424.8 ± 2.0 kJ . mol -1 , which is in good agreement with our theoretical G3X result, -427.6 ± 4.0 kJ . mol -1 . The same procedure for glycine allowed us to improve the literature value of the enthalpy of formation for this compound, Δ f H m 0 (glycine, g, 298.15 K) = -393.7 ± 1.5 kJ . mol -1 . As a result a set of self-consistent thermochemical data for glycine and L-alanine is proposed

  1. Integrating conservation costs into sea level rise adaptive conservation prioritization

    Directory of Open Access Journals (Sweden)

    Mingjian Zhu

    2015-07-01

    Full Text Available Biodiversity conservation requires strategic investment as resources for conservation are often limited. As sea level rises, it is important and necessary to consider both sea level rise and costs in conservation decision making. In this study, we consider costs of conservation in an integrated modeling process that incorporates a geomorphological model (SLAMM, species habitat models, and conservation prioritization (Zonation to identify conservation priorities in the face of landscape dynamics due to sea level rise in the Matanzas River basin of northeast Florida. Compared to conservation priorities that do not consider land costs in the analysis process, conservation priorities that consider costs in the planning process change significantly. The comparison demonstrates that some areas with high conservation values might be identified as lower priorities when integrating economic costs in the planning process and some areas with low conservation values might be identified as high priorities when considering costs in the planning process. This research could help coastal resources managers make informed decisions about where and how to allocate conservation resources more wisely to facilitate biodiversity adaptation to sea level rise.

  2. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation

    DEFF Research Database (Denmark)

    Weinert, Brian T; Wagner, Sebastian A; Horn, Heiko

    2011-01-01

    Posttranslational modification of proteins by acetylation and phosphorylation regulates most cellular processes in living organisms. Surprisingly, the evolutionary conservation of phosphorylated serine and threonine residues is only marginally higher than that of unmodified serines and threonines....... With high-resolution mass spectrometry, we identified 1981 lysine acetylation sites in the proteome of Drosophila melanogaster. We used data sets of experimentally identified acetylation and phosphorylation sites in Drosophila and humans to analyze the evolutionary conservation of these modification sites...... between flies and humans. Site-level conservation analysis revealed that acetylation sites are highly conserved, significantly more so than phosphorylation sites. Furthermore, comparison of lysine conservation in Drosophila and humans with that in nematodes and zebrafish revealed that acetylated lysines...

  3. Transcriptomic Analysis Of Purified Embryonic Neural Stem Cells From Zebrafish Embryos Reveals Signalling Pathways Involved In Glycine-dependent Neurogenesis

    Directory of Open Access Journals (Sweden)

    Eric eSAMARUT

    2016-03-01

    Full Text Available How is the initial set of neurons correctly established during the development of the vertebrate central nervous system? In the embryo, glycine and GABA are depolarizing due the immature chloride gradient, which is only reversed to become hyperpolarizing later in post-natal development. We previously showed that glycine regulates neurogenesis via paracrine signalling that promotes calcium transients in neural stem cells (NSCs and their differentiation into interneurons within the spinal cord of the zebrafish embryo. However, the subjacent molecular mechanisms are not yet understood. Our previous work suggests that early neuronal progenitors were not differentiating correctly in the developing spinal cord. As a result, we aimed at identifying the downstream molecular mechanisms involved specifically in NSCs during glycine-dependent embryonic neurogenesis. Using a gfap:GFP transgenic line, we successfully purified NSCs by fluorescence-activated cell sorting (FACS from whole zebrafish embryos and in embryos in which the glycine receptor was knocked down. The strength of this approach is that it focused on the NSC population while tackling the biological issue in an in vivo context in whole zebrafish embryos. After sequencing the transcriptome by RNA-sequencing, we analyzed the genes whose expression was changed upon disruption of glycine signalling and we confirmed the differential expression by independent RTqPCR assay. While over a thousand genes showed altered expression levels, through pathway analysis we identified 14 top candidate genes belonging to five different canonical signalling pathways (signalling by calcium, TGF-beta, sonic hedgehog, Wnt and p53-related apoptosis that are likely to mediate the promotion of neurogenesis by glycine.

  4. Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking

    Directory of Open Access Journals (Sweden)

    Alkharouf Nadim W

    2009-03-01

    as they undergo an R or S reaction. The identification of genes like steroid alpha reductase and serine proteinase that are involved in feeding and nutritional uptake as being highly suppressed during the R response at 8d may indicate genes that the plant is targeting. The analyses also identified numerous putative parasitism genes that are differentially expressed. The 1668 genes that are suppressed in NL1-RHg, and hence induced in TN8 may represent genes that are important during the parasitic stages of H. glycines development. The potential for different arrays of putative parasitism genes to be expressed in different nematode populations may indicate how H. glycines evolve mechanisms to overcome resistance.

  5. High-resolution finite-difference algorithms for conservation laws

    International Nuclear Information System (INIS)

    Towers, J.D.

    1987-01-01

    A new class of Total Variation Decreasing (TVD) schemes for 2-dimensional scalar conservation laws is constructed using either flux-limited or slope-limited numerical fluxes. The schemes are proven to have formal second-order accuracy in regions where neither u/sub x/ nor y/sub y/ vanishes. A new class of high-resolution large-time-step TVD schemes is constructed by adding flux-limited correction terms to the first-order accurate large-time-step version of the Engquist-Osher scheme. The use of the transport-collapse operator in place of the exact solution operator for the construction of difference schemes is studied. The production of spurious extrema by difference schemes is studied. A simple condition guaranteeing the nonproduction of spurious extrema is derived. A sufficient class of entropy inequalities for a conservation law with a flux having a single inflection point is presented. Finite-difference schemes satisfying a discrete version of each entropy inequality are only first-order accurate

  6. Molecular identification and characterisation of the glycine transporter (GLYT1) and the glutamine/glutamate transporter (ASCT2) in the rat lens

    DEFF Research Database (Denmark)

    Lim, Julie; Lorentzen, Karen Axelgaard; Kistler, Joerg

    2006-01-01

    Glutathione (GSH) is an essential antioxidant required for the maintenance of lens transparency. In the lens, GSH is maintained at unusually high concentrations as a result of direct GSH uptake and/or intracellular de novo synthesis from its precursor amino acids; cysteine, glycine and glutamine/...

  7. Glycine Perturbs Local and Global Conformational Flexibility of a Transmembrane Helix

    DEFF Research Database (Denmark)

    Högel, Philipp; Götz, Alexander; Kuhne, Felix

    2018-01-01

    Flexible transmembrane helices frequently support the conformational transitions between different functional states of membrane proteins. While proline is well known to distort and destabilize transmembrane helices, the role of glycine is still debated. Here, we systematically investigated the e...

  8. Study by electron spin resonance of the free radicals created under irradiation in glycine

    International Nuclear Information System (INIS)

    Thomet, P.; Rassat, A.; Servoz-Gavin, P.; Choudens, H. de

    1967-01-01

    The free radicals created by different radiations in glycine are measured by electron spin resonance and their number is evaluated in function of the absorbed dose. This number decreases when the LET of the radiations increases ; in other words,high LET radiations gives less radiochemical effects; in contrary with the fact that high LET radiations creates more damage in biological materials. The decreasing with time of the number of free radicals and the speed of this decrease is a function of temperature; by the study of the kinetics of this decrease, an attempt has been made to prove the presence of three radicals. (authors) [fr

  9. Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mohammed El-Hafidi

    2018-01-01

    Full Text Available Oxidative stress and redox status play a central role in the link between insulin resistance (IR and lipotoxicity in metabolic syndrome. This mechanistic link may involve alterations in the glutathione redox state. We examined the effect of glycine supplementation to diet on glutathione biosynthesis, oxidative stress, IR, and insulin cell signaling in liver from sucrose-fed (SF rats characterized by IR and oxidative stress. Our hypothesis is that the correction of glutathione levels by glycine treatment leads to reduced oxidative stress, a mechanism associated with improved insulin signaling and IR. Glycine treatment decreases the levels of oxidative stress markers in liver from SF rats and increases the concentrations of glutathione (GSH and γ-glutamylcysteine and the amount of γ-glutamylcysteine synthetase (γ-GCS, a key enzyme of GSH biosynthesis in liver from SF rats. In liver from SF rats, glycine also decreases the insulin-induced phosphorylation of insulin receptor substrate-1 (ISR-1 in serine residue and increases the phosphorylation of insulin receptor β-subunit (IR-β in tyrosine residue. Thus, supplementing diets with glycine to correct GSH deficiency and to reduce oxidative stress provides significant metabolic benefits to SF rats by improving insulin sensitivity.

  10. Conservative Management for Stable High Ankle Injuries in Professional Football Players.

    Science.gov (United States)

    Knapik, Derrick M; Trem, Anthony; Sheehan, Joseph; Salata, Michael J; Voos, James E

    High ankle "syndesmosis" injuries are common in American football players relative to the general population. At the professional level, syndesmotic sprains represent a challenging and unique injury lacking a standardized rehabilitation protocol during conservative management. PubMed, Biosis Preview, SPORTDiscus, PEDro, and EMBASE databases were searched using the terms syndesmotic injuries, American football, conservative management, and rehabilitation. Clinical review. Level 3. When compared with lateral ankle sprains, syndesmosis injuries result in significantly prolonged recovery times and games lost. For stable syndesmotic injuries, conservative management features a brief period of immobilization and protected weightbearing followed by progressive strengthening exercises and running, and athletes can expect to return to competition in 2 to 6 weeks. Further research investigating the efficacy of dry needling and blood flow restriction therapy is necessary to evaluate the benefit of these techniques in the rehabilitation process. Successful conservative management of stable syndesmotic injuries in professional American football athletes requires a thorough understanding of the anatomy, injury mechanisms, diagnosis, and rehabilitation strategies utilized in elite athletes.

  11. The Radiolytic Destruction of Glycine Diluted in H2O and CO2 Ice: Implications for Mars and Other Planetary Environments

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, R. L.

    2013-10-01

    Future missions to Mars and other planetary surfaces will probe under the surfaces of these worlds for signs of organic chemistry. In previous studies we have shown that glycine and other amino acids have radiolytic destruction rates that depend on temperature and on dilution within an H2O ice matrix (Gerakines et al., 2012; Gerakines and Hudson 2013). In the new work presented here, we have examined the destruction of glycine diluted in CO2 ice at various concentrations and irradiated with protons at 0.8 MeV, typical of cosmic rays and solar energetic particles. Destruction rates for glycine were measured by infrared spectroscopy in situ, without removing or warming the ice samples. New results on the half life of glycine in solid CO2 will be compared to those found in H2O ice matrices. The survivability of glycine in icy planetary surfaces rich in H2O and CO2 ice will be discussed, and the implications for planetary science missions will be considered. References: Gerakines, P. A., Hudson, R. L., Moore, M. H., and Bell, J-L. (2012). In-situ Measurements of the Radiation Stability of Amino Acids at 15 - 140 K. Icarus, 220, 647-659. Gerakines, P. A. and Hudson, R. L. (2013). Glycine's Radiolytic Destruction in Ices: First in situ Laboratory Measurements for Mars. Astrobiology, 13, 647-655.

  12. Spatial overlap between environmental policy instruments and areas of high conservation value in forest.

    Science.gov (United States)

    Sverdrup-Thygeson, Anne; Søgaard, Gunnhild; Rusch, Graciela M; Barton, David N

    2014-01-01

    In order to safeguard biodiversity in forest we need to know how forest policy instruments work. Here we use a nationwide network of 9400 plots in productive forest to analyze to what extent large-scale policy instruments, individually and together, target forest of high conservation value in Norway. We studied both instruments working through direct regulation; Strict Protection and Landscape Protection, and instruments working through management planning and voluntary schemes of forest certification; Wilderness Area and Mountain Forest. As forest of high conservation value (HCV-forest) we considered the extent of 12 Biodiversity Habitats and the extent of Old-Age Forest. We found that 22% of productive forest area contained Biodiversity Habitats. More than 70% of this area was not covered by any large-scale instruments. Mountain Forest covered 23%, while Strict Protection and Wilderness both covered 5% of the Biodiversity Habitat area. A total of 9% of productive forest area contained Old-Age Forest, and the relative coverage of the four instruments was similar as for Biodiversity Habitats. For all instruments, except Landscape Protection, the targeted areas contained significantly higher proportions of HCV-forest than areas not targeted by these instruments. Areas targeted by Strict Protection had higher proportions of HCV-forest than areas targeted by other instruments, except for areas targeted by Wilderness Area which showed similar proportions of Biodiversity Habitats. There was a substantial amount of spatial overlap between the policy tools, but no incremental conservation effect of overlapping instruments in terms of contributing to higher percentages of targeted HCV-forest. Our results reveal that although the current policy mix has an above average representation of forest of high conservation value, the targeting efficiency in terms of area overlap is limited. There is a need to improve forest conservation and a potential to cover this need by better

  13. Reaction of some selected soybean varieties ( Glycine max (L) Merril)

    African Journals Online (AJOL)

    In nematode endemic ecological zones, TGX-1985 – 8F is therefore recommended as it proved to contain some specialized genes that conferred a higher level of tolerance against root- knot nematode, Meloidogyne incognita. Key Words: Glycine max, root – knot nematode, Dominant loci, Mi – 1.2, leucine zipper and R ...

  14. Autoantibodies in infectious mononucleosis have specificity for the glycine-alanine repeating region of the Epstein-Barr virus nuclear antigen

    Science.gov (United States)

    1987-01-01

    Viruses have been postulated to be involved in the induction of autoantibodies by: autoimmunization with tissue proteins released by virally induced tissue damage; immunization with virally encoded antigens bearing molecular similarities to normal tissue proteins; or nonspecific (polyclonal) B cell stimulation by the infection. Infectious mononucleosis (IM) is an experiment of nature that provides the opportunity for examining these possibilities. We show here that IgM antibodies produced in this disease react with at least nine normal tissue proteins, in addition to the virally encoded Epstein-Barr nuclear antigen (EBNA-1). The antibodies are generated to configurations in the glycine-alanine repeat region of EBNA-1 and are crossreactive with the normal tissue proteins through similar configurations, as demonstrated by the effectiveness of a synthetic glycine-alanine peptide in inhibiting the reactions. The antibodies are absent in preillness sera and gradually disappear over a period of months after illness, being replaced by IgG anti-EBNA-1 antibodies that do not crossreact with the normal tissue proteins but that are still inhibited by the glycine-alanine peptide. These findings are most easily explained by either a molecular mimicry model of IgM autoantibody production or by the polyclonal activation of a germline gene for a crossreactive antibody. It also indicates a selection of highly specific, non-crossreactive anti-EBNA-1 antibodies during IgM to IgG isotype switching. PMID:2435830

  15. Evaluation of glutamic acid and glycine as sources of nonessential amino acids for lake trout (Salvelinus namaycush) and rainbow trout (Salmo gairdnerii)

    Science.gov (United States)

    Hughes, S.G.

    1985-01-01

    1. A semi-purified test diet which contained either glutamic acid or glycine as the major source of nonessential amino acids (NEAA) was fed to lake and rainbow trout.2. Trout fed the diet containing glutamic acid consistently showed better growth and feed conversion efficiencies than those fed the diets containing glycine.3. The data indicate that these trout utilize glutamic acid more efficiently than glycine when no other major sources of NEAA are present.

  16. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    Science.gov (United States)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  17. The comparative analysis of antiparkinsonian activity of glycine combined with amantadine in conditions of changing neurosynaptic transmission

    Directory of Open Access Journals (Sweden)

    Mamchur V.I.

    2017-10-01

    Full Text Available Parkinson's disease is traditionally viewed as a disease which affects the human motor sphere. Besides motor manifestations in the clinical picture of the disease, non-motor manifestations with dementia as the most common are present. The purpose of the work – experimental evaluation of the possible antiparkinsonian action of glycine in terms of experimental models of Parkinson's disease equivalents (akinetic-rigid and tremor forms on the background of antiparkinsonian correction by amantadine. Methods: catalepsy model (inhibition of dopaminergic transmission, equivalents of hypokinesia and rigidity states and model of arekolyn tremor (activation of cholinergic transmission that corresponds to parkinsonian tremor on the background of amantadine administration (50 mg/kg, glycine (100 mg/kg and 200 mg/kg and their combined introduction. The research results show a positive dynamic in combined using of amantadine with glycine at a dose of 100 mg/kg and 200 mg/kg, which was is determined by the low percentage of animals with symptoms of catalepsy (50-70% with evaluation criteria of 0.5-1.8 points with maximum possible 6 points. Similar results were obtained in terms of activation of the cholinergic system (arekolyn tremor. Glycine at a dose of 100 mg/kg and 200 mg/kg facilitated to optimization of antitremor action of amantadine, that is registered in increased latent period of tremor, reduction of its duration and intensity attenuation almost by 2,1 times in comparison with indicators of the control group. Thus, studied combinations of amantadine with glycine at a dose of 100 mg/kg and 200 mg/kg are promising in studying of their influence on dementia in Parkinson's syndrome, and this study will be continued.

  18. Effect of surface structure and wettability of DLC and N-DLC thin films on adsorption of glycine

    International Nuclear Information System (INIS)

    Ahmed, Mukhtar H.; Byrne, John A.

    2012-01-01

    Diamond-like carbon (DLC) is known to have excellent biocompatibility. Various samples of DLC and nitrogen-doped DLC thin films (N-DLC) were deposited onto silicon substrates using plasma-enhanced chemical vapour deposition (PECVD). Subsequently, the adsorption of amino acid glycine onto the surfaces of the thin films was investigated to elucidate the mechanisms involved in protein adhesion. The physicochemical characteristics of the surfaces, before and after adsorption of glycine, were investigated using Fourier transfer infrared (FTIR), Raman spectroscopy, spectroscopic ellipsometry (SE) and contact angle (θ). The Raman study highlighted decrease slightly in the ID/IG ratio at low levels of N (5.4 at.%), whilst increasing the nitrogen dopant level (>5.4 at.%) resulted in a increase of the ID/IG ratio, and the FTIR band at related to C=N. Following exposure to glycine solutions, the presence of Raman bands at 1727 cm -1 and 1200 cm -1 , and FTIR bands at 1735 cm -1 indicates that the adsorption of glycine onto the surfaces has taken place. These results which obtained from SE and surface free energy, show that low levels of nitrogen doping in DLC enhances the adsorption of the amino acid, while, increased doping led to a reduced adsorption, as compared to undoped DLC. Glycine is bound to the surface of the DLC films via both de-protonated carboxyl and protonated amino groups while, in the case of N-DLC gylcine was bound to the surface via anionic carboxyl groups and the amino group did not interact strongly with the surface. Doping of DLC may allow control of protein adsorption to the surface.

  19. Distribución e identificación de especies hospedantes de Heterodera glycines Ichinohe raza 3 en el Valle del Cauca

    Directory of Open Access Journals (Sweden)

    Varón de Agudelo Francia

    1988-06-01

    Full Text Available Se dividió la parte plana del Valle del Cauca en tres zonas (norte, centro y sur, habiéndose visitado 33 fincas. En la zona norte las malezas con mayor porcentaje de frecuencia y distribución en los cultivos de soya fueron Digitaria horizontalis, Echinochloa colonum y Leptochloa filiformis; en la zona centro Ipomoea hirta, Amaranthus dubius y Echinochloa colonum y en la zona sur predominaron Ipomoea hirta, Portulaca oleracea Cyperus rotundus. Los análisis de muestras de suelo y raíces indicaron que H. glycines se encuentra distribuido en todo el Valle del Cauca, presentando la zona sur (Candelaria, Palmira y Puerto Tejada las mayores poblaciones. Entre las especies evaluadas (malezas, cultivos, leguminosas forrajeras y silvestres, solamente Glycine max y Phaseolus vulgaris se consideraron como susceptibles a H. glycines raza 3. y P. angularis y P. multiflora permitieron muy poca infección y multiplicación del nemátodo.A nematode recognition of Heterodera glycines was focused on crops of soybean. Valle del Cauca was divided in three zones (northen, central and southern and 33 farms were visited. The results of the analysis on samples of soils and roots showe that Heterodera glycines is scattered throughout Valle del Cauca, being the southern zone (Palmira, Candelaria and Puerto Tejada the one having the highest standards in nematode population. Weeds showing a greater frequency percentage were : Digitaria horizontalis, Echinochloa colonum and Leptochloa filiformis, in the northen zone; Ipomoea hirta, Amaranthus dubius and Echinochloa colonum, in the central zone, and Ipomoea hirta, Portulaca oleracea and Cyperus rotundus, in the southern zone , From among the whole species evaluated (weeds, crops, leguminous a n d fodder plants, Glycine max and Phaseolus vulgaris were considered to be susceptible to H. Glycines race 3. Phaseolus angularis y P. multiflora let low population levels.

  20. Crystal growth and characterization of a semiorganic nonlinear optical single crystal of gamma glycine

    International Nuclear Information System (INIS)

    Prakash, J. Thomas Joseph; Kumararaman, S.

    2008-01-01

    Gamma glycine has been successfully synthesized by taking glycine and potassium chloride and single crystals have been grown by solvent evaporation method for the first time. The grown single crystals have been analyzed with XRD, Fourier transform infrared (FTIR), and thermo gravimetric and differential thermal analyses (TG/DTA) measurements. Its mechanical behavior has been assessed by Vickers microhardness measurements. Its nonlinear optical property has been tested by Kurtz powder technique. Its optical behavior was examined by UV-vis., and found that the crystal is transparent in the region between 240 and 1200 nm. Hence, it may be very much useful for the second harmonic generation (SHG) applications

  1. Evolutionary growth process of highly conserved sequences in vertebrate genomes.

    Science.gov (United States)

    Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi

    2012-08-01

    Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Analgesic effect of GT-0198, a structurally novel glycine transporter 2 inhibitor, in a mouse model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Yu Omori

    2015-03-01

    Full Text Available This study was conducted to identify the characteristic pharmacological features of GT-0198 that is phenoxymethylbenzamide derivatives. GT-0198 inhibited the function of glycine transporter 2 (GlyT2 in human GlyT2-expressing HEK293 cells and did not bind various major transporters or receptors of neurotransmitters in a competitive manner. Thus, GT-0198 is considered to be a comparatively selective GlyT2 inhibitor. Intravenous, oral, and intrathecal injections of GT-0198 decreased the pain-related response in a model of neuropathic pain with partial sciatic nerve ligation. This result suggests that GT-0198 has an analgesic effect. The analgesic effect of GT-0198 was abolished by the intrathecal injection of strychnine, a glycine receptor antagonist. Therefore, GT-0198 is considered to exhibit its analgesic effect via the activation of a glycine receptor by glycine following presynaptic GlyT2 inhibition in the spinal cord. In summary, GT-0198 is a structurally novel GlyT2 inhibitor bearing a phenoxymethylbenzamide moiety with in vivo efficacy in behavioral models of neuropathic pain.

  3. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.

    Science.gov (United States)

    Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng

    2017-10-01

    To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synthesis, Crystal Structure of a Novel Mn Complex with Nicotinoyl-Glycine

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-12-01

    Full Text Available A novel manganese complex, C16H26MnN4O12, was synthesized by the reaction of nicotinoyl-glycine and NaOH in an ethanol/water solution and structurally characterized by elemental analysis, UV-vis spectrum, IR spectrum and single-crystal X-ray diffraction analysis. The crystal of the complex belongs to the triclinic space group P1 with a = 7.8192(16 Å, b = 8.8800(18 Å, c = 9.0142(18 Å, α = 83.14(3°, β = 65.27(3°, γ = 81.67(3°, V = 516.3(2 Å3, Z = 1, Dx = 1.542 mg·m−3, μ = 0.66 mm−1, F(000 = 271, and final R1 = 0.0381, ωR2 = 0.0964. The nicotinoyl-glycine ligand acts as a bridging ligand to connect the manganese ions by the hydrogen interactions; thus, the complex expands into a 3D supramolecular net structure.

  5. Thermal and Electrical Properties of Polyaniline-glycine Composites

    Science.gov (United States)

    Mathavan, T.; Umapathy, S.; Jothirajan, M. A.; Vivekanandam, T. S.; Okram, G. S.

    2011-07-01

    Polymer-amino acid composites were prepared by combining the synthesized polyaniline and glycine in solid state. The samples were characterized by modulated DSC and AFM. Modulated DSC thermogram showed the structural changes occurred while composite formation. D.C electrical conductivity measurements were carried out on the samples in the temperature range of 310 K-85 K by using two-probe method. Analysis of D.C conductivity results revealed that the conductivity was governed by Mott's 2-dimensional variable range hopping.

  6. Constrained dansyl derivatives reveal bacterial specificity of highly conserved thymidylate synthases.

    Science.gov (United States)

    Calò, Sanuele; Tondi, Donatella; Ferrari, Stefania; Venturelli, Alberto; Ghelli, Stefano; Costi, Maria Paola

    2008-03-25

    The elucidation of the structural/functional specificities of highly conserved enzymes remains a challenging area of investigation, and enzymes involved in cellular replication are important targets for functional studies and drug discovery. Thymidylate synthase (TS, ThyA) governs the synthesis of thymidylate for use in DNA synthesis. The present study focused on Lactobacillus casei TS (LcTS) and Escherichia coli TS (EcTS), which exhibit 50 % sequence identity and strong folding similarity. We have successfully designed and validated a chemical model in which linear, but not constrained, dansyl derivatives specifically complement the LcTS active site. Conversely, chemically constrained dansyl derivatives showed up to 1000-fold improved affinity for EcTS relative to the inhibitory activity of linear derivatives. This study demonstrates that the accurate design of small ligands can uncover functional features of highly conserved enzymes.

  7. Induced-Decay of Glycine Decarboxylase Transcripts as an Anticancer Therapeutic Strategy for Non-Small-Cell Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    Jing Lin

    2017-12-01

    Full Text Available Self-renewing tumor-initiating cells (TICs are thought to be responsible for tumor recurrence and chemo-resistance. Glycine decarboxylase, encoded by the GLDC gene, is reported to be overexpressed in TIC-enriched primary non-small-cell lung carcinoma (NSCLC. GLDC is a component of the mitochondrial glycine cleavage system, and its high expression is required for growth and tumorigenic capacity. Currently, there are no therapeutic agents against GLDC. As a therapeutic strategy, we have designed and tested splicing-modulating steric hindrance antisense oligonucleotides (shAONs that efficiently induce exon skipping (half maximal inhibitory concentration [IC50] at 3.5–7 nM, disrupt the open reading frame (ORF of GLDC transcript (predisposing it for nonsense-mediated decay, halt cell proliferation, and prevent colony formation in both A549 cells and TIC-enriched NSCLC tumor sphere cells (TS32. One candidate shAON causes 60% inhibition of tumor growth in mice transplanted with TS32. Thus, our shAONs candidates can effectively inhibit the expression of NSCLC-associated metabolic enzyme GLDC and may have promising therapeutic implications.

  8. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans

    DEFF Research Database (Denmark)

    Orskov, C; Rabenhøj, L; Wettergren, A

    1994-01-01

    Using specific radioimmunoassays, we studied the occurrence of amidated and glycine-extended glucagon-like peptide I (GLP-I) molecules in the human small intestine and pancreas and in the circulation system in response to a breakfast meal. Through gel permeation chromatography of extracts...... plasma were 7 +/- 1 and 6 +/- 1 pM, respectively (n = 6). In response to a breakfast meal, the concentration of amidated GLP-I rose significantly amounting to 41 +/- 5 pM 90 min after the meal ingestion, whereas the concentration of glycine-extended GLP-I only rose slightly to a maximum of 10 +/- 1 p...

  9. Heat Effect of the Protonation of Glycine and the Enthalpies of Resolvation of Participating Chemical Species in Water-Dimethylsulfoxide Solvent Mixtures

    Science.gov (United States)

    Isaeva, V. A.; Sharnin, V. A.

    2018-02-01

    Enthalpies of the protonation of glycine in water‒dimethylsulfoxide (DMSO) mixed solvents are determined calorimetrically in the range of DMSO mole fractions of 0.0 to 0.9, at T = 298.15 K and an ionic strength μ = 0.3 (NaClO4). It is established that the protonation of glycine becomes more exothermic with an increasing mole fraction of DMSO, and the enthalpies of resolvation of glycine and glycinium ions in water‒DMSO solvent mixtures are calculated. It is shown that the small changes in the enthalpy of protonation observed at low mole fractions of DMSO are caused by the contributions from the solvation of proton and protonated glycine cancelling each other out. The enthalpy term of the Gibbs energy of the reaction leading to the formation of glycinium ion is estimated along with the enthalpy of resolvation of the reacting species in the water‒DMSO mixed solvent.

  10. Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts)

    DEFF Research Database (Denmark)

    Yin, Weizhao; Huang, Lizhi; Pedersen, Emil Bjerglund

    2017-01-01

    Layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) are efficient reducing agents against oxidizing contaminants such as chromate, nitrate, selenite, and nitroaromatic compounds and chlorinated solvents. In this study, we adopted a buffered precipitation approach where glycine (GLY) was used...

  11. Bioanalytical method development and validation for the determination of glycine in human cerebrospinal fluid by ion-pair reversed-phase liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Jiang, Jian; James, Christopher A; Wong, Philip

    2016-09-05

    A LC-MS/MS method has been developed and validated for the determination of glycine in human cerebrospinal fluid (CSF). The validated method used artificial cerebrospinal fluid as a surrogate matrix for calibration standards. The calibration curve range for the assay was 100-10,000ng/mL and (13)C2, (15)N-glycine was used as an internal standard (IS). Pre-validation experiments were performed to demonstrate parallelism with surrogate matrix and standard addition methods. The mean endogenous glycine concentration in a pooled human CSF determined on three days by using artificial CSF as a surrogate matrix and the method of standard addition was found to be 748±30.6 and 768±18.1ng/mL, respectively. A percentage difference of -2.6% indicated that artificial CSF could be used as a surrogate calibration matrix for the determination of glycine in human CSF. Quality control (QC) samples, except the lower limit of quantitation (LLOQ) QC and low QC samples, were prepared by spiking glycine into aliquots of pooled human CSF sample. The low QC sample was prepared from a separate pooled human CSF sample containing low endogenous glycine concentrations, while the LLOQ QC sample was prepared in artificial CSF. Standard addition was used extensively to evaluate matrix effects during validation. The validated method was used to determine the endogenous glycine concentrations in human CSF samples. Incurred sample reanalysis demonstrated reproducibility of the method. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Glycine Transporter Inhibitor Attenuates the Psychotomimetic Effects of Ketamine in Healthy Males: Preliminary Evidence

    Science.gov (United States)

    D'Souza, Deepak Cyril; Singh, Nagendra; Elander, Jacqueline; Carbuto, Michelle; Pittman, Brian; de Haes, Joanna Udo; Sjogren, Magnus; Peeters, Pierre; Ranganathan, Mohini; Schipper, Jacques

    2012-01-01

    Enhancing glutamate function by stimulating the glycine site of the NMDA receptor with glycine, -serine, or with drugs that inhibit glycine reuptake may have therapeutic potential in schizophrenia. The effects of a single oral dose of cis-N-methyl-N-(6-methoxy-1-phenyl-1,2,3,4-tetrahydronaphthalen-2-ylmethyl) amino-methylcarboxylic acid hydrochloride (Org 25935), a glycine transporter-1 (GlyT1) inhibitor, and placebo pretreatment on ketamine-induced schizophrenia-like psychotic symptoms, perceptual alterations, and subjective effects were evaluated in 12 healthy male subjects in a randomized, counter-balanced, within-subjects, crossover design. At 2.5 h after administration of the Org 25935 or placebo, subjects received a ketamine bolus and constant infusion lasting 100 min. Psychotic symptoms, perceptual, and a number of subjective effects were assessed repeatedly before, several times during, and after completion of ketamine administration. A cognitive battery was administered once per test day. Ketamine produced behavioral, subjective, and cognitive effects consistent with its known effects. Org 25935 reduced the ketamine-induced increases in measures of psychosis (Positive and Negative Syndrome Scale (PANSS)) and perceptual alterations (Clinician Administered Dissociative Symptoms Scale (CADSS)). The magnitude of the effect of Org 25935 on ketamine-induced increases in Total PANSS and CADSS Clinician-rated scores was 0.71 and 0.98 (SD units), respectively. None of the behavioral effects of ketamine were increased by Org 25935 pretreatment. Org 25935 worsened some aspects of learning and delayed recall, and trended to improve choice reaction time. This study demonstrates for the first time in humans that a GlyT1 inhibitor reduces the effects induced by NMDA receptor antagonism. These findings provide preliminary support for further study of the antipsychotic potential of GlyT1 inhibitors. PMID:22113087

  13. Simulation and analysis of multi-stage centrifugal fractional extraction process of 4-nitrobenzene glycine enantiomers☆

    Institute of Scientific and Technical Information of China (English)

    Ping Wen; Kewen Tang; Jicheng Zhou; Panliang Zhang

    2015-01-01

    Based on the interfacial ligand exchange model and the law of conservation of mass, the multi-stage enantioselective liquid–liquid extraction model has been established to analyze and discuss on multi-stage centrifugal fractional extraction process of 4-nitrobenzene glycine (PGL) enantiomers. The influence of phase ratio, extractant concentra-tion, and PF6−concentration on the concentrations of enantiomers in the extract and raffinate was investigated by experiment and simulation. A good agreement between model and experiment was obtained. On this basis, the influence of many parameters such as location of stage, concentration levels, extractant excess, and number of stages on the symmetric separation performance was simulated. The optimal location of feed stage is the middle of fractional extraction equipment. The feed flow must satisfy a restricted relationship on flow ratios and the liquid throughout of centrifugal device. For desired purity specification, the required flow ratios decrease with extractant concentration and increase with PF6−concentration. When the number of stages is 18 stages at extractant excess of 1.0 or 14 stages at extractant excess of 2.0, the eeeq (equal enantiomeric excess) can reach to 99%.

  14. Gibberellic acid, amino acids (glycine and L-leucine), vitamin B 2 ...

    African Journals Online (AJOL)

    The combined effects of zinc, gibberellic acid, vitamin B2, amino acids (glycine and L-leucine) on pigment production were evaluated in a liquid culture of Monascus purpureus. In this study, response surface design was used to optimize each parameter. The data were analyzed using Minitab 14 software. Five parameters ...

  15. Effects of a glycine transporter-1 inhibitor and D-serine on MK-801-induced immobility in the forced swimming test in rats.

    Science.gov (United States)

    Kawaura, Kazuaki; Koike, Hiroyuki; Kinoshita, Kohnosuke; Kambe, Daiji; Kaku, Ayaka; Karasawa, Jun-ichi; Chaki, Shigeyuki; Hikichi, Hirohiko

    2015-02-01

    Glutamatergic dysfunction, particularly the hypofunction of N-methyl-D-aspartate (NMDA) receptors, is involved in the pathophysiology of schizophrenia. The positive modulation of the glycine site on the NMDA receptor has been proposed as a novel therapeutic approach for schizophrenia. However, its efficacy against negative symptoms, which are poorly managed by current medications, has not been fully addressed. In the present study, the effects of the positive modulation of the glycine site on the NMDA receptor were investigated in an animal model of negative symptoms of schizophrenia. The subchronic administration of MK-801 increased immobility in the forced swimming test in rats without affecting spontaneous locomotor activity. The increased immobility induced by MK-801 was attenuated by the atypical antipsychotic clozapine but not by either the typical antipsychotic haloperidol or the antidepressant imipramine, indicating that the increased immobility induced by subchronic treatment with MK-801 in the forced swimming test may represent a negative symptom of schizophrenia. Likewise, positive modulation of the glycine sites on the NMDA receptor using an agonist for the glycine site, D-serine, and a glycine transporter-1 inhibitor, N-[(3R)-3-([1,1'-biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine hydrochloride (NFPS), significantly reversed the increase in immobility in MK-801-treated rats without reducing the immobility time in vehicle-treated rats. The present results show that the stimulation of the NMDA receptor through the glycine site on the receptor either directly with D-serine or by blocking glycine transporter-1 attenuates the immobility elicited by the subchronic administration of MK-801 and may be potentially useful for the treatment of negative symptoms of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Science.gov (United States)

    Kuzmin, Mikhail; Lahtonen, Kimmo; Vuori, Leena; Sánchez-de-Armas, Rocío; Hirsimäki, Mika; Valden, Mika

    2017-07-01

    Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH2(CH2)COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH2(CH2)COO-]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  17. Investigations of structural, dielectric and optical properties on silicon ion irradiated glycine monophosphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kanagasekaran, T. [Department of Physics, Anna University, Chennai 600 025 (India); Department of Physics and Astrophysics, University of Delhi, New Delhi 110 007 (India); Mythili, P. [Department of Physics, Anna University, Chennai 600 025 (India); Bhagavannarayana, G. [Materials Characterization Division, National Physical Laboratory, New Delhi 110012 (India); Kanjilal, D. [Inter University Accelerator Centre, New Delhi 110 067 (India); Gopalakrishnan, R. [Department of Physics, Anna University, Chennai 600 025 (India)], E-mail: krgkrishnan@annauniv.edu

    2009-08-01

    The 50 MeV silicon ion irradiation induced modifications on structural, optical and dielectric properties of solution grown glycine monophosphate (GMP) crystals were studied. The high-resolution X-ray diffraction study shows the unaltered value of integrated intensity on irradiation. The dielectric constant as a function of frequency and temperature was studied. UV-visible studies reveal the decrease in bandgap values on irradiation and presence of F-centers. The fluorescence spectrum shows the existence of some energy levels, which remains unaffected after irradiation. The scanning electron micrographs reveal the defects formed on irradiation.

  18. Pharmacology of morphine and morphine-3-glucuronide at opioid, excitatory amino acid, GABA and glycine binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.E.; Smith, M.T. (Department of Pharmacy, The University of Queensland (Australia)); Dood, P.R. (Clinical Research Centre, Royal Brisbane Hospital Foundation, Brisbane (Australia))

    1994-07-01

    Morphine in high doses and its major metabolite, morphine-3-glucuronide, cause CNS excitation following intrathecal and intracerebroventricular administration by an unknown mechanism. This study investigated whether morphine and morphine-3-glucuronide interact at major excitatory (glutamate), major inhibitory (GABA or glycine), or opioid binding sites. Homogenate binding assays were performed using specific radioligands. At opioid receptors, morphine-3-glucuronide and morphine caused an equipotent sodium shift, consistent with morphine-3-glucuronide behaving as an agonist. This suggests that morphine-3-glucuronide-mediated excitation is not caused by an interaction at opioid receptors. Morphine-3-glucuronide and morphine caused a weak inhibition of the binding of [sup 3]H-MK801 (non-competitive antagonist) and [sup 125]I-ifenprodil (polyamine site antagonist), but at unphysiologically high concentrations. This suggests that CNS excitation would not result from an interaction of morphine-3-glucuronide and high-dose morphine with these sites on the NMDA receptor. Morphine-3-glucuronide and morphine inhibited the binding of [sup 3]H-muscimol (GABA receptor agonist), [sup 3]H-diazepam and [sup 3]H-flunitraxepam (benzodiazepine agonists) binding very weakly, suggesting the excitatory effects of morphine-3-glucuronide and high-dose morphine are not elicited through GABA[sub A] receptors. Morphine-3-glucuronide and high-dose morphine did not prevent re-uptake of glutamate into presynaptic nerve terminals. In addition, morphine-3-glucuronide and morphine did not inhibit the binding of [sup 3]H-strychnine (glycine receptor antagonist) to synaptic membranes prepared from bovine spinal cord. It is concluded that excitation caused by high-dose morphine and morphine-3-glucuronide is not mediated by an interaction with postsynaptic amino acid receptors. (au) (30 refs.).

  19. Collagen VI glycine mutations : Perturbed assembly and a spectrum of clinical severity

    NARCIS (Netherlands)

    Pace, Rishika A.; Peat, Rachel A.; Baker, Naomi L.; Zamurs, Laura; Moergelin, Matthias; Irving, Melita; Adams, Naomi E.; Bateman, John F.; Mowat, David; Smith, Nicholas J. C.; Lamont, Phillipa J.; Moore, Steven A.; Mathews, Katherine D.; North, Kathryn N.; Lamande, Shireen R.

    Objective: The collagen VI muscular dystrophies, Bethlem myopathy and Ullrich congenital muscular dystrophy, form a continuum of clinical phenotypes. Glycine mutations in the triple helix have been identified in both Bethlem and Ullrich congenital muscular dystrophy, but it is not known why they

  20. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    Science.gov (United States)

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  1. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    Science.gov (United States)

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  2. Improved synthesis of glycine, taurine and sulfate conjugated bile acids as reference compounds and internal standards for ESI-MS/MS urinary profiling of inborn errors of bile acid synthesis.

    Science.gov (United States)

    Donazzolo, Elena; Gucciardi, Antonina; Mazzier, Daniela; Peggion, Cristina; Pirillo, Paola; Naturale, Mauro; Moretto, Alessandro; Giordano, Giuseppe

    2017-04-01

    Bile acid synthesis defects are rare genetic disorders characterized by a failure to produce normal bile acids (BAs), and by an accumulation of unusual and intermediary cholanoids. Measurements of cholanoids in urine samples by mass spectrometry are a gold standard for the diagnosis of these diseases. In this work improved methods for the chemical synthesis of 30 BAs conjugated with glycine, taurine and sulfate were developed. Diethyl phosphorocyanidate (DEPC) and diphenyl phosphoryl azide (DPPA) were used as coupling reagents for glycine and taurine conjugation. Sulfated BAs were obtained by sulfur trioxide-triethylamine complex (SO 3 -TEA) as sulfating agent and thereafter conjugated with glycine and taurine. All products were characterized by NMR, IR spectroscopy and high resolution mass spectrometry (HRMS). The use of these compounds as internal standards allows an improved accuracy of both identification and quantification of urinary bile acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Growth and nitrogen dynamics of glycine max inoculated with bradyrhizobium japonicum and exposed to elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Rehman, A.; Hamid, N.; Jawaid, F.

    2010-01-01

    Seeds of Glycine max (soybean) were inoculated with N-fixing bacterium Bradyrhizobium japonicum and grown in growth chamber to investigate interactive effects of atmospheric CO/sub 2/ and plants Nitrogen status on root and shoot length and biomass, nodule formation and Nitrogen concentration. Plants were grown with CO/sub 2/ at 3500 and 1000 ppm with or without Bradyrhizobium japonicum inoculation. Root and shoot length and dry mass of Glycine max increased significantly with CO/sub 2/ enrichment provided with Bradyrhizobium japonicum as compared to deficient Nitrogen fixing bacterium. While ambient and enriched CO/sub 2/ levels resulted in increased Nitrogen concentration of Glycine max shoot and root which is inoculated with N-fixing bacterium. Nodule formation was also enhanced in plants supplied with Bradyrhizobium japonicum as compared to plants which is Bradyrhizobium japonicum deficient at both CO/sub 2/ concentrations. (author)

  4. Hydrophobic radical influence on structure and vibration spectra of zwitter-ionic forms of glycine and alanine in condensed state

    International Nuclear Information System (INIS)

    Ten, G.N.; Kadrov, D.M.; Baranov, V.I.

    2014-01-01

    Structure and vibrational spectra of the zwitter-ionic forms of glycine and alanine in water solution and solid state have been calculated in the B3LYP/6-311++G(d,p) approximation. The environment influence has been taken into account by two methods: the self-consistent reaction field (SCRF) method and one of modeling the glycine and alanine complexes with molecules of water. The structure, energy and spectral properties have been determined which allow establishing an influence of the hydrophobic radical on the glycine and alanine ability to form the hydrogen bonds. It is shown by comparison with experiment that for the calculation of vibrational (IR and Raman) spectra of the zwitter-ionic forms of glycine and alanine in the condensed states they must be surrounded with three molecules of water, one of which is located between the N + H 3 and COO - ionic groups. The value of energy necessary to form the Ala complexes with water compared to Gly ones is 56.47 and 12.55 kcal/mol higher in the case of the complex formation with 1and 3 molecules of water, respectively, located between bipolar groups. (authors)

  5. Molecular determinants of ivermectin sensitivity at the glycine receptor chloride channel

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Webb, Timothy I.; Dixon, Christine L.

    2011-01-01

    Ivermectin is an anthelmintic drug that works by activating glutamate-gated chloride channel receptors (GluClRs) in nematode parasites. GluClRs belong to the Cys-loop receptor family that also includes glycine receptor (GlyR) chloride channels. GluClRs and A288G mutant GlyRs are both activated...

  6. NdFeO3 nanocrystals under glycine nitrate combustion formation

    Science.gov (United States)

    Tugova, Ekaterina; Yastrebov, Sergey; Karpov, Oleg; Smith, Roger

    2017-06-01

    Nanocrystalline perovskite NdFeO3 with the orthorhombic structure was prepared by a glycine nitrate combustion method under different technological conditions. The starting materials Fe(NO3)3 · 9H2O,Nd(NO3)3 · 6H2O in stoichiometric amounts and H2NCH2COOH were used. These quantities were varied by changing the ratio of glycine moles to metal nitrate moles (G/N) in the range between 0.25 and 0.75. The prepared NdFeO3 nanocrystals were characterised by X-ray diffraction (XRD) and electron microscopy. Decomposition of the XRD diffraction profile using Voigt contours was exploited for analysis of the pattern in the area where the most prominent diffraction peak was situated. We demonstrate that Voigt functions reduce to Lorentzians for G / N = 0.75 and 0.55 . A volume-weighted diameter distribution function was derived using the width of the Lorentzians. The log-normal shape of the distribution is discussed in terms of the model, assuming exponential growth of cluster size in the time available for the NdFeO3 nanograin to grow.

  7. Disturbances of ligand potency and enhanced degradation of the human glycine receptor at affected positions G160 and T162 originally identified in patients suffering from hyperekplexia

    Directory of Open Access Journals (Sweden)

    Sinem eAtak

    2015-12-01

    Full Text Available Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR undergoes direct interaction with the incoming ligand via cation-π interactions. Recently we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GlyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GlyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER towards ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is conducted to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, T162 assigns primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof.

  8. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants.

    Science.gov (United States)

    Rawal, H C; Singh, N K; Sharma, T R

    2013-01-01

    Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL) and peroxidase A (POX A) enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula), fruits (Vitis vinifera), cereals (Sorghum bicolor, Zea mays, and Oryza sativa), trees (Populus trichocarpa), and model dicot (Arabidopsis thaliana) and monocot (Brachypodium distachyon) species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  9. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants

    Directory of Open Access Journals (Sweden)

    H. C. Rawal

    2013-01-01

    Full Text Available Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL and peroxidase A (POX A enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula, fruits (Vitis vinifera, cereals (Sorghum bicolor, Zea mays, and Oryza sativa, trees (Populus trichocarpa, and model dicot (Arabidopsis thaliana and monocot (Brachypodium distachyon species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  10. Fate of [15N]glycine in peat as determined by 13C and 15N CP-MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Benzing-Purdie, L.M.; Cheshire, M.V.; Williams, B.L.; Sparling, G.P.; Ratcliffe, C.I.; Ripmeester, J.A.

    1986-01-01

    Peat samples, nonsterile, sterilized by γ irradiation or autoclaving, were incubated with [ 15 N]glycine for a period of 6 months. The 13 C NMR data showed the established trend of increased humification with decreasing particle size and that autoclaving had significantly disturbed the humification-particle size distribution. The 15 N CP-MAS NMR spectra showed the presence of [ 15 N]glycine in all fractions after incubation. 15 NH 4 + , a result of either biological or chemical deamination, was one of the main products in the nonsterile peat series. The 15 N spectra also showed resonances corresponding to amine, secondary amide, and pyrrole-type nitrogen and the presence of glycine derivatives and melanoidins. The results presented give the first spectroscopic evidence of the possible involvement of the Maillard reaction in the humification process

  11. Comparative transcriptome analysis of two races of Heterodera glycines at different developmental stages.

    Directory of Open Access Journals (Sweden)

    Gaofeng Wang

    Full Text Available The soybean cyst nematode, Heterodera glycines, is an important pest of soybeans. Although resistance is available against this nematode, selection for virulent races can occur, allowing the nematode to overcome the resistance of cultivars. There are abundant field populations, however, little is known about their genetic diversity. In order to elucidate the differences between races, we investigated the transcriptional diversity within race 3 and race 4 inbred lines during their compatible interactions with the soybean host Zhonghuang 13. Six different race-enriched cDNA libraries were constructed with limited nematode samples collected from the three sedentary stages, parasitic J2, J3 and J4 female, respectively. Among 689 putative race-enriched genes isolated from the six libraries with functional annotations, 92 were validated by quantitative RT-PCR (qRT-PCR, including eight putative effector encoding genes. Further race-enriched genes were validated within race 3 and race 4 during development in soybean roots. Gene Ontology (GO analysis of all the race-enriched genes at J3 and J4 female stages showed that most of them functioned in metabolic processes. Relative transcript level analysis of 13 selected race-enriched genes at four developmental stages showed that the differences in their expression abundance took place at either one or more developmental stages. This is the first investigation into the transcript diversity of H. glycines races throughout their sedentary stages, increasing the understanding of the genetic diversity of H. glycines.

  12. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Science.gov (United States)

    2010-04-01

    ... consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.50 Glycine (aminoacetic acid) in food for human consumption. (a) Heretofore, the...

  13. Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids

    NARCIS (Netherlands)

    Lozovaya, N.; Yatsenko, N.; Beketov, A.; Tsintsadze, T.; Burnashev, N.

    2005-01-01

    At many central synapses, endocannabinoids released by postsynaptic cells act retrogradely on presynaptic G-protein-coupled cannabinoid receptors to inhibit neurotransmitter release. Here, we demonstrate that cannabinoids may directly affect the functioning of inhibitory glycine receptor (GlyR)

  14. The glycine reuptake inhibitor org 25935 interacts with basal and ethanol-induced dopamine release in rat nucleus accumbens.

    Science.gov (United States)

    Lidö, Helga Höifödt; Stomberg, Rosita; Fagerberg, Anne; Ericson, Mia; Söderpalm, Bo

    2009-07-01

    The mesolimbic dopamine (DA) projection from the ventral tegmental area to nucleus accumbens (nAc), a central part of the reward system, is activated by ethanol (EtOH) and other drugs of abuse. We have previously demonstrated that the glycine receptor in the nAc and its amino acid agonists may be implicated in the DA activation and reinforcing properties of EtOH. We have also reported that the glycine transporter 1 inhibitor, Org 25935, produces a robust and dose-dependent decrease in EtOH consumption in Wistar rats. The present study explores the interaction between EtOH and Org 25935 with respect to DA levels in the rat nAc. The effects of Org 25935 (6 mg/kg, i.p.) and/or EtOH (2.5 g/kg, i.p.) on accumbal DA levels were examined by means of in vivo microdialysis (coupled to HPLC-ED) in freely moving male Wistar rats. The effect of Org 25935 on accumbal glycine output was also investigated. Systemic Org 25935 increased DA output in a subpopulation of rats (52% in Experiment 1 and 38% in Experiment 2). In Experiment 2, EtOH produced a significant increase in DA levels in vehicles (35%) and in Org 25935 nonresponders (19%), whereas EtOH did not further increase the DA level in rats responding to Org 25935 (2%). The same dose of Org 25935 increased glycine levels by 87% in nAc. This study demonstrates that Org 25935, probably via increased glycine levels, (i) counteracts EtOH-induced increases of accumbal DA levels and (ii) increases basal DA levels in a subpopulation of rats. The results are in line with previous findings and it is suggested that the effects observed involve interference with accumbal GlyRs and are related to the alcohol consumption modulating effect of Org 25935.

  15. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs.

    Directory of Open Access Journals (Sweden)

    Germán Martínez

    Full Text Available Micro RNAS (miRNAs are a class of endogenous small non coding RNAs involved in the post-transcriptional regulation of gene expression. In plants, a great number of conserved and specific miRNAs, mainly arising from model species, have been identified to date. However less is known about the diversity of these regulatory RNAs in vegetal species with agricultural and/or horticultural importance. Here we report a combined approach of bioinformatics prediction, high-throughput sequencing data and molecular methods to analyze miRNAs populations in cucumber (Cucumis sativus plants. A set of 19 conserved and 6 known but non-conserved miRNA families were found in our cucumber small RNA dataset. We also identified 7 (3 with their miRNA* strand not previously described miRNAs, candidates to be cucumber-specific. To validate their description these new C. sativus miRNAs were detected by northern blot hybridization. Additionally, potential targets for most conserved and new miRNAs were identified in cucumber genome.In summary, in this study we have identified, by first time, conserved, known non-conserved and new miRNAs arising from an agronomically important species such as C. sativus. The detection of this complex population of regulatory small RNAs suggests that similarly to that observe in other plant species, cucumber miRNAs may possibly play an important role in diverse biological and metabolic processes.

  16. Glycine receptors in the human substantia nigra as defined by (3H)strychnine binding

    Energy Technology Data Exchange (ETDEWEB)

    de Montis, G; Beaumont, K; Javoy-Agid, F; Agid, Y; Constandinidis, J; Lowenthal, A; Lloyd, K G

    1982-03-01

    Specific (3H)strychnine binding was used to identify the glycine receptor macromolecular complex in human spinal cord, substantia nigra, inferior olivary nucleus, and cerebral cortex. In material from control patients a high-affinity KD (3--8 nM) was observed in the spinal cord and the substantia nigra, both the pars compacta and the pars reticulata. This is very similar to the values observed in the rat and bovine spinal cord (8 and 3 nM, respectively) and rat substantia nigra (12 nM). In the human brain the distribution of (3H)strychnine binding (at 10 nM) was: spinal cord . substantia nigra, pars compacta greater than substantia nigra, pars reticulata . inferior olivary nucleus greater than cerebral cortex. The binding capacity (Bmax) of the rat brain (substantia nigra or spinal cord) was approximately 10-fold that of the human brain. (3H)Strychnine binding was significantly decreased in the substantia nigra from Parkinson's disease patients, both in the pars compacta (67% of control) and the pars reticulata (50% of control), but not in the inferior olivary nucleus. The results were reproduced in preliminary experiment in rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. In the substantia nigra from patients who died with Huntington's disease, (3H)strychnine binding tended to be high (150% of control, NS) in both the pars compacta and the reticulata. (3H)Strychnine binding was unaltered in the substantia nigra of patients with senile dementia. Together with previous neurophysiological and neuropharmacological findings, those results support the hypothesis of glycine receptors occurring on dopamine cell bodies and/or dendrites in the substantia nigra.

  17. Boric acid - trilon B (glycine, acetylurea) - water systems at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Rodionov, N.S.; Molodkin, A.K.; Fedorov, Yu.A.; Tsekhanskij, R.S.

    1985-01-01

    Boric acid-trilon B (glycine, acetylurea)-water systems are studied at 25 deg C by the methods of isothermal solubility densi- and refractometry. It is ascertained that all of them are of a simple eutonic type with a small salting-out effect of organic components on boric acid

  18. Boric acid - trilon B (glycine, acetylurea) - water systems at 25 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, V G; Rodionov, N S; Molodkin, A K; Fedorov, Yu A; Tsekhanskij, R S

    1985-07-01

    Boric acid-trilon B (glycine, acetylurea)-water systems are studied at 25 deg C by the methods of isothermal solubility densi- and refractometry. It is ascertained that all of them are of a simple eutonic type with a small salting-out effect of organic components on boric acid.

  19. Dynamic Epigenetic Control of Highly Conserved Noncoding Elements

    KAUST Repository

    Seridi, Loqmane

    2014-10-07

    Background Many noncoding genomic loci have remained constant over long evolutionary periods, suggesting that they are exposed to strong selective pressures. The molecular functions of these elements have been partially elucidated, but the fundamental reason for their extreme conservation is still unknown. Results To gain new insights into the extreme selection of highly conserved noncoding elements (HCNEs), we used a systematic analysis of multi-omic data to study the epigenetic regulation of such elements during the development of Drosophila melanogaster. At the sequence level, HCNEs are GC-rich and have a characteristic oligomeric composition. They have higher levels of stable nucleosome occupancy than their flanking regions, and lower levels of mononucleosomes and H3.3, suggesting that these regions reside in compact chromatin. Furthermore, these regions showed remarkable modulations in histone modification and the expression levels of adjacent genes during development. Although HCNEs are primarily initiated late in replication, about 10% were related to early replication origins. Finally, HCNEs showed strong enrichment within lamina-associated domains. Conclusion HCNEs have distinct and protective sequence properties, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. These observations indicate that such elements are likely to have essential cellular functions, and offer insights into their epigenetic properties.

  20. Dynamic Epigenetic Control of Highly Conserved Noncoding Elements

    KAUST Repository

    Seridi, Loqmane; Ryu, Tae Woo; Ravasi, Timothy

    2014-01-01

    Background Many noncoding genomic loci have remained constant over long evolutionary periods, suggesting that they are exposed to strong selective pressures. The molecular functions of these elements have been partially elucidated, but the fundamental reason for their extreme conservation is still unknown. Results To gain new insights into the extreme selection of highly conserved noncoding elements (HCNEs), we used a systematic analysis of multi-omic data to study the epigenetic regulation of such elements during the development of Drosophila melanogaster. At the sequence level, HCNEs are GC-rich and have a characteristic oligomeric composition. They have higher levels of stable nucleosome occupancy than their flanking regions, and lower levels of mononucleosomes and H3.3, suggesting that these regions reside in compact chromatin. Furthermore, these regions showed remarkable modulations in histone modification and the expression levels of adjacent genes during development. Although HCNEs are primarily initiated late in replication, about 10% were related to early replication origins. Finally, HCNEs showed strong enrichment within lamina-associated domains. Conclusion HCNEs have distinct and protective sequence properties, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. These observations indicate that such elements are likely to have essential cellular functions, and offer insights into their epigenetic properties.

  1. Glycine transporter GlyT1, but not GlyT2, is expressed in rat dorsal root ganglion--Possible implications for neuropathic pain

    NARCIS (Netherlands)

    Schlösser, Lukas; Barthel, Franziska; Brandenburger, Timo; Neumann, Elena; Bauer, Inge; Eulenburg, Volker; Werdehausen, Robert; Hermanns, Henning

    2015-01-01

    Glycinergic inhibitory neurotransmission plays a pivotal role in the development of neuropathic pain. The glycine concentration in the synaptic cleft is controlled by the glycine transporters GlyT1 and GlyT2. GlyT1 is expressed throughout the central nervous system, while GlyT2 is exclusively

  2. Gamma radiation effect on the anatomical structure of soybean (Glycine max. Merr)

    International Nuclear Information System (INIS)

    Bhikuningputra, W.

    1976-01-01

    Gamma radiation effects on soybean plant (Glycine max. Merr) have been studied by using radiation doses of 0, 20, 25, 30, and 35 Krad. Investigation is carried out after each treatment. It proves that each treatment causes different morphological changes on leaves, stems, roots, and fibres of the treated plants. (SMN)

  3. SYNTHESIS OF SOME PROLINE DERIVATIVES BY MEANS OF MICHAEL ADDITIONS OF GLYCINE ESTERS

    NARCIS (Netherlands)

    VANDERWERF, A; KELLOGG, RM

    1991-01-01

    Addition of the Schiff bases derived from reaction of glycine alkyl esters with benzophenoneimine to alpha,beta-unsaturated ketones, followed by hydrogenation of the addition products, leads to 5- or 3,5-substituted prolines. Hydrolysis of the Michael adducts rather than hydrogenation allows

  4. Technical evaluation on high aging, and performance conditions on long-term conservation program

    International Nuclear Information System (INIS)

    Yamashita, Atsushi

    2001-01-01

    In order to secure safety and safe operation of power plants, in every nuclear power plants, conservation actions based on preventive conservation are performed. They contain operative condition monitoring, patrolling inspection, and periodical tests on important systems and apparatus by operators under plant operation and condition monitoring by maintenance workers, and so on, and when finding out their abnormal conditions, their detailed survey is performed to adopt adequate countermeasures such as recovery, exchange, and so on. And, to equipments for nuclear power generation periodical conditions were obliged by legal examinations and by independent inspections. As a result of these conservation actions, even on a plant elapsed about 30 years since beginning of its operation it was thought that the plant was aged with elapsing time even if not recognizing any indication on its aged deterioration at that time. Therefore, for its concrete countermeasure, by supposing long-term operation of a plant with longer operation history, some technical evaluation on aged phenomena were carried out, to investigate on reflection of the obtained results to present conservation actions. Here were described on efforts on the high aging countermeasures, and performing conditions of long-term conservation in the Tsuruga Unit No. 1 Nuclear Power Station. (G.K.)

  5. Prospects for Parity Non-conservation Experiments with Highly Charged Heavy Ions

    OpenAIRE

    Maul, M.; Schäfer, A.; Greiner, W.; Indelicato, P.

    1996-01-01

    We discuss the prospects for parity non-conservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with two to five electrons are calculated. We investigate two-photon-transitions and the possibility to observe interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  6. Sequencing Analysis of Mutant Allele $cdc$28-$srm$ of Protein Kinase CDC28 and Molecular Dynamics Study of Glycine-Rich Loop in Wild-Type and Mutant Allele G16S of CDK2 as Model

    CERN Document Server

    Koltovaya, N A; Kholmurodov, Kh T; Kretov, D A

    2005-01-01

    The central role that cyclin-dependent kinases play in the timing of cell division and the high incidence of genetic alteration of CDKs or deregulation of CDK inhibitors in a number of cancers make CDC28 of the yeast \\textit{Saccharomyces cerevisiae }very attractive model for studies of mechanisms of CDK regulation. Earlier it was found that certain gene mutations including \\textit{cdc28-srm} affect cell cycle progression, maintenance of different genetic structures and increase cell sensitivity to ionizing radiation. A~\\textit{cdc28-srm} mutation is not temperature-sensitive mutation and differs from the known \\textit{cdc28-ts }mutations because it has the evident phenotypic manifestations at 30 $^{\\circ}$C. Sequencing analysis of \\textit{cdc28-srm} revealed a single nucleotide substitution G20S. This is a third glycine in a conserved sequence GxGxxG in the G-rich loop positioned opposite the activation T-loop. Despite its demonstrated importance, the role of the G-loop has remained unclear. The crystal stru...

  7. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons

    Science.gov (United States)

    Eto, Kei; Murakoshi, Hideji; Watanabe, Miho; Hirata, Hiromi; Moorhouse, Andrew J.; Ishibashi, Hitoshi

    2017-01-01

    Abstract Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system. PMID:28197549

  8. Co-ordinate expression of glycine betaine synthesis genes linked by the FMDV 2A region in a single open reading frame in Pichia pastoris.

    Science.gov (United States)

    Wang, Sanhong; Yao, Quanhong; Tao, Jianmin; Qiao, Yushan; Zhang, Zhen

    2007-12-01

    The genes encoding the two enzymes choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) of glycine betaine synthesis in Suaeda salsa were cloned and fused with the 2A region of foot-and-mouth disease virus in a single open reading frame. The fused genes were placed under the control of the alcohol oxidase (AOX1) promoter in pPIC3B and transformed into P. pastoris GS115. The expression of the fused genes in P. pastoris and the ability of recombinant yeasts to tolerate environmental stresses were studied. The results showed that induced with 0.5% methanol for 96 h, the maximal activities of CMO and BADH in the tested recombinant yeasts were 45- and 44-fold higher than those in the control yeast transformed empty vector only, respectively; the content of glycine betaine in the recombinant yeasts was 28- to 35-fold higher than that in the control. The fused genes linked by 2A region of foot-and-mouth disease virus were expressed in P. pastoris successfully and the polyprotein was 'cleaved' to each functional protein. The yeasts transformed the fused genes, which were more resistant to salt, methanol, and high temperature stresses than the control as result of glycine betaine synthesis genes introduced.

  9. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes

    OpenAIRE

    Kim, D. G.; Riggs, R. D.

    1991-01-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that ...

  10. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid

    Science.gov (United States)

    Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang

    2016-03-01

    The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.

  11. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  12. Nitrogen Fertilizer and Straw Applications Affect Uptake of 13C,15N-Glycine by Soil Microorganisms in Wheat Growth Stages.

    Directory of Open Access Journals (Sweden)

    Lijie Yang

    Full Text Available This study investigated the influence of nitrogen (N fertilizer and straw on intact amino acid N uptake by soil microorganisms and the relationship between amino acid turnover and soil properties during the wheat growing season. A wheat pot experiment was carried out with three treatments: control (CK, N fertilizer (NF and N fertilizer plus rice straw (NS. We used stable isotope compound-specific analysis to determine the uptake of 13C,15N-glycine by soil microorganisms. In the NF treatment, microbial 13C,15N-glycine uptake was lower compared with CK, suggesting that inorganic N was the preferred N source for soil microorganisms. However, The application of straw with N fertilizer (in NS treatment increased microbial 13C,15N-glycine uptake even with the same amount of N fertilizer application. In this treatment, enzyme activities, soil microbial biomass C and microbial biomass N increased simultaneously because more C was available. Soil mineral N and plant N contents all decreased substantially. The increased uptake of intact 13C,15N-glycine in the NS treatment can be attributed to direct assimilation by soil microorganisms to satisfy the demand for N when inorganic N was consumed.

  13. Role of transglutaminase in insulin release. Study with glycine and sarcosine methylesters

    International Nuclear Information System (INIS)

    Sener, A.; Dunlop, M.E.; Gomis, R.; Mathias, P.C.; Malaisse-Lagae, F.; Malaisse, W.J.

    1985-01-01

    The Ca2+-responsive enzyme transglutaminase, which catalyzes the cross-bridging of proteins, is present in pancreatic islet cells, but its participation in the process of insulin release remains to be documented. Glycine methylester (1.0-10.0 mM) inhibited, in a dose-related manner, transglutaminase activity in rat pancreatic islet homogenates, decreased [ 14 C]methylamine incorporation into endogenous proteins of intact islets, and caused a rapid and reversible inhibition of insulin release evoked by D-glucose, while failing to affect D-[U- 14 C]glucose oxidation. Glycine methylester also inhibited insulin release induced by other nutrient or nonnutrient secretagogues. Sarcosine methylester failed to affect transglutaminase activity, [ 14 C]methylamine incorporation, and insulin release. Both methylesters mobilized 45 Ca from prelabeled intact islets, from membranes of islet cells, liver or brain, and from artificial lipid multilayers, this Ca mobilization being apparently unrelated to changes in transglutaminase activity. It is proposed that, in the pancreatic B cell, transglutaminase participates in the machinery controlling the access of secretory granules to the exocytotic sites

  14. Isolation of glycine betaine and proline betaine from human urine. Assessment of their role as osmoprotective agents for bacteria and the kidney.

    OpenAIRE

    Chambers, S T; Kunin, C M

    1987-01-01

    Human urine is osmoprotective for enteric bacteria, permitting E. coli to grow with high concentrations of NaCl and other salts and even higher concentrations of sucrose and mannitol but not urea. The active material in urine is soluble in methanol and is precipitated by ammonium reineckate at acid pH. Using gel filtration and high-pressure liquid chromatography, we have identified two major osmoprotective compounds in urine. One is glycine betaine; the other is proline betaine as demonstrate...

  15. An autoradiographic study on the distribution of 14C-glycine in clonorchis sinensis

    International Nuclear Information System (INIS)

    Lee, S.H.; Song, C.Y.

    1977-01-01

    To study an aspect of protein metabolism in chinese liverfluke, Clonorchis sinensis, an autoradiographic study was performed. A batch of 25 ml erlenmeyer flasks, each flask containing 10 worms of C. sinensis and 10 ml of Tyrode medium with 2.5 μCi/ml of 14 C-glycine, was incubated for 1 hour in Dubnoff metabolic shaking incubator at 37 0 C. Those worms were processed for microautoradiography immediately after the incubation, and following results were obtained from the autoradiographs. The densities of black silver grains derived from 14 C-glycine were the most apparent in the subparenchymal cells, intestinal epithelium, vitelline gland cells, ovary and the wall of the seminal vesicle. Moderate grade of densities were observed in the tegument, oral sucker, pharynx, intestinal content and in the testes. The reticular tissue, ventral sucker, uterus with eggs, seminal receptacle and the content of seminal vesicle showed trace amount of silver grains. (author)

  16. Intersubgeneric hybridization between Glycine max and G. tomentella: Production of F1, amphidiploid, BC1, BC2 BC3 and fertile soybean plants

    Science.gov (United States)

    The genetic resources of the 26 species of the subgenus Glycine have not been exploited to broaden the genetic base of soybean (Glycine max; 2n = 40). Initially, we hybridized eight soybean cultivars with six accessions of 78- and one accession of 40-chromosome G. tomentella. One accession of G. arg...

  17. Effects of long-term storage on the quality of soybean, Glycine max ...

    African Journals Online (AJOL)

    Soybean, Glycine max (L.) Merrill, is one of the five most important legumes in the tropics and provides the protein eaten by most people in the region. One of the major constraints to soybean production is that the seed quality deteriorates rapidly during storage. This study was undertaken to assess the effect of some storage ...

  18. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system

    Czech Academy of Sciences Publication Activity Database

    Zubáčová, Z.; Novák, L.; Bublíková, J.; Vacek, V.; Fousek, Jan; Rídl, Jakub; Tachezy, J.; Doležal, P.; Vlček, Čestmír; Hampl, V.

    2013-01-01

    Roč. 8, č. 3 (2013), e55417 E-ISSN 1932-6203 R&D Projects: GA ČR GAP506/12/1010 Institutional support: RVO:68378050 Keywords : transcriptome sequencing * Trimastix * mitochondrion -like organelle * glycine cleavage complex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  19. Distinct conformational changes in activated agonist-bound and agonist-free glycine receptor subunits

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    Ligand binding to Cys-loop receptors produces either global conformational changes that lead to activation or local conformational changes that do not. We found that the fluorescence of a fluorophore tethered to R271C in the extracellular M2 region of the alpha1 glycine receptor increases during ...

  20. Swertia chirayta, a Threatened High-Value Medicinal Herb: Microhabitats and Conservation Challenges in Sikkim Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bharat Kumar Pradhan

    2015-11-01

    Full Text Available Assessing the impact of threats, identifying favorable growing conditions, and predicting future population scenarios are vital for the conservation and management of threatened species. This study investigated the availability, microhabitat characteristics, threat status, and community associations of Swertia chirayta, a highly threatened Himalayan medicinal herb, in 22 populations in Sikkim, India, using the vertical belt transect method. Of the 14 microhabitats identified, open grassy slope emerged as the most favorable and wet grassy slope as the least favorable for S. chirayta. The species was dominant in 8 of the 10 major plant communities identified. Among 9 major types of disturbance identified, human movement and collection of non-timber forest products appeared as the biggest threats to S. chirayta. Disturbances significantly affected the availability of the species. S. chirayta, though under high anthropogenic threat, maintains high microhabitat pliability, which is vital for its conservation and management, provided immediate conservation measures are taken.

  1. Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors

    Directory of Open Access Journals (Sweden)

    Orth Angela

    2009-04-01

    Full Text Available Abstract Background N-methyl-D-aspartate receptors (NMDARs are the most complex of ionotropic glutamate receptors (iGluRs. Subunits of this subfamily assemble into heteromers, which – depending on the subunit combination – may display very different pharmacological and electrophysiological properties. The least studied members of the NMDAR family, the NR3 subunits, have been reported to assemble with NR1 to form excitatory glycine receptors in heterologous expression systems. The heterogeneity of NMDARs in vivo is in part conferred to the receptors by splicing of the NR1 subunit, especially with regard to proton sensitivity. Results Here, we have investigated whether the NR3B subunit is capable of assembly with each of the eight functional NR1 splice variants, and whether the resulting receptors share the unique functional properties described for NR1-1a/NR3. We provide evidence that functional excitatory glycine receptors formed regardless of the NR1 isoform, and their pharmacological profile matched the one reported for NR1-1a/NR3: glycine alone fully activated the receptors, which were insensitive to glutamate and block by Mg2+. Surprisingly, amplitudes of agonist-induced currents showed little dependency on the C-terminally spliced NR1 variants in NR1/NR3B diheteromers. Even more strikingly, NR3B conferred proton sensitivity also to receptors containing NR1b variants – possibly via disturbing the "proton shield" of NR1b splice variants. Conclusion While functional assembly could be demonstrated for all combinations, not all of the specific interactions seen for NR1 isoforms with coexpressed NR2 subunits could be corroborated for NR1 assembly with NR3. Rather, NR3 abates trafficking effects mediated by the NR1 C terminus as well as the N-terminally mediated proton insensitivity. Thus, this study establishes that NR3B overrides important NR1 splice variant-specific receptor properties in NR1/NR3B excitatory glycine receptors.

  2. Effect of temperature on solvation behaviour of diclofenac sodium salt in aqueous glycine and L-proline solutions

    International Nuclear Information System (INIS)

    Ryshetti, Suresh; Gardas, Ramesh L; Tangeda, Savitha Jyostna

    2015-01-01

    Highlights: • Solvation behaviour of diclofenac drug studied in aqueous solutions. • Density and speed of sound of drug in aq. glycine and L-proline are measured. • Hydrophobic nature of diclofenac sodium salt is studied. • Effect of temperature on solvation of diclofenac sodium salt is analysed. - Abstract: Apparent molar volume (V 2,ϕ ) and apparent molar isentropic compressibility (K s,2,ϕ ) of diclofenac sodium salt (DSS) drug within the concentration range of (0.001 to 0.008) mol · kg −1 in (0.01, 0.03 and 0.05) mol · kg −1 aqueous glycine and L-proline solutions are computed from the experimental density (ρ) and speed of sound (u) values at T = (293.15 to 313.15) K and atmospheric pressure. Derived parameters such as partial molar properties, transfer partial molar properties, hydration numbers and Hepler’s constant are computed from the data of V 2,ϕ and K s,2,ϕ . These parameters have been used to understand the effect of temperature on interactions between DSS drug and aqueous glycine/L-proline solution. Furthermore, the structure making and breaking ability of DSS drug in probed solutions are analysed at experimental conditions

  3. Sur quelques aspects de la production du soja (Glycine max L. au Congo : essais préliminaires

    Directory of Open Access Journals (Sweden)

    Mandimba, GR.

    1991-01-01

    Full Text Available About some cropping systems of soybean (Glycine max. L. in Congo : first results. Field experiments were conducted to assess the response of soybean Glycine max cv. FN3 to N fertilization and inoculation respectively. In the first experiment, the effects of different levels of N fertilizer (0 ; 20 ; 40 and 80 kg N/ha with or without liming were studied. Soybean podyield were related to N fertilization only when liming was added to the soil In the second one, the effects of four Bradyrhizobium japonicum strains F A3 ; 3-40 ; SA 1 and G3S on nodulation and yields were also studied. Inoculation has significant effect on nodulation and plant top dry weight at full bloom, and seed yield at harvest when compared to the control. However, the Bradyrhizobium japonicum strains tested had various symbiotic effectiveness on Glycine max cv. FN3. In addition, soybean plants inoculated with G3S strain and those fertilized with 100 kg N/ha produced similar seed yield. Our study illustrated that G3S strain had the better adaptability in environmental conditions of Congo soil.

  4. Glycine reduces tissue lipid peroxidation in hypoxia-reoxygenation-induced necrotizing enterocolitis in rats

    Directory of Open Access Journals (Sweden)

    Meyer Karine Furtado

    2006-01-01

    Full Text Available PURPOSE: To assess the protective effect of glycine in an experimental model of Neonatal Necrotizing Enterocolitis (NEC. METHODS: Fifty (50 neonatal Wistar rats, from a litter of six female rats and weighing 4 to 6 grams, were used. Five animals were cannibalized and the 45 remaining were distributed into three groups: the G1 normal control group (n=12; the G2 Group (n=16, of animals that underwent hypoxia-reoxygenation (HR; the G3 Group of animals (n=17 that underwent HR following a 5% intraperitoneal glycine infusion. The animals underwent hypoxia in a CO2 chamber receiving an air flow of 100% CO2 for 5 minutes and reoxygenation receiving an O2 flow at 100% for 5 minutes. One centimeter long small bowel and colon segments were prepared for histological analysis. The rest of the bowel was removed in a block and frozen at minus 80degreesC for homogenization and determination of tissue malondialdehyde (MDA. Tissue lesions were classified as Grade 0 to Grade 5, according to the level of damaged mucosa. RESULTS: The animals in Group G1 had levels of small bowel and colon lesion significantly smaller as compared to the animals in Groups G2 and G3. The G2 group had mean MDA values significantly higher than the animals in the G1 (p = .015 and G3 (p=0.021 groups. MDA values did not differ significantly (p = 0.992 for the animals in groups G1 and G3. CONCLUSION: Glycine reduces tissue MDA levels (a measurement of lipid peroxidation following HR in neonatal rats.

  5. Comparative study of glycine single crystals with additive of potassium nitrate in different concentration ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gujarati, Vivek P., E-mail: vivekgujarati@gmail.com; Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi R.; Chaki, S. H. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat (India)

    2016-05-06

    Semi-organic crystals of Glycine Potassium Nitrate (GPN) with potential applications in Non linear optics (NLO) were grown using slow evaporation technique. Glycine and Potassium Nitrate were taken in three different concentration ratios of 3:1, 2:1 and 1:1 respectively. We checked the solubility of the material in distilled water at different temperatures and could observe the growth of crystals in 7 weeks time. Purity of the grown crystals was confirmed by Energy Dispersive X-ray Analysis (EDAX) and CHN analysis. GSN Powder X-ray diffraction pattern was recorded to confirm the crystalline nature. To confirm the applications of grown crystals in opto-electronics field, UV-Vis-NIR study was carried out. Dielectric properties of the samples were studied in between the frequency range 1Hz to 100 KHz.

  6. High throughput techniques for discovering new glycine receptor modulators and their binding sites

    Directory of Open Access Journals (Sweden)

    Daniel F Gilbert

    2009-10-01

    Full Text Available The inhibitory glycine receptor (GlyR is a member of the Cys-loop receptor family that mediates inhibitory neurotransmission in the central nervous system. These receptors are emerging as potential drug targets for inflammatory pain, immunomodulation, spasticity and epilepsy. Antagonists that specifically inhibit particular GlyR isoforms are also required as pharmacological probes for elucidating the roles of particular GlyR isoforms in health and disease. Although a substantial number of both positive and negative GlyR modulators have been identified, very few of these are specific for the GlyR over other receptor types. Thus, the potential of known compounds as either therapeutic leads or pharmacological probes is limited. It is therefore surprising that there have been few published studies describing attempts to discover novel GlyR isoform-specific compounds. The first aim of this review is to consider various methods for efficiently screening compounds against these receptors. We conclude that an anion sensitive yellow fluorescent protein is optimal for primary screening and that automated electrophysiology of cells stably expressing GlyRs is useful for confirming hits and quantitating the actions of identified compounds. The second aim of this review is to demonstrate how these techniques are used in our laboratory for the purpose of both discovering novel GlyR-active compounds and characterizing their binding sites. We also describe a reliable, cost effective method for transfecting HEK293 cells in single wells of a 384 well plate using nanogram quantities of cDNA.

  7. Reduction of Guanosyl Radical by Cysteine and Cysteine-Glycine Studied by Time-Resolved CIDNP

    NARCIS (Netherlands)

    Morozova, O.B.; Kaptein, R.; Yurkovskaya, A.V.

    2012-01-01

    As a model for chemical DNA repair, reduction of guanosyl radicals in the reaction with cysteine or the dipeptide cysteine-glycine has been studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP). Radicals were generated photochemically by pulsed laser irradiation of a

  8. A 12-Fold ThSi2 Interpenetrated Network Utilizing a Glycine-Based Pseudopeptidic Ligand

    Directory of Open Access Journals (Sweden)

    Edward Loukopoulos

    2018-01-01

    Full Text Available We report the synthesis and characterization of a 3D Cu(II coordination polymer, [Cu3(L12(H2O8]·8H2O (1, with the use of a glycine-based tripodal pseudopeptidic ligand (H3L1 = N,N′,N″-tris(carboxymethyl-1,3,5-benzenetricarboxamide or trimesoyl-tris-glycine. This compound presents the first example of a 12-fold interpenetrated ThSi2 (ths net. We attempt to justify the unique topology of 1 through a systematic comparison of the synthetic parameters in all reported structures with H3L1 and similar tripodal pseudopeptidic ligands. We additionally explore the catalytic potential of 1 in the A3 coupling reaction for the synthesis of propargylamines. The compound acts as a very good heterogeneous catalyst with yields up to 99% and loadings as low as 3 mol %.

  9. Intramolecular cross-linking in a bacterial homolog of mammalian SLC6 neurotransmitter transporters suggests an evolutionary conserved role of transmembrane segments 7 and 8

    DEFF Research Database (Denmark)

    Kniazeff, Julie; Loland, Claus Juul; Goldberg, Naomi

    2005-01-01

    The extracellular concentration of the neurotransmitters dopamine, serotonin, norepinephrine, GABA and glycine is tightly controlled by plasma membrane transporters belonging to the SLC6 gene family. A very large number of putative transport proteins with a remarkable homology to the SLC6...... proximity between TM 7 and 8 in the tertiary structure of TnaT as previously suggested for the mammalian counterparts. Furthermore, the inhibition of uptake upon cross-linking the two cysteines provides indirect support for a conserved conformational role of these transmembrane domains in the transport...

  10. Subregion-specific modulation of excitatory input and dopaminergic output in the striatum by tonically activated glycine and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Louise eAdermark

    2011-10-01

    Full Text Available The flow of cortical information through the basal ganglia is a complex spatiotemporal pattern of increased and decreased firing. The striatum is the biggest input nucleus to the basal ganglia and the aim of this study was to assess the role of inhibitory GABAA and glycine receptors in regulating synaptic activity in the dorsolateral (DLS and ventral striatum (nucleus accumbens, nAc. Local field potential recordings from coronal brain slices of juvenile and adult Wistar rats showed that GABAA receptors and strychnine-sensitive glycine receptors are tonically activated and inhibit excitatory input to the DLS and to the nAc. Strychnine-induced disinhibition of glutamatergic transmission was insensitive to the muscarinic receptor inhibitor scopolamine (10 µM, inhibited by the nicotinic acetylcholine receptor antagonist mecamylamine (10 µM and blocked by GABAA receptor inhibitors, suggesting that tonically activated glycine receptors depress excitatory input to the striatum through modulation of cholinergic and GABAergic neurotransmission. As an end-product example of striatal GABAergic output in vivo we measured dopamine release in the DLS and nAc by microdialysis in the awake and freely moving rat. Reversed dialysis of bicuculline (50 μM in perfusate only increased extrasynaptic dopamine levels in the nAc, while strychnine administered locally (200 μM in perfusate decreased dopamine output by 60% in both the DLS and nAc. Our data suggest that GABAA and glycine receptors are tonically activated and modulate striatal transmission in a partially sub-region specific manner.

  11. High qualitative and quantitative conservation of alternative splicing in Caenorhabditis elegans and Caenorhabditis briggsae

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Irimia, Manuel; Mørk, Søren

    2007-01-01

    Alternative splicing (AS) is an important contributor to proteome diversity and is regarded as an explanatory factor for the relatively low number of human genes compared with less complex animals. To assess the evolutionary conservation of AS and its developmental regulation, we have investigated...... the qualitative and quantitative expression of 21 orthologous alternative splice events through the development of 2 nematode species separated by 85-110 Myr of evolutionary time. We demonstrate that most of these alternative splice events present in Caenorhabditis elegans are conserved in Caenorhabditis briggsae....... Moreover, we find that relative isoform expression levels vary significantly during development for 78% of the AS events and that this quantitative variation is highly conserved between the 2 species. Our results suggest that AS is generally tightly regulated through development and that the regulatory...

  12. Osmotic Control of opuA Expression in Bacillus subtilis and Its Modulation in Response to Intracellular Glycine Betaine and Proline Pools

    Science.gov (United States)

    Hoffmann, Tamara; Wensing, Annette; Brosius, Margot; Steil, Leif; Völker, Uwe

    2013-01-01

    Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression. PMID:23175650

  13. Entropy Viscosity Method for High-Order Approximations of Conservation Laws

    KAUST Repository

    Guermond, J. L.

    2010-09-17

    A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.

  14. Entropy Viscosity Method for High-Order Approximations of Conservation Laws

    KAUST Repository

    Guermond, J. L.; Pasquetti, R.

    2010-01-01

    A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.

  15. Glycine assisted synthesis of flower-like TiO 2 hierarchical spheres and its application in photocatalysis

    KAUST Repository

    Tao, Yugui; Xu, Yanqiu; Pan, Jun; Gu, Hao; Qin, Changyun; Zhou, Peng

    2012-01-01

    Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2O 2). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2. © 2012 Elsevier B.V.

  16. Glycine assisted synthesis of flower-like TiO 2 hierarchical spheres and its application in photocatalysis

    KAUST Repository

    Tao, Yugui

    2012-11-01

    Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2O 2). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2. © 2012 Elsevier B.V.

  17. Molecular basis of the alternative recruitment of GABA(A) versus glycine receptors through gephyrin

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Kasaragod, Vikram Babu; Hausrat, Torben Johann

    2014-01-01

    γ-Aminobutyric acid type A and glycine receptors (GABA(A)Rs, GlyRs) are the major inhibitory neurotransmitter receptors and contribute to many synaptic functions, dysfunctions and human diseases. GABA(A)Rs are important drug targets regulated by direct interactions with the scaffolding protein ge...

  18. The Effect of Ethylene Glycol, Glycine Betaine, and Urea on Lysozyme Thermal Stability

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Leslie, Elizabeth J.; Nordstrom, Anna R.

    2010-01-01

    The four-week student project described in this article is an extension of protein thermal denaturation experiments to include effects of added cosolutes ethylene glycol, glycine betaine, and urea on the unfolding of lysozyme. The transition temperatures and van't Hoff enthalpies for unfolding are evaluated for six concentrations of each cosolute,…

  19. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Lingshuang Cai

    2015-05-01

    Full Text Available Insects trigger plants to release volatile compounds that mediate the interaction with both pest and beneficial insects. Soybean aphids (Aphis glycines induces soybean (Glycine max leaves to produce volatiles that attract predators of the aphid. In this research, we describe the use of solid-phase microextraction (SPME for extraction of volatiles from A. glycines-infested plant. Objectives were to (1 determine if SPME can be used to collect soybean plant volatiles and to (2 use headspace SPME-GC-MS approach to screen compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the field, to identify previously known and potentially novel chemical markers of infestation. A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA, benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs. For reproductive field-grown soybeans, three compounds were emitted in greater abundance from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores.

  20. Bacteria and Fungi Respond Differently to Multifactorial Climate Change in a Temperate Heathland, Traced with 13C-Glycine and FACE CO2

    Science.gov (United States)

    Andresen, Louise C.; Dungait, Jennifer A. J.; Bol, Roland; Selsted, Merete B.; Ambus, Per; Michelsen, Anders

    2014-01-01

    It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g−1 soil) of 13C-labeled glycine (13C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The 13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. 13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS). Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated 13C in all treatments, whereas fungi had minor or no glycine derived 13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was 13C-depleted (δ13C = 12.2‰) compared to ambient (δ13C = ∼−8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future

  1. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-glycine and FACE CO2.

    Directory of Open Access Journals (Sweden)

    Louise C Andresen

    Full Text Available It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g(-1 soil of (13C-labeled glycine ((13C2, 99 atom % to soils in situ. Plots were treated with elevated temperature (+1°C, T, summer drought (D and elevated atmospheric carbon dioxide (510 ppm [CO2], as well as combined treatments (TD, TCO2, DCO2 and TDCO2. The (13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs was determined after 24 h. (13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS. Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated (13C in all treatments, whereas fungi had minor or no glycine derived (13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G(+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was (13C-depleted (δ(13C = 12.2‰ compared to ambient (δ(13C = ∼-8‰, and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to

  2. Timecourse microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode).

    Science.gov (United States)

    Alkharouf, Nadim W; Klink, Vincent P; Chouikha, Imed B; Beard, Hunter S; MacDonald, Margaret H; Meyer, Susan; Knap, Halina T; Khan, Rana; Matthews, Benjamin F

    2006-09-01

    Changes in gene expression within roots of Glycine max (soybean), cv. Kent, susceptible to infection by Heterodera glycines (the soybean cyst nematode [SCN]), at 6, 12, and 24 h, and 2, 4, 6, and 8 days post-inoculation were monitored using microarrays containing more than 6,000 cDNA inserts. Replicate, independent biological samples were examined at each time point. Gene expression was analyzed statistically using T-tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). These analyses allow the user to query the data in several ways without importing the data into third-party software. RT-PCR confirmed that WRKY6 transcription factor, trehalose phosphate synthase, EIF4a, Skp1, and CLB1 were differentially induced across most time-points. Other genes induced across most timepoints included lipoxygenase, calmodulin, phospholipase C, metallothionein-like protein, and chalcone reductase. RT-PCR demonstrated enhanced expression during the first 12 h of infection for Kunitz trypsin inhibitor and sucrose synthase. The stress-related gene, SAM-22, phospholipase D and 12-oxophytodienoate reductase were also induced at the early time-points. At 6 and 8 dpi there was an abundance of transcripts expressed that encoded genes involved in transcription and protein synthesis. Some of those genes included ribosomal proteins, and initiation and elongation factors. Several genes involved in carbon metabolism and transport were also more abundant. Those genes included glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase and sucrose synthase. These results identified specific changes in gene transcript levels triggered by infection of susceptible soybean roots by SCN.

  3. Habitat Re-Creation (Ecological Restoration) as a Strategy for Conserving Insect Communities in Highly Fragmented Landscapes.

    Science.gov (United States)

    Shuey, John A

    2013-12-05

    Because of their vast diversity, measured by both numbers of species as well as life history traits, insects defy comprehensive conservation planning. Thus, almost all insect conservation efforts target individual species. However, serious insect conservation requires goals that are set at the faunal level and conservation success requires strategies that conserve intact communities. This task is complicated in agricultural landscapes by high levels of habitat fragmentation and isolation. In many regions, once widespread insect communities are now functionally trapped on islands of ecosystem remnants and subject to a variety of stressors associated with isolation, small population sizes and artificial population fragmentation. In fragmented landscapes ecological restoration can be an effective strategy for reducing localized insect extinction rates, but insects are seldom included in restoration design criteria. It is possible to incorporate a few simple conservation criteria into restoration designs that enhance impacts to entire insect communities. Restoration can be used as a strategy to address fragmentation threats to isolated insect communities if insect communities are incorporated at the onset of restoration planning. Fully incorporating insect communities into restoration designs may increase the cost of restoration two- to three-fold, but the benefits to biodiversity conservation and the ecological services provided by intact insect communities justify the cost.

  4. Effect of Hydroxylamine Sulfate on Volumetric Behavior of Glycine, L-Alanine, and L-Arginine in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2013-01-01

    Full Text Available The apparent molar volumes of glycine, L-alanine, and L-arginine in aqueous hydroxylamine sulfate solutions have been determined at T=298.15 K and atmospheric pressure. The standard partial molar volumes, V20, corresponding partial molar volumes of transfer, ΔtrV20, and hydration numbers, NH, have been calculated for these α-amino acids from the experimental data. The ΔtrV20 values are positive for glycine, L-alanine, and L-arginine and are all increased with the increase in the concentration of hydroxylamine ions. These parameters obtained from the volumetric data are interpreted in terms of various mixing effects between amino acids and hydroxylamine sulfate in aqueous solutions.

  5. N-alylated mercaptoacetyl glycine derivatives as multipurpose ligands in radio tracer design. Pt. 2

    International Nuclear Information System (INIS)

    Noll, B.; Semmler, W.

    1994-01-01

    N 1 -alkylated mercaptoacetyl glycine ligands were labelled with technetium-99m and the formed products analyzed by chromatographic methods. Biodistribution patterns of the resulting species were determined in Wistar rats. The compounds were tested with regard to their ability to be accumulated in arterioclerotic plaques. (orig.)

  6. Does Glycine max leaves or Garcinia Cambogia promote weight-loss or lower plasma cholesterol in overweight individuals: a randomized control trial

    OpenAIRE

    Kim, Ji-Eun; Jeon, Seon-Min; Park, Ki Hun; Lee, Woo Song; Jeong, Tae-Sook; McGregor, Robin A; Choi, Myung-Sook

    2011-01-01

    Abstract Background Natural food supplements with high flavonoid content are often claimed to promote weight-loss and lower plasma cholesterol in animal studies, but human studies have been more equivocal. The aim of this study was firstly to determine the effectiveness of natural food supplements containing Glycine max leaves extract (EGML) or Garcinia cambogia extract (GCE) to promote weight-loss and lower plasma cholesterol. Secondly to examine whether these supplements have any beneficial...

  7. Self-Assembly of Organic Ferroelectrics by Evaporative Dewetting: A Case of β-Glycine.

    Science.gov (United States)

    Seyedhosseini, Ensieh; Romanyuk, Konstantin; Vasileva, Daria; Vasilev, Semen; Nuraeva, Alla; Zelenovskiy, Pavel; Ivanov, Maxim; Morozovska, Anna N; Shur, Vladimir Ya; Lu, Haidong; Gruverman, Alexei; Kholkin, Andrei L

    2017-06-14

    Self-assembly of ferroelectric materials attracts significant interest because it offers a promising fabrication route to novel structures useful for microelectronic devices such as nonvolatile memories, integrated sensors/actuators, or energy harvesters. In this work, we demonstrate a novel approach for self-assembly of organic ferroelectrics (as exemplified by ferroelectric β-glycine) using evaporative dewetting, which allows forming quasi-regular arrays of nano- and microislands with preferred orientation of polarization axes. Surprisingly, self-assembled islands are crystallographically oriented in a radial direction from the center of organic "grains" formed during dewetting process. The kinetics of dewetting process follows the t -1/2 law, which is responsible for the observed polygon shape of the grain boundaries and island coverage as a function of radial position. The polarization in ferroelectric islands of β-glycine is parallel to the substrate and switchable under a relatively small dc voltage applied by the conducting tip of piezoresponse force microscope. Significant size effect on polarization is observed and explained within the Landau-Ginzburg-Devonshire phenomenological formalism.

  8. Identification of Alternaria alternata Mycotoxins by LC-SPE-NMR and Their Cytotoxic Effects to Soybean (Glycine max Cell Suspension Culture

    Directory of Open Access Journals (Sweden)

    Edson Rodrigues-Filho

    2013-02-01

    Full Text Available This present work describes the application of liquid chromatograpy-solid phase extraction-nuclear magnetic resonance spectroscopy to analyse Alternaria alternata crude extracts. Altenusin (1, alternariol (2, 3'-hydroxyalternariol monomethyl ether (3, and alternariol monomethyl ether (4, were separated and identified. High-resolution mass spectrometry confirmed the proposed structures. The cytotoxic effects of these compounds towards plants were determined using soybean (Glycine max cell cultures as a model. EC50 values which range from 0.11 (±0.02 to 4.69 (±0.47 μM showed the high cytotoxicity of these compounds.

  9. Impact of local empowerment on conservation practices in a highly developed country

    OpenAIRE

    Engen, Sigrid; Hausner, Vera Helene

    2017-01-01

    Source at http://dx.doi.org/10.1111/conl.12369 Community-based conservation, where local decision makers are responsible for balancing conservation and development, is often preferred to exclusion- ary conservation that prioritizes use-limitation through strict regulation. Un- raveling the evidence for conservation impact of different governance regimes is challenging. Focusing on conservation practices before and after a reform can provide an early indication of behaviora...

  10. Gas-phase reactions of glycine, alanine, valine and their N-methyl derivatives with the nitrosonium ion, NO+.

    Science.gov (United States)

    Freitas, M A; O'Hair, R A; Schmidt, J A; Tichy, S E; Plashko, B E; Williams, T D

    1996-10-01

    The gas-phase reactions of the nitrosonium ion, NO+ with the amino acids glycine, alanine and valine and their N-methyl derivatives were investigated under chemical ionization mass spectrometric (CIMS) conditions. Two products were observed in all cases: the formation of the iminium ion and the formation of an [M-H]+ ion. The latter product is consistent with a reaction channel involving hydride abstraction by NO+, and was confirmed by (i) examining the Ar+CI mass spectra of the same amino acids under similar source conditions and (ii) examining the unimolecular fragmentation reactions of the [M + H]+ ions of the N-nitroso-N-methyl derivatives of each of the amino acids in a tandem mass spectrometer. Further insights into the reaction of glycine with NO+ were obtained by performing ab initio calculations (at the MP2/6-31G* parallel HF/6-31G* level). These results indicate that four reactions are thermodynamically viable for glycine: (i) hydride abstraction; (ii) iminium ion formation (with concomitant loss of HONO and CO); (iii) diazonium ion formation; and (iv) diazonium ion formation followed by loss of N2. Possible reasons why reactions (iii) and (iv) are not observed are discussed, and comparisons with solution reactivity and the gas-phase reactivity of NO+ are also made.

  11. 78 FR 51463 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures

    Science.gov (United States)

    2013-08-20

    ... merging the metal halide lamp fixture and the high-intensity discharge (HID) lamp rulemakings. This NOPR... Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Proposed Rule #0;#0;Federal...: Energy Conservation Standards for Metal Halide Lamp Fixtures AGENCY: Office of Energy Efficiency and...

  12. Effect of epileptogenic agents on the incorporation of /sup 3/H-glycine into proteins in the cat's cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Rojik, I.; Feher, O.

    1982-06-01

    Filter paper strips soaked in /sup 3/H-glycine solution were applied to acoustic cortex of cats, anaesthetized with Nembutal and pretreated with epileptogenic agents (Metrazol, G-penicillin, and 3-amino-pyridine) and cycloheximide. The untreated contralateral hemisphere served as control. After 1 h incubation, both cortical samples were excised simultaneously and fixed in Bouin solution for autoradiography. Incorporation was blocked by cycloheximide. There was no glycine incorporation on the penicillin-treated side, while pyramidal cells were intensively labelled in layers II-V of the mirror focus. 3-Aminopyridine produced the same result. Metrazol as convulsant proved to be far weaker than the previous two. The intensity of incorporation was significantly more intensive in the mirror focus than in the primary one. Penicillin and 3-aminopyridine, while provoking cortical seizures, seem to inhibit glycine incorporation into a neuron-specific, function-dependent protein contained by the labelled cells in the autoradiogram.

  13. Efficient one-pot synthesis of indol-3-yl-glycines via uncatalyzed Friedel-Crafts reaction in water.

    Science.gov (United States)

    Ghandi, Mehdi; Taheri, Abuzar

    2009-03-05

    The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  14. Similarity and functional analyses of expressed parasitism genes in Heterodera schachtii and Heterodera glycines

    Science.gov (United States)

    The secreted proteins encoded by “parasitism genes” expressed within the esophageal glands cells of cyst nematodes play important roles in plant parasitism. Homologous transcripts and encoded proteins of the Heterodera glycines pioneer parasitism genes Hgsyv46, Hg4e02 and Hg5d08 were identified and ...

  15. The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide

    International Nuclear Information System (INIS)

    Bashir, Fozia; Mahmooduzzafar; Siddiqi, T.O.; Iqbal, Muhammad

    2007-01-01

    Forty-five-day-old plants of Glycine max (soybean) were exposed to several Deltamethrin (synthetic pyrethroid insecticide) concentrations (0.00 %, 0.05 %, 0.10 %, 0.15 % and 0.20 %) through foliar spray in the field conditions. In the treated plants, as observed at the pre-flowering (10 DAT), flowering (45 DAT) and post-flowering (70 DAT) stages, lipid peroxidation, proline content and total glutathione content increased, whereas the total ascorbate content decreased, as compared with the control. Among the enzymatic antioxidants, activity of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased significantly whereas that of catalase declined markedly in relation to increasing concentration of Deltamethrin applied. The changes observed were dose-dependent, showing a strong correlation with the degree of treatment. - The Deltamethrin-induced oxidative stress alters the ascorbate-glutathione cycle in Glycine max

  16. Glycine-containing selective medium for isolation of Legionellaceae from environmental specimens.

    OpenAIRE

    Wadowsky, R M; Yee, R B

    1981-01-01

    Glycine, at a final concentration of 0.3%, has been shown to be an excellent selective agent for the isolation of Legionellaceae. Stock cultures of Legionella pneumophila were not inhibited on buffered charcoal-yeast extract agar containing the amino acid. Among the other Legionellaceae tested, only one of two strains of L. dumoffii and two of six strains of L. micdadei were appreciably inhibited. This medium permitted the isolation of L. pneumophila from environmental specimens with marked i...

  17. Isolation of Fungi from Heterodera glycines and in vitro Bioassays for Their Antagonism to Eggs.

    Science.gov (United States)

    Meyer, S L; Huettel, R N; Sayre, R M

    1990-10-01

    Twenty fungi were assayed in vitro for antagonism to eggs of Heterodera glycines. Eight of the fungi were isolated from cysts or eggs of H. glycines during the current study, one was isolated from Panagrellus redivivus, and eleven were obtained from other researchers or collections. The bioassays were conducted on eggs from nematodes that had been grown monoxenically on excised root tips. Phoma chrysanthemicola, one strain of Verticillium chlamydosporium, and one strain of V. lecanii caused a decrease (P Trichoderma polysporum infected live eggs but enhanced (P Fusarium sp., Neocosmospora vasinfecta, Scytalidium fulvum, Trichoderma harzianum (two strains), V. chlamydosporium (one strain), V. lecanii (three strains), and an unidentified fungus did not measurably affect egg viability, even though hyphae of five of these fungi were seen in live eggs. The bioassay provides a useful step in the selection of a biological control agent for this major nematode pest.

  18. Ciprofibrate, clofibric acid and respective glycinate derivatives. Effects of a four-week treatment on male lean and obese Zucker rats.

    Science.gov (United States)

    Lupp, Amelie; Karge, Elke; Deufel, Thomas; Oelschlägers, Herbert; Fleck, Christian

    2008-01-01

    Fibrates are widely prescribed in hyperlpidemic patients to prevent atherosclerosis. Their therapeutic use, however, can be associated with adverse effects like gastrointestinal disorders, myalgia, myositis and hepatotoxicity. In rodents large doses can even cause hepatocellular carcinoma. Additionally, interactions with the biotransformation of other compounds at the cytochrome P450 (CYP) system have been observed. Thus, the discovery of new substances or derivatives with less side effects is of great interest. In the present study the influence of a four-week daily oral administration of 2 mg/kg body weight ciprofibrate (CAS 52214-84-3) or of 100 mg/kg body weight clofibric acid (CAS 882-09-7) was compared to that of the respective doses of their newly synthesized glycine conjugates in adult male lean and obese Zucker rats. Although obese rats displayed distinctly higher serum lipid concentrations, after fibrate treatment values were significantly lowered in lean animals only. Livers of obese rats were significantly enlarged, histologically showing a fine-droplet like fatty degeneration and an increase in glycogen content, but no signs of inflammation. After fibrate administration histologically a hypertrophy, an eosinophilia, a reduced glycogen content and also hepatocyteapoptosis were observed. Livers of obese rats displayed higher CYP1A1 andCYP2E1 expression, but lower immunostaining for CYP2B1 and CYP3A2. No differences between the two groups of rats were seen with respect to CYP4A1 expression. Due to fibrate treatment especially CYP2E1 and CYP4A1, but also CYP1A1, 2B1 and 3A2 were induced. Resulting CYP mediated monooxygenase activities were also elevated in most cases. In general, effects of clofibric acid and clofibric acid glycinate (CAS 4896-55-3) were less distinct than those of ciprofibrate and its glycinate (CAS 640772-36-7). With no parameterinvestigated major differences were seen between the parent fibrates and their glycine conjugates. Thus, the

  19. Time-dependent, bidirectional, anti- and pro-spinal hyper-reflexia and muscle spasticity effect after chronic spinal glycine transporter 2 (GlyT2) oligonucleotide-induced downregulation.

    Science.gov (United States)

    Kamizato, Kota; Marsala, Silvia; Navarro, Michael; Kakinohana, Manabu; Platoshyn, Oleksandr; Yoshizumi, Tetsuya; Lukacova, Nadezda; Wancewicz, Ed; Powers, Berit; Mazur, Curt; Marsala, Martin

    2018-07-01

    The loss of local spinal glycine-ergic tone has been postulated as one of the mechanisms contributing to the development of spinal injury-induced spasticity. In our present study using a model of spinal transection-induced muscle spasticity, we characterize the effect of spinally-targeted GlyT2 downregulation once initiated at chronic stages after induction of spasticity in rats. In animals with identified hyper-reflexia, the anti-spasticity effect was studied after intrathecal treatment with: i) glycine, ii) GlyT2 inhibitor (ALX 1393), and iii) GlyT2 antisense oligonucleotide (GlyT2-ASO). Administration of glycine and GlyT2 inhibitor led to significant suppression of spasticity lasting for a minimum of 45-60 min. Treatment with GlyT2-ASO led to progressive suppression of muscle spasticity seen at 2-3 weeks after treatment. Over the subsequent 4-12 weeks, however, the gradual appearance of profound spinal hyper-reflexia was seen. This was presented as spontaneous or slight-tactile stimulus-evoked muscle oscillations in the hind limbs (but not in upper limbs) with individual hyper-reflexive episodes lasting between 3 and 5 min. Chronic hyper-reflexia induced by GlyT2-ASO treatment was effectively blocked by intrathecal glycine. Immunofluorescence staining and Q-PCR analysis of the lumbar spinal cord region showed a significant (>90%) decrease in GlyT2 mRNA and GlyT2 protein. These data demonstrate that spinal GlyT2 downregulation provides only a time-limited therapeutic benefit and that subsequent loss of glycine vesicular synthesis resulting from chronic GlyT2 downregulation near completely eliminates the tonic glycine-ergic activity and is functionally expressed as profound spinal hyper-reflexia. These characteristics also suggest that chronic spinal GlyT2 silencing may be associated with pro-nociceptive activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Efficient One-Pot Synthesis of Indol-3-yl-Glycines via Uncatalyzed Friedel-Crafts Reaction in Water

    Directory of Open Access Journals (Sweden)

    Mehdi Ghandi

    2009-03-01

    Full Text Available The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  1. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua

    2017-12-01

    The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.

  2. 77 FR 72817 - Glycine From the People's Republic of China: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2012-12-06

    ... Republic of China: Preliminary Results of Antidumping Duty Administrative Review and Preliminary Partial... conducting an administrative review of the antidumping duty order on glycine from the People's Republic of... covers one exporter of subject merchandise, Baoding Mantong Fine Chemistry Co. Ltd. (Baoding Mantong). We...

  3. Balancing forest-regeneration probabilities and maintenance costs in dry grasslands of high conservation priority

    Science.gov (United States)

    Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix

    2011-01-01

    Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.

  4. Mechanism of action of clostridial glycine reductase: Isolation and characterization of a covalent acetyl enzyme intermediate

    International Nuclear Information System (INIS)

    Arkowitz, R.A.; Abeles, R.H.

    1991-01-01

    Clostridial glycine reductase consists of proteins A, B, and C and catalyzes the reaction glycine + P i + 2e - → acetyl phosphate + NH 4 + . Evidence was previously obtained that is consistent with the involvement of an acyl enzyme intermediate in this reaction. The authors now demonstrate that protein C catalyzes exchange of [ 32 P]P i into acetyl phosphate, providing additional support for an acetyl enzyme intermediate on protein C. Furthermore, they have isolated acetyl protein C and shown that it is qualitatively, catalytically competent. Acetyl protein C can be obtained through the forward reaction from protein C and Se-(carboxymethyl)selenocysteine-protein A, which is generated by the reaction of glycine with proteins A and B. Acetyl protein C can also be generated through the reverse reaction by the addition of acetyl phosphate to protein C. Both procedures lead to the same acetyl enzyme. The acetyl enzyme reacts with P i to give acetyl phosphate. When [ 14 C]acetyl protein C is denaturated with TCA and redissolved with urea, radioactivity remained associated with the protein. Treatment with KBH 4 removes all the radioactivity associated with protein C, resulting in the formation of [ 14 C]ethanol. They conclude that a thiol group on protein C is acetylated. Proteins A and C together catalyze the exchange of tritium atoms from [ 3 H]H 2 O into acetyl phosphate. This exchange reaction supports the proposal that an enol of the acetyl enzyme is an intermediate in the reaction sequence

  5. Application of Glycine, Tufool and Salicylic Acid in Sugar beet (Beta vulgaris L. under Drought Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Kheirkhah

    2016-03-01

    Full Text Available Sugar beet is one of strategic products to supply sugar in water limited areas of Iran. Thus, proper managements to supply enouph water in production of sugar beet is very important. To evaluate the effects of some anti stress substances like salicylic acid, tyuful and glycine to irritigate the effect of early water deficit on suger beet, an experiment based on randomized complete block design with three replications was carried out at the Research Farm of Fariman Sugar Factory in 2013. Treatments consisted of control (without using anti stress substances, with three concentration of salicylic acid (0.1, 0.5, and 1 mM, tyuful with three concentration (0.5, 1 and 1.5 liter per thousand and glycine with three concentration (1, 2 and 3 liters per thousand. The results showed that the effects of anti-stress materials significantly affected the sugar content, root yield, white sugar yield and harmful nitrogen. Highest sugar content (15.65%, root yield (83.82 t.ha-1 and white sugar percentage (11.15% were obtained by using tyuful 1.5 lit/1000. While, the lowest levels of these characters were obtained from control (not using anti stress substances. Maximum harmful nitrogen was produced in control treatment (4.38 and highest level of alkalinity with mean of 3.49 was observed by using 3 lit/1000 of glycine. Our results showed that all of the anti stress substances had positive effects on sugar beet under drought stress condition.

  6. Structure of choline oxidase in complex with the reaction product glycine betaine.

    Science.gov (United States)

    Salvi, Francesca; Wang, Yuan-Fang; Weber, Irene T; Gadda, Giovanni

    2014-02-01

    Choline oxidase from Arthrobacter globiformis, which is involved in the biosynthesis of glycine betaine from choline, has been extensively characterized in its mechanistic and structural properties. Despite the knowledge gained on the enzyme, the details of substrate access to the active site are not fully understood. The `loop-and-lid' mechanism described for the glucose-methanol-choline enzyme superfamily has not been confirmed for choline oxidase. Instead, a hydrophobic cluster on the solvent-accessible surface of the enzyme has been proposed by molecular dynamics to control substrate access to the active site. Here, the crystal structure of the enzyme was solved in complex with glycine betaine at pH 6.0 at 1.95 Å resolution, allowing a structural description of the ligand-enzyme interactions in the active site. This structure is the first of choline oxidase in complex with a physiologically relevant ligand. The protein structures with and without ligand are virtually identical, with the exception of a loop at the dimer interface, which assumes two distinct conformations. The different conformations of loop 250-255 define different accessibilities of the proposed active-site entrance delimited by the hydrophobic cluster on the other subunit of the dimer, suggesting a role in regulating substrate access to the active site.

  7. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance.

    NARCIS (Netherlands)

    Kim, D.; Fiske, B.P.; Birsoy, K.; Freinkman, E.; Kami, K.; Possemato, R.L.; Chudnovsky, Y.; Pacold, M.E.; Chen, W.W.; Cantor, J.R.; Shelton, L.M.; Gui, D.Y.; Kwon, M.; Ramkissoon, S.H.; Ligon, K.L.; Kang, S.W.; Snuderl, M.; der Heiden, M.G. Van; Sabatini, D.M.

    2015-01-01

    Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain

  8. Asparagine and glycine metabolism in rat liver mitochondria and in mouse L5178Y lymphoma cells resistant or sensitive to the anticancer drug L-asparaginase

    Energy Technology Data Exchange (ETDEWEB)

    Keefer, J.F. Jr.

    1986-01-01

    Rat liver mitochondrial asparagine was found to be degraded via an aminotransferase and omega-amidase. Evidence includes oxaloacetate production from asparagine only when glyoxylate was added and production of radiolabeled ..cap alpha..-ketosuccinamate via metabolism of (U-/sup 14/C)asparagine. In the cytosol, asparagine is degraded primarily via asparaginase and subsequent transamination. A new HPLC technique for separation of citric acid cycle intermediates was developed using: ion pairing with 20 mM each to tetrabutylammonium hydroxide and Na/sub 2/SO/sub 4/; pH 7.0; isocratic elution; and detection at 210 nm. Amino acid content of mouse lymphoma cells either sensitive (L5178Y) or resistant (L5178Y/L-ASE) to the anticancer drug L-asparaginase was studied. The concentration of asparagine was 1.5 times higher and the concentrations of the essential amino acids histidine, methionine, valine and phenylalanine were two times higher in asparaginase-resistant than sensitive cells. In vivo but not in vitro studies indicated that glucine decreases in sensitive but not resistant cells upon asparaginase treatment. Asparagine and glycine metabolism was further studied using /sup 14/C radiolabel conversion of asparagine, glyoxylate, glycine and serine. Glycine metabolism is especially important in lymphomas and leukemias because these cells contain higher concentrations of glycine that other cancer and normal cells. Therefore, glycine levels were studied and were found to decrease in sensitive but not resistant cells upon asparaginase administration.

  9. Geographies of Conservation I: De-extinction and Precision Conservation

    OpenAIRE

    Adams, William Mark

    2016-01-01

    Extinction has long been a central concern in biodiversity conservation. Today, de-extinction offers interesting possibilities of restoring charismatic species and ecosystem function, but also risks and costs. Most de-extinction depends on genetic engineering and synthetic biology. These technologies are also proposed for use in ‘gene tweaking’ in wild species to enhance their chance of survival. Within conservation, the resulting debates pit an optimistic world of high-tech ‘precision con...

  10. The uptake of 14C-glycine to Bufo vulgaris formosus (Boulenger) larva at metamorphosis

    International Nuclear Information System (INIS)

    Hasegawa, Hitoshi; Tanaka, Haruo; Ishiguro, Shigeru; Nonoyama, Kiyoshi; Nakagawa, Harumi.

    1981-01-01

    With the eggs of Bufo vulgaris formosus (Boulenger) immediately after fertilization, the larvae in the 50 ml solution containing 1 ml of 14 C-glycine were developed to the end of metamorphosis. Measurements were made on the length of body, tail, fore limb and hind leg through the stages of tail degeneration and vestige. The radioactivity of the cut off fore limbs, hind legs, tails and head trunks was measured with a scintillation counter, and the 10 μ sections of the samples were used for autoradiography. The larvae uptook orally 14 C-glycine to the organs of cell tissues. On the basis of the reports of the autolysis of tails and the activation of lysosome enzyme in metamorphosis and on the uptake of 14 C-leucine and 14 C-proline to four legs by other workers, and on the present results, the free amino acids formed from the autolysis of tails were utilized for the recomposition of organ protein synthesis in the metamorphosis of the amphibians. (J.P.N.)

  11. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    Science.gov (United States)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  12. 77 FR 21738 - Glycine From the People's Republic of China: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2012-04-11

    ... contracts and other agreements; (3) whether the respondent has autonomy from the government in making... authority to negotiate and sign contracts and other agreements; (3) the respondent has autonomy from the... glycine but argued that there were no publicly available data upon which to base the financial-ratio...

  13. Analysis and Characterization of Vitamin B Biosynthesis Pathways in the Phytoparasitic Nematode Heterodera Glycines

    Science.gov (United States)

    Craig, James P.

    2009-01-01

    The soybean cyst nematode (SCN), "Heterodera glycines" is an obligate plant parasite that can cause devastating crop losses. To aide in the study of this pathogen, the SCN genome and the transcriptome of second stage juveniles and eggs were shotgun sequenced. A bioinformatic screen of the data revealed nine genes involved in the "de novo"…

  14. Biofertilisasi bakteri rhizobium pada tanaman kedelai (Glycine max (L MERR.

    Directory of Open Access Journals (Sweden)

    Tini Surtiningsih

    2012-02-01

    Full Text Available The aim of this research want to know the influence of the addition Rhizobium bacteria species, dose and combination both ofthem, on growth and production of soybean plant (Glycine max (L Merr.. The experimental design of this research was factorial design4×2, 4 species of Rhizobium are R1 = Rhizobium japonicum, R2 = R. phaseoli, R3 = R. leguminosarum, R4 = mixture of R1, R2 andR3, and 2 dose of inoculan Rhizobium (D1 = 5 m/plant, and D2 = 10 ml/plant with 1010 sel bacteria/ml and 5 replications. Independentvariable is species of Rhizobium, dose of inoculan Rhizobium and combination both of them. Dependent variable is dry matter, weightof nodules and dry weight of seeds. The harvest data was analyzed by Kruskal-Wallis Test using 5% level (a = 0.05 followed by Mann-Whitney Test. The result of this research show that species of Rhizobium, dose of inoculan Rhizobium and combination both of thempresent insignificant result (a > 0.05 on soybean growth and production, but the mixture of Rhizobium species with high level doseof bacteria, present better result than single species with low dose of bacteria.

  15. Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought

    DEFF Research Database (Denmark)

    Andresen, Luise C.; Michelsen, Anders; Jonasson, Sven

    2009-01-01

    the responses to single factors treatments. The soil microbes were superior to plants in the short-term competition for the added glycine, as indicated by an 18 times larger 15N recovery in the microbial biomass compared to the plant biomass. The soil microbes acquired glycine largely as an intact compound (87...... here present results from a field experiment in which the effects of these three climate change factors are investigated solely and in all combinations at a temperate heath dominated by heather (Calluna vulgaris) and wavy hair-grass (Deschampsia flexuosa). Climate induced increases in plant production...... may increase plant root exudation of dissolved organic compounds such as amino acids, and the release of amino acids during decomposition of organic matter. Such free amino acids in soil serve as substrates for soil microorganisms and are also acquired as nutrients directly by plants. We investigated...

  16. Planning for land use and conservation: Assessing GIS-based conservation software for land use planning

    Science.gov (United States)

    Rob Baldwin; Ryan Scherzinger; Don Lipscomb; Miranda Mockrin; Susan Stein

    2014-01-01

    Recent advances in planning and ecological software make it possible to conduct highly technical analyses to prioritize conservation investments and inform local land use planning. We review these tools, termed conservation planning tools, and assess the knowledge of a key set of potential users: the land use planning community. We grouped several conservation software...

  17. NMDA receptor glycine modulatory site in the ventral tegmental area regulates the acquisition, retrieval, and reconsolidation of cocaine reward memory.

    Science.gov (United States)

    Zhou, Shuang-jiang; Xue, Li-fen; Wang, Xue-yi; Jiang, Wen-gao; Xue, Yan-xue; Liu, Jian-feng; He, Yin-yin; Luo, Yi-xiao; Lu, Lin

    2012-05-01

    Accumulating clinical and preclinical studies have shown that the memories of the rewarding effects of drugs and their paired cues may contribute to relapse and persistent cocaine use. Glutaminergic actions in the ventral tegmental area (VTA) have been shown to regulate the rewarding effect of drugs and conditioned responses to drug-associated cues, but the role of the VTA in the acquisition, retrieval, and reconsolidation of cocaine cues is not yet known. In the present study, we used 7-chlorothiokynurenic acid (7-CTKA), an N-methyl-D-aspartate (NMDA) receptor glycine modulatory site antagonist with no rewarding effects, to examine the role of the NMDA receptor glycine modulatory site in the acquisition, retrieval, and reconsolidation of cocaine-related reward memory using the conditioned place preference (CPP) paradigm. Separate groups of Sprague-Dawley rats were trained to acquire cocaine-induced CPP. Vehicle or 7-CTKA was microinjected into the VTA or substantia nigra (SN) (5 μg/μl) at different time points: 10 min before each CPP training session (acquisition), 10 min before the reactivation of CPP (retrieval), and immediately after the reactivation of CPP (reconsolidation). Cocaine-induced CPP was retested 24 h and 1 and 2 weeks after 7-CTKA administration. 7-CTKA microinjected into the VTA, but not SN, significantly impaired the acquisition, retrieval, and reconsolidation of cocaine-induced CPP without affecting cocaine-induced locomotion. Our findings suggest that the NMDA receptor glycine modulatory site in the VTA plays a major role in cocaine reward memory, and NMDA receptor glycine site antagonists may be potential pharmacotherapies for the management of relapse.

  18. 78 FR 72533 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products

    Science.gov (United States)

    2013-12-03

    ... published on October 23, 2013. That final rule adopted changes to definitions and energy conservation... revised definition and revised energy conservation standards for small duct high velocity central air... Congress has provided in the AEMTCA for the Secretary of Energy to revise definitions and energy...

  19. Thermoluminescence of magnesium oxide doped with cerium and lithium obtained by a glycine-based solution combustion method

    International Nuclear Information System (INIS)

    Escobar O, F. M.; Orante B, V. R.; Cruz V, C.; Bernal, R.

    2015-10-01

    Full text: It is well known that glycine, fulfills two principal purposes: first, complexes with metal cations formed, which increases their solubility and prevents selective precipitation as water is evaporated; and second, it serves as fuel for the combustion reaction, being oxidized by the nitrate ions. The glycine molecule has a carboxylic acid group at one end and an amine group at the other end, both of which can participate in the complexation of metal ions. This zwitterionic character allows effective complexation with metal cations of different ionic size. Novel Mg O:Ce 3+ , Li + phosphor was obtained for the very first time by solution combustion synthesis (Scs) in which a redox combustion process between metallic nitrates and glycine at 500 degrees C was accomplished. The powder samples obtained were annealed at 900 degrees C during 2 h in air. X-ray diffraction (XRD) results showed the face-centered cubic (fcc) phase of Mg O as well as the presence of CeO 2 for the annealed powder samples. Photoluminescence emission spectra showed the characteristic Ce 3+ peak located at 520 nm. The thermoluminescence glow curve obtained after exposure to beta radiation of these samples, displayed three maxima located at ∼ 108 degrees C, ∼ 210 degrees C, and ∼ 310 degrees C. Results from experiments such as dose response and fading showed that annealed Mg O:Ce 3+ , Li + powder obtained by Scs is a promising material for radiation dosimetry applications. (Author)

  20. Optimised formation of blue Maillard reaction products of xylose and glycine model systems and associated antioxidant activity.

    Science.gov (United States)

    Yin, Zi; Sun, Qian; Zhang, Xi; Jing, Hao

    2014-05-01

    A blue colour can be formed in the xylose (Xyl) and glycine (Gly) Maillard reaction (MR) model system. However, there are fewer studies on the reaction conditions for the blue Maillard reaction products (MRPs). The objective of this study is to investigate characteristic colour formation and antioxidant activities in four different MR model systems and to determine the optimum reaction conditions for the blue colour formation in a Xyl-Gly MR model system, using the random centroid optimisation program. The blue colour with an absorbance peak at 630 nm appeared before browning in the Xyl-Gly MR model system, while no blue colour formation but only browning was observed in the xylose-alanine, xylose-aspartic acid and glucose-glycine MR model systems. The Xyl-Gly MR model system also showed higher antioxidant activity than the other three model systems. The optimum conditions for blue colour formation were as follows: xylose and glycine ratio 1:0.16 (M:M), 0.20 mol L⁻¹ NaHCO₃, 406.1 mL L⁻¹ ethanol, initial pH 8.63, 33.7°C for 22.06 h, which gave a much brighter blue colour and a higher peak at 630 nm. A characteristic blue colour could be formed in the Xyl-Gly MR model system and the optimum conditions for the blue colour formation were proposed and confirmed. © 2013 Society of Chemical Industry.

  1. Characterization of the Elusive Conformers of Glycine from State-of-the-Art Structural, Thermodynamic, and Spectroscopic Computations: Theory Complements Experiment.

    Science.gov (United States)

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Puzzarini, Cristina

    2013-03-12

    A state-of-the-art computational strategy for the evaluation of accurate molecular structures as well as thermodynamic and spectroscopic properties along with the direct simulation of infrared (IR) and Raman spectra is established, validated (on the basis of the experimental data available for the Ip glycine conformer) and then used to provide a reliable and accurate characterization of the elusive IVn/gtt and IIIp/tct glycine conformers. The integrated theoretical model proposed is based on accurate post-Hartree-Fock computations (involving composite schemes) of energies, structures, properties, and harmonic force fields coupled to DFT corrections for the proper inclusion of vibrational effects at an anharmonic level (as provided by general second-order perturbative approach). It is shown that the approach presented here allows the evaluation of structural, thermodynamic, and spectroscopic properties with an overall accuracy of about, or better than, 0.001 Å, 20 MHz, 1 kJ·mol(-1), and 10 cm(-1) for bond distances, rotational constants, conformational enthalpies, and vibrational frequencies, respectively. The high accuracy of the computational results allows one to support and complement experimental studies, thus providing (i) an unequivocal identification of several conformers concomitantly present in the experimental mixture and (ii) data not available or difficult to experimentally derive.

  2. RNA expression in a cartilaginous fish cell line reveals ancient 3′ noncoding regions highly conserved in vertebrates

    Science.gov (United States)

    Forest, David; Nishikawa, Ryuhei; Kobayashi, Hiroshi; Parton, Angela; Bayne, Christopher J.; Barnes, David W.

    2007-01-01

    We have established a cartilaginous fish cell line [Squalus acanthias embryo cell line (SAE)], a mesenchymal stem cell line derived from the embryo of an elasmobranch, the spiny dogfish shark S. acanthias. Elasmobranchs (sharks and rays) first appeared >400 million years ago, and existing species provide useful models for comparative vertebrate cell biology, physiology, and genomics. Comparative vertebrate genomics among evolutionarily distant organisms can provide sequence conservation information that facilitates identification of critical coding and noncoding regions. Although these genomic analyses are informative, experimental verification of functions of genomic sequences depends heavily on cell culture approaches. Using ESTs defining mRNAs derived from the SAE cell line, we identified lengthy and highly conserved gene-specific nucleotide sequences in the noncoding 3′ UTRs of eight genes involved in the regulation of cell growth and proliferation. Conserved noncoding 3′ mRNA regions detected by using the shark nucleotide sequences as a starting point were found in a range of other vertebrate orders, including bony fish, birds, amphibians, and mammals. Nucleotide identity of shark and human in these regions was remarkably well conserved. Our results indicate that highly conserved gene sequences dating from the appearance of jawed vertebrates and representing potential cis-regulatory elements can be identified through the use of cartilaginous fish as a baseline. Because the expression of genes in the SAE cell line was prerequisite for their identification, this cartilaginous fish culture system also provides a physiologically valid tool to test functional hypotheses on the role of these ancient conserved sequences in comparative cell biology. PMID:17227856

  3. Kinetics of the Reaction of CO2 with Aqueous Potassium Salt of Taurine and Glycine

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Versteeg, G.F.; Feron, P.H.M.

    2003-01-01

    The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas–liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike

  4. Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine

    NARCIS (Netherlands)

    Kumar Paramasivam Senthil, P.S.; Hogendoorn, Kees; Versteeg, Geert; Feron, P.H.M.

    2003-01-01

    The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas-liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike

  5. Genetic Analysis of Seed Isoflavones, Protein, and Oil Contents in Soybean [Glycine max (L.) Merr.

    Science.gov (United States)

    2014-09-13

    and My Abdelmajid Kassem. Effect of Two Row Spaces on Several Agronomic Traits in Soy - bean [Glycine max (L.) Merr.], Atlas Journal of Plant Biology... SoyS - NP6K Illumina Infinium BeadChip Genotyping Array , Journal of Plant Genome Sciences (09 2013) Masum Akond1, Shiming Liu2, Melanie Boney1

  6. Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes

    DEFF Research Database (Denmark)

    Xie, Weijia; Wood, Andrew R; Lyssenko, Valeriya

    2013-01-01

    . The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we...

  7. Glycine transporter dimers: evidence for occurrence in the plasma membrane

    DEFF Research Database (Denmark)

    Bartholomäus, Ingo; Milan-Lobo, Laura; Nicke, Annette

    2008-01-01

    membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2......Different Na(+)/Cl(-)-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma...

  8. Photoionization dynamics of glycine adsorbed on a silicon cluster: ''On-the-fly'' simulations

    International Nuclear Information System (INIS)

    Shemesh, Dorit; Baer, Roi; Seideman, Tamar; Gerber, R. Benny

    2005-01-01

    Dynamics of glycine chemisorbed on the surface of a silicon cluster is studied for a process that involves single-photon ionization, followed by recombination with the electron after a selected time delay. The process is studied by ''on-the-fly'' molecular dynamics simulations, using the semiempirical parametric method number 3 (PM3) potential energy surface. The system is taken to be in the ground state prior to photoionization, and time delays from 5 to 50 fs before the recombination are considered. The time evolution is computed over 10 ps. The main findings are (1) the positive charge after ionization is initially mostly distributed on the silicon cluster. (2) After ionization the major structural changes are on the silicon cluster. These include Si-Si bond breaking and formation and hydrogen transfer between different silicon atoms. (3) The transient ionization event gives rise to dynamical behavior that depends sensitively on the ion state lifetime. Subsequent to 45 fs evolution in the charged state, the glycine molecule starts to rotate on the silicon cluster. Implications of the results to various processes that are induced by transient transition to a charged state are discussed. These include inelastic tunneling in molecular devices, photochemistry on conducting surfaces, and electron-molecule scattering

  9. Constitutive endocytosis and turnover of the neuronal glycine transporter GlyT2 is dependent on ubiquitination of a C-terminal lysine cluster.

    Directory of Open Access Journals (Sweden)

    Jaime de Juan-Sanz

    Full Text Available Inhibitory glycinergic neurotransmission is terminated by sodium and chloride-dependent plasma membrane glycine transporters (GlyTs. The mainly glial glycine transporter GlyT1 is primarily responsible for the completion of inhibitory neurotransmission and the neuronal glycine transporter GlyT2 mediates the reuptake of the neurotransmitter that is used to refill synaptic vesicles in the terminal, a fundamental role in the physiology and pathology of glycinergic neurotransmission. Indeed, inhibitory glycinergic neurotransmission is modulated by the exocytosis and endocytosis of GlyT2. We previously reported that constitutive and Protein Kinase C (PKC-regulated endocytosis of GlyT2 is mediated by clathrin and that PKC accelerates GlyT2 endocytosis by increasing its ubiquitination. However, the role of ubiquitination in the constitutive endocytosis and turnover of this protein remains unexplored. Here, we show that ubiquitination of a C-terminus four lysine cluster of GlyT2 is required for constitutive endocytosis, sorting into the slow recycling pathway and turnover of the transporter. Ubiquitination negatively modulates the turnover of GlyT2, such that increased ubiquitination driven by PKC activation accelerates transporter degradation rate shortening its half-life while decreased ubiquitination increases transporter stability. Finally, ubiquitination of GlyT2 in neurons is highly responsive to the free pool of ubiquitin, suggesting that the deubiquitinating enzyme (DUB ubiquitin C-terminal hydrolase-L1 (UCHL1, as the major regulator of neuronal ubiquitin homeostasis, indirectly modulates the turnover of GlyT2. Our results contribute to the elucidation of the mechanisms underlying the dynamic trafficking of this important neuronal protein which has pathological relevance since mutations in the GlyT2 gene (SLC6A5 are the second most common cause of human hyperekplexia.

  10. Syntheses, Characterization, Resolution, and Biological Studies of Coordination Compounds of Aspartic Acid and Glycine

    Science.gov (United States)

    Akinkunmi, Ezekiel; Ojo, Isaac; Adebajo, Clement; Isabirye, David

    2017-01-01

    Enantiomerically enriched coordination compounds of aspartic acid and racemic mixtures of coordination compounds of glycine metal-ligand ratio 1 : 3 were synthesized and characterized using infrared and UV-Vis spectrophotometric techniques and magnetic susceptibility measurements. Five of the complexes were resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) chloride, (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride, and (+)-tris(1,10-phenanthroline)nickel(II) chloride as resolving agents. The antimicrobial and cytotoxic activities of these complexes were then determined. The results obtained indicated that aspartic acid and glycine coordinated in a bidentate fashion. The enantiomeric purity of the compounds was in the range of 22.10–32.10%, with (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex as the more efficient resolving agent. The resolved complexes exhibited better activity in some cases compared to the parent complexes for both biological activities. It was therefore inferred that although the increase in the lipophilicity of the complexes may assist in the permeability of the complexes through the cell membrane of the pathogens, the enantiomeric purity of the complexes is also of importance in their activity as antimicrobial and cytotoxic agents. PMID:28293149

  11. Direct Effect of Remifentanil and Glycine Contained in Ultiva® on Nociceptive Transmission in the Spinal Cord: In Vivo and Slice Patch Clamp Analyses.

    Directory of Open Access Journals (Sweden)

    Makoto Sumie

    Full Text Available Ultiva® is commonly administered intravenously for analgesia during general anaesthesia and its main constituent remifentanil is an ultra-short-acting μ-opioid receptor agonist. Ultiva® is not approved for epidural or intrathecal use in clinical practice. Previous studies have reported that Ultiva® provokes opioid-induced hyperalgesia by interacting with spinal dorsal horn neurons. Ultiva® contains glycine, an inhibitory neurotransmitter but also an N-methyl-D-aspartate receptor co-activator. The presence of glycine in the formulation of Ultiva® potentially complicates its effects. We examined how Ultiva® directly affects nociceptive transmission in the spinal cord.We made patch-clamp recordings from substantia gelatinosa (SG neurons in the adult rat spinal dorsal horn in vivo and in spinal cord slices. We perfused Ultiva® onto the SG neurons and analysed its effects on the membrane potentials and synaptic responses activated by noxious mechanical stimuli.Bath application of Ultiva® hyperpolarized membrane potentials under current-clamp conditions and produced an outward current under voltage-clamp conditions. A barrage of excitatory postsynaptic currents (EPSCs evoked by the stimuli was suppressed by Ultiva®. Miniature EPSCs (mEPSCs were depressed in frequency but not amplitude. Ultiva®-induced outward currents and suppression of mEPSCs were not inhibited by the μ-opioid receptor antagonist naloxone, but were inhibited by the glycine receptor antagonist strychnine. The Ultiva®-induced currents demonstrated a specific equilibrium potential similar to glycine.We found that intrathecal administration of Ultiva® to SG neurons hyperpolarized membrane potentials and depressed presynaptic glutamate release predominantly through the activation of glycine receptors. No Ultiva®-induced excitatory effects were observed in SG neurons. Our results suggest different analgesic mechanisms of Ultiva® between intrathecal and intravenous

  12. Mistaken identity: activating conservative political identities induces "conservative" financial decisions.

    Science.gov (United States)

    Morris, Michael W; Carranza, Erica; Fox, Craig R

    2008-11-01

    Four studies investigated whether activating a social identity can lead group members to choose options that are labeled in words associated with that identity. When political identities were made salient, Republicans (but not Democrats) became more likely to choose the gamble or investment option labeled "conservative." This shift did not occur in a condition in which the same options were unlabeled. Thus, the mechanism underlying the effect appears to be not activated identity-related values prioritizing low risk, but rather activated identity-related language (the group label "conservative"). Indeed, when political identities were salient, Republicans favored options labeled "conservative" regardless of whether the options were low or high risk. Finally, requiring participants to explain the label "conservative" before making their choice did not diminish the effect, which suggests that it does not merely reflect inattention to content or construct accessibility. We discuss the implications of these results for the literatures on identity, priming, choice, politics, and marketing.

  13. Mapping allostery through computational glycine scanning and correlation analysis of residue-residue contacts.

    Science.gov (United States)

    Johnson, Quentin R; Lindsay, Richard J; Nellas, Ricky B; Fernandez, Elias J; Shen, Tongye

    2015-02-24

    Understanding allosteric mechanisms is essential for the physical control of molecular switches and downstream cellular responses. However, it is difficult to decode essential allosteric motions in a high-throughput scheme. A general two-pronged approach to performing automatic data reduction of simulation trajectories is presented here. The first step involves coarse-graining and identifying the most dynamic residue-residue contacts. The second step is performing principal component analysis of these contacts and extracting the large-scale collective motions expressed via these residue-residue contacts. We demonstrated the method using a protein complex of nuclear receptors. Using atomistic modeling and simulation, we examined the protein complex and a set of 18 glycine point mutations of residues that constitute the binding pocket of the ligand effector. The important motions that are responsible for the allostery are reported. In contrast to conventional induced-fit and lock-and-key binding mechanisms, a novel "frustrated-fit" binding mechanism of RXR for allosteric control was revealed.

  14. Effect of glycine and alanine supplementation on development of cattle embryos cultured in CR1aa medium with or without cumulus cells

    Directory of Open Access Journals (Sweden)

    Kr. BREDBACKA

    2008-12-01

    Full Text Available The effect of alanine (1 mM and glycine (10 mM supplementation on bovine embryo development in vitro was investigated. Presumptive bovine zygotes, produced by in vitro maturation and insemination of oocytes, were cultured for 144 h in CR1aa medium in the absence (Experiments 1 and 2 or presence of cumulus cells (Experiment 3. In Experiment 1, the proportion of morulae and blastocysts of cleaved embryos in glycine-supplemented medium was not different from that of the control medium (34% in both mediaglycine-enriched medium (69.5 vs. 53.3, P = 0.016. In Experiment 2, addition of alanine did not improve the formation of morulae and blastocysts (13% vs. 21% in control medium, and the mean cell numbers in morulae and blastocysts were lower than those in the control group (34.3 vs. 68.7, P = 0.007. In the presence of cumulus cells, the combined supplementation of glycine and alanine increased the proportion of morulae and blastocysts over that in the control medium (31% vs. 14%, P = 0.003.;

  15. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes

    Science.gov (United States)

    Kim, D. G.; Riggs, R. D.

    1991-01-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that was naturally infested by ARF18 than in autoclaved field soil. Although ARF18 grew well at 25 C on cornmeal agar over a wide pH range, it did not sporulate on 28 media and thus could not be identified to genus or species. PMID:19283127

  16. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes.

    Science.gov (United States)

    Kim, D G; Riggs, R D

    1991-07-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that was naturally infested by ARF18 than in autoclaved field soil. Although ARF18 grew well at 25 C on cornmeal agar over a wide pH range, it did not sporulate on 28 media and thus could not be identified to genus or species.

  17. Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji

    2013-10-01

    Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high

  18. Conservation of Charge and Conservation of Current

    OpenAIRE

    Eisenberg, Bob

    2016-01-01

    Conservation of current and conservation of charge are nearly the same thing: when enough is known about charge movement, conservation of current can be derived from conservation of charge, in ideal dielectrics, for example. Conservation of current is enforced implicitly in ideal dielectrics by theories that conserve charge. But charge movement in real materials like semiconductors or ionic solutions is never ideal. We present an apparently universal derivation of conservation of current and ...

  19. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  20. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  1. L-arginine:glycine amidinotransferase deficiency protects from metabolic syndrome.

    Science.gov (United States)

    Choe, Chi-un; Nabuurs, Christine; Stockebrand, Malte C; Neu, Axel; Nunes, Patricia; Morellini, Fabio; Sauter, Kathrin; Schillemeit, Stefan; Hermans-Borgmeyer, Irm; Marescau, Bart; Heerschap, Arend; Isbrandt, Dirk

    2013-01-01

    Phosphorylated creatine (Cr) serves as an energy buffer for ATP replenishment in organs with highly fluctuating energy demand. The central role of Cr in the brain and muscle is emphasized by severe neurometabolic disorders caused by Cr deficiency. Common symptoms of inborn errors of creatine synthesis or distribution include mental retardation and muscular weakness. Human mutations in l-arginine:glycine amidinotransferase (AGAT), the first enzyme of Cr synthesis, lead to severely reduced Cr and guanidinoacetate (GuA) levels. Here, we report the generation and metabolic characterization of AGAT-deficient mice that are devoid of Cr and its precursor GuA. AGAT-deficient mice exhibited decreased fat deposition, attenuated gluconeogenesis, reduced cholesterol levels and enhanced glucose tolerance. Furthermore, Cr deficiency completely protected from the development of metabolic syndrome caused by diet-induced obesity. Biochemical analyses revealed the chronic Cr-dependent activation of AMP-activated protein kinase (AMPK), which stimulates catabolic pathways in metabolically relevant tissues such as the brain, skeletal muscle, adipose tissue and liver, suggesting a mechanism underlying the metabolic phenotype. In summary, our results show marked metabolic effects of Cr deficiency via the chronic activation of AMPK in a first animal model of AGAT deficiency. In addition to insights into metabolic changes in Cr deficiency syndromes, our genetic model reveals a novel mechanism as a potential treatment option for obesity and type 2 diabetes mellitus.

  2. Thermoluminescence of magnesium oxide doped with cerium and lithium obtained by a glycine-based solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Escobar O, F. M.; Orante B, V. R.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: flor.escobaroc@gmail.com [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2015-10-15

    Full text: It is well known that glycine, fulfills two principal purposes: first, complexes with metal cations formed, which increases their solubility and prevents selective precipitation as water is evaporated; and second, it serves as fuel for the combustion reaction, being oxidized by the nitrate ions. The glycine molecule has a carboxylic acid group at one end and an amine group at the other end, both of which can participate in the complexation of metal ions. This zwitterionic character allows effective complexation with metal cations of different ionic size. Novel Mg O:Ce{sup 3+}, Li{sup +} phosphor was obtained for the very first time by solution combustion synthesis (Scs) in which a redox combustion process between metallic nitrates and glycine at 500 degrees C was accomplished. The powder samples obtained were annealed at 900 degrees C during 2 h in air. X-ray diffraction (XRD) results showed the face-centered cubic (fcc) phase of Mg O as well as the presence of CeO{sub 2} for the annealed powder samples. Photoluminescence emission spectra showed the characteristic Ce{sup 3+} peak located at 520 nm. The thermoluminescence glow curve obtained after exposure to beta radiation of these samples, displayed three maxima located at ∼ 108 degrees C, ∼ 210 degrees C, and ∼ 310 degrees C. Results from experiments such as dose response and fading showed that annealed Mg O:Ce{sup 3+}, Li{sup +} powder obtained by Scs is a promising material for radiation dosimetry applications. (Author)

  3. SURVEY OBSERVATIONS OF A POSSIBLE GLYCINE PRECURSOR, METHANIMINE (CH{sub 2}NH)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Taiki; Ohishi, Masatoshi; Hirota, Tomoya; Saito, Masao [Department of Astronomy, the Graduate University for Advanced Studies (SOKENDAI), Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Majumdar, Liton; Wakelam, Valentine, E-mail: taiki.suzuki@nao.ac.jp [Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac (France)

    2016-07-01

    We conducted survey observations of a glycine precursor, methanimine, or methylenimine (CH{sub 2}NH), with the Nobeyama Radio Observatory 45 m telescope and the Sub-Millimeter Radio telescope toward 12 high-mass and two low-mass star-forming regions in order to increase the number of known CH{sub 2}NH sources and to better understand the characteristics of CH{sub 2}NH sources. As a result of our survey, CH{sub 2}NH was detected in eight sources, including four new sources. The estimated fractional abundances were ∼10{sup −8} in Orion KL and G10.47+0.03, while they were ∼10{sup −9} toward the other sources. Our hydrogen recombination line and past studies suggest that CH{sub 2}NH-rich sources have less (this mean not so evolved) evolved H ii regions. The lower destruction rates from UV flux from the central star would contribute to the high CH{sub 2}NH abundances toward CH{sub 2}NH-rich sources. Our gas-grain chemical simulations suggest that CH{sub 2}NH is mostly formed in the gas phase by neutral–neutral reactions, rather than being the product of thermal evaporation from dust surfaces.

  4. What is a conservation actor?

    Directory of Open Access Journals (Sweden)

    Paul Jepson

    2011-01-01

    Full Text Available As a crisis-oriented discipline, conservation biology needs actions to understand the state of nature and thwart declines in biodiversity. Actors-traditionally individuals, institutions, and collectives-have been central to delivering such goals in practice. However, the definition of actors within the discipline has been narrow and their role in influencing conservation outcomes inadequately conceptualised. In this paper, we examine the question ′What is a conservation actor?′ Who or what creates the capacity to influence conservation values and actions? Drawing from theoretical developments in Actor-Network Theory and collective governance, we argue that the concept of an actor in conservation biology should be broadened to include non-humans, such as species and devices, because they have the agency and ability to influence project goals and outcomes. We illustrate this through four examples: the Asian elephant, International Union for Conservation of Nature red lists, the High Conservation Value approach, and an Integrated Conservation and Development Project. We argue that a broader conceptualisation of actors in conservation biology will produce new forms of understanding that could open up new areas of conservation research, enhance practice and draw attention to spheres of conservation activity that might require stronger oversight and governance.

  5. Glycine formation in CO2:CH4:NH3 ices induced by 0-70 eV electrons

    Science.gov (United States)

    Esmaili, Sasan; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon; Huels, Michael A.

    2018-04-01

    Glycine (Gly), the simplest amino-acid building-block of proteins, has been identified on icy dust grains in the interstellar medium, icy comets, and ice covered meteorites. These astrophysical ices contain simple molecules (e.g., CO2, H2O, CH4, HCN, and NH3) and are exposed to complex radiation fields, e.g., UV, γ, or X-rays, stellar/solar wind particles, or cosmic rays. While much current effort is focused on understanding the radiochemistry induced in these ices by high energy radiation, the effects of the abundant secondary low energy electrons (LEEs) it produces have been mostly assumed rather than studied. Here we present the results for the exposure of multilayer CO2:CH4:NH3 ice mixtures to 0-70 eV electrons under simulated astrophysical conditions. Mass selected temperature programmed desorption (TPD) of our electron irradiated films reveals multiple products, most notably intact glycine, which is supported by control measurements of both irradiated or un-irradiated binary mixture films, and un-irradiated CO2:CH4:NH3 ices spiked with Gly. The threshold of Gly formation by LEEs is near 9 eV, while the TPD analysis of Gly film growth allows us to determine the "quantum" yield for 70 eV electrons to be about 0.004 Gly per incident electron. Our results show that simple amino acids can be formed directly from simple molecular ingredients, none of which possess preformed C—C or C—N bonds, by the copious secondary LEEs that are generated by ionizing radiation in astrophysical ices.

  6. High cumulants of conserved charges and their statistical uncertainties

    Science.gov (United States)

    Li-Zhu, Chen; Ye-Yin, Zhao; Xue, Pan; Zhi-Ming, Li; Yuan-Fang, Wu

    2017-10-01

    We study the influence of measured high cumulants of conserved charges on their associated statistical uncertainties in relativistic heavy-ion collisions. With a given number of events, the measured cumulants randomly fluctuate with an approximately normal distribution, while the estimated statistical uncertainties are found to be correlated with corresponding values of the obtained cumulants. Generally, with a given number of events, the larger the cumulants we measure, the larger the statistical uncertainties that are estimated. The error-weighted averaged cumulants are dependent on statistics. Despite this effect, however, it is found that the three sigma rule of thumb is still applicable when the statistics are above one million. Supported by NSFC (11405088, 11521064, 11647093), Major State Basic Research Development Program of China (2014CB845402) and Ministry of Science and Technology (MoST) (2016YFE0104800)

  7. Species Richness and Community Structure on a High Latitude Reef: Implications for Conservation and Management

    Directory of Open Access Journals (Sweden)

    Wayne Houston

    2011-07-01

    Full Text Available In spite of the wealth of research on the Great Barrier Reef, few detailed biodiversity assessments of its inshore coral communities have been conducted. Effective conservation and management of marine ecosystems begins with fine-scale biophysical assessments focused on diversity and the architectural species that build the structural framework of the reef. In this study, we investigate key coral diversity and environmental attributes of an inshore reef system surrounding the Keppel Bay Islands near Rockhampton in Central Queensland, Australia, and assess their implications for conservation and management. The Keppels has much higher coral diversity than previously found. The average species richness for the 19 study sites was ~40 with representatives from 68% of the ~244 species previously described for the southern Great Barrier Reef. Using scleractinian coral species richness, taxonomic distinctiveness and coral cover as the main criteria, we found that five out of 19 sites had particularly high conservation value. A further site was also considered to be of relatively high value. Corals at this site were taxonomically distinct from the others (representatives of two families were found here but not at other sites and a wide range of functionally diverse taxa were present. This site was associated with more stressful conditions such as high temperatures and turbidity. Highly diverse coral communities or biodiversity ‘hotspots’ and taxonomically distinct reefs may act as insurance policies for climatic disturbance, much like Noah’s Arks for reefs. While improving water quality and limiting anthropogenic impacts are clearly important management initiatives to improve the long-term outlook for inshore reefs, identifying, mapping and protecting these coastal ‘refugia’ may be the key for ensuring their regeneration against catastrophic climatic disturbance in the meantime.

  8. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance

    Directory of Open Access Journals (Sweden)

    Maria Azucena Ortega-Amaro

    2015-01-01

    Full Text Available Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif. AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8 and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling.

  9. Soyasaponin Bh, a Triterpene Saponin Containing a Unique Hemiacetal-Functional Five-Membered Ring from Glycine max (Soybeans)

    Science.gov (United States)

    Soybeans (Glycine max L. Merill) and soy-based food products are major dietary sources of saponins. An oleanane triterpenoid saponin, soyasaponin Bh (1) containing a unique five-membered ring with a hemiacetal functionality together with seven known saponins were isolated from soybeans. Their struct...

  10. High-order conservative discretizations for some cases of the rigid body motion

    International Nuclear Information System (INIS)

    Kozlov, Roman

    2008-01-01

    Modified vector fields can be used to construct high-order structure-preserving numerical integrators for ordinary differential equations. In the present Letter we consider high-order integrators based on the implicit midpoint rule, which conserve quadratic first integrals. It is shown that these integrators are particularly suitable for the rigid body motion with an additional quadratic first integral. In this case high-order integrators preserve all four first integrals of motion. The approach is illustrated on the Lagrange top (a rotationally symmetric rigid body with a fixed point on the symmetry axis). The equations of motion are considered in the space fixed frame because in this frame Lagrange top admits a neat description. The Lagrange top motion includes the spherical pendulum and the planar pendulum, which swings in a vertical plane, as particular cases

  11. Voltage-Dependent Inhibition of Glycine Receptor Channels by Niflumic Acid

    Directory of Open Access Journals (Sweden)

    Galyna Maleeva

    2017-05-01

    Full Text Available Niflumic acid (NFA is a member of the fenamate class of nonsteroidal anti-inflammatory drugs. This compound and its derivatives are used worldwide clinically for the relief of chronic and acute pain. NFA is also a commonly used blocker of voltage-gated chloride channels. Here we present evidence that NFA is an efficient blocker of chloride-permeable glycine receptors (GlyRs with subunit heterogeneity of action. Using the whole-cell configuration of patch-clamp recordings and molecular modeling, we analyzed the action of NFA on homomeric α1ΔIns, α2B, α3L, and heteromeric α1β and α2β GlyRs expressed in CHO cells. NFA inhibited glycine-induced currents in a voltage-dependent manner and its blocking potency in α2 and α3 GlyRs was higher than that in α1 GlyR. The Woodhull analysis suggests that NFA blocks α1 and α2 GlyRs at the fractional electrical distances of 0.16 and 0.65 from the external membrane surface, respectively. Thus, NFA binding site in α1 GlyR is closer to the external part of the membrane, while in α2 GlyR it is significantly deeper in the pore. Mutation G254A at the cytoplasmic part of the α1 GlyR pore-lining TM2 helix (level 2′ increased the NFA blocking potency, while incorporation of the β subunit did not have a significant effect. The Hill plot analysis suggests that α1 and α2 GlyRs are preferably blocked by two and one NFA molecules, respectively. Molecular modeling using Monte Carlo energy minimizations provides the structural rationale for the experimental data and proposes more than one interaction site along the pore where NFA can suppress the ion permeation.

  12. Differential Regulation of Receptor Activation and Agonist Selectivity by Highly Conserved Tryptophans in the Nicotinic Acetylcholine Receptor Binding Site

    OpenAIRE

    Williams, Dustin K.; Stokes, Clare; Horenstein, Nicole A.; Papke, Roger L.

    2009-01-01

    We have shown previously that a highly conserved Tyr in the nicotinic acetylcholine receptor (nAChR) ligand-binding domain (LBD) (α7 Tyr188 or α4 Tyr195) differentially regulates the activity of acetylcholine (ACh) and the α7-selective agonist 3-(4-hydroxy,2-methoxybenzylidene)anabaseine (4OH-GTS-21) in α4β2 and α7 nAChR. In this study, we mutated two highly conserved LBD Trp residues in human α7 and α4β2 and expressed the receptors in Xenopus laevis oocytes. α7 Re...

  13. Low-Intensity Agricultural Landscapes in Transylvania Support High Butterfly Diversity: Implications for Conservation

    Science.gov (United States)

    Loos, Jacqueline; Dorresteijn, Ine; Hanspach, Jan; Fust, Pascal; Rakosy, László; Fischer, Joern

    2014-01-01

    European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide

  14. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Missihoun, Tagnon D; Willée, Eva; Guegan, Jean-Paul; Berardocco, Solenne; Shafiq, Muhammad R; Bouchereau, Alain; Bartels, Dorothea

    2015-09-01

    Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A. thaliana. We analysed changes in metabolite contents of transgenic plants in comparison with the wild type. Using exogenous or endogenous choline, our results indicated that ALDH10A8 and ALDH10A9 are involved in the synthesis of glycine betaine in Arabidopsis. Choline availability seems to be a factor limiting glycine betaine synthesis. Moreover, the contents of diverse metabolites including sugars (glucose and fructose) and amino acids were altered in fully developed transgenic plants compared with the wild type. The plant metabolic response to salt and the salt stress tolerance were impaired only in young transgenic plants, which exhibited a delayed growth of the seedlings early after germination. Our results suggest that a balanced expression of the betaine aldehyde dehydrogenase genes is important for early growth of A. thaliana seedlings and for salt stress mitigation in young seedlings. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be safely...

  16. 75 FR 63444 - Glycine From the People's Republic of China: Notice of Rescission of Antidumping Duty...

    Science.gov (United States)

    2010-10-15

    ... exports, sales, or entries of subject merchandise during the POR.'' See 75 FR at 22107 (emphasis added... crystalline material, like salt or sugar. Glycine is produced at varying levels of purity and is used as a... duties shall be assessed at rates equal to the cash deposit of estimated antidumping duties required at...

  17. Amino acids and glycine ethyl ester as new crystallization reagents for lysozyme

    International Nuclear Information System (INIS)

    Ito, Len; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2010-01-01

    During the past two decades, amino acids and amino-acid derivatives have been applied in various fields of protein chemistry. The potential use of amino acids and their derivatives as new precipitating agents is described. Several amino acids and their derivatives are prominent additives in the field of protein chemistry. This study reports the use of charged amino acids and glycine ethyl ester as precipitants in protein crystallization, using hen egg-white lysozyme (HEWL) as a model. A discussion of the crystallization of HEWL using these reagents as precipitating agents is given

  18. Ulex europaeus I and glycine max bind to the human olfactory bulb.

    Science.gov (United States)

    Nagao, M; Oka, N; Kamo, H; Akiguchi, I; Kimura, J

    1993-12-24

    The distribution of binding sites for the fucose-selective lectin Ulex europaeus I and the terminal N-acetylgalactosamine-selective lectin glycine max in the human olfactory bulb were studied. These lectins bound to primary olfactory axons in the olfactory nerve layer and the glomerular layer. They also bound to fibers located in the deeper layers such as the external plexiform layer and the granular layer. Furthermore they projected to the olfactory stalk but not in the cerebrum. The deeper projections of the lectin binding fibers may affect the function of the olfactory bulb in humans.

  19. Improving dengue viral antigens detection in dengue patient serum specimens using a low pH glycine buffer treatment

    Directory of Open Access Journals (Sweden)

    Wen-Fan Shen

    2017-04-01

    Conclusion: Inclusion of a low-pH glycine buffer treatment step in the commercially available Ag-ELISA is crucial for clinical diagnosis and E-containing viral particles could be a valuable target for acute DENV diagnosis, similar to NS1 detection.

  20. A Novel Glycinate-based Body Wash: Clinical Investigation Into Ultra-mildness, Effective Conditioning, and Improved Consumer Benefits.

    Science.gov (United States)

    Regan, Jamie; Mollica, Leonel-Maximo; Ananthapadmanabhan, K P

    2013-06-01

    To assess the properties of a novel body wash containing the mild surfactant glycinate. Biochemical and clinical assays. Research laboratories and clinical sites in the United States and Canada. Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores benefits.

  1. Analytical application of poly [dibenzo-18-crown-6] for chromatographic separation of thorium(IV) from uranium(VI) and other elements in glycine medium

    International Nuclear Information System (INIS)

    Kadam, R.B.; Mali, G.G.; Mohite, B.S.

    2013-01-01

    A selective and effective chromatographic separation method for thorium(IV) has been developed by using poly [dibenzo-18-crown-6] as stationary phase. The separations are carried out from glycine medium. The sorption of thorium(IV) was quantitative from 1 x 10 -2 to 1 x 10 -4 M glycine. The elution of thorium(IV) was quantitative with 2.0-8.0 M HCl, 4.0-7.0 HBr, 1.0-2.0 M HClO 4 and 5.0 M H 2 SO 4 . The capacity of poly [dibenzo-18-crown-6] for thorium(IV) was found to be 0.215 ± 0.01 mmol/g of crown polymer. The effect of concentration of glycine, metal ion, foreign ion and eluents has been studied. Thorium(IV) was separated from a number of cations in ternary as well as in multicomponent mixtures. The applicability of the proposed method was checked for the determination of thorium(IV) in real as well as geological sample. The method is simple, rapid, and selective with good reproducibility (approximately ±2 %). (author)

  2. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity.

    Science.gov (United States)

    Boessenkool, Sanne; McGlynn, Gayle; Epp, Laura S; Taylor, David; Pimentel, Manuel; Gizaw, Abel; Nemomissa, Sileshi; Brochmann, Christian; Popp, Magnus

    2014-04-01

    Conservation of biodiversity may in the future increasingly depend upon the availability of scientific information to set suitable restoration targets. In traditional paleoecology, sediment-based pollen provides a means to define preanthropogenic impact conditions, but problems in establishing the exact provenance and ecologically meaningful levels of taxonomic resolution of the evidence are limiting. We explored the extent to which the use of sedimentary ancient DNA (sedaDNA) may complement pollen data in reconstructing past alpine environments in the tropics. We constructed a record of afro-alpine plants retrieved from DNA preserved in sediment cores from 2 volcanic crater sites in the Albertine Rift, eastern Africa. The record extended well beyond the onset of substantial anthropogenic effects on tropical mountains. To ensure high-quality taxonomic inference from the sedaDNA sequences, we built an extensive DNA reference library covering the majority of the afro-alpine flora, by sequencing DNA from taxonomically verified specimens. Comparisons with pollen records from the same sediment cores showed that plant diversity recovered with sedaDNA improved vegetation reconstructions based on pollen records by revealing both additional taxa and providing increased taxonomic resolution. Furthermore, combining the 2 measures assisted in distinguishing vegetation change at different geographic scales; sedaDNA almost exclusively reflects local vegetation, whereas pollen can potentially originate from a wide area that in highlands in particular can span several ecozones. Our results suggest that sedaDNA may provide information on restoration targets and the nature and magnitude of human-induced environmental changes, including in high conservation priority, biodiversity hotspots, where understanding of preanthropogenic impact (or reference) conditions is highly limited. © 2013 Society for Conservation Biology.

  3. Biodiversity conservation in a telecoupled world

    Directory of Open Access Journals (Sweden)

    L. Roman Carrasco

    2017-09-01

    Conservation practitioners need to adopt a global perspective on telecoupling and focus on the new conservation opportunities represented by shaping the social norms of affluent consumers in emerging and high-income economies.

  4. Evolutionary conservation of essential and highly expressed genes in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Scharfe Maren

    2010-04-01

    Full Text Available Abstract Background The constant increase in development and spread of bacterial resistance to antibiotics poses a serious threat to human health. New sequencing technologies are now on the horizon that will yield massive increases in our capacity for DNA sequencing and will revolutionize the drug discovery process. Since essential genes are promising novel antibiotic targets, the prediction of gene essentiality based on genomic information has become a major focus. Results In this study we demonstrate that pooled sequencing is applicable for the analysis of sequence variations of strain collections with more than 10 individual isolates. Pooled sequencing of 36 clinical Pseudomonas aeruginosa isolates revealed that essential and highly expressed proteins evolve at lower rates, whereas extracellular proteins evolve at higher rates. We furthermore refined the list of experimentally essential P. aeruginosa genes, and identified 980 genes that show no sequence variation at all. Among the conserved nonessential genes we found several that are involved in regulation, motility and virulence, indicating that they represent factors of evolutionary importance for the lifestyle of a successful environmental bacterium and opportunistic pathogen. Conclusion The detailed analysis of a comprehensive set of P. aeruginosa genomes in this study clearly disclosed detailed information of the genomic makeup and revealed a large set of highly conserved genes that play an important role for the lifestyle of this microorganism. Sequencing strain collections enables for a detailed and extensive identification of sequence variations as potential bacterial adaptation processes, e.g., during the development of antibiotic resistance in the clinical setting and thus may be the basis to uncover putative targets for novel treatment strategies.

  5. In Vivo Protection against Strychnine Toxicity in Mice by the Glycine Receptor Agonist Ivermectin

    Directory of Open Access Journals (Sweden)

    Ahmed Maher

    2014-01-01

    Full Text Available The inhibitory glycine receptor, a ligand-gated ion channel that mediates fast synaptic inhibition in mammalian spinal cord and brainstem, is potently and selectively inhibited by the alkaloid strychnine. The anthelminthic and anticonvulsant ivermectin is a strychnine-independent agonist of spinal glycine receptors. Here we show that ivermectin is an effective antidote of strychnine toxicity in vivo and determine time course and extent of ivermectin protection. Mice received doses of 1 mg/kg and 5 mg/kg ivermectin orally or intraperitoneally, followed by an intraperitoneal strychnine challenge (2 mg/kg. Ivermectin, through both routes of application, protected mice against strychnine toxicity. Maximum protection was observed 14 hours after ivermectin administration. Combining intraperitoneal and oral dosage of ivermectin further improved protection, resulting in survival rates of up to 80% of animals and a significant delay of strychnine effects in up to 100% of tested animals. Strychnine action developed within minutes, much faster than ivermectin, which acted on a time scale of hours. The data agree with a two-compartment distribution of ivermectin, with fat deposits acting as storage compartment. The data demonstrate that toxic effects of strychnine in mice can be prevented if a basal level of glycinergic signalling is maintained through receptor activation by ivermectin.

  6. Mutations to a glycine loop in the catalytic site of human Lon changes its protease, peptidase and ATPase activities

    Czech Academy of Sciences Publication Activity Database

    Ambro, L.; Pevala, V.; Ondrovičová, G.; Bellová, J.; Kunová, N.; Kutejová, Eva; Bauer, J.

    2014-01-01

    Roč. 281, č. 7 (2014), s. 1784-1797 ISSN 1742-464X Institutional support: RVO:61388971 Keywords : ATP-dependent protease * glycine loop * human Lon protease Subject RIV: CE - Biochemistry Impact factor: 4.001, year: 2014

  7. Soybean [Glycine max (L.) Merrill] rhizobial diversity in Brazilian oxisols under various soil, cropping, and inoculation managements

    NARCIS (Netherlands)

    Loureiro, M.D.; Kaschuk, G.; Alberton, O.; Hungria, M.

    2007-01-01

    In this study, soybean nodules were collected from 12 sites in the State of Mato Grosso, in the Brazilian Cerrados, where both exotic soybean [Glycine max (L.) Merrill] and bradyrhizobial strains have been introduced from 1 to 18 years before. All soils were originally devoid of rhizobia capable of

  8. Disturbed neuronal ER-Golgi sorting of unassembled glycine receptors suggests altered subcellular processing is a cause of human hyperekplexia.

    Science.gov (United States)

    Schaefer, Natascha; Kluck, Christoph J; Price, Kerry L; Meiselbach, Heike; Vornberger, Nadine; Schwarzinger, Stephan; Hartmann, Stephanie; Langlhofer, Georg; Schulz, Solveig; Schlegel, Nadja; Brockmann, Knut; Lynch, Bryan; Becker, Cord-Michael; Lummis, Sarah C R; Villmann, Carmen

    2015-01-07

    Recent studies on the pathogenic mechanisms of recessive hyperekplexia indicate disturbances in glycine receptor (GlyR) α1 biogenesis. Here, we examine the properties of a range of novel glycine receptor mutants identified in human hyperekplexia patients using expression in transfected cell lines and primary neurons. All of the novel mutants localized in the large extracellular domain of the GlyR α1 have reduced cell surface expression with a high proportion of receptors being retained in the ER, although there is forward trafficking of glycosylated subpopulations into the ER-Golgi intermediate compartment and cis-Golgi compartment. CD spectroscopy revealed that the mutant receptors have proportions of secondary structural elements similar to wild-type receptors. Two mutants in loop B (G160R, T162M) were functional, but none of those in loop D/β2-3 were. One nonfunctional truncated mutant (R316X) could be rescued by coexpression with the lacking C-terminal domain. We conclude that a proportion of GlyR α1 mutants can be transported to the plasma membrane but do not necessarily form functional ion channels. We suggest that loop D/β2-3 is an important determinant for GlyR trafficking and functionality, whereas alterations to loop B alter agonist potencies, indicating that residues here are critical elements in ligand binding. Copyright © 2015 the authors 0270-6474/15/350422-16$15.00/0.

  9. Identification of AICP as a GluN2C-Selective N-Methyl-d-Aspartate Receptor Superagonist at the GluN1 Glycine Site

    DEFF Research Database (Denmark)

    Jessen, Maja; Frederiksen, Kristen; Yi, Feng

    2017-01-01

    N-methyl-d-aspartate (NMDA)-type ionotropic glutamate receptors mediate excitatory neurotransmission in the central nervous system and are critically involved in brain function. NMDA receptors are also implicated in psychiatric and neurological disorders and have received considerable attention....../2A-D), in which DCS is a superagonist at GluN2C-containing receptors compared with glycine and a partial agonist at GluN2B-containing receptors. Here, we identify (R)-2-amino-3-(4-(2-ethylphenyl)-1H-indole-2-carboxamido)propanoic acid (AICP) as a glycine site agonist with unique GluN2-dependent...

  10. Biodiversity conservation in a changing climate: a review of threats and implications for conservation planning in Myanmar.

    Science.gov (United States)

    Rao, Madhu; Saw Htun; Platt, Steven G; Tizard, Robert; Poole, Colin; Than Myint; Watson, James E M

    2013-11-01

    High levels of species richness and endemism make Myanmar a regional priority for conservation. However, decades of economic and political sanctions have resulted in low conservation investment to effectively tackle threats to biodiversity. Recent sweeping political reforms have placed Myanmar on the fast track to economic development-the expectation is increased economic investments focused on the exploitation of the country's rich, and relatively intact, natural resources. Within a context of weak regulatory capacity and inadequate environmental safeguards, rapid economic development is likely to have far-reaching negative implications for already threatened biodiversity and natural-resource-dependent human communities. Climate change will further exacerbate prevailing threats given Myanmar's high exposure and vulnerability. The aim of this review is to examine the implications of increased economic growth and a changing climate within the larger context of biodiversity conservation in Myanmar. We summarize conservation challenges, assess direct climatological impacts on biodiversity and conclude with recommendations for long-term adaptation approaches for biodiversity conservation.

  11. The influence of pathological mutations and proline substitutions in TDP-43 glycine-rich peptides on its amyloid properties and cellular toxicity.

    Directory of Open Access Journals (Sweden)

    Chia-Sui Sun

    Full Text Available TAR DNA-binding protein (TDP-43 was identified as the major ubiquitinated component deposited in the inclusion bodies in amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U in 2006. Later on, numerous ALS-related mutations were found in either the glycine or glutamine/asparagine-rich region on the TDP-43 C-terminus, which hinted on the importance of mutations on the disease pathogenesis. However, how the structural conversion was influenced by the mutations and the biological significance of these peptides remains unclear. In this work, various peptides bearing pathogenic or de novo designed mutations were synthesized and displayed their ability to form twisted amyloid fibers, cause liposome leakage, and mediate cellular toxicity as confirmed by transmission electron microscopy (TEM, circular dichroism (CD, Thioflavin T (ThT assay, Raman spectroscopy, calcein leakage assay, and cell viability assay. We have also shown that replacing glycines with prolines, known to obstruct β-sheet formation, at the different positions in these peptides may influence the amyloidogenesis process and neurotoxicity. In these cases, GGG308PPP mutant was not able to form beta-amyloid, cause liposome leakage, nor jeopardized cell survival, which hinted on the importance of the glycines (308-310 during amyloidogenesis.

  12. Kinetics of the glucose/glycine Maillard reaction pathways: influences of pH and reactant initial concentrations

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A previously proposed kinetic model for the glucose/glycine Maillard reaction pathways has been validated by changing the initial pH (4.8, 5.5, 6.0, 6.8 and 7.5) of the reaction and reactant initial concentrations (1:2 and 2:1 molar ratios were compared to the 1:1 ratio). The model consists of 10

  13. 78 FR 73837 - Glycine From the People's Republic of China: Final Rescission of Antidumping Duty New Shipper...

    Science.gov (United States)

    2013-12-09

    ... Republic of China: Final Rescission of Antidumping Duty New Shipper Review; 2012 AGENCY: Enforcement and... Rescission for the new shipper review of the antidumping duty order on glycine from the People's Republic of.... shipment within one year of its request for a new shipper review, thus failing to satisfy the deadline...

  14. Optimized spatial priorities for biodiversity conservation in China: a systematic conservation planning perspective.

    Science.gov (United States)

    Wu, Ruidong; Long, Yongcheng; Malanson, George P; Garber, Paul A; Zhang, Shuang; Li, Diqiang; Zhao, Peng; Wang, Longzhu; Duo, Hairui

    2014-01-01

    By addressing several key features overlooked in previous studies, i.e. human disturbance, integration of ecosystem- and species-level conservation features, and principles of complementarity and representativeness, we present the first national-scale systematic conservation planning for China to determine the optimized spatial priorities for biodiversity conservation. We compiled a spatial database on the distributions of ecosystem- and species-level conservation features, and modeled a human disturbance index (HDI) by aggregating information using several socioeconomic proxies. We ran Marxan with two scenarios (HDI-ignored and HDI-considered) to investigate the effects of human disturbance, and explored the geographic patterns of the optimized spatial conservation priorities. Compared to when HDI was ignored, the HDI-considered scenario resulted in (1) a marked reduction (∼9%) in the total HDI score and a slight increase (∼7%) in the total area of the portfolio of priority units, (2) a significant increase (∼43%) in the total irreplaceable area and (3) more irreplaceable units being identified in almost all environmental zones and highly-disturbed provinces. Thus the inclusion of human disturbance is essential for cost-effective priority-setting. Attention should be targeted to the areas that are characterized as moderately-disturbed, conservation. We delineated 23 primary large-scale priority areas that are significant for conserving China's biodiversity, but those isolated priority units in disturbed regions are in more urgent need of conservation actions so as to prevent immediate and severe biodiversity loss. This study presents a spatially optimized national-scale portfolio of conservation priorities--effectively representing the overall biodiversity of China while minimizing conflicts with economic development. Our results offer critical insights for current conservation and strategic land-use planning in China. The approach is transferable and easy

  15. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Kohane Isaac

    2005-11-01

    Full Text Available Abstract Background Recent advances in genome sequencing suggest a remarkable conservation in gene content of mammalian organisms. The similarity in gene repertoire present in different organisms has increased interest in studying regulatory mechanisms of gene expression aimed at elucidating the differences in phenotypes. In particular, a proximal promoter region contains a large number of regulatory elements that control the expression of its downstream gene. Although many studies have focused on identification of these elements, a broader picture on the complexity of transcriptional regulation of different biological processes has not been addressed in mammals. The regulatory complexity may strongly correlate with gene function, as different evolutionary forces must act on the regulatory systems under different biological conditions. We investigate this hypothesis by comparing the conservation of promoters upstream of genes classified in different functional categories. Results By conducting a rank correlation analysis between functional annotation and upstream sequence alignment scores obtained by human-mouse and human-dog comparison, we found a significantly greater conservation of the upstream sequence of genes involved in development, cell communication, neural functions and signaling processes than those involved in more basic processes shared with unicellular organisms such as metabolism and ribosomal function. This observation persists after controlling for G+C content. Considering conservation as a functional signature, we hypothesize a higher density of cis-regulatory elements upstream of genes participating in complex and adaptive processes. Conclusion We identified a class of functions that are associated with either high or low promoter conservation in mammals. We detected a significant tendency that points to complex and adaptive processes were associated with higher promoter conservation, despite the fact that they have emerged

  16. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2015-10-15

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  17. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    International Nuclear Information System (INIS)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C.; Bernal, R.

    2015-10-01

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  18. The existence of High Conservation Value Forest (HCVF in Perum Perhutani KPH Kendal to support Implementation of FSC Certification

    Directory of Open Access Journals (Sweden)

    Sulistyowati Sri

    2018-01-01

    Full Text Available High Conservation Value Forest (HCVF is the identification of High Conservation Values that are important and need to be protected. Under FSC certification mechanism, HCVF becomes one of Principles and Criteria to attain certification. In this study, we identify the existence of HCVF in Perum Perhutani KPH Kendal to support implementation process of FSC certification. Qualitative method was conducted through observation and secondary data from Perum Perhutani KPH Kendal. Data analysis showed through ecolabel certification, Perum Perhutani KPH Kendal has been identified HCVF area covering 2,715.5 hectares consists of HCV 1 until 6. Secondary Natural Forest (HAS Subah and Kaliwungu for Ulolanang and Pagerwunung Nature Reserve buffer zone include as HCV 1.1, conservation area of leopard (Panthera pardus melas and Pangolin (Manis javanica.for HCV 1.2, conservation area of lutung (Trachypiyhecus auratus as endemic species for CITES App I and Critically Endangered species include as HCV 1.3, Goa kiskendo for bats species habitat include as HCV 1.4, regions of interest species for Deer (Cervus timorensis and Kepodang (Oriolus chinensis as HCV 2.3, Germplasm Protection Region/ KPPN area with high biodiversity include as HCV 3, river border area and water springs for HCV 4. While, utilization of firewood, grass for cattle fodder include as HCV 5 and 14 cultural sites include as HCV 6. From monitoring and evaluation of HCVF data, showed that in 2011-2015 the level of diversity for flora and fauna were increased.

  19. The existence of High Conservation Value Forest (HCVF) in Perum Perhutani KPH Kendal to support Implementation of FSC Certification

    Science.gov (United States)

    Sulistyowati, Sri; Hadi, Sudharto P.

    2018-02-01

    High Conservation Value Forest (HCVF) is the identification of High Conservation Values that are important and need to be protected. Under FSC certification mechanism, HCVF becomes one of Principles and Criteria to attain certification. In this study, we identify the existence of HCVF in Perum Perhutani KPH Kendal to support implementation process of FSC certification. Qualitative method was conducted through observation and secondary data from Perum Perhutani KPH Kendal. Data analysis showed through ecolabel certification, Perum Perhutani KPH Kendal has been identified HCVF area covering 2,715.5 hectares consists of HCV 1 until 6. Secondary Natural Forest (HAS) Subah and Kaliwungu for Ulolanang and Pagerwunung Nature Reserve buffer zone include as HCV 1.1, conservation area of leopard (Panthera pardus melas) and Pangolin (Manis javanica).for HCV 1.2, conservation area of lutung (Trachypiyhecus auratus) as endemic species for CITES App I and Critically Endangered species include as HCV 1.3, Goa kiskendo for bats species habitat include as HCV 1.4, regions of interest species for Deer (Cervus timorensis) and Kepodang (Oriolus chinensis) as HCV 2.3, Germplasm Protection Region/ KPPN area with high biodiversity include as HCV 3, river border area and water springs for HCV 4. While, utilization of firewood, grass for cattle fodder include as HCV 5 and 14 cultural sites include as HCV 6. From monitoring and evaluation of HCVF data, showed that in 2011-2015 the level of diversity for flora and fauna were increased.

  20. Eucaryotic operon genes can define highly conserved syntenies

    Czech Academy of Sciences Publication Activity Database

    Trachtulec, Zdeněk

    2004-01-01

    Roč. 50, - (2004), s. 1-6 ISSN 0015-5500 R&D Projects: GA ČR GA204/01/0997; GA MŠk LN00A079 Institutional research plan: CEZ:AV0Z5052915 Keywords : eukaryotic operon * conserved synteny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.507, year: 2004

  1. The effect of change in pH on the solubility of iron bis-glycinate chelate and other iron compounds.

    Science.gov (United States)

    García-Casal, M N; Layrisse, M

    2001-03-01

    The effect of a pH change from 2 to 6 was tested on the solubility of ferrous sulfate, ferrous fumarate, iron bis-glycine chelate (Ferrochel) and sodium-iron ethylenediaminetetraacetic acid (NaFeEDTA). It was found that at pH 2 ferrous sulfate, Ferrochel and NaFeEDTA were completely soluble and only 75% of iron from ferrous fumarate was soluble. When pH was raised to 6, iron from amino acid chelate and NaFeEDTA remained completely soluble while solubility from ferrous sulfate and ferrous fumarate decreased 64 and 74%, respectively compared to the amount of iron initially soluble at pH 2. These results suggest that iron solubility from iron bis-glycine chelate and NaFeEDTA is not affected by pH changes within the ranges tested, probably because iron remained associated to the respective compounds.

  2. Evaluating local benefits from conservation in Nepal's Annapurna Conservation Area.

    Science.gov (United States)

    Spiteri, Arian; Nepal, Sanjay K

    2008-09-01

    Protected areas are integral to the global effort to conserve biodiversity, and, over the past two decades, protected area managers have begun to recognize that conservation objectives are next to impossible to achieve without considering the needs and concerns of local communities. Incentive-based programs (IBPs) have become a favored approach to protected area management, geared at fostering local stewardship by delivering benefits tied to conservation to local people. Effective IBPs require benefits to accrue to and be recognized by those experiencing the greatest consequences as a result of the protected area, and those likely to continue extractive activities if their livelihood needs are compromised. This research examines dispersal of IBP benefits, as perceived by local residents in Nepal's Annapurna Conservation Area. Results reported here are based on questionnaire interviews with 188 households conducted between September and December 2004. Results indicate that local residents primarily identify benefits from social development activities, provisions for resource extraction, and economic opportunities. Overall, benefits have been dispersed equally to households in villages on and off the main tourist route, and regardless of a household's participation in tourism. However, benefits are not effectively targeted to poorer residents, those highly dependent on natural resources, and those experiencing the most crop damage and livestock loss from protected wildlife. This article provides several suggestions for improving the delivery of conservation incentives.

  3. A novel tumor suppressor function of glycine N-methyltransferase is independent of its catalytic activity but requires nuclear localization.

    Directory of Open Access Journals (Sweden)

    Suchandra DebRoy

    Full Text Available Glycine N-methyltransferase (GNMT, an abundant cytosolic enzyme, catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM to glycine generating S-adenosylhomocysteine and sarcosine (N-methylglycine. This reaction is regulated by 5-methyltetrahydrofolate, which inhibits the enzyme catalysis. In the present study, we observed that GNMT is strongly down regulated in human cancers and is undetectable in cancer cell lines while the transient expression of the protein in cancer cells induces apoptosis and results in the activation of ERK1/2 as an early pro-survival response. The antiproliferative effect of GNMT can be partially reversed by treatment with the pan-caspase inhibitor zVAD-fmk but not by supplementation with high folate or SAM. GNMT exerts the suppressor effect primarily in cells originated from malignant tumors: transformed cell line of non-cancer origin, HEK293, was insensitive to GNMT. Of note, high levels of GNMT, detected in regenerating liver and in NIH3T3 mouse fibroblasts, do not produce cytotoxic effects. Importantly, GNMT, a predominantly cytoplasmic protein, was translocated into nuclei upon transfection of cancer cells. The presence of GNMT in the nuclei was also observed in normal human tissues by immunohistochemical staining. We further demonstrated that the induction of apoptosis is associated with the GNMT nuclear localization but is independent of its catalytic activity or folate binding. GNMT targeted to nuclei, through the fusion with nuclear localization signal, still exerts strong antiproliferative effects while its restriction to cytoplasm, through the fusion with nuclear export signal, prevents these effects (in each case the protein was excluded from cytosol or nuclei, respectively. Overall, our study indicates that GNMT has a secondary function, as a regulator of cellular proliferation, which is independent of its catalytic role.

  4. Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts

    Directory of Open Access Journals (Sweden)

    Ouyang Shu

    2005-09-01

    Full Text Available Abstract Background The Solanaceae is a family of closely related species with diverse phenotypes that have been exploited for agronomic purposes. Previous studies involving a small number of genes suggested sequence conservation across the Solanaceae. The availability of large collections of Expressed Sequence Tags (ESTs for the Solanaceae now provides the opportunity to assess sequence conservation and divergence on a genomic scale. Results All available ESTs and Expressed Transcripts (ETs, 449,224 sequences for six Solanaceae species (potato, tomato, pepper, petunia, tobacco and Nicotiana benthamiana, were clustered and assembled into gene indices. Examination of gene ontologies revealed that the transcripts within the gene indices encode a similar suite of biological processes. Although the ESTs and ETs were derived from a variety of tissues, 55–81% of the sequences had significant similarity at the nucleotide level with sequences among the six species. Putative orthologs could be identified for 28–58% of the sequences. This high degree of sequence conservation was supported by expression profiling using heterologous hybridizations to potato cDNA arrays that showed similar expression patterns in mature leaves for all six solanaceous species. 16–19% of the transcripts within the six Solanaceae gene indices did not have matches among Solanaceae, Arabidopsis, rice or 21 other plant gene indices. Conclusion Results from this genome scale analysis confirmed a high level of sequence conservation at the nucleotide level of the coding sequence among Solanaceae. Additionally, the results indicated that part of the Solanaceae transcriptome is likely to be unique for each species.

  5. An essential factor for high Mg2+ tolerance of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Joshua Armitano

    2016-11-01

    Full Text Available Internal bacterial concentration of Mg2+, the most abundant divalent cation in living cells, is estimated to be in the single millimolar range. However, many bacteria will thrive in media with only micromolars of Mg2+, by using a range of intensely studied and highly efficient import mechanisms, as well as in media with very high magnesium concentration, presumably mediated by currently unknown export mechanisms. Staphylococcus aureus has a particularly high Mg2+ tolerance for a pathogen, growing unimpaired in up to 770 mM Mg2+, and we here identify SA0657, a key factor in this tolerance. The predicted domain structure of SA0657 is shared with a large number of proteins in bacteria, archaea and even eukarya, for example CorB from Salmonella and the human CNNM protein family. One of the shared domains, a CBS pair potentially involved in Mg2+ sensing, contains the conserved Glycine326 which we establish to be a key residue for SA0657 function. In light of our findings, we propose the name MpfA, Magnesium Protection Factor A, for SA0657.

  6. Effects of lipopolysaccharide infusion on arterial levels and transcerebral exchange kinetics of glutamate and glycine in healthy humans

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Taudorf, Sarah; Bailey, Damian M

    2012-01-01

    was calculated by multiplying CBF with the arterial to jugular venous differences. LPS induced a systemic inflammatory response with fever, neutrocytosis, and elevated arterial levels of tumour necrosis factor-α. This was associated with a decrease in the arterial levels of both glutamate and glycine; however...

  7. GABA, not glycine, mediates inhibition of latent respiratory motor pathways after spinal cord injury

    OpenAIRE

    Zimmer, M. Beth; Goshgarian, Harry G.

    2006-01-01

    Previous work has shown that latent respiratory motor pathways known as crossed phrenic pathways are inhibited via a spinal inhibitory process; however, the underlying mechanisms remain unknown. The present study investigated whether spinal GABA-A and/or glycine receptors are involved in the inhibition of the crossed phrenic pathways after a C2 spinal cord hemisection injury. Under ketamine/xylazine anesthesia, adult, female, Sprague Dawley rats were hemisected at the C2 spinal cord level. Fo...

  8. Effects of β-sheet crystals and a glycine-rich matrix on the thermal conductivity of spider dragline silk.

    Science.gov (United States)

    Park, Jinju; Kim, Duckjong; Lee, Seung-Mo; Choi, Ji-Ung; You, Myungil; So, Hye-Mi; Han, Junkyu; Nah, Junghyo; Seol, Jae Hun

    2017-03-01

    We measured the thermal conductivity of Araneus ventricosus' spider dragline silk using a suspended microdevice. The thermal conductivity of the silk fiber was approximately 0.4Wm -1 K -1 at room temperature and gradually increased with an increasing temperature in a manner similar to that of other disordered crystals or proteins. In order to elucidate the effect of β-sheet crystals in the silk, thermal denaturation was used to reduce the quantity of the β-sheet crystals. A calculation with an effective medium approximation supported this measurement result showing that the thermal conductivity of β-sheet crystals had an insignificant effect on the thermal conductivity of SDS. Additionally, the enhancement of bonding strength in a glycine-rich matrix by atomic layer deposition did not increase the thermal conductivity. Thus, this study suggests that the disordered part of the glycine-rich matrix prevented the peptide chains from being coaxially extended via the cross-linking covalent bonds. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Energy conservation in nationalised transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, R C

    1980-01-01

    About 60% of high speed diesel is consumed by the road transport industry. The hike in fuel prices calls for urgent measures to conserve diesel. The paper discusses the various measures undertaken to conserve diesel in the nationalized transport sector.

  10. Pengaruh Pemberian Pyraclotrobin Terhadap Efisiensi Penyerapan Nitrogen Dan Kualitas Hasil Tanaman Kedelai (Glycine Max L. Merr.)

    OpenAIRE

    Mansur, Mansur; Ashari, Sumeru; Kuswanto, Kuswanto

    2015-01-01

    Kedelai (Glycine max (L.) Merr.) adalah tanaman kacang-kacangan (Leguminosae) yang menjadi komoditas tanaman pangan penting karena tingginya kandungan protein. Penelitian ini dilakukan untuk mengetahui pengaruh pemberian pyraclostrobin terhadap efisiensi penyerapan nitrogen, pertumbuhan tanaman dan hasil tanaman kedelai. Bahan penelitian yang digunakan adalah benih kedelai varietas wilis, pyraclostrobin dan pupuk urea 46% N. Rancangan yang digunakan adalah rancangan tersarang yang terdiri da...

  11. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  12. Evaluation of presenting conserved foods

    Directory of Open Access Journals (Sweden)

    Asl Soleimani H

    1998-08-01

    Full Text Available Food, it's production and preserving has been one of the most important problems in human life. Limitation of production due to climatic, geographic and papulational situations and conservation due to providance and prosecting for solution of one of the most fundamental human needs, has been discussed much. Difference between the lands, temperature, humidity and rainfall on one hand and texture and accumulation of papulation on the other hand, not only has limited the amount and kind of food production but also has improved the preserving methods as much as possible. Extra production in fertile lands and confirmed need for receiving food in deserts and dry areas, makes the need of exchanging and transfer of food inevitable because of economic and ethical matters and sanitation of food. Avoidance of being contaminated and resistance against decay seems very important and vital. So process of preserving and conserving of eaw or cooked food became a fundamental problem. In previous 200 years, many advanced methods have been designed for preserving food in which the role of conserving and packing in vital often. Because of industrial production, conserved food have a great influence on sanitation of people nutrition, and herefor the rate of diseases from consumption of contaminated food has been reduced in industrial countries and the tensancy of people to use conventional food has been decreased gradually. Because of high cost of industrial conserved food production some people produce conserved foods in the way which is not hygienic. That may have a high risk when ingested. In this article we discuss about unwarranted conserved foods productions.

  13. Bacteria associated with cysts of the soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Nour, Sarah M; Lawrence, John R; Zhu, Hong; Swerhone, George D W; Welsh, Martha; Welacky, Tom W; Topp, Edward

    2003-01-01

    The soybean cyst nematode (SCN), Heterodera glycines, causes economically significant damage to soybeans (Glycine max) in many parts of the world. The cysts of this nematode can remain quiescent in soils for many years as a reservoir of infection for future crops. To investigate bacterial communities associated with SCN cysts, cysts were obtained from eight SCN-infested farms in southern Ontario, Canada, and analyzed by culture-dependent and -independent means. Confocal laser scanning microscopy observations of cyst contents revealed a microbial flora located on the cyst exterior, within a polymer plug region and within the cyst. Microscopic counts using 5-(4,6-dichlorotriazine-2-yl)aminofluorescein staining and in situ hybridization (EUB 338) indicated that the cysts contained (2.6 +/- 0.5) x 10(5) bacteria (mean +/- standard deviation) with various cellular morphologies. Filamentous fungi were also observed. Live-dead staining indicated that the majority of cyst bacteria were viable. The probe Nile red also bound to the interior polymer, indicating that it is lipid rich in nature. Bacterial community profiles determined by denaturing gradient gel electrophoresis analysis were simple in composition. Bands shared by all eight samples included the actinobacterium genera Actinomadura and STREPTOMYCES: A collection of 290 bacteria were obtained by plating macerated surface-sterilized cysts onto nutrient broth yeast extract agar or on actinomycete medium. These were clustered into groups of siblings by repetitive extragenic palindromic PCR fingerprinting, and representative isolates were tentatively identified on the basis of 16S rRNA gene sequence. Thirty phylotypes were detected, with the collection dominated by Lysobacter and Variovorax spp. This study has revealed the cysts of this important plant pathogen to be rich in a variety of bacteria, some of which could presumably play a role in the ecology of SCN or have potential as biocontrol agents.

  14. Diesel conservation: GSRTC'S experience

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Kumar, I V

    1980-01-01

    The Gujarat State Road Transport Corporation (GSRTC) in India has a fleet of about 6000 buses. The increasing cost of fuel and lubricants added to uncertainty in supplies, has necessitated the need for conserving High Speed Diesel Oil (HSD). GSRTC had achieved an overall average Kilometre Per Litre (kmpl) of 4.44 in the year 1976-1977 due to a variety of measures. In the year 1978-1979 the average kmpl was 4.52 and it is expected to be 4.60 for 1979-1980. The case study outlined describes the measures taken by GSRTC in conserving high speed diesel oil by various methods.

  15. GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N-Arachidonoyl Glycine

    Directory of Open Access Journals (Sweden)

    David B. Finlay

    2016-03-01

    Full Text Available The orphan receptor GPR18 has become a research target following the discovery of a putative endogenous agonist, N-arachidonoyl glycine (NAGly. Chemical similarity between NAGly and the endocannabinoid anandamide suggested the hypothesis that GPR18 is a third cannabinoid receptor. GPR18-mediated cellular signalling through inhibition of cyclic adenosine monophosphate (cAMP and phosphorylation of extracellular signal-regulated kinase (ERK, in addition to physiological consequences such as regulation of cellular migration and proliferation/apoptosis have been described in response to both NAGly and anandamide. However, discordant findings have also been reported. Here we sought to describe the functional consequences of GPR18 activation in heterologously-expressing HEK cells. GPR18 expression was predominantly intracellular in stably transfected cell lines, but moderate cell surface expression could be achieved in transiently transfected cells which also had higher overall expression. Assays were employed to characterise the ability of NAGly or anandamide to inhibit cAMP or induce ERK phosphorylation through GPR18, or induce receptor trafficking. Positive control experiments, which utilised cells expressing hCB1 receptors (hCB1R, were performed to validate assay design and performance. While these functional pathways in GPR18-expressing cells were not modified on treatment with a panel of putative GPR18 ligands, a constitutive phenotype was discovered for this receptor. Our data reveal that GPR18 undergoes rapid constitutive receptor membrane trafficking—several-fold faster than hCB1R, a highly constitutively active receptor. To enhance the likelihood of detecting agonist-mediated receptor signalling responses, we increased GPR18 protein expression (by tagging with a preprolactin signal sequence and generated a putative constitutively inactive receptor by mutating the hGPR18 gene at amino acid site 108 (alanine to asparagine. This A108N mutant

  16. Study of thermodynamic and transport properties of glycine, diglycine, and triglycine in aqueous tartrazine at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Anwar; Patel, Rajan; Khan, Shahjahan; Bhushan, Vidiksha [Dept. of Chemistry, Jamia Millia Islamia (Central Univ.), New Delhi (India)

    2009-11-15

    The densities ({rho}), viscosities ({eta}), and refractive indices (n{sub D}) of (0.01, 0.05, 0.10, 0.15, and 0.20 m) amino acid, glycine, and peptides, diglycine and triglycine in 0.01 m aqueous tartrazine solution were determined at 288.15, 293.15, 298.15, 303.15, 308.15, and 313.15 K. The density data were utilized to evaluate apparent molar volumes ({phi}{sub v}) which, in turn, were used to determine partial molar volumes ({phi}{sub v} ) using Masson's equation. The transfer volumes were also calculated. The viscosity data were analyzed using the Jones-Dole equation to determine the viscosity coefficients and the activation parameters. The activation parameters of viscous flow were obtained to throw light on the mechanism of viscous flow. The molar refraction was calculated using the refractive index data. The results were interpreted in the light of ion-ion, ion-nonpolar, and nonpolar-nonpolar interactions and the effect of increasing hydrophobicity as we move from glycine to triglycine on these interactions in presence of the dye tartrazine was also investigated. (orig.)

  17. Study of Thermodynamic and Transport Properties of Glycine, Diglycine, and Triglycine in Aqueous Tartrazine at Different Temperatures

    Science.gov (United States)

    Ali, Anwar; Patel, Rajan; Khan, Shahjahan; Bhushan, Vidiksha

    2009-11-01

    The densities (ρ), viscosities (η), and refractive indices (nD) of (0.01, 0.05, 0.10, 0.15, and 0.20 m) amino acid, glycine, and peptides, diglycine and triglycine in 0.01 m aqueous tartrazine solution were determined at 288.15, 293.15, 298.15, 303.15, 308.15, and 313.15 K. The density data were utilized to evaluate apparent molar volumes (φv) which, in turn, were used to determine partial molar volumes (φv ◦) using Masson's equation. The transfer volumes were also calculated. The viscosity data were analyzed using the Jones-Dole equation to determine the viscosity coefficients and the activation parameters. The activation parameters of viscous flow were obtained to throw light on the mechanism of viscous flow. The molar refraction was calculated using the refractive index data. The results were interpreted in the light of ion-ion, ion-nonpolar, and nonpolar-nonpolar interactions and the effect of increasing hydrophobicity as we move from glycine to triglycine on these interactions in presence of the dye tartrazine was also investigated.

  18. An assessment of high carbon stock and high conservation value approaches to sustainable oil palm cultivation in Gabon

    Science.gov (United States)

    Austin, Kemen G.; Lee, Michelle E.; Clark, Connie; Forester, Brenna R.; Urban, Dean L.; White, Lee; Kasibhatla, Prasad S.; Poulsen, John R.

    2017-01-01

    Industrial-scale oil palm cultivation is rapidly expanding in Gabon, where it has the potential to drive economic growth, but also threatens forest, biodiversity and carbon resources. The Gabonese government is promoting an ambitious agricultural expansion strategy, while simultaneously committing to minimize negative environmental impacts of oil palm agriculture. This study estimates the extent and location of suitable land for oil palm cultivation in Gabon, based on an analysis of recent trends in plantation permitting. We use the resulting suitability map to evaluate two proposed approaches to minimizing negative environmental impacts: a High Carbon Stock (HCS) approach, which emphasizes forest protection and climate change mitigation, and a High Conservation Value (HCV) approach, which focuses on safeguarding biodiversity and ecosystems. We quantify the forest area, carbon stock, and biodiversity resources protected under each approach, using newly developed maps of priority species distributions and forest biomass for Gabon. We find 2.7-3.9 Mha of suitable or moderately suitable land that avoid HCS areas, 4.4 million hectares (Mha) that avoid HCV areas, and 1.2-1.7 Mha that avoid both. This suggests that Gabon’s oil palm production target could likely be met without compromising important ecosystem services, if appropriate safeguards are put in place. Our analysis improves understanding of suitability for oil palm in Gabon, determines how conservation strategies align with national targets for oil palm production, and informs national land use planning.

  19. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

    Science.gov (United States)

    Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

    2017-07-01

    We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

  20. Halogenides of dimethylglycine in comparison with respective salts of glycine, sarcosine and betaine

    Science.gov (United States)

    Petrosyan, A. M.; Ghazaryan, V. V.; Giester, G.; Fleck, M.; Tylczyński, Z.; Wiesner, M.

    2018-04-01

    We investigated salts formation in the DMG(dimethylglycine)sbnd HClsbnd H2O, DMGsbnd HBrsbnd H2O and DMGsbnd HIsbnd H2O systems. In addition to previously known dimethylglycinium chloride (DMGH)Cl, we obtained and characterized (structurally and spectroscopically) the following crystals: (DMGH)Br, (DMGH)I as well as the first salts of DMG with dimeric (DMG⋯DMGH) cation: (DMG⋯DMGH)Cl, (DMG⋯DMGH)Br, (DMG⋯DMGH)I. Obtained results are compared with results of known or newly obtained respective salts of glycine, sarcosine (monomethylglycine) and betaine (trimethylglycine).

  1. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  2. Glycine Polymerization on Oxide Minerals.

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  3. Elevated carbon dioxide increases salicylic acid in Glycine max.

    Science.gov (United States)

    Casteel, Clare L; Segal, Lauren M; Niziolek, Olivia K; Berenbaum, May R; DeLucia, Evan H

    2012-12-01

    Concentrations of carbon dioxide (CO(2)) are increasing in the atmosphere, affecting soybean (Glycine max L.) phytohormone signaling and herbivore resistance. Whether the impact of elevated CO(2) on phytohormones and induced defenses is a generalized response within this species is an open question. We examined jasmonic acid (JA) and salicylic acid (SA) under ambient and elevated CO(2) concentrations with and without Japanese beetle (Popillia japonica Newman) damage and artificial damage across six soybean cultivars (HS93-4118, Pana, IA 3010, Loda, LN97-15076, and Dwight). Elevated CO(2) reduced constitutive levels of JA and related transcripts in some but not all soybean cultivars. In contrast to the variation in JA, constitutive levels of salicylic were increased universally among soybean cultivars grown under elevated CO(2). Variation in hormonal signaling may underpin observed variation in the response of insect herbivores and pathogens to plants grown under elevated CO(2).

  4. Conservation when landowners have bargaining power

    DEFF Research Database (Denmark)

    Lennox, Gareth D.; Gaston, Kevin J.; Acs, Szvetlana

    2013-01-01

    agreement. Implicitly assumed in such studies is therefore that those who ``produce'' biodiversity (landowners) receive none of the surplus available from trade. Instead, landowners could use their bargaining power to gain profits from conservation investments. We employ game theory to determine the surplus...... landowners could obtain in negotiations over conservation agreements, and the consequent effects on conservation outcomes, when enrolment decisions are governed by continuous variables (e.g. the proportion of a property to enrol). In addition, we consider how landowner uncertainty regarding the opportunity...... costs of other landowners affects these outcomes. Landowners' ability to gain surplus is highly variable and reflects variation in the substitutability of different properties for achieving a specified conservation objective. The ability of landowners to obtain profits from conservation agreements...

  5. Localization of glycine-containing neurons in the Macaca monkey retina

    International Nuclear Information System (INIS)

    Hendrickson, A.E.; Koontz, M.A.; Pourcho, R.G.; Sarthy, P.V.; Goebel, D.J.

    1988-01-01

    Autoradiography following 3H-glycine (Gly) uptake and immunocytochemistry with a Gly-specific antiserum were used to identify neurons in Macaca monkey retina that contain a high level of this neurotransmitter. High-affinity uptake of Gly was shown to be sodium dependent whereas release of both endogenous and accumulated Gly was calcium dependent. Neurons labeling for Gly included 40-46% of the amacrine cells and nearly 40% of the bipolars. Synaptic labeling was seen throughout the inner plexiform layer (IPL) but with a preferential distribution in the inner half. Bands of labeled puncta occurred in S2, S4, and S5. Both light and postembedding electron microscopic (EM) immunocytochemistry identified different types of amacrine and bipolar cell bodies and their synaptic terminals. The most heavily labeled Gly+ cell bodies typically were amacrine cells having a single, thick, basal dendrite extending deep into the IPL and, at the EM level, electron-dense cytoplasm and prominent nuclear infoldings. This cell type may be homologous with the Gly2 cell in human retina and the AII/Gly2 of cat retina. Gly+ amacrines synapse most frequently onto Gly- amacrines and both Gly- and Gly+ bipolars. Gly+ bipolar cells appeared to be cone bipolars because their labeled dendrites could be traced only to cone pedicles. The pattern of these labeled dendritic trees indicated that both diffuse and midget types of biopolars were Gly+. The EM distribution of labeled synapses showed Gly+ amacrine synapses throughout the IPL, but these composed only 11-23% of the amacrine population. Most of the Gly+ bipolar terminals were in the inner IPL, where 70% of all bipolar terminals were labeled

  6. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins

    Science.gov (United States)

    Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3 / ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. The site of action and me...

  7. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    Science.gov (United States)

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  8. Equity trade-offs in conservation decision making.

    Science.gov (United States)

    Law, Elizabeth A; Bennett, Nathan J; Ives, Christopher D; Friedman, Rachel; Davis, Katrina J; Archibald, Carla; Wilson, Kerrie A

    2018-04-01

    Conservation decisions increasingly involve multiple environmental and social objectives, which result in complex decision contexts with high potential for trade-offs. Improving social equity is one such objective that is often considered an enabler of successful outcomes and a virtuous ideal in itself. Despite its idealized importance in conservation policy, social equity is often highly simplified or ill-defined and is applied uncritically. What constitutes equitable outcomes and processes is highly normative and subject to ethical deliberation. Different ethical frameworks may lead to different conceptions of equity through alternative perspectives of what is good or right. This can lead to different and potentially conflicting equity objectives in practice. We promote a more transparent, nuanced, and pluralistic conceptualization of equity in conservation decision making that particularly recognizes where multidimensional equity objectives may conflict. To help identify and mitigate ethical conflicts and avoid cases of good intentions producing bad outcomes, we encourage a more analytical incorporation of equity into conservation decision making particularly during mechanistic integration of equity objectives. We recommend that in conservation planning motivations and objectives for equity be made explicit within the problem context, methods used to incorporate equity objectives be applied with respect to stated objectives, and, should objectives dictate, evaluation of equity outcomes and adaptation of strategies be employed during policy implementation. © 2017 Society for Conservation Biology.

  9. The Effectiveness of Biofertilizer on Plant Growth Soyb Ea N “Edam Am E” (Glycin Max)

    OpenAIRE

    Sudiarti, Diah

    2017-01-01

    This study aimed at determining the effectiveness of biofertilizer with different concentrations on plant growth of soybean “edamame” (glycin max). Biofertilizer in this study consists of microbial consortia (lactobacillus, pseudomonas, bacillus, saccharomyces, rhizobium, azotobacter, azospirillum, and cellulomonas). The treatment consists of 3 biofertilizer concentrations (25%, 50%, dan 75%), as well as the negative control and positive control (100% chemical fertilizer equivalent 5g/plant)....

  10. Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes

    Directory of Open Access Journals (Sweden)

    Tatiana P. Morais

    2018-01-01

    Full Text Available In central nervous system, glycine receptor (GlyR is mostly expressed in the spinal cord and brainstem, but glycinergic transmission related elements have also been identified in the brain. Astrocytes are active elements at the tripartite synapse, being responsible for the maintenance of brain homeostasis and for the fine-tuning of synaptic activity. These cells communicate, spontaneously or in response to a stimulus, by elevations in their cytosolic calcium (calcium transients, Ca2+T that can be propagated to other cells. How these Ca2+T are negatively modulated is yet poorly understood. In this work, we evaluated GlyR expression and its role on calcium signaling modulation in rat brain astrocytes. We first proved that GlyR, predominantly subunits α2 and β, was expressed in brain astrocytes and its localization was confirmed in the cytoplasm and astrocytic processes by immunohistochemistry assays. Calcium imaging experiments in cultured astrocytes showed that glycine (500 μM, a GlyR agonist, caused a concentration-dependent reduction in ATP-induced Ca2+T, an effect abolished by the GlyR antagonist, strychnine (0.8 μM, as well as by nocodazole (1 μM, known to impair GlyR anchorage to the plasma membrane. This effect was mimicked by activation of GABAAR, another Cl--permeable channel. In summary, we demonstrated that GlyR activation in astrocytes mediates an inhibitory effect upon ATP induced Ca2+T, which most probably involves changes in membrane permeability to Cl- and requires GlyR anchorage at the plasma membrane. GlyR in astrocytes may thus be part of a mechanism to modulate astrocyte-to-neuron communication.

  11. Low-temperature solid-state FTIR study of glycine, sarcosine and N,N-dimethylglycine: observation of neutral forms of simple α-amino acids in the solid state

    OpenAIRE

    Gómez-Zavaglia, A.; Fausto, R.

    2003-01-01

    Neutral forms of glycine and their N-methylated derivatives, sarcosine (N-methylglycine) and N,N-dimethylglycine were, for the first time, observed in the solid state pure compounds. The substances were sublimated under high vacuum, quickly deposited onto a cold CsI substrate at 9 K and examined using FTIR spectroscopy within the temperature range 9–300 K. For all the compounds studied, the spectra obtained at 9 K after deposition revealed the presence of both the neutral and zwitterionic ami...

  12. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2015-08-01

    Full Text Available The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr., GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD. Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building.

  13. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export.

    Science.gov (United States)

    White, Phillip J; Lapworth, Amanda L; An, Jie; Wang, Liping; McGarrah, Robert W; Stevens, Robert D; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J; Bain, James R; Trimmer, Jeff K; Brosnan, M Julia; Rolph, Timothy P; Newgard, Christopher B

    2016-07-01

    A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Our data are consistent with a model wherein elevated circulating BCAA contribute to development of

  14. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export

    Directory of Open Access Journals (Sweden)

    Phillip J. White

    2016-07-01

    Full Text Available Objective: A branched-chain amino acid (BCAA-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Methods: Zucker-lean rats (ZLR and Zucker-fatty rats (ZFR were fed either a custom control, low fat (LF diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val were reduced by 45% (LF-RES. We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. Results: LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH, was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Conclusions: Our data are consistent with a model wherein

  15. Making conservation work for everyone

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, J. [Veridian Corp., Ajax, ON (Canada)

    2004-07-01

    This presentation discussed the economic value of conservation, the optimal deployment of energy conservation. A sample load profile was presented to demonstrate how much electricity the average residential customer uses on a summer day. The average customer does not have the tools to understand the financial consequences of conservation for different types of equipment at different times of the day. Smart metering technology could help in this regard. Accurate unsubsidized prices are also considered to be the best incentive to conserve because customers will reduce electricity use when the prices are high. It was also suggested that standards for new appliances should be increased effectively to their economic value. The enablers to energy conservation include solid consumer education programs, real time metering in places where it is cost effective, real time pricing in places where it is practical, and power rates that reflect real costs. Barriers to energy conservation include the residual economic advantage that may be insufficient to justify investment; support from local distribution companies and transmission companies if the lost revenue adjustment mechanism (LRAM) is not sufficient to recover lost revenue and if LDCs are not sufficiently involved in the design of the electricity conservation program. 7 figs.

  16. Inhibitory control and visuo-spatial reversibility in Piaget’s seminal number conservation task: A high-density ERP study.

    Directory of Open Access Journals (Sweden)

    Gregoire eBorst

    2013-12-01

    Full Text Available The present high-density ERP study on 13 adults aimed to determine whether number conservation relies on the ability to inhibit the overlearned length-equals-number strategy and then imagine the shortening of the row that was lengthened. Participants performed the number-conservation task and, after the EEG session, the mental imagery task. In the number-conservation task, first two rows with the same number of tokens and the same length were presented on a computer screen (COV condition and then, the tokens in one of the two rows were spread apart (INT condition. Participants were instructed to determine whether the two rows had an identical number of tokens. In the mental imagery task, two rows with different lengths but the same number of tokens were presented and participants were instructed to imagine the tokens in the longer row aligning with the tokens in the shorter row. In the number-conservation task, we found that the amplitudes of the centro-parietal N2 and fronto-central P3 were higher in the INT than in the COV conditions. In addition, the differences in response times between the two conditions were correlated with the differences in the amplitudes of the fronto-central P3. In light of previous results reported on the number-conservation task in adults, the present results suggest that inhibition might be necessary to succeed the number-conservation task in adults even when the transformation of the length of one of the row is displayed. Finally, we also reported correlations between the speed at which participants could imagine the shortening of one of the row in the mental imagery task, the speed at which participants could determine that the two rows had the same number of tokens after the tokens in one of the row were spread apart and the latency of the late positive parietal component in the number-conservation task. Therefore, performing the number-conservation task might involve mental transformation processes in adults.

  17. Glucose biosensor based on immobilization of glucose oxidase on a carbon paste electrode modified with microsphere-attached l-glycine.

    Science.gov (United States)

    Donmez, Soner; Arslan, Fatma; Sarı, Nurşen; Hasanoğlu Özkan, Elvan; Arslan, Halit

    2017-09-01

    In the present study, a novel biosensor that is sensitive to glucose was prepared using the microspheres modified with (4-formyl-3-methoxyphenoxymethyl)polystyrene (FMPS) with l-glycine. Polymeric microspheres having Schiff bases were prepared from FMPS using the glycine condensation method. Glucose oxidase enzyme was immobilized onto modified carbon paste electrode by cross-linking with glutaraldehyde. Oxidation of enzymatically produced H 2 O 2 (+0.5 V vs. Ag/AgCl) was used for determination of glucose. Optimal temperature and pH were found as 50 °C and 8.0, respectively. The glucose biosensor showed a linear working range from 5.0 × 10 -4 to 1.0 × 10 -2 M, R 2 = 0.999. Storage and operational stability of the biosensor were also investigated. The biosensor gave perfect reproducible results after 20 measurements with 3.3% relative standard deviation. It also had good storage stability. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  18. Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress.

    Science.gov (United States)

    Zhu, Dan; Bai, Xi; Luo, Xiao; Chen, Qin; Cai, Hua; Ji, Wei; Zhu, Yanming

    2013-02-01

    Wild soybean (Glycine soja L. G07256) exhibits a greater adaptability to soil bicarbonate stress than cultivated soybean, and recent discoveries show that TIFY family genes are involved in the response to several abiotic stresses. A genomic and transcriptomic analysis of all TIFY genes in G. soja, compared with G. max, will provide insight into the function of this gene family in plant bicarbonate stress response. This article identified and characterized 34 TIFY genes in G. soja. Sequence analyses indicated that most GsTIFY proteins had two conserved domains: TIFY and Jas. Phylogenetic analyses suggested that these GsTIFY genes could be classified into two groups. A clustering analysis of all GsTIFY transcript expression profiles from bicarbonate stress treated G. soja showed that there were five different transcript patterns in leaves and six different transcript patterns in roots when the GsTIFY family responds to bicarbonate stress. Moreover, the expression level changes of all TIFY genes in cultivated soybean, treated with bicarbonate stress, were also verified. The expression comparison analysis of TIFYs between wild and cultivated soybeans confirmed that, different from the cultivated soybean, GsTIFY (10a, 10b, 10c, 10d, 10e, 10f, 11a, and 11b) were dramatically up-regulated at the early stage of stress, while GsTIFY 1c and 2b were significantly up-regulated at the later period of stress. The frequently stress responsive and diverse expression profiles of the GsTIFY gene family suggests that this family may play important roles in plant environmental stress responses and adaptation.

  19. Energy conservation in India: a profile

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The decade and half since the oil crisis of 1973 has been a period that has witnessed a steady growth of the energy conservation ethos in India. Housekeeping and low risk conservation options have been largely preferred so far. The IMWG (Inter-Ministerial Working Group on Utilization and Conservation of Energy) study did not evaluate potential saving through the introduction of high risk and high pay-off technologies. The potential for energy conservation in India is substantial. However, some of the barriers to achieving the potential in the past have been energy prices which deviate from rational tariffs and prices, a lack of information on specific measures and of options for achieving energy conservation, paucity of capital for schemes requiring technology upgradation and efficiency improvements, and the inadequacy if institutional arrangement for promoting energy conservation in different sectors of the economy. Recent efforts pursued by several organizations however provide some basis for optimism. Given the growing capital intensity of the energy sector in India, more vigorous efforts are likely to be made in the future. In particular, success stories in some industrial units indicate that decentralized efforts by the units themselves can achieve a great deal in improving the efficiency of energy use, particularly in the Indian industry. Policies to promote such programmes would help accelerate energy conservation efforts in industrial units and in other sectors. It is therefore hoped that the intensity of energy use in several sectors of the indian economy will be reduced significantly in the coming years. (author). 3 refs., 3 tabs

  20. Armadillidin H, a glycine-rich peptide from the terrestrial crustacean Armadillidium vulgare, displays an unexpected wide antimicrobial spectrum with membranolytic activity.

    Directory of Open Access Journals (Sweden)

    Julien Verdon

    2016-09-01

    Full Text Available Antimicrobial peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, there are currently 15 distinct AMP families published so far in the literature, mainly isolated from members of the Decapoda order. Up to now, armadillidin is the sole non-decapod AMP isolated from the haemocytes of Armadillidium vulgare, a crustacean isopod. Its first description demonstrated that armadillidin is a linear glycine-rich (47% cationic peptide with an antimicrobial activity directed towards Bacillus megaterium. In the present work, we report identification of armadillidin Q, a variant of armadillidin H (earlier known as armadillidin, from crude haemocyte extracts of A. vulgare using LC-MS approach. We demonstrated that both armadillidins displayed broad spectrum antimicrobial activity against several Gram-positive and Gram negative bacteria, fungi, but were totally inactive against yeasts. Membrane permeabilization assays, only performed with armadillidin H, showed that the peptide is membrane active against bacterial and fungal strains leading to deep changes in cell morphology. This damaging activity visualized by electronic microscopy correlates with a rapid decrease of cell viability leading to highly blebbed cells. In contrast, armadillidin H does not reveal cytotoxicity towards human erythrocytes. Furthermore, no secondary structure could be defined in this study (by CD and NMR even in a membrane mimicking environment. Therefore, armadillidins represent interesting candidates to gain insight into the biology of glycine-rich AMPs.

  1. Ophthalmic acid accumulation in an Escherichia coli mutant lacking the conserved pyridoxal 5'-phosphate-binding protein YggS.

    Science.gov (United States)

    Ito, Tomokazu; Yamauchi, Ayako; Hemmi, Hisashi; Yoshimura, Tohru

    2016-12-01

    Escherichia coli YggS is a highly conserved pyridoxal 5'-phosphate (PLP)-binding protein whose biochemical function is currently unknown. A previous study with a yggS-deficient E. coli strain (ΔyggS) demonstrated that YggS controls l-Ile- and l-Val-metabolism by modulating 2-ketobutyrate (2-KB), l-2-aminobutyrate (l-2-AB), and/or coenzyme A (CoA) availability in a PLP-dependent fashion. In this study, we found that ΔyggS accumulates an unknown metabolite as judged by amino acid analyses. LC/MS and MS/MS analyses of the compound with propyl chloroformate derivatization, and co-chromatography analysis identified this compound as γ-l-glutamyl-l-2-aminobutyryl-glycine (ophthalmic acid), a glutathione (GSH) analogue in which the l-Cys moiety is replaced by l-2-AB. We also determine the metabolic consequence of the yggS mutation. Absence of YggS initially increases l-2-AB availability, and then causes ophthalmic acid accumulation and CoA limitation in the cell. The expression of a γ-glutamylcysteine synthetase and a glutathione synthetase in a ΔyggS background causes high-level accumulation of ophthalmic acid in the cells (∼1.2 nmol/mg cells) in a minimal synthetic medium. This opens the possibility of a first fermentative production of ophthalmic acid. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. The Highly Conserved Proline at Position 438 in Pseudorabies Virus gH Is Important for Regulation of Membrane Fusion

    OpenAIRE

    Schröter, Christina; Klupp, Barbara G.; Fuchs, Walter; Gerhard, Marika; Backovic, Marija; Rey, Felix A.; Mettenleiter, Thomas C.

    2014-01-01

    Membrane fusion in herpesviruses requires viral glycoproteins (g) gB and gH/gL. While gB is considered the actual fusion protein but is nonfusogenic per se, the function of gH/gL remains enigmatic. Crystal structures for different gH homologs are strikingly similar despite only moderate amino acid sequence conservation. A highly conserved sequence motif comprises the residues serine-proline-cysteine corresponding to positions 437 to 439 in pseudorabies virus (PrV) gH. The PrV-gH structure sho...

  3. Violations of conservation laws in viscous liquid dynamics

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2007-01-01

    The laws expressing conservation of momentum and energy apply to any isolated system, but these laws are violated for highly viscous liquids under laboratory conditions because of the unavoidable interactions with the measuring equipment over the long times needed to study the dynamics. Moreover,......, although particle number conservation applies strictly for any liquid, the solidity of viscous liquids implies that even this conservation law is apparently violated in coarse-grained descriptions of density fluctuations.......The laws expressing conservation of momentum and energy apply to any isolated system, but these laws are violated for highly viscous liquids under laboratory conditions because of the unavoidable interactions with the measuring equipment over the long times needed to study the dynamics. Moreover...

  4. Thermal effects of carbonated hydroxyapatite modified by glycine and albumin

    Science.gov (United States)

    Gerk, S. A.; Golovanova, O. A.; Kuimova, M. V.

    2017-01-01

    In this work calcium phosphate powders were obtained by precipitation method from simulated solutions of synovial fluid containing glycine and albumin. X-ray diffraction and IR spectroscopy determined that all samples are single-phase and are presented by carbonate containing hydroxyapatite (CHA). The thermograms of solid phases of CHA were obtained and analyzed; five stages of transformation in the temperature range of 25-1000°C were marked. It is shown that in this temperature range dehydration, decarboxylation and thermal degradation of amino acid and protein connected to the surface of solid phase occur. The tendency of temperature lowering of the decomposition of powders synthesized from a medium containing organic substances was determined. Results demonstrate a direct dependence between the concentration of the amino acid in a model solution and its content in the solid phase.

  5. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+

    DEFF Research Database (Denmark)

    Venco, Paola; Bonora, Massimo; Giorgi, Carlotta

    2015-01-01

    19orf12 protein was not exclusively present in mitochondria, but also in the Endoplasmic Reticulum (ER) and MAM (Mitochondria Associated Membrane), while mutant C19orf12 variants presented a different localization. Moreover, after induction of oxidative stress, a GFP-tagged C19orf12 wild-type protein...... was able to relocate to the cytosol. On the contrary, mutant isoforms were not able to respond to oxidative stress. High mitochondrial calcium concentration and increased H2O2 induced apoptosis were found in fibroblasts derived from one patient as compared to controls. C19orf12 protein is a 17 k...... to rearrange in a structural domain, which is homologs to the N-terminal regulatory domain of the magnesium transporter MgtE, suggesting that C19orf12 may act as a regulatory protein for human MgtE transporters. The mutations here described affect respectively one glycine residue of the glycine zipper motifs...

  6. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    Science.gov (United States)

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  7. Cortical cytasters: a highly conserved developmental trait of Bilateria with similarities to Ctenophora

    Directory of Open Access Journals (Sweden)

    Salinas-Saavedra Miguel

    2011-12-01

    Full Text Available Abstract Background Cytasters (cytoplasmic asters are centriole-based nucleation centers of microtubule polymerization that are observable in large numbers in the cortical cytoplasm of the egg and zygote of bilaterian organisms. In both protostome and deuterostome taxa, cytasters have been described to develop during oogenesis from vesicles of nuclear membrane that move to the cortical cytoplasm. They become associated with several cytoplasmic components, and participate in the reorganization of cortical cytoplasm after fertilization, patterning the antero-posterior and dorso-ventral body axes. Presentation of the hypothesis The specific resemblances in the development of cytasters in both protostome and deuterostome taxa suggest that an independent evolutionary origin is unlikely. An assessment of published data confirms that cytasters are present in several protostome and deuterostome phyla, but are absent in the non-bilaterian phyla Cnidaria and Ctenophora. We hypothesize that cytasters evolved in the lineage leading to Bilateria and were already present in the most recent common ancestor shared by protostomes and deuterostomes. Thus, cytasters would be an ancient and highly conserved trait that is homologous across the different bilaterian phyla. The alternative possibility is homoplasy, that is cytasters have evolved independently in different lineages of Bilateria. Testing the hypothesis So far, available published information shows that appropriate observations have been made in eight different bilaterian phyla. All of them present cytasters. This is consistent with the hypothesis of homology and conservation. However, there are several important groups for which there are no currently available data. The hypothesis of homology predicts that cytasters should be present in these groups. Increasing the taxonomic sample using modern techniques uniformly will test for evolutionary patterns supporting homology, homoplasy, or secondary loss of

  8. A highly conserved basidiomycete peptide synthetase produces a trimeric hydroxamate siderophore.

    Science.gov (United States)

    Brandenburger, Eileen; Gressler, Markus; Leonhardt, Robin; Lackner, Gerald; Habel, Andreas; Hertweck, Christian; Brock, Matthias; Hoffmeister, Dirk

    2017-08-25

    The model white-rot basidiomycete Ceriporiopsis ( Gelatoporia ) subvermispora B encodes putative natural product biosynthesis genes. Among them is the gene for the seven-domain nonribosomal peptide synthetase CsNPS2. It is a member of the as-yet uncharacterized fungal type VI siderophore synthetase family which is highly conserved and widely distributed among the basidiomycetes. These enzymes include only one adenylation (A) domain, i.e., one complete peptide synthetase module and two thiolation/condensation (T-C) di-domain partial modules which, together, constitute an AT 1 C 1 T 2 C 2 T 3 C 3 domain setup. The full-length CsNPS2 enzyme (274.5 kDa) was heterologously produced as polyhistidine fusion in Aspergillus niger as soluble and active protein. N 5 -acetyl- N 5 -hydroxy-l-ornithine (l-AHO) and N 5 - cis -anhydromevalonyl- N 5 -hydroxy-l-ornithine (l-AMHO) were accepted as substrates, as assessed in vitro using the substrate-dependent [ 32 P]ATP-pyrophosphate radioisotope exchange assay. Full-length holo -CsNPS2 catalyzed amide bond formation between three l-AHO molecules to release the linear l-AHO trimer, called basidioferrin, as product in vitro , which was verified by LC-HRESIMS. Phylogenetic analyses suggest that type VI family siderophore synthetases are widespread in mushrooms and have evolved in a common ancestor of basidiomycetes. Importance : The basidiomycete nonribosomal peptide synthetase CsNPS2 represents a member of a widely distributed but previously uninvestigated class (type VI) of fungal siderophore synthetases. Genes orthologous to CsNPS2 are highly conserved across various phylogenetic clades of the basidiomycetes. Hence, our work serves as a broadly applicable model for siderophore biosynthesis and iron metabolism in higher fungi. Also, our results on the amino acid substrate preference of CsNPS2 supports further understanding of the substrate selectivity of fungal adenylation domains. Methodologically, this report highlights the

  9. Diversity of endophytic fungi in Glycine max.

    Science.gov (United States)

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  10. Preparation of carbon paste electrodes including poly(styrene) attached glycine-Pt(IV) for amperometric detection of glucose.

    Science.gov (United States)

    Dönmez, Soner; Arslan, Fatma; Sarı, Nurşen; Kurnaz Yetim, Nurdan; Arslan, Halit

    2014-04-15

    In this study, a novel carbon paste electrode that is sensitive to glucose was prepared using the nanoparticles modified (4-Formyl-3-methoxyphenoxymethyl) with polystyren (FMPS) with L-Glycine-Pt(IV) complexes. Polymeric nanoparticles having Pt(IV) ion were prepared from (4-Formyl-3-methoxyphenoxymethyl) polystyren, glycine and PtCl4 by template method. Glucose oxidase enzyme was immobilized to a modified carbon paste electrode (MCPE) by cross-linking with glutaraldehyde. Determination of glucose was carried out by oxidation of enzymatically produced H2O2 at 0.5 V vs. Ag/AgCl. Effects of pH and temperature were investigated, and optimum parameters were found to be 8.0 and 55°C, respectively. Linear working range of the electrode was 5.0×10(-6)-1.0×10(-3) M, R(2)=0.997. Storage stability and operational stability of the enzyme electrode were also studied. Glucose biosensor gave perfect reproducible results after 10 measurements with 2.3% relative standard deviation. Also, it had good storage stability (gave 53.57% of the initial amperometric response at the end of 33th day). © 2013 Published by Elsevier B.V.

  11. Site-selective modification of peptides: From "customizable units" to novel α-aryl and α-alkyl glycine derivatives, and components of branched peptides.

    Science.gov (United States)

    Romero-Estudillo, Iván; Saavedra, Carlos; Boto, Alicia; Álvarez, Eleuterio

    2015-09-01

    The creation of peptide libraries by site-selective modification of a few peptide substrates would increase the efficiency of discovery processes, but still is a real synthetic challenge. The site-selective modification of small peptides at serine or threonine residues, by using a short scission-addition procedure, allows the preparation of peptides with unnatural α-aryl glycines. In a similar way, the scission of hydroxyproline residues is the key step in the production of optically pure α-alkyl glycines which are precursors or components of branched peptides. With these versatile processes, a single peptide can be transformed into a variety of peptide derivatives. The process takes place under mild conditions, and good global yields are obtained. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 104: 650-662, 2015. © 2015 Wiley Periodicals, Inc.

  12. A highly conserved amino acid in VP1 regulates maturation of enterovirus 71.

    Directory of Open Access Journals (Sweden)

    Yong-Xin Zhang

    2017-09-01

    Full Text Available Enterovirus 71 (EV71 is the major causative agent of hand, foot and mouth disease (HFMD in children, causing severe clinical outcomes and even death. Here, we report an important role of the highly conserved alanine residue at position 107 in the capsid protein VP1 (VP1A107 in the efficient replication of EV71. Substitutional mutations of VP1A107 significantly diminish viral growth kinetics without significant effect on viral entry, expression of viral genes and viral production. The results of mechanistic studies reveal that VP1A107 regulates the efficient cleavage of the VP0 precursor during EV71 assembly, which is required, in the next round of infection, for the transformation of the mature virion (160S into an intermediate or A-particle (135S, a key step of virus uncoating. Furthermore, the results of molecular dynamic simulations and hydrogen-bond networks analysis of VP1A107 suggest that flexibility of the VP1 BC loop or the region surrounding the VP1107 residue directly correlates with viral infectivity. It is possible that sufficient flexibility of the region surrounding the VP1107 residue favors VP0 conformational change that is required for the efficient cleavage of VP0 as well as subsequent viral uncoating and viral replication. Taken together, our data reveal the structural role of the highly conserved VP1A107 in regulating EV71 maturation. Characterization of this novel determinant of EV71 virulence would promote the study on pathogenesis of Enteroviruses.

  13. Evaluating private land conservation in the Cape Lowlands, South Africa.

    Science.gov (United States)

    Von Hase, Amrei; Rouget, Mathieu; Cowling, Richard M

    2010-10-01

    Evaluation is important for judiciously allocating limited conservation resources and for improving conservation success through learning and strategy adjustment. We evaluated the application of systematic conservation planning goals and conservation gains from incentive-based stewardship interventions on private land in the Cape Lowlands and Cape Floristic Region, South Africa. We collected spatial and nonspatial data (2003-2007) to determine the number of hectares of vegetation protected through voluntary contractual and legally nonbinding (informal) agreements with landowners; resources spent on these interventions; contribution of the agreements to 5- and 20-year conservation goals for representation and persistence in the Cape Lowlands of species and ecosystems; and time and staff required to meet these goals. Conservation gains on private lands across the Cape Floristic Region were relatively high. In 5 years, 22,078 ha (27,800 ha of land) and 46,526 ha (90,000 ha of land) of native vegetation were protected through contracts and informal agreements, respectively. Informal agreements often were opportunity driven and cheaper and faster to execute than contracts. All contractual agreements in the Cape Lowlands were within areas of high conservation priority (identified through systematic conservation planning), which demonstrated the conservation plan's practical application and a high level of overlap between resource investment (approximately R1.14 million/year in the lowlands) and priority conservation areas. Nevertheless, conservation agreements met only 11% of 5-year and 9% of 20-year conservation goals for Cape Lowlands and have made only a moderate contribution to regional persistence of flora to date. Meeting the plan's conservation goals will take three to five times longer and many more staff members to maintain agreements than initially envisaged. © 2010 Society for Conservation Biology.

  14. Butterflies of the high altitude Atacama Desert: habitat use and conservation

    Directory of Open Access Journals (Sweden)

    Emma eDespland

    2014-09-01

    Full Text Available The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 500 m asl (prepuna, puna and Andean steppe habitats as well as in high and low altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life-history strategies and relationships with host plants.

  15. Conservative Protestantism and attitudes toward corporal punishment, 1986-2014.

    Science.gov (United States)

    Hoffmann, John P; Ellison, Christopher G; Bartkowski, John P

    2017-03-01

    Research indicates that conservative Protestants are highly supportive of corporal punishment. Yet, Americans' support for this practice has waned during the past several decades. This study aggregates repeated cross-sectional data from the General Social Surveys (GSS) to consider three models that address whether attitudes toward spanking among conservative Protestants shifted relative to those of other Americans from 1986 to 2014. Although initial results reveal a growing gap between conservative Protestants and the broader American public, we find that average levels of support have remained most robust among less educated conservative Protestants, with some erosion among more highly educated conservative Protestants. Moreover, trends in variability suggest that conservative Protestants exhibit more cohesive support for this practice than do others. These results provide a window into the cultural contours of religious change and the social factors that facilitate such change. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Setting priorities for private land conservation in fire-prone landscapes: Are fire risk reduction and biodiversity conservation competing or compatible objectives?

    Science.gov (United States)

    Syphard, Alexandra D.; Butsic, Van; Bar-Massada, Avi; Keeley, Jon E.; Tracey, Jeff A.; Fisher, Robert N.

    2016-01-01

    Although wildfire plays an important role in maintaining biodiversity in many ecosystems, fire management to protect human assets is often carried out by different agencies than those tasked for conserving biodiversity. In fact, fire risk reduction and biodiversity conservation are often viewed as competing objectives. Here we explored the role of management through private land conservation and asked whether we could identify private land acquisition strategies that fulfill the mutual objectives of biodiversity conservation and fire risk reduction, or whether the maximization of one objective comes at a detriment to the other. Using a fixed budget and number of homes slated for development, we simulated 20 years of housing growth under alternative conservation selection strategies, and then projected the mean risk of fires destroying structures and the area and configuration of important habitat types in San Diego County, California, USA. We found clear differences in both fire risk projections and biodiversity impacts based on the way conservation lands are prioritized for selection, but these differences were split between two distinct groupings. If no conservation lands were purchased, or if purchases were prioritized based on cost or likelihood of development, both the projected fire risk and biodiversity impacts were much higher than if conservation lands were purchased in areas with high fire hazard or high species richness. Thus, conserving land focused on either of the two objectives resulted in nearly equivalent mutual benefits for both. These benefits not only resulted from preventing development in sensitive areas, but they were also due to the different housing patterns and arrangements that occurred as development was displaced from those areas. Although biodiversity conflicts may still arise using other fire management strategies, this study shows that mutual objectives can be attained through land-use planning in this region. These results likely

  17. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  18. Promoting Effective Monitoring and Conservation through Online ...

    African Journals Online (AJOL)

    ... communicates major findings of submitted records to relevant authorities concerned with conservation and advocacy thus contributing to a much wider sharing and dissemination of important aspects while contributing to avifaunal conservation. Through networking the system provides a highly attractive and authoritative, ...

  19. A Resource Conservation Unit.

    Science.gov (United States)

    Porter, Philip D.

    1979-01-01

    Describes a variety of learning activities for teaching elementary and junior high students about air, water, and energy conservation techniques. Suggests community resources, social studies objectives, language skills, and 20 activities. (CK)

  20. In Vivo Characterization of a Vertebrate Ultra-conserved Enhancer

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Francis; Nobrega, Marcelo A.; Plajzer-Frick, Ingrid; Holt, Amy; Afzal, Veena; Rubin, Edward M.; Pennacchio, Len

    2004-10-01

    Genomic sequence comparisons between human, mouse and pufferfish (Takifugu rubripes (Fugu))have revealed a set of extremely conserved noncoding sequences. While this high degree of sequence conservation suggests severe evolutionary constraint and predicts a lack of tolerance to change in order to retain in vivo functionality, such elements have been minimally explored experimentally. In this study, we describe the in-depth characterization of an ancient conserved enhancer, Dc2 located near the dachshund gene, which displays a human-Fugu identity of 84 percent over 424 basepairs (bp). In addition to this large overall conservation, we find that Dc2 is characterized by the presence of a large block of sequence (144 bp) that is completely identical between human, mouse, chicken, zebrafish and Fugu. Through the testing of reporter vector constructs in transgenic mice, we observed that the 424 bp Dc2 conserved element is necessary and sufficient for brain tissue enhancer activity. In vivo analyses also revealed that the 144 bp 100 percent conserved sequence is necessary, but not sufficient, to replicate Dc2 enhancer function. However, the introduction of two separate 16 bp insertions into the highly conserved enhancer core did not cause any detectable modification of its in vivo activity. Our observations indicate that the 144 bp 100 percent conserved element is tolerant of change at least at the resolution of this transgenic mouse assay and suggest that purifying selection on Dc2 sequence might not be as strong as we predicted or that some unknown property also constrains this highly conserved enhancer sequence.