WorldWideScience

Sample records for highest negative stellar

  1. A STAR IN THE M31 GIANT STREAM: THE HIGHEST NEGATIVE STELLAR VELOCITY KNOWN

    International Nuclear Information System (INIS)

    Caldwell, Nelson; Kenyon, Scott J.; Morrison, Heather; Harding, Paul; Schiavon, Ricardo; Rose, James A.

    2010-01-01

    We report on a single star, B030D, observed as part of a large survey of objects in M31, which has the unusual radial velocity of -780 km s -1 . Based on details of its spectrum, we find that the star is an F supergiant, with a circumstellar shell. The evolutionary status of the star could be one of a post-main-sequence close binary, a symbiotic nova, or less likely, a post-asymptotic giant branch star, which additional observations could help sort out. Membership of the star in the Andromeda Giant Stream can explain its highly negative velocity.

  2. Highest energy cosmic rays

    International Nuclear Information System (INIS)

    Nikolskij, S.

    1984-01-01

    Primary particles of cosmic radiation with highest energies cannot in view of their low intensity be recorded directly but for this purpose the phenomenon is used that these particles interact with nuclei in the atmosphere and give rise to what are known as extensive air showers. It was found that 40% of primary particles with an energy of 10 15 to 10 16 eV consist of protons, 12 to 15% of helium nuclei, 15% of iron nuclei, the rest of nuclei of other elements. Radiation intensity with an energy of 10 18 to 10 19 eV depends on the direction of incoming particles. Maximum intensity is in the direction of the centre of the nearest clustre of galaxies, minimal in the direction of the central area of our galaxy. (Ha)

  3. Highest priority in Pakistan.

    Science.gov (United States)

    Adil, E

    1968-01-01

    Responding to the challenge posed by its population problem, Pakistan's national leadership gave the highest priority to family planning in its socioeconomic development plan. In Pakistan, as elsewhere in the world, the first family planning effort originated in the private sector. The Family Planning Association of Pakistan made a tentative beginning in popularizing family planning in the country. Some clinics were opened and some publicity and education were undertaken to emphasize the need for family limitation. It was recognized soon that the government needed to assume the primarily responsibility if family planning efforts were to be successful. For the 1st plan period, 1955-60, about $10 million was allocated by the central government in the social welfare sector for voluntary family planning. The level of support continued on the same basis during the 2nd plan, 1960-65, but has been raised 4-fold in the 1965-70 scheme of family planning. Pakistan's Family Planning Association continues to play vital collaborative roles in designing and pretesting of prototype publicity material, involvement of voluntary social workers, and functional research in the clinical and public relations fields. The real breakthrough in the program came with the 3rd 5-year plan, 1965-70. High priority assigned to family planning is reflected by the total initial budget of Rs.284 million (about $60,000,000) for the 5-year period. Current policy is postulated on 6 basic assumptions: family planning efforts need to be public relations-oriented; operations should be conducted through autonomous bodies with decentralized authority at all tiers down to the grassroots level, for expeditious decision making; monetary incentives play an important role; interpersonal motivation in terms of life experience of the clientele through various contacts, coupled with mass media for publicity, can produce a sociological breakthrough; supplies and services in all related disciplines should be

  4. Highest Resolution Gaspra Mosaic

    Science.gov (United States)

    1992-01-01

    This picture of asteroid 951 Gaspra is a mosaic of two images taken by the Galileo spacecraft from a range of 5,300 kilometers (3,300 miles), some 10 minutes before closest approach on October 29, 1991. The Sun is shining from the right; phase angle is 50 degrees. The resolution, about 54 meters/pixel, is the highest for the Gaspra encounter and is about three times better than that in the view released in November 1991. Additional images of Gaspra remain stored on Galileo's tape recorder, awaiting playback in November. Gaspra is an irregular body with dimensions about 19 x 12 x 11 kilometers (12 x 7.5 x 7 miles). The portion illuminated in this view is about 18 kilometers (11 miles) from lower left to upper right. The north pole is located at upper left; Gaspra rotates counterclockwise every 7 hours. The large concavity on the lower right limb is about 6 kilometers (3.7 miles) across, the prominent crater on the terminator, center left, about 1.5 kilometers (1 mile). A striking feature of Gaspra's surface is the abundance of small craters. More than 600 craters, 100-500 meters (330-1650 feet) in diameter are visible here. The number of such small craters compared to larger ones is much greater for Gaspra than for previously studied bodies of comparable size such as the satellites of Mars. Gaspra's very irregular shape suggests that the asteroid was derived from a larger body by nearly catastrophic collisions. Consistent with such a history is the prominence of groove-like linear features, believed to be related to fractures. These linear depressions, 100-300 meters wide and tens of meters deep, are in two crossing groups with slightly different morphology, one group wider and more pitted than the other. Grooves had previously been seen only on Mars's moon Phobos, but were predicted for asteroids as well. Gaspra also shows a variety of enigmatic curved depressions and ridges in the terminator region at left. The Galileo project, whose primary mission is the

  5. Gaspra - Highest Resolution Mosaic

    Science.gov (United States)

    1992-01-01

    This picture of asteroid 951 Gaspra is a mosaic of two images taken by the Galileo spacecraft from a range of 5,300 kilometers (3,300 miles), some 10 minutes before closest approach on October 29, 1991. The Sun is shining from the right; phase angle is 50 degrees. The resolution, about 54 meters/pixel, is the highest for the Gaspra encounter and is about three times better than that in the view released in November 1991. Additional images of Gaspra remain stored on Galileo's tape recorder, awaiting playback in November. Gaspra is an irregular body with dimensions about 19 x 12 x 11 kilometers (12 x 7.5 x 7 miles). The portion illuminated in this view is about 18 kilometers (11 miles) from lower left to upper right. The north pole is located at upper left; Gaspra rotates counterclockwise every 7 hours. The large concavity on the lower right limb is about 6 kilometers (3.7 miles) across, the prominent crater on the terminator, center left, about 1.5 kilometers (1 mile). A striking feature of Gaspra's surface is the abundance of small craters. More than 600 craters, 100-500 meters (330-1650 feet) in diameter are visible here. The number of such small craters compared to larger ones is much greater for Gaspra than for previously studied bodies of comparable size such as the satellites of Mars. Gaspra's very irregular shape suggests that the asteroid was derived from a larger body by nearly catastrophic collisions. Consistent with such a history is the prominence of groove-like linear features, believed to be related to fractures. These linear depressions, 100-300 meters wide and tens of meters deep, are in two crossing groups with slightly different morphology, one group wider and more pitted than the other. Grooves had previously been seen only on Mars's moon Phobos, but were predicted for asteroids as well. Gaspra also shows a variety of enigmatic curved depressions and ridges in the terminator region at left. The Galileo project, whose primary mission is the

  6. MiR-190b, the highest up-regulated miRNA in ERα-positive compared to ERα-negative breast tumors, a new biomarker in breast cancers?

    International Nuclear Information System (INIS)

    Cizeron-Clairac, Geraldine; Lallemand, François; Vacher, Sophie; Lidereau, Rosette; Bieche, Ivan; Callens, Celine

    2015-01-01

    MicroRNAs (miRNAs) show differential expression across breast cancer subtypes and have both oncogenic and tumor-suppressive roles. Numerous microarray studies reported different expression patterns of miRNAs in breast cancers and found clinical interest for several miRNAs but often with contradictory results. Aim of this study is to identify miRNAs that are differentially expressed in estrogen receptor positive (ER + ) and negative (ER − ) breast primary tumors to better understand the molecular basis for the phenotypic differences between these two sub-types of carcinomas and to find potential clinically relevant miRNAs. We used the robust and reproductive tool of quantitative RT-PCR in a large cohort of well-annotated 153 breast cancers with long-term follow-up to identify miRNAs specifically differentially expressed between ER + and ER − breast cancers. Cytotoxicity tests and transfection experiments were then used to examine the role and the regulation mechanisms of selected miRNAs. We identified a robust collection of 20 miRNAs significantly deregulated in ER + compared to ER − breast cancers : 12 up-regulated and eight down-regulated miRNAs. MiR-190b retained our attention as it was the miRNA the most strongly over-expressed in ER + compared to ER − with a fold change upper to 23. It was also significantly up-regulated in ER + /Normal breast tissue and down-regulated in ER − /Normal breast tissue. Functional experiments showed that miR-190b expression is not directly regulated by estradiol and that miR-190b does not affect breast cancer cell lines proliferation. Expression level of miR-190b impacts metastasis-free and event-free survival independently of ER status. This study reveals miR-190b as the highest up-regulated miRNA in hormone-dependent breast cancers. Due to its specificity and high expression level, miR-190b could therefore represent a new biomarker in hormone-dependent breast cancers but its exact role carcinogenesis remains to

  7. Catching the Highest Energy Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2011-08-15

    We briefly discuss the possible sources of ultrahigh energy neutrinos and the methods for their detection. Then we present the results obtained by different experiments for detection of the highest energy neutrinos.

  8. Lowest cost due to highest productivity and highest quality

    Science.gov (United States)

    Wenk, Daniel

    2003-03-01

    Since global purchasing in the automotive industry has been taken up all around the world there is one main key factor that makes a TB-supplier today successful: Producing highest quality at lowest cost. The fact that Tailored Blanks, which today may reach up to 1/3 of a car body weight, are purchased on the free market but from different steel suppliers, especially in Europe and NAFTA, the philosophy on OEM side has been changing gradually towards tough evaluation criteria. "No risk at the stamping side" calls for top quality Tailored- or Tubular Blank products. Outsourcing Tailored Blanks has been starting in Japan but up to now without any quality request from the OEM side like ISO 13919-1B (welding quality standard in Europe and USA). Increased competition will automatically push the quality level and the ongoing approach to combine high strength steel with Tailored- and Tubular Blanks will ask for even more reliable system concepts which enables to weld narrow seams at highest speed. Beside producing quality, which is the key to reduce one of the most important cost driver "material scrap," in-line quality systems with true and reliable evaluation is going to be a "must" on all weld systems. Traceability of all process related data submitted to interfaces according to customer request in combination with ghost-shift-operation of TB systems are tomorrow's state-of-the-art solutions of Tailored Blank-facilities.

  9. Up to the highest peak!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    In the early hours of this morning, the beam energy was ramped up to 3.5 TeV, a new world record and the highest energy for this year’s run. Now operators will prepare the machine to make high-energy collisions later this month. CERN Operations Group leader Mike Lamont (foreground) and LHC engineer in charge Alick Macpherson in the CERN Control Centre early this morning. At 5:23 this morning, Friday 19 March, the energy of both beams in the LHC was ramped up to 3.5 TeV, a new world record. During the night, operators had tested the performance of the whole machine with two so-called ‘dry runs’, that is, without beams. Given the good overall response, beams were injected at around 3:00 a.m. and stabilized soon after. The ramp started at around 4:10 and lasted about one hour. Over the last couple of weeks, operation of the LHC at 450 GeV has become routinely reproducible. The operators were able to test and optimize the beam orbit, the beam collimation, the injection and ext...

  10. Stellar formation

    CERN Document Server

    Reddish, V C

    1978-01-01

    Stellar Formation brings together knowledge about the formation of stars. In seeking to determine the conditions necessary for star formation, this book examines questions such as how, where, and why stars form, and at what rate and with what properties. This text also considers whether the formation of a star is an accident or an integral part of the physical properties of matter. This book consists of 13 chapters divided into two sections and begins with an overview of theories that explain star formation as well as the state of knowledge of star formation in comparison to stellar structure

  11. Stellar remnants

    CERN Document Server

    Kawaler, S D; Srinivasan, G

    1997-01-01

    This volume examines the internal structure, origin and evolution of white dwarfs, neutron stars and black holes, all objects at the final stage of stellar evolution. It covers topics such as: pulsation of white dwarfs; millisecond pulsars; and the dynamics around black holes.

  12. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  13. Stellarator physics

    International Nuclear Information System (INIS)

    1990-07-01

    This document consists of the proceedings of the Seventh International Workshop on Stellarators, held in Oak Ridge, Tennessee, USA, 10-14 April, 1989. The document consists of a summary of presentations, an overview of experimental results, and papers presented at the workshop on transport, impurities and divertors, diagnostics, ECH confinement experiments, equilibrium and stability studies, RF heating, confinement, magnetic configurations, and new experiments. Refs, figs and tabs

  14. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  15. ASSESSMENT OF STELLAR STRATIFICATION IN THREE YOUNG STAR CLUSTERS IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Gouliermis, Dimitrios A.; Rochau, Boyke; Mackey, Dougal; Xin Yu

    2010-01-01

    We present a comprehensive study of stellar stratification in young star clusters in the Large Magellanic Cloud (LMC). We apply our recently developed effective radius method for the assessment of stellar stratification on imaging data obtained with the Advanced Camera for Surveys of three young LMC clusters to characterize the phenomenon and develop a comparative scheme for its assessment in such clusters. The clusters of our sample, NGC 1983, NGC 2002, and NGC 2010, are selected on the basis of their youthfulness, and their variety in appearance, structure, stellar content, and surrounding stellar ambient. Our photometry is complete for magnitudes down to m 814 ≅ 23 mag, allowing the calculation of the structural parameters of the clusters, the estimation of their ages, and the determination of their stellar content. Our study shows that each cluster in our sample demonstrates stellar stratification in a quite different manner and at different degree from the others. Specifically, NGC 1983 shows partial segregation, with the effective radius increasing with fainter magnitudes only for the faintest stars of the cluster. Our method on NGC 2002 provides evidence of strong stellar stratification for both bright and faint stars; the cluster demonstrates the phenomenon with the highest degree in the sample. Finally, NGC 2010 is not segregated, as its bright stellar content is not centrally concentrated, the relation of effective radius to magnitude for stars of intermediate brightness is rather flat, and we find no evidence of stratification for its faintest stars. For the parameterization of the phenomenon of stellar stratification and its quantitative comparison among these clusters, we propose the slope derived from the change in the effective radius over the corresponding magnitude range as indicative parameter of the degree of stratification in the clusters. A positive value of this slope indicates mass segregation in the cluster, while a negative or zero value

  16. Stellar astrophysics

    International Nuclear Information System (INIS)

    1988-01-01

    Enhanced mass loss occurs at critical stages in the evolution of stars over a wide range of stellar mass. Observationally, these stages are difficult to identify because of their short duration and because the star is often obscured by dust which condenses in the ejecta. A study of a G-type star, of which only the outer envelope was directly visible, was undertaken by the South African Astronomical Observatory (SAAO). The star itself was obscured by dust clouds and its light was only feebly seen by reflection from some of these clouds. Other studies of the galaxy undertaken by the SAAO include observations of the following: the extreme carbon star IRAS 15194-5115; RV Tauri and T Tauri stars; pre-main sequence stars; the properties of circumstellar dust; rotational modulation and flares on RS CVn and BY Dra stars; heavy-element stars; hydrogen-deficient stars; the open cluster NGC6192; stars in Omega Centauri, and lunar occulations of stars. Simultaneous x-ray, radio and optical data of the flare star YZ CMi were also obtained. 1 fig

  17. Stellar Metamorphosis:

    Science.gov (United States)

    2002-01-01

    [TOP LEFT AND RIGHT] The Hubble Space Telescope's Wide Field and Planetary Camera 2 has captured images of the birth of two planetary nebulae as they emerge from wrappings of gas and dust, like butterflies breaking out of their cocoons. These images highlight a fleeting phase in the stellar burnout process, occurring just before dying stars are transformed into planetary nebulae. The left-hand image is the Cotton Candy nebula, IRAS 17150-3224; the right-hand image, the Silkworm nebula, IRAS 17441-2411. Called proto-planetary nebulae, these dying stars have been caught in a transition phase between a red giant and a planetary nebula. This phase is only about 1,000 years long, very short in comparison to the 1 billion-year lifetime of a star. These images provide the earliest snapshots of the transition process. Studying images of proto-planetary nebulae is important to understanding the process of star death. A star begins to die when it has exhausted its thermonuclear fuel - hydrogen and helium. The star then becomes bright and cool (red giant phase) and swells to several tens of times its normal size. It begins puffing thin shells of gas off into space. These shells become the star's cocoon. In the Hubble images, the shells are the concentric rings seen around each nebula. But the images also reveal the nebulae breaking out from those shells. The butterfly-like wings of gas and dust are a common shape of planetary nebulae. Such butterfly shapes are created by the 'interacting winds' process, in which a more recent 'fast wind' - material propelled by radiation from the hot central star - punches a hole in the cocoon, allowing the nebula to emerge. (This 'interacting wind' theory was first proposed by Dr. Sun Kwok to explain the origin of planetary nebulae, and has been subsequently proven successful in explaining their shapes.) The nebulae are being illuminated by light from the invisible central star, which is then reflected toward us. We are viewing the nebulae

  18. Advanced stellarator power plants

    International Nuclear Information System (INIS)

    Miller, R.L.

    1994-01-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies

  19. Stellar structure and evolution

    International Nuclear Information System (INIS)

    Kippernhahn, R.; Weigert, A.

    1990-01-01

    This book introduces the theory of the internal structure of stars and their evolution in time. It presents the basic physics of stellar interiors, methods for solving the underlying equations, and the most important results necessary for understanding the wide variety of stellar types and phenomena. The evolution of stars is discussed from their birth through normal evolution to possibly spectacular final stages. Chapters on stellar oscillations and rotation are included

  20. Models for stellar flares

    International Nuclear Information System (INIS)

    Cram, L.E.; Woods, D.T.

    1982-01-01

    We study the response of certain spectral signatures of stellar flares (such as Balmer line profiles and the broad-band continuum) to changes in atmospheric structure which might result from physical processes akin to those thought to occur in solar flares. While each physical process does not have a unique signature, we can show that some of the observed properties of stellar flares can be explained by a model which involves increased pressures and temperatures in the flaring stellar chromosphere. We suggest that changes in stellar flare area, both with time and with depth in the atmosphere, may play an important role in producing the observed flare spectrum

  1. Stellar Physics 2: Stellar Evolution and Stability

    CERN Document Server

    Bisnovatyi-Kogan, Gennady S

    2011-01-01

    "Stellar Physics" is a an outstanding book in the growing body of literature on star formation and evolution. Not only does the author, a leading expert in the field, very thoroughly present the current state of knowledge on stellar physics, but he handles with equal care the many problems that this field of research still faces. A bibliography with well over 1000 entries makes this book an unparalleled reference source. "Stellar Evolution and Stability" is the second of two volumes and can be read, as can the first volume "Fundamental Concepts and Stellar Equilibrium," as a largely independent work. It traces in great detail the evolution of protostars towards the main sequence and beyond this to the last stage of stellar evolution, with the corresponding vast range from white dwarfs to supernovae explosions, gamma-ray bursts and black hole formation. The book concludes with special chapters on the dynamical, thermal and pulsing stability of stars. This second edition is carefully updated in the areas of pre...

  2. Origin of the highest energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L.; Ahn, Eun-Joo; Medina-Tanco, Gustavo; Stanev, Todor

    2000-06-01

    Introducing a simple Galactic wind model patterned after the solar wind we show that back-tracing the orbits of the highest energy cosmic events suggests that they may all come from the Virgo cluster, and so probably from the active radio galaxy M87. This confirms a long standing expectation. Those powerful radio galaxies that have their relativistic jets stuck in the interstellar medium of the host galaxy, such as 3C147, will then enable us to derive limits on the production of any new kind of particle, expected in some extensions of the standard model in particle physics. New data from HIRES will be crucial in testing the model proposed here.

  3. Directional clustering in highest energy cosmic rays

    International Nuclear Information System (INIS)

    Goldberg, Haim; Weiler, Thomas J.

    2001-01-01

    An unexpected degree of small-scale clustering is observed in highest-energy cosmic ray events. Some directional clustering can be expected due to purely statistical fluctuations for sources distributed randomly in the sky. This creates a background for events originating in clustered sources. We derive analytic formulas to estimate the probability of random cluster configurations, and use these formulas to study the strong potential of the HiRes, Auger, Telescope Array and EUSO-OWL-AirWatch facilities for deciding whether any observed clustering is most likely due to nonrandom sources. For a detailed comparison to data, our analytical approach cannot compete with Monte Carlo simulations, including experimental systematics. However, our derived formulas do offer two advantages: (i) easy assessment of the significance of any observed clustering, and most importantly, (ii) an explicit dependence of cluster probabilities on the chosen angular bin size

  4. The highest energies in the Universe

    International Nuclear Information System (INIS)

    Rebel, H.

    2006-01-01

    There are not many issues of fundamental importance which have induced so many problems for astrophysicists like the question of the origin of cosmic rays. This radiation from the outer space has an energy density comparable with that of the visible starlight or of the microwave background radiation. It is an important feature of our environment with many interesting aspects. A most conspicuous feature is that the energy spectrum of cosmic rays seems to have no natural end, though resonant photopion production with the cosmic microwave background predicts a suppression of extragalactic protons above the so-called Greisen-Zatsepin-Kuz’min cutoff at about EGZK = 5 × 10"1"9 eV. In fact the highest particle energies ever observed on the Earth, stem from observations of Ultrahigh Energy Cosmic Rays (E > 3 × 10"1"9 eV). But the present observations by the AGASA and HiRes Collaborations, partly a matter of debate, are origin of a number of puzzling questions, where these particles are coming from, by which gigantic acceleration mechanism they could gain such tremendous energies and how they have been able to propagate to our Earth. These questions imply serious problems of the understanding of our Universe. There are several approaches to clarify the mysteries of the highest energies and to base the observations on larger statistical accuracy. The Pierre Auger Observatory, being in installation in the Pampa Amarilla in the Province Mendoza in Argentina, is a hybrid detector, combining a large array of water Cerenkov detectors (registering charged particles generated in giant extended air showers) with measurements of the fluorescence light produced during the air shower development. This contribution will illustrate the astrophysical motivation and the current status of the experimental efforts, and sketch the ideas about the origin of these particles.

  5. Stellar photometry and polarimetry

    International Nuclear Information System (INIS)

    Golay, M.; Serkowski, K.

    1976-01-01

    A critical review of progress made in stellar photometry and polarimetry over the period 1973-1975 is presented. Reports of photometric measurements from various observatories throughout the world are summarized. The summary of work on stellar polarimetry lists the review papers, the catalogues and lists of standard stars, and descriptions of new observing techniques. (B.R.H.)

  6. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  7. Stellarator-Spheromak

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-03-01

    A novel concept for magnetic plasma confinement, Stellarator-Spheromak (SSP), is proposed. Numerical analysis with the classical-stellarator-type outboard stellarator windings demonstrates a number of potential advantages of SSP for controlled nuclear fusion. Among the main ones are: simple and compact magnet coil configuration, absence of material structures (e.g. magnet coils or conducting walls) in the center of the torus, high rotational transform, and a possibility of MHD equilibria with very high β (pressure/magnetic pressure) of the confined plasma

  8. Double-helix stellarator

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A ∼ 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-β MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications

  9. Wimps and stellar structure

    International Nuclear Information System (INIS)

    Bouquet, A.; Salati, P.

    1988-01-01

    We present the results of an analytic approximation to compute the effects of WIMPs on stellar structures in a self-consistent way. We examine in particular the case of the Sun and of horizontal branch stars

  10. Principles of Stellar Interferometry

    CERN Document Server

    Glindemann, Andreas

    2011-01-01

    Over the last decade, stellar interferometry has developed from a specialist tool to a mainstream observing technique, attracting scientists whose research benefits from milliarcsecond angular resolution. Stellar interferometry has become part of the astronomer’s toolbox, complementing single-telescope observations by providing unique capabilities that will advance astronomical research. This carefully written book is intended to provide a solid understanding of the principles of stellar interferometry to students starting an astronomical research project in this field or to develop instruments and to astronomers using interferometry but who are not interferometrists per se. Illustrated by excellent drawings and calculated graphs the imaging process in stellar interferometers is explained starting from first principles on light propagation and diffraction wave propagation through turbulence is described in detail using Kolmogorov statistics the impact of turbulence on the imaging process is discussed both f...

  11. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  12. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  13. PREFACE: A Stellar Journey A Stellar Journey

    Science.gov (United States)

    Asplund, M.

    2008-10-01

    The conference A Stellar Journey was held in Uppsala, Sweden, 23 27June 2008, in honour of Professor Bengt Gustafsson's 65th birthday. The choice of Uppsala as the location for this event was obvious given Bengt's long-standing association with the city stemming back to his school days. With the exception of a two-year postdoc stint in Copenhagen, five years as professor at Stockholm University and two years as director of the Sigtuna foundation, Bengt has forged his illustrious professional career at Uppsala University. The symposium venue was Museum Gustavianum, once the main building of the oldest university in Scandinavia. The title of the symposium is a paraphrasing of Bengt's popular astronomy book Kosmisk Resa (in English: Cosmic Journey) written in the early eighties. I think this aptly symbolizes his career that has been an astronomical voyage from near to far, from the distant past to the present. The original book title was modified slightly to reflect that most of his work to date has dealt with stars in one way or another. In addition it also gives credit to Bengt's important role as a guiding light for a very large number of students, colleagues and collaborators, indeed for several generations of astronomers. For me personally, the book Kosmisk Resa bears particular significance as it has shaped my life rather profoundly. Although I had already decided to become an astronomer, when I first read the book as a 14-year-old I made up my mind then and there that I would study under Bengt Gustafsson and work on stars. Indeed I have remained true to this somewhat audacious resolution. I suspect that a great number of us have similar stories how Bengt has had a major influence on our lives, whether on the professional or personal level. Perhaps Bengt's most outstanding characteristic is his enthralling enthusiasm. This is equally true whether he is pondering some scientific conundrum, supervising students or performing in front of an audience, be it an

  14. Stellar magnetic activity

    International Nuclear Information System (INIS)

    Schrijver, C.J.

    1986-01-01

    The stellar emission in the chromospheric Ca II H+K lines is compared with the coronal soft X-ray emission, measuring the effects of non-radiative heating in the outer atmosphere at temperatures differing two orders of magnitude. The comparison of stellar flux densities in Ca II H+K and X-rays is extended to fluxes from the transition-region and the high-temperature chromosphere. The stellar magnetic field is probably generated in the differentially rotating convective envelope. The relation between rotation rate and the stellar level of activity measured in chromospheric, transition-region, and coronal radiative diagnostics is discovered. X-ray observations of the binary λ Andromedae are discussed. The departure of M-type dwarfs from the main relations, and the implications for the structure of the chromospheres of these stars are discussed. Variations of the average surface flux densities of the Sun during the 11-year activity cycle agree with flux-flux relations derived for other cool stars, suggesting that the interpretation of the stellar relations may be furthered by studying the solar analogue in more detail. (Auth.)

  15. Introduction to stellar structure

    CERN Document Server

    Maciel, Walter J

    2016-01-01

    In the first part of this book, the author presents the basic properties of the stellar interior and describes them thoroughly, along with deriving the main stellar structure equations of temperature, density, pressure and luminosity, among others. The process and application of solving these equations is explained, as well as linking these results with actual observations.  The second part of the text describes what happens to a star over time, and how to determine this by solving the same equations at different points during a star’s lifetime. The fate of various stars is quite different depending on their masses, and this is described in the final parts of the book. This text can be used for an upper level undergraduate course or an introductory graduate course on stellar physics.

  16. The Galactic stellar disc

    International Nuclear Information System (INIS)

    Feltzing, S; Bensby, T

    2008-01-01

    The study of the Milky Way stellar discs in the context of galaxy formation is discussed. In particular, we explore the properties of the Milky Way disc using a new sample of about 550 dwarf stars for which we have recently obtained elemental abundances and ages based on high-resolution spectroscopy. For all the stars we also have full kinematic information as well as information about their stellar orbits. We confirm results from previous studies that the thin and the thick discs have distinct abundance patterns. But we also explore a larger range of orbital parameters than what has been possible in our previous studies. Several new results are presented. We find that stars that reach high above the Galactic plane and have eccentric orbits show remarkably tight abundance trends. This implies that these stars formed out of well-mixed gas that had been homogenized over large volumes. We find some evidence that suggest that the event that most likely caused the heating of this stellar population happened a few billion years ago. Through a simple, kinematic exploration of stars with super-solar [Fe/H], we show that the solar neighbourhood contains metal-rich, high velocity stars that are very likely associated with the thick disc. Additionally, the HR1614 moving group and the Hercules and Arcturus stellar streams are discussed and it is concluded that, probably, a large fraction of the groups and streams so far identified in the disc are the result of evolution and interactions within the stellar disc rather than being dissolved stellar clusters or engulfed dwarf galaxies.

  17. Transport in stellarators

    International Nuclear Information System (INIS)

    Maassberg, H.; Brakel, R.; Burhenn, R.; Gasparino, U.; Grigull, P.; Kick, M.; Kuehner, G.; Ringler, H.; Sardei, F.; Stroth, U.; Weller, A.

    1993-01-01

    The local electron and ion heat transport as well as the particle and impurity transport properties in stellarators are reviewed. In this context, neoclassical theory is used as a guideline for the comparison of the experimental results of the quite different confinement concepts. At sufficiently high temperatures depending on the specific magnetic configuration, neoclassical predictions are confirmed by experimental findings. The confinement properties in the LMFP collisionality regime are discussed with respect to the next stellarator generation, for which at higher temperatures the neoclassical transport is expected to become more important. (orig.)

  18. Solar and stellar oscillations

    International Nuclear Information System (INIS)

    Fossat, E.

    1981-01-01

    We try to explain in simple words what a stellar oscillation is, what kind of restoring forces and excitation mechanisms can be responsible for its occurence, what kind of questions the theoretician asks to the observer and what kind of tools the latter is using to look for the answers. A selected review of the most striking results obtained in the last few years in solar seismology and the present status of their consequences on solar models is presented. A brief discussion on the expected extension towards stellar seismology will end the paper. A selected bibliography on theory as well as observations and recent papers is also included. (orig.)

  19. The fundamentals of stellar astrophysics

    International Nuclear Information System (INIS)

    Collins, G.W. II.

    1989-01-01

    A broad overview of theoretical stellar astrophysics is presented in a textbook intended for graduate students. Chapters are devoted to fundamental principles, assumptions, theorems, and polytropes; energy sources and sinks; the flow of energy through the star and the construction of stellar models; the theory of stellar evolution; relativistic stellar structure; the structure of distorted stars; stellar pulsation and oscillation. Also discussed are the flow of radiation through the stellar atmosphere, the solution of the radiative-transfer equation, the environment of the radiation field, the construction of a stellar model atmosphere, the formation and shape of spectral lines, LTE breakdown, illuminated and extended stellar atmospheres, and the transfer of polarized radiation. Diagrams, graphs, and sample problems are provided. 164 refs

  20. Progress Toward Attractive Stellarators

    International Nuclear Information System (INIS)

    Neilson, G.H.; Bromberg, L.; Brown, T.G.; Gates, D.A.; Ku, L.P.; Zarnstorff, M.C.; Boozer, A.H.; Harris, J.H.; Meneghini, O.; Mynick, H.E.; Pomphrey, N.; Reiman, A.H.; Xanthopoulos, P.

    2011-01-01

    The quasi-axisymmetric stellarator (QAS) concept offers a promising path to a more compact stellarator reactor, closer in linear dimensions to tokamak reactors than previous stellarator designs. Concept improvements are needed, however, to make it more maintainable and more compatible with high plant availability. Using the ARIES-CS design as a starting point, compact stellarator designs with improved maintenance characteristics have been developed. While the ARIES-CS features a through-the-port maintenance scheme, we have investigated configuration changes to enable a sector-maintenance approach, as envisioned for example in ARIES AT. Three approaches are reported. The first is to make tradeoffs within the QAS design space, giving greater emphasis to maintainability criteria. The second approach is to improve the optimization tools to more accurately and efficiently target the physics properties of importance. The third is to employ a hybrid coil topology, so that the plasma shaping functions of the main coils are shared more optimally, either with passive conductors made of high-temperature superconductor or with local compensation coils, allowing the main coils to become simpler. Optimization tools are being improved to test these approaches.

  1. Stellar population synthesis

    International Nuclear Information System (INIS)

    Pickles, A.J.

    1989-01-01

    The techniques used to derive astrophysically useful information from observations of the integrated light of composite stellar systems are briefly reviewed. A synthesis technique, designed to separate and describe on a standard system the competing effects of age and metallicity variations is introduced, and illustrated by its application to the study of the history of star formation in bright elliptical galaxies in clusters. (author)

  2. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  3. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  4. Stellar Structure and Evolution

    CERN Document Server

    Kippenhahn, Rudolf; Weiss, Achim

    2013-01-01

    This long-awaited second edition of the classical textbook on Stellar Structure and Evolution by Kippenhahn and Weigert is a thoroughly revised version of the original text. Taking into account modern observational constraints as well as additional physical effects such as mass loss and diffusion, Achim Weiss and Rudolf Kippenhahn have succeeded in bringing the book up to the state-of-the-art with respect to both the presentation of stellar physics and the presentation and interpretation of current sophisticated stellar models. The well-received and proven pedagogical approach of the first edition has been retained. The book provides a comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The models developed to explain the stability, dynamics and evolution of the stars are presented and great care is taken to detail the various stages in a star’s life. Just as the first edition, which remained a standard work for more than 20 years after its...

  5. 8. stellarator workshop

    International Nuclear Information System (INIS)

    1991-07-01

    The technical reports in this collection of papers were presented at the 8th International Workshop on Stellarators, and International Atomic Energy Agency Technical Committee Meeting. They include presentations on transport, magnetic configurations, fluctuations, equilibrium, stability, edge plasma and wall aspects, heating, diagnostics, new concepts and reactor studies. Refs, figs and tabs

  6. Stellar wind theory

    International Nuclear Information System (INIS)

    Summers, D.

    1980-01-01

    The theory of stellar winds as given by the equations of classical fluid dynamics is considered. The equations of momentum and energy describing a steady, spherically symmetric, heat-conducting, viscous stellar wind are cast in a dimensionless form which involves a thermal conduction parameter E and a viscosity parameter γ. An asymptotic analysis is carried out, for fixed γ, in the cases E→O and E→infinity (corresponding to small and large thermal conductivity, respectively), and it is found that it is possible to construct critical solutions for the wind velocity and temperature over the entire flow. The E→O solution represents a wind which emanates from the star at low, subsonic speeds, accelerates through a sonic point, and then approaches a constant asymptotic speed, with its temperature varying as r/sup -4/3/ at large distances r from the star; the E→infinity solution represents a wind which, after reaching an approximately constant speed, with temperature varying as r/sup -2/7/, decelerates through a diffuse shock and approaches a finite pressure at infinity. A categorization is made of all critical stellar wind solutions for given values of γ and E, and actual numerical examples are given. Numerical solutions are obtained by integrating upstream 'from infinity' from initial values of the flow parameters given by appropriate asymptotic expansions. The role of viscosity in stellar wind theory is discussed, viscous and inviscid stellar wind solutions are compared, and it is suggested that with certain limitations, the theory presented may be useful in analyzing winds from solar-type stars

  7. Ion transport in stellarators

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    Stellarator ion transport in the low-collisionality regime with a radial electric field is calculated by a systematic expansion of the drift-Boltzmann equation. The shape of the helical well is taken into account in this calculation. It is found that the barely trapped ions with three to four times the thermal energy give the dominant contribution to the diffusion. Expressions for the ion particle and energy fluxes are derived

  8. Status of stellarator research

    International Nuclear Information System (INIS)

    Wobig, H.

    1985-01-01

    In recent years main activities in stellarator research were focussed on production and investigation of currentless plasmas. Several heating methods have been applied: electron cyclotron heating, ion cyclotron heating and neutral beam injection. The parameters achieved in HELIOTRON E and W VII-A are: antin 20 m 3 , Tsub(i) <= 1 keV. The confinement is improved as compared with ohmically heated discharges. By ECRH (P = 200 kW) it is possible to heat electrons up to 1.4 keV, confinement in this regime is dominated already by trapped particle effects. Toroidal currents up to 2 kA - either bootstrap currents or externally driven currents - were observed. High β-values (antiβ = 2%) have been obtained in HELIOTRON E, in this regime already pressure driven MHD-modes were observed. Future experiments (ATF-1 and W VII-AS) will extend the parameter regime to temperatures of several keV. These experiments will give important information about critical problems of the stellarator line (β-limit, neoclassical confinement impurity transport). A few reactor studies of stellarators exist, attention is mainly concentrated on technical problems of the modular coil system

  9. Recreational fishing selectively captures individuals with the highest fitness potential.

    Science.gov (United States)

    Sutter, David A H; Suski, Cory D; Philipp, David P; Klefoth, Thomas; Wahl, David H; Kersten, Petra; Cooke, Steven J; Arlinghaus, Robert

    2012-12-18

    Fisheries-induced evolution and its impact on the productivity of exploited fish stocks remains a highly contested research topic in applied fish evolution and fisheries science. Although many quantitative models assume that larger, more fecund fish are preferentially removed by fishing, there is no empirical evidence describing the relationship between vulnerability to capture and individual reproductive fitness in the wild. Using males from two lines of largemouth bass (Micropterus salmoides) selectively bred over three generations for either high (HV) or low (LV) vulnerability to angling as a model system, we show that the trait "vulnerability to angling" positively correlates with aggression, intensity of parental care, and reproductive fitness. The difference in reproductive fitness between HV and LV fish was particularly evident among larger males, which are also the preferred mating partners of females. Our study constitutes experimental evidence that recreational angling selectively captures individuals with the highest potential for reproductive fitness. Our study further suggests that selective removal of the fittest individuals likely occurs in many fisheries that target species engaged in parental care. As a result, depending on the ecological context, angling-induced selection may have negative consequences for recruitment within wild populations of largemouth bass and possibly other exploited species in which behavioral patterns that determine fitness, such as aggression or parental care, also affect their vulnerability to fishing gear.

  10. THE ADVANCED STELLAR COMPASS

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Liebe, Carl Christian

    1997-01-01

    The science objective of the Danish Geomagnetic Research Satellite "Ørsted" is to map the magnetic field of the Earth, with a vector precision of a fraction of a nanotesla. This necessitates an attitude reference instrument with a precision of a few arcseconds onboard the satellite. To meet...... this demand the Advanced Stellar Compass (ASC), a fully autonomous miniature star tracker, was developed. This ASC is capable of both solving the "lost in space" problem and determine the attitude with arcseconds precision. The development, principles of operation and instrument autonomy of the ASC...

  11. Physics of Stellar Convection

    Science.gov (United States)

    Arnett, W. David

    2009-05-01

    We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1

  12. Stellar axion models

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, Daniel; Kuster, Markus; Meister, Claudia V.; Fuelbert, Florian; Hoffmann, Dieter H.H. [TU Darmstadt (Germany). Institut fuer Kernphysik; Weiss, Achim [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    2010-07-01

    An axion helioscope is typically operated to observe the sun as an axion source. Additional pointings at celestial sources, e.g. stars in other galaxies, result in possible detections of axions from distant galactic objects. For the observation of supplementary axion sources we therefore calculate the thereotical axion flux from distant stars by extending axionic flux models for the axion Primakoff effect in the sun to other main sequence stars. The main sequence star models used for our calculations are based on full stellar structure calculations. To deduce the effective axion flux of stellar objects incident on the Earth the All-Sky catalogue was used to obtain the spectral class and distance of the stars treated. Our calculations of the axion flux in the galactic plane show that for a zero age main sequence star an maximum axion flux of {phi}{sub a}=303.43 cm{sup -2}s{sup -1} could be expected. Furthermore we present estimates of axion fluxes from time-evolved stars.

  13. The DEMO Quasisymmetric Stellarator

    Directory of Open Access Journals (Sweden)

    Geoffrey B. McFadden

    2010-02-01

    Full Text Available The NSTAB nonlinear stability code solves differential equations in conservation form, and the TRAN Monte Carlo test particle code tracks guiding center orbits in a fixed background, to provide simulations of equilibrium, stability, and transport in tokamaks and stellarators. These codes are well correlated with experimental observations and have been validated by convergence studies. Bifurcated 3D solutions of the 2D tokamak problem have been calculated that model persistent disruptions, neoclassical tearing modes (NTMs and edge localized modes (ELMs occurring in the International Thermonuclear Experimental Reactor (ITER, which does not pass the NSTAB simulation test for nonlinear stability. So we have designed a quasiaxially symmetric (QAS stellarator with similar proportions as a candidate for the demonstration (DEMO fusion reactor that does pass the test [1]. The configuration has two field periods and an exceptionally accurate 2D symmetry that furnishes excellent thermal confinement and good control of the prompt loss of alpha particles. Robust coils are found from a filtered form of the Biot-Savart law based on a distribution of current over a control surface for the coils and the current in the plasma defined by the equilibrium calculation. Computational science has addressed the issues of equilibrium, stability, and transport, so it remains to develop an effective plan to construct the coils and build a diverter.

  14. A catalog of stellar spectrophotometry

    Science.gov (United States)

    Adelman, S. J.; Pyper, D. M.; Shore, S. N.; White, R. E.; Warren, W. H., Jr.

    1989-01-01

    A machine-readable catalog of stellar spectrophotometric measurements made with rotating grating scanner is introduced. Consideration is given to the processes by which the stellar data were collected and calibrated with the fluxes of Vega (Hayes and Latham, 1975). A sample page from the spectrophotometric catalog is presented.

  15. Quasisymmetry equations for conventional stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    1994-11-01

    General quasisymmetry condition, which demands the independence of B 2 on one of the angular Boozer coordinates, is reduced to two equations containing only geometrical characteristics and helical field of a stellarator. The analysis is performed for conventional stellarators with a planar circular axis using standard stellarator expansion. As a basis, the invariant quasisymmetry condition is used. The quasisymmetry equations for stellarators are obtained from this condition also in an invariant form. Simplified analogs of these equations are given for the case when averaged magnetic surfaces are circular shifted torii. It is shown that quasisymmetry condition can be satisfied, in principle, in a conventional stellarator by a proper choice of two satellite harmonics of the helical field in addition to the main harmonic. Besides, there appears a restriction on the shift of magnetic surfaces. Thus, in general, the problem is closely related with that of self-consistent description of a configuration. (author)

  16. Nucleosynthesis in stellar explosions

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10/sup 6/ M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints.

  17. Nucleosynthesis in stellar explosions

    International Nuclear Information System (INIS)

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10 6 M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints

  18. Remarks on stellar clusters

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    In the following, a few simple remarks on the evolution and properties of stellar clusters will be collected. In particular, globular clusters will be considered. Though details of such clusters are often not known, a few questions can be clarified with the help of primitive arguments. These are:- why are spherical clusters spherical, why do they have high densities, why do they consist of approximately a million stars, how may a black hole of great mass form within them, may they be the origin of gamma-ray bursts, may their invisible remnants account for the missing mass of our galaxy. The available data do not warrant a detailed evaluation. However, it is remarkable that exceedingly simple models can shed some light on the questions enumerated above. (author)

  19. L = ± 1 stellarator

    International Nuclear Information System (INIS)

    Kikuchi, T.; Shiina, S.; Saito, K.; Gesso, H.; Aizawa, M.; Kawakami, I.

    1985-01-01

    We report the magnetic field configuration of helical magnetic axis stellarator. The magnetic field configuration is composed of large l=1 field and small l=-1 and l=0(bumpy) fields. The large l=1 field (combined with the small l=-1 field) is used to form helical magnetic axis with the helical curvature much larger than the toroidal curvature, which provides the high limiting values of β. The small l=-1 field, furthermore, as well as the large l=1 field reduces the Pfirsch-Schlueter currents by combining with l=0 field. Therefore, the large l=1 field and the combination of three field components may be favourable for the increase of limiting β value

  20. Cortex Matures Faster in Youths With Highest IQ

    Science.gov (United States)

    ... NIH Cortex Matures Faster in Youths With Highest IQ Past Issues / Summer 2006 Table of Contents For ... on. Photo: Getty image (StockDisc) Youths with superior IQ are distinguished by how fast the thinking part ...

  1. Which Kids Are at Highest Risk for Suicide?

    Science.gov (United States)

    ... Share Which Kids are at Highest Risk for Suicide? Page Content Article Body No child is immune, ... who have lost a friend or relative to suicide. Studies show that a considerable number of youth ...

  2. Evolution of stellar systems

    International Nuclear Information System (INIS)

    Vader, P.

    1981-01-01

    The stellar systems of which the evolution will be considered in this thesis, are either galaxies, which contain about 10 11 stars, or binary systems, which consist of only two stars. It is seen that binary systems can give us some insight into the relative age of the nucleus of M31. The positive correlation between the metal content of a galaxy and its mass, first noted for elliptical galaxies, seems to be a general property of galaxies of all types. The observed increase of metallicity with galaxy mass is too large to be accounted for by differences in the evolutionary stage of galaxies. To explain the observed correlation it is proposed that a relatively larger proportion of massive stars is formed in more massive galaxies. The physical basis is that the formation of massive stars seems to be tied to the enhanced gas-dynamical activity in more massive galaxies. A specific aspect of the production of heavy elements by massive stars is investigated in some detail. In 1979 a cluster of 18 point X-ray sources within 400 pc of the centre of M31 was detected with the Einstein satellite. This is a remarkable result since no equivalent of this cluster has been observed in the nucleus of our own Galaxy, which otherwise is very similar to that of M31. An explanation for this phenomenon is proposed, suggesting that X-ray binaries are the products of the long-term evolution of nova systems. (Auth.)

  3. Stellar extreme ultraviolet astronomy

    International Nuclear Information System (INIS)

    Cash, W.C. Jr.

    1978-01-01

    The design, calibration, and launch of a rocket-borne imaging telescope for extreme ultraviolet astronomy are described. The telescope, which employed diamond-turned grazing incidence optics and a ranicon detector, was launched November 19, 1976, from the White Sands Missile Range. The telescope performed well and returned data on several potential stellar sources of extreme ultraviolet radiation. Upper limits ten to twenty times more sensitive than previously available were obtained for the extreme ultraviolet flux from the white dwarf Sirius B. These limits fall a factor of seven below the flux predicted for the star and demonstrate that the temperature of Sirius B is not 32,000 K as previously measured, but is below 30,000 K. The new upper limits also rule out the photosphere of the white dwarf as the source of the recently reported soft x-rays from Sirius. Two other white dwarf stars, Feige 24 and G191-B2B, were observed. Upper limits on the flux at 300 A were interpreted as lower limits on the interstellar hydrogen column densities to these stars. The lower limits indicate interstellar hydrogen densitites of greater than .02 cm -3 . Four nearby stars (Sirius, Procyon, Capella, and Mirzam) were observed in a search for intense low temperature coronae or extended chromospheres. No extreme ultraviolet radiation from these stars was detected, and upper limits to their coronal emisson measures are derived

  4. Mapping stellar surface features

    International Nuclear Information System (INIS)

    Noah, P.V.

    1987-01-01

    New photometric and spectroscopic observations of the RS Canum Venaticorum binaries Sigma Geminorum and UX Arietis are reported along with details of the Doppler-imaging program SPOTPROF. The observations suggest that the starspot activity on Sigma Gem has decreased to 0.05 magnitude in two years. A photometric spot model for September 1984 to January 1985 found that a single spot covering 2% of the surface and 1000 K cooler than the surrounding photosphere could model the light variations. Equivalent-width observations contemporaneous with the photometric observations did not show any significant variations. Line-profile models from SPOTPROF predict that the variation of the equivalent width of the 6393 A Fe I line should be ∼ 1mA. Photometric observations of UX Ari from January 1984 to March 1985 show an 0.3 magnitude variation indicating a large spot group must cover the surface. Contemporaneous spectroscopic observations show asymmetric line profiles. The Doppler imaging and the photometric light-curve models were used in an iterative method to describe the stellar surface-spot distribution and successfully model both the photometric and the spectroscopic variations

  5. SI: The Stellar Imager

    Science.gov (United States)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2006-01-01

    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.

  6. Stellar Presentations (Abstract)

    Science.gov (United States)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  7. Turbulence optimisation in stellarator experiments

    Energy Technology Data Exchange (ETDEWEB)

    Proll, Josefine H.E. [Max-Planck/Princeton Center for Plasma Physics (Germany); Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstr. 1, 17491 Greifswald (Germany); Faber, Benjamin J. [HSX Plasma Laboratory, University of Wisconsin-Madison, Madison, WI 53706 (United States); Helander, Per; Xanthopoulos, Pavlos [Max-Planck/Princeton Center for Plasma Physics (Germany); Lazerson, Samuel A.; Mynick, Harry E. [Plasma Physics Laboratory, Princeton University, P.O. Box 451 Princeton, New Jersey 08543-0451 (United States)

    2015-05-01

    Stellarators, the twisted siblings of the axisymmetric fusion experiments called tokamaks, have historically suffered from confining the heat of the plasma insufficiently compared with tokamaks and were therefore considered to be less promising candidates for a fusion reactor. This has changed, however, with the advent of stellarators in which the laminar transport is reduced to levels below that of tokamaks by shaping the magnetic field accordingly. As in tokamaks, the turbulent transport remains as the now dominant transport channel. Recent analytical theory suggests that the large configuration space of stellarators allows for an additional optimisation of the magnetic field to also reduce the turbulent transport. In this talk, the idea behind the turbulence optimisation is explained. We also present how an optimised equilibrium is obtained and how it might differ from the equilibrium field of an already existing device, and we compare experimental turbulence measurements in different configurations of the HSX stellarator in order to test the optimisation procedure.

  8. Optimizing Stellarators for Turbulent Transport

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.; Xanthopoulos, P.

    2010-01-01

    Up to now, the term 'transport-optimized' stellarators has meant optimized to minimize neoclassical transport, while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. Here, we demonstrate that stellarators can also be designed to mitigate their turbulent transport, by making use of two powerful numerical tools not available until recently, namely gyrokinetic codes valid for 3D nonlinear simulations, and stellarator optimization codes. A first proof-of-principle configuration is obtained, reducing the level of ion temperature gradient turbulent transport from the NCSX baseline design by a factor of about 2.5.

  9. Stellar magnetic activity and exoplanets

    Directory of Open Access Journals (Sweden)

    Vidotto A.A.

    2017-01-01

    Full Text Available It has been proposed that magnetic activity could be enhanced due to interactions between close-in massive planets and their host stars. In this article, I present a brief overview of the connection between stellar magnetic activity and exoplanets. Stellar activity can be probed in chromospheric lines, coronal emission, surface spot coverage, etc. Since these are manifestations of stellar magnetism, these measurements are often used as proxies for the magnetic field of stars. Here, instead of focusing on the magnetic proxies, I overview some recent results of magnetic field measurements using spectropolarimetric observations. Firstly, I discuss the general trends found between large-scale magnetism, stellar rotation, and coronal emission and show that magnetism seems to be correlated to the internal structure of the star. Secondly, I overview some works that show evidence that exoplanets could (or not act as to enhance the activity of their host stars.

  10. Superbanana orbits in stellarator geometries

    International Nuclear Information System (INIS)

    Derr, J.A.; Shohet, J.L.

    1979-04-01

    The presence of superbanana orbit types localized to either the interior or the exterior of stellarators and torsatrons is numerically investigated for 3.5 MeV alpha particles. The absence of the interior superbanana in both geometries is found to be due to non-conservation of the action. Exterior superbananas are found in the stellarator only, as a consequence of the existence of closed helical magnetic wells. No superbananas of either type are found in the torsatron

  11. On origin of stellar clusters

    International Nuclear Information System (INIS)

    Tovmasyan, G.M.

    1977-01-01

    The ratios of the gas component of the mass of young stellar clusters to their stellar mass are considered. They change by more than four orders from one cluster to another. The results are in direct contradiction with the hypothesis of formation of cluster stars from a preliminarily existing gas cloud by its condensation, and they favour the Ambartsumian hypothesis of the joint origin of stars and gas clouds from superdense protostellar matter

  12. Lung Cancer Screening May Benefit Those at Highest Risk

    Science.gov (United States)

    People at the highest risk for lung cancer, based on a risk model, may be more likely to benefit from screening with low-dose CT, a new analysis suggests. The study authors believe the findings may better define who should undergo lung cancer screening, as this Cancer Currents blog post explains.

  13. Highest weight representations of the quantum algebra Uh(gl∞)

    International Nuclear Information System (INIS)

    Palev, T.D.; Stoilova, N.I.

    1997-04-01

    A class of highest weight irreducible representations of the quantum algebra U h (gl-∞) is constructed. Within each module a basis is introduced and the transformation relations of the basis under the action of the Chevalley generators are explicitly written. (author). 16 refs

  14. Exploring the cultural dimensions of the right to the highest ...

    African Journals Online (AJOL)

    The right to enjoying the highest attainable standard of health is incorporated in many international and regional human rights instruments. This right contains both freedoms and entitlements, including the freedom to control one's own health and body and the right to an accessible system of health care, goods and services.

  15. The highest energy cosmic rays, photons and neutrinos

    International Nuclear Information System (INIS)

    Zas, Enrique

    1998-01-01

    In these lectures I introduce and discuss aspects of currently active fields of interest related to the production, transport and detection of high energy particles from extraterrestrial sources. I have payed most attention to the highest energies and I have divided the material according to the types of particles which will be searched for with different experimental facilities in planning: hadrons, gamma rays and neutrinos. Particular attention is given to shower development, stochastic acceleration and detection techniques

  16. Do optimally ripe blackberries contain the highest levels of metabolites?

    Science.gov (United States)

    Mikulic-Petkovsek, Maja; Koron, Darinka; Zorenc, Zala; Veberic, Robert

    2017-01-15

    Five blackberry cultivars were selected for the study ('Chester Thornless', 'Cacanska Bestrna', 'Loch Ness', 'Smoothstem' and 'Thornfree') and harvested at three different maturity stages (under-, optimal- and over-ripe). Optimally ripe and over-ripe blackberries contained significantly higher levels of total sugars compared to under-ripe fruit. 'Loch Ness' cultivar was characterized by 2.2-2.6-fold higher levels of total sugars than other cultivars and consequently, the highest sugar/acids ratio. 'Chester Thornless' stands out as the cultivar with the highest level of vitamin C in under-ripe (125.87mgkg(-1)) and optimally mature fruit (127.66mgkg(-1)). Maturity stage significantly affected the accumulation of phenolic compounds. The content of total anthocyanins increased for 43% at optimal maturity stage and cinnamic acid derivatives for 57% compared to under-ripe fruit. Over-ripe blackberries were distinguished by the highest content of total phenolics (1251-2115mg GAE kg(-1) FW) and greatest FRAP values (25.9-43.2mM TE kg(-1) FW). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Engineering aspects of compact stellarators

    International Nuclear Information System (INIS)

    Nelson, B.E.; Benson, R.D.; Brooks, A.

    2003-01-01

    Compact stellarators could combine the good confinement and high beta of a tokamak with the inherently steady state, disruption-free characteristics of a stellarator. Two U.S. compact stellarator facilities are now in the conceptual design phase: the National Compact Stellarator Experiment (NCSX) and the Quasi- Poloidal Stellarator (QPS). NCSX has a major radius of 1.4 m and a toroidal field up to 2 T. The primary feature of both NCSX and QPS is the set of modular coils that provide the basic magnetic configuration. These coils represent a major engineering challenge due to the complex shape, precise geometric accuracy, and high current density of the windings. The winding geometry is too complex for conventional hollow copper conductor construction. Instead, the modular coils will be wound with flexible, multi strand cable conductor that has been compacted to a 75% copper packing fraction. Inside the NCSX coil set and surrounding the plasma is a highly contoured vacuum vessel. The vessel consists of three identical, 120 deg. segments that are bolted together at double sealed joints. The QPS device has a major radius of 0.9 m, a toroidal field of 1 T, and an aspect ratio of only 2.7. Instead of an internal vacuum vessel, the QPS modular coils will operate in an external vacuum tank. (author)

  18. Stellar Oxygen Abundances

    Science.gov (United States)

    King, Jeremy

    1994-04-01

    This dissertation addresses several issues concerning stellar oxygen abundances. The 7774 {\\AA} O I triplet equivalent widths of Abia & Rebolo [1989, AJ, 347, 186] for metal-poor dwarfs are found to be systematically too high. I also argue that current effective temperatures used in halo star abundance studies may be ~150 K too low. New color-Teff relations are derived for metal-poor stars. Using the revised Teff values and improved equivalent widths for the 7774A O I triplet, the mean [O/Fe] ratio for a handful of halo stars is found to be +0.52 with no dependence on Teff or [Fe/H]. Possible cosmological implications of the hotter Teff scale are discussed along with additional evidence supporting the need for a higher temperature scale for metal-poor stars. Our Teff scale leads to a Spite Li plateau value of N(Li)=2.28 +/- 0.09. A conservative minimal primordial value of N(Li)=2.35 is inferred. If errors in the observations and models are considered, consistency with standard models of Big Bang nucleosynthesis is still achieved with this larger Li abundance. The revised Teff scale raises the observed B/Be ratio of HD 140283 from 10 to 12, making its value more comfortably consistent with the production of the observed B and Be by ordinary spallation. Our Teff values are found to be in good agreement with values predicted from both the Victoria and Yale isochrone color-Teff relations. Thus, it appears likely that no changes in globular cluster ages would result. Next, we examine the location of the break in the [O/Fe] versus [Fe/H] plane in a quantitative fashion. Analysis of a relatively homogeneous data set does not favor any unique break point in the range -1.7 /= -3), in agreement with the new results for halo dwarfs. We find that the gap in the observed [O/H] distribution, noted by Wheeler et al. [1989, ARAA, 27, 279], persists despite the addition of more O data and may betray the occurrence of a hiatus in star formation between the end of halo formation and

  19. Planets, stars and stellar systems

    CERN Document Server

    Bond, Howard; McLean, Ian; Barstow, Martin; Gilmore, Gerard; Keel, William; French, Linda

    2013-01-01

    This is volume 3 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Solar and Stellar Planetary Systems” edited by Linda French and Paul Kalas presents accessible review chapters From Disks to Planets, Dynamical Evolution of Planetary Systems, The Terrestrial Planets, Gas and Ice Giant Interiors, Atmospheres of Jovian Planets, Planetary Magnetospheres, Planetary Rings, An Overview of the Asteroids and Meteorites, Dusty Planetary Systems and Exoplanet Detection Methods. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in...

  20. The fifty highest cited papers in anterior cruciate ligament injury.

    Science.gov (United States)

    Vielgut, Ines; Dauwe, Jan; Leithner, Andreas; Holzer, Lukas A

    2017-07-01

    The anterior cruciate ligament (ACL) is one of the most common injured knee ligaments and at the same time, one of the most frequent injuries seen in the sport orthopaedic practice. Due to the clinical relevance of ACL injuries, numerous papers focussing on this topic including biomechanical-, basic science-, clinical- or animal studies, were published. The purpose of this study was to determine the most frequently cited scientific articles which address this subject, establish a ranking of the 50 highest cited papers and analyse them according to their characteristics. The 50 highest cited articles related to Anterior Cruciate Ligament Injury were searched in Thomson ISI Web of Science® by the use of defined search terms. All types of scientific papers with reference to our topic were ranked according to the absolute number of citations and analyzed for the following characteristics: journal title, year of publication, number of citations, citation density, geographic origin, article type and level of evidence. The 50 highest cited articles had up to 1624 citations. The top ten papers on this topic were cited 600 times at least. Most papers were published in the American Journal of Sports Medicine. The publication years spanned from 1941 to 2007, with the 1990s and 2000s accounting for half of the articles (n = 25). Seven countries contributed to the top 50 list, with the USA having by far the most contribution (n = 40). The majority of articles could be attributed to the category "Clinical Science & Outcome". Most of them represent a high level of evidence. Scientific articles in the field of ACL injury are highly cited. The majority of these articles are clinical studies that have a high level of evidence. Although most of the articles were published between 1990 and 2007, the highest cited articles in absolute and relative numbers were published in the early 1980s. These articles contain well established scoring- or classification systems. The

  1. A Highest Order Hypothesis Compatibility Test for Monocular SLAM

    OpenAIRE

    Edmundo Guerra; Rodrigo Munguia; Yolanda Bolea; Antoni Grau

    2013-01-01

    Simultaneous Location and Mapping (SLAM) is a key problem to solve in order to build truly autonomous mobile robots. SLAM with a unique camera, or monocular SLAM, is probably one of the most complex SLAM variants, based entirely on a bearing-only sensor working over six DOF. The monocular SLAM method developed in this work is based on the Delayed Inverse-Depth (DI-D) Feature Initialization, with the contribution of a new data association batch validation technique, the Highest Order Hyp...

  2. Stellar CME candidates: towards a stellar CME-flare relation

    Science.gov (United States)

    Paraskevi Moschou, Sofia; Drake, Jeremy J.; Cohen, Ofer; Alvarado-Gomez, Julian D.; Garraffo, Cecilia

    2018-06-01

    For decades the Sun has been the only star that allowed for direct CME observations. Recently, with the discovery of multiple extrasolar systems, it has become imperative that the role of stellar CMEs be assessed in the context of exoplanetary habitability. Solar CMEs and flares show a higher association with increasing flaring energy, with strong flares corresponding to large and fast CMEs. As argued in earlier studies, extrasolar environments around active stars are potentially dominated by CMEs, as a result of their extreme flaring activity. This has strong implications for the energy budget of the system and the atmospheric erosion of orbiting planets.Nevertheless, with current instrumentation we are unable to directly observe CMEs in even the closest stars, and thus we have to look for indirect techniques and observational evidence and signatures for the eruption of stellar CMEs. There are three major observational techniques for tracing CME signatures in other stellar systems, namely measuring Type II radio bursts, Doppler shifts in UV/optical lines or transient absorption in the X-ray spectrum. We present observations of the most probable stellar CME candidates captured so far and examine the different observational techniques used together with their levels of uncertainty. Assuming that they were CMEs, we try to asses their kinematic and energetic characteristics and place them in an extension of the well-established solar CME-flare energy scaling law. We finish by discussing future observations for direct measurements.

  3. Robert Aymar receives one of the highest Finnish distinctions

    CERN Multimedia

    2008-01-01

    On 9 December 2008 Robert Aymar, CERN Director-General, was awarded the decoration of Commander, first class, of the Order of the Lion of Finland by the President of the Republic of Finland. This decoration, one of the highest of Finland, was presented in a ceremony by the Ambassador Hannu Himanen, Permanent Representative of Finland to the UN and other international organisations in Geneva. Robert Aymar was honoured for his service to CERN, the LHC, his role in the cooperation between Finland and CERN, as well as his contribution to science in general. In his speech the ambassador underlined CERN’s efforts in the field of education, mentioning the High school teachers programme.

  4. Science with Synthetic Stellar Surveys

    Science.gov (United States)

    Sanderson, Robyn Ellyn

    2018-04-01

    A new generation of observational projects is poised to revolutionize our understanding of the resolved stellar populations of Milky-Way-like galaxies at an unprecedented level of detail, ushering in an era of precision studies of galaxy formation. In the Milky Way itself, astrometric, spectroscopic and photometric surveys will measure three-dimensional positions and velocities and numerous chemical abundances for stars from the disk to the halo, as well as for many satellite dwarf galaxies. In the Local Group and beyond, HST, JWST and eventually WFIRST will deliver pristine views of resolved stars. The groundbreaking scale and dimensionality of this new view of resolved stellar populations in galaxies challenge us to develop new theoretical tools to robustly compare these surveys to simulated galaxies, in order to take full advantage of our new ability to make detailed predictions for stellar populations within a cosmological context. I will describe a framework for generating realistic synthetic star catalogs and mock surveys from state-of-the-art cosmological-hydrodynamical simulations, and present several early scientific results from, and predictions for, resolved stellar surveys of our Galaxy and its neighbors.

  5. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly ...

  6. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  7. Integrated Circuit Stellar Magnitude Simulator

    Science.gov (United States)

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  8. Stellar dynamics and black holes

    Indian Academy of Sciences (India)

    Chandrasekhar's most important contribution to stellar dynamics was the concept of dynamical friction. I briefly review that work, then discuss some implications of Chandrasekhar's theory of gravitational encounters for motion in galactic nuclei. Author Affiliations. David Merritt1. Department of Physics, Rochester Institute ...

  9. TEM turbulence optimisation in stellarators

    Science.gov (United States)

    Proll, J. H. E.; Mynick, H. E.; Xanthopoulos, P.; Lazerson, S. A.; Faber, B. J.

    2016-01-01

    With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is addressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X (Beidler et al 1990 Fusion Technol. 17 148) and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT (Spong et al 2001 Nucl. Fusion 41 711) code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stellarator experiment HSX (Anderson et al 1995 Fusion Technol. 27 273) is presented for which a reduction of the linear growth rates is achieved over a broad range of the operational parameter space. As an important consequence of this property, the turbulent heat flux levels are reduced compared with the initial configuration.

  10. Stellar Parameters for Trappist-1

    Science.gov (United States)

    Van Grootel, Valérie; Fernandes, Catarina S.; Gillon, Michael; Jehin, Emmanuel; Manfroid, Jean; Scuflaire, Richard; Burgasser, Adam J.; Barkaoui, Khalid; Benkhaldoun, Zouhair; Burdanov, Artem; Delrez, Laetitia; Demory, Brice-Olivier; de Wit, Julien; Queloz, Didier; Triaud, Amaury H. M. J.

    2018-01-01

    TRAPPIST-1 is an ultracool dwarf star transited by seven Earth-sized planets, for which thorough characterization of atmospheric properties, surface conditions encompassing habitability, and internal compositions is possible with current and next-generation telescopes. Accurate modeling of the star is essential to achieve this goal. We aim to obtain updated stellar parameters for TRAPPIST-1 based on new measurements and evolutionary models, compared to those used in discovery studies. We present a new measurement for the parallax of TRAPPIST-1, 82.4 ± 0.8 mas, based on 188 epochs of observations with the TRAPPIST and Liverpool Telescopes from 2013 to 2016. This revised parallax yields an updated luminosity of {L}* =(5.22+/- 0.19)× {10}-4 {L}ȯ , which is very close to the previous estimate but almost two times more precise. We next present an updated estimate for TRAPPIST-1 stellar mass, based on two approaches: mass from stellar evolution modeling, and empirical mass derived from dynamical masses of equivalently classified ultracool dwarfs in astrometric binaries. We combine them using a Monte-Carlo approach to derive a semi-empirical estimate for the mass of TRAPPIST-1. We also derive estimate for the radius by combining this mass with stellar density inferred from transits, as well as an estimate for the effective temperature from our revised luminosity and radius. Our final results are {M}* =0.089+/- 0.006 {M}ȯ , {R}* =0.121+/- 0.003 {R}ȯ , and {T}{eff} = 2516 ± 41 K. Considering the degree to which the TRAPPIST-1 system will be scrutinized in coming years, these revised and more precise stellar parameters should be considered when assessing the properties of TRAPPIST-1 planets.

  11. Targeted Optimization of Quasi-Symmetric Stellarators

    International Nuclear Information System (INIS)

    Hegna, Chris C.; Talmadge, J. N.

    2016-01-01

    The proposed research focuses on targeted areas of plasma physics dedicated to improving the stellarator concept. Research was pursued in the technical areas of edge/divertor physics in 3D configurations, magnetic island physics in stellarators, the role of 3D shaping on microinstabilities and turbulent transport and energetic ion confinement in stellarators.

  12. Targeted Optimization of Quasi-Symmetric Stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Hegna, Chris C. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, D. T. [Univ. of Wisconsin, Madison, WI (United States); Talmadge, J. N. [Univ. of Wisconsin, Madison, WI (United States)

    2016-10-06

    The proposed research focuses on targeted areas of plasma physics dedicated to improving the stellarator concept. Research was pursued in the technical areas of edge/divertor physics in 3D configurations, magnetic island physics in stellarators, the role of 3D shaping on microinstabilities and turbulent transport and energetic ion confinement in stellarators.

  13. Z-burst scenario for the highest energy cosmic rays

    International Nuclear Information System (INIS)

    Fodor, Z.

    2002-10-01

    The origin of highest energy cosmic rays is yet unknown. An appealing possibility is the so-called Z-burst scenario, in which a large fraction of these cosmic rays are decay products of Z bosons produced in the scattering of ultrahigh energy neutrinos on cosmological relic neutrinos. The comparison between the observed and predicted spectra constrains the mass of the heaviest neutrino. The required neutrino mass is fairly robust against variations of the presently unknown quantities, such as the amount of relic neutrino clustering, the universal photon radio background and the extragalactic magnetic field. Considering different possibilities for the ordinary cosmic rays the required neutrino masses are determined. In the most plausible case that the ordinary cosmic rays are of extragalactic origin and the universal radio background is strong enough to suppress high energy photons, the required neutrino mass is 0.08 eV ≤ m ν ≤ 0.40 eV. The required ultrahigh energy neutrino flux should be detected in the near future by experiments such as AMANDA, RICE or the Pierre Auger Observatory. (orig.)

  14. Compatibility of Firm Positioning Strategy and Website Content: Highest

    Directory of Open Access Journals (Sweden)

    Evla MUTLU KESİCİ

    2017-07-01

    Full Text Available Corporate websites are essential platforms through which firms introduce their goods and services on B2B and B2C level, express financial information for the stakeholders and share corporate values, purposes and activities. Due to its facilities, websites take part in firm positioning strategy. Accordingly this study aims to understand the innovation oriented positioning through corporate websites. The method applied in this study has been adapted from the 2QCV2Q Model developed by Mich and Franch (2000 to evaluate websites and top 30 firms with the highest Research and Development expenditures listed in Turkishtime (2015 have been analyzed. Within this context, this study presents a revised and updated method for the assessments of websites through positioning strategy framework. Findings indicate no direct relationship between website evaluation and R&D expenditure, though some common weaknesses have been put forward, such as information about management of the firms. Besides, publicly traded firms are recognized to facilitate websites more efficiently than non-publicly traded firms. Study contribute to both academia and practitioners as putting forward a new approach for 2QCV2Q Model and indicating the similarities and differences among the corporate websites through positioning perspective.

  15. Estimation of the center frequency of the highest modulation filter.

    Science.gov (United States)

    Moore, Brian C J; Füllgrabe, Christian; Sek, Aleksander

    2009-02-01

    For high-frequency sinusoidal carriers, the threshold for detecting sinusoidal amplitude modulation increases when the signal modulation frequency increases above about 120 Hz. Using the concept of a modulation filter bank, this effect might be explained by (1) a decreasing sensitivity or greater internal noise for modulation filters with center frequencies above 120 Hz; and (2) a limited span of center frequencies of the modulation filters, the top filter being tuned to about 120 Hz. The second possibility was tested by measuring modulation masking in forward masking using an 8 kHz sinusoidal carrier. The signal modulation frequency was 80, 120, or 180 Hz and the masker modulation frequencies covered a range above and below each signal frequency. Four highly trained listeners were tested. For the 80-Hz signal, the signal threshold was usually maximal when the masker frequency equaled the signal frequency. For the 180-Hz signal, the signal threshold was maximal when the masker frequency was below the signal frequency. For the 120-Hz signal, two listeners showed the former pattern, and two showed the latter pattern. The results support the idea that the highest modulation filter has a center frequency in the range 100-120 Hz.

  16. Kyle Cranmer receives the highest recognition from the US government

    CERN Multimedia

    Allen Mincer

    Kyle Cranmer with Clay Sell, Deputy Secretary of EnergyKyle Cranmer, who has worked on ATLAS as a graduate student at the University of Wisconsin-Madison, a Goldhaber Fellow at Brookhaven National Laboratory, and, most recently, an Assistant Professor at New York University, has been awarded a Presidential Early Career Award for Scientists and Engineers (PECASE). As described at the United States Department of Energy web page: "The PECASE Awards are intended to recognize some of the finest scientists and engineers who, while early in their research careers, show exceptional potential for leadership at the frontiers of scientific knowledge during the twenty-first century...The PECASE Award is the highest honor bestowed by the U.S. government on outstanding scientists and engineers beginning their independent careers." Kyle's work on ATLAS focuses on tools and strategies for data analysis, triggering, and searches for the Higgs.At the awards ceremony, which took place on Thursday Nov. 1st in Washington, D.C.,...

  17. Academic Training - Tevatron: studying pp collisions at the highest energy

    CERN Multimedia

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 15, 16, 17, 18 May Main Auditorium, bldg. 500 on 15, 16, 17 May - Council Chamber on 18 May Physics at the Tevatron B. HEINEMANN, Univ. of Liverpool, FERMILAB Physics Results from the Tevatron The Tevatron proton-antiproton collider at Fermilab in the US is currently the world's highest energy collider. At the experiments CDF and D0 a broad physics programme is being pursued, ranging from flavour physics via electroweak precision measurements to searches for the Higgs boson and new particles beyond the Standard Model. In my lecture I will describe some of the highlight measurements in the flavour, electroweak and searches sectors, and the experimental techniques that are used. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern.ch/...

  18. A Highest Order Hypothesis Compatibility Test for Monocular SLAM

    Directory of Open Access Journals (Sweden)

    Edmundo Guerra

    2013-08-01

    Full Text Available Simultaneous Location and Mapping (SLAM is a key problem to solve in order to build truly autonomous mobile robots. SLAM with a unique camera, or monocular SLAM, is probably one of the most complex SLAM variants, based entirely on a bearing-only sensor working over six DOF. The monocular SLAM method developed in this work is based on the Delayed Inverse-Depth (DI-D Feature Initialization, with the contribution of a new data association batch validation technique, the Highest Order Hypothesis Compatibility Test, HOHCT. The Delayed Inverse-Depth technique is used to initialize new features in the system and defines a single hypothesis for the initial depth of features with the use of a stochastic technique of triangulation. The introduced HOHCT method is based on the evaluation of statistically compatible hypotheses and a search algorithm designed to exploit the strengths of the Delayed Inverse-Depth technique to achieve good performance results. This work presents the HOHCT with a detailed formulation of the monocular DI-D SLAM problem. The performance of the proposed HOHCT is validated with experimental results, in both indoor and outdoor environments, while its costs are compared with other popular approaches.

  19. The stellar metallicity gradients in galaxy discs in a cosmological scenario

    Science.gov (United States)

    Tissera, Patricia B.; Machado, Rubens E. G.; Sanchez-Blazquez, Patricia; Pedrosa, Susana E.; Sánchez, Sebastián F.; Snaith, Owain; Vilchez, Jose

    2016-08-01

    Context. The stellar metallicity gradients of disc galaxies provide information on disc assembly, star formation processes, and chemical evolution. They also might store information on dynamical processes that could affect the distribution of chemical elements in the gas phase and the stellar components. Understanding their joint effects within a hierarchical clustering scenario is of paramount importance. Aims: We studied the stellar metallicity gradients of simulated discs in a cosmological simulation. We explored the dependence of the stellar metallicity gradients on stellar age and on the size and mass of the stellar discs. Methods: We used a catalogue of galaxies with disc components selected from a cosmological hydrodynamical simulation performed including a physically motivated supernova feedback and chemical evolution. Disc components were defined based on angular momentum and binding energy criteria. The metallicity profiles were estimated for stars with different ages. We confront our numerical findings with results from the Calar Alto Legacy Integral Field Area (CALIFA) Survey. Results: The simulated stellar discs are found to have metallicity profiles with slopes in global agreement with observations. Low stellar mass galaxies tend to have a larger variety of metallicity slopes. When normalized by the half-mass radius, the stellar metallicity gradients do not show any dependence and the dispersion increases significantly, regardless of the galaxy mass. Galaxies with stellar masses o f around 1010M⊙ show steeper negative metallicity gradients. The stellar metallicity gradients correlate with the half-mass radius. However, the correlation signal is not present when they are normalized by the half-mass radius. Stellar discs with positive age gradients are detected to have negative and positive metallicity gradients, depending on the relative importance of recent star formation activity in the central regions. Conclusions: Our results suggest that inside

  20. Characterizing stellar and exoplanetary environments

    CERN Document Server

    Khodachenko, Maxim

    2015-01-01

    In this book an international group of specialists discusses studies of exoplanets subjected to extreme stellar radiation and plasma conditions. It is shown that such studies will help us to understand how terrestrial planets and their atmospheres, including the early Venus, Earth and Mars, evolved during the host star’s active early phase. The book presents an analysis of findings from Hubble Space Telescope observations of transiting exoplanets, as well as applications of advanced numerical models for characterizing the upper atmosphere structure and stellar environments of exoplanets. The authors also address detections of atoms and molecules in the atmosphere of “hot Jupiters” by NASA’s Spitzer telescope. The observational and theoretical investigations and discoveries presented are both timely and important in the context of the next generation of space telescopes. 
 The book is divided into four main parts, grouping chapters on exoplanet host star radiation and plasma environments, exoplanet u...

  1. Modular Stellarator Fusion Reactor concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR

  2. Hydromagnetic instability in a stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Kruskal, M D; Gottlieb, M B; Johnson, J L; Goldman, L M [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    It was noted that when there is a uniform externally imposed longitudinal field much larger than the field of the discharge current, one should expect instabilities in the form of a lateral displacement of the plasma column into a helix of large pitch. At the wavelength of fastest growth the e-folding time approximates the time it takes a sound wave in the plasma to traverse the radius of the plasma column. This problem has been re-examines under the conditions which might be expected to occur in the stellarator during ohmic heating, including the presence of external conductors. The theory is applied to the stellarator; and it is shown that the external conductors are in fact unimportant. The important effects due to the finite length of the Machine are discussed and the effects of more general current distributions are considered. The results from the experiments are given.

  3. ACCELERATED FITTING OF STELLAR SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yuan-Sen; Conroy, Charlie [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rix, Hans-Walter [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-07-20

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15–30 labels simultaneously.

  4. Grigori Kuzmin and Stellar Dynamics

    Directory of Open Access Journals (Sweden)

    Zeeuw P. Tim de

    2011-06-01

    Full Text Available Grigori Kuzmin was a very gifted dynamicist and one of the towering figures in the distinguished history of the Tartu Observatory. He obtained a number of important results in relative isolation which were later rediscovered in the West. This work laid the foundation for further advances in the theory of stellar systems in dynamical equilibrium, thereby substantially increasing our understanding of galaxy dynamics.

  5. Geometry Dependence of Stellarator Turbulence

    International Nuclear Information System (INIS)

    Mynick, H.E.; Xanthopoulos, P.; Boozer, A.H.

    2009-01-01

    Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes

  6. Models of hot stellar systems

    International Nuclear Information System (INIS)

    Van Albada, T.S.

    1986-01-01

    Elliptical galaxies consist almost entirely of stars. Sites of recent star formation are rare, and most stars are believed to be several billion years old, perhaps as old as the Universe itself (--10/sup 10/ yrs). Stellar motions in ellipticals show a modest amount of circulation about the center of the system, but most support against the force of gravity is provided by random motions; for this reason ellipticals are called 'hot' stellar systems. Spiral galaxies usually also contain an appreciable amount of gas (--10%, mainly atomic hydrogen) and new stars are continually being formed out of this gas, especially in the spiral arms. In contrast to ellipticals, support against gravity in spiral galaxies comes almost entirely from rotation; random motions of the stars with respect to rotation are small. Consequently, spiral galaxies are called 'cold' stellar systems. Other than in hot systems, in cold systems the collective response of stars to variations in the force field is an essential part of the dynamics. The present overview is limited to mathematical models of hot systems. Computational methods are also discussed

  7. Results of Compact Stellarator Engineering Trade Studies

    International Nuclear Information System (INIS)

    Brown, Tom; Bromberg, L.; Cole, M.

    2009-01-01

    A number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study

  8. Results of Compact Stellarator Engineering Trade Studies

    International Nuclear Information System (INIS)

    Brown, T.; Bromberg, L.; Cole, M.

    2009-01-01

    A number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study.

  9. Stellarator fusion neutronics research in Australia

    International Nuclear Information System (INIS)

    Zimin, S.; Cross, R.C.

    1997-01-01

    The new status of the H-INF Heliac Stellaralor as a National Facility and the signed international Implementing Agreement on 'Collaboration in the Development of the Stellarator Concept' represents a significant encouragement for further fusion research in Australia. In this report the future of fusion research in Australia is discussed with special attention being paid to the importance of Stellarator power plant studies and in particular stellarator fusion neutronics. The main differences between tokamak and stellarator neutronics analyses are identified, namely the neutron wall loading, geometrical modelling and total heating in in-vessel reactor components including toroidal field (TF) coils. Due to the more complicated nature of stellarator neutronics analyses, simplified approaches to fusion neutronics already developed for tokamaks are expected to be even more important and widely used for designing a Conceptual Stellarator Power Plant

  10. On the universal stellar law

    Science.gov (United States)

    Krot, Alexander

    In this work, we consider a statistical theory of gravitating spheroidal bodies to derive and develop the universal stellar law for extrasolar systems. Previously, the statistical theory for a cosmogonic body forming (so-called spheroidal body)has been proposed [1-3]. This theory starts from the conception for forming a spheroidal body inside a gas-dust protoplanetary nebula; it permits us to derive the form of distribution functions, mass density, gravitational potentials and strengths both for immovable and rotating spheroidal bodies as well as to find the distribution function of specific angular momentum[1-3]. If we start from the conception for forming a spheroidal body as a protostar (in particular, proto-Sun) inside a prestellar (presolar) nebula then the derived distribution functions of particle (as well as the mass density of an immovable spheroidal body) characterizes the first stage of evolution: from a prestellar molecular cloud (the presolar nebula) to the forming core of protostar (the proto-Sun) together with its shell as a stellar nebula (the solar nebula). This work derives the equation of state of an ideal stellar substance based on conception of gravitating spheroidal body. Using this equation, we obtain the universal stellar law (USL) for the planetary systems connecting temperature, size and mass of each of stars. This work also considers the Solar corona in the connection with USL. Then it is accounting under calculation of the ratio of temperature of the Solar corona to effective temperature of the Sun’ surfaceand modification of USL. To test justice of the modified USLfor different types of stars, the temperature of stellar corona is estimated. The prediction of parameters of stars is carrying out by means of the modified USL,as well as the Hertzsprung-Russell’s dependence [5-7]is derivedby means of USL directly. This paper also shows that knowledge of some characteristics for multi-planet extrasolar systems refines own parameters of

  11. Multiplicity in Early Stellar Evolution

    Science.gov (United States)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.

  12. Physics of Compact Advanced Stellarators

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Berry, L.A.; Brooks, A.; Fredrickson, E.; Fu, G.-Y.; Hirshman, S.; Hudson, S.; Ku, L.-P.; Lazarus, E.; Mikkelsen, D.; Monticello, D.; Neilson, G.H.; Pomphrey, N.; Reiman, A.; Spong, D.; Strickler, D.; Boozer, A.; Cooper, W.A.; Goldston, R.; Hatcher, R.; Isaev, M.; Kessel, C.; Lewandowski, J.; Lyon, J.; Merkel, P.; Mynick, H.; Nelson, B.E.; Nuehrenberg, C.; Redi, M.; Reiersen, W.; Rutherford, P.; Sanchez, R.; Schmidt, J.; White, R.B.

    2001-01-01

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties

  13. STELLAR MASS DEPENDENT DISK DISPERSAL

    International Nuclear Information System (INIS)

    Kennedy, Grant M.; Kenyon, Scott J.

    2009-01-01

    We use published optical spectral and infrared (IR) excess data from nine young clusters and associations to study the stellar mass dependent dispersal of circumstellar disks. All clusters older than ∼3 Myr show a decrease in disk fraction with increasing stellar mass for solar to higher mass stars. This result is significant at about the 1σ level in each cluster. For the complete set of clusters we reject the null hypothesis-that solar and intermediate-mass stars lose their disks at the same rate-with 95%-99.9% confidence. To interpret this behavior, we investigate the impact of grain growth, binary companions, and photoevaporation on the evolution of disk signatures. Changes in grain growth timescales at fixed disk temperature may explain why early-type stars with IR excesses appear to evolve faster than their later-type counterparts. Little evidence that binary companions affect disk evolution suggests that photoevaporation is the more likely mechanism for disk dispersal. A simple photoevaporation model provides a good fit to the observed disk fractions for solar and intermediate-mass stars. Although the current mass-dependent disk dispersal signal is not strong, larger and more complete samples of clusters with ages of 3-5 Myr can improve the significance and provide better tests of theoretical models. In addition, the orbits of extra-solar planets can constrain models of disk dispersal and migration. We suggest that the signature of stellar mass dependent disk dispersal due to photoevaporation may be present in the orbits of observed extra-solar planets. Planets orbiting hosts more massive than ∼1.6 M sun may have larger orbits because the disks in which they formed were dispersed before they could migrate.

  14. Radiation transfer and stellar atmospheres

    Science.gov (United States)

    Swihart, T. L.

    This is a revised and expanded version of the author's Basic Physics of Stellar Atmospheres, published in 1971. The equation of transfer is considered, taking into account the intensity and derived quantities, the absorption coefficient, the emission coefficient, the source function, and special integrals for plane media. The gray atmosphere is discussed along with the nongray atmosphere, and aspects of line formation. Topics related to polarization are explored, giving attention to pure polarized radiation, general polarized radiation, transfer in a magnetic plasma, and Rayleigh scattering and the sunlit sky. Physical and astronomical constants, and a number of problems related to the subjects of the book are presented in an appendix.

  15. Drift waves in a stellarator

    International Nuclear Information System (INIS)

    Bhattacharjee, A.; Sedlak, J.E.; Similon, P.L.; Rosenbluth, M.N.; Ross, D.W.

    1982-11-01

    We investigate the eigenmode structure of drift waves in a straight stellarator using the ballooning mode formalism. The electrons are assumed to be adiabatic and the ions constitute a cold, magnetized fluid. The effective potential has an overall parabolic envelope but is modulated strongly by helical ripples along B. We have found two classes of solutions: those that are strongly localized in local helical wells, and those that are weakly localized and have broad spatial extent. The weakly localized modes decay spatially due to the existence of Mathieu resonances between the periods of the eigenfunction and the effective potential

  16. Helical axis stellarator equilibrium model

    International Nuclear Information System (INIS)

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  17. Neutrino transport in stellar matter

    International Nuclear Information System (INIS)

    Basdevant, J.L.

    1985-09-01

    We reconsider the neutrino transport problem in dense stellar matter which has a variety of applications among which the participation of neutrinos to the dynamics of type II supernova explosions. We describe the position of the problem and make some critiscism of previously used approximation methods. We then propose a method which is capable of handling simultaneously the optically thick, optically thin, and intermediate regimes, which is of crucial importance in such problems. The method consists in a simulation of the transport process and can be considered exact within numerical accuracy. We, finally exhibit some sample calculations which show the efficiency of the method, and present interesting qualitative physical features

  18. Characterizing Convection in Stellar Atmospheres

    International Nuclear Information System (INIS)

    Tanner, Joel; Basu, Sarbani; Demarque, Pierre; Robinson, Frank

    2011-01-01

    We perform 3D radiative hydrodynamic simulations to study the properties of convection in the superadiabatic layer of stars. The simulations show differences in both the stratification and turbulent quantities for different types of stars. We extract turbulent pressure and eddy sizes, as well as the T-τ relation for different stars and find that they are sensitive to the energy flux and gravity. We also show that contrary to what is usually assumed in the field of stellar atmospheres, the structure and gas dynamics of simulations of turbulent atmospheres cannot be parameterized with T eff and log(g) alone.

  19. On modular stellarator reactor coils

    International Nuclear Information System (INIS)

    Rau, F.; Harmeyer, E.; Kisslinger, J.; Wobig, H.

    1985-01-01

    Modular twisted coils are discussed which produce magnetic fields of the Advanced Stellarator WENDELSTEIN VII-AS type. Reducing the number coils/FP offers advantage for maintenance of coils, but increases the magnetic ripple and B m /B o . Computation of force densities within the coils of ASR and ASB yield local maximum values of about 80 and 180 MN/m 3 , respectively. A system of mutual coil support is being developed. Twisted coils in helical arrangement provide a reactor-sized HELIAC system. In order to reduce the magnetic ripple, a large number of 14 coils/FP in special arrangement is used

  20. Stellar orbits around Sgr A*

    International Nuclear Information System (INIS)

    Trippe, S; Gillessen, S; Ott, T; Eisenhauer, F; Paumard, T; Martins, F; Genzel, R; Schoedel, R; Eckart, A; Alexander, T

    2006-01-01

    In this article we present and discuss the latest results from the observations of stars (''S-stars'') orbiting Sgr A* . With improving data quality the number of observed S-stars has increased substantially in the last years. The combination of radial velocity and proper motion information allows an ever more precise determination of orbital parameters and of the mass of and the distance to the supermassive black hole in the centre of the Milky Way. Additionally, the orbital solutions allow us to verify an agreement between the NIR source Sgr A* and the dynamical centre of the stellar orbits to within 2 mas

  1. Recent advances in stellarator optimization

    Science.gov (United States)

    Gates, D. A.; Boozer, A. H.; Brown, T.; Breslau, J.; Curreli, D.; Landreman, M.; Lazerson, S. A.; Lore, J.; Mynick, H.; Neilson, G. H.; Pomphrey, N.; Xanthopoulos, P.; Zolfaghari, A.

    2017-12-01

    Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. The purpose of this paper is to outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—was written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. To this end, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also

  2. When negation is not negation

    OpenAIRE

    Milicevic, Nataša

    2008-01-01

    In this paper I will discuss the formation of different types of yes/no questions in Serbian (examples in (1)), focusing on the syntactically and semantically puzzling example (1d), which involves the negative auxiliary inversion. Although there is a negative marker on the fronted auxiliary, the construction does not involve sentential negation. This coincides with the fact that the negative quantifying NPIs cannot be licensed. The question formation and sentential negation have similar synta...

  3. Introduction to stellar astrophysics. V. 1

    International Nuclear Information System (INIS)

    Boehm-Vitense, E.

    1989-01-01

    This textbook introduces basic elements of fundamental astronomy and astrophysics which serve as a foundation for understanding the structure, evolution, and observed properties of stars. The first half of the book explains how stellar motions, distances, luminosities, colours, radii, masses and temperatures are measured or derived. The author then shows how data of these sorts can be arranged to classify stars through their spectra. Stellar rotation and stellar magnetic fields are introduced. Stars with peculiar spectra and pulsating stars also merit special attention. The endpoints of stellar evolutions are briefly described. There is a separate chapter on the Sun and a final one on interstellar absorption. (author)

  4. Magnetohydrodynamic instabilities in a stellarator

    International Nuclear Information System (INIS)

    Matsuoka, K.; Miyamoto, K.; Ohasa, K.; Wakatani, M.

    1977-05-01

    Numerical studies of stability on kink and resistive tearing modes in a linear stellarator are presented for various current profiles and helical fields. In the case of an l = 2 helical field, a magnetic shear vanishes and the stability diagram is given by the straight lines with iota sup(σ) + iota sup(delta) = const., where iota sup(σ) is a rotational transform due to the plasma current and iota sup(delta) is due to the helical field. In the l = 2 stellarator with chi sup(delta) > 0.5, the m.h.d. stability against kink and tearing modes is improved compared with that in tokamaks. While an l = 3 helical component exists, the magnetic shear plays an important role in the stability properties. The stability diagrams become fairly complex; however, they can be explained by properties of the Euler equation. It should be noted that the internal kink modes become more unstable than in tokamaks by the l = 3 helical field. (auth.)

  5. Neoclassical transport simulations for stellarators

    International Nuclear Information System (INIS)

    Turkin, Y.; Beidler, C. D.; Maassberg, H.; Murakami, S.; Wakasa, A.; Tribaldos, V.

    2011-01-01

    The benchmarking of the thermal neoclassical transport coefficients is described using examples of the Large Helical Device (LHD) and TJ-II stellarators. The thermal coefficients are evaluated by energy convolution of the monoenergetic coefficients obtained by direct interpolation or neural network techniques from the databases precalculated by different codes. The temperature profiles are calculated by a predictive transport code from the energy balance equations with the ambipolar radial electric field estimated from a diffusion equation to guarantee a unique and smooth solution, although several solutions of the ambipolarity condition may exist when root-finding is invoked; the density profiles are fixed. The thermal transport coefficients as well as the ambipolar radial electric field are compared and very reasonable agreement is found for both configurations. Together with an additional W7-X case, these configurations represent very different degrees of neoclassical confinement at low collisionalities. The impact of the neoclassical optimization on the energy confinement time is evaluated and the confinement times for different devices predicted by transport modeling are compared with the standard scaling for stellarators. Finally, all configurations are scaled to the same volume for a direct comparison of the volume-averaged pressure and the neoclassical degree of optimization.

  6. Gas expulsion vs gas retention in young stellar clusters II: effects of cooling and mass segregation

    Science.gov (United States)

    Silich, Sergiy; Tenorio-Tagle, Guillermo

    2018-05-01

    Gas expulsion or gas retention is a central issue in most of the models for multiple stellar populations and light element anti-correlations in globular clusters. The success of the residual matter expulsion or its retention within young stellar clusters has also a fundamental importance in order to understand how star formation proceeds in present-day and ancient star-forming galaxies and if proto-globular clusters with multiple stellar populations are formed in the present epoch. It is usually suggested that either the residual gas is rapidly ejected from star-forming clouds by stellar winds and supernova explosions, or that the enrichment of the residual gas and the formation of the second stellar generation occur so rapidly, that the negative stellar feedback is not significant. Here we continue our study of the early development of star clusters in the extreme environments and discuss the restrictions that strong radiative cooling and stellar mass segregation provide on the gas expulsion from dense star-forming clouds. A large range of physical initial conditions in star-forming clouds which include the star-forming cloud mass, compactness, gas metallicity, star formation efficiency and effects of massive stars segregation are discussed. It is shown that in sufficiently massive and compact clusters hot shocked winds around individual massive stars may cool before merging with their neighbors. This dramatically reduces the negative stellar feedback, prevents the development of the global star cluster wind and expulsion of the residual and the processed matter into the ambient interstellar medium. The critical lines which separate the gas expulsion and the gas retention regimes are obtained.

  7. Stellar Spectral Classification with Locality Preserving Projections ...

    Indian Academy of Sciences (India)

    With the help of computer tools and algorithms, automatic stellar spectral classification has become an area of current interest. The process of stellar spectral classification mainly includes two steps: dimension reduction and classification. As a popular dimensionality reduction technique, Principal Component Analysis (PCA) ...

  8. Enhanced-confinement class of stellarators

    International Nuclear Information System (INIS)

    Mynick, H.E.; Chu, T.K.; Boozer, A.H.

    1981-08-01

    A class of stellarators has been found in which the transport is reduced by an order of magnitude from transport in conventional stellarators, by localizing the helical ripple to the inside of the torus. The reduction is observed in numerical experiments and explained theoretically

  9. Theories for convection in stellar atmospheres

    International Nuclear Information System (INIS)

    Nordlund, Aa.

    1976-02-01

    A discussion of the fundamental differences between laboratory convection in a stellar atmosphere is presented. The shortcomings of laterally homogeneous model atmospheres are analysed, and the extent to which these shortcoming are avoided in the two-component representation is discussed. Finally a qualitative discussion on the scaling properties of stellar granulation is presented. (Auth.)

  10. Structure of stellar hydroxyl masers

    International Nuclear Information System (INIS)

    Reid, M.J.; Muhleman, D.O.; Moran, J.M.; Johnston, K.J.; Schwartz, P.R.

    1977-01-01

    This paper presents the results of two spectral-line very long baseline (VLB) interferometric experiments on stellar OH masers. These masers are usually associated with long-period variable stars, and exhibit a characteristic double-peaked 1612 MHz OH spectrum. The sources IRC +10011, R Aql, and U Ori were carefully studied in order to determine the spatial structure of their masers. Maser components in these sources exhibited a complex structure which can be interpreted in terms of ''core-halo'' models. For these sources, the emission at any velocity appears to originate from a small (approximately-less-than0.''03) region of brightness approximately-greater-than10 9 K, and from a large (approximately-greater-than0.''5) region of brightness approximately-less-than10 8 K. In IRC+10011, ''core'' components in the two OH peaks probably are separated by less than the apparent size of the ''halos.'' A map of the low-velocity emission of U Ori with a resolution of 0.''01 indicates that the ''cores'' are distributed over a region of only 0.''2. This region is smaller than the apparent sizes of the ''halos.'' Other sources surveyed to determine apparent maser sizes include IRC+50137, OH 1821--12, OH 1837--05, OH 26.5+0.6, W43 A, and VX Sgr at 1612 MHz; and W Hya, R Aql, and IRC--10529 at 1667 MHz. The results of all VLB observations of 1612 MHz stellar OH masers are summarized.The apparent sizes of the strongest components (''halos'') of stellar OH masers typically are approximately-greater-than0.''5, corresponding to linear dimensions of approximately-greater-than3 x 10 15 cm. These surprisingly large sizes imply brightness temperatures much lower than those observed in most other types of astronomical masers. The large sizes rule out models of the 1612 MHz OH masers that require contracting or rotating circumstellar envelopes to explain the double-peaked OH spectra, or that try to explain the apparent maser sizes in terms of interstellar or interplanetary scattering

  11. Wisconsin torsatron/stellarator program, FY 1989

    International Nuclear Information System (INIS)

    Shohet, J.L.; Anderson, D.T.; Anderson, F.S.B.; Talmadge, J.N.

    1988-07-01

    This proposal documents recent activities within the University of Wisconsin-Madison Torsatron/Stellarator Laboratory and presents plans for future research activities for a three year period. Research efforts have focused on fundamental stellarator physics issues through experimental investigations on the Interchangeable Module Stellarator (IMS) and the Proto-Cleo Stellarator. Theoretical activities and studies of new configurations are being undertaken to support and broaden the experimental program. Experimental research at the Torsatron Stellarator Laboratory has been primarily concerned with effects induced through electron-cyclotron resonant frequency plasma production and heating in the IMS device. Plasma electric fields have been shown to play a major role in particle transport and confinement in IMS. ECRF heating at 6 kG has produced electron tail populations in agreement with Monte-Carlo models. Electric and magnetic fields have been shown to alter the particle flows to the IMS modular divertors. 48 refs

  12. Astrospheres and Solar-like Stellar Winds

    Directory of Open Access Journals (Sweden)

    Wood Brian E.

    2004-07-01

    Full Text Available Stellar analogs for the solar wind have proven to be frustratingly difficult to detect directly. However, these stellar winds can be studied indirectly by observing the interaction regions carved out by the collisions between these winds and the interstellar medium (ISM. These interaction regions are called "astrospheres", analogous to the "heliosphere" surrounding the Sun. The heliosphere and astrospheres contain a population of hydrogen heated by charge exchange processes that can produce enough H I Ly alpha absorption to be detectable in UV spectra of nearby stars from the Hubble Space Telescope (HST. The amount of astrospheric absorption is a diagnostic for the strength of the stellar wind, so these observations have provided the first measurements of solar-like stellar winds. Results from these stellar wind studies and their implications for our understanding of the solar wind are reviewed here. Of particular interest are results concerning the past history of the solar wind and its impact on planetary atmospheres.

  13. Negative mass

    International Nuclear Information System (INIS)

    Hammond, Richard T

    2015-01-01

    Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given. (paper)

  14. Stellarmak a hybrid stellarator: Spheromak

    International Nuclear Information System (INIS)

    Hartman, C.W.

    1980-01-01

    This paper discusses hybridization of modified Stellarator-like transform windings (T-windings) with a Spheromak or Field-Reversed-Mirror configuration. This configuration, Stellarmak, retains the important topological advantage of the Spheromak or FRM of having no plasma linking conductors or blankets. The T-windings provide rotational transformation in toroidal angle of the outer poloidal field lines, in effect creating a reversed B/sub Toroidal/ Spheromak or adding average B/sub T/ to the FRM producing higher shear, increased limiting β, and possibly greater stability to kinks and tilt. The presence of field ripple in the toroidal direction may be sufficient to inhibit cancellation of directed ion current by electron drag to allow steady state operation with the toroidal as well as poloidal current maintained by neutral beams

  15. Stellar Equilibrium in Semiclassical Gravity.

    Science.gov (United States)

    Carballo-Rubio, Raúl

    2018-02-09

    The phenomenon of quantum vacuum polarization in the presence of a gravitational field is well understood and is expected to have a physical reality, but studies of its backreaction on the dynamics of spacetime are practically nonexistent outside of the specific context of homogeneous cosmologies. Building on previous results of quantum field theory in curved spacetimes, in this Letter we first derive the semiclassical equations of stellar equilibrium in the s-wave Polyakov approximation. It is highlighted that incorporating the polarization of the quantum vacuum leads to a generalization of the classical Tolman-Oppenheimer-Volkoff equation. Despite the complexity of the resulting field equations, it is possible to find exact solutions. Aside from being the first known exact solutions that describe relativistic stars including the nonperturbative backreaction of semiclassical effects, these are identified as a nontrivial combination of the black star and gravastar proposals.

  16. On rapid rotation in stellarators

    International Nuclear Information System (INIS)

    Helander, Per

    2008-01-01

    The conditions under which rapid plasma rotation may occur in a three-dimensional magnetic field, such as that of a stellarator, are investigated. Rotation velocities comparable to the ion thermal speed are found to be attainable only in magnetic fields which are approximately isometric. In an isometric magnetic field the dependence of the magnetic field strength B on the arc length l along the field is the same for all field lines on each flux surface ψ. Only in fields where the departure from exact isometry, B=B(ψ,l), is of the order of the ion gyroradius divided by the macroscopic length scale are rotation speeds comparable to the ion thermal speed possible. Moreover, it is shown that the rotation must be in the direction of the vector ∇ψx∇B. (author)

  17. Magnetohydodynamics stability of compact stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Cooper, W.A.; Hirshman, S.H.

    2000-01-01

    Recent stability results of external kink modes and vertical modes in compact stellarators are presented. The vertical mode is found to be stabilized by externally generated poloidal flux. A simple stability criterion is derived in the limit of large aspect ratio and constant current density. For a wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by Fi = (k2 minus k)=(k2 + 1), where k is the axisymmetric elongation and Fi is the fraction of the external rotational transform. A systematic parameter study shows that the external kink mode in QAS can be stabilized at high beta (approximately 5%) without a conducting wall by magnetic shear via 3D shaping. It is found that external kinks are driven by both parallel current and pressure gradient. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current

  18. NEMO: A Stellar Dynamics Toolbox

    Science.gov (United States)

    Barnes, Joshua; Hut, Piet; Teuben, Peter

    2010-10-01

    NEMO is an extendible Stellar Dynamics Toolbox, following an Open-Source Software model. It has various programs to create, integrate, analyze and visualize N-body and SPH like systems, following the pipe and filter architecture. In addition there are various tools to operate on images, tables and orbits, including FITS files to export/import to/from other astronomical data reduction packages. A large growing fraction of NEMO has been contributed by a growing list of authors. The source code consist of a little over 4000 files and a little under 1,000,000 lines of code and documentation, mostly C, and some C++ and Fortran. NEMO development started in 1986 in Princeton (USA) by Barnes, Hut and Teuben. See also ZENO (ascl:1102.027) for the version that Barnes maintains.

  19. Negative Leadership

    Science.gov (United States)

    2013-03-01

    Negative Leadership by Colonel David M. Oberlander United States Army United States Army War...SUBTITLE Negative Leadership 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Colonel David M...Dr. Richard C. Bullis Department of Command Leadership , and Management 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING

  20. Negative liability

    NARCIS (Netherlands)

    Dari-Mattiacci, G.

    2009-01-01

    Negative and positive externalities pose symmetrical problems to social welfare. The law internalizes negative externalities by providing general tort liability rules. According to such rules, those who cause harm to others should pay compensation. In theory, in the presence of positive

  1. Negative ... concord?

    NARCIS (Netherlands)

    Giannakidou, A

    The main claim of this paper is that a general theory of negative concord (NC) should allow for the possibility of NC involving scoping of a universal quantifier above negation. I propose that Greek NC instantiates this option. Greek n-words will be analyzed as polarity sensitive universal

  2. Neoclassical transport in stellarators - a comparison of conventional stellarator/torsatrons with the advanced stellarator, Wendelstein 7X

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C D [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    A general expression for the magnitude of a stellarator's magnetic field, in terms of a Fourier decomposition, is too complicated to lend itself easily to analytic transport calculations. The great majority of stellarator-type devices, however, may be accurately described if one retains only those harmonics with m=0 and m=1. In the long-mean-free-path regime an analytical approximation to the particle's bounce-averaged kinetic equation can then be found. Using a numerical solution of this equation, it is possible to calculate the particle and heat fluxes due to helical-ripple transport in stellarators throughout the entire long-mean-free-path regime. 3 figs.

  3. Optimized confinement discharges in the stellarator W7-AS

    International Nuclear Information System (INIS)

    Baldzuhn, J.; Giannone, L.; Kick, M.; McCormick, K. J.

    2000-01-01

    In addition to the well known H-mode, other types of discharges with enhanced core energy confinement can be observed in the stellarator W7-AS. In this contribution, the properties of some particular examples of those optimized confinement (OC) discharges are presented. These are characterized, besides improved core energy confinement, by strong negative radial electric fields and high ion temperatures in the gradient region, steep density profile gradients and a high penetration depth of neutrals, and small edge electron densities. The role of these plasma parameters for the OC discharges is investigated quantitatively by a numerical model. (author)

  4. Hydrodynamics and stellar winds an introduction

    CERN Document Server

    Maciel, Walter J

    2014-01-01

    Stellar winds are a common phenomenon in the life of stars, from the dwarfs like the Sun to the red giants and hot supergiants, constituting one of the basic aspects of modern astrophysics. Stellar winds are a hydrodynamic phenomenon in which circumstellar gases expand towards the interstellar medium. This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds. The principles of hydrodynamics have many other applications, so that the book can be used as an introduction to hydrodynamics for students of physics, astrophysics and other related areas.

  5. Ultraviolet photometry of stellar populations in galaxies

    International Nuclear Information System (INIS)

    Deharveng, J.M.

    1981-01-01

    The UV flux of stellar populations, which is essentially emitted by young stars, conveys information on the process of star formation and its recent history. However, the evaluation of the flux arising from the young stellar component may be difficult. In the case of late type galaxies it is hampered by the extinction and the effect of scattered stellar radiation. In the case of early type galaxies, the star formation, if any, has to be disentangled from the contribution of hot evolved stars and of a possible 'active' phenomenon. A review of observations and results relevant two cases is presented [fr

  6. Helical post stellarator. Part 1: Vacuum configuration

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-08-01

    Results on a novel type of stellarator configuration, the Helical Post Stellarator (HPS), are presented. This configuration is different significantly from all previously known stellarators due to its unique geometrical characteristics and unique physical properties. Among those are: the magnetic field has only one toroidal period (M = 1), the plasma has an extremely low aspect ratio, A ∼ 1, and the variation of the magnetic field, B, along field lines features a helical ripple on the inside of the torus. Among the main advantages of a HPS for a fusion program are extremely compact, modular, and simple design compatible with significant rotational transform, large plasma volume, and improved particle transport characteristics

  7. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  8. Stellar recipes for axion hunters

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, FL 33161 (United States); Irastorza, Igor G.; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza (Spain); Ringwald, Andreas; Saikawa, Ken' ichi, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de, E-mail: kenichi.saikawa@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2017-10-01

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion—the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fit to the data, prefering an axion mass around 10 meV. We show that future axion experiments—the fifth force experiment ARIADNE and the helioscope IAXO—can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.

  9. Stellar recipes for axion hunters

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences; Irastorza, Igor G. [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas; Saikawa, Ken' ichi [DESY, Hamburg (Germany). Theory Group

    2017-08-15

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion - the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fit to the data, prefering an axion mass around 10 meV. We show that future axion experiments - the fifth force experiment ARIADNE and the helioscope IAXO - can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.

  10. Stellar recipes for axion hunters

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Ringwald, Andreas; Saikawa, Ken'ichi

    2017-08-01

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion - the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fit to the data, prefering an axion mass around 10 meV. We show that future axion experiments - the fifth force experiment ARIADNE and the helioscope IAXO - can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.

  11. Stellar core collapse and supernova

    International Nuclear Information System (INIS)

    Wilson, J.R.; Mayle, R.; Woosley, S.E.; Weaver, T.

    1985-04-01

    Massive stars that end their stable evolution as their iron cores collapse to a neutron star or black hole long been considered good candidates for producing Type II supernovae. For many years the outward propagation of the shock wave produced by the bounce of these iron cores has been studied as a possible mechanism for the explosion. For the most part, the results of these studies have not been particularly encouraging, except, perhaps, in the case of very low mass iron cores or very soft nuclear equations of state. The shock stalls, overwhelmed by photodisintegration and neutrino losses, and the star does not explode. More recently, slow late time heating of the envelope of the incipient neutron star has been found to be capable of rejuvenating the stalled shock and producing an explosion after all. The present paper discusses this late time heating and presents results from numerical calculations of the evolution, core collapse, and subsequent explosion of a number of recent stellar models. For the first time they all, except perhaps the most massive, explode with reasonable choices of input physics. 39 refs., 17 figs., 1 tab

  12. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  13. Collapsing stellar cores and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R J [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Noorgaard, H [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Chicago Univ., IL (USA). Enrico Fermi Inst.); Bond, J R [Niels Bohr Institutet, Copenhagen (Denmark); California Inst. of Tech., Pasadena (USA). W.K. Kellogg Radiation Lab.)

    1979-05-01

    The evolution of a stellar core is studied during its final quasi-hydrostatic contraction. The core structure and the (poorly known) properties of neutron rich matter are parametrized to include most plausible cases. It is found that the density-temperature trajectory of the material in the central part of the core (the core-center) is insensitive to nearly all reasonable parameter variations. The central density at the onset of the dynamic phase of the collapse (when the core-center begins to fall away from the rest of the star) and the fraction of the emitted neutrinos which are trapped in the collapsing core-center depend quite sensitively on the properties of neutron rich matter. We estimate that the amount of energy Ecm which is imparted to the core-mantle by the neutrinos which escape from the imploded core-center can span a large range of values. For plausible choices of nuclear and model parameters Ecm can be large enough to yield a supernova event.

  14. Diagnostics for the National Compact Stellarator Experiment

    International Nuclear Information System (INIS)

    Stratton, B.C.; Johnson, D.; Feder, R.; Fredrickson, E.; Neilson, H.; Takahashi, H.; Zarnstorf, M.; Cole, M.; Goranson, P.; Lazarus, E.; Nelson, B.

    2003-01-01

    The status of planning of the National Compact Stellarator Experiment (NCSX) diagnostics is presented, with the emphasis on resolution of diagnostics access issues and on diagnostics required for the early phases of operation

  15. Stellar Spectral Classification with Locality Preserving Projections ...

    Indian Academy of Sciences (India)

    School of Computer and Control Engineering, North University of China,. Taiyuan 030051 ... (2013) was used to mine the association rules of a stellar ... of the graph, we then compute a transformation matrix which maps the data points to.

  16. The relation between stellar evolution and cosmology

    International Nuclear Information System (INIS)

    Tayler, R.J.

    1984-01-01

    Observations of star clusters combined with the theory of stellar evolution enable us to estimate the ages of stars while cosmological observations and theories give us a value for the age of the Universe. This is the most important interaction between cosmology and stellar evolution because it is clearly necessary that stars are younger than the Universe. Stellar evolution also plays an important role in relating the present chemical composition of the Universe to its original composition. The author restricts the review to a discussion of the relation between stellar evolution and the big bang cosmological theory because there is such a good qualitative agreement between the hot big bang theory and observations. (Auth.)

  17. Evaluating Stellarator Divertor Designs with EMC3

    Science.gov (United States)

    Bader, Aaron; Anderson, D. T.; Feng, Y.; Hegna, C. C.; Talmadge, J. N.

    2013-10-01

    In this paper various improvements of stellarator divertor design are explored. Next step stellarator devices require innovative divertor solutions to handle heat flux loads and impurity control. One avenue is to enhance magnetic flux expansion near strike points, somewhat akin to the X-Divertor concept in Tokamaks. The effect of judiciously placed external coils on flux deposition is calculated for configurations based on the HSX stellarator. In addition, we attempt to optimize divertor plate location to facilitate the external coil placement. Alternate areas of focus involve altering edge island size to elucidate the driving physics in the edge. The 3-D nature of stellarators complicates design and necessitates analysis of new divertor structures with appropriate simulation tools. We evaluate the various configurations with the coupled codes EMC3-EIRENE, allowing us to benchmark configurations based on target heat flux, impurity behavior, radiated power, and transitions to high recycling and detached regimes. Work supported by DOE-SC0006103.

  18. Development of the stellarator/heliotron research

    International Nuclear Information System (INIS)

    Iiyoshi, A.

    1991-05-01

    The author reviewed the history of the development of the stellarator/heliotron system, and pointed out the important role of the radial electric field in plasma transport in helical devices. (J.P.N.)

  19. Radiative otacity tables for 40 stellar mixtures

    International Nuclear Information System (INIS)

    Cox, A.N.; Tabor, J.E.

    1976-01-01

    Using improved methods, radiative opacities for 40 mixtures of elements are given for use in calculations of stellar structure, stellar evolution, and stellar pulsation. The major improvements over previous Los Alamos data are increased iron abundance in the composition, better allowance for the continuum depression for bound electrons, and corrections in some bound-electron energy levels. These opacities have already been widely used, and represent a relatively homogeneous set of data for stellar structures. Further improvements to include more bound-bound (line) transitions by a smearing technique and to include molecular absorptions are becoming available, and in a few years these tables, as well as all previous tables, will be outdated. At high densities the conduction of energy will dominate radiation flow, and this effect must be added separately

  20. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hilding R.; Lester, John B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Baron, Fabien; Norris, Ryan; Kloppenborg, Brian, E-mail: neilson@astro.utoronto.ca [Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.

  1. Does the stellar distribution flare? A comparison of stellar scale heights with LAB H I data

    Energy Technology Data Exchange (ETDEWEB)

    Kalberla, P. M. W.; Kerp, J.; Dedes, L. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn (Germany); Haud, U., E-mail: pkalberla@astro.uni-bonn.de [Tartu Observatory, 61602 Tõravere (Estonia)

    2014-10-10

    The question of whether the stellar populations in the Milky Way take part in the flaring of scale heights as observed for the H I gas is a matter of debate. Standard mass models for the Milky Way assume a constant scale height for each of the different stellar distributions. However, there is mounting evidence that at least some of the stellar distributions reach, at large galactocentric distances, high altitudes, which are incompatible with a constant scale height. We discuss recent observational evidence for stellar flaring and compare it with H I data from the Leiden/Argentine/Bonn survey. Within the systemic and statistical uncertainties we find a good agreement between both.

  2. The WEGA Stellarator: Results and Prospects

    International Nuclear Information System (INIS)

    Otte, M.; Andruczyk, D.; Koenig, R.; Laqua, H. P.; Lischtschenko, O.; Marsen, S.; Schacht, J.; Podoba, Y. Y.; Wagner, F.; Warr, G. B.; Holzhauer, E.; Howard, J.; Krupnik, L.; Zhezhera, A.; Urban, J.; Preinhalter, J.

    2008-01-01

    In this article an overview is given on results from magnetic flux surface measurements, applied ECR heating scenarios for 2.45 GHz and 28 GHz, fluctuation and transport studies and plasma edge biasing experiments performed in the WEGA stellarator. Examples for the development of new diagnostics and the machine control system are given that will be used at Wendelstein 7-X stellarator, which is currently under construction in Greifswald

  3. Cosmic abundances: The impact of stellar duplicity

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    2004-01-01

    The mass-transfer scenario links chemical peculiarities with stellar duplicity for an increasing number of stellar classes (classical and dwarf barium stars, subgiant and giant CH stars, S stars without technetium, yellow symbiotic stars, WIRRING stars, Abell-35-like nuclei of planetary nebulae...). Despite these successes, the mass-transfer scenario still faces several problems: What is the mass-transfer mode? Why orbital elements of dwarf barium stars do not fully match those of the classic...

  4. The Stellar-Dynamical Oeuvre James Binney

    Indian Academy of Sciences (India)

    tribpo

    of the eigenvalues of M. The variation of the stellar density from point to point .... of Σ,(ΔΕ)2 , where ∆ Ε is the change in energy that a star suffers during a binary ... could use these results to calculate the relaxation time in a stellar system if he .... the region of enhanced density that tails behind it like a wake behind a ship. By.

  5. Weakly interacting massive particles and stellar structure

    International Nuclear Information System (INIS)

    Bouquet, A.

    1988-01-01

    The existence of weakly interacting massive particles (WIMPs) may solve both the dark matter problem and the solar neutrino problem. Such particles affect the energy transport in the stellar cores and change the stellar structure. We present the results of an analytic approximation to compute these effects in a self-consistent way. These results can be applied to many different stars, but we focus on the decrease of the 8 B neutrino flux in the case of the Sun

  6. Close stellar encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1989-01-01

    Stellar encounters are expected to produce a variety of interesting objects in the cores of globular clusters, either through the formation of binaries by tidal capture, or direct collisions. Here, I describe several attempts to observe the products of stellar encounters. In particular, the use of color maps has demonstrated the existence of a color gradient in the core of M15, which seems to be caused by a population of faint blue objects concentrated towards the cluster center. (author)

  7. On plasma radiative properties in stellar conditions

    International Nuclear Information System (INIS)

    Turck-Chieze, S.; Delahaye, F.; Gilles, D.; Loisel, G.; Piau, L.; Loisel, G.

    2009-01-01

    The knowledge of stellar evolution is evolving quickly thanks to an increased number of opportunities to scrutinize the stellar internal plasma properties by stellar seismology and by 1D and 3D simulations. These new tools help us to introduce the internal dynamical phenomena in stellar modeling. A proper inclusion of these processes supposes a real confidence in the microscopic physics used, partly checked by solar or stellar acoustic modes. In the present paper we first recall which fundamental physics has been recently verified by helioseismology. Then we recall that opacity is an important ingredient of the secular evolution of stars and we point out why it is necessary to measure absorption coefficients and degrees of ionization in the laboratory for some well identified astrophysical conditions. We examine two specific experimental conditions which are accessible to large laser facilities and are suitable to solve some interesting questions of the stellar community: are the solar internal radiative interactions properly estimated and what is the proper role of the opacity in the excitation of the non-radial modes in the envelop of the β Cepheids and the Be stars? At the end of the paper we point out the difficulties of the experimental approach that we need to overcome. (authors)

  8. Comparative studies of stellarator and tokamak transport

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U; Burhenn, R; Geiger, J; Giannone, L.; Hartfuss, H J; Kuehner, G; Ledl, L; Simmet, E E; Walter, H [Max-Planck-Inst. fuer Plasmaphysik, IPP-Euratom Association, Garching (Germany); ECRH Team; W7-AS Team

    1997-09-01

    Transport properties in the W7-AS stellarator and in tokamaks are compared. The parameter dependences and the absolute values of the energy confinement time are similar. Indications are found that the density dependence, which is usually observed in stellarator confinement, can vanish above a critical density. The density dependence in stellarators seems to be similar to that in the linear ohmic confinement regime, which, in small tokamaks, extends to high density values, too. Because of the similarity in the gross confinement properties, transport in stellarators and tokamaks should not be dominated by the parameters which are very different in the two concepts, i.e. magnetic shear, major rational values of the rotational transform and plasma current. A difference in confinement is that there exists evidence for pinches in the particle and, possibly, energy transport channels in tokamaks whereas in stellarators no pinches have been observed, so far. In order to study the effect of plasma current and toroidal electric fields, stellarator discharges were carried out with an increasing amount of plasma current. From these experiments, no clear evidence of a connection of pinches with these parameters is found. The transient response in W7-AS plasmas can be described in terms of a non-local model. As in tokamaks, also cold pulse experiments in W7-AS indicate the importance of non-local transport. (author). 8 refs, 5 figs.

  9. Negative CO

    NARCIS (Netherlands)

    Meysman, F.J.R.; Montserrat, F.

    2017-01-01

    Negative emission technologies (NETs) target the removal of carbon dioxide (CO2) from the atmosphere, and are being actively investigated as a strategy to limit global warming to within the 1.5–2°C targets of the 2015 UN climate agreement. Enhanced silicate weathering (ESW) proposes to

  10. Negative Certainty

    Science.gov (United States)

    Ariso, José María

    2017-01-01

    The definitions of "negative knowledge" and the studies in this regard published to date have not considered the categorial distinction Wittgenstein established between knowledge and certainty. Hence, the important role that certainty, despite its omission, should have in these definitions and studies has not yet been shown. In this…

  11. Use of the stellarator expansion to investigate plasma equilibrium in modular stellarators

    International Nuclear Information System (INIS)

    Anania, G.; Johnson, J.L.; Weimer, K.E.

    1982-11-01

    A numerical code utilizing a large-aspect ratio, small-helical-distortion expansion is developed and used to investigate the effect of plasma currents on stellarator equilibrium. Application to modular stellarator configurations shows that a large rotational transform, and hence large coil deformation, is needed to achieve high-beta equilibria

  12. African American Women: Surviving Breast Cancer Mortality against the Highest Odds

    Directory of Open Access Journals (Sweden)

    Shelley White-Means

    2015-12-01

    Full Text Available Among the country’s 25 largest cities, the breast cancer mortality disparity is highest in Memphis, Tennessee, where African American women are twice as likely to die from breast cancer as White women. This qualitative study of African-American breast cancer survivors explores experiences during and post treatment that contributed to their beating the high odds of mortality. Using a semi-structured interview guide, a focus group session was held in 2012 with 10 breast cancer survivors. Thematic analysis and a deductive a priori template of codes were used to analyze the data. Five main themes were identified: family history, breast/body awareness and preparedness to manage a breast cancer event, diagnosis experience and reaction to the diagnosis, family reactions, and impact on life. Prayer and family support were central to coping, and survivors voiced a cultural acceptance of racial disparities in health outcomes. They reported lack of provider sensitivity regarding pain, financial difficulties, negative responses from family/friends, and resiliency strategies for coping with physical and mental limitations. Our research suggested that a patient-centered approach of demystifying breast cancer (both in patient-provider communication and in community settings would impact how women cope with breast cancer and respond to information about its diagnosis.

  13. African American Women: Surviving Breast Cancer Mortality against the Highest Odds

    Science.gov (United States)

    White-Means, Shelley; Rice, Muriel; Dapremont, Jill; Davis, Barbara; Martin, Judy

    2015-01-01

    Among the country’s 25 largest cities, the breast cancer mortality disparity is highest in Memphis, Tennessee, where African American women are twice as likely to die from breast cancer as White women. This qualitative study of African-American breast cancer survivors explores experiences during and post treatment that contributed to their beating the high odds of mortality. Using a semi-structured interview guide, a focus group session was held in 2012 with 10 breast cancer survivors. Thematic analysis and a deductive a priori template of codes were used to analyze the data. Five main themes were identified: family history, breast/body awareness and preparedness to manage a breast cancer event, diagnosis experience and reaction to the diagnosis, family reactions, and impact on life. Prayer and family support were central to coping, and survivors voiced a cultural acceptance of racial disparities in health outcomes. They reported lack of provider sensitivity regarding pain, financial difficulties, negative responses from family/friends, and resiliency strategies for coping with physical and mental limitations. Our research suggested that a patient-centered approach of demystifying breast cancer (both in patient-provider communication and in community settings) would impact how women cope with breast cancer and respond to information about its diagnosis. PMID:26703655

  14. Stellar Firework in a Whirlwind

    Science.gov (United States)

    2007-09-01

    VLT Image of Supernova in Beautiful Spiral Galaxy NGC 1288 Stars do not like to be alone. Indeed, most stars are members of a binary system, in which two stars circle around each other in an apparently never-ending cosmic ballet. But sometimes, things can go wrong. When the dancing stars are too close to each other, one of them can start devouring its partner. If the vampire star is a white dwarf - a burned-out star that was once like our Sun - this greed can lead to a cosmic catastrophe: the white dwarf explodes as a Type Ia supernova. In July 2006, ESO's Very Large Telescope took images of such a stellar firework in the galaxy NGC 1288. The supernova - designated SN 2006dr - was at its peak brightness, shining as bright as the entire galaxy itself, bearing witness to the amount of energy released. ESO PR Photo 39/07 ESO PR Photo 39/07 SN 2006dr in NGC 1288 NGC 1288 is a rather spectacular spiral galaxy, seen almost face-on and showing multiple spiral arms pirouetting around the centre. Bearing a strong resemblance to the beautiful spiral galaxy NGC 1232, it is located 200 million light-years away from our home Galaxy, the Milky Way. Two main arms emerge from the central regions and then progressively split into other arms when moving further away. A small bar of stars and gas runs across the centre of the galaxy. The first images of NGC 1288, obtained during the commissioning period of the FORS instrument on ESO's VLT in 1998, were of such high quality that they have allowed astronomers [1] to carry out a quantitative analysis of the morphology of the galaxy. They found that NGC 1288 is most probably surrounded by a large dark matter halo. The appearance and number of spiral arms are indeed directly related to the amount of dark matter in the galaxy's halo. The supernova was first spotted by amateur astronomer Berto Monard. On the night of 17 July 2006, Monard used his 30-cm telescope in the suburbs of Pretoria in South Africa and discovered the supernova as an

  15. sunstardb: A Database for the Study of Stellar Magnetism and the Solar-stellar Connection

    Science.gov (United States)

    Egeland, Ricky

    2018-05-01

    The “solar-stellar connection” began as a relatively small field of research focused on understanding the processes that generate magnetic fields in stars and sometimes lead to a cyclic pattern of long-term variability in activity, as demonstrated by our Sun. This area of study has recently become more broadly pertinent to questions of exoplanet habitability and exo-space weather, as well as stellar evolution. In contrast to other areas of stellar research, individual stars in the solar-stellar connection often have a distinct identity and character in the literature, due primarily to the rarity of the decades-long time-series that are necessary for studying stellar activity cycles. Furthermore, the underlying stellar dynamo is not well understood theoretically, and is thought to be sensitive to several stellar properties, e.g., luminosity, differential rotation, and the depth of the convection zone, which in turn are often parameterized by other more readily available properties. Relevant observations are scattered throughout the literature and existing stellar databases, and consolidating information for new studies is a tedious and laborious exercise. To accelerate research in this area I developed sunstardb, a relational database of stellar properties and magnetic activity proxy time-series keyed by individual named stars. The organization of the data eliminates the need for the problematic catalog cross-matching operations inherent when building an analysis data set from heterogeneous sources. In this article I describe the principles behind sunstardb, the data structures and programming interfaces, as well as use cases from solar-stellar connection research.

  16. Indicators of Mass in Spherical Stellar Atmospheres

    Science.gov (United States)

    Lester, John B.; Dinshaw, Rayomond; Neilson, Hilding R.

    2013-04-01

    Mass is the most important stellar parameter, but it is not directly observable for a single star. Spherical model stellar atmospheres are explicitly characterized by their luminosity ( L⋆), mass ( M⋆), and radius ( R⋆), and observations can now determine directly L⋆ and R⋆. We computed spherical model atmospheres for red giants and for red supergiants holding L⋆ and R⋆ constant at characteristic values for each type of star but varying M⋆, and we searched the predicted flux spectra and surface-brightness distributions for features that changed with mass. For both stellar classes we found similar signatures of the stars’ mass in both the surface-brightness distribution and the flux spectrum. The spectral features have been use previously to determine log 10(g), and now that the luminosity and radius of a non-binary red giant or red supergiant can be observed, spherical model stellar atmospheres can be used to determine a star’s mass from currently achievable spectroscopy. The surface-brightness variations of mass are slightly smaller than can be resolved by current stellar imaging, but they offer the advantage of being less sensitive to the detailed chemical composition of the atmosphere.

  17. Stellarator Coil Design and Plasma Sensitivity

    International Nuclear Information System (INIS)

    Ku, Long-Poe; Boozer, Allen H.

    2010-01-01

    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.

  18. Development of code PRETOR for stellarator simulation

    International Nuclear Information System (INIS)

    Dies, J.; Fontanet, J.; Fontdecaba, J.M.; Castejon, F.; Alejandre, C.

    1998-01-01

    The Department de Fisica i Enginyeria Nuclear (DFEN) of the UPC has some experience in the development of the transport code PRETOR. This code has been validated with shots of DIII-D, JET and TFTR, it has also been used in the simulation of operational scenarios of ITER fast burnt termination. Recently, the association EURATOM-CIEMAT has started the operation of the TJ-II stellarator. Due to the need of validating the results given by others transport codes applied to stellarators and because all of them made some approximations, as a averaging magnitudes in each magnetic surface, it was thought suitable to adapt the PRETOR code to devices without axial symmetry, like stellarators, which is very suitable for the specific needs of the study of TJ-II. Several modifications are required in PRETOR; the main concerns to the models of: magnetic equilibrium, geometry and transport of energy and particles. In order to solve the complex magnetic equilibrium geometry the powerful numerical code VMEC has been used. This code gives the magnetic surface shape as a Fourier series in terms of the harmonics (m,n). Most of the geometric magnitudes are also obtained from the VMEC results file. The energy and particle transport models will be replaced by other phenomenological models that are better adapted to stellarator simulation. Using the proposed models, it is pretended to reproduce experimental data available from present stellarators, given especial attention to the TJ-II of the association EURATOM-CIEMAT. (Author)

  19. ON THE ORIGIN OF STELLAR MASSES

    International Nuclear Information System (INIS)

    Krumholz, Mark R.

    2011-01-01

    It has been a longstanding problem to determine, as far as possible, the characteristic masses of stars in terms of fundamental constants; the almost complete invariance of this mass as a function of the star-forming environment suggests that this should be possible. Here I provide such a calculation. The typical stellar mass is set by the characteristic fragment mass in a star-forming cloud, which depends on the cloud's density and temperature structure. Except in the very early universe, the latter is determined mainly by the radiation released as matter falls onto seed protostars. The energy yield from this process is ultimately set by the properties of deuterium burning in protostellar cores, which determines the stars' radii. I show that it is possible to combine these considerations to compute a characteristic stellar mass almost entirely in terms of fundamental constants, with an extremely weak residual dependence on the interstellar pressure and metallicity. This result not only explains the invariance of stellar masses, it resolves a second mystery: why fragmentation of a cold, low-density interstellar cloud, a process with no obvious dependence on the properties of nuclear reactions, happens to select a stellar mass scale such that stellar cores can ignite hydrogen. Finally, the weak residual dependence on the interstellar pressure and metallicity may explain recent observational hints of a smaller characteristic mass in the high-pressure, high-metallicity cores of giant elliptical galaxies.

  20. Collisionless microinstabilities in stellarators. II. Numerical simulations

    International Nuclear Information System (INIS)

    Proll, J. H. E.; Xanthopoulos, P.; Helander, P.

    2013-01-01

    Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations

  1. Review of stellarator research world wide

    International Nuclear Information System (INIS)

    Shonet, J.L.

    1987-01-01

    The world-wide effort in stellarators has evolved considerably during the past few years. Stellarator facilities are located in the Australia, Federal Republic of Germany, Japan, the Soviet Union, Spain, the United Kingdom and the United States. Dimensions of stellarators range from less than 20 centimeters in major radius to more than 2 meters, and magnetic field values between 0.2 Tesla to more than 3.0 Tesla. Stellarators are made in a variety of magnetic configurations with wide ranges of toroidal aspect ratios and methods of generating the stellarator magnetic surfaces. In particular, continuous helical coils, twisted modular coils, or twisted vacuum chambers all provide different means to generate nested toroidal magnetic surfaces without the need for currents flowing in the plasma. The goal of present day experiments is to accumulate a physics data base. This is being done by increasing electron and ion temperatures with non-ohmic heating, by transport and scaling studies considering neoclassical scaling, global scaling, effects of electric fields, the bootstrap current and magnetic islands. Higher betas are being attempted by designing suitable magnetic configurations, pellet injection and/or minimizing transport losses. Plasma-wall interactions and particle control are being examined by divertor, pumped-limiter and carbonization experiments

  2. The Stellar Imager (SI)"Vision Mission"

    Science.gov (United States)

    Carpenter, Ken; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Karovska, M.; Allen, R.

    2004-01-01

    The Stellar Imager (SI) is a "Vision" mission in the Sun-Earth Connection (SEC) Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar magnetic activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, at ultraviolet wavelengths, on the order of 100 micro-arcsec and thus baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (less than 20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. SI's resolution will make it an invaluable resource for many other areas of astrophysics, including studies of AGN s, supernovae, cataclysmic variables, young stellar objects, QSO's, and stellar black holes. ongoing mission concept and technology development studies for SI. These studies are designed to refine the mission requirements for the science goals, define a Design Reference Mission, perform trade studies of selected major technical and architectural issues, improve the existing technology roadmap, and explore the details of deployment and operations, as well as the possible roles of astronauts and/or robots in construction and servicing of the facility.

  3. Geometric phase modulation for stellar interferometry

    International Nuclear Information System (INIS)

    Roy, M.; Boschung, B.; Tango, W.J.; Davis, J.

    2002-01-01

    Full text: In a long baseline optical interferometer, the fringe visibility is normally measured by modulation of the optical path difference between the two arms of the instruments. To obtain accurate measurements, the spectral bandwidth must be narrow, limiting the sensitivity of the technique. The application of geometric phase modulation technique to stellar interferometry has been proposed by Tango and Davis. Modulation of the geometric phase has the potential for improving the sensitivity of optical interferometers, and specially the Sydney University Stellar Interferometer (SUSI), by allowing broad band modulation of the light signals. This is because a modulator that changes the geometric phase of the signal is, in principle, achromatic. Another advantage of using such a phase modulator is that it can be placed in the common path traversed by the two orthogonally polarized beams emerging from the beam combiner in a stellar interferometer. Thus the optical components of the modulator do not have to be interferometric quality and could be relatively easily introduced into SUSI. We have investigated the proposed application in a laboratory-based experiment using a Mach-Zehnder interferometer with white-light source. This can be seen as a small model of an amplitude stellar interferometer where the light source takes the place of the distant star and two corner mirrors replaces the entrance pupils of the stellar interferometer

  4. ON THE MAXIMUM MASS OF STELLAR BLACK HOLES

    International Nuclear Information System (INIS)

    Belczynski, Krzysztof; Fryer, Chris L.; Bulik, Tomasz; Ruiter, Ashley; Valsecchi, Francesca; Vink, Jorick S.; Hurley, Jarrod R.

    2010-01-01

    We present the spectrum of compact object masses: neutron stars and black holes (BHs) that originate from single stars in different environments. In particular, we calculate the dependence of maximum BH mass on metallicity and on some specific wind mass loss rates (e.g., Hurley et al. and Vink et al.). Our calculations show that the highest mass BHs observed in the Galaxy M bh ∼ 15 M sun in the high metallicity environment (Z = Z sun = 0.02) can be explained with stellar models and the wind mass loss rates adopted here. To reach this result we had to set luminous blue variable mass loss rates at the level of ∼10 -4 M sun yr -1 and to employ metallicity-dependent Wolf-Rayet winds. With such winds, calibrated on Galactic BH mass measurements, the maximum BH mass obtained for moderate metallicity (Z = 0.3 Z sun = 0.006) is M bh,max = 30 M sun . This is a rather striking finding as the mass of the most massive known stellar BH is M bh = 23-34 M sun and, in fact, it is located in a small star-forming galaxy with moderate metallicity. We find that in the very low (globular cluster-like) metallicity environment the maximum BH mass can be as high as M bh,max = 80 M sun (Z = 0.01 Z sun = 0.0002). It is interesting to note that X-ray luminosity from Eddington-limited accretion onto an 80 M sun BH is of the order of ∼10 40 erg s -1 and is comparable to luminosities of some known ultra-luminous X-ray sources. We emphasize that our results were obtained for single stars only and that binary interactions may alter these maximum BH masses (e.g., accretion from a close companion). This is strictly a proof-of-principle study which demonstrates that stellar models can naturally explain even the most massive known stellar BHs.

  5. Stellar Wakes from Dark Matter Subhalos.

    Science.gov (United States)

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R; Wu, Chih-Liang

    2018-05-25

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ∼10^{7}  M_{⊙} or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  6. Stellar Wakes from Dark Matter Subhalos

    Science.gov (United States)

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R.; Wu, Chih-Liang

    2018-05-01

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ˜107 M⊙ or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  7. Effect of finite β on stellarator transport

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1984-04-01

    A theory of the modification of stellarator transport due to the presence of finite plasma pressure is developed, and applied to a range of stellarator configurations. For many configurations of interest, plasma transport can change by more than an order of magnitude in the progression from zero pressure to the equilibrium β limit of the device. Thus, a stellarator with transport-optimized vacuum fields can have poor confinement at the desired operating β. Without an external compensating field, increasing β tends to degrade confinement, unless the initial field structure is very carefully chosen. The theory permits one to correctly determine this vacuum structure, in terms of the desired structure of the field at a prescribed operating β. With a compensating external field, the deleterious effect of finite β on transport can be partially eliminated

  8. Recent advances in modeling stellar interiors (u)

    Energy Technology Data Exchange (ETDEWEB)

    Guzik, Joyce Ann [Los Alamos National Laboratory

    2010-01-01

    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid {gamma} Dor/{delta} Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as {eta} Car and P Cyg, and the solar abundance problem.

  9. Electron Capture Cross Sections for Stellar Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    P. G. Giannaka

    2015-01-01

    Full Text Available In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasiparticle random-phase approximation (pn-QRPA and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the abovementioned e--capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the 66Zn isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  10. Equilibrium reconstruction in stellarators: V3FIT

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J.D.; Knowlton, S.F. [Physics Department, Auburn University, Auburn, AL (United States); Hirshman, S.P.; Lazarus, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Lao, L.L. [General Atomics, San Diego, CA (United States)

    2003-07-01

    The first section describes a general response function formalism for computing stellarator magnetic diagnostic signals, which is the first step in developing a reconstruction capability. The approach parallels that used in the EFIT two-dimensional (2-D) equilibrium reconstruction code. The second section describes the two codes we have written, V3RFUN and V3POST. V3RFUN computes the response functions for a specified magnetic diagnostic coil, and V3POST uses the response functions calculated by V3RFUN, along with the plasma current information supplied by the equilibrium code VMEC, to compute the expected magnetic diagnostic signals. These two codes are currently being used to design magnetic diagnostic for the NCSX stellarator (at PPPL) and the CTH toroidal hybrid stellarator (at Auburn University). The last section of the paper describes plans for the V3FIT code. (orig.)

  11. The low-luminosity stellar mass function

    International Nuclear Information System (INIS)

    Kroupa, Pavel; Tout, C.A.; Gilmore, Gerard

    1990-01-01

    The stellar mass function for low-mass stars is constrained using the stellar luminosity function and the slope of the mass-luminosity relation. We investigate the range of mass functions for stars with absolute visual magnitude fainter than M V ≅ +5 which are consistent with both the local luminosity function and the rather poorly determined mass-absolute visual magnitude relation. Points of inflexion in the mass-luminosity relation exist because of the effects of H - , H 2 and of other molecules on the opacity and equation of state. The first two of these correspond to absolute magnitudes M V ≅ +7 and M V ≅ +12, respectively, at which structure is evident in the stellar luminosity function (a flattening and a maximum, respectively). Combining the mass-luminosity relation which shows these inflexion points with a peaked luminosity function, we test smooth mass functions in the mass range 0.9-0.1 the solar mass. (author)

  12. Young and Exotic Stellar Zoo

    Science.gov (United States)

    2005-03-01

    Summary Super star clusters are groups of hundreds of thousands of very young stars packed into an unbelievably small volume. They represent the most extreme environments in which stars and planets can form. Until now, super star clusters were only known to exist very far away, mostly in pairs or groups of interacting galaxies. Now, however, a team of European astronomers [1] have used ESO's telescopes to uncover such a monster object within our own Galaxy, the Milky Way, almost, but not quite, in our own backyard! The newly found massive structure is hidden behind a large cloud of dust and gas and this is why it took so long to unveil its true nature. It is known as "Westerlund 1" and is a thousand times closer than any other super star cluster known so far. It is close enough that astronomers may now probe its structure in some detail. Westerlund 1 contains hundreds of very massive stars, some shining with a brilliance of almost one million suns and some two-thousand times larger than the Sun (as large as the orbit of Saturn)! Indeed, if the Sun were located at the heart of this remarkable cluster, our sky would be full of hundreds of stars as bright as the full Moon. Westerlund 1 is a most unique natural laboratory for the study of extreme stellar physics, helping astronomers to find out how the most massive stars in our Galaxy live and die. From their observations, the astronomers conclude that this extreme cluster most probably contains no less than 100,000 times the mass of the Sun, and all of its stars are located within a region less than 6 light-years across. Westerlund 1 thus appears to be the most massive compact young cluster yet identified in the Milky Way Galaxy. PR Photo 09a/05: The Super Star Cluster Westerlund 1 (2.2m MPG/ESO + WFI) PR Photo 09b/05: Properties of Young Massive Clusters Super Star Clusters Stars are generally born in small groups, mostly in so-called "open clusters" that typically contain a few hundred stars. From a wide range of

  13. The Stellar IMF from Isothermal MHD Turbulence

    Science.gov (United States)

    Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke

    2018-02-01

    We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 M ⊙ and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfvén velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.

  14. Students Excited by Stellar Discovery

    Science.gov (United States)

    2011-02-01

    In the constellation of Ophiuchus, above the disk of our Milky Way Galaxy, there lurks a stellar corpse spinning 30 times per second -- an exotic star known as a radio pulsar. This object was unknown until it was discovered last week by three high school students. These students are part of the Pulsar Search Collaboratory (PSC) project, run by the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, and West Virginia University (WVU). The pulsar, which may be a rare kind of neutron star called a recycled pulsar, was discovered independently by Virginia students Alexander Snider and Casey Thompson, on January 20, and a day later by Kentucky student Hannah Mabry. "Every day, I told myself, 'I have to find a pulsar. I better find a pulsar before this class ends,'" said Mabry. When she actually made the discovery, she could barely contain her excitement. "I started screaming and jumping up and down." Thompson was similarly expressive. "After three years of searching, I hadn't found a single thing," he said, "but when I did, I threw my hands up in the air and said, 'Yes!'." Snider said, "It actually feels really neat to be the first person to ever see something like that. It's an uplifting feeling." As part of the PSC, the students analyze real data from NRAO's Robert C. Byrd Green Bank Telescope (GBT) to find pulsars. The students' teachers -- Debra Edwards of Sherando High School, Leah Lorton of James River High School, and Jennifer Carter of Rowan County Senior High School -- all introduced the PSC in their classes, and interested students formed teams to continue the work. Even before the discovery, Mabry simply enjoyed the search. "It just feels like you're actually doing something," she said. "It's a good feeling." Once the pulsar candidate was reported to NRAO, Project Director Rachel Rosen took a look and agreed with the young scientists. A followup observing session was scheduled on the GBT. Snider and Mabry traveled to West Virginia to assist in the

  15. Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    Science.gov (United States)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Forbes, Duncan; Hargis, Jonathan R.; Peter, Annika; Pucha, Ragadeepika; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2018-06-01

    We discuss our ongoing observational program to comprehensively map the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. Our results will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. This program has already yielded the discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB, and at least two additional candidate satellites. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  16. Optimisation of stellarator systems: Possible ways

    International Nuclear Information System (INIS)

    Cooper, W.A.; Isaev, M.; Leneva, A.E.; Mikhailov, M.; Shafranov, V.D.; Subbotin, A.A.

    2001-01-01

    The results of our search for advanced helical (stellarator) systems with a small number of field periods over the last five years are presented. The comparison of stellarator systems with toroidal (helical or axial) and poloidal directions of the contours with B = constant on the magnetic surface as well as systems with Helias and Heliac-like orientation of the magnetic surfaces cross-sections with respect to the principal normal to the magnetic axis is undertaken. Particular attention is paid to some attractive features of the systems with constant B-lines in the poloidal direction. (author)

  17. Optimisation of stellarator systems: Possible ways

    International Nuclear Information System (INIS)

    Cooper, W.A.; Isaev, M.Yu.; Leneva, A.E.; Mikhailov, M.I.; Sharfranov, V.D.; Subbotin, A.A.

    1999-01-01

    The results of our search for advanced helical (stellarator) systems with a small number of field periods over the last five years are presented. The comparison of stellarator systems with toroidal (helical or axial) and poloidal directions of the contours with B = constant on the magnetic surface as well as systems with Helias and Heliac-like orientation of the magnetic surfaces cross-sections with respect to the principal normal to the magnetic axis is undertaken. Particular attention is paid to some attractive features of the systems with constant B-lines in the poloidal direction. (author)

  18. 3D radiative transfer in stellar atmospheres

    International Nuclear Information System (INIS)

    Carlsson, M

    2008-01-01

    Three-dimensional (3D) radiative transfer in stellar atmospheres is reviewed with special emphasis on the atmospheres of cool stars and applications. A short review of methods in 3D radiative transfer shows that mature methods exist, both for taking into account radiation as an energy transport mechanism in 3D (magneto-) hydrodynamical simulations of stellar atmospheres and for the diagnostic problem of calculating the emergent spectrum in more detail from such models, both assuming local thermodynamic equilibrium (LTE) and in non-LTE. Such methods have been implemented in several codes, and examples of applications are given.

  19. Stellar compass for the Clementine Mission

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    A CCD sensor with 42 x 28 degrees FOV and 576 x 384 pixels was built by the Advanced Technology Program (ATP) in the Physics Department at LLNL. That sensor, called the StarTracker camera, is used on the Clementine Lunar Mapping mission between January and May, 1994. Together with the Stellar Compass software, the StarTracker camera provided a way of identifying its orientation to within about 150 microradians in camera body pitch and yaw. This presentation will be an overview of basically how the Stellar Compass software works, along with showing some of its performance results.

  20. Overdense Plasma Operation in the WEGA Stellarator

    Czech Academy of Sciences Publication Activity Database

    Otte, M.; Laqua, H.P.; Marsen, S.; Podoba, Y.; Preinhaelter, Josef; Stange, T.; Urban, Jakub; Wagner, F.; Zhang, D.

    2010-01-01

    Roč. 50, č. 8 (2010), s. 785-789 ISSN 0863-1042. [International Stellarator/Heliotron Workshop/17th./. Princeton, 12.10.2009-16.10.2009] R&D Projects: GA ČR GA202/08/0419; GA MŠk 7G09042 Institutional research plan: CEZ:AV0Z20430508 Keywords : Stellarator * Bernstein waves * overdense plasma * supra -thermal electrons Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.006, year: 2010 http://dx.doi.org/10.1002/ctpp.200900053

  1. 176Lu: Cosmic clock or stellar thermometer

    International Nuclear Information System (INIS)

    Ward, R.A.; Beer, H.; Kaeppeler, F.; Wisshak, K.

    1980-12-01

    We quantitatively examine the various experimental and theoretical aspects of the stellar synthesis of the long-lived ground state of 176 Lu (3.6 x 10 10 y). We discuss the various regimes of stellar temperature and free-neutron density in which either: (i) the internal electromagnetic couplings between 176 Lusup(o) and 176 Lusup(m) (3.68 hours) are sufficiently slow that they may be treated as separate nuclei, or (ii) the internal couplings are rapidly able to establish thermal equilibrium between 176 Lusup(o) and 176 Lusup(m). (orig.)

  2. Ambitious Survey Spots Stellar Nurseries

    Science.gov (United States)

    2010-08-01

    -dimensional geometry of the Magellanic system. Chris Evans from the VMC team adds: "The VISTA images will allow us to extend our studies beyond the inner regions of the Tarantula into the multitude of smaller stellar nurseries nearby, which also harbour a rich population of young and massive stars. Armed with the new, exquisite infrared images, we will be able to probe the cocoons in which massive stars are still forming today, while also looking at their interaction with older stars in the wider region." The wide-field image shows a host of different objects. The bright area above the centre is the Tarantula Nebula itself, with the RMC 136 cluster of massive stars in its core. To the left is the NGC 2100 star cluster. To the right is the tiny remnant of the supernova SN1987A (eso1032). Below the centre are a series of star-forming regions including NGC 2080 - nicknamed the "Ghost Head Nebula" - and the NGC 2083 star cluster. The VISTA Magellanic Cloud Survey is one of six huge near-infrared surveys of the southern sky that will take up most of the first five years of operations of VISTA. Notes [1] VISTA ― the Visible and Infrared Survey Telescope for Astronomy ― is the newest telescope at ESO's Paranal Observatory in northern Chile. VISTA is a survey telescope working at near-infrared wavelengths and is the world's largest survey telescope. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. The telescope is housed on the peak adjacent to the one hosting ESO's Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA has a main mirror that is 4.1 m across. In photographic terms it can be thought of as a 67-megapixel digital camera with a 13 000 mm f/3.25 mirror lens. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries

  3. The “Building Blocks” of Stellar Halos

    Directory of Open Access Journals (Sweden)

    Kyle A. Oman

    2017-08-01

    Full Text Available The stellar halos of galaxies encode their accretion histories. In particular, the median metallicity of a halo is determined primarily by the mass of the most massive accreted object. We use hydrodynamical cosmological simulations from the apostle project to study the connection between the stellar mass, the metallicity distribution, and the stellar age distribution of a halo and the identity of its most massive progenitor. We find that the stellar populations in an accreted halo typically resemble the old stellar populations in a present-day dwarf galaxy with a stellar mass ∼0.2–0.5 dex greater than that of the stellar halo. This suggests that had they not been accreted, the primary progenitors of stellar halos would have evolved to resemble typical nearby dwarf irregulars.

  4. Deriving stellar parameters with the SME software package

    Science.gov (United States)

    Piskunov, N.

    2017-09-01

    Photometry and spectroscopy are complementary tools for deriving accurate stellar parameters. Here I present one of the popular packages for stellar spectroscopy called SME with the emphasis on the latest developments and error assessment for the derived parameters.

  5. Stellar chemical signatures and hierarchical galaxy formation

    NARCIS (Netherlands)

    Venn, KA; Irwin, M; Shetrone, MD; Tout, CA; Hill, [No Value; Tolstoy, E

    To compare the chemistries of stars in the Milky Way dwarf spheroidal (dSph) satellite galaxies with stars in the Galaxy, we have compiled a large sample of Galactic stellar abundances from the literature. When kinematic information is available, we have assigned the stars to standard Galactic

  6. Equilibrium 𝛽-limits in classical stellarators

    Science.gov (United States)

    Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.

    2017-12-01

    A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.

  7. Stellar Sources of Gamma-ray Bursts

    OpenAIRE

    Luchkov, B. I.

    2011-01-01

    Correlation analysis of Swift gamma-ray burst coordinates and nearby star locations (catalog Gliese) reveals 4 coincidences with good angular accuracy. The random probability is 4\\times 10^{-5}, so evidencing that coincident stars are indeed gamma-ray burst sources. Some additional search of stellar gamma-ray bursts is discussed.

  8. Benchmarking the Multidimensional Stellar Implicit Code MUSIC

    Science.gov (United States)

    Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.

    2017-04-01

    We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.

  9. Microlensing and the physics of stellar atmospheres

    NARCIS (Netherlands)

    Sackett, PD; Menzies, JW; Sackett, PD

    2001-01-01

    The simple physics of microlensing provides a well understood tool with which to probe the atmospheres of distant stars in the Galaxy and Local Group with high magnification and resolution. Recent results in measuring stellar surface structure through broad band photometry and spectroscopy of high

  10. Evolution and seismic tools for stellar astrophysics

    CERN Document Server

    Monteiro, Mario JPFG

    2008-01-01

    A collection of articles published by the journal "Astrophysics and Space Science, Volume 316, Number 1-4", August 2008. This work covers 10 evolution codes and 9 oscillation codes. It is suitable for researchers and research students working on the modeling of stars and on the implementation of seismic test of stellar models.

  11. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10 6 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ∼10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  12. Robust Modeling of Stellar Triples in PHOEBE

    Science.gov (United States)

    Conroy, Kyle E.; Prsa, Andrej; Horvat, Martin; Stassun, Keivan G.

    2017-01-01

    The number of known mutually-eclipsing stellar triple and multiple systems has increased greatly during the Kepler era. These systems provide significant opportunities to both determine fundamental stellar parameters of benchmark systems to unprecedented precision as well as to study the dynamical interaction and formation mechanisms of stellar and planetary systems. Modeling these systems to their full potential, however, has not been feasible until recently. Most existing available codes are restricted to the two-body binary case and those that do provide N-body support for more components make sacrifices in precision by assuming no stellar surface distortion. We have completely redesigned and rewritten the PHOEBE binary modeling code to incorporate support for triple and higher-order systems while also robustly modeling data with Kepler precision. Here we present our approach, demonstrate several test cases based on real data, and discuss the current status of PHOEBE's support for modeling these types of systems. PHOEBE is funded in part by NSF grant #1517474.

  13. On the collapse of iron stellar cores

    International Nuclear Information System (INIS)

    Barkat, Z.; Rakavy, G.; Reiss, Y.; Wilson, J.R.

    1975-01-01

    The collapse of iron stellar cores is investigated to see whether the outward shock produced by the bounce at neutron star density is sufficient to burn appreciable amounts of the envelope around the iron core. Several models were tried, and in all cases no appreciable burn took place; hence no explosion results from the collapse of these models

  14. Modular Stellarator Reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  15. Summary of the Advanced Stellar Compass

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1997-01-01

    The current version of the Advanced Stellar Compass (ASC) is an improved implementation of the instrument developed for the Danish Geomagnetic Research Satellite Ørsted. The Ørsted version was successfully tested in space on the NASA sounding rocket "Thunderstorm III", that was launched September 2...

  16. Neutrino confinement in collapsing stellar cores

    International Nuclear Information System (INIS)

    Chung, K.C.

    1987-01-01

    Neutrino confinement is expected to occur in the core of highly evolved stars, leading to the formation of a degenerate neutrino gas. The main neutrino sources are briefly reviewed and the neutrino processes relevant to the neutrino opacity in the stellar matter are discussed. Implications for the equation of state of neutrino-trapped matter are examined. (author) [pt

  17. Survey of the MAgellanic Stellar History -- SMASH

    NARCIS (Netherlands)

    Nidever, David; Olsen, Knut; Besla, Gurtina; Gruendl, Robert; Saha, Abhijit; Gallart, Carme; Olszewski, Edward W.; Munoz, Ricardo; Monelli, Matteo; Kunder, Andrea; Kaleida, Catherine; Walker, Alistair; Stringfellow, Guy; Zaritsky, Dennis; van der Marel, Roeland; Blum, Robert; Vivas, Kathy; Chu, You-Hua; Martin, Nicolas; Conn, Blair; Noel, Noelia; Majewski, Steven; Jin, Shoko; Kim, Hwihyun; Cioni, Maria-Rosa; Bell, Eric; Monachesi, Antonela; de Boer, Thomas

    Over the last several years, various discoveries have drastically altered our view of the iconic Magellanic Clouds (MCs), the nearest interacting galaxy system. The best evidence is now that they are on first infall into the Milky Way, that their stellar populations extend much further than

  18. The evolution of stellar exponential discs

    NARCIS (Netherlands)

    Ferguson, AMN; Clarke, CJ

    2001-01-01

    Models of disc galaxies which invoke viscosity-driven radial flows have long been known to provide a natural explanation for the origin of stellar exponential discs, under the assumption that the star formation and viscous time-scales are comparable. We present models which invoke simultaneous star

  19. Modular stellarator reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  20. The Stellar Imager (SI) Mission Concept

    Science.gov (United States)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Lyon, Richard G.; Mundy, Lee G.; Allen, Ronald J.; Armstrong, Thomas; Danchi, William C.; Karovska, Margarita; Marzouk, Joe; Mazzuca, Lisa M.; hide

    2002-01-01

    The Stellar Imager (SI) is envisioned as a space-based, UV-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. It is designed to image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we describe the scientific goals of the mission, the performance requirements needed to address these goals, the "enabling technology" development efforts being pursued, and the design concepts now under study for the full mission and a possible pathfinder mission.

  1. The Space Stellar Photometry Mission COROT: Asteroseismology ...

    Indian Academy of Sciences (India)

    tribpo

    detect giant extra solar planets (detectable by spectroscopy from the ground) and determine their albedo. As COROT is devoted to stellar photometry, aiming at both a high precision and a long observation time, the search for exoplanets by the transit method can easily be integrated in the payload and in the mission profile.

  2. Teaching stellar interferometry with polymer optical fibers

    Science.gov (United States)

    Illarramendi, M. A.; Arregui, L.; Zubia, J.; Hueso, R.; Sanchez-Lavega, A.

    2017-08-01

    In this manuscript we show the design of a simple experiment that reproduces the operation of the Michelson stellar interferometer by using step-index polymer optical fibers. The emission of stellar sources, single or binary stars, has been simulated by the laser light emerging from the output surface of the 2 meter-long polymer optical fiber. This light has an emission pattern that is similar to the emission pattern of stellar sources - circular, uniform, spatially incoherent, and quasi-monochromatic. Light coming from the fiber end faces passes through two identical pinholes located on a lid covering the objective of a small telescope, thus producing interference. Interference fringes have been acquired using a camera that is coupled to a telescope. The experiments have been carried out both outdoors in the daytime and indoors. By measuring the fringe visibilities, we have determined the size of our artificial stellar sources and the distance between them, when placing them at distances of 54 m from the telescope in the indoor measurements and of 75 m in the outdoor ones.

  3. Plea for stellarator funding raps tokamaks

    International Nuclear Information System (INIS)

    Blake, M.

    1992-01-01

    The funding crunch in magnetic confinement fusion development has moved the editor of a largely technical publication to speak out on a policy issue. James A. Rome, who edits Stellarator News from the Fusion Energy Division at Oak Ridge National Laboratory, wrote an editorial that appeared on the front page of the May 1992 issue. It was titled open-quotes The US Stellarator Program: A Time for Renewal,close quotes and while it focused chiefly on that subject (and lamented the lack of funding for the operation of the existing ATF stellarator at Oak Ridge), it also cited some of the problems inherent in the mainline MCF approach--the tokamak--and stated that if the money can be found for further tokamak design upgrades, it should also be found for stellarators. Rome wrote, open-quotes There is growing recognition in the US, and elsewhere, that the conventional tokamak does not extrapolate to a commercially competitive energy source except with very high field coils ( 1000 MWe).close quotes He pointed up open-quotes the difficulty of simultaneously satisfying conflicting tokamak requirements for efficient current drive, high bootstrap-current fraction, complete avoidance of disruptions, adequate beta limits, and edge-plasma properties compatible with improved (H-mode) confinement and acceptable erosion of divertor plates.close quotes He then called for support for the stellarator as open-quotes the only concept that has performance comparable to that achieved in tokamaks without the plasma-current-related limitations listed above.close quotes

  4. THE XMM CLUSTER SURVEY: THE STELLAR MASS ASSEMBLY OF FOSSIL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Craig D.; Miller, Christopher J. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Richards, Joseph W.; Deadman, Paul-James [Center for Time Domain Informatics, University of California, Berkeley, CA 94720 (United States); Lloyd-Davies, E. J.; Kathy Romer, A.; Mehrtens, Nicola; Liddle, Andrew R. [Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Hoyle, Ben [Institute of Sciences of the Cosmos (ICCUB) and IEEC, Physics Department, University of Barcelona, Barcelona 08024 (Spain); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Stott, John P.; Capozzi, Diego; Collins, Chris A. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Sahlen, Martin [Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Stanford, S. Adam [Physics Department, University of California, Davis, CA 95616 (United States); Viana, Pedro T. P., E-mail: craigha@umich.edu [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-06-10

    This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightest galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5 R{sub 200}, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters.

  5. Dust cloud evolution in sub-stellar atmospheres via plasma deposition and plasma sputtering

    Science.gov (United States)

    Stark, C. R.; Diver, D. A.

    2018-04-01

    Context. In contemporary sub-stellar model atmospheres, dust growth occurs through neutral gas-phase surface chemistry. Recently, there has been a growing body of theoretical and observational evidence suggesting that ionisation processes can also occur. As a result, atmospheres are populated by regions composed of plasma, gas and dust, and the consequent influence of plasma processes on dust evolution is enhanced. Aim. This paper aims to introduce a new model of dust growth and destruction in sub-stellar atmospheres via plasma deposition and plasma sputtering. Methods: Using example sub-stellar atmospheres from DRIFT-PHOENIX, we have compared plasma deposition and sputtering timescales to those from neutral gas-phase surface chemistry to ascertain their regimes of influence. We calculated the plasma sputtering yield and discuss the circumstances where plasma sputtering dominates over deposition. Results: Within the highest dust density cloud regions, plasma deposition and sputtering dominates over neutral gas-phase surface chemistry if the degree of ionisation is ≳10-4. Loosely bound grains with surface binding energies of the order of 0.1-1 eV are susceptible to destruction through plasma sputtering for feasible degrees of ionisation and electron temperatures; whereas, strong crystalline grains with binding energies of the order 10 eV are resistant to sputtering. Conclusions: The mathematical framework outlined sets the foundation for the inclusion of plasma deposition and plasma sputtering in global dust cloud formation models of sub-stellar atmospheres.

  6. The Quasi-Toroidal Stellarator: An Innovative Confinement Experiment

    International Nuclear Information System (INIS)

    Knowlton, S. F.

    2001-01-01

    To develop a new class of stellarators that exhibit improved confinement compared to conventional stellarators. This approach generally makes use of a designed symmetry of the magnetic field strength along a particular coordinate axis in the toroidal geometry of the stellarator, and is referred to as quasi-symmetry

  7. Constraining the Stellar Mass Function in the Galactic Center via Mass Loss from Stellar Collisions

    Directory of Open Access Journals (Sweden)

    Douglas Rubin

    2011-01-01

    Full Text Available The dense concentration of stars and high-velocity dispersions in the Galactic center imply that stellar collisions frequently occur. Stellar collisions could therefore result in significant mass loss rates. We calculate the amount of stellar mass lost due to indirect and direct stellar collisions and find its dependence on the present-day mass function of stars. We find that the total mass loss rate in the Galactic center due to stellar collisions is sensitive to the present-day mass function adopted. We use the observed diffuse X-ray luminosity in the Galactic center to preclude any present-day mass functions that result in mass loss rates >10-5M⨀yr−1 in the vicinity of ~1″. For present-day mass functions of the form, dN/dM∝M-α, we constrain the present-day mass function to have a minimum stellar mass ≲7M⨀ and a power-law slope ≳1.25. We also use this result to constrain the initial mass function in the Galactic center by considering different star formation scenarios.

  8. Lyman alpha emission in nearby star-forming galaxies with the lowest metallicities and the highest [OIII]/[OII] ratios

    Science.gov (United States)

    Izotov, Yuri

    2017-08-01

    The Lyman alpha line of hydrogen is the strongest emission line in galaxies and the tool of predilection for identifying and studying star-forming galaxies over a wide range of redshifts, especially in the early universe. However, it has become clear over the years that not all of the Lyman alpha radiation escapes, due to its resonant scattering on the interstellar and intergalactic medium, and absorption by dust. Although our knowledge of the high-z universe depends crucially on that line, we still do not have a complete understanding of the mechanisms behind the production, radiative transfer and escape of Lyman alpha in galaxies. We wish here to investigate these mechanisms by studying the properties of the ISM in a unique sample of 8 extreme star-forming galaxies (SFGs) that have the highest excitation in the SDSS spectral data base. These dwarf SFGs have considerably lower stellar masses and metallicities, and higher equivalent widths and [OIII]5007/[OII]3727 ratios compared to all nearby SFGs with Lyman alpha emission studied so far with COS. They are, however, very similar to the dwarf Lyman alpha emitters at redshifts 3-6, which are thought to be the main sources of reionization in the early Universe. By combining the HST/COS UV data with data in the optical range, and using photoionization and radiative transfer codes, we will be able to study the properties of the Lyman alpha in these unique objects, derive column densities of the neutral hydrogen N(HI) and compare them with N(HI) obtained from the HeI emission-line ratios in the optical spectra. We will derive Lyman alpha escape fractions and indirectly Lyman continuum escape fractions.

  9. Simulation of neutron fluxes around the W7-X Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jenny

    1999-12-01

    A new fusion experiment, the WENDELSTEIN 7-X Stellarator (W7-X), will be undertaken in Greifswald in Germany. Measurements of the neutron flux will provide information on fusion reaction rates and possibly also on ion temperatures as function of time. For this purpose moderating neutron counters will be designed, tested, calibrated and eventually used at W7-X. Extensive Monte-Carlo simulations have been performed in order to select the most suitable detector and moderator combination with a flat response function and highest achievable efficiency. Different detector configurations with different moderating materials have been tried out, showing that a 32 cm thick graphite moderating BF{sub 3} -counter gives the desired flat response and sufficient efficiency. Neutron spectra calculations have been made for different torus models and the influence of floor, walls and ceiling (i.e. reactor hall) have been investigated. Presented results suggest that a more detailed torus model significantly reduces the number of neutron counts at the detector. Calculations including the reactor hall indicate a tendency of shifting the neutron spectra towards the thermal region. The main part of the scattered neutrons are back-scattered from the floor. Finally, calculations on the graphite moderating BF{sub 3} -counter in the detailed torus environment were performed in order to assess the absolute response function under the influence of the reactor hall. The results show that the detector count rate will increase by only 5-7 % when the reactor hall is taken into account. With a stellarator generating 10{sup 12} to 10{sup 16} neutrons per second the detector count rate will be 2x10{sup 5} to 2x10{sup 9} neutrons per second.

  10. Simulation of neutron fluxes around the W7-X Stellarator

    International Nuclear Information System (INIS)

    Andersson, Jenny

    1999-12-01

    A new fusion experiment, the WENDELSTEIN 7-X Stellarator (W7-X), will be undertaken in Greifswald in Germany. Measurements of the neutron flux will provide information on fusion reaction rates and possibly also on ion temperatures as function of time. For this purpose moderating neutron counters will be designed, tested, calibrated and eventually used at W7-X. Extensive Monte-Carlo simulations have been performed in order to select the most suitable detector and moderator combination with a flat response function and highest achievable efficiency. Different detector configurations with different moderating materials have been tried out, showing that a 32 cm thick graphite moderating BF 3 -counter gives the desired flat response and sufficient efficiency. Neutron spectra calculations have been made for different torus models and the influence of floor, walls and ceiling (i.e. reactor hall) have been investigated. Presented results suggest that a more detailed torus model significantly reduces the number of neutron counts at the detector. Calculations including the reactor hall indicate a tendency of shifting the neutron spectra towards the thermal region. The main part of the scattered neutrons are back-scattered from the floor. Finally, calculations on the graphite moderating BF 3 -counter in the detailed torus environment were performed in order to assess the absolute response function under the influence of the reactor hall. The results show that the detector count rate will increase by only 5-7 % when the reactor hall is taken into account. With a stellarator generating 10 12 to 10 16 neutrons per second the detector count rate will be 2x10 5 to 2x10 9 neutrons per second

  11. Stellar Streams Discovered in the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Shipp, N.; et al.

    2018-01-09

    We perform a search for stellar streams around the Milky Way using the first three years of multi-band optical imaging data from the Dark Energy Survey (DES). We use DES data covering $\\sim 5000$ sq. deg. to a depth of $g > 23.5$ with a relative photometric calibration uncertainty of $< 1 \\%$. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of $\\sim 50$ kpc. We search for stellar streams using a matched-filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of eleven new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extra-tidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, as well as the large- and small-scale distribution of dark matter around the Milky Way.

  12. A new derivation of the highest-weight polynomial of a unitary lie algebra

    International Nuclear Information System (INIS)

    P Chau, Huu-Tai; P Van, Isacker

    2000-01-01

    A new method is presented to derive the expression of the highest-weight polynomial used to build the basis of an irreducible representation (IR) of the unitary algebra U(2J+1). After a brief reminder of Moshinsky's method to arrive at the set of equations defining the highest-weight polynomial of U(2J+1), an alternative derivation of the polynomial from these equations is presented. The method is less general than the one proposed by Moshinsky but has the advantage that the determinantal expression of the highest-weight polynomial is arrived at in a direct way using matrix inversions. (authors)

  13. Modular Stellarator Fusion Reactor (MSR) concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-01-01

    A preliminary conceptual study has been made of the Modulator Stellarator Reactor (MSR) as a stedy-state, ignited, DT-fueled, magnetic fusion reactor. The MSR concept combines the physics of classic stellarator confinement with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4.8-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. Neither an economic analysis nor a detailed conceptual engineering design is presented here, as the primary intent of this scoping study is the elucidation of key physics tradeoffs, constraints, and uncertainties for the ultimate power-reactor embodiment

  14. Time variations of stellar water masers

    International Nuclear Information System (INIS)

    Cox, G.G.; Parker, E.A.

    1979-01-01

    The 22-GHz H 2 O spectra of the stars RS Vir, RT Vir, R Aql, W Hya, U Her, S Cr B, Rx Boo, R Crt and VY CMa have been observed at intervals during the period 1974 September -1977 May. Optical and infrared measurements have also been made. New components have been observed in the H 2 O spectra of most of the stars, and the flux density of W Hya reached 2000 Jy near Jd 2442700. The intensities of the three main groups of components in VY CMa varied in phase consistent with a central pump source. In several stars the intensities were very different from those found by earlier observers, showing that stellar H 2 O masers are often not stable for more than a few cycles of the stellar luminosity. For part of the time the H 2 O and infrared intensities of R Aql and RS Vir were anticorrelated. (author)

  15. A Compact Quasi-axisymmetric Stellarator Reactor

    International Nuclear Information System (INIS)

    Ku, L.P.

    2003-01-01

    We report the progress made in assessing the potential of compact, quasi-axisymmetric stellarators as power-producing reactors. Using an aspect ratio A=4.5 configuration derived from NCSX and optimized with respect to the quasi-axisymmetry and MHD stability in the linear regime as an example, we show that a reactor of 1 GW(e) maybe realizable with a major radius *8 m. This is significantly smaller than the designs of stellarator reactors attempted before. We further show the design of modular coils and discuss the optimization of coil aspect ratios in order to accommodate the blanket for tritium breeding and radiation shielding for coil protection. In addition, we discuss the effects of coil aspect ratio on the peak magnetic field in the coils

  16. Excitation of solar and stellar oscillations

    International Nuclear Information System (INIS)

    Baudin, Frederic

    2009-01-01

    In this report for an Accreditation to Supervise Research (HDR), and after an introduction which outlines the potential of helio-seismology, the author addresses the problem of excitation and amplitude of stellar oscillations with respect to their most important aspects, i.e. the theoretical framework of the present understanding of excitation mechanisms, and instrumental influences on measurements which are used to assess excitation rates, the difficulty to perform these measurements, and their analysis in some various cases. Thus, the author addresses excitation mechanisms of stellar oscillation (stochastic excitation, opacity- related excitation, and other excitation mechanisms), the excitation of solar modes (observation and theoretical predictions, influence of magnetic phenomena, solar g modes), and the excitation of modes in other stars (solar-type pulsators, red giants, and not so conventional pulsators such as HD180642 and Be stars like HD49330)

  17. Stellar evolution as seen by mixed modes

    Directory of Open Access Journals (Sweden)

    Mosser Benoît

    2015-01-01

    Full Text Available The detection of mixed modes in subgiants and red giants allows us to monitor stellar evolution from the main sequence to the asymptotic giant branch and draw seismic evolutionary tracks. Quantified asteroseismic definitions that characterize the change in the evolutionary stages have been defined. This seismic information can now be used for stellar modelling, especially for studying the energy transport in the helium burning core or for specifying the inner properties of stars all along their evolution. Modelling will also allow us to study stars identified in the helium subflash stage, high-mass stars either arriving or quitting the secondary clump, or stars that could be in the blue-loop stage.

  18. Physics of stellar evolution and cosmology

    International Nuclear Information System (INIS)

    Goldberg, H.S.; Scadron, M.D.

    1981-01-01

    Astrophysical phenomena are examined on a fundamental level, stressing basic physical laws, in a textbook suitable for a one-semester intermediate course. The ideal gas law, the meaning of temperature, black-body radiation, discrete spectra, and the Doppler effect are introduced and used to study such features of the interstellar medium as 21-cm radiation, nebulae and dust, and the galactic magnetic field. The phases of stellar evolution are discussed, including stellar collapse, quasi-hydrostatic equilibrium, the main sequence, red giants, white dwarves, neutron stars, supernovae, pulsars, and black holes. Among the cosmological topics covered are the implications of Hubble's constant, the red-shift curve, the steady-state universe, the evolution of the big bang (thermal equilibrium, hadron era, lepton era, primordial nucleosynthesis, hydrogen recombination, galaxy formation, and the cosmic fireball), and the future (cold end or big crunch). 72 references

  19. Stellar physics with the ALHAMBRA photometric system

    International Nuclear Information System (INIS)

    Villegas, T Aparicio; Alfaro, E J; Moles, M; Benítez, N; Perea, J; Olmo, A del; Cristóbal-Hornillos, D; Cervio, M; Delgado, R M González; Márquez, I; Masegosa, J; Prada, F; Cabrera-Caño, J; Fernández-Soto, A; Aguerri, J A L; Cepa, J; Broadhurst, T; Castander, F J; Infante, L; Martínez, V J

    2011-01-01

    The ALHAMBRA photometric system was specifically designed to perform a tomography of the Universe in some selected areas. Although mainly designed for extragalactic purposes, its 20 contiguous, equal-width, medium-band photometric system in the optical wavelength range, shows a great capacity for stellar classification. In this contribution we propose a methodology for stellar classification and physical parameter estimation (T eff , log g, [Fe/H], and color excess E(B – V)) based on 18 independent reddening-free Q-values from the ALHAMBRA photometry. Based on the theoretical Spectral library BaSeL 2.2, and applied to 288 stars from the Next Generation spectral Library (NGSL), we discuss the reliability of the method and its dependence on the extinction law used.

  20. Isotope ratio in stellar atmospheres and nucleosynthesis

    International Nuclear Information System (INIS)

    Barbuy, B.L.S.

    1987-01-01

    The determination of isotopic ratios in stellar atmospheres is studied. The isotopic shift of atomic and molecular lines of different species of a certain element is examined. CH and MgH lines are observed in order to obtain the 12 C: 13 C and 24 Mg: 25 Mg: 26 Mg isotpic ratios. The formation of lines in stellar atmospheres is computed and the resulting synthetic spectra are employed to determine the isotopic abundances. The results obtained for the isotopic ratios are compared to predictions of nucleosynthesis theories. Finally, the concept of primary and secondary element is discussed, and these definitions are applied to the observed variations in the abundance of elements as a function of metallicity. (author) [pt

  1. STELLTRANS: A Transport Analysis Suite for Stellarators

    Science.gov (United States)

    Mittelstaedt, Joseph; Lazerson, Samuel; Pablant, Novimir; Weir, Gavin; W7-X Team

    2016-10-01

    The stellarator transport code STELLTRANS allows us to better analyze the power balance in W7-X. Although profiles of temperature and density are measured experimentally, geometrical factors are needed in conjunction with these measurements to properly analyze heat flux densities in stellarators. The STELLTRANS code interfaces with VMEC to find an equilibrium flux surface configuration and with TRAVIS to determine the RF heating and current drive in the plasma. Stationary transport equations are then considered which are solved using a boundary value differential equation solver. The equations and quantities considered are averaged over flux surfaces to reduce the system to an essentially one dimensional problem. We have applied this code to data from W-7X and were able to calculate the heat flux coefficients. We will also present extensions of the code to a predictive capacity which would utilize DKES to find neoclassical transport coefficients to update the temperature and density profiles.

  2. Energetic Particle Estimates for Stellar Flares

    Science.gov (United States)

    Youngblood, Allison; Chamberlin, Phil; Woods, Tom

    2018-01-01

    In the heliosphere, energetic particles are accelerated away from the Sun during solar flares and/or coronal mass ejections where they frequently impact the Earth and other solar system bodies. Solar (or stellar) energetic particles (SEPs) not only affect technological assets, but also influence mass loss and chemistry in planetary atmospheres (e.g., depletion of ozone). SEPs are increasingly recognized as an important factor in assessing exoplanet habitability, but we do not yet have constraints on SEP emission from any stars other than the Sun. Until indirect measurements are available, we must assume solar-like particle production and apply correlations between solar flares and SEPs detected near Earth to stellar flares. We present improved scaling relations between solar far-UV flare flux and >10 MeV proton flux near Earth. We apply these solar scaling relations to far-UV flares from exoplanet host stars and discuss the implications for modeling chemistry and mass loss in exoplanet atmospheres.

  3. On Utmost Multiplicity of Hierarchical Stellar Systems

    Directory of Open Access Journals (Sweden)

    Gebrehiwot Y. M.

    2016-12-01

    Full Text Available According to theoretical considerations, multiplicity of hierarchical stellar systems can reach, depending on masses and orbital parameters, several hundred, while observational data confirm the existence of at most septuple (seven-component systems. In this study, we cross-match the stellar systems of very high multiplicity (six and more components in modern catalogues of visual double and multiple stars to find among them the candidates to hierarchical systems. After cross-matching the catalogues of closer binaries (eclipsing, spectroscopic, etc., some of their components were found to be binary/multiple themselves, what increases the system's degree of multiplicity. Optical pairs, known from literature or filtered by the authors, were flagged and excluded from the statistics. We compiled a list of hierarchical systems with potentially very high multiplicity that contains ten objects. Their multiplicity does not exceed 12, and we discuss a number of ways to explain the lack of extremely high multiplicity systems.

  4. Stellar clusters in the Gaia era

    Science.gov (United States)

    Bragaglia, Angela

    2018-04-01

    Stellar clusters are important for astrophysics in many ways, for instance as optimal tracers of the Galactic populations to which they belong or as one of the best test bench for stellar evolutionary models. Gaia DR1, with TGAS, is just skimming the wealth of exquisite information we are expecting from the more advanced catalogues, but already offers good opportunities and indicates the vast potentialities. Gaia results can be efficiently complemented by ground-based data, in particular by large spectroscopic and photometric surveys. Examples of some scientific results of the Gaia-ESO survey are presented, as a teaser for what will be possible once advanced Gaia releases and ground-based data will be combined.

  5. Clustering in the stellar abundance space

    Science.gov (United States)

    Boesso, R.; Rocha-Pinto, H. J.

    2018-03-01

    We have studied the chemical enrichment history of the interstellar medium through an analysis of the n-dimensional stellar abundance space. This work is a non-parametric analysis of the stellar chemical abundance space. The main goal is to study the stars from their organization within this abundance space. Within this space, we seek to find clusters (in a statistical sense), that is, stars likely to share similar chemo-evolutionary history, using two methods: the hierarchical clustering and the principal component analysis. We analysed some selected abundance surveys available in the literature. For each sample, we labelled the group of stars according to its average abundance curve. In all samples, we identify the existence of a main enrichment pattern of the stars, which we call chemical enrichment flow. This flow is set by the structured and well-defined mean rate at which the abundances of the interstellar medium increase, resulting from the mixture of the material ejected from the stars and stellar mass-loss and interstellar medium gas. One of the main results of our analysis is the identification of subgroups of stars with peculiar chemistry. These stars are situated in regions outside of the enrichment flow in the abundance space. These peculiar stars show a mismatch in the enrichment rate of a few elements, such as Mg, Si, Sc and V, when compared to the mean enrichment rate of the other elements of the same stars. We believe that the existence of these groups of stars with peculiar chemistry may be related to the accretion of planetary material on to stellar surfaces or may be due to production of the same chemical element by different nucleosynthetic sites.

  6. Compact stellar object: the formation and structure

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, S.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Full text: The formation of compact objects is viewed at the final stages of stellar evolution. The supernova explosion events are then focalized to explain the formation of pulsars, hybrid neutron star and the limit case of the latter, the quark stars. We discuss the stability and structure of these objects in connection with the properties of the hadron and quark-gluon plasma equation of state. The hadron-quark phase transition in deep interior of these objects is discussed taking into account the implications on the density distribution of matter along the radial direction. The role of neutrinos confinement in the ultradense stellar medium in the early stages of pulsar formation is another interesting aspect to be mentioned in this presentation. Recent results for maximum mass of compact stellar objects for different forms of equations of state will be shown, presenting some theoretical predictions for maximum mass of neutron stars allowed by different equations of state assigned to dense stellar medium. Although a density greater than few times the nuclear equilibrium density appears in deep interior of the core, at the crust the density decreases by several orders of magnitude where a variety of hadronic states appears, the 'pasta'-states of hadrons. More externally, a lattice of nuclei can be formed permeated not only by electrons but also by a large amount of free neutrons and protons. These are possible structure of neutron star crust to have the density and pressures with null values at the neutron star surface. The ultimate goal of this talk is to give a short view of the compact star area for students and those who are introducing in this subject. (author)

  7. Future prospects for stellar intensity interferometry

    International Nuclear Information System (INIS)

    Lake, R.J.W.

    2002-01-01

    Full text: The technique of Stellar Intensity lnterferometry (SII) was first successfully demonstrated by Hanbury-Brown in 1956 at Jodrell Bank. SII uses the correlation in intensity fluctuations of starlight as a function of observational baseline to determine angular diameters and other gross features of main sequence stars. In 1962 an observatory was established by Hanbury-Brown in Narrabri NSW. Between 1965 and 1972 the angular diameters of 32 stars covering the spectral range O to F were measured. Orbital parameters of several unresolved binary stars were also determined and attempts were made by the author to directly measure the limb darkening of Sirius and the rotational distortion of Altair. Following the success of the Narrabri SII the Australian Federal Government provided a grant to Sydney University to develop a Very Large SII capable of making observational measurements on about a thousand stars. The development of this VLSII was however shelved in preference to the development of a potentially more sensitive long baseline Michelson Stellar Interferometer. This latter instrument known as SUSI (Sydney University Stellar Interferometer) has been in operation at Narrabri since 1995. Encouraged by the early results of SUSI and their own efforts in the use of active optics to reduce the effects of atmospheric scintillation a number of international observatories are now active in the development of long baseline or large aperture Michelson Stellar Interferometers. However SII while sacrificing sensitivity has a number of technical advantages over MSI as SII is far less sensitive to atmospheric effects and can be readily developed to work over very long baselines. This paper through technical review and theoretical modeling examines how a modern VLSII could be constructed and operated and addresses the limitations to its sensitivity. In particular it examines how existing Australian industry could contribute to the development of a VLSII with sufficient

  8. Detection of stellar oscillations in HWVir

    Directory of Open Access Journals (Sweden)

    Baran Andrzej S.

    2016-08-01

    Full Text Available We present our analysis of K2 observations of the binary system, HWVir. We processed the raw Kepler data and used Fourier analysis to search for periodic signals that could be associated with pulsations. We detect the binary frequency and its harmonic and discovered tens of peaks at both low and high frequencies. We interpreted those to be caused by stellar pulsations. Our discovery means we can apply the tools of asteroseismology to the HWVir system.

  9. Stellarator approach to toroidal plasma confinement

    International Nuclear Information System (INIS)

    Johnson, J.L.

    1981-12-01

    An overview is presented of the development and current status of the stellarator approach to controlled thermonuclear confinement. Recent experimental, theoretical, and systems developments have made this concept a viable option for the evolution of the toroidal confinement program. Some experimental study of specific problems associated with departure from two-dimensional symmetry must be undertaken before the full advantages and opportunities of steady-state, net-current-free operation can be realized

  10. SMASH: Survey of the MAgellanic Stellar History

    Science.gov (United States)

    Nidever, David L.; Olsen, Knut; Walker, Alistair R.; Vivas, A. Katherina; Blum, Robert D.; Kaleida, Catherine; Choi, Yumi; Conn, Blair C.; Gruendl, Robert A.; Bell, Eric F.; Besla, Gurtina; Muñoz, Ricardo R.; Gallart, Carme; Martin, Nicolas F.; Olszewski, Edward W.; Saha, Abhijit; Monachesi, Antonela; Monelli, Matteo; de Boer, Thomas J. L.; Johnson, L. Clifton; Zaritsky, Dennis; Stringfellow, Guy S.; van der Marel, Roeland P.; Cioni, Maria-Rosa L.; Jin, Shoko; Majewski, Steven R.; Martinez-Delgado, David; Monteagudo, Lara; Noël, Noelia E. D.; Bernard, Edouard J.; Kunder, Andrea; Chu, You-Hua; Bell, Cameron P. M.; Santana, Felipe; Frechem, Joshua; Medina, Gustavo E.; Parkash, Vaishali; Serón Navarrete, J. C.; Hayes, Christian

    2017-11-01

    The Large and Small Magellanic Clouds are unique local laboratories for studying the formation and evolution of small galaxies in exquisite detail. The Survey of the MAgellanic Stellar History (SMASH) is an NOAO community Dark Energy Camera (DECam) survey of the Clouds mapping 480 deg2 (distributed over ˜2400 square degrees at ˜20% filling factor) to ˜24th mag in ugriz. The primary goals of SMASH are to identify low surface brightness stellar populations associated with the stellar halos and tidal debris of the Clouds, and to derive spatially resolved star formation histories. Here, we present a summary of the survey, its data reduction, and a description of the first public Data Release (DR1). The SMASH DECam data have been reduced with a combination of the NOAO Community Pipeline, the PHOTRED automated point-spread-function photometry pipeline, and custom calibration software. The astrometric precision is ˜15 mas and the accuracy is ˜2 mas with respect to the Gaia reference frame. The photometric precision is ˜0.5%-0.7% in griz and ˜1% in u with a calibration accuracy of ˜1.3% in all bands. The median 5σ point source depths in ugriz are 23.9, 24.8, 24.5, 24.2, and 23.5 mag. The SMASH data have already been used to discover the Hydra II Milky Way satellite, the SMASH 1 old globular cluster likely associated with the LMC, and extended stellar populations around the LMC out to R ˜ 18.4 kpc. SMASH DR1 contains measurements of ˜100 million objects distributed in 61 fields. A prototype version of the NOAO Data Lab provides data access and exploration tools.

  11. Rate of stellar collapses in the Galaxy

    International Nuclear Information System (INIS)

    Lande, K.; Stephens, W.E.

    1977-01-01

    From an analysis of pulsar spatial and luminosity distributions, the number density of observed pulsars in the local region is determined to be 1.1+-0.4x10 -7 pulsar pc -3 . Multiplication by the detection factor and by the ratio of Galaxy mass to local matter density and division by a mean lifetime of pulsars of 3x10 6 yr suggests a pulsar birth every 4 yr. A stellar collapse might occur even more often. (Auth.)

  12. SMASH: Survey of the MAgellanic Stellar History

    Energy Technology Data Exchange (ETDEWEB)

    Nidever, David L.; Olsen, Knut; Blum, Robert D.; Saha, Abhijit [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Walker, Alistair R.; Vivas, A. Katherina [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Kaleida, Catherine [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Choi, Yumi; Besla, Gurtina; Olszewski, Edward W. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson AZ, 85721 (United States); Conn, Blair C. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Gruendl, Robert A. [National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, IL 61801 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107 (United States); Muñoz, Ricardo R. [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile); Gallart, Carme; Monelli, Matteo [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Martin, Nicolas F. [Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg (France); Monachesi, Antonela [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); De Boer, Thomas J. L. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Johnson, L. Clifton, E-mail: dnidever@noao.edu [Center for Astrophysics and Space Sciences, UC San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0424 (United States); and others

    2017-11-01

    The Large and Small Magellanic Clouds are unique local laboratories for studying the formation and evolution of small galaxies in exquisite detail. The Survey of the MAgellanic Stellar History (SMASH) is an NOAO community Dark Energy Camera (DECam) survey of the Clouds mapping 480 deg{sup 2} (distributed over ∼2400 square degrees at ∼20% filling factor) to ∼24th mag in ugriz . The primary goals of SMASH are to identify low surface brightness stellar populations associated with the stellar halos and tidal debris of the Clouds, and to derive spatially resolved star formation histories. Here, we present a summary of the survey, its data reduction, and a description of the first public Data Release (DR1). The SMASH DECam data have been reduced with a combination of the NOAO Community Pipeline, the PHOTRED automated point-spread-function photometry pipeline, and custom calibration software. The astrometric precision is ∼15 mas and the accuracy is ∼2 mas with respect to the Gaia reference frame. The photometric precision is ∼0.5%–0.7% in griz and ∼1% in u with a calibration accuracy of ∼1.3% in all bands. The median 5 σ point source depths in ugriz are 23.9, 24.8, 24.5, 24.2, and 23.5 mag. The SMASH data have already been used to discover the Hydra II Milky Way satellite, the SMASH 1 old globular cluster likely associated with the LMC, and extended stellar populations around the LMC out to R  ∼ 18.4 kpc. SMASH DR1 contains measurements of ∼100 million objects distributed in 61 fields. A prototype version of the NOAO Data Lab provides data access and exploration tools.

  13. Stellar Atmospheric Modelling for the ACCESS Program

    Science.gov (United States)

    Morris, Matthew; Kaiser, Mary Elizabeth; Bohlin, Ralph; Kurucz, Robert; ACCESS Team

    2018-01-01

    A goal of the ACCESS program (Absolute Color Calibration Experiment for Standard Stars) is to enable greater discrimination between theoretical astrophysical models and observations, where the comparison is limited by systematic errors associated with the relative flux calibration of the targets. To achieve these goals, ACCESS has been designed as a sub-orbital rocket borne payload and ground calibration program, to establish absolute flux calibration of stellar targets at flight candidates, as well as a selection of A and G stars from the CALSPEC database. Stellar atmosphere models were generated using Atlas 9 and Atlas 12 Kurucz stellar atmosphere software. The effective temperature, log(g), metallicity, and redenning were varied and the chi-squared statistic was minimized to obtain a best-fit model. A comparison of these models and the results from interpolation between grids of existing models will be presented. The impact of the flexibility of the Atlas 12 input parameters (e.g. solar metallicity fraction, abundances, microturbulent velocity) is being explored.

  14. The formation of stellar black holes

    Science.gov (United States)

    Mirabel, Félix

    2017-08-01

    It is believed that stellar black holes (BHs) can be formed in two different ways: Either a massive star collapses directly into a BH without a supernova (SN) explosion, or an explosion occurs in a proto-neutron star, but the energy is too low to completely unbind the stellar envelope, and a large fraction of it falls back onto the short-lived neutron star (NS), leading to the delayed formation of a BH. Theoretical models set progenitor masses for BH formation by implosion, namely, by complete or almost complete collapse, but observational evidences have been elusive. Here are reviewed the observational insights on BHs formed by implosion without large natal kicks from: (1) the kinematics in three dimensions of space of five Galactic BH X-ray binaries (BH-XRBs), (2) the diversity of optical and infrared observations of massive stars that collapse in the dark, with no luminous SN explosions, possibly leading to the formation of BHs, and (3) the sources of gravitational waves (GWs) produced by mergers of stellar BHs so far detected with LIGO. Multiple indications of BH formation without ejection of a significant amount of matter and with no natal kicks obtained from these different areas of observational astrophysics, and the recent observational confirmation of the expected dependence of BH formation on metallicity and redshift, are qualitatively consistent with the high merger rates of binary black holes (BBHs) inferred from the first detections with LIGO.

  15. The Resolved Stellar Population of Leo A

    Science.gov (United States)

    Tolstoy, Eline

    1996-05-01

    New observations of the resolved stellar population of the extremely metal-poor Magellanic dwarf irregular galaxy Leo A in Thuan-Gunn r, g, i, and narrowband Hα filters are presented. Using the recent Cepheid variable star distance determination to Leo A by Hoessel et al., we are able to create an accurate color-magnitude diagram (CMD). We have used the Bavesian inference method described by Tolstoy & Saha to calculate the likelihood of a Monte Carlo simulation of the stellar population of Leo A being a good match to the data within the well understood errors in the data. The magnitude limits on our data are sensitive enough to look back at ~1 Gyr of star formation history at the distance of Leo A. To explain the observed ratio of red to blue stars in the observed CMD, it is necessary to invoke either a steadily decreasing star formation rate toward the present time or gaps in the star formation history. We also compare the properties of the observed stellar population with the known spatial distribution of the H I gas and H II regions to support the conclusions from CMD modeling. We consider the possibility that currently there is a period of diminished star formation in Leo A, as evidenced by the lack of very young stars in the CMD and the faint H II regions. How the chaotic H I distribution, with no observable rotation, fits into our picture of the evolution of Leo A is as yet unclear.

  16. The doubling of stellar black hole nuclei

    Science.gov (United States)

    Kazandjian, Mher V.; Touma, J. R.

    2013-04-01

    It is strongly believed that Andromeda's double nucleus signals a disc of stars revolving around its central supermassive black hole on eccentric Keplerian orbits with nearly aligned apsides. A self-consistent stellar dynamical origin for such apparently long-lived alignment has so far been lacking, with indications that cluster self-gravity is capable of sustaining such lopsided configurations if and when stimulated by external perturbations. Here, we present results of N-body simulations which show unstable counter-rotating stellar clusters around supermassive black holes saturating into uniformly precessing lopsided nuclei. The double nucleus in our featured experiment decomposes naturally into a thick eccentric disc of apo-apse aligned stars which is embedded in a lighter triaxial cluster. The eccentric disc reproduces key features of Keplerian disc models of Andromeda's double nucleus; the triaxial cluster has a distinctive kinematic signature which is evident in Hubble Space Telescope observations of Andromeda's double nucleus, and has been difficult to reproduce with Keplerian discs alone. Our simulations demonstrate how the combination of an eccentric disc and a triaxial cluster arises naturally when a star cluster accreted over a preexisting and counter-rotating disc of stars drives disc and cluster into a mutually destabilizing dance. Such accretion events are inherent to standard galaxy formation scenarios. They are here shown to double stellar black hole nuclei as they feed them.

  17. Intrinsic Turbulence Stabilization in a Stellarator

    Directory of Open Access Journals (Sweden)

    P. Xanthopoulos

    2016-06-01

    Full Text Available The magnetic surfaces of modern stellarators are characterized by complex, carefully optimized shaping and exhibit locally compressed regions of strong turbulence drive. Massively parallel computer simulations of plasma turbulence reveal, however, that stellarators also possess two intrinsic mechanisms to mitigate the effect of this drive. In the regime where the length scale of the turbulence is very small compared to the equilibrium scale set by the variation of the magnetic field, the strongest fluctuations form narrow bandlike structures on the magnetic surfaces. Thanks to this localization, the average transport through the surface is significantly smaller than that predicted at locations of peak turbulence. This feature results in a numerically observed upshift of the onset of turbulence on the surface towards higher ion temperature gradients as compared with the prediction from the most unstable regions. In a second regime lacking scale separation, the localization is lost and the fluctuations spread out on the magnetic surface. Nonetheless, stabilization persists through the suppression of the large eddies (relative to the equilibrium scale, leading to a reduced stiffness for the heat flux dependence on the ion temperature gradient. These fundamental differences with tokamak turbulence are exemplified for the QUASAR stellarator [G. H. Neilson et al., IEEE Trans. Plasma Sci. 42, 489 (2014].

  18. Solar and Stellar X-ray Cycles

    Science.gov (United States)

    Martens, P. C. H.; SADE Team

    2004-05-01

    Stern et al. have shown that Yohkoh-SXT full disk X-ray irradiance shows an 11 year cycle with an max/min amplitude ratio of a factor 30. Similar cyclic X-ray variation in Sun-like stars observed by ROSAT and its predecessors is observed in only a few cases and limited to a factor two or three. We will show, by means of detailed bandpass comparisons, that this discrepancy cannot be ascribed to the differences in energy response between SXT and the stellar soft X-ray detectors. Is the Sun exceptional? After centuries of geocentric and heliocentric worldviews we find this a difficult proposition to entertain. But perhaps the Sun is a member of a small class of late-type stars with large amplitudes in their X-ray cycles. The stellar X-ray observations listed in the HEASARC catalog are too sparse to verify this hypothesis. To resolve these and related questions we have proposed a small low-cost stellar X-ray spectroscopic imager originally called SADE to obtain regular time series from late and early-type stars and accretion disks. This instrument is complimentary to the much more advanced Chandra and XMM-Newton observatories, and allows them to focus on those sources that require their full spatial and spectral resolution. We will describe the basic design and spectroscopic capability of SADE and show it meets the mission requirements.

  19. STELLAR: fast and exact local alignments

    Directory of Open Access Journals (Sweden)

    Weese David

    2011-10-01

    Full Text Available Abstract Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de.

  20. Plasma equilibrium and stability in stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.; Shafranov, V.D.

    1987-01-01

    A review of theoretical methods of investigating plasma equilibrium and stability in stellarators is given. Principles forming the basis of toroidal plasma equilibrium and its stabilization, and the main results of analytical theory and numerical calculations are presented. Configurations with spiral symmetry and usual stellarators with plane axis and spiral fields are considered in detail. Derivation of scalar two-dimensional equations, describing equilibrium in these systems is given. These equations were used to obtain one-dimensional equations for displacement and ellipticity of magnetic surfaces. The model of weak-elliptic displaced surfaces was used to consider the evolution of plasma equilibrium in stellarators after elevation of its pressure: change of profile of rotational transformation after change of plasma pressure, current generation during its fast heating and its successive damping due to finite plasma conductivity were described. The derivation of equations of small oscillations in the form, suitable for local disturbance investigation is presented. These equations were used to obtain Mercier criteria and ballon model equations. General sufficient conditions of plasma stability in systems with magnetic confinement were derived

  1. The Highest Good and the Practical Regulative Knowledge in Kant’s Critique of Practical Reason

    OpenAIRE

    Joel Thiago Klein

    2016-01-01

    In this paper I defend three different points: first, that the concept of highest good is derived from an a priori but subjective argument, namely a maxim of pure practical reason; secondly, that the theory regarding the highest good has the validity of a practical regulative knowledge; and thirdly, that the practical regulative knowledge can be understood as the same “holding something to be true” as Kant attributes to hope and believe.

  2. Ripple transport in helical-axis advanced stellarators - a comparison with classical stellarator/torsatrons

    International Nuclear Information System (INIS)

    Beidler, C.D.; Hitchon, W.N.G.

    1993-08-01

    Calculations of the neoclassical transport rates due to particles trapped in the helical ripples of a stellarator's magnetic field are carried out, based on solutions of the bounce-averaged kinetic equation. These calculations employ a model for the magnetic field strength, B, which is an accurate approximation to the actual B for a wide variety of stellarator-type devices, among which are Helical-Axis Advanced Stellarators (Helias) as well as conventional stellarators and torsatrons. Comparisons are carried out in which it is shown that the Helias concept leads to significant reductions in neoclassical transport rates throughout the entire long-mean-free-path regime, with the reduction being particularly dramatic in the ν -1 regime. These findings are confirmed by numerical simulations. Further, it is shown that the behavior of deeply trapped particles in Helias can be fundamentally different from that in classical stellarator/torsatrons; as a consequence, the beneficial effects of a radial electric field on the transport make themselves felt at lower collision frequency than is usual. (orig.)

  3. BOOK REVIEW: Stellarator and Heliotron Devices

    Science.gov (United States)

    Johnson, John L.

    1999-02-01

    Stellarators and tokamaks are the most advanced devices that have been developed for magnetic fusion applications. The two approaches have much in common; tokamaks have received the most attention because their axisymmetry justifies the use of simpler models and provides a more forgiving geometry. However, recent advances in treating more complicated three dimensional systems have made it possible to design stellarators that are not susceptible to disruptions and do not need plasma current control. This has excited interest recently. The two largest new magnetic experiments in the world are the LHD device, which commenced operation in Toki, Japan, in 1998 and W7-X, which should become operational in Greifswald, Germany, in 2004. Other recently commissioned stellarators, including H-1 in Canberra, Australia, TJ-II in Madrid, Spain, and IMS in Madison, Wisconsin, have joined these in rejuvenating the stellarator programme. Thus, it is most appropriate that the author has made the lecture material that he presents to his students in the Graduate School of Energy Science at Kyoto University available to everyone. Stellarator and Heliotron Devices provides an excellent treatment of stellarator theory. It is aimed at graduate students who have a good understanding of classical mechanics and mathematical techniques. It contains good descriptions and derivations of essentially every aspect of fusion theory. The author provides an excellent qualitative introduction to each subject, pointing out the strengths and weaknesses of the models that are being used and describing our present understanding. He judiciously uses simple models which illustrate the similarities and differences between stellarators and tokamaks. To some extent the treatment is uneven, rigorous derivations starting with basic principles being given in some cases and relations and equations taken from the original papers being used as a starting point in others. This technique provides an excellent training

  4. The Stellar Imager (SI) Project: Resolving Stellar Surfaces, Interiors, and Magnetic Activity

    Science.gov (United States)

    Carpenter, Kenneth G.; Schrijver, K.; Karovska, M.

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical. Space-Based Interferometer designed to enable 0.1 milli-arcsec (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. The science of SI focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. Its prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we discuss the science goals, technology needs, and baseline design of the SI mission.

  5. Estimating precise metallicity and stellar mass evolution of galaxies

    Science.gov (United States)

    Mosby, Gregory

    2018-01-01

    The evolution of galaxies can be conveniently broken down into the evolution of their contents. The changing dust, gas, and stellar content in addition to the changing dark matter potential and periodic feedback from a super-massive blackhole are some of the key ingredients. We focus on the stellar content that can be observed, as the stars reflect information about the galaxy when they were formed. We approximate the stellar content and star formation histories of unresolved galaxies using stellar population modeling. Though simplistic, this approach allows us to reconstruct the star formation histories of galaxies that can be used to test models of galaxy formation and evolution. These models, however, suffer from degeneracies at large lookback times (t > 1 Gyr) as red, low luminosity stars begin to dominate a galaxy’s spectrum. Additionally, degeneracies between stellar populations at different ages and metallicities often make stellar population modeling less precise. The machine learning technique diffusion k-means has been shown to increase the precision in stellar population modeling using a mono-metallicity basis set. However, as galaxies evolve, we expect the metallicity of stellar populations to vary. We use diffusion k-means to generate a multi-metallicity basis set to estimate the stellar mass and chemical evolution of unresolved galaxies. Two basis sets are formed from the Bruzual & Charlot 2003 and MILES stellar population models. We then compare the accuracy and precision of these models in recovering complete (stellar mass and metallicity) histories of mock data. Similarities in the groupings of stellar population spectra in the diffusion maps for each metallicity hint at fundamental age transitions common to both basis sets that can be used to identify stellar populations in a given age range.

  6. Habitability in different Milky Way stellar environments: a stellar interaction dynamical approach.

    Science.gov (United States)

    Jiménez-Torres, Juan J; Pichardo, Bárbara; Lake, George; Segura, Antígona

    2013-05-01

    Every Galactic environment is characterized by a stellar density and a velocity dispersion. With this information from literature, we simulated flyby encounters for several Galactic regions, numerically calculating stellar trajectories as well as orbits for particles in disks; our aim was to understand the effect of typical stellar flybys on planetary (debris) disks in the Milky Way Galaxy. For the solar neighborhood, we examined nearby stars with known distance, proper motions, and radial velocities. We found occurrence of a disturbing impact to the solar planetary disk within the next 8 Myr to be highly unlikely; perturbations to the Oort cloud seem unlikely as well. Current knowledge of the full phase space of stars in the solar neighborhood, however, is rather poor; thus we cannot rule out the existence of a star that is more likely to approach than those for which we have complete kinematic information. We studied the effect of stellar encounters on planetary orbits within the habitable zones of stars in more crowded stellar environments, such as stellar clusters. We found that in open clusters habitable zones are not readily disrupted; this is true if they evaporate in less than 10(8) yr. For older clusters the results may not be the same. We specifically studied the case of Messier 67, one of the oldest open clusters known, and show the effect of this environment on debris disks. We also considered the conditions in globular clusters, the Galactic nucleus, and the Galactic bulge-bar. We calculated the probability of whether Oort clouds exist in these Galactic environments.

  7. Stellarator Research Opportunities: A report of the National Stellarator Coordinating Committee

    Energy Technology Data Exchange (ETDEWEB)

    Gates, David A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Anderson, David [University of Wisconsin-Madison

    2017-06-01

    This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generate a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)” [2]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the U.S. fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations - Next-generation research capabilities”, and “Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria” are proposed.

  8. Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee

    Science.gov (United States)

    Gates, D. A.; Anderson, D.; Anderson, S.; Zarnstorff, M.; Spong, D. A.; Weitzner, H.; Neilson, G. H.; Ruzic, D.; Andruczyk, D.; Harris, J. H.; Mynick, H.; Hegna, C. C.; Schmitz, O.; Talmadge, J. N.; Curreli, D.; Maurer, D.; Boozer, A. H.; Knowlton, S.; Allain, J. P.; Ennis, D.; Wurden, G.; Reiman, A.; Lore, J. D.; Landreman, M.; Freidberg, J. P.; Hudson, S. R.; Porkolab, M.; Demers, D.; Terry, J.; Edlund, E.; Lazerson, S. A.; Pablant, N.; Fonck, R.; Volpe, F.; Canik, J.; Granetz, R.; Ware, A.; Hanson, J. D.; Kumar, S.; Deng, C.; Likin, K.; Cerfon, A.; Ram, A.; Hassam, A.; Prager, S.; Paz-Soldan, C.; Pueschel, M. J.; Joseph, I.; Glasser, A. H.

    2018-02-01

    This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generate a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in "Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)" [1]. The natural disruption immunity of the stellarator directly addresses "Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices" an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research "Strengthening our partnerships with international research facilities," is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; "Burning Plasma Science: Foundations - Next-generation research capabilities", and "Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria" are proposed.

  9. [The gender gap in highest quality medical research - A scientometric analysis of the representation of female authors in highest impact medical journals].

    Science.gov (United States)

    Bendels, Michael H K; Wanke, Eileen M; Benik, Steffen; Schehadat, Marc S; Schöffel, Norman; Bauer, Jan; Gerber, Alexander; Brüggmann, Dörthe; Oremek, Gerhard M; Groneberg, David A

    2018-05-01

     The study aims to elucidate the state of gender equality in high-impact medical research, analyzing the representation of female authorships from January, 2008 to September, 2017.  133 893 male and female authorships from seven high-impact medical journals were analyzed. The key methodology was the combined analysis of the relative frequency, odds ratio and citations of female authorships. The Prestige Index measures the distribution of prestigious authorships between the two genders.  35.0 % of all authorships and 34.3 % of the first, 36.1 % of the co- and 24.2 % of the last authorships were held by women. Female authors have an odds ratio of 0.97 (KI: 0.93 - 1.01) for first, 1.36 (KI: 1.32 - 1.40) for co- und 0.57 (KI: 0.54 - 0.60) for last authorships compared to male authors. The proportion of female authorships exhibits an annual growth of 1.3 % overall, with 0.5 % for first, 1.2 % for co-, and 0.8 % for last authorships. Women are underrepresented at prestigious authorship compared to men (Prestige Index = -0.38). The underrepresentation accentuates in highly competitive articles attracting the highest citation rates, namely, articles with many authors and articles that were published in highest-impact journals. Multi-author articles with male key authors are more frequently cited than articles with female key authors. The gender-specific differences in citation rates increase the more authors contribute to an article. Women publish fewer articles compared to men (39.6 % female authors are responsible for 35.0 % of the authorships) and are underrepresented at productivity levels of more than 1 article per author. Distinct differences at the country level were revealed.  High impact medical research is characterized by few female group leaders as last authors and many female researchers being first or co-authors early in their career. It is very likely that this gender-specific career dichotomy will persistent in

  10. Constraining stellar physics from red-giant stars in binaries – stellar rotation, mixing processes and stellar activity

    Directory of Open Access Journals (Sweden)

    Beck P. G.

    2017-01-01

    Full Text Available The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to an improved understanding of stellar structure and evolution - in particular for solar-like oscillators in this context. Binary stars are fascinating objects. Because they were formed together, binary systems provide a set of two stars with very well constrained parameters. Those can be used to study properties and physical processes, such as the stellar rotation, dynamics and rotational mixing of elements and allows us to learn from the differences we find between the two components. In this work, we discussed a detailed study of the binary system KIC 9163796, discovered through Kepler photometry. The ground-based follow-up spectroscopy showed that this system is a double-lined spectroscopic binary, with a mass ratio close to unity. However, the fundamental parameters of the components of this system as well as their lithium abundances differ substantially. Kepler photometry of this system allows to perform a detailed seismic analysis as well as to derive the orbital period and the surface rotation rate of the primary component of the system. Indications of the seismic signature of the secondary are found. The differing parameters are best explained with both components located in the early and the late phase of the first dredge up at the bottom of the red-giant branch. Observed lithium abundances in both components are in good agreement with prediction of stellar models including rotational mixing. By combining observations and theory, a comprehensive picture of the system can be drawn.

  11. The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems

    Science.gov (United States)

    Belkus, H.; van Bever, J.; Vanbeveren, D.

    In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.

  12. Stellar populations of bulges in galaxies with a low surface-brightness disc

    Science.gov (United States)

    Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.

    2015-03-01

    The radial profiles of the Hβ, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar α/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and α/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other phenomena, like mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low surface-brightness discs share many properties with those of high surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that in spite of being hosted by discs with extremely different properties, the bulges of low and high surface-brightness discs are remarkably similar.

  13. Dipole model analysis of highest precision HERA data, including very low Q"2's

    International Nuclear Information System (INIS)

    Luszczak, A.; Kowalski, H.

    2016-12-01

    We analyse, within a dipole model, the final, inclusive HERA DIS cross section data in the low χ region, using fully correlated errors. We show, that these highest precision data are very well described within the dipole model framework starting from Q"2 values of 3.5 GeV"2 to the highest values of Q"2=250 GeV"2. To analyze the saturation effects we evaluated the data including also the very low 0.35< Q"2 GeV"2 region. The fits including this region show a preference of the saturation ansatz.

  14. Near-term directions in the World Stellarator Program

    International Nuclear Information System (INIS)

    Lyon, J.F.

    1990-01-01

    Interest in stellarators has increased because of the progress being made in the development of this concept and the inherent advantages of stellarators as candidates for an attractive, steady-state fusion reactor. Three new stellarator experiments started operation in 1988, and three more are scheduled to start in the next few years. In addition, design studies have started on large next-generation stellarator experiments for the mid-1990s. These devices are designed to test four basic approaches to stellarator configuration optimization. Ways in which these devices complement each other in exploring the potential of the stellarator concept and the main issues that they will address during the next decade are described

  15. Impact of thermal frequency drift on highest precision force microscopy using quartz-based force sensors at low temperatures

    Directory of Open Access Journals (Sweden)

    Florian Pielmeier

    2014-04-01

    Full Text Available In frequency modulation atomic force microscopy (FM-AFM the stability of the eigenfrequency of the force sensor is of key importance for highest precision force measurements. Here, we study the influence of temperature changes on the resonance frequency of force sensors made of quartz, in a temperature range from 4.8–48 K. The sensors are based on the qPlus and length extensional principle. The frequency variation with temperature T for all sensors is negative up to 30 K and on the order of 1 ppm/K, up to 13 K, where a distinct kink appears, it is linear. Furthermore, we characterize a new type of miniaturized qPlus sensor and confirm the theoretically predicted reduction in detector noise.

  16. Multiple Stellar Populations in Star Clusters

    Science.gov (United States)

    Piotto, G.

    2013-09-01

    For half a century it had been astronomical dogma that a globular cluster (GC) consists of stars born at the same time out of the same material, and this doctrine has borne rich fruits. In recent years, high resolution spectroscopy and high precision photometry (from space and ground-based observations) have shattered this paradigm, and the study of GC populations has acquired a new life that is now moving it in new directions. Evidence of multiple stellar populations have been identified in the color-magnitude diagrams of several Galactic and Magellanic Cloud GCs where they had never been imagined before.

  17. A Toolbox for Imaging Stellar Surfaces

    Science.gov (United States)

    Young, John

    2018-04-01

    In this talk I will review the available algorithms for synthesis imaging at visible and infrared wavelengths, including both gray and polychromatic methods. I will explain state-of-the-art approaches to constraining the ill-posed image reconstruction problem, and selecting an appropriate regularisation function and strength of regularisation. The reconstruction biases that can follow from non-optimal choices will be discussed, including their potential impact on the physical interpretation of the results. This discussion will be illustrated with example stellar surface imaging results from real VLTI and COAST datasets.

  18. Variance in binary stellar population synthesis

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  19. The Advanced Stellar Compass, Development and Operations

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Liebe, Carl Christian

    1996-01-01

    The science objective of the Danish Geomagnetic Research Satellite "Ørsted" is to map the magnetic field of the Earth, with a vector precision of a fraction of a nanotesla. This necessitates an attitude reference instrument with a precision of a few arcseconds onboard the satellite. To meet...... this demand the Advanced Stellar Compass (ASC), a fully autonomous miniature star tracker, was developed. This ASC is capable of both solving the "lost in space" problem and determine the attitude with arcseconds precision. The development, principles of operation and instrument autonomy of the ASC...

  20. A large stellarator based on modular coils

    International Nuclear Information System (INIS)

    Hamberger, S.M.; Sharp, L.E.; Petersen, L.F.

    1979-06-01

    Although stellarators offer some considerable advantages over tokamaks, difficulties arise in designing large devices due, for instance, to poor plasma access as well as to constructional electromechanical and maintenance problems associated with continous helical windings. This paper describes a design for a fairly large device (major radius 2.1m), based on a set of discrete coil modules arranged in a toroidal configuration to provide the required closed magnetic surfaces, having gaps for unobstructed access to the plasma for diagnostics, etc, and allowing for easy removal for maintenance

  1. ECR heating in L-2M stellarator

    International Nuclear Information System (INIS)

    Grebenshchikov, S.E.; Batanov, G.M.; Fedyanin, O.I.

    1995-01-01

    The first results of ECH experiments in the L-2M stellarator are presented. The main goal of the experiments is to investigate the physics of ECH and plasma confinement at very high values of the volume heating power density. A current free plasma is produced and heated by extraordinary waves at the second harmonic of the electron cyclotron frequency. The experimental results are compared with the numerical simulations of plasma confinement and heating processes based on neoclassical theory using the full matrix of transport coefficients and with LHD-scaling. 4 refs., 2 figs

  2. Advanced Stellar Compass - ROCSAT 2 - Proposal

    DEFF Research Database (Denmark)

    Riis, Troels; Betto, Maurizio; Jørgensen, John Leif

    1998-01-01

    System Integration is supposed to take place at NSPO facilities.The ASC is a highly advanced and autonomous Stellar Reference Unit designed, developed and produced by the Space Instrumentation Group of the Department of Automation of the Technical University of Denmark.The document is structured...... and in section 7 the mechanical and electrical interfaces are given. In section 8 and 9 we address issues like manufacturing, transportation and storage and to conclude in section 10 the requirements imposed by the ASC on the system are given....

  3. Generating physically realizable stellar structures via embedding

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Govender, M. [Durban University of Technology, Department of Mathematics, Faculty of Applied Sciences, Durban (South Africa)

    2017-05-15

    In this work we present an exact solution of the Einstein-Maxwell field equations describing compact charged objects within the framework of classical general relativity. Our model is constructed by embedding a four-dimensional spherically symmetric static metric into a five-dimensional flat metric. The source term for the matter field is composed of a perfect fluid distribution with charge. We show that our model obeys all the physical requirements and stability conditions necessary for a realistic stellar model. Our theoretical model approximates observations of neutron stars and pulsars to a very good degree of accuracy. (orig.)

  4. Equilibrium calculations for helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.

    1984-04-01

    An average method based on a vacuum flux coordinate system is presented. This average method permits the study of helical axis stellarators with toroidally dominated shifts. An ordering is introduced, and to lowest order the toroidally averaged equilibrium equations are reduced to a Grad-Shafranov equation. Also, to lowest order, a Poisson-type equation is obtained for the toroidally varying corrections to the equilibium. By including these corrections, systems that are toroidally dominated, but with significant helical distortion to the equilibrium, may be studied. Numerical solutions of the average method equations are shown to agree well with three-dimensional calculations

  5. Nonlocal and collective relaxation in stellar systems

    Science.gov (United States)

    Weinberg, Martin D.

    1993-01-01

    The modal response of stellar systems to fluctuations at large scales is presently investigated by means of analytic theory and n-body simulation; the stochastic excitation of these modes is shown to increase the relaxation rate even for a system which is moderately far from instability. The n-body simulations, when designed to suppress relaxation at small scales, clearly show the effects of large-scale fluctuations. It is predicted that large-scale fluctuations will be largest for such marginally bound systems as forming star clusters and associations.

  6. Stellar Disk Truncations: HI Density and Dynamics

    Science.gov (United States)

    Trujillo, Ignacio; Bakos, Judit

    2010-06-01

    Using HI Nearby Galaxy Survey (THINGS) 21-cm observations of a sample of nearby (nearly face-on) galaxies we explore whether the stellar disk truncation phenomenon produces any signature either in the HI gas density and/or in the gas dynamics. Recent cosmological simulations suggest that the origin of the break on the surface brightness distribution is produced by the appearance of a warp at the truncation position. This warp should produce a flaring on the gas distribution increasing the velocity dispersion of the HI component beyond the break. We do not find, however, any evidence of this increase in the gas velocity dispersion profile.

  7. Global Clusters as Laboratories for Stellar Evolution

    Science.gov (United States)

    Catelan, Marcio; Valcarce, Aldo A. R.; Sweigart, Allen V.

    2010-01-01

    Globular clusters have long been considered the closest approximation to a physicist's laboratory in astrophysics, and as such a near-ideal laboratory for (low-mass) stellar evolution, However, recent observations have cast a shadow on this long-standing paradigm, suggesting the presence of multiple populations with widely different abundance patterns, and - crucially - with widely different helium abundances as welL In this review we discuss which features of the Hertzsprung-Russell diagram may be used as helium abundance indicators, and present an overview of available constraints on the helium abundance in globular clusters,

  8. Equilibrium studies of helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.; Garcia, L.; Harris, J.H.; Rome, J.A.; Cantrell, J.L.; Lynch, V.E.

    1984-01-01

    The equilibrium properties of helical axis stellarators are studied with a 3-D equilibrium code and with an average method (2-D). The helical axis ATF is shown to have a toroidally dominated equilibrium shift and good equilibria up to at least 10% peak beta. Low aspect ratio heliacs, with relatively large toroidal shifts, are shown to have low equilibrium beta limits (approx. 5%). Increasing the aspect ratio and number of field periods proportionally is found to improve the equilibrium beta limit. Alternatively, increasing the number of field periods at fixed aspect ratio which raises and lowers the toroidal shift improves the equilibrium beta limit

  9. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Argiro, S.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Barbosa, A. F.; Barnhill, D.; Barroso, S. L. C.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Bluemer, H.; Bohacova, M.; Bonifazi, C.; Bonino, R.; Brack, J.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chye, J.; Clay, R. W.; Colombo, E.; Conceicao, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Donato, C.; Bg, S. J. de Jong; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Engel, R.; Epele, L.; Escobar, C. O.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferry, S.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fracchiolla, C. E.; Fulgione, W.; Garcia, B.; Gaimez, D. Garcia; Garcia-Pinto, D.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Albarracin, F. Gomez; Berisso, M. Gomez; Herrero, R. Gomez; Goncalves, P.; do Amaral, M. Goncalves; Gonzalez, D.; Gonzalezc, J. G.; Gonzalez, M.; Gora, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A. F.; Grunfeld, C.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutierrez, J.; Hague, J. D.; Hamilton, J. C.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hauschildt, T.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hoerandel, J.; Horneffer, A.; Horvat, M.; Hrabovsky, M.; Huege, T.; Hussain, M.; Larlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kegl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koanga, V. -H.; Krieger, A.; Kroemer, O.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lebrun, D.; LeBrun, P.; Lee, J.; de Oliveira, M. A. Leigui; Lopez, R.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; Aguera, A. Lopez; Bahilo, J. Lozano; Garcia, R. Luna; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mancarella, G.; Mancenido, M. E.; Mandatat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Falcon, H. R. Marquez; Martello, D.; Martinez, J.; Bravo, O. Martinez; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, M. C.; Medina-Tanco, G.; Meli, A.; Melo, D.; Menichetti, E.; Menschikov, A.; Meurer, Chr.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafa, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Ohnuki, T.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Ostapchenko, S.; Otero, L.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petrera, S.; Petrinca, P.; Petrov, Y.; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Riviere, C.; Rizi, V.; Roberts, M.; Robledo, C.; Rodriguez, G.; Martino, J. Rodriguez; Rojo, J. Rodriguez; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Roverok, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scherini, V.; Schieler, H.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schovanek, P.; Schuessler, F.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; De Grande, N. Smetniansky; Smialkowski, A.; Smida, R.; Smith, A. G. K.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Takahashi, J.; Tamashiro, A.; Tamburro, A.; Tascau, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tome, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdes; Valino, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vazquez, R. A.; Veberic, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zech, A.; Zepeda, A.; Ziolkowski, M.

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The

  10. Alpha-1-antitrypsin deficiency in Madeira (Portugal): the highest prevalence in the world.

    Science.gov (United States)

    Spínola, Carla; Bruges-Armas, Jácome; Pereira, Conceição; Brehm, António; Spínola, Hélder

    2009-10-01

    Alpha-1-antitrypsin (AAT) deficiency is a common genetic disease which affects both lung and liver. Early diagnosis can help asymptomatic patients to adjust their lifestyle choices in order to reduce the risk of Chronic Obstructive Pulmonary Disease (COPD). The determination of this genetic deficiency prevalence in Madeira Island (Portugal) population is important to clarify susceptibility and define the relevance of performing genetic tests for AAT on individuals at risk for COPD. Two hundred samples of unrelated individuals from Madeira Island were genotyped for the two most common AAT deficiency alleles, PI*S and PI*Z, using Polymerase Chain Reaction-Mediated Site-Directed Mutagenesis. Our results show one of the highest frequencies for both mutations when compared to any already studied population in the world. In fact, PI*S mutation has the highest prevalence (18%), and PI*Z mutation (2.5%) was the third highest worldwide. The frequency of AAT deficiency genotypes in Madeira (PI*ZZ, PI*SS, and PI*SZ) is estimated to be the highest in the world: 41 per 1000. This high prevalence of AAT deficiency on Madeira Island reveals an increased genetic susceptibility to COPD and suggests a routine genetic testing for individuals at risk.

  11. The Effect on Survival and Mortality of the Highest SUVmax Value ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... University Diyarbakir Gazi Yasargil Training and Research Hospital between. August 2007 and April .... 0.239), and a negative correlation with lung metastasis ..... Comparison of laparoscopic and open partial nephrectomies.

  12. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  13. ESTIMATION OF DISTANCES TO STARS WITH STELLAR PARAMETERS FROM LAMOST

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, Jeffrey L.; Newberg, Heidi Jo [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Liu, Chao; Deng, Licai; Li, Guangwei; Luo, A-Li; Wu, Yue; Yang, Ming; Zhang, Haotong [Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Beers, Timothy C. [Department of Physics and JINA: Joint Institute for Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Chen, Li; Hou, Jinliang; Smith, Martin C. [Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai 200030 (China); Guhathakurta, Puragra [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Hou, Yonghui [Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China); Lépine, Sébastien [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Yanny, Brian [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Zheng, Zheng, E-mail: jeffreylcarlin@gmail.com [Department of Physics and Astronomy, University of Utah, UT 84112 (United States)

    2015-07-15

    We present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star’s absolute magnitude. This technique is tailored specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ∼5° diameter “plate” that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and target selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ∼20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ∼40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.

  14. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    International Nuclear Information System (INIS)

    Christensen-Dalsgaard, Joergen; Carpenter, Kenneth G; Schrijver, Carolus J; Karovska, Margarita

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a 'Landmark/Discovery Mission' in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  15. Direct Imaging of Stellar Surfaces: Results from the Stellar Imager (SI) Vision Mission Study

    Science.gov (United States)

    Carpenter, Kenneth; Schrijver, Carolus; Karovska, Margarita

    2006-01-01

    The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and stellar interiors (via asteroseismology) and of the Universe in general. SI is identified as a "Flagship and Landmark Discovery Mission'' in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory'' in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes: The 0.1 mas resolution of this deep-space telescope will transform point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we will discuss the results of the SI Vision Mission Study, elaborating on the science goals of the SI Mission and a mission architecture that could meet those goals.

  16. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Christensen-Dalsgaard, Joergen [Department of Physics and Astronomy, Aarhus University (Denmark); Carpenter, Kenneth G [Code 667 NASA-GSFC, Greenbelt, MD 20771 (United States); Schrijver, Carolus J [LMATC 3251 Hanover St., Bldg. 252, Palo Alto, CA 94304 (United States); Karovska, Margarita, E-mail: jcd@phys.au.d, E-mail: Kenneth.G.Carpenter@nasa.gov, E-mail: schryver@lmsal.com, E-mail: karovska@head.cfa.harvard.edu [60 Garden St., Cambridge, MA 02138 (United States)

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a 'Landmark/Discovery Mission' in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  17. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Science.gov (United States)

    Christensen-Dalsgaard, Jørgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Si Team

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a "Landmark/Discovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  18. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Science.gov (United States)

    Christensen-Dalsgaard, Jorgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2012-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled processes in the Universe. SI is a "LandmarklDiscovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission

  19. Suppression of the stellar enhancement factor and the reaction 85Rb(p,n)85Sr

    International Nuclear Information System (INIS)

    Rauscher, T.; Kiss, G. G.; Gyuerky, Gy.; Simon, A.; Fueloep, Zs.; Somorjai, E.

    2009-01-01

    It is shown that a Coulomb suppression of the stellar enhancement factor occurs in many endothermic reactions at and far from stability. Contrary to common assumptions, reaction measurements for astrophysics with minimal impact of stellar enhancement should be preferably performed for those reactions instead of their reverses, despite of their negative Q value. As a demonstration, the cross section of the astrophysically relevant 85 Rb(p,n) 85 Sr reaction has been measured by activation between 2.16≤E c.m. ≤3.96 MeV and the astrophysical reaction rates at p process temperatures for (p,n) as well as (n,p) are directly inferred from the data. Additionally, our results confirm a previously derived modification of a global optical proton potential. The presented arguments are also relevant for other α- and proton-induced reactions in the p, rp, and νp processes.

  20. The Influence of Stellar Spin on Ignition of Thermonuclear Runaways

    Science.gov (United States)

    Galloway, Duncan K.; in ’t Zand, Jean J. M.; Chenevez, Jérôme; Keek, Laurens; Sanchez-Fernandez, Celia; Worpel, Hauke; Lampe, Nathanael; Kuulkers, Erik; Watts, Anna; Ootes, Laura; The MINBAR collaboration

    2018-04-01

    Runaway thermonuclear burning of a layer of accumulated fuel on the surface of a compact star provides a brief but intense display of stellar nuclear processes. For neutron stars accreting from a binary companion, these events manifest as thermonuclear (type-I) X-ray bursts, and recur on typical timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast (>400 Hz) rotation encourages stabilization of nuclear burning, suggesting a dynamical dependence of nuclear ignition on the spin rate. This dependence is unexpected, because faster rotation entails less shear between the surrounding accretion disk and the star. Large-scale circulation in the fuel layer, leading to enhanced mixing of the burst ashes into the fuel layer, may explain this behavior; further numerical simulations are required to confirm this.

  1. The Origin of Stellar Species: constraining stellar evolution scenarios with Local Group galaxy surveys

    Science.gov (United States)

    Sarbadhicary, Sumit; Badenes, Carles; Chomiuk, Laura; Maldonado, Jessica; Caprioli, Damiano; Heger, Mairead; Huizenga, Daniel

    2018-01-01

    Our understanding of the progenitors of many stellar species, such as supernovae, massive and low-mass He-burning stars, is limited because of many poorly constrained aspects of stellar evolution theory. For my dissertation, I have focused on using Local Group galaxy surveys to constrain stellar evolution scenarios by measuring delay-time distributions (DTD). The DTD is the hypothetical occurrence rate of a stellar object per elapsed time after a brief burst of star formation. It is the measured distribution of timescales on which stars evolve, and therefore serves as a powerful observational constraint on theoretical progenitor models. The DTD can be measured from a survey of stellar objects and a set of star-formation histories of the host galaxy, and is particularly effective in the Local Group, where high-quality star-formation histories are available from resolved stellar populations. I am currently calculating a SN DTD with supernova remnants (SNRs) in order to provide the strongest constraints on the progenitors of thermonuclear and core-collapse supernovae. However, most SNRs do not have reliable age measurements and their evolution depends on the ambient environment. For this reason, I wrote a radio light curve model of an SNR population to extract the visibility times and rates of supernovae - crucial ingredients for the DTD - from an SNR survey. The model uses observational constraints on the local environments from multi-wavelength surveys, accounts for missing SNRs and employs the latest models of shock-driven particle acceleration. The final calculation of the SN DTD in the Local Group is awaiting completion of a systematic SNR catalog from deep radio-continuum images, now in preparation by a group led by Dr. Laura Chomiuk. I have also calculated DTDs for the LMC population of RR Lyrae and Cepheid variables, which serve as important distance calibrators and stellar population tracers. We find that Cepheids can have delay-times between 10 Myrs - 1 Gyr

  2. SUB-STELLAR COMPANIONS AND STELLAR MULTIPLICITY IN THE TAURUS STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Daemgen, Sebastian; Bonavita, Mariangela; Jayawardhana, Ray; Lafrenière, David; Janson, Markus

    2015-01-01

    We present results from a large, high-spatial-resolution near-infrared imaging search for stellar and sub-stellar companions in the Taurus-Auriga star-forming region. The sample covers 64 stars with masses between those of the most massive Taurus members at ∼3 M ☉ and low-mass stars at ∼0.2 M ☉ . We detected 74 companion candidates, 34 of these reported for the first time. Twenty-five companions are likely physically bound, partly confirmed by follow-up observations. Four candidate companions are likely unrelated field stars. Assuming physical association with their host star, estimated companion masses are as low as ∼2 M Jup . The inferred multiplicity frequency within our sensitivity limits between ∼10-1500 AU is 26.3 −4.9 +6.6 %. Applying a completeness correction, 62% ± 14% of all Taurus stars between 0.7 and 1.4 M ☉ appear to be multiple. Higher order multiples were found in 1.8 −1.5 +4.2 % of the cases, in agreement with previous observations of the field. We estimate a sub-stellar companion frequency of ∼3.5%-8.8% within our sensitivity limits from the discovery of two likely bound and three other tentative very low-mass companions. This frequency appears to be in agreement with what is expected from the tail of the stellar companion mass ratio distribution, suggesting that stellar and brown dwarf companions share the same dominant formation mechanism. Further, we find evidence for possible evolution of binary parameters between two identified sub-populations in Taurus with ages of ∼2 Myr and ∼20 Myr, respectively

  3. SUB-STELLAR COMPANIONS AND STELLAR MULTIPLICITY IN THE TAURUS STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Daemgen, Sebastian [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5H 3H4 (Canada); Bonavita, Mariangela [The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Jayawardhana, Ray [Physics and Astronomy, York University, Toronto, Ontario L3T 3R1 (Canada); Lafrenière, David [Department of Physics, University of Montréal, Montréal, QC (Canada); Janson, Markus, E-mail: daemgen@astro.utoronto.ca [Department of Astronomy, Stockholm University, Stockholm (Sweden)

    2015-02-01

    We present results from a large, high-spatial-resolution near-infrared imaging search for stellar and sub-stellar companions in the Taurus-Auriga star-forming region. The sample covers 64 stars with masses between those of the most massive Taurus members at ∼3 M {sub ☉} and low-mass stars at ∼0.2 M {sub ☉}. We detected 74 companion candidates, 34 of these reported for the first time. Twenty-five companions are likely physically bound, partly confirmed by follow-up observations. Four candidate companions are likely unrelated field stars. Assuming physical association with their host star, estimated companion masses are as low as ∼2 M {sub Jup}. The inferred multiplicity frequency within our sensitivity limits between ∼10-1500 AU is 26.3{sub −4.9}{sup +6.6}%. Applying a completeness correction, 62% ± 14% of all Taurus stars between 0.7 and 1.4 M {sub ☉} appear to be multiple. Higher order multiples were found in 1.8{sub −1.5}{sup +4.2}% of the cases, in agreement with previous observations of the field. We estimate a sub-stellar companion frequency of ∼3.5%-8.8% within our sensitivity limits from the discovery of two likely bound and three other tentative very low-mass companions. This frequency appears to be in agreement with what is expected from the tail of the stellar companion mass ratio distribution, suggesting that stellar and brown dwarf companions share the same dominant formation mechanism. Further, we find evidence for possible evolution of binary parameters between two identified sub-populations in Taurus with ages of ∼2 Myr and ∼20 Myr, respectively.

  4. SDSS-IV MaNGA: stellar population gradients as a function of galaxy environment

    Science.gov (United States)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.

    2017-02-01

    We study the internal radial gradients of stellar population properties within 1.5 Re and analyse the impact of galaxy environment. We use a representative sample of 721 galaxies with masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV survey MaNGA. We split this sample by morphology into early-type and late-type galaxies. Using the full spectral fitting code FIREFLY, we derive the light and mass-weighted stellar population properties, age and metallicity, and calculate the gradients of these properties. We use three independent methods to quantify galaxy environment, namely the Nth nearest neighbour, the tidal strength parameter Q and distinguish between central and satellite galaxies. In our analysis, we find that early-type galaxies generally exhibit shallow light-weighted age gradients in agreement with the literature and mass-weighted median age gradients tend to be slightly positive. Late-type galaxies, instead, have negative light-weighted age gradients. We detect negative metallicity gradients in both early- and late-type galaxies that correlate with galaxy mass, with the gradients being steeper and the correlation with mass being stronger in late-types. We find, however, that stellar population gradients, for both morphological classifications, have no significant correlation with galaxy environment for all three characterizations of environment. Our results suggest that galaxy mass is the main driver of stellar population gradients in both early and late-type galaxies, and any environmental dependence, if present at all, must be very subtle.

  5. The Magellanic Analog Dwarf Companions and Stellar Halos (MADCASH) Survey: Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    Science.gov (United States)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Peter, Annika; Price, Paul A.; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2017-01-01

    We discuss the first results of our observational program to comprehensively map nearly the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. These will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. We will detail our discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  6. Optical Monitoring of Young Stellar Objects

    Science.gov (United States)

    Kar, Aman; Jang-Condell, Hannah; Kasper, David; Findlay, Joseph; Kobulnicky, Henry A.

    2018-06-01

    Observing Young Stellar Objects (YSOs) for variability in different wavelengths enables us to understand the evolution and structure of the protoplanetary disks around stars. The stars observed in this project are known YSOs that show variability in the Infrared. Targets were selected from the Spitzer Space Telescope Young Stellar Object Variability (YSOVAR) Program, which monitored star-forming regions in the mid-infrared. The goal of our project is to investigate any correlation between the variability in the infrared versus the optical. Infrared variability of YSOs is associated with the heating of the protoplanetary disk while accretion signatures are observed in the H-alpha region. We used the University of Wyoming’s Red Buttes Observatory to monitor these stars for signs of accretion using an H-alpha narrowband filter and the Johnson-Cousins filter set, over the Summer of 2017. We perform relative photometry and inspect for an image-to-image variation by observing these targets for a period of four months every two to three nights. The study helps us better understand the link between accretion and H-alpha activity and establish a disk-star connection.

  7. Stellar populations in medium redshift clusters

    International Nuclear Information System (INIS)

    Pickles, A.J.; van der Kruit, P.C.; Pickles, A.J.

    1990-01-01

    We present a set of model isochrone spectra formed by combining stellar spectra in the proportions appropriate to the isochrone tabulations of VandenBerg, together with a Miller-Scalo mass function. The model spectra cover the wave-length range 3000-10000 A and have been constructed for metallicities in the range - 1.0 ≤ [Fe/H] ≤ 0.5, and for isochrone ages of 2 to 15 billion years. The model spectra follow the isochrone tabulations by including contributions from stars along the main sequence and subgiant branch to the base of the giant branch, fully constraining the main sequence turnoff and early post main sequence evolutionary phases. They are useful for deconvolving the competing effects of age and metallicity dispersion in composite systems. Other important components such as Horizontal branch, red giant and asymptotic branch stars are not included explicitly because they are not yet tabulated by VandenBerg, and because their fractional contributions to a composite population are less certain. These components should be added as extra parameters from a stellar library when fitting real composite spectra

  8. Bootstrap currents in stellarators and tokamaks

    International Nuclear Information System (INIS)

    Okamoto, Masao; Nakajima, Noriyoshi.

    1990-09-01

    The remarkable feature of the bootstrap current in stellarators is it's strong dependence on the magnetic field configuration. Neoclassical bootstrap currents in a large helical device of torsatron/heliotron type (L = 2, M = 10, R = 4 m, B = 4 T) is evaluated in the banana (1/ν) and the plateau regime. Various vacuum magnetic field configurations are studied with a view to minimizing the bootstrap current. It is found that in the banana regime, shifting of the magnetic axis and shaping of magnetic surfaces have a remarkable influence on the bootstrap current; a small outward shift of the magnetic axis and vertically elongated magnetic surfaces are favourable for a reduction of the bootstrap current. It is noted, however, that the ripple diffusion in the 1/ν regime has opposite tendency to the bootstrap current; it increases with the outward shift and increases as the plasma cross section is vertically elongated. The comparison will be made between bootstrap currents in stellarators and tokamaks. (author)

  9. A multi-institutional Stellarator Configuration Study

    Science.gov (United States)

    Gates, David

    2017-10-01

    A multi-institutional study aimed at mapping the space of quasi-axisymmetric stellarators has begun. The goal is to gain improved understanding of the dependence of important physics and engineering parameters (e.g. bootstrap current, stability, coil complexity, etc.) on plasma shape (average elongation, aspect ratio, number of periods). In addition, the stellarator optimization code STELLOPT will be upgraded with new capabilities such as improved coil design algorithms such as COILOPT + + and REGCOIL, divertor optimization options, equilibria with islands using the SPEC code, and improved bootstrap current calculations with the SFINCS code. An effort is underway to develop metrics for divertor optimization. STELLOPT has also had numerous improvements to numerical algorithms and parallelization capabilities. Simultaneously, we also are pursuing the optimization of turbulent transport according to the method of proxy functions. Progress made to date includes an elongation scan on quasi-axisymmetric equilibria and an initial comparison between the SFINCS code and the BOOTSJ calculation of bootstrap current currently available in STELLOPT. Further progress on shape scans and subsequent physics analysis will be reported. The status of the STELLOPT upgrades will be described. The eventual goal of this exercise is to identify attractive configurations for future US experimental facilities.. This work is supported by US DoE Contract Number DE-AC02-09CH11466.

  10. Color superconductivity in compact stellar hybrid configurations

    Science.gov (United States)

    Ranea-Sandoval, Ignacio F.; Orsaria, Milva G.; Han, Sophia; Weber, Fridolin; Spinella, William M.

    2017-12-01

    The discovery of pulsars PSR J1614-2230 and PSR J0348+0432 with masses of around 2 M⊙ imposes strong constraints on the equations of state of cold, ultradense matter. If a phase transition from hadronic matter to quark matter were to occur in the inner cores of such massive neutron stars, the energetically favorable state of quark matter would be a color superconductor. In this study, we analyze the stability and maximum mass of such neutron stars. The hadronic phase is described by nonlinear relativistic mean-field models, and the local Nambu-Jona Lasinio model is used to describe quark matter in the 2SC+s quark phase. The phase transition is treated as a Maxwell transition, assuming a sharp hadron-quark interface, and the "constant-sound-speed" (CSS) parametrization is employed to discuss the existence of stellar twin configurations. We find that massive neutron stars such as J1614-2230 and J0348+0432 can only exist on the connected stellar branch but not on the disconnected twin-star branch. The latter can only support stars with masses that are strictly below 2 M⊙ .

  11. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  12. Highest manageable level of radioactivity in the waste storage facilities of power plants

    International Nuclear Information System (INIS)

    Elkert, J.; Lennartsson, R.

    1991-01-01

    This project presents and discusses an investigation of the highest level of radioactivity possible to handle in the waste storage facilities. The amount of radioactivity, about 0.1% of the fuel inventory, is the same in both of the cases but the amount of water is very different. The hypothetical accident was supposed to be damage of the reactor fuel caused by loss of coolant. (K.A.E.)

  13. Highest cited papers published in Neurology India: An analysis for the years 1993-2014.

    Science.gov (United States)

    Pandey, Paritosh; Subeikshanan, V; Madhugiri, Venkatesh S

    2016-01-01

    The highest cited papers published in a journal provide a snapshot of the clinical practice and research in that specialty and/or region. The aim of this study was to determine the highest cited papers published in Neurology India and analyze their attributes. This study was a citation analysis of all papers published in Neurology India since online archiving commenced in 1993. All papers published in Neurology India between the years 1993-2014 were listed. The number of times each paper had been cited up till the time of performing this study was determined by performing a Google Scholar search. Published papers were then ranked on the basis of total times cited since publication and the annual citation rate. Statistical Techniques: Simple counts and percentages were used to report most results. The mean citations received by papers in various categories were compared using the Student's t-test or a one-way analysis of variance, as appropriate. All analyses were carried out on SAS University Edition (SAS/STAT®, SAS Institute Inc, NC, USA) and graphs were generated on MS Excel 2016. The top papers on the total citations and annual citation rate rank lists pertained to basic neuroscience research. The highest cited paper overall had received 139 citations. About a quarter of the papers published had never been cited at all. The major themes represented were vascular diseases and infections. The highest cited papers reflect the diseases that are of major concern in India. Certain domains such as trauma, allied neurosciences, and basic neuroscience research were underrepresented.

  14. ATLAS event at 13 TeV - Highest mass dijets resonance event in 2015 data

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    The highest-mass, central dijet event passing the dijet resonance selection collected in 2015 (Event 1273922482, Run 280673) : the two central high-pT jets have an invariant mass of 6.9 TeV, the two leading jets have a pT of 3.2 TeV. The missing transverse momentum in this event is 46 GeV.

  15. ATLAS event at 13 TeV - Highest mass dijets angular event in 2015 data

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    The highest-mass dijet event passing the angular selection collected in 2015 (Event 478442529, Run 280464): the two central high-pT jets have an invariant mass of 7.9 TeV, the three leading jets have a pT of 1.99, 1.86 and 0.74 TeV respectively. The missing transverse momentum in this event is 46 GeV

  16. Eyebrow hairs from actinic keratosis patients harbor the highest number of cutaneous human papillomaviruses.

    Science.gov (United States)

    Schneider, Ines; Lehmann, Mandy D; Kogosov, Vlada; Stockfleth, Eggert; Nindl, Ingo

    2013-04-24

    Cutaneous human papillomavirus (HPV) infections seem to be associated with the onset of actinic keratosis (AK). This study compares the presence of cutaneous HPV types in eyebrow hairs to those in tissues of normal skin and skin lesions of 75 immunocompetent AK patients. Biopsies from AK lesions, normal skin and plucked eyebrow hairs were collected from each patient. DNA from these specimens was tested for the presence of 28 cutaneous HPV (betaPV and gammaPV) by a PCR based method. The highest number of HPV prevalence was detected in 84% of the eyebrow hairs (63/75, median 6 types) compared to 47% of AK lesions (35/75, median 3 types) (pAK and 69 in normal skin. In all three specimens HPV20, HPV23 and/or HPV37 were the most prevalent types. The highest number of multiple types of HPV positive specimens was found in 76% of the eyebrow hairs compared to 60% in AK and 57% in normal skin. The concordance of at least one HPV type in virus positive specimens was 81% (three specimens) and 88-93% of all three combinations with two specimens. Thus, eyebrow hairs revealed the highest number of cutaneous HPV infections, are easy to collect and are an appropriate screening tool in order to identify a possible association of HPV and AK.

  17. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    Science.gov (United States)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  18. Stellar oscillations in planet-hosting giant stars

    Energy Technology Data Exchange (ETDEWEB)

    Hatzes, Artie P; Zechmeister, Mathias [Thueringer Landessternwarte, Sternwarte 5, D-07778 (Germany)], E-mail: artie@tls-tautenburg.de

    2008-10-15

    Recently a number of giant extrasolar planets have been discovered around giant stars. These discoveries are important because many of these giant stars have intermediate masses in the range 1.2-3 Msun. Early-type main sequence stars of this mass range have been avoided by radial velocity planet search surveys due the difficulty of getting the requisite radial velocity precision needed for planet discoveries. Thus, giant stars can tell us about planet formation for stars more massive than the sun. However, the determination of stellar masses for giant stars is difficult due to the fact that evolutionary tracks for stars covering a wide range of masses converge to the same region of the H-R diagram. We report here on stellar oscillations in three planet-hosting giant stars: HD 13189, {beta} Gem, and {iota} Dra. Precise stellar radial velocity measurements for these stars show variations whose periods and amplitudes are consistent with solar-like p-mode oscillations. The implied stellar masses for these objects based on the characteristics of the stellar oscillations are consistent with the predictions of stellar isochrones. An investigation of stellar oscillations in planet hosting giant stars offers us the possibility of getting an independent determination of the stellar mass for these objects which is of crucial importance for extrasolar planet studies.

  19. First results from stellar occultations in the "GAIA era"

    Science.gov (United States)

    Benedetti-Rossi, G.; Vieira-Martins, R.; Sicardy, B.

    2017-09-01

    Stellar occultation is a powerful technique to study distant solar system bodies. It allows high angular resolution of the occulting body from the analysis of a light curve acquired with high temporal resolution with uncertainties comparable as probes. In the "GAIA era", stellar occultations is now able to obtain even more impressive results such as the presence of atmosphere, rings and topographic features.

  20. Recent advances in non-LTE stellar atmosphere models

    Science.gov (United States)

    Sander, Andreas A. C.

    2017-11-01

    In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.

  1. Proton Testing of Advanced Stellar Compass Digital Processing Unit

    DEFF Research Database (Denmark)

    Thuesen, Gøsta; Denver, Troelz; Jørgensen, Finn E

    1999-01-01

    The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland.......The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland....

  2. The Advanced Stellar Compass onboard the Oersted satellite

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Eisenman, Allan R.; Liebe, Carl Christian

    1997-01-01

    In 1997 the first Danish satellite will be launched. The primarily scientific objective of the satellite is to map the magnetic field of the Earth. The attitude of the satellite is determined by an advanced stellar compass (star tracker). An advanced stellar compass consists of a CCD camera...

  3. Variation of galactic cold gas reservoirs with stellar mass

    NARCIS (Netherlands)

    Maddox, Natasha; Hess, Kelley M.; Obreschkow, Danail; Blyth, S.-L.; Jarvis, Matt J.

    The stellar and neutral hydrogen (H I) mass functions at z ˜ 0 are fundamental benchmarks for current models of galaxy evolution. A natural extension of these benchmarks is the two-dimensional distribution of galaxies in the plane spanned by stellar and H I mass, which provides a more stringent test

  4. Stellar Relics from the Early Galaxy T. Sivarani

    Indian Academy of Sciences (India)

    metal-poor stars is used to study the chemical history of the galaxy. Apart from this,. 5 .... They fit a color-magnitude diagram in order to trace different stellar population and derived a ... distinctly different stellar population with a different origin.

  5. Is the Mercier criterion relevant to stellarator stability?

    International Nuclear Information System (INIS)

    Carreras, B.A.; Lynch, V.E.; Ichiguchi, K.; Wakatani, M.; Tatsuno, T.

    2001-01-01

    Local flattening of the pressure profile at the resonant surfaces may significantly change the stellarator stability properties. This flattening may be an intrinsic consequence of the three-dimensional nature of the equilibrium and may invalidate the local stability criteria often used in stellarator design. (author)

  6. Operations of a non-stellar object tracker in space

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif; Betto, Maurizio

    1999-01-01

    The ability to detect and track non-stellar objects by utilizing a star tracker may seem rather straight forward, as any bright object, not recognized as a star by the system is a non stellar object. However, several pitfalls and errors exist, if a reliable and robust detection is required. To te...

  7. Eight luminous early-type galaxies in nearby pairs and sparse groups. I. Stellar populations spatially analysed

    Science.gov (United States)

    Rosa, D. A.; Milone, A. C.; Krabbe, A. C.; Rodrigues, I.

    2018-06-01

    We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may have interaction with another galaxy of similar mass. We have spatially measured luminosity-weighted averages of age, [M/H], [Fe/H], and [α /Fe] in the sample galaxies to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the well-established stellar population synthesis code starlight using semi-empirical simple stellar population models. Radial variations of luminosity- weighted means of age, [M/H], [Fe/H], and [α /Fe] were quantified up to half of the effective radius of each galaxy. We found trends between representative values of age, [M/H], [α /Fe], and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1-4 Gyr old stellar populations were quantified in IC 5328 and NGC 6758 as well as 4-8 Gyr old ones in NGC 5812. Extended gas is present in IC 5328, NGC 1052, NGC 1209, and NGC 6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are basically dominated by α -enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [α /Fe] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass cannot be discarded in the formation and evolution of early-type galaxies.

  8. Improving 1D Stellar Models with 3D Atmospheres

    Science.gov (United States)

    Rørsted Mosumgaard, Jakob; Silva Aguirre, Víctor; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner

    2017-10-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.

  9. Eyebrow hairs from actinic keratosis patients harbor the highest number of cutaneous human papillomaviruses

    Science.gov (United States)

    2013-01-01

    Background Cutaneous human papillomavirus (HPV) infections seem to be associated with the onset of actinic keratosis (AK). This study compares the presence of cutaneous HPV types in eyebrow hairs to those in tissues of normal skin and skin lesions of 75 immunocompetent AK patients. Methods Biopsies from AK lesions, normal skin and plucked eyebrow hairs were collected from each patient. DNA from these specimens was tested for the presence of 28 cutaneous HPV (betaPV and gammaPV) by a PCR based method. Results The highest number of HPV prevalence was detected in 84% of the eyebrow hairs (63/75, median 6 types) compared to 47% of AK lesions (35/75, median 3 types) (p< 0.001) and 37% of normal skin (28/75, median 4 types) (p< 0.001), respectively. A total of 228 HPV infections were found in eyebrow hairs compared to only 92 HPV infections in AK and 69 in normal skin. In all three specimens HPV20, HPV23 and/or HPV37 were the most prevalent types. The highest number of multiple types of HPV positive specimens was found in 76% of the eyebrow hairs compared to 60% in AK and 57% in normal skin. The concordance of at least one HPV type in virus positive specimens was 81% (three specimens) and 88-93% of all three combinations with two specimens. Conclusions Thus, eyebrow hairs revealed the highest number of cutaneous HPV infections, are easy to collect and are an appropriate screening tool in order to identify a possible association of HPV and AK. PMID:23618013

  10. Spectrum of ballooning instabilities in a stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Singleton, D B [Australian National Univ., ANU Supercomputing Facility, Canberra (Australia); Dewar, R L [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1995-08-01

    The recent revival of interest in the application of the `ballooning formalism` to low-frequency plasma instabilities has prompted a comparison of the Wentzel-Brillouin-Kramers (WKB) ballooning approximation with an (in principle) exact normal mode calculation for a three-dimensional plasma equilibrium. Semiclassical quantization, using the ideal magnetohydrodynamic (MHD) ballooning eigenvalue to provide a local dispersion relation, is applied to a ten-field period stellarator test case. Excellent qualitative agreement, and good quantitative agreement is found with predictions from the TERPSICHORE code for toroidal mode numbers from 1 to 14 and radial mode numbers from 0 to 2. The continuum bands predicted from three-dimensional WKB theory are too narrow to resolve. (author) 3 figs., 24 refs.

  11. Spectrum of ballooning instabilities in a stellarator

    International Nuclear Information System (INIS)

    Cooper, W.A.; Singleton, D.B.; Dewar, R.L.

    1995-08-01

    The recent revival of interest in the application of the 'ballooning formalism' to low-frequency plasma instabilities has prompted a comparison of the Wentzel-Brillouin-Kramers (WKB) ballooning approximation with an (in principle) exact normal mode calculation for a three-dimensional plasma equilibrium. Semiclassical quantization, using the ideal magnetohydrodynamic (MHD) ballooning eigenvalue to provide a local dispersion relation, is applied to a ten-field period stellarator test case. Excellent qualitative agreement, and good quantitative agreement is found with predictions from the TERPSICHORE code for toroidal mode numbers from 1 to 14 and radial mode numbers from 0 to 2. The continuum bands predicted from three-dimensional WKB theory are too narrow to resolve. (author) 3 figs., 24 refs

  12. Constraints on stellar evolution from pulsations

    International Nuclear Information System (INIS)

    Cox, A.N.

    1984-01-01

    Consideration of the many types of intrinsic variable stars, that is, those that pulsate, reveals that perhaps a dozen classes can indicate some constraints that affect the results of stellar evolution calculations, or some interpretations of observations. Many of these constraints are not very strong or may not even be well defined yet. The author discusses the case for six classes: classical Cepheids with their measured Wesselink radii, the observed surface effective temperatures of the known eleven double-mode Cepheids, the pulsation periods and measured surface effective temperatures of three R CrB variables, the delta Scuti variable VZ Cnc with a very large ratio of its two observed periods, the nonradial oscillations of the Sun, and the period ratios of the newly discovered double-mode RR Lyrae variables. (Auth.)

  13. Status of the US stellarator reactor study

    International Nuclear Information System (INIS)

    Lyon, J.F.; Gulec, K.; Miller, R.L.; El-Guebaly, L.

    1994-01-01

    Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors. This scoping study, which uses an integrated cost-minimization code that incorporates costing and reactor component models self-consistently with a 1-D energy transport calculation, shows that a torsatron reactor could also be competitive with a tokamak reactor. The projected cost of electricity (COE) estimated using the ARIES costing algorithms is 62.5 mill/kW(e)h in constant 1992 dollars for a 1-GW(e) Compact Torsatron reactor reference case. The COE is relatively insensitive (< 10% variation) over a wide range of assumptions including variations in the maximum field allowed on the coils, the coil elongation, the shape of the density profile, the beta limit, the confinement multiplier, and the presence of a large loss region for alpha particles. The largest variations in the COE occur for variations in the electrical power output demanded and the plasma-coil separation ratio

  14. Quasiaxially symmetric stellarators with three field periods

    International Nuclear Information System (INIS)

    Garabedian, P.; Ku, L.

    1999-01-01

    Compact hybrid configurations with two field periods have been studied recently as candidates for a proof of principle experiment at the Princeton Plasma Physics Laboratory. This project has led us to the discovery of a family of quasiaxially symmetric stellarators with three field periods that have significant advantages, although their aspect ratios are a little larger. They have reversed shear and perform better in a local analysis of ballooning modes. Nonlinear equilibrium and stability calculations predict that the average beta limit will be at least as high as 4% if the bootstrap current turns out to be as big as that expected in comparable tokamaks. The concept relies on a combination of helical fields and bootstrap current to achieve adequate rotational transform at low aspect ratio. copyright 1999 American Institute of Physics

  15. Planck scale still safe from stellar images

    International Nuclear Information System (INIS)

    Coule, D H

    2003-01-01

    The recent paper of Lieu and Hillman (2003 Astrophys. J. Lett. 585 L77) suggesting that a possible (birefringence-like) phase difference ambiguity coming from Planck effects would alter stellar images of distant sources is questioned. Instead for division of wavefront interference and diffraction phenomena, initial (lateral) coherence is developed simply by propagation of rays (cf the van Cittert-Zernike theorem). This case is strongly immune to quantum gravity influences that could tend to reduce phase coherence. The phase ambiguity, if actually present, could reduce any underlying polarization of the light rays. However, we argue that, as expected since any inherent quantum discreteness of space should become increasingly negligible over larger distances, such a phase ambiguity is rapidly cancelled if a more realistic constantly fluctuating quantum 'buffeting' occurs

  16. Tutorial: Asteroseismic Stellar Modelling with AIMS

    Science.gov (United States)

    Lund, Mikkel N.; Reese, Daniel R.

    The goal of aims (Asteroseismic Inference on a Massive Scale) is to estimate stellar parameters and credible intervals/error bars in a Bayesian manner from a set of asteroseismic frequency data and so-called classical constraints. To achieve reliable parameter estimates and computational efficiency, it searches through a grid of pre-computed models using an MCMC algorithm—interpolation within the grid of models is performed by first tessellating the grid using a Delaunay triangulation and then doing a linear barycentric interpolation on matching simplexes. Inputs for the modelling consist of individual frequencies from peak-bagging, which can be complemented with classical spectroscopic constraints. aims is mostly written in Python with a modular structure to facilitate contributions from the community. Only a few computationally intensive parts have been rewritten in Fortran in order to speed up calculations.

  17. Recent progress in stellarator reactor conceptual design

    International Nuclear Information System (INIS)

    Miller, R.L.

    1985-01-01

    The Stellarator/Torsatron/Heliotron (S/T/H) class of toroidal magnetic fusion reactor designs continues to offer a distinct and in several ways superior approach to eventual commercial competitiveness. Although no major, integrated conceptual reactor design activity is presently underway, a number of international research efforts suggest avenues for the substantial improvement of the S/T/H reactor embodiment, which derive from recent experimental and theoretical progress and are responsive to current trends in fusion-reactor projection to set the stage for a third generation of designs. Recent S/T/H reactor design activity is reviewed and the impact of the changing technical and programmatic context on the direction of future S/T/H reactor design studies is outlined

  18. Energy balance in solar and stellar chromospheres

    Science.gov (United States)

    Avrett, E. H.

    1981-01-01

    Net radiative cooling rates for quiet and active regions of the solar chromosphere and for two stellar chromospheres are calculated from corresponding atmospheric models. Models of chromospheric temperature and microvelocity distributions are derived from observed spectra of a dark point within a cell, the average sun and a very bright network element on the quiet sun, a solar plage and flare, and the stars Alpha Boo and Lambda And. Net radiative cooling rates due to the transitions of various atoms and ions are then calculated from the models as a function of depth. Large values of the net radiative cooling rate are found at the base of the chromosphere-corona transition region which are due primarily to Lyman alpha emission, and a temperature plateau is obtained in the transition region itself. In the chromospheric regions, the calculated cooling rate is equal to the mechanical energy input as a function of height and thus provides a direct constraint on theories of chromospheric heating.

  19. Stellar pulsations in beyond Horndeski gravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Sakstein, Jeremy [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104 (United States); Kenna-Allison, Michael; Koyama, Kazuya, E-mail: sakstein@physics.upenn.edu, E-mail: mka1g13@soton.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  20. Comparison between stellarator and tokamak divertor transport

    International Nuclear Information System (INIS)

    Feng, Y.; Lunt, T.; Kobayashi, M.; Reiter, D.

    2010-11-01

    The paper compares the essential divertor transport features of the poloidal divertor, which is well-developed for tokamaks, and the non-axisymmetric divertors currently investigated on helical devices. It aims at surveying the fundamental similarities and differences in divertor concept and geometry, and their consequences for how the divertor functions. In particular, the importance of various transport terms governing axisymmetric and helical scrape-off-layers (SOLs) is examined, with special attention being paid to energy, momentum and impurity transport. Tokamak and stellarator SOLs are compared by identifying key geometric parameters through which the governing physics can be illustrated by simple models and estimates. More quantitative assessments rely nevertheless on the modeling using EMC3-EIRENE code. Most of the theoretical results are discussed in conjunction with experimental observations. (author)

  1. Stellar pulsations in beyond Horndeski gravity theories

    Science.gov (United States)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  2. A new class of relativistic stellar models

    Science.gov (United States)

    Haggag, Salah

    1995-03-01

    Einstein field equations for a static and spherically symmetric perfect fluid are considered. A formulation given by Patino and Rago is used to obtain a class of nine solutions, two of them are Tolman solutions I, IV and the remaining seven are new. The solutions are the correct ones corresponding to expressions derived by Patino and Rago which have been shown by Knutsen to be incorrect. Similar to Tolan solution IV each of the new solutions satisfies energy conditions inside a sphere in some range of two independent parameters. Besides, each solution could be matched to the exterior Schwarzschild solution at a boundary where the pressure vanishes and thus the solutions constitute a class of new physically reasonable stellar models.

  3. Stellar parametrization from Gaia RVS spectra

    Science.gov (United States)

    Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.

    2016-01-01

    Context. Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as GRVS~ 16. A specific stellar parametrization will be performed on most of these RVS spectra, I.e. those with enough high signal-to-noise ratio (S/N), which should correspond to single stars that have a magnitude in the RVS band brighter than ~14.5. Some individual chemical abundances will also be estimated for the brightest targets. Aims: We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-Spec working group of the analysis consortium. The tested codes are based on optimisation (FERRE and GAUGUIN), projection (MATISSE), or pattern-recognition methods (Artificial Neural Networks). We present and discuss each of their expected performances in the recovered stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity) for B- to K-type stars. The performances for determining of [α/Fe] ratios are also presented for cool stars. Methods: Each code has been homogeneously tested with a large grid of RVS simulated synthetic spectra of BAFGK-spectral types (dwarfs and giants), with metallicities varying from 10-2.5 to 10+ 0.5 the solar metallicity, and taking variations of ±0.4 dex in the composition of the α-elements into consideration. The tests were performed for S/N ranging from ten to 350. Results: For all the stellar types we considered, stars brighter than GRVS~ 12.5 are very efficiently parametrized by the GSP-Spec pipeline, including reliable estimations of [α/Fe]. Typical internal errors for FGK metal-rich and metal-intermediate stars are around 40 K in Teff, 0.10 dex in log(g), 0.04 dex in [M/H], and 0.03 dex in [α/Fe] at GRVS = 10.3. They degrade to 155 K in Teff, 0.15 dex in log(g), 0.10 dex in [M/H], and 0.1 dex in [α/Fe] at GRVS~ 12. Similar accuracies in Teff and [M/H] are

  4. STRESS - STEREO TRansiting Exoplanet and Stellar Survey

    Science.gov (United States)

    Sangaralingam, Vinothini; Stevens, Ian R.; Spreckley, Steve; Debosscher, Jonas

    2010-02-01

    The Heliospheric Imager (HI) instruments on board the two STEREO (Solar TErrestrial RElations Observatory) spacecraft provides an excellent opportunity for space based stellar photometry. The HI instruments provide a wide area coverage (20° × 20° for the two HI-1 instruments and 70° × 70° for the two HI-2 instruments) and long continuous periods of observations (20 days and 70 days respectively). Using HI-1A which has a pass band of 6500Å to 7500Å and a cadence of 40 minutes, we have gathered photometric information for more than a million stars brighter than 12th magnitude for a period of two years. Here we present some early results from this study on a range of variable stars and the future prospects for the data.

  5. Habitable zone dependence on stellar parameter uncertainties

    International Nuclear Information System (INIS)

    Kane, Stephen R.

    2014-01-01

    An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.

  6. Habitable zone dependence on stellar parameter uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R., E-mail: skane@sfsu.edu [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States)

    2014-02-20

    An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.

  7. Physics issues of compact drift optimized stellarators

    International Nuclear Information System (INIS)

    Spong, D.A.; Hirshman, S.; Berry, L.A.

    2001-01-01

    Physics issues are discussed for compact stellarator configurations which achieve good confinement by the fact that the magnetic field modulus, vertical bar B vertical bar, in magnetic coordinates is dominated by poloidally symmetric components. Two distinct configuration types are considered: (1) those which achieve their drift optimization and rotational transform at low β and low bootstrap current by appropriate plasma shaping; and (2) those which have a greater reliance on plasma β and bootstrap currents for supplying the transform and obtaining quasi poloidal symmetry. Stability analysis of the latter group of devices against ballooning, kink and vertical displacement modes has indicated that stable 's on the order of 15% are possible. The first class of devices is being considered for a low β near-term experiment that could explore some of the confinement features of the high beta configurations. (author)

  8. Free-boundary stability of straight stellarators

    International Nuclear Information System (INIS)

    Barnes, D.C.; Cary, J.R.

    1984-02-01

    The sharp-boundary model is used to investigate the stability of straight stellarators to free-boundary, long-wavelength modes. To correctly analyze the heliac configuration, previous theory is generalized to the case of arbitrary helical aspect ratio (ratio of plasma radius to periodicity lengths). A simple low-β criterion involving the vacuum field and the normalized axial current is derived and used to investigate a large variety of configurations. The predictions of this low-β theory are verified by numerical minimization of deltaW at arbitrary β. The heliac configuration is found to be remarkably stable, with a critical β of over 15% determined by the lack of equilibrium rather than the onset of instability. In addition, other previously studied systems are found to be stabilized by net axial plasma current

  9. 17-Year-Old Boy with Renal Failure and the Highest Reported Creatinine in Pediatric Literature

    Directory of Open Access Journals (Sweden)

    Vimal Master Sankar Raj

    2015-01-01

    Full Text Available The prevalence of chronic kidney disease (CKD is on the rise and constitutes a major health burden across the world. Clinical presentations in early CKD are usually subtle. Awareness of the risk factors for CKD is important for early diagnosis and treatment to slow the progression of disease. We present a case report of a 17-year-old African American male who presented in a life threatening hypertensive emergency with renal failure and the highest reported serum creatinine in a pediatric patient. A brief discussion on CKD criteria, complications, and potential red flags for screening strategies is provided.

  10. Observations of the highest energy gamma-rays from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dingus, Brenda L.

    2001-01-01

    EGRET has extended the highest energy observations of gamma-ray bursts to GeV gamma rays. Such high energies imply the fireball that is radiating the gamma-rays has a bulk Lorentz factor of several hundred. However, EGRET only detected a few gamma-ray bursts. GLAST will likely detect several hundred bursts and may extend the maximum energy to a few 100 GeV. Meanwhile new ground based detectors with sensitivity to gamma-ray bursts are beginning operation, and one recently reported evidence for TeV emission from a burst

  11. Addressing the Highest Risk: Environmental Programs at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Elaine E [Los Alamos National Laboratory

    2012-06-08

    Report topics: Current status of cleanup; Shift in priorities to address highest risk; Removal of above-ground waste; and Continued focus on protecting water resources. Partnership between the National Nuclear Security Administration's Los Alamos Site Office, DOE Carlsbad Field Office, New Mexico Environment Department, and contractor staff has enabled unprecedented cleanup progress. Progress on TRU campaign is well ahead of plan. To date, have completed 130 shipments vs. 104 planned; shipped 483 cubic meters of above-ground waste (vs. 277 planned); and removed 11,249 PE Ci of material at risk (vs. 9,411 planned).

  12. Retrieving cirrus microphysical properties from stellar aureoles

    Science.gov (United States)

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2013-06-01

    The aureoles around stars caused by thin cirrus limit nighttime measurement opportunities for ground-based astronomy, but can provide information on high-altitude ice crystals for climate research. In this paper we attempt to demonstrate quantitatively how this works. Aureole profiles can be followed out to ~0.2° from stars and ~0.5° from Jupiter. Interpretation of diffracted starlight is similar to that for sunlight, but emphasizes larger particles. Stellar diffraction profiles are very distinctive, typically being approximately flat out to a critical angle followed by gradually steepening power-law falloff with slope less steep than -3. Using the relationship between the phase function for diffraction and the average Fourier transform of the projected area of complex ice crystals, we show that defining particle size in terms of average projected area normal to the propagation direction of the starlight leads to a simple, analytic approximation representing large-particle diffraction that is nearly independent of crystal habit. A similar analytic approximation for the diffraction aureole allows it to be separated from the point spread function and the sky background. Multiple scattering is deconvolved using the Hankel transform leading to the diffraction phase function. Application of constrained numerical inversion to the phase function then yields a solution for the particle size distribution in the range between ~50 μm and ~400 μm. Stellar aureole measurements can provide one of the very few, as well as least expensive, methods for retrieving cirrus microphysical properties from ground-based observations.

  13. Stellar Interlopers Caught Speeding Through Space

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Figure 2 Figure 3 Figure 4 Click on individual image for larger view Resembling comets streaking across the sky, these four speedy stars are plowing through regions of dense interstellar gas and creating brilliant arrowhead structures and trailing tails of glowing gas. These bright arrowheads, or bow shocks, can be seen in these four images taken with NASA's Hubble Space Telescope. The bow shocks form when the stars' powerful stellar winds, streams of matter flowing from the stars, slam into surrounding dense gas. The phenomenon is similar to that seen when a speeding boat pushes through water on a lake. The stars in these images are among 13 runaway stars spotted by Hubble's Advanced Camera for Surveys. The stars appear to be young, just millions of years old. Their ages are based on their colors and the presence of strong stellar winds, a signature of youthful stars. Depending on their distance from Earth, the bullet-nosed bow shocks could be 100 billion to a trillion miles wide (the equivalent of 17 to 170 solar system diameters, measured out to Neptune's orbit). The bow shocks indicate that the stars are moving fast, more than 180,000 kilometers an hour (more than 112,000 miles an hour) with respect to the dense gas they are plowing through. They are traveling roughly five times faster than typical young stars, relative to their surroundings. The high-speed stars have traveled far from their birth places. Assuming their youthful phase lasts only a million years and they are moving at roughly 180,000 kilometers an hour, the stars have journeyed 160 light-years. The Hubble observations were taken between October 2005 and July 2006.

  14. Rapid mass segregation in small stellar clusters

    Science.gov (United States)

    Spera, Mario; Capuzzo-Dolcetta, Roberto

    2017-12-01

    In this paper we focus our attention on small-to-intermediate N-body systems that are, initially, distributed uniformly in space and dynamically `cool' (virial ratios Q=2T/|Ω| below ˜0.3). In this work, we study the mass segregation that emerges after the initial violent dynamical evolution. At this scope, we ran a set of high precision N-body simulations of isolated clusters by means of HiGPUs, our direct summation N-body code. After the collapse, the system shows a clear mass segregation. This (quick) mass segregation occurs in two phases: the first shows up in clumps originated by sub-fragmentation before the deep overall collapse; this segregation is partly erased during the deep collapse to re-emerge, abruptly, during the second phase, that follows the first bounce of the system. In this second stage, the proper clock to measure the rate of segregation is the dynamical time after virialization, which (for cold and cool systems) may be significantly different from the crossing time evaluated from initial conditions. This result is obtained for isolated clusters composed of stars of two different masses (in the ratio mh/ml=2), at varying their number ratio, and is confirmed also in presence of a massive central object (simulating a black hole of stellar size). Actually, in stellar systems starting their dynamical evolution from cool conditions, the fast mass segregation adds to the following, slow, secular segregation which is collisionally induced. The violent mass segregation is an effect persistent over the whole range of N (128 ≤ N ≤1,024) investigated, and is an interesting feature on the astronomical-observational side, too. The semi-steady state reached after virialization corresponds to a mass segregated distribution function rather than that of equipartition of kinetic energy per unit mass as it should result from violent relaxation.

  15. Accretion onto stellar mass black holes

    Science.gov (United States)

    Deegan, Patrick

    2009-12-01

    I present work on the accretion onto stellar mass black holes in several scenarios. Due to dynamical friction stellar mass black holes are expected to form high density cusps in the inner parsec of our Galaxy. These compact remnants may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. I build a simple but detailed time-dependent model of such emission. Future observations of the distribution and orbits of the gas in the inner parsec of Sgr A* will put tighter constraints on the cusp of compact remnants. GRS 1915+105 is an LMXB, whose large orbital period implies a very large accretion disc and explains the extraordinary duration of its current outburst. I present smoothed particle hydrodynamic simulations of the accretion disc. The models includes the thermo-viscous instability, irradiation from the central object and wind loss. I find that the outburst of GRS 1915+105 should last a minimum of 20 years and up to ˜ 100 years if the irradiation is playing a significant role in this system. The predicted recurrence times are of the order of 104 years, making the duty cycle of GRS 1915+105 to be a few 0.1%. I present a simple analytical method to describe the observable behaviour of long period black hole LMXBs, similar to GRS 1915+105. Constructing two simple models for the surface density in the disc, outburst and quiescence times are calculated as a function of orbital period. LMXBs are an important constituent of the X-ray light function (XLF) of giant elliptical galaxies. I find that the duty cycle can vary considerably with orbital period, with implications for modelling the XLF.

  16. Exoplanet Transits of Stellar Active Regions

    Science.gov (United States)

    Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano

    2018-01-01

    We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.

  17. Assessment of global stellarator confinement: Status of the international stellarator confinement scaling data base

    International Nuclear Information System (INIS)

    Dinklage, A.; Beidler, C.D.; Dose, V.; Geiger, J.; Kus, A.; Preuss, R.; Ascasibar, E.; Tribaldos, V.; Harris, J.H.; Murakami, S.; Sano, F.; Okamura, S.; Suzuki, Y.; Watanabe, K.Y.; Yamada, H.; Yokoyama, M.; Stroth, U.; Talmadge, J.

    2005-01-01

    Different stellarator/heliotron devices along with their respective flexibility cover a large magnetic configuration space. Since the ultimate goal of stellarator research aims at an alternative fusion reactor concept, the exploration of the most promising configurations requires a comparative assessment of the plasma performance and how different aspects of a 3D configuration influence it. Therefore, the International Stellarator Confinement Database (ISCDB) has been re- initiated in 2004 and the ISS95 database has been extended to roughly 3000 discharges from eight different devices. Further data-sets are continuously added. A revision of a data set restricted to comparable scenarios lead to the ISS04 scaling law which confirmed ISS95 but also revealed clearly the necessity to incorporate configuration descriptive parameters. In other words, an extension beyond the set of regression parameters used for ISS95/ISS04 appears to be necessary and candidates, such as the elongation are investigated. Since grouping of data is a key-issue for deriving ISS04, basic assumptions are revised, e.g. the dependence on the heating scheme. Moreover, an assessment of statistical approaches is investigated with respect to their impact on the scaling. A crucial issue is the weighting of data groups which is discussed in terms of error-in-variable techniques and Bayesian model comparison. The latter is employed for testing scaling ansatzes depending on scaling invariance principles hence allowing the assessment of applicability of theory-based scaling laws on stellarator confinement. 1. ISCDB resources are jointly hosted by NIFS and IPP, see http://iscdb.nifs.ac.jp and http://www.ipp.mpg.de/ISS. (author)

  18. Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission

    Science.gov (United States)

    Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David

    2007-01-01

    The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  19. Stellar metallicity variations across spiral arms in disk galaxies with multiple populations

    Science.gov (United States)

    Khoperskov, S.; Di Matteo, P.; Haywood, M.; Combes, F.

    2018-03-01

    This Letter studies the formation of azimuthal metallicity variations in the disks of spiral galaxies in the absence of initial radial metallicity gradients. Using high-resolution N-body simulations, we model composite stellar discs, made of kinematically cold and hot stellar populations, and study their response to spiral arm perturbations. We find that, as expected, disk populations with different kinematics respond differently to a spiral perturbation, with the tendency for dynamically cooler populations to show a larger fractional contribution to spiral arms than dynamically hotter populations. By assuming a relation between kinematics and metallicity, namely the hotter the population, the more metal-poor it is, this differential response to the spiral arm perturbations naturally leads to azimuthal variations in the mean metallicity of stars in the simulated disk. Thus, azimuthal variations in the mean metallicity of stars across a spiral galaxy are not necessarily a consequence of the reshaping, by radial migration, of an initial radial metallicity gradient. They indeed arise naturally also in stellar disks which have initially only a negative vertical metallicity gradient.

  20. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    Science.gov (United States)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  1. Optimasi Penggunaan Lahan Kosong di Kecamatan Baturiti Untuk Properti Komersial Dengan Prinsip Highest and Best Use

    Directory of Open Access Journals (Sweden)

    Made Darmawan Saputra Mahardika

    2013-09-01

    Full Text Available Kecamatan Baturiti merupakan satu-satunya kecamatan di Kabupaten Tabanan yang berkembang dalam sektor ekonomi agrowisata karena lokasinya yang strategis dekat dengan berbagai obyek wisata terkenal. Dengan lokasi yang strategis, pembangunan untuk properti komersial tentu akan memberikan potensi keuntungan tinggi bagi investor yang memiliki lahan kosong di Kecamatan Baturiti. Kondisi seperti ini menyebabkan permintaan yang tinggi akan lahan, padahal ketersediaan lahan selalu berkurang. Pembangunan properti komersial di Kecamatan Baturiti perlu dioptimalisasi agar dicapai keuntungan maksimum bagi investor. Berdasarkan hal tersebut, investor yang ingin membangun di Kecamatan Baturiti memerlukan analisa untuk mendapatkan alternatif pemanfaatan lahan kosong. Lahan yang dianalisa merupakan lahan kosong belum terbangun seluas 22.175 m2 di Kecamatan Baturiti, Kabupaten Tabanan. Metode yang digunakan untuk mengetahui alternatif pendirian bangunan komersial yang memiliki nilai pasar tertinggi adalah Highest and Best Use (HBU. Dengan metode tersebut, pemilik lahan dapat mengetahui alternatif terbaik yang memenuhi syarat-syarat diijinkan secara legal, memungkinkan secara fisik, layak secara finansial, dan memiliki produktivitas maksimum. Hasil yang diperoleh dari analisa Highest and Best Use ini adalah alternatif mixed-use berupa hotel dan toko souvenir dengan nilai lahan tertinggi dibandingkan alternatif lainnya sebesar Rp 7,950,714.60 per m2.

  2. A novel method to predict the highest hardness of plasma sprayed coating without micro-defects

    Science.gov (United States)

    Zhuo, Yukun; Ye, Fuxing; Wang, Feng

    2018-04-01

    The plasma sprayed coatings are stacked by splats, which are regarded generally as the elementary units of coating. Many researchers have focused on the morphology and formation mechanism of splat. However, a novel method to predict the highest hardness of plasma sprayed coating without micro-defects is proposed according to the nanohardness of splat in this paper. The effectiveness of this novel method was examined by experiments. Firstly, the microstructure of splats and coating, meanwhile the 3D topography of the splats were observed by SEM (SU1510) and video microscope (VHX-2000). Secondly, the nanohardness of splats was evaluated by nanoindentation (NHT) in order to be compared with microhardness of coating measured by microhardness tester (HV-1000A). The results show that the nanohardness of splats with diameter of 70 μm, 100 μm and 140 μm were in the scope of 11∼12 GPa while the microhardness of coating were in the range of 8∼9 GPa. Because the splats had not micro-defects such as pores and cracks in the nanohardness evaluated nano-zone, the nanohardness of the splats can be utilized to predict the highest hardness of coating without micro-defects. This method indicates the maximum of sprayed coating hardness and will reduce the test number to get high hardness coating for better wear resistance.

  3. STELLAR POPULATIONS AND RADIAL MIGRATIONS IN VIRGO DISK GALAXIES

    International Nuclear Information System (INIS)

    Roediger, Joel C.; Courteau, Stéphane; Sánchez-Blázquez, Patricia; McDonald, Michael

    2012-01-01

    We present new stellar age profiles, derived from well-resolved optical and near-infrared images of 64 Virgo cluster disk galaxies, whose analysis poses a challenge for current disk galaxy formation models. Our ability to break the age-metallicity degeneracy and the significant size of our sample represent key improvements over complementary studies of field disk galaxies. Our results can be summarized as follows: first, and contrary to observations of disk galaxies in the field, these cluster galaxies are distributed almost equally amongst the three main types of disk galaxy luminosity profiles (I/II/III), indicating that the formation and/or survival of Type II breaks is suppressed within the cluster environment. Second, we find examples of statistically significant inversions ( U -shapes ) in the age profiles of all three disk galaxy types, reminiscent of predictions from high-resolution simulations of classically truncated Type II disks in the field. These features characterize the age profiles for only about a third (≤36%) of each disk galaxy type in our sample. An even smaller fraction of cluster disks (∼11% of the total sample) exhibit age profiles that decrease outward (i.e., negative age gradients). Instead, flat and/or positive age gradients prevail (≥50%) within our Type I, II, and III subsamples. These observations thus suggest that while stellar migrations and inside-out growth can play a significant role in the evolution of all disk galaxy types, other factors contributing to the evolution of galaxies can overwhelm the predicted signatures of these processes. We interpret our observations through a scenario whereby Virgo cluster disk galaxies formed initially like their brethren in the field but which, upon falling into the cluster, were transformed into their present state through external processes linked to the environment (e.g., ram-pressure stripping and harassment). Current disk galaxy formation models, which have largely focused on field

  4. Inferring probabilistic stellar rotation periods using Gaussian processes

    Science.gov (United States)

    Angus, Ruth; Morton, Timothy; Aigrain, Suzanne; Foreman-Mackey, Daniel; Rajpaul, Vinesh

    2018-02-01

    Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online.

  5. Nuclear challenges and progress in designing stellarator fusion power plants

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.; Wilson, P.; Henderson, D.; Sawan, M.; Sviatoslavsky, G.; Tautges, T.; Slaybaugh, R.; Kiedrowski, B.; Ibrahim, A.

    2008-01-01

    Over the past 5-6 decades, stellarator power plants have been studied in the US, Europe, and Japan as an alternate to the mainline magnetic fusion tokamaks, offering steady-state operation and eliminating the risk of plasma disruptions. The earlier 1980s studies suggested large-scale stellarator power plants with an average major radius exceeding 20 m. The most recent development of the compact stellarator concept delivered ARIES-CS - a compact stellarator with 7.75 m average major radius, approaching that of tokamaks. For stellarators, the most important engineering parameter that determines the machine size and cost is the minimum distance between the plasma boundary and mid-coil. Accommodating the breeding blanket and necessary shield within this distance to protect the ARIES-CS superconducting magnet represents a challenging task. Selecting the ARIES-CS nuclear and engineering parameters to produce an economic optimum, modeling the complex geometry for 3D nuclear analysis to confirm the key parameters, and minimizing the radwaste stream received considerable attention during the design process. These engineering design elements combined with advanced physics helped enable the compact stellarator to be a viable concept. This paper provides a brief historical overview of the progress in designing stellarator power plants and a perspective on the successful integration of the nuclear activity into the final ARIES-CS configuration

  6. Analisa Highest and Best Use Pada Lahan Kosong Di Jemur Gayungan II Surabaya

    Directory of Open Access Journals (Sweden)

    Finda Virgitta Faradiany

    2014-09-01

    Full Text Available Perkembangan bisnis properti di Surabaya yang semakin pesat, mengakibatkan permintaan terhadap lahan semakin tinggi. Namun fakta di lapangan menampakkan hal yang sebaliknya karena ternyata masih terdapat lahan-lahan yang dibiarkan kosong tidak dimanfaatkan oleh pemiliknya. Kondisi yang demikian memerlukan efisiensi dan optimalisasi penggunaan lahan dengan mendirikan sebuah properti komersial yang memberikan keuntungan bagi pemilik serta lingkungan sekitarnya.Lahan “X” seluas 1786 m2 berlokasi di Jl. Jemur Gayungan II merupakan lahan kosong yang terletak di dekat daerah perkantoran dan berpotensi dikembangkan menjadi properti komersial. Penentuan nilai lahan “X” bergantung pada penggunaan lahan. Metode penilaian yang digunakan adalah analisa penggunaan tertinggi dan terbaik atau Highest and Best Use (HBU yang secara legal diijinkan, secara fisik memungkinkan, layak secara finansial dan memiliki produktifitas maksimum. Dari hasil penelitian didapatkan alternatif yang menghasilkan nilai lahan tertinggi dan produktivitas maksimum adalah hotel. Nilai lahan yang didapatkan sebesar Rp 9.722.718/m2 dengan produktivitas meningkat sebesar 486%.

  7. Failure of ETV in patients with the highest ETV success scores.

    Science.gov (United States)

    Gianaris, Thomas J; Nazar, Ryan; Middlebrook, Emily; Gonda, David D; Jea, Andrew; Fulkerson, Daniel H

    2017-09-01

    OBJECTIVE Endoscopic third ventriculostomy (ETV) is a surgical alternative to placing a CSF shunt in certain patients with hydrocephalus. The ETV Success Score (ETVSS) is a reliable, simple method to estimate the success of the procedure by 6 months of postoperative follow-up. The highest score is 90, estimating a 90% chance of the ETV effectively treating hydrocephalus without requiring a shunt. Treatment with ETV fails in certain patients, despite their being the theoretically best candidates for the procedure. In this study the authors attempted to identify factors that further predicted success in patients with the highest ETVSSs. METHODS A retrospective review was performed of all patients treated with ETV at 3 institutions. Demographic, radiological, and clinical data were recorded. All patients by definition were older than 1 year, had obstructive hydrocephalus, and did not have a prior shunt. Failure of ETV was defined as the need for a shunt by 1 year. The ETV was considered a success if the patient did not require another surgery (either shunt placement or a repeat endoscopic procedure) by 1 year. A statistical analysis was performed to identify factors associated with success or failure. RESULTS Fifty-nine patients met the entry criteria for the study. Eleven patients (18.6%) required further surgery by 1 year. All of these patients received a shunt. The presenting symptom of lethargy statistically correlated with success (p = 0.0126, odds ratio [OR] = 0.072). The preoperative radiological finding of transependymal flow (p = 0.0375, OR 0.158) correlated with success. A postoperative larger maximum width of the third ventricle correlated with failure (p = 0.0265). CONCLUSIONS The preoperative findings of lethargy and transependymal flow statistically correlated with success. This suggests that the best candidates for ETV are those with a relatively acute elevation of intracranial pressure. Cases without these findings may represent the failures in this

  8. The highest velocity and the shortest duration permitting attainment of VO2max during running

    Directory of Open Access Journals (Sweden)

    Tiago Turnes

    2015-02-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2015v17n2p226   The severe-intensity domain has important applications for the prescription of running training and the elaboration of experimental designs. The objectives of this study were: 1 to investigate the validity of a previously proposed model to estimate the shortest exercise duration (TLOW and the highest velocity (VHIGH at which VO2max is reached during running, and 2 to evaluate the effects of aerobic training status on these variables. Eight runners and eight physically active subjects performed several treadmill running exercise tests to fatigue in order to mathematically estimate and to experimentally determine TLOW and VHIGH. The relationship between the time to achieve VO2max and time to exhaustion (Tlim was used to estimate TLOW. VHIGH was estimated using the critical velocity model. VHIGH was assumed to be the highest velocity at which VO2 was equal to or higher than the average VO2max minus one standard deviation. TLOW was defined as Tlim associated with VHIGH. Runners presented better aerobic fitness and higher VHIGH (22.2 ± 1.9 km.h-1 than active subjects (20.0 ± 2.1 km.h-1. However, TLOW did not differ between groups (runners: 101 ± 39 s; active subjects: 100 ± 35 s. TLOW and VHIGH were not well estimated by the model proposed, with high coefficients of variation (> 6% and a low correlation coefficient (r<0.70, a fact reducing the validity of the model. It was concluded that aerobic training status positively affected only VHIGH. Furthermore, the model proposed presented low validity to estimate the upper boundary of the severe-intensity domain (i.e., VHIGH, irrespective of the subjects’ training status.

  9. Confinement and heating in modular and continuous coil stellarators

    International Nuclear Information System (INIS)

    Anderson, D.T.; Anderson, F.S.B.; Bonomo, R.L.

    1983-01-01

    Major efforts on the Proto-Cleo stellarator have focused on ICRH of a net current-free plasma, measurements of plasma secondary currents, RF heating by externally induced magnetic reconnection through the formation and destruction of an internal separatrix, and RF current drive experiments. Efforts on the Proto-Cleo torsatron have focused on electron heat conduction. A modular stellarator has been designed and is under fabrication at the University of Wisconsin. The Interchangeable Module Stellarator (IMS) is designed to approximate closely the magnetic properties of the existing Proto-Cleo stellarator as much as possible. Monte-Carlo transport calculations have been made in flux coordinates using model fields patterned after magnetic fields in Proto-Cleo and IMS. Plasma simulation techniques using a 2.5-dimensional particle-in-cell method have been utilized in a numerical search for the bootstrap current. A current is found which is proportional to temperature and density gradients but is independent of poloidal field. The behaviour of charged particles moving in a stellarator under the influence of a steady magnetic field is analysed in terms of the Hamiltonian of the moving particle and the technique of repeated canonical transformations to identify possible adiabatic invariants and drift motions. An improved theory of collisionless particle motion in stellarators has been developed for a family of stellarator configurations. The broad range of configurations encompassed by this family permits an understanding of the differences in numerically observed transport coefficients. Two procedures have been developed to calculate the bootstrap current in non-axisymmetric stellarators. In fully toroidal stellarators the flows and consequent bootstrap current are reduced from their axisymmetric values by a factor of order l slash-l/m in the Pfirsch-Schlueter regime. (author)

  10. Abdominal obesity has the highest impact on metabolic profile in an overweight African population

    DEFF Research Database (Denmark)

    Handlos, L. N.; Witte, D. R.; Mwaniki, D. L.

    2012-01-01

    Aim: The aim of this study was to determine the association between different anthropometric parameters and metabolic profile in an overweight, adult, black Kenyan population. Methods: An opportunity sample of 245 overweight adult Kenyans (body mass index (BMI) ≥ 25 kg/m2) was analysed. A score...... anthropometric variables tested, WC and VAT thickness had the strongest negative association with the metabolic profile (β = 0.17 (0.09; 0.24) and 0.15 (0.08; 0.23), respectively). Conclusions: WC and VAT thickness were the strongest anthropometric predictors for the metabolic profile in overweight adult Kenyans...

  11. The Environments of High-Redshift Quasi-Stellar Objects

    Science.gov (United States)

    Kim, Soyoung; Stiavelli, Massimo; Trenti, M.; Pavlovsky, C. M.; Djorgovski, S. G.; Scarlata, C.; Stern, D.; Mahabal, A.; Thompson, D.; Dickinson, M.; Panagia, N.; Meylan, G.

    2009-04-01

    We present a sample of i 775-dropout candidates identified in five Hubble Advanced Camera for Surveys (ACS) fields centered on Sloan Digital Sky Survey quasi-stellar objects (QSOs) at redshift z ~ 6. Our fields are as deep as the GOODS ACS images, which are used as a reference field sample. We find them to be overdense in two fields, underdense in two fields, and as dense as the average density of GOODS in one field. The two excess fields show significantly different color distributions from that of GOODS at the 99% confidence level, strengthening the idea that the excess objects are indeed associated with the QSO. The distribution of i 775-dropout counts in the five fields is broader than that derived from GOODS at the 80%-96% confidence level, depending on which selection criteria were adopted to identify i 775-dropouts; its width cannot be explained by cosmic variance alone. Thus, QSOs seem to affect their environments in complex ways. We suggest the picture where the highest redshift QSOs are located in very massive overdensities and are therefore surrounded by an overdensity of lower mass halos. Radiative feedback by the QSO can in some cases prevent halos from becoming galaxies, thereby generating in extreme cases an underdensity of galaxies. The presence of both enhancement and suppression is compatible with the expected differences between lines of sight at the end of reionization as the presence of residual diffuse neutral hydrogen would provide young galaxies with shielding from the radiative effects of the QSO. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities of Research in Astronomy, Inc., under NASA contract NAS5-26555.

  12. THE ENVIRONMENTS OF HIGH-REDSHIFT QUASI-STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Kim, Soyoung; Stiavelli, Massimo; Trenti, M.; Pavlovsky, C. M.; Djorgovski, S. G.; Scarlata, C.; Stern, D.; Mahabal, A.; Thompson, D.; Panagia, N.; Dickinson, M.; Meylan, G.

    2009-01-01

    We present a sample of i 775 -dropout candidates identified in five Hubble Advanced Camera for Surveys (ACS) fields centered on Sloan Digital Sky Survey quasi-stellar objects (QSOs) at redshift z ∼ 6. Our fields are as deep as the GOODS ACS images, which are used as a reference field sample. We find them to be overdense in two fields, underdense in two fields, and as dense as the average density of GOODS in one field. The two excess fields show significantly different color distributions from that of GOODS at the 99% confidence level, strengthening the idea that the excess objects are indeed associated with the QSO. The distribution of i 775 -dropout counts in the five fields is broader than that derived from GOODS at the 80%-96% confidence level, depending on which selection criteria were adopted to identify i 775 -dropouts; its width cannot be explained by cosmic variance alone. Thus, QSOs seem to affect their environments in complex ways. We suggest the picture where the highest redshift QSOs are located in very massive overdensities and are therefore surrounded by an overdensity of lower mass halos. Radiative feedback by the QSO can in some cases prevent halos from becoming galaxies, thereby generating in extreme cases an underdensity of galaxies. The presence of both enhancement and suppression is compatible with the expected differences between lines of sight at the end of reionization as the presence of residual diffuse neutral hydrogen would provide young galaxies with shielding from the radiative effects of the QSO.

  13. Massive Black Hole Implicated in Stellar Destruction

    Science.gov (United States)

    2010-01-01

    New results from NASA's Chandra X-ray Observatory and the Magellan telescopes suggest that a dense stellar remnant has been ripped apart by a black hole a thousand times as massive as the Sun. If confirmed, this discovery would be a cosmic double play: it would be strong evidence for an intermediate mass black hole, which has been a hotly debated topic, and would mark the first time such a black hole has been caught tearing a star apart. This scenario is based on Chandra observations, which revealed an unusually luminous source of X-rays in a dense cluster of old stars, and optical observations that showed a peculiar mix of elements associated with the X-ray emission. Taken together, a case can be made that the X-ray emission is produced by debris from a disrupted white dwarf star that is heated as it falls towards a massive black hole. The optical emission comes from debris further out that is illuminated by these X-rays. The intensity of the X-ray emission places the source in the "ultraluminous X-ray source" or ULX category, meaning that it is more luminous than any known stellar X-ray source, but less luminous than the bright X-ray sources (active galactic nuclei) associated with supermassive black holes in the nuclei of galaxies. The nature of ULXs is a mystery, but one suggestion is that some ULXs are black holes with masses between about a hundred and several thousand times that of the Sun, a range intermediate between stellar-mass black holes and supermassive black holes located in the nuclei of galaxies. This ULX is in a globular cluster, a very old and crowded conglomeration of stars. Astronomers have suspected that globular clusters could contain intermediate-mass black holes, but conclusive evidence for this has been elusive. "Astronomers have made cases for stars being torn apart by supermassive black holes in the centers of galaxies before, but this is the first good evidence for such an event in a globular cluster," said Jimmy Irwin of the University

  14. CCFpams: Atmospheric stellar parameters from cross-correlation functions

    Science.gov (United States)

    Malavolta, Luca; Lovis, Christophe; Pepe, Francesco; Sneden, Christopher; Udry, Stephane

    2017-07-01

    CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.

  15. Young Stellar Objects from Soft to Hard X-rays

    Science.gov (United States)

    Güdel, Manuel

    2009-05-01

    Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.

  16. The Dark Energy Survey: Prospects for resolved stellar populations

    Energy Technology Data Exchange (ETDEWEB)

    Rossetto, Bruno M. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Santiago, Basílio X. [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Instituto de Fisica, Porto Alegre (Brazil); Girardi, Léo [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Osservatorio Astronomica di Padova-INAF, Padova (Italy); Camargo, Julio I. B. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Balbinot, Eduardo [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Instituto de Fisica, Porto Alegre (Brazil); da Costa, Luiz N. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Yanny, Brian [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Maia, Marcio A. G. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Makler, Martin [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil); Ogando, Ricardo L. C. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Pellegrini, Paulo S. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Ramos, Beatriz [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); de Simoni, Fernando [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Armstrong, R. [Univ. of Illinois, Urbana, IL (United States); Bertin, E. [Univ. Pierre et Marie Curie, Paris (France); Desai, S. [Univ. of Illinois, Urbana, IL (United States); Kuropatkin, N. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lin, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mohr, J. J. [Max-Planck-Institut fur extraterrestrische Physik, Garching (Germany); Tucker, D. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2011-05-06

    Wide angle and deep surveys, regardless of their primary purpose, always sample a large number of stars in the Galaxy and in its satellite system. We here make a forecast of the expected stellar sample resulting from the Dark Energy Survey and the perspectives that it will open for studies of Galactic structure and resolved stellar populations in general. An estimated 1.2 x 108 stars will be sampled in DES grizY filters in the southern equatorial hemisphere. This roughly corresponds to 20% of all DES sources. Most of these stars belong to the stellar thick disk and halo of the Galaxy.

  17. The fluctuation theory of the stellar mass loss

    International Nuclear Information System (INIS)

    Andriesse, C.D.

    1981-01-01

    The idea that fluctuations in the mass flow are as significant as the very existence of the flow has led to the development of a fluctuation theory of the stellar mass loss. A general theory for fluctuations in non-equilibrium systems - and such are stellar atmospheres - was developed long ago. In developing the general theory to a specific stellar theory, however, the arguments have not come up in their logical order. The present sketch of this theory improves on that order and is offered as a framework for further study. (Auth.)

  18. The Risk of Reported Cryptosporidiosis in Children Aged <5 Years in Australia is Highest in Very Remote Regions.

    Science.gov (United States)

    Lal, Aparna; Fearnley, Emily; Kirk, Martyn

    2015-09-18

    The incidence of cryptosporidiosis is highest in children <5 years, yet little is known about disease patterns across urban and rural areas of Australia. In this study, we examine whether the risk of reported cryptosporidiosis in children <5 years varies across an urban-rural gradient, after controlling for season and gender. Using Australian data on reported cryptosporidiosis from 2001 to 2012, we spatially linked disease data to an index of geographic remoteness to examine the geographic variation in cryptosporidiosis risk using negative binomial regression. The Incidence Risk Ratio (IRR) of reported cryptosporidiosis was higher in inner regional (IRR 1.4 95% CI 1.2-1.7, p < 0.001), and outer regional areas (IRR 2.4 95% CI 2.2-2.9, p < 0.001), and in remote (IRR 5.2 95% CI 4.3-6.2, p < 0.001) and very remote (IRR 8.2 95% CI 6.9-9.8, p < 0.001) areas, compared to major cities. A linear test for trend showed a statistically significant trend with increasing remoteness. Remote communities need to be a priority for future targeted health promotion and disease prevention interventions to reduce cryptosporidiosis in children <5 years.

  19. The Risk of Reported Cryptosporidiosis in Children Aged <5 Years in Australia is Highest in Very Remote Regions

    Directory of Open Access Journals (Sweden)

    Aparna Lal

    2015-09-01

    Full Text Available The incidence of cryptosporidiosis is highest in children <5 years, yet little is known about disease patterns across urban and rural areas of Australia. In this study, we examine whether the risk of reported cryptosporidiosis in children <5 years varies across an urban-rural gradient, after controlling for season and gender. Using Australian data on reported cryptosporidiosis from 2001 to 2012, we spatially linked disease data to an index of geographic remoteness to examine the geographic variation in cryptosporidiosis risk using negative binomial regression. The Incidence Risk Ratio (IRR of reported cryptosporidiosis was higher in inner regional (IRR 1.4 95% CI 1.2–1.7, p < 0.001, and outer regional areas (IRR 2.4 95% CI 2.2–2.9, p < 0.001, and in remote (IRR 5.2 95% CI 4.3–6.2, p < 0.001 and very remote (IRR 8.2 95% CI 6.9–9.8, p < 0.001 areas, compared to major cities. A linear test for trend showed a statistically significant trend with increasing remoteness. Remote communities need to be a priority for future targeted health promotion and disease prevention interventions to reduce cryptosporidiosis in children <5 years.

  20. Intergalactic stellar populations in intermediate redshift clusters

    Science.gov (United States)

    Melnick, J.; Giraud, E.; Toledo, I.; Selman, F.; Quintana, H.

    2012-11-01

    A substantial fraction of the total stellar mass in rich clusters of galaxies resides in a diffuse intergalactic component usually referred to as the intracluster light (ICL). Theoretical models indicate that these intergalactic stars originate mostly from the tidal interaction of the cluster galaxies during the assembly history of the cluster, and that a significant fraction of these stars could have formed in situ from the late infall of cold metal-poor gas clouds on to the cluster. However, these models also overpredict the fraction of stellar mass in the ICL by a substantial margin, something that is still not well understood. The models also make predictions about the age distribution of the ICL stars, which may provide additional observational constraints. Here we present population synthesis models for the ICL of an intermediate redshift (z = 0.29) X-ray cluster that we have extensively studied in previous papers. The advantage of observing intermediate redshift clusters rather than nearby ones is that the former fit the field of view of multi-object spectrographs in 8-m telescopes and therefore permit us to encompass most of the ICL with only a few well-placed slits. In this paper we show that by stacking spectra at different locations within the ICL it is possible to reach sufficiently high signal-to-noise ratios to fit population synthesis models and derive meaningful results. The models provide ages and metallicities for the dominant populations at several different locations within the ICL and the brightest cluster galaxies (BCG) halo, as well as measures of the kinematics of the stars as a function of distance from the BCG. We thus find that the ICL in our cluster is dominated by old metal-rich stars, at odds with what has been found in nearby clusters where the stars that dominate the ICL are old and metal poor. While we see weak evidence of a young, metal-poor component, if real, these young stars would amount to less than 1 per cent of the total ICL

  1. THE IMPACT OF FREQUENCY STANDARDS ON COHERENCE IN VLBI AT THE HIGHEST FREQUENCIES

    Energy Technology Data Exchange (ETDEWEB)

    Rioja, M.; Dodson, R. [ICRAR, University of Western Australia, Perth (Australia); Asaki, Y. [Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Chuou, Sagamihara, Kanagawa 252-5210 (Japan); Hartnett, J. [School of Physics, University of Western Australia, Perth (Australia); Tingay, S., E-mail: maria.rioja@icrar.org [ICRAR, Curtin University, Perth (Australia)

    2012-10-01

    We have carried out full imaging simulation studies to explore the impact of frequency standards in millimeter and submillimeter very long baseline interferometry (VLBI), focusing on the coherence time and sensitivity. In particular, we compare the performance of the H-maser, traditionally used in VLBI, to that of ultra-stable cryocooled sapphire oscillators over a range of observing frequencies, weather conditions, and analysis strategies. Our simulations show that at the highest frequencies, the losses induced by H-maser instabilities are comparable to those from high-quality tropospheric conditions. We find significant benefits in replacing H-masers with cryocooled sapphire oscillator based frequency references in VLBI observations at frequencies above 175 GHz in sites which have the best weather conditions; at 350 GHz we estimate a 20%-40% increase in sensitivity over that obtained when the sites have H-masers, for coherence losses of 20%-10%, respectively. Maximum benefits are to be expected by using co-located Water Vapor Radiometers for atmospheric correction. In this case, we estimate a 60%-120% increase in sensitivity over the H-maser at 350 GHz.

  2. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    Science.gov (United States)

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-04-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.

  3. Analisis Highest and Best Use (HBU pada Lahan Jl. Gubeng Raya No. 54 Surabaya

    Directory of Open Access Journals (Sweden)

    Akmaluddin Akmaluddin

    2013-03-01

    Full Text Available Laju pertumbuhan penduduk dan tingkat perekonomian yang semakin meningkat di  kota-kota besar seperti Surabaya, bertolak belakang dengan  ketersediaan lahan yang terbatas. Selayaknya properti yang akan dibangun di atas suatu lahan dapat memberikan manfaat yang maksimal serta efisien agar hasilnya dapat dirasakan demi pembangunan wilayah tersebut. Oleh karena itu, perlu dilakukan perhitungan  penggunaan yang paling memungkinkan dan diizinkan dari suatu tanah kosong atau tanah yang  sudah dibangun, dimana secara fisik dimungkinkan, didukung atau dibenarkan oleh peraturan, layak secara keuangan dan menghasilkan nilai tertinggi. Dalam penelitian ini dilakukan analisis Highest and Best Use (HBU pada lahan di Jl. Gubeng Raya No. 54 Surabaya seluas 1.150 m2 yang direncanakan akan dibangun hotel. Lahan tersebut berpotensi untuk dikembangkan menjadi properti komersial seperti hotel, apartemen, perkantoran dan pertokoan. Analisis tersebut menggunakan tinjauan terhadap aspek fisik, legal, finansial dan produktivitas maksimumnya. Dari hasil penelitian ini didapatkan alternatif properti komersial hotel yang memiliki penggunaan tertinggi dan terbaik pada pemanfaatan lahan dengan nilai lahan Rp. 67.069.980,31/ m2.

  4. Analisa Alternatif Revitalisasi Pasar Gubeng Masjid Surabaya dengan Metode Highest And Best Use

    Directory of Open Access Journals (Sweden)

    Marsha Swalia Mustika

    2017-01-01

    Full Text Available Dalam era globalisasi ini banyak bermunculan pasar-pasar modern yang dibangun dengan segala kelebihan dan fasilitasnya. Munculnya pasar-pasar modern membuat keberadaan pasar tradisional tersudut, tidak terkecuali Pasar Gubeng Masjid Surabaya. Namun keberadaan pasar yang strategis yaitu dekat dengan perkantoran, hotel dan pusat perbelanjaan, serta stasiun kereta api membuat pasar tersebut memiliki potensi untuk dikembangkan menjadi properti yang memberikan nilai lahan tertinggi dan terbaik. Oleh karena itu, perlu dilakukan analisa Highest and Best Use (HBU yang dapat memberikan masukan untuk melakukan investasi terbaik. Analisa HBU ini menggunakan empat kriteria yaitu secara fisik dimungkinkan, secara legal diizinkan , secara finansial layak, dan memiliki produktivitas maksimum. Alternatif yang memiliki produktivitas maksimum tersebut dapat dijadikan sebagai nilai lahan tertinggi dan terbaik pada lahan Pasar Gubeng Masjid Surabaya. Dari hasil penelitian didapatkan alternatif yang menghasilkan nilai lahan tertinggi dan produktivitas maksimum adalah alternatif pengembangan multi use pasar dengan pusat perbelanjaan.. Nilai lahan yang didapatkan sebesar Rp 46.946.524,-/m2 dengan produktivitas meningkat sebesar 312%.

  5. Transitional care for the highest risk patients: findings of a randomised control study

    Directory of Open Access Journals (Sweden)

    Kheng Hock Lee

    2015-10-01

    Full Text Available Background: Interventions to prevent readmissions of patients at highest risk have not been rigorously evaluated. We conducted a randomised controlled trial to determine if a post-discharge transitional care programme can reduce readmissions of such patients in Singapore. Methods: We randomised 840 patients with two or more unscheduled readmissions in the prior 90 days and Length of stay, Acuity of admission, Comorbidity of patient, Emergency department utilisation score ≥10 to the intervention programme (n = 419 or control (n = 421. Patients allocated to the intervention group received post-discharge surveillance by a multidisciplinary integrated care team and early review in the clinic. The primary outcome was the proportion of patients with at least one unscheduled readmission within 30 days after discharge. Results: We found no statistically significant reduction in readmissions or emergency department visits in patients on the intervention group compared to usual care. However, patients in the intervention group reported greater patient satisfaction (p < 0.001. Conclusion: Any beneficial effect of interventions initiated after discharge is small for high-risk patients with multiple comorbidity and complex care needs. Future transitional care interventions should focus on providing the entire cycle of care for such patients starting from time of admission to final transition to the primary care setting. Trial Registration: Clinicaltrials.gov, no NCT02325752

  6. Transitional care for the highest risk patients: findings of a randomised control study

    Directory of Open Access Journals (Sweden)

    Kheng Hock Lee

    2015-10-01

    Full Text Available Background: Interventions to prevent readmissions of patients at highest risk have not been rigorously evaluated. We conducted a randomised controlled trial to determine if a post-discharge transitional care programme can reduce readmissions of such patients in Singapore.Methods: We randomised 840 patients with two or more unscheduled readmissions in the prior 90 days and Length of stay, Acuity of admission, Comorbidity of patient, Emergency department utilisation score ≥10 to the intervention programme (n = 419 or control (n = 421. Patients allocated to the intervention group received post-discharge surveillance by a multidisciplinary integrated care team and early review in the clinic. The primary outcome was the proportion of patients with at least one unscheduled readmission within 30 days after discharge.Results: We found no statistically significant reduction in readmissions or emergency department visits in patients on the intervention group compared to usual care. However, patients in the intervention group reported greater patient satisfaction (p < 0.001.Conclusion: Any beneficial effect of interventions initiated after discharge is small for high-risk patients with multiple comorbidity and complex care needs. Future transitional care interventions should focus on providing the entire cycle of care for such patients starting from time of admission to final transition to the primary care setting.Trial Registration: Clinicaltrials.gov, no NCT02325752

  7. Measurement of radon concentration in dwellings in the region of highest lung cancer incidence in India

    International Nuclear Information System (INIS)

    Zoliana, B.; Rohmingliana, P.C.; Sahoo, B.K.; Mayya, Y.S.

    2015-01-01

    Monitoring of radon exhalation from soil and its concentration in indoor is found to be helpful in many investigations such as health risk assessment and others as radiation damage to bronchial cells which eventually can be the second leading cause of lung cancer next to smoking. The fact that Aizawl District, Mizoram, India has the highest lung cancer incidence rates among males and females in Age Adjusted Rate (AAR) in India as declared by Population Based Cancer Registry Report 2008 indicates the need for quantification of radon and its anomalies attached to it. Measurement of radon concentration had been carried out inside the dwellings in Aizawl district, Mizoram. A time integrated method of measurement was employed by using a solid state nuclear track detector (SSNTD) type (LR-115 films) kept in a twin cup dosimeter for measurement of concentration of radon and thoron. The dosimeters were suspended over bed rooms or living rooms in selected dwellings. They were deployed for a period of about 120 days at a time in 63 houses which were selected according to their place of location viz. fault region, places where fossil remains were found and geologically unidentified region. After the desired period of exposure, the detectors were retrieved and chemically etched which were then counted by using a spark counter. The recorded nuclear tract densities are then converted into air concentrations of Radon and Thoron

  8. A System with a Choice of Highest-Bidder-First and FIFO Services

    Directory of Open Access Journals (Sweden)

    Tejas Bodas

    2015-02-01

    Full Text Available Service systems using a highest-bidder-first (HBF policy have been studied in queueing literature for various applications and in economics literature to model corruption. Such systems have applications in modern problems like scheduling jobs in cloud computing scenarios or placement of ads on web pages. However, using a HBF service is like using a spot market and may not be preferred by many users. For such users, it may be good to provide a simple scheduler, e.g., a FIFO service. Further, in some situations it may even be necessary that a free service queue operates alongside a HBF queue. Motivated by such a scenario, we propose and analyze a service system with a FIFO server and a HBF server in parallel. Arriving customers are from a heterogeneous population with different valuations of their delay costs. They strategically choose between FIFO and HBF service; if HBF is chosen, they also choose the bid value to optimize an individual cost. We characterize the Wardrop equilibrium in such a system and analyze the revenue to the server. We see that when the total capacity is fixed and is shared between the FIFO and HBF servers, revenue is maximised when the FIFO capacity is non zero. However, if the FIFO server is added to an HBF server, then the revenue decreases with increasing FIFO capacity. We also discuss the case when customers are allowed to balk.

  9. A cosmopolitan design of teacher education and a progressive orientation towards the highest good

    Directory of Open Access Journals (Sweden)

    Klas Roth

    2013-01-01

    Full Text Available In this paper I discuss a Kantian conception of cosmopolitan education. It suggests that we pursue the highest good – an object of morality – in the world together, and requires that we acknowledge the value of freedom, render ourselves both efficacious and autonomous in practice, cultivate our judgment, and unselfishly co-operate in the co-ordination and fulfilment of our morally permissible ends. Now, such an accomplishment is one of the most difficult challenges, and may not be achieved in our time, if ever. In the first part of the paper I show that we, according to Kant, have to interact with each other, and comply with the moral law in the quest of general happiness, not merely personal happiness. In the second part, I argue that a cosmopolitan design of teacher education in Kantian terms can establish moral character, even though good moral character is ultimately the outcome of free choice. Such a design can do so by optimizing the freedom of those concerned to set and pursue their morally permissible ends, and to cultivate their judgment through the use of examples. This requires, inter alia, that they be enabled, and take responsibility, to think for themselves, in the position of everyone else, and consistently; and to strengthen their virtue or self-mastery to comply, in practice, with the moral law.

  10. Oxygen pathway modeling estimates high reactive oxygen species production above the highest permanent human habitation.

    Directory of Open Access Journals (Sweden)

    Isaac Cano

    Full Text Available The production of reactive oxygen species (ROS from the inner mitochondrial membrane is one of many fundamental processes governing the balance between health and disease. It is well known that ROS are necessary signaling molecules in gene expression, yet when expressed at high levels, ROS may cause oxidative stress and cell damage. Both hypoxia and hyperoxia may alter ROS production by changing mitochondrial Po2 (PmO2. Because PmO2 depends on the balance between O2 transport and utilization, we formulated an integrative mathematical model of O2 transport and utilization in skeletal muscle to predict conditions to cause abnormally high ROS generation. Simulations using data from healthy subjects during maximal exercise at sea level reveal little mitochondrial ROS production. However, altitude triggers high mitochondrial ROS production in muscle regions with high metabolic capacity but limited O2 delivery. This altitude roughly coincides with the highest location of permanent human habitation. Above 25,000 ft., more than 90% of exercising muscle is predicted to produce abnormally high levels of ROS, corresponding to the "death zone" in mountaineering.

  11. Towards highest peak intensities for ultra-short MeV-range ion bunches

    Science.gov (United States)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  12. Medical school dropout--testing at admission versus selection by highest grades as predictors.

    Science.gov (United States)

    O'Neill, Lotte; Hartvigsen, Jan; Wallstedt, Birgitta; Korsholm, Lars; Eika, Berit

    2011-11-01

    Very few studies have reported on the effect of admission tests on medical school dropout. The main aim of this study was to evaluate the predictive validity of non-grade-based admission testing versus grade-based admission relative to subsequent dropout. This prospective cohort study followed six cohorts of medical students admitted to the medical school at the University of Southern Denmark during 2002-2007 (n=1544). Half of the students were admitted based on their prior achievement of highest grades (Strategy 1) and the other half took a composite non-grade-based admission test (Strategy 2). Educational as well as social predictor variables (doctor-parent, origin, parenthood, parents living together, parent on benefit, university-educated parents) were also examined. The outcome of interest was students' dropout status at 2 years after admission. Multivariate logistic regression analysis was used to model dropout. Strategy 2 (admission test) students had a lower relative risk for dropping out of medical school within 2 years of admission (odds ratio 0.56, 95% confidence interval 0.39-0.80). Only the admission strategy, the type of qualifying examination and the priority given to the programme on the national application forms contributed significantly to the dropout model. Social variables did not predict dropout and neither did Strategy 2 admission test scores. Selection by admission testing appeared to have an independent, protective effect on dropout in this setting. © Blackwell Publishing Ltd 2011.

  13. Extreme Markup: The Fifty US Hospitals With The Highest Charge-To-Cost Ratios.

    Science.gov (United States)

    Bai, Ge; Anderson, Gerard F

    2015-06-01

    Using Medicare cost reports, we examined the fifty US hospitals with the highest charge-to-cost ratios in 2012. These hospitals have markups (ratios of charges over Medicare-allowable costs) approximately ten times their Medicare-allowable costs compared to a national average of 3.4 and a mode of 2.4. Analysis of the fifty hospitals showed that forty-nine are for profit (98 percent), forty-six are owned by for-profit hospital systems (92 percent), and twenty (40 percent) operate in Florida. One for-profit hospital system owns half of these fifty hospitals. While most public and private health insurers do not use hospital charges to set their payment rates, uninsured patients are commonly asked to pay the full charges, and out-of-network patients and casualty and workers' compensation insurers are often expected to pay a large portion of the full charges. Because it is difficult for patients to compare prices, market forces fail to constrain hospital charges. Federal and state governments may want to consider limitations on the charge-to-cost ratio, some form of all-payer rate setting, or mandated price disclosure to regulate hospital markups. Project HOPE—The People-to-People Health Foundation, Inc.

  14. Towards highest peak intensities for ultra-short MeV-range ion bunches

    Science.gov (United States)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  15. Highest-order optical phonon-mediated relaxation in CdTe/ZnTe quantum dots

    International Nuclear Information System (INIS)

    Masumoto, Yasuaki; Nomura, Mitsuhiro; Okuno, Tsuyoshi; Terai, Yoshikazu; Kuroda, Shinji; Takita, K.

    2003-01-01

    The highest 19th-order longitudinal optical (LO) phonon-mediated relaxation was observed in photoluminescence excitation spectra of CdTe self-assembled quantum dots grown in ZnTe. Hot excitons photoexcited highly in the ZnTe barrier layer are relaxed into the wetting-layer state by emitting multiple LO phonons of the barrier layer successively. Below the wetting-layer state, the LO phonons involved in the relaxation are transformed to those of interfacial Zn x Cd 1-x Te surrounding CdTe quantum dots. The ZnTe-like and CdTe-like LO phonons of Zn x Cd 1-x Te and lastly acoustic phonons are emitted in the relaxation into the CdTe dots. The observed main relaxation is the fast relaxation directly into CdTe quantum dots and is not the relaxation through either the wetting-layer quantum well or the band bottom of the ZnTe barrier layer. This observation shows very efficient optical phonon-mediated relaxation of hot excitons excited highly in the ZnTe conduction band through not only the ZnTe extended state but also localized state in the CdTe quantum dots reflecting strong exciton-LO phonon interaction of telluride compounds

  16. Which Environmental Factors Have the Highest Impact on the Performance of People Experiencing Difficulties in Capacity?

    Directory of Open Access Journals (Sweden)

    Verena Loidl

    2016-04-01

    Full Text Available Disability is understood by the World Health Organization (WHO as the outcome of the interaction between a health condition and personal and environmental factors. Comprehensive data about environmental factors is therefore essential to understand and influence disability. We aimed to identify which environmental factors have the highest impact on the performance of people with mild, moderate and severe difficulties in capacity, who are at risk of experiencing disability to different extents, using data from a pilot study of the WHO Model Disability Survey in Cambodia and random forest regression. Hindering or facilitating aspects of places to socialize in community activities, transportation and natural environment as well as use and need of personal assistance and use of medication on a regular basis were the most important environmental factors across groups. Hindering or facilitating aspects of the general environment were the most relevant in persons experiencing mild levels of difficulties in capacity, while social support, attitudes of others and use of medication on a regular basis were highly relevant for the performance of persons experiencing moderate to higher levels of difficulties in capacity. Additionally, we corroborate the high importance of the use and need of assistive devices for people with severe difficulties in capacity.

  17. TYCHO: Simulating Exoplanets Within Stellar Clusters

    Science.gov (United States)

    Glaser, Joseph Paul; Thornton, Jonathan; Geller, Aaron M.; McMillan, Stephen

    2018-01-01

    Recent surveys exploring nearby open clusters have yielded noticeable differences in the planetary population from that seen in the Field. This is surprising, as the two should be indistinguishable given currently accepted theories on how a majority of stars form within the Galaxy. Currently, the existence of this apparent deficit is not fully understood. While detection bias in previous observational surveys certainly contributes to this issue, the dynamical effects of star-star scattering must also be taken into account. However, this effect can only be investigated via computational simulations and current solutions of the multi-scale N-body problem are limited and drastically simplified.To remedy this, we aim to create a physically complete computational solution to explore the role of stellar close encounters and interplanetary interactions in producing the observed exoplanet populations for both open cluster stars and Field stars. To achieve this, TYCHO employs a variety of different computational techniques, including: multiple n-body integration methods; close-encounter handling; Monte Carlo scattering experiments; and a variety of observationally-backed initial condition generators. Herein, we discuss the current state of the code's implantation within the AMUSE framework and its applications towards present exoplanet surveys.

  18. Grain formation in cool stellar envelopes

    International Nuclear Information System (INIS)

    Deguchi, S.

    1980-01-01

    The nucleation and growth of dust grains in the stellar envelope are investigated for the case of oxygen-rich stars, where the mass loss occurs as a result of the radiation pressure on the dust grains. The number density of grains, the final grain sizes, and the final amount of metals remaining in gaseous states are calculated based on the grain-nucleation theory proposed by Yamamoto and Hasegawa and Draine and Salpeter. It is shown that, even if we base our calculations on the Lothe-Pound nucleation rate equation instead of the classical, homogeneous nucleation rate equation, the proposed theory gives a number density of grains quite similar to that based on the classical rate equation. The approximate solution of the flow, in this paper, brings physical insight to the problem of how the formation of grains couples the flow passing the sonic point. The metals in the outer envelope remain in gaseous state by the amount of 1--10% of the initial content for the mass-loss rate of 10 -5 M/sub sun/ yr -1 and by less than 1% for the massloss are less than 3 x 10 -6 M/sub sun/ yr -1 . Species of metals condensed onto the grains are also discussed

  19. A Bayesian method for detecting stellar flares

    Science.gov (United States)

    Pitkin, M.; Williams, D.; Fletcher, L.; Grant, S. D. T.

    2014-12-01

    We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of `quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N.

  20. Massive stellar content of some Galactic supershells

    Science.gov (United States)

    Kaltcheva, Nadejda; Golev, Valeri

    2015-08-01

    The giant Galactic H II regions provide a unique opportunity to study the OB-star influence on the surrounding interstellar matter. In this contribution, several multi-wavelength surveys (Wisconsin H-α Mapper Northern Sky Survey, Southern H-α Sky Survey Atlas, MSX Mid-IR Galactic Plane Survey, WISE All-Sky Data Release, CO survey of the Milky Way, and the Southern Galactic Plane HI Survey) are combined with available intermediate-band uvbyβ photometry to attempt a precise spatial correlation between the OB-stars and the neutral and ionized material. Our study is focused on the H I supershell GSH 305+01-24 in Centaurus, the Car OB2 supershell, the Cygnus star-forming complex and the GSH 224-01+24 shell toward the GMN 39/Seagull nebula region. We refine the massive stellar content of these star-forming fields and study the energetics of its interaction with the shells’ material.

  1. MiniCNT - A Tabletop Stellarator

    Science.gov (United States)

    Dugan, Chris; Pedersen, Thomas; Berkery, John

    2006-10-01

    MiniCNT is a scaled down version of the Columbia Non-Neutral Torus, a stellarator built to study confinement of non-neutral plasmas on magnetic surfaces. MiniCNT is a glass vacuum chamber capable of holding pressures six orders of magnitude below atmospheric pressure. Unlike CNT, in which plasmas are invisible, MiniCNT allows some collisions with neutrals, causing it to glow. Using two twelve-volt car batteries to power four magnetic coils, MiniCNT generates a 0.02 Tesla magnetic field. While CNT, being larger, is obviously more accurate, there are multiple benefits in MiniCNT. First, it is more flexible and can be adjusted to fit many scenarios easily. The car batteries can be switched for other power sources, the coils can be realigned, and the chamber can be pumped to various pressures of various gases. Also, it is visually accessible; while CNT has glass viewing ports and its plasma is dark, MiniCNT is made of glass and its plasma glows, allowing visualization of the magnetic surfaces.

  2. Theoretical and observational studies of stellar activity

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.

    1984-01-01

    In the theoretical part of this thesis, doubly-diffusive MHD instabilities are studied as a means of breaking up a diffuse magnetic field at the bottom of the solar convection zone. The analysis is linear and local, and assumes short meridional wavelengths; the effects of rotation and diffusion of vorticity, magnetic fields and heat are included. Results show that the instability depends sensitively on the temperature stratification, but rather insensitively on the assumed magnetic field configuration; instability time scales considerably less than the solar cycle period can be easily obtained. In the observational part of the thesis, results are reported of a survey of the x-ray emission of stars with shallow connection zones to study the onset of convection and dynamo activity along the main sequence. Complications arising from stellar multiplicity are discussed extensively; it is demonstrated that binaries have statistically higher x-ray luminosities; and it is shown that physical parameters can only be deduced from single stars. It is further shown that the x-ray luminosities of stars with spectral type in the color range 0.1 less than or equal to B. V less than or equal to 0.5 increase rapidly, whereas stars with B. V approx. 0.0 appear to have no intrinsic x-ray emission at presently detectable levels

  3. On neoclassical impurity transport in stellarator geometry

    International Nuclear Information System (INIS)

    García-Regaña, J M; Kleiber, R; Beidler, C D; Turkin, Y; Maaßberg, H; Helander, P

    2013-01-01

    The impurity dynamics in stellarators has become an issue of moderate concern due to the inherent tendency of the impurities to accumulate in the core when the neoclassical ambipolar radial electric field points radially inwards (ion root regime). This accumulation can lead to collapse of the plasma due to radiative losses, and thus limit high performance plasma discharges in non-axisymmetric devices. A quantitative description of the neoclassical impurity transport is complicated by the breakdown of the assumption of small E × B drift and trapping due to the electrostatic potential variation on a flux surface Φ-tilde compared with those due to the magnetic field gradient. This work examines the impact of this potential variation on neoclassical impurity transport in the Large Helical Device heliotron. It shows that the neoclassical impurity transport can be strongly affected by Φ-tilde . The central numerical tool used is the δf particle in cell Monte Carlo code EUTERPE. The Φ-tilde used in the calculations is provided by the neoclassical code GSRAKE. The possibility of obtaining a more general Φ-tilde self-consistently with EUTERPE is also addressed and a preliminary calculation is presented. (paper)

  4. Direct nuclear reaction experiments for stellar nucleosynthesis

    International Nuclear Information System (INIS)

    Cherubini, S.

    2016-01-01

    During the last two decades indirect methods where proposed and used in many experiments in order to measure nuclear cross sections between charged particles at stellar energies. These are among the lowest to be measured in nuclear physics. One of these methods, the Trojan Horse method, is based on the Quasi- Free reaction mechanism and has proved to be particularly flexible and reliable. It allowed for the measurement of the cross sections of various reactions of astrophysical interest using stable beams. The use and reliability of indirect methods become even more important when reactions induced by Radioactive Ion Beams are considered, given the much lower intensity generally available for these beams. The first Trojan Horse measurement of a process involving the use of a Radioactive Ion Beam dealt with the "1"8F(p,α)"1"5O process in Nova conditions. To obtain pieces of information on this process, in particular about its cross section at Nova energies, the Trojan Horse method was applied to the "1"8F(d,α "1"5O)n three body reaction. In order to establish the reliability of the Trojan Horse method approach, the Treiman-Yang criterion is an important test and it will be addressed briefly in this paper.

  5. Technological aspects of the Wega stellarator

    International Nuclear Information System (INIS)

    Fritsch, R.; Ohlendorf, W.; Pacher, G.W.; Pacher, H.D.; Wegrowe, J.G.; Lipa, M.; CEA Centre d'Etudes Nucleaires de Grenoble, 38

    1976-01-01

    Wega, an ohmically heated Stellarator at Grenoble for the study of R.F. heating at high power. On the vacuum vessel are mounted helical windings with periods l=2, m=5, designed to produce a rotational transform of 0.3 at a main field of 2.5T. Calculations to simulate the effect of the stray flux of the transformer yokes show that a vertical field variation of the same periodicity as the helical windings (five-fold symmetry) does not affect the magnetic surfaces. Accordingly five transformer yokes are used. To assemble internal R.F. structures, it was required that the two halves of the device be separable, therefore electrically and mechanically distinct. The 14 helical conductors of the 4 windings of each of the device are placed in series by means of end connections magnetically compensated. To facilitate further the separability of the two halves, one of them, weighing 5 tons (vacuum vessel, toroidal field coils, supporting structures) is supported at three points, and can be displaced horizontally by 3m using an air cushion system [fr

  6. On radiative density limits in stellarators

    International Nuclear Information System (INIS)

    Wobig, H.

    2001-01-01

    Density limits in stellarators are caused mainly by enhanced impurity radiation leading to a collapse of the temperature. A simple model can be established, which computes the temperature in the plasma with a fixed heating profile and a temperature-dependent radiation profile. If the temperature-dependent radiation function has one or several extrema, multiple solutions of the transport equation exist and radiative collapse occurs when the high temperature branch merges with the unstable temperature branch. At this bifurcation point the temperature decreases to a stable low temperature solution. The bifurcation point is a function of the heating power and the plasma density. Thus a density limit can be defined as the point where bifurcation occurs. It is shown that bifurcation and sudden temperature collapse does not occur below a power threshold. Anomalous thermal conductivity and the details of the impurity radiation, which in the present model is assumed to be in corona equilibrium, determine the scaling of the density limit. A model of the anomalous transport is developed, which leads to Gyro-Bohm scaling of the confinement time. The density limit based on this transport model is close to experimental findings in Wendelstein 7-AS. (author)

  7. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  8. Secular instabilities of Keplerian stellar discs

    Science.gov (United States)

    Kaur, Karamveer; Kazandjian, Mher V.; Sridhar, S.; Touma, Jihad R.

    2018-05-01

    We present idealized models of a razor-thin, axisymmetric, Keplerian stellar disc around a massive black hole, and study non-axisymmetric secular instabilities in the absence of either counter-rotation or loss cones. These discs are prograde mono-energetic waterbags, whose phase-space distribution functions are constant for orbits within a range of eccentricities (e) and zero outside this range. The linear normal modes of waterbags are composed of sinusoidal disturbances of the edges of distribution function in phase space. Waterbags that include circular orbits (polarcaps) have one stable linear normal mode for each azimuthal wavenumber m. The m = 1 mode always has positive pattern speed and, for polarcaps consisting of orbits with e normal modes for each m, which can be stable or unstable. We derive analytical expressions for the instability condition, pattern speeds, growth rates, and normal mode structure. Narrow bands are unstable to modes with a wide range in m. Numerical simulations confirm linear theory and follow the non-linear evolution of instabilities. Long-time integration suggests that instabilities of different m grow, interact non-linearly, and relax collisionlessly to a coarse-grained equilibrium with a wide range of eccentricities.

  9. Stellar Atmospheric Parameterization Based on Deep Learning

    Science.gov (United States)

    Pan, Ru-yang; Li, Xiang-ru

    2017-07-01

    Deep learning is a typical learning method widely studied in the fields of machine learning, pattern recognition, and artificial intelligence. This work investigates the problem of stellar atmospheric parameterization by constructing a deep neural network with five layers, and the node number in each layer of the network is respectively 3821-500-100-50-1. The proposed scheme is verified on both the real spectra measured by the Sloan Digital Sky Survey (SDSS) and the theoretic spectra computed with the Kurucz's New Opacity Distribution Function (NEWODF) model, to make an automatic estimation for three physical parameters: the effective temperature (Teff), surface gravitational acceleration (lg g), and metallic abundance (Fe/H). The results show that the stacked autoencoder deep neural network has a better accuracy for the estimation. On the SDSS spectra, the mean absolute errors (MAEs) are 79.95 for Teff/K, 0.0058 for (lg Teff/K), 0.1706 for lg (g/(cm·s-2)), and 0.1294 dex for the [Fe/H], respectively; On the theoretic spectra, the MAEs are 15.34 for Teff/K, 0.0011 for lg (Teff/K), 0.0214 for lg(g/(cm · s-2)), and 0.0121 dex for [Fe/H], respectively.

  10. Second harmonic electron cyclotron breakdown in stellarators

    International Nuclear Information System (INIS)

    Carter, M.D.; Batchelor, D.B.; England, A.C.

    1987-01-01

    In linear wave-particle interaction models, the coupling between cold electrons and microwaves with frequency equal to twice the electron gyrofrequency is so weak that the ionization of a significant number of neutral hydrogen atoms would seem impossible in practical applications. However, the non-linear interaction of a cold electron with the wave is very large if the electron becomes trapped near resonance in a shallow, static magnetic well. A model has been developed to describe the breakdown of a neutral gas when these non-linear interactions are considered, and it is in reasonable agreement with the limited amount of available experimental data. For gas pressures that are too large, electron-neutral collisions inhibit the non-linear interaction and prevent breakdown. For gas pressures that are too low, the growth rate of the free electron population is limited because electrons capable of causing ionization are lost before suffering a collision with a neutral. Quantitative growth rate predictions are presented for stellarators, and formulae for rough estimates are given. (author)

  11. Stellar 'Incubators' Seen Cooking up Stars

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2Figure 3Figure 4Figure 5 This image composite compares visible-light and infrared views from NASA's Spitzer Space Telescope of the glowing Trifid Nebula, a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius. Visible-light images of the Trifid taken with NASA's Hubble Space Telescope, Baltimore, Md. (inside left, figure 1) and the National Optical Astronomy Observatory, Tucson, Ariz., (outside left, figure 1) show a murky cloud lined with dark trails of dust. Data of this same region from the Institute for Radioastronomy millimeter telescope in Spain revealed four dense knots, or cores, of dust (outlined by yellow circles), which are 'incubators' for embryonic stars. Astronomers thought these cores were not yet ripe for stars, until Spitzer spotted the warmth of rapidly growing massive embryos tucked inside. These embryos are indicated with arrows in the false-color Spitzer picture (right, figure 1), taken by the telescope's infrared array camera. The same embryos cannot be seen in the visible-light pictures (left, figure 1). Spitzer found clusters of embryos in two of the cores and only single embryos in the other two. This is one of the first times that multiple embryos have been observed in individual cores at this early stage of stellar development.

  12. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Avenue, Miami Shores, FL 33161 (United States); Irastorza, Igor; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain); Ringwald, Andreas, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  13. Cool WISPs for stellar cooling excesses

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  14. Constraints on stellar evolution from pulsations

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    Consideration of the many types of intrinsic variable stars, that is, those that pulsate, reveals that perhaps a dozen classes can indicate some constraints that affect the results of stellar evolution calculations, or some interpretations of observations. Many of these constraints are not very strong or may not even be well defined yet. In this review we discuss only the case for six classes: classical Cepheids with their measured Wesselink radii, the observed surface effective temperatures of the known eleven double-mode Cepheids, the pulsation periods and measured surface effective temperatures of three R CrB variables, the delta Scuti variable VZ Cnc with a very large ratio of its two observed periods, the nonradial oscillations of our sun, and the period ratios of the newly discovered double-mode RR Lyrae variables. Unfortunately, the present state of knowledge about the exact compositions; mass loss and its dependence on the mass, radius, luminosity, and composition; ;and internal mixing processes, as well as sometimes the more basic parameters such as luminosities and surface effective temperatures prevent us from applying strong constraints for every case where currently the possibility exists

  15. Weak-interaction rates in stellar conditions

    Science.gov (United States)

    Sarriguren, Pedro

    2018-05-01

    Weak-interaction rates, including β-decay and electron captures, are studied in several mass regions at various densities and temperatures of astrophysical interest. In particular, we study odd-A nuclei in the pf-shell region, which are involved in presupernova formations. Weak rates are relevant to understand the late stages of the stellar evolution, as well as the nucleosynthesis of heavy nuclei. The nuclear structure involved in the weak processes is studied within a quasiparticle proton-neutron random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. First, the energy distributions of the Gamow-Teller strength are discussed and compared with the available experimental information, measured under terrestrial conditions from charge-exchange reactions. Then, the sensitivity of the weak-interaction rates to both astrophysical densities and temperatures is studied. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus and to the electron captures from the degenerate electron plasma.

  16. Gravitational wave generation by stellar core collapse

    International Nuclear Information System (INIS)

    Moore, T.A.

    1981-01-01

    Stars which have masses greater than 5 to 8 solar masses are thought to undergo a stage of catastrophic core collapse and subsequent supernova explosion at the end of their lives. If the core is not spherically symmetric, the bounce which halts its collapse at transnuclear densities will generate a pulse of gravitational waves. This thesis presents a fully relativistic model of core collapse which treats deviations from spherical symmetry as small perturbations on a spherical background. This model may be used to predict qualitative and quantitative features of the gravitational radiation emitted by stellar cores with odd-parity, axisymmetric fluid perturbations, and represents a first step in the application of perturbative methods to more general asymmetries. The first chapter reviews the present consensus on the physics of core collapse and outlines the important features, assumptions, and limitations of the model. A series of model runs are presented and discussed. Finally, several proposals for future research are presented. Subsequent chapters explore in detail the mathematical features of the present model and its realization on the computer

  17. Predicting gravitational lensing by stellar remnants

    Science.gov (United States)

    Harding, Alexander J.; Stefano, R. Di; Lépine, S.; Urama, J.; Pham, D.; Baker, C.

    2018-03-01

    Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper, we describe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, five black holes, and ≈35 000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here, we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With Hubble Space Telescope, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.

  18. STELLAR ACTIVITY IN THE BROADBAND ULTRAVIOLET

    International Nuclear Information System (INIS)

    Findeisen, K.; Hillenbrand, L.; Soderblom, D.

    2011-01-01

    The completion of the GALEX All-Sky Survey in the ultraviolet allows activity measurements to be acquired for many more stars than is possible with the limited sensitivity of ROSAT or the limited sky coverage of Chandra, XMM, or spectroscopic surveys for line emission in the optical or ultraviolet. We have explored the use of GALEX photometry as an activity indicator, using stars within 50 pc as a calibration sample representing the field and in selected nearby associations representing the youngest stages of stellar evolution. We present preliminary relations between UV flux and the optical activity indicator R' HK and between UV flux and age. We demonstrate that far-UV (FUV, 1350-1780 A) excess flux is roughly proportional to R' HK . We also detect a correlation between near-UV (NUV, 1780-2830 A) flux and activity or age, but the effect is much more subtle, particularly for stars older than ∼0.5-1 Gyr. Both the FUV and NUV relations show large scatter, ∼0.2 mag when predicting UV flux, ∼0.18 dex when predicting R' HK , and ∼0.4 dex when predicting age. This scatter appears to be evenly split between observational errors in current state-of-the-art data and long-term activity variability in the sample stars.

  19. Recent Progress in MHD Stability Calculations of Compact Stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Cooper, W.A.; Nuehrenberg, C.; Sanchez, R.; Ware, A.; Hirshman, S.P.; Spong, D.A.

    2000-01-01

    A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism for external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length

  20. Diagnostics Plan for the National Compact Stellarator Experiment

    International Nuclear Information System (INIS)

    D. Johnson; T. Brown; H. Neilson; G. Schilling; H. Takahashi; M. Zarnstorff; M. Cole; E. Lazarus; and M. Fenstermacher

    2002-01-01

    The National Compact Stellarator Experiment (NCSX) is a stellarator-tokamak hybrid seeking to combine the good confinement, high beta and moderate aspect ratio of the tokamak with the quasi-steady-state operation and good stability properties of the stellarator. A preliminary list of measurement requirements, intended to satisfy the needs of the phased research plan, provides the basis for a full complement of plasma diagnostics. It is important to consider this full set, even at this early stage, to assess the adequacy of the stellarator design for diagnostic port access. The 3-D nature of the plasma is a measurement challenge, as is the necessity for high spatial resolution to assess the quality of magnetic surfaces. Other diagnostic requirements include the need for re-entrant views that penetrate the cryostat, for a convenient e-beam probe for field line mapping, and for a diagnostic neutral beam for active spectroscopy

  1. Exploring stellar evolution with gravitational-wave observations

    Science.gov (United States)

    Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph

    2018-05-01

    Recent detections of gravitational waves from merging binary black holes opened new possibilities to study the evolution of massive stars and black hole formation. In particular, stellar evolution models may be constrained on the basis of the differences in the predicted distribution of black hole masses and redshifts. In this work we propose a framework that combines galaxy and stellar evolution models and use it to predict the detection rates of merging binary black holes for various stellar evolution models. We discuss the prospects of constraining the shape of the time delay distribution of merging binaries using just the observed distribution of chirp masses. Finally, we consider a generic model of primordial black hole formation and discuss the possibility of distinguishing it from stellar-origin black holes.

  2. KINEMATICS OF CLASSICAL CEPHEIDS IN THE NUCLEAR STELLAR DISK

    International Nuclear Information System (INIS)

    Matsunaga, Noriyuki; Fukue, Kei; Yamamoto, Ryo; Kobayashi, Naoto; Hamano, Satoshi; Inno, Laura; Genovali, Katia; Bono, Giuseppe; Baba, Junichi; Fujii, Michiko S.; Aoki, Wako; Tsujimoto, Takuji; Kondo, Sohei; Ikeda, Yuji; Nishiyama, Shogo; Nagata, Tetsuya

    2015-01-01

    Classical Cepheids are useful tracers of the Galactic young stellar population because their distances and ages can be determined from their period-luminosity and period-age relations. In addition, the radial velocities and chemical abundance of the Cepheids can be derived from spectroscopic observations, providing further insights into the structure and evolution of the Galaxy. Here, we report the radial velocities of classical Cepheids near the Galactic center, three of which were reported in 2011 and a fourth being reported for the first time. The velocities of these Cepheids suggest that the stars orbit within the nuclear stellar disk, a group of stars and interstellar matter occupying a region of ∼200 pc around the center, although the three-dimensional velocities cannot be determined until the proper motions are known. According to our simulation, these four Cepheids formed within the nuclear stellar disk like younger stars and stellar clusters therein

  3. Helical-axis stellarators with noninterlocking planar coils

    International Nuclear Information System (INIS)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits

  4. Helical-axis stellarators with noninterlocking planar coils

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits.

  5. Estimate of stellar masses from their QPO frequencies

    Indian Academy of Sciences (India)

    For such a system, the stellar radius is very close to the marginally stable orbit ... The phenomenon of quasiperiodic oscillations was discovered in 1985 by ... QPOs are revealed in a power–density spectrum as a broad peak covering many.

  6. Two novel compact toroidal concepts with Stellarator features

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-07-01

    Two novel compact toroidal concepts are presented. One is the Stellarator-Spheromak (SSP) and another is the Extreme-Low-Aspect-Ratio Stellarator (ELARS). An SSP device represents a hybrid between a spherical stellarator (SS) and a spheromak. This configuration retains the main advantages of spheromaks ans has a potential for improving the spheromak concept regarding its main problems. The MHD equilibrium in an SSP with very high β of the confined plasma is demonstrated. Another concept, ELARS, represents an extreme limit of the SS approach, and considers devices with stellarator features and aspect ratios A ∼ 1. We have succeeded in finding ELARS configurations with extremely compact, modular, and simple design compatible with significant rotational transform, large plasma volume, and good particle transport characteristics

  7. Space Weather: Linking Stellar Explosions to the Human Endeavor

    Science.gov (United States)

    Knipp, Delores

    2017-06-01

    Arguably humans have flourished as a result of stellar explosions; we are, after all, stardust. Nonetheless, rapid technology advances of the last 200 years sometimes put society and individuals on a collision course with the natural variability of stellar and solar atmospheres. Human space exploration, routine satellite navigation system applications, aviation safety, and electric power grids are examples of such vulnerable endeavors. In this presentation I will outline how global society relies on ‘normal’ solar and stellar emissions, yet becomes susceptible to extremes of these emissions. The imprints of these astronomical-terrestrial interactions abound. In particular, I will highlight ways in which stellar/solar bursts link with our space-atmosphere-interaction region, producing multi-year patterns in cosmic ray detection, gorgeous aurora, and deep concern for good order and function of global community.

  8. The Universal Stellar Mass-Stellar Metallicity Relation for Dwarf Galaxies

    OpenAIRE

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Cheng, Lucy; Bullock, James S.; Gallazzi, Anna

    2013-01-01

    We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same massmetallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z * σ M * 0.30±0. 02 . The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar massstellar metallicity relation for galaxies as massive asM*...

  9. On the distribution of the frequency of stellar flares in stellar aggregates

    International Nuclear Information System (INIS)

    Mnatsakanyan, M.A.

    1986-01-01

    The analytic time-representation of the multiplicity of flares in stellar aggregates based on observational data at present is given under the condition of independency of flares from each other. They are exactly approximated by two ''Poisson'' groups with stars in each of them having the same frequency: N 1 =670, ν 1 =1.1 flares at all observational time, N 2 =60, ν 2 =9 - for Pleiades, and by one Poisson process with N=1250, ν=0.49 - for Orion, N=330, ν=0.37 - for the Dark Nebulae of Taurus. The total number of fkare stars in the Pleiades is nearly equal or less than 750

  10. Design, construction and validation of the UST-1 modular stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Queral, V., E-mail: vicentemanuel.queral@ciemat.es

    2016-11-15

    Highlights: • A small and simple low cost two period modular stellarator is reviewed. • It is defined as a monolithic circular surface torus with carved grooves. • The grooves are accurately mechanised by a new toroidal milling machine. • A very simple e-beam field mapping system has been built and utilized. - Abstract: Stellarator advancement is hindered, among others, by the requirement of geometric complexity at high accuracy and the still scarce universities and research centres following the stellarator line. In this framework, the objectives of the small UST-1 stellarator development were to: (i) explore and test the performance of one possible accurate construction method for stellarators (ii) encourage universities and small fusion research centres to build simple and economical stellarators (iii) educative purpose. Therefore, UST-1 was properly designed to be easily built by a milling machine working on toroidal coordinates, being the winding surface circular poloidally and toroidally. The coil frame is a sole monolithic toroidal thick surface equipped with grooves mechanised by the toroidal milling machine. Only one double pancake is wound in each groove so as to compress the conductor on the laterals of the groove in order to speed up and simplify the winding process. The physics design, the conceptual engineering design and the construction process of UST-1 is presented. The toroidal milling machine is described. The e-beam field line mapping experiments carried out to validate the resulting magnetic configuration are reported. The developed construction method has been proved for the small UST-1 stellarator. Small stellarators are valuable for quick tests of diagnostics, educative purposes, assessment of new confinement concepts, turbulence studies and other applications.

  11. Final phases of stellar evolution and the supernova phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Gallino, R [Torino, Universita, Turin, Italy; Masani, A [CNR, Laboratorio di Cosmo-geofisica, Turin, Italy

    1977-12-01

    Various theoretical aspects of the final stages of stellar evolution are reviewed in the framework of gravitational collapse and thermonuclear reactions (C-12 and O-16) in degenerate electron conditions. Attention is given to the evolution of supermassive stars, massive stars, and low-mass stars and to such topics as neutrino emission in intermediate-mass stars, white-dwarf supernovae, rotational instability, and stellar collisions and eclipsing binary systems.

  12. Stellar and interstellar K lines - Gamma Pegasi and iota Herculis.

    Science.gov (United States)

    Hobbs, L. M.

    1973-01-01

    High-resolution scans show that the relatively strong (about 90 mA) K lines of Ca II in the early B stars gamma-Peg and iota-Her are almost entirely stellar in origin, although the latter case includes a small interstellar contribution. Such stellar lines can be of great importance in augmenting the interstellar absorption, up through the earliest of the B stars.

  13. Neutral beam heating in stellarators: a numerical approach

    International Nuclear Information System (INIS)

    Hokin, S.A.; Rome, J.A.; Hender, T.C.; Fowler, R.H.

    1983-03-01

    Calculation of neutral beam deposition and heating in stellarators is complicated by the twisty stellarator geometry and by the usual beam focusing, divergence, and cross-sectional shape considerations. A new deposition code has been written that takes all of this geometry into account. A unique feature of this code is that it gives particle deposition in field-line coordinates, enabling the thermalization problem to be solved more efficiently

  14. The history and development of nonlinear stellar pulsation codes

    International Nuclear Information System (INIS)

    Davis, C.G.

    1987-01-01

    This review is limited to the history and development of nonlinear stellar pulsation codes and methods. The narrative includes examples of practical interest in the application of these numerical methods to problems in stellar pulsation such as Cepheid mass discrepancy, the delineation of the RR Lyrae instability strip, and the question of the development of double-mode pulsation as observed in Cepheids, RR Lyrae and other variable stars. 15 refs

  15. On the evolution of stellar systems with a massive center

    International Nuclear Information System (INIS)

    Gurzadyan, V.G.; Kocharyan, A.A.

    1986-01-01

    The evolution of stellar systems with the massive center is investigated within the framework of dynamic system theory. Open dissipative systems, for which the Liouville theorem of the phase volume preservation is not implemented, are considered. Equations determining variation, in time, of main physical system parameters have been derived and studied. Results of the investigation show a principal possibility for determining the evolution path of stellar systems with the massive centers depending on physical parameters

  16. Design, construction and validation of the UST-1 modular stellarator

    International Nuclear Information System (INIS)

    Queral, V.

    2016-01-01

    Highlights: • A small and simple low cost two period modular stellarator is reviewed. • It is defined as a monolithic circular surface torus with carved grooves. • The grooves are accurately mechanised by a new toroidal milling machine. • A very simple e-beam field mapping system has been built and utilized. - Abstract: Stellarator advancement is hindered, among others, by the requirement of geometric complexity at high accuracy and the still scarce universities and research centres following the stellarator line. In this framework, the objectives of the small UST-1 stellarator development were to: (i) explore and test the performance of one possible accurate construction method for stellarators (ii) encourage universities and small fusion research centres to build simple and economical stellarators (iii) educative purpose. Therefore, UST-1 was properly designed to be easily built by a milling machine working on toroidal coordinates, being the winding surface circular poloidally and toroidally. The coil frame is a sole monolithic toroidal thick surface equipped with grooves mechanised by the toroidal milling machine. Only one double pancake is wound in each groove so as to compress the conductor on the laterals of the groove in order to speed up and simplify the winding process. The physics design, the conceptual engineering design and the construction process of UST-1 is presented. The toroidal milling machine is described. The e-beam field line mapping experiments carried out to validate the resulting magnetic configuration are reported. The developed construction method has been proved for the small UST-1 stellarator. Small stellarators are valuable for quick tests of diagnostics, educative purposes, assessment of new confinement concepts, turbulence studies and other applications.

  17. New Classes of Quasi-helically Symmetric Stellarators

    International Nuclear Information System (INIS)

    Ku, L.P.; Boozer, A.H.

    2010-01-01

    New classes of quasi-helically symmetric stellarators with aspect ratios (le) 10 have been found which are stable to the perturbation of magnetohydrodynamic modes at plasma pressures of practical interest. These configurations have large rotational transform and good quality of flux surfaces. Characteristics of some selected examples are discussed in detail. The feasibility of using modular coils for these stellarators has been investigated. It is shown that practical designs for modular coils can be achieved.

  18. Formation of stars and stellar clusters in galactic environment

    OpenAIRE

    Smilgys, Romas

    2018-01-01

    Star and stellar cluster formation in spiral galaxies is one of the biggest questions of astrophysics. In this thesis, I study how star formation, and the formation of stellar clusters, proceeds using SPH simulations. These simulations model a region of 400 pc and 10⁷ solar masses. Star formation is modelled through the use of sink particles which represent small groups of stars. Star formation occurs in high density regions, created by galactic spiral arm passage. The spiral shock compresses...

  19. The Prospect for Detecting Stellar Coronal Mass Ejections

    Science.gov (United States)

    Osten, Rachel A.; Crosley, Michael Kevin

    2018-06-01

    The astrophysical study of mass loss, both steady-state and transient, on the cool half of the HR diagram has implications bothfor the star itself and the conditions created around the star that can be hospitable or inimical to supporting life. Recent results from exoplanet studies show that planets around M dwarfs are exceedingly common, which together with the commonality of M dwarfs in our galaxy make this the dominant mode of star and planet configurations. The closeness of the exoplanets to the parent M star motivate a comprehensive understanding of habitability for these systems. Radio observations provide the most clear signature of accelerated particles and shocks in stars arising as the result of MHD processes in the stellar outer atmosphere. Stellar coronal mass ejections have not been conclusively detected, despite the ubiquity with which their radiative counterparts in an eruptive event (stellar flares) have. I will review some of the different observational methods which have been used and possibly could be used in the future in the stellar case, emphasizing some of the difficulties inherent in such attempts. I will provide a framework for interpreting potential transient stellar mass loss in light of the properties of flares known to occur on magnetically active stars. This uses a physically motivated way to connect the properties of flares and coronal mass ejections and provides a testable hypothesis for observing or constraining transient stellar mass loss. I will describe recent results using radio observations to detect stellar coronal mass ejections, and what those results imply about transient stellar mass loss. I will provide some motivation for what could be learned in this topic from space-based low frequency radio experiments.

  20. A COMPARISON OF STELLAR ELEMENTAL ABUNDANCE TECHNIQUES AND MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.; Desch, Steven J.; Anbar, Ariel D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Adibekyan, Vardan; Mena, Elisa Delgado; Sousa, Sergio G.; Santos, Nuno C. [Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Blanco-Cuaresma, Sergi [Observatoire de Genève, Université de Genève, CH-1290 Versoix (Switzerland); Carlberg, Joleen K. [NASA Goddard Space Flight Center, Code 667, Greenbelt MD 20771 (United States); Liu, Fan [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Nordlander, Thomas; Korn, Andreas; Gruyters, Pieter; Heiter, Ulrike [Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala (Sweden); Jofré, Paula [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Soubiran, Caroline, E-mail: natalie.hinkel@gmail.com [CNRS/Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac (France)

    2016-09-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited a number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.

  1. Information ranks highest: Expectations of female adolescents with a rare genital malformation towards health care services.

    Directory of Open Access Journals (Sweden)

    Elisabeth Simoes

    Full Text Available Access to highly specialized health care services and support to meet the patient's specific needs is critical for health outcome, especially during age-related transitions within the health care system such as with adolescents entering adult medicine. Being affected by an orphan disease complicates the situation in several important respects. Long distances to dedicated institutions and scarcity of knowledge, even among medical doctors, may present major obstacles for proper access to health care services and health chances. This study is part of the BMBF funded TransCareO project examining in a mixed-method design health care provisional deficits, preferences, and barriers in health care access as perceived by female adolescents affected by the Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS, a rare (orphan genital malformation.Prior to a communicative validation workshop, critical elements of MRKHS related care and support (items were identified in interviews with MRKHS patients. During the subsequent workshop, 87 persons involved in health care and support for MRKHS were asked to rate the items using a 7-point Likert scale (7, strongly agree; 1, strongly disagree as to 1 the elements' potential importance (i.e., health care expected to be "best practice", or priority and 2 the presently experienced care. A gap score between the two was computed highlighting fields of action. Items were arranged into ten separate questionnaires representing domains of care and support (e.g., online-portal, patient participation. Within each domain, several items addressed various aspects of "information" and "access". Here, we present the outcome of items' evaluation by patients (attended, NPAT = 35; respondents, NRESP = 19.Highest priority scores occurred for domains "Online-Portal", "Patient participation", and "Tailored informational offers", characterizing them as extremely important for the perception as best practice. Highest gap scores yielded domains

  2. Nonlinear Analysis to Detect if Excellent Nursing Work Environments Have Highest Well-Being.

    Science.gov (United States)

    Casalicchio, Giuseppe; Lesaffre, Emmanuel; Küchenhoff, Helmut; Bruyneel, Luk

    2017-09-01

    To detect potentially nonlinear associations between nurses' work environment and nurse staffing on the one hand and nurse burnout on the other hand. A cross-sectional multicountry study for which data collection using a survey of 33,731 registered nurses in 12 European countries took place during 2009 to 2010. A semiparametric latent variable model that describes both linear and potentially nonlinear associations between burnout (Maslach Burnout Inventory: emotional exhaustion, depersonalization, personal accomplishment) and work environment (Practice Environment Scale of the Nursing Work Index: managerial support for nursing, doctor-nurse collegial relations, promotion of care quality) and staffing (patient-to-nurse ratio). Similar conclusions are reached from linear and nonlinear models estimating the association between work environment and burnout. For staffing, an increase in the patient-to-nurse ratio is associated with an increase in emotional exhaustion. At about 15 patients per nurse, no further increase in emotional exhaustion is seen. Absence of evidence for diminishing returns of improving work environments suggests that continuous improvement and achieving excellence in nurse work environments pays off strongly in terms of lower nurse-reported burnout rates. Nurse staffing policy would benefit from a larger number of studies that identify specific minimum as well as maximum thresholds at which inputs affect nurse and patient outcomes. Nurse burnout is omnipresent and has previously been shown to be related to worse patient outcomes. Additional increments in characteristics of excellent work environments, up to the highest possible standard, correspond to lower nurse burnout. © 2017 Sigma Theta Tau International.

  3. Lost opportunities in HIV prevention: programmes miss places where exposures are highest

    Science.gov (United States)

    Sandøy, Ingvild F; Siziya, Seter; Fylkesnes, Knut

    2008-01-01

    Background Efforts at HIV prevention that focus on high risk places might be more effective and less stigmatizing than those targeting high risk groups. The objective of the present study was to assess risk behaviour patterns, signs of current preventive interventions and apparent gaps in places where the risk of HIV transmission is high and in communities with high HIV prevalence. Methods The PLACE method was used to collect data. Inhabitants of selected communities in Lusaka and Livingstone were interviewed about where people met new sexual partners. Signs of HIV preventive activities in these places were recorded. At selected venues, people were interviewed about their sexual behaviour. Peer educators and staff of NGOs were also interviewed. Results The places identified were mostly bars, restaurants or sherbeens, and fewer than 20% reported any HIV preventive activity such as meetings, pamphlets or posters. In 43% of places in Livingstone and 26% in Lusaka, condoms were never available. There were few active peer educators. Among the 432 persons in Lusaka and 676 in Livingstone who were invited for interview about sexual behaviour, consistent condom use was relatively high in Lusaka (77%) but low in Livingstone (44% of men and 34% of women). Having no condom available was the most common reason for not using one. Condom use in Livingstone was higher among individuals socializing in places where condoms always were available. Conclusion In the places studied we found a high prevalence of behaviours with a high potential for HIV transmission but few signs of HIV preventive interventions. Covering the gaps in prevention in these high exposure places should be given the highest priority. PMID:18218124

  4. How to identify the person holding the highest position in the criminal hierarchy?

    Directory of Open Access Journals (Sweden)

    Grigoryev D.A.

    2014-12-01

    Full Text Available The current version of the resolution of the RF Supreme Court Plenum of June 10, 2010 N 12, clarifying the provisions of the law on liability for crimes committed by a person holding the highest position in the criminal hierarchy (Part 4 of Article 210 of the RF Criminal Code, is criticized. Evaluative character of the considered aggravating circumstance doesn’t allow to develop clear criteria for identifying the leaders of the criminal environment. Basing on the theory provisions and court practice, the authors suggest three criteria. The first criterion is specific actions including: establishment and leadership of the criminal association (criminal organization; coordinating criminal acts; creating sustainable links between different organized groups acting independently; dividing spheres of criminal influence, sharing criminal income and other criminal activities, indicating person’s authority and leadership in a particular area or in a particular sphere of activity. The second is having money, valuables and other property obtained by criminal means, without the person’s direct participation in their acquisition; transferring money, valuables and other property to that person systematically, without legal grounds (unjust enrichment; spending that money, valuables and other property to carry out criminal activities (crimes themselves and conditions of their commission. The third is international criminal ties manifested in committing one of the crimes under Part 1 of Article 210 of the RF Criminal Code, if this crime is transnational in nature; ties with extremist and (or terrorist organizations, as well as corruption ties. The court may use one or several of these criteria.

  5. Analisa Penggunaan Tertinggi dan Terbaik (Highest and Best Use Analysis pada Lahan Pasar Turi Lama Surabaya

    Directory of Open Access Journals (Sweden)

    Maulida Herradiyanti

    2017-01-01

    Full Text Available Pasar  Turi  merupakan  pasar  yang  telah lama  menjadi  ikon  perdagangan  tidak  hanya  di Surabaya,  namun  juga  di  Indonesia  Timur.  Kebakaran hebat yang terjadi pada Juli 2007 telah menghanguskan bangunan Pasar Turi. Aktivitas perdagangan di tempat tersebut  otomatis  terhenti.  Hingga saat ini, lahan Pasar Turi  Tahap  III  atau  yang  biasa  disebut  Pasar  Turi Lama  masih  terbengkalai.  Padahal,  lahan  seluas  16281 m2tersebut terletak di wilayah sentra perdagangan dan cocok  untuk  dikembangkan  menjadi properti komersial seperti perkantoran, pertokoan, rumah toko (ruko, danpasar tradisional. Salah  satu  cara  untuk  menentukan  penggunaan lahan Pasar Turi Lama adalah dengan metode Highest and  Best  Use  (HBU.  HBU  adalah  suatu  metode  untuk menentukan  penggunaan  aset  yang  memberikan peruntukan  paling  optimal sehingga dapat memberikan nilai  lahan  tertinggi.  Kriteria  HBU  yaitu  diijinkan secara  legal,  memungkinkan  secara  fisik,  layak  secara finansial, dan memiliki produktivitas maksimum.Hasil penelitian ini didapatkan alternatif pertokoan sebagai  alternatif  penggunaan  lahan  terbaik  dengan nilai  lahan  tertinggi  yaitu  sebesar  Rp27.994.695,78/m2dengan produktivitas maksimum sebesar  124%.

  6. Risk of influenza transmission in a hospital emergency department during the week of highest incidence.

    Science.gov (United States)

    Esteve-Esteve, Miguel; Bautista-Rentero, Daniel; Zanón-Viguer, Vicente

    2018-02-01

    To estimate the risk of influenza transmission in patients coming to a hospital emergency department during the week of highest incidence and to analyze factors associated with transmission. Retrospective observational analysis of a cohort of patients treated in the emergency room during the 2014-2015 flu season. The following variables were collected from records: recorded influenza diagnosis, results of a rapid influenza confirmation test, point of exposure (emergency department, outpatient clinic, or the community), age, sex, flu vaccination or not, number of emergency visits, time spent in the waiting room, and total time in the hospital. We compiled descriptive statistics and performed bivariate and multivariate analyses by means of a Poisson regression to estimate relative risk (RR) and 95% CIs. The emergency department patients had a RR of contracting influenza 3.29 times that of the communityexposed population (95% CI, 1.53-7.08, P=.002); their risk was 2.05 times greater than that of outpatient clinic visitors (95% CI, 1.04-4.02, P=.036). Emergency patients under the age of 15 years had a 5.27 greater risk than older patients (95% CI, 1.59-17.51; P=.007). The RR of patients visiting more than once was 11.43 times greater (95% CI, 3.58-36.44; P<.001). The risk attributable to visiting the emergency department risk was 70.5%, whereas risk attributable to community exposure was 2%. The risk of contracting influenza is greater for emergency department patients than for the general population or for patients coming to the hospital for outpatient clinic visits. Patients under the age of 15 years incur greater risk.

  7. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    International Nuclear Information System (INIS)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting; Conroy, Charlie; Andrews, Brett

    2017-01-01

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  8. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Jabran Zahid, H. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kudritzki, Rolf-Peter; Ho, I-Ting [University of Hawaii at Manoa, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA, 02138 (United States); Andrews, Brett, E-mail: zahid@cfa.harvard.edu [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States)

    2017-09-20

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  9. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    International Nuclear Information System (INIS)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun

    2016-01-01

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point

  10. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2016-03-20

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.

  11. Stellar CCD Photometry: New Approach, Principles and Application

    Science.gov (United States)

    El-Bassuny Alawy, A.

    A new approach is proposed and developed to handle pre-processed CCD frames in order to identify stellar images and derive their relevant parameters. It relies on: 1) Identifying stellar images and assigning approximate positions of their centres using an artificial intelligence technique, (Knowledge Based System), 2) Accurate determination of the centre co-ordinates applying an elementary statistical concept and 3) Estimating the image peak intensity as a stellar magnitude measure employing simple numerical analysis approach. The method has been coded for personal computer users. A CCD frame of the star cluster M67 was adopted as a test case. The results obtained are discussed in comparison with the DAOPHOTII ones and the corresponding published data. Exact coincidence has been found between both results except in very few cases. These exceptions have been discussed in the light of the basis of both methods and the cluster plates. It has been realised that the method suggested represents a very simple, extremely fast, high precision method of stellar CCD photometry. Moreover, it is more capable than DAOPHOTII of handling blended and distorted stellar images. These characteristics show the usefulness of the present method in some astronomical applications, such as auto-focusing and auto-guiding, beside the main purpose, viz. stellar photometry.

  12. The Contribution of Stellar Winds to Cosmic Ray Production

    Science.gov (United States)

    Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu

    2018-04-01

    Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

  13. Stellar-to-halo mass relation of cluster galaxies

    International Nuclear Information System (INIS)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; Giocoli, Carlo

    2017-01-01

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.

  14. A NEW SIMPLE DYNAMO MODEL FOR STELLAR ACTIVITY CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, N.; Hamba, F. [Institute of Industrial Science, University of Tokyo, Tokyo 153-8505 (Japan); Schmitt, D. [Max-Planck Institut für Sonnensystemforschung, Göttingen D-37077 (Germany); Pipin, V., E-mail: nobyokoi@iis.u-tokyo.ac.jp [Institute of Solar–Terrestrial Physics, Russian Academy of Science, Irkutsk 664033 (Russian Federation)

    2016-06-20

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α –Ω-type models in two main ways. First, in addition to the usual helicity ( α ) and turbulent magnetic diffusivity ( β ) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solved simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.

  15. Metal-rich, Metal-poor: Updated Stellar Population Models for Old Stellar Systems

    Science.gov (United States)

    Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter G.; Lind, Karin

    2018-02-01

    We present updated stellar population models appropriate for old ages (>1 Gyr) and covering a wide range in metallicities (‑1.5 ≲ [Fe/H] ≲ 0.3). These models predict the full spectral variation associated with individual element abundance variation as a function of metallicity and age. The models span the optical–NIR wavelength range (0.37–2.4 μm), include a range of initial mass functions, and contain the flexibility to vary 18 individual elements including C, N, O, Mg, Si, Ca, Ti, and Fe. To test the fidelity of the models, we fit them to integrated light optical spectra of 41 Galactic globular clusters (GCs). The value of testing models against GCs is that their ages, metallicities, and detailed abundance patterns have been derived from the Hertzsprung–Russell diagram in combination with high-resolution spectroscopy of individual stars. We determine stellar population parameters from fits to all wavelengths simultaneously (“full spectrum fitting”), and demonstrate explicitly with mock tests that this approach produces smaller uncertainties at fixed signal-to-noise ratio than fitting a standard set of 14 line indices. Comparison of our integrated-light results to literature values reveals good agreement in metallicity, [Fe/H]. When restricting to GCs without prominent blue horizontal branch populations, we also find good agreement with literature values for ages, [Mg/Fe], [Si/Fe], and [Ti/Fe].

  16. YOUNG STELLAR CLUSTERS CONTAINING MASSIVE YOUNG STELLAR OBJECTS IN THE VVV SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Borissova, J.; Alegría, S. Ramírez; Kurtev, R.; Medina, N.; Navarro, C.; Kuhn, M.; Gromadzki, M.; Retamales, G.; Fernandez, M. A.; Agurto-Gangas, C.; Amigo, P. [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030 (Chile); Alonso, J.; Decany, I. [Millennium Institute of Astrophysics (MAS), Santiago (Chile); Lucas, P. W.; Pena, C. Contreras; Thompson, M. A. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Chené, A.-N. [Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Minniti, D. [Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago (Chile); Catelan, M. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Morales, E. F. E., E-mail: jura.borissova@uv.cl [Max-Planck-Institute for Astronomy (Germany)

    2016-09-01

    The purpose of this research is to study the connections of the global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object (YSO) populations. The analysis is based on the combination of spectroscopic parallax-based reddening and distance determinations with main-sequence and pre-main-sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800  M {sub ⊙}), the slope Γ of the obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. The YSOs in the cluster’s surrounding fields are classified using low resolution spectra, spectral energy distribution fits with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed YSOs (except one) are found to be massive (more than 8 M {sub ⊙}). Using VVV and GLIMPSE color–color cuts we have selected a large number of new YSO candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classifications on the basis of light curves.

  17. YOUNG STELLAR OBJECTS IN THE GOULD BELT

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Allen, Lori E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Evans II, Neal J.; Harvey, Paul M. [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Broekhoven-Fiene, Hannah [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Cieza, Lucas A. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Di Francesco, James; Johnstone, Doug; Matthews, Brenda C. [National Research Council of Canada, Herzberg Astronomy and Astrophysics Programs, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Hatchell, Jennifer [Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Heiderman, Amanda [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Huard, Tracy L. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kirk, Jason M. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Miller, Jennifer F. [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Peterson, Dawn E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Young, Kaisa E., E-mail: mdunham@cfa.harvard.edu [Department of Physical Sciences, Nicholls State University, P.O. Box 2022, Thibodaux, LA 70310 (United States)

    2015-09-15

    We present the full catalog of Young Stellar Objects (YSOs) identified in the 18 molecular clouds surveyed by the Spitzer Space Telescope “cores to disks” (c2d) and “Gould Belt” (GB) Legacy surveys. Using standard techniques developed by the c2d project, we identify 3239 candidate YSOs in the 18 clouds, 2966 of which survive visual inspection and form our final catalog of YSOs in the GB. We compile extinction corrected spectral energy distributions for all 2966 YSOs and calculate and tabulate the infrared spectral index, bolometric luminosity, and bolometric temperature for each object. We find that 326 (11%), 210 (7%), 1248 (42%), and 1182 (40%) are classified as Class 0 + I, Flat-spectrum, Class II, and Class III, respectively, and show that the Class III sample suffers from an overall contamination rate by background Asymptotic Giant Branch stars between 25% and 90%. Adopting standard assumptions, we derive durations of 0.40–0.78 Myr for Class 0 + I YSOs and 0.26–0.50 Myr for Flat-spectrum YSOs, where the ranges encompass uncertainties in the adopted assumptions. Including information from (sub)millimeter wavelengths, one-third of the Class 0 + I sample is classified as Class 0, leading to durations of 0.13–0.26 Myr (Class 0) and 0.27–0.52 Myr (Class I). We revisit infrared color–color diagrams used in the literature to classify YSOs and propose minor revisions to classification boundaries in these diagrams. Finally, we show that the bolometric temperature is a poor discriminator between Class II and Class III YSOs.

  18. YOUNG STELLAR OBJECTS IN THE GOULD BELT

    International Nuclear Information System (INIS)

    Dunham, Michael M.; Allen, Lori E.; Evans II, Neal J.; Harvey, Paul M.; Broekhoven-Fiene, Hannah; Cieza, Lucas A.; Di Francesco, James; Johnstone, Doug; Matthews, Brenda C.; Gutermuth, Robert A.; Hatchell, Jennifer; Heiderman, Amanda; Huard, Tracy L.; Kirk, Jason M.; Miller, Jennifer F.; Peterson, Dawn E.; Young, Kaisa E.

    2015-01-01

    We present the full catalog of Young Stellar Objects (YSOs) identified in the 18 molecular clouds surveyed by the Spitzer Space Telescope “cores to disks” (c2d) and “Gould Belt” (GB) Legacy surveys. Using standard techniques developed by the c2d project, we identify 3239 candidate YSOs in the 18 clouds, 2966 of which survive visual inspection and form our final catalog of YSOs in the GB. We compile extinction corrected spectral energy distributions for all 2966 YSOs and calculate and tabulate the infrared spectral index, bolometric luminosity, and bolometric temperature for each object. We find that 326 (11%), 210 (7%), 1248 (42%), and 1182 (40%) are classified as Class 0 + I, Flat-spectrum, Class II, and Class III, respectively, and show that the Class III sample suffers from an overall contamination rate by background Asymptotic Giant Branch stars between 25% and 90%. Adopting standard assumptions, we derive durations of 0.40–0.78 Myr for Class 0 + I YSOs and 0.26–0.50 Myr for Flat-spectrum YSOs, where the ranges encompass uncertainties in the adopted assumptions. Including information from (sub)millimeter wavelengths, one-third of the Class 0 + I sample is classified as Class 0, leading to durations of 0.13–0.26 Myr (Class 0) and 0.27–0.52 Myr (Class I). We revisit infrared color–color diagrams used in the literature to classify YSOs and propose minor revisions to classification boundaries in these diagrams. Finally, we show that the bolometric temperature is a poor discriminator between Class II and Class III YSOs

  19. Stellar Death in the Nearby Universe

    Science.gov (United States)

    Holoien, Thomas Warren-Son

    The night sky is replete with transient and variable events that help shape our universe. The violent, explosive deaths of stars represent some of the most energetic of these events, as a single star is able to outshine billions during its final moments. Aside from imparting significant energy into their host environments, stellar deaths are also responsible for seeding heavy elements into the universe, regulating star formation in their host galaxies, and affecting the evolution of supermassive black holes at the centers of their host galaxies. The large amount of energy output during these events allows them to be seen from billions of lightyears away, making them useful observational probes of physical processes important to many fields of astronomy. In this dissertation I present a series of observational studies of two classes of transients associated with the deaths of stars in the nearby universe: tidal disruption events (TDEs) and supernovae (SNe). Discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN), the objects I discuss were all bright and nearby, and were subject to extensive follow-up observational campaigns. In the first three studies, I present observational data and theoretical models of ASASSN-14ae, ASASSN-14li, and ASASSN-15oi, three TDEs discovered by ASAS-SN and three of the most well-studied TDEs ever discovered. Next I present the discovery of ASASSN-13co, an SN that does not conform to the traditional model of Type II SNe. Finally, I discuss the full sample of bright SNe discovered from 2014 May 1 through 2016 December 31, which is significantly less biased than previous nearby SN samples due to the ASAS-SN survey approach, and perform statistical analyses on this population that will be used for future studies of nearby SNe and their hosts.

  20. Edge biasing in the WEGA stellarator

    International Nuclear Information System (INIS)

    Lischtschenko, Oliver

    2009-01-01

    The WEGA stellarator is used to confine low temperature, overdense (densities exceeding the cut-off density of the heating wave) plasmas by magnetic fields in the range of B=50-500 mT. Microwave heating systems are used to ignite gas discharges using hydrogen, helium, neon or argon as working gases. The produced plasmas have been analyzed using Langmuir and emissive probes, a single-channel interferometer and ultra-high resolution Doppler spectroscopy. For a typical argon discharge in the low field operation, B=56 mT, the maximum electron density is n e ∝10 18 m -3 with temperatures in the range of T=4-12 eV. The plasma parameters are determined by using Langmuir probes and are cross-checked with interferometry. It is demonstrated within this work that the joint use of emissive probes and ultra-high resolution Doppler spectroscopy allows a precise measurement of the radial electric field. The focus of this work is on demonstrating the ability to modify the existing radial electric field in a plasma by using the biasing probe. This work commences with a basic approach and first establishes the diagnostic tools in a well-known discharge. Then the perturbation caused by the biasing probe is assessed. Following the characterization of the unperturbed plasmas, plasma states altered by the operation of the energized biasing probe are characterized. During biasing the plasma two different stable plasma states have been found. The two observed plasma states differ in plasma parameter profiles, such as density, temperature, electric field and confined energy. (orig.)

  1. Identification of multiple sclerosis patients at highest risk of cognitive impairment using an integrated brain magnetic resonance imaging assessment approach.

    Science.gov (United States)

    Uher, T; Vaneckova, M; Sormani, M P; Krasensky, J; Sobisek, L; Dusankova, J Blahova; Seidl, Z; Havrdova, E; Kalincik, T; Benedict, R H B; Horakova, D

    2017-02-01

    While impaired cognitive performance is common in multiple sclerosis (MS), it has been largely underdiagnosed. Here a magnetic resonance imaging (MRI) screening algorithm is proposed to identify patients at highest risk of cognitive impairment. The objective was to examine whether assessment of lesion burden together with whole brain atrophy on MRI improves our ability to identify cognitively impaired MS patients. Of the 1253 patients enrolled in the study, 1052 patients with all cognitive, volumetric MRI and clinical data available were included in the analysis. Brain MRI and neuropsychological assessment with the Brief International Cognitive Assessment for Multiple Sclerosis were performed. Multivariable logistic regression and individual prediction analysis were used to investigate the associations between MRI markers and cognitive impairment. The results of the primary analysis were validated at two subsequent time points (months 12 and 24). The prevalence of cognitive impairment was greater in patients with low brain parenchymal fraction (BPF) (3.5 ml) than in patients with high BPF (>0.85) and low T2-LV (patients predicted cognitive impairment with 83% specificity, 82% negative predictive value, 51% sensitivity and 75% overall accuracy. The risk of confirmed cognitive decline over the follow-up was greater in patients with high T2-LV (OR 2.1; 95% CI 1.1-3.8) and low BPF (OR 2.6; 95% CI 1.4-4.7). The integrated MRI assessment of lesion burden and brain atrophy may improve the stratification of MS patients who may benefit from cognitive assessment. © 2016 EAN.

  2. OGLE-ing the Magellanic system: stellar populations in the Magellanic Bridge

    International Nuclear Information System (INIS)

    Skowron, D. M.; Jacyszyn, A. M.; Udalski, A.; Szymański, M. K.; Skowron, J.; Poleski, R.; Kozłowski, S.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Mróz, P.; Pietrukowicz, P.; Ulaczyk, K.; Wyrzykowski, Ł.

    2014-01-01

    We report the discovery of a young stellar bridge that forms a continuous connection between the Magellanic Clouds. This finding is based on number density maps for stellar populations found in data gathered by OGLE-IV that fully cover over 270 deg 2 of the sky in the Magellanic Bridge area. This is the most extensive optical survey of this region to date. We find that the young population is present mainly in the western half of the MBR, which, together with the newly discovered young population in the eastern Bridge, form a continuous stream of stars connecting both galaxies along δ ∼ –73.5 deg. The young population distribution is clumped, with one of the major densities close to the SMC and the other fairly isolated and located approximately mid-way between the Clouds, which we call the OGLE island. These overdensities are well matched by H I surface density contours, although the newly found young population in the eastern Bridge is offset by ∼2 deg north from the highest H I density contour. We observe a continuity of red clump stars between the Magellanic Clouds which represent an intermediate-age population. Red clump stars are present mainly in the southern and central parts of the Magellanic Bridge, below its gaseous part, and their presence is reflected by a strong deviation from the radial density profiles of the two galaxies. This may indicate either a tidal stream of stars, or that the stellar halos of the two galaxies overlap. On the other hand, we do not observe such an overlap within an intermediate-age population represented by the top of the red giant branch and the asymptotic giant branch stars. We also see only minor mixing of the old populations of the Clouds in the southern part of the Bridge, represented by the lowest part of the red giant branch.

  3. OGLE-ing the Magellanic system: stellar populations in the Magellanic Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Skowron, D. M.; Jacyszyn, A. M.; Udalski, A.; Szymański, M. K.; Skowron, J.; Poleski, R.; Kozłowski, S.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Mróz, P.; Pietrukowicz, P.; Ulaczyk, K.; Wyrzykowski, Ł., E-mail: dszczyg@astrouw.edu.pl [Warsaw University Astronomical Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa (Poland)

    2014-11-10

    We report the discovery of a young stellar bridge that forms a continuous connection between the Magellanic Clouds. This finding is based on number density maps for stellar populations found in data gathered by OGLE-IV that fully cover over 270 deg{sup 2} of the sky in the Magellanic Bridge area. This is the most extensive optical survey of this region to date. We find that the young population is present mainly in the western half of the MBR, which, together with the newly discovered young population in the eastern Bridge, form a continuous stream of stars connecting both galaxies along δ ∼ –73.5 deg. The young population distribution is clumped, with one of the major densities close to the SMC and the other fairly isolated and located approximately mid-way between the Clouds, which we call the OGLE island. These overdensities are well matched by H I surface density contours, although the newly found young population in the eastern Bridge is offset by ∼2 deg north from the highest H I density contour. We observe a continuity of red clump stars between the Magellanic Clouds which represent an intermediate-age population. Red clump stars are present mainly in the southern and central parts of the Magellanic Bridge, below its gaseous part, and their presence is reflected by a strong deviation from the radial density profiles of the two galaxies. This may indicate either a tidal stream of stars, or that the stellar halos of the two galaxies overlap. On the other hand, we do not observe such an overlap within an intermediate-age population represented by the top of the red giant branch and the asymptotic giant branch stars. We also see only minor mixing of the old populations of the Clouds in the southern part of the Bridge, represented by the lowest part of the red giant branch.

  4. Negative-ion states

    International Nuclear Information System (INIS)

    Compton, R.N.

    1982-01-01

    In this brief review, we discuss some of the properties of atomic and molecular negative ions and their excited states. Experiments involving photon reactions with negative ions and polar dissociation are summarized. 116 references, 14 figures

  5. Negative ion detachment processes

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1990-10-01

    This paper discusses the following topics: H - and D - collisions with atomic hydrogen; collisional decomposition of SF 6 - ; two-electron loss processes in negative ion collisions; associative electron detachment; and negative ion desorption from surfaces

  6. How does negative emotion cause false memories?

    Science.gov (United States)

    Brainerd, C J; Stein, L M; Silveira, R A; Rohenkohl, G; Reyna, V F

    2008-09-01

    Remembering negative events can stimulate high levels of false memory, relative to remembering neutral events. In experiments in which the emotional valence of encoded materials was manipulated with their arousal levels controlled, valence produced a continuum of memory falsification. Falsification was highest for negative materials, intermediate for neutral materials, and lowest for positive materials. Conjoint-recognition analysis produced a simple process-level explanation: As one progresses from positive to neutral to negative valence, false memory increases because (a) the perceived meaning resemblance between false and true items increases and (b) subjects are less able to use verbatim memories of true items to suppress errors.

  7. Sentential Negation in English

    Science.gov (United States)

    Mowarin, Macaulay

    2009-01-01

    This paper undertakes a detailed analysis of sentential negation in the English language with Chomsky's Government-Binding theory of Transformational Grammar as theoretical model. It distinguishes between constituent and sentential negation in English. The essay identifies the exact position of Negation phrase in an English clause structure. It…

  8. Infrared Extinction and Stellar Populations in the Milky Way Midplane

    Science.gov (United States)

    Zasowski, Gail; Majewski, S. R.; Benjamin, R. A.; Nidever, D. L.; Skrutskie, M. F.; Indebetouw, R.; Patterson, R. J.; Meade, M. R.; Whitney, B. A.; Babler, B.; Churchwell, E.; Watson, C.

    2012-01-01

    The primary laboratory for developing and testing models of galaxy formation, structure, and evolution is our own Milky Way, the closest large galaxy and the only one in which we can resolve large numbers of individual stars. The recent availability of extensive stellar surveys, particularly infrared ones, has enabled precise, contiguous measurement of large-scale Galactic properties, a major improvement over inferences based on selected, but scattered, sightlines. However, our ability to fully exploit the Milky Way as a galactic laboratory is severely hampered by the fact that its midplane and central bulge -- where most of the Galactic stellar mass lies -- is heavily obscured by interstellar dust. Therefore, proper consideration of the interstellar extinction is crucial. This thesis describes a new extinction-correction method (the RJCE method) that measures the foreground extinction towards each star and, in many cases, enables recovery of its intrinsic stellar type. We have demonstrated the RJCE Method's validity and used it to produce new, reliable extinction maps of the heavily-reddened Galactic midplane. Taking advantage of the recovered stellar type information, we have generated maps probing the extinction at different heliocentric distances, thus yielding information on the elusive three-dimensional distribution of the interstellar dust. We also performed a study of the interstellar extinction law itself which revealed variations previously undetected in the diffuse ISM and established constraints on models of ISM grain formation and evolution. Furthermore, we undertook a study of large-scale stellar structure in the inner Galaxy -- the bar(s), bulge(s), and inner spiral arms. We used observed and extinction-corrected infrared photometry to map the coherent stellar features in these heavily-obscured parts of the Galaxy, placing constraints on models of the central stellar mass distribution.

  9. Consumer Airfare Report: Table 5 - Detailed Fare Information For Highest and Lowest Fare Markets Under 750 Miles

    Data.gov (United States)

    Department of Transportation — Provides detailed fare information for highest and lowest fare markets under 750 miles. For a more complete explanation, please read the introductory information at...

  10. Negative ion sources

    International Nuclear Information System (INIS)

    Ishikawa, Junzo; Takagi, Toshinori

    1983-01-01

    Negative ion sources have been originally developed at the request of tandem electrostatic accelerators, and hundreds of nA to several μA negative ion current has been obtained so far for various elements. Recently, the development of large current hydrogen negative ion sources has been demanded from the standpoint of the heating by neutral particle beam injection in nuclear fusion reactors. On the other hand, the physical properties of negative ions are interesting in the thin film formation using ions. Anyway, it is the present status that the mechanism of negative ion action has not been so fully investigated as positive ions because the history of negative ion sources is short. In this report, the many mechanisms about the generation of negative ions proposed so far are described about negative ion generating mechanism, negative ion source plasma, and negative ion generation on metal surfaces. As a result, negative ion sources are roughly divided into two schemes, plasma extraction and secondary ion extraction, and the former is further classified into the PIG ion source and its variation and Duoplasmatron and its variation; while the latter into reflecting and sputtering types. In the second half of the report, the practical negative ion sources of each scheme are described. If the mechanism of negative ion generation will be investigated more in detail and the development will be continued under the unified know-how as negative ion sources in future, the development of negative ion sources with which large current can be obtained for any element is expected. (Wakatsuki, Y.)

  11. Polemic and Descriptive Negations

    DEFF Research Database (Denmark)

    Horslund, Camilla Søballe

    2011-01-01

    to semantics and pragmatics, negations can be used in three different ways, which gives rise to a typology of three different types of negations: 1) the descriptive negation, 2) the polemic negation, and 3) the meta-linguistic negation (Nølke 1999, 4). This typology illuminates the fact that the negation...... common in certain social context or genres, while polemic negations are more likely to come up in other genres and social settings. Previous studies have shown a relation between articulatory prominence and register, which may further inform the analysis. Hence, the paper investigates how articulatory...... prominence and register may either work in concert or oppose each other with respect to the cues they provide for the interpretation....

  12. The Local Stellar Velocity Field via Vector Spherical Harmonics

    Science.gov (United States)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc

  13. A New Method for Deriving the Stellar Birth Function of Resolved Stellar Populations.

    Science.gov (United States)

    Gennaro, M.; Tchernyshyov, K.; Brown, T. M.; Gordon, K. D.

    2015-07-01

    We present a new method for deriving the stellar birth function (SBF) of resolved stellar populations. The SBF (stars born per unit mass, time, and metallicity) is the combination of the initial mass function (IMF), the star formation history (SFH), and the metallicity distribution function (MDF). The framework of our analysis is that of Poisson Point Processes (PPPs), a class of statistical models suitable when dealing with points (stars) in a multidimensional space (the measurement space of multiple photometric bands). The theory of PPPs easily accommodates the modeling of measurement errors as well as that of incompleteness. Our method avoids binning stars in the color-magnitude diagram and uses the whole likelihood function for each data point; combining the individual likelihoods allows the computation of the posterior probability for the population's SBF. Within the proposed framework it is possible to include nuisance parameters, such as distance and extinction, by specifying their prior distributions and marginalizing over them. The aim of this paper is to assess the validity of this new approach under a range of assumptions, using only simulated data. Forthcoming work will show applications to real data. Although it has a broad scope of possible applications, we have developed this method to study multi-band Hubble Space Telescope observations of the Milky Way Bulge. Therefore we will focus on simulations with characteristics similar to those of the Galactic Bulge. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at STScI, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  14. Nonlinear MHD and energetic particle modes in stellarators

    International Nuclear Information System (INIS)

    Strauss, H.R.; Fu, G.Y.; Park, W.; Breslau, J.; Sugiyama, L.E.

    2003-01-01

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas using multiple levels of physics, geometry and grid models. The M3D code has been applied to ideal, resistive, two fluid, and hybrid simulations of compact quasi axisymmetric stellarators. When β exceeds a threshold, moderate toroidal mode number (n ∼ 10) modes grow exponentially, clearly distinguishable from the equilibrium evolution. The β limits are significantly higher than the infinite mode number ballooning limits. In the presence of resistivity, these modes occur well below the ideal limit. Their growth rate scaling with resistivity is similar to tearing modes. At low resistivity, the modes couple to resistive interchanges, which are unstable in most stellarators. Two fluid simulations with M3D show that resistive modes can be stabilized by diamagnetic drift. The two fluid computations are done with a realistic value of the Hall parameter, the ratio of ion skin depth to major radius. Hybrid gyrokinetic simulations with energetic particles indicate that global shear Alfven TAE - like modes can be destabilized in stellarators. Computations in a two-period compact stellarator obtained a predominantly n=1 toroidal mode with the expected TAE frequency. It is found that TAE modes are more stable in the two-period compact stellarator that in a tokamak with the same q and pressure profiles. M3D combines a two dimensional unstructured mesh with finite element discretization in poloidal planes, and fourth order finite differencing in the toroidal direction. (author)

  15. STELLAR, GAS, AND DARK MATTER CONTENT OF BARRED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo, E-mail: b.cervantes@crya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-01-20

    We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars, or as unbarred galaxies, and make use of H i mass and kinematic information from the Arecibo Legacy Fast ALFA survey catalog, to study the stellar, atomic gas, and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellar mass, due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 10{sup 10} M {sub ⊙}, at fixed stellar mass, the bar fraction decreases with increasing global halo mass (i.e., halo mass measured up to a radius of the order of the H i disk extent).

  16. Stellar signatures of AGN-jet-triggered star formation

    International Nuclear Information System (INIS)

    Dugan, Zachary; Silk, Joseph; Bryan, Sarah; Gaibler, Volker; Haas, Marcel

    2014-01-01

    To investigate feedback between relativistic jets emanating from active galactic nuclei and the stellar population of the host galaxy, we analyze the long-term evolution of the orbits of the stars formed in the galaxy-scale simulations by Gaibler et al. of jets in massive, gas-rich galaxies at z ∼ 2-3. We find strong, jet-induced differences in the resulting stellar populations of galaxies that host relativistic jets and galaxies that do not, including correlations in stellar locations, velocities, and ages. Jets are found to generate distributions of increased radial and vertical velocities that persist long enough to effectively augment the stellar structure of the host. The jets cause the formation of bow shocks that move out through the disk, generating rings of star formation within the disk. The bow shock often accelerates pockets of gas in which stars form, yielding populations of stars with significant radial and vertical velocities, some of which have large enough velocities to escape the galaxy. These stellar population signatures can serve to identify past jet activity as well as jet-induced star formation.

  17. New schemes for confinement of fusion products in stellarators

    International Nuclear Information System (INIS)

    Cooper, W.A.; Isaev, M.Yu.; Heyn, M.F.

    2003-01-01

    Improved energetic-particle confinement is found in new stellarator and toroidal mirror field configurations. The possibility of fulfilling the condition of poloidal closure of the contours of the second adiabatic invariant for all reflected particles is studied for stellarators with poloidally closed contours of the magnetic field B on the magnetic surfaces through computational stellarator optimization. It is shown that by adjusting the geometry this is possible in a major fraction of the plasma volume. The most salient characteristic (as compared to previous quasi-iso dynamic configurations) is a magnetic axis whose curvature vanishes in all cross-sections with an extremum of B on the magnetic axis and renders possible a 3D structure of B with unprecedently high collisionless α-particle confinement. Sectionally isometric vacuum magnetic field toroidal mirror traps are analytically constructed with the help of the paraxial (or 'thin tube') approximation. Application of standard computational stellarator tools to this type of ι = 0 stellarator shows excellent alignment of second adiabatic invariant contours and equilibrium surfaces as well as directly calculated collisionless confinement of energetic particles. (author)

  18. AN EXPLORATION OF THE STATISTICAL SIGNATURES OF STELLAR FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Boyden, Ryan D.; Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Koch, Eric W.; Rosolowsky, Erik W., E-mail: soffner@astro.umass.edu [Department of Physics, University of Alberta, Edmonton, T6G 2E1 (Canada)

    2016-12-20

    All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range of stellar mass-loss rates and magnetic field strengths. We generate synthetic {sup 12}CO(1–0) maps assuming that the simulations are at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize these using common astrostatistics. We quantify the different statistical responses using a variety of metrics proposed in the literature. We find that multiple astrostatistics, including the principal component analysis, the spectral correlation function, and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and can be identified and quantified observationally using such statistics.

  19. Stellar Wind Retention and Expulsion in Massive Star Clusters

    Science.gov (United States)

    Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.

    2018-05-01

    Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).

  20. A standard stellar library for evolutionary synthesis. III. Metallicity calibration

    Science.gov (United States)

    Westera, P.; Lejeune, T.; Buser, R.; Cuisinier, F.; Bruzual, G.

    2002-01-01

    We extend the colour calibration of the widely used BaSeL standard stellar library (Lejeune et al. 1997, 1998) to non-solar metallicities, down to [Fe/H] ~ -2.0 dex. Surprisingly, we find that at the present epoch it is virtually impossible to establish a unique calibration of UBVRIJHKL colours in terms of stellar metallicity [Fe/H] which is consistent simultaneously with both colour-temperature relations and colour-absolute magnitude diagrams (CMDs) based on observed globular cluster photometry data and on published, currently popular standard stellar evolutionary tracks and isochrones. The problem appears to be related to the long-standing incompleteness in our understanding of convection in late-type stellar evolution, but is also due to a serious lack of relevant observational calibration data that would help resolve, or at least further significant progress towards resolving this issue. In view of the most important applications of the BaSeL library, we here propose two different metallicity calibration versions: (1) the ``WLBC 99'' library, which consistently matches empirical colour-temperature relations and which, therefore, should make an ideal tool for the study of individual stars; and (2), the ``PADOVA 2000'' library, which provides isochrones from the Padova 2000 grid (Girardi et al. \\cite{padova}) that successfully reproduce Galactic globular-cluster colour-absolute magnitude diagrams and which thus should prove particularly useful for studies of collective phenomena in stellar populations in clusters and galaxies.

  1. Stellar Companions of Exoplanet Host Stars in K2

    Science.gov (United States)

    Matson, Rachel; Howell, Steve; Horch, Elliott; Everett, Mark

    2018-01-01

    Stellar multiplicity has significant implications for the detection and characterization of exoplanets. A stellar companion can mimic the signal of a transiting planet or distort the true planetary radii, leading to improper density estimates and over-predicting the occurrence rates of Earth-sized planets. Determining the fraction of exoplanet host stars that are also binaries allows us to better determine planetary characteristics as well as establish the relationship between binarity and planet formation. Using high-resolution speckle imaging to obtain diffraction limited images of K2 planet candidate host stars we detect stellar companions within one arcsec and up to six magnitudes fainter than the host star. By comparing our observed companion fraction to TRILEGAL star count simulations, and using the known detection limits of speckle imaging, we find the binary fraction of K2 planet host stars to be similar to that of Kepler host stars and solar-type field stars. Accounting for stellar companions in exoplanet studies is therefore essential for deriving true stellar and planetary properties as well as maximizing the returns for TESS and future exoplanet missions.

  2. Luck Reveals Stellar Explosion's First Moments

    Science.gov (United States)

    2008-05-01

    Through a stroke of luck, astronomers have witnessed the first violent moments of a stellar explosion known as a supernova. Astronomers have seen thousands of these stellar explosions, but all previous supernovae were discovered days after the event had begun. This is the first time scientists have been able to study a supernova from its very beginning. Seeing one just moments after the event began is a major breakthrough that points the way to unraveling longstanding mysteries about how such explosions really work. Galaxy Before Supernova Explosion NASA's Swift satellite took these images of SN 2007uy in galaxy NGC 2770 before SN 2008D exploded. An X-ray image is on the left; image at right is in visible light. CREDIT: NASA/Swift Science Team/Stefan Immler. Large Image With Labels Large Image Without Labels Galaxy After Supernova Explosion On January 9, 2008, Swift caught a bright X-ray burst from an exploding star. A few days later, SN 2008D appeared in visible light. CREDIT: NASA/Swift Science Team/Stefan Immler. Large Image With Labels Large Image Without Labels "For years, we have dreamed of seeing a star just as it was exploding," said team leader Alicia Soderberg, a Hubble and Carnegie-Princeton Fellow at Princeton University. "This newly-born supernova is going to be the Rosetta Stone of supernova studies for years to come." Theorists had predicted for four decades that a bright burst of X-rays should be produced as the shock wave from a supernova blasts out of the star and through dense material surrounding the star. However, in order to see this burst, scientists faced the nearly-impossible challenge of knowing in advance where to point their telescopes to catch a supernova in the act of exploding. On January 9, luck intervened. Soderberg and her colleagues were making a scheduled observation of the galaxy NGC 2770, 88 million light-years from Earth, using the X-ray telescope on NASA's Swift satellite. During that observation, a bright burst of X

  3. MUSE observations of M87: radial gradients for the stellar initial-mass function and the abundance of Sodium

    Science.gov (United States)

    Sarzi, Marc; Spiniello, Chiara; Barbera, Francesco La; Krajnović, Davor; Bosch, Remco van den

    2018-05-01

    Based on MUSE integral-field data we present evidence for a radial variation at the low-mass end of the stellar initial-mass function (IMF) in the central regions of the giant early-type galaxy NGC 4486 (M87). We used state-of-the-art stellar population models and the observed strength of various IMF-sensitive absorption-line features to solve for the best low-mass tapered "bimodal" form of the IMF, while accounting also for variations in stellar metallicity, the overall α-elements abundance and the abundance of individual elements such as Ti, O, Na and Ca. Our analysis reveals a strong negative IMF gradient corresponding to an exceeding fraction of low-mass stars compared to the case of the Milky Way toward the center of M87, which drops to nearly Milky-way levels by 0.4 Re. Such IMF variations correspond to over a factor two increase in stellar mass-to-light M/L ratio compared to the case of a Milky-way IMF, consistent with independent constraints on M/L radial variations in M87 from dynamical models. We also looked into the abundance of Sodium in M87, which turned up to be super-Solar over the entire radial range of our MUSE observations and to exhibit a considerable negative gradient. These findings suggest an additional role of metallicity in boosting the Na-yields in the central, metal-rich regions of M87 during its early and brief star-formation history. Our work adds M87 to the few objects that presently have radial constraints on their IMF or [Na/Fe] abundance, while also illustrating the accuracy that MUSE could bring to this kind of investigations.

  4. New method to design stellarator coils without the winding surface

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  5. Proceedings of the 13th International Stellarator Workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    These proceedings include submitted abstracts and papers summarising the work as presented by participants in either oral or poster sessions and the highlights of the Workshop presented by Professor Jeffrey Harris. He stressed that while notable progress has been made in stellarator research overall, the world stellarator program faces important challenges in the coming years. Lead times for the construction of the next generation of devices are approximately 5 years, which makes maintaining continuity in research programs more difficult. The development of a compelling reactor vision based on the stellarator is an important task, especially in the context of renewed activity on the ITER tokamak project. The sharing of ideas, techniques, and results via international collaboration is more important than ever. Individual presentations have been separately indexed.

  6. Rotational stellar structures based on the Lagrangian variational principle

    International Nuclear Information System (INIS)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Yamada, Shoichi

    2017-01-01

    A new method for multi-dimensional stellar structures is proposed in this study. As for stellar evolution calculations, the Heney method is the defacto standard now, but basically assumed to be spherical symmetric. It is one of the difficulties for deformed stellar-evolution calculations to trace the potentially complex movements of each fluid element. On the other hand, our new method is very suitable to follow such movements, since it is based on the Lagrange coordinate. This scheme is also based on the variational principle, which is adopted to the studies for the pasta structures inside of neutron stars. Our scheme could be a major break through for evolution calculations of any types of deformed stars: proto-planets, proto-stars, and proto-neutron stars, etc. (paper)

  7. Rotational stellar structures based on the Lagrangian variational principle

    Science.gov (United States)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Yamada, Shoichi

    2017-06-01

    A new method for multi-dimensional stellar structures is proposed in this study. As for stellar evolution calculations, the Heney method is the defacto standard now, but basically assumed to be spherical symmetric. It is one of the difficulties for deformed stellar-evolution calculations to trace the potentially complex movements of each fluid element. On the other hand, our new method is very suitable to follow such movements, since it is based on the Lagrange coordinate. This scheme is also based on the variational principle, which is adopted to the studies for the pasta structures inside of neutron stars. Our scheme could be a major break through for evolution calculations of any types of deformed stars: proto-planets, proto-stars, and proto-neutron stars, etc.

  8. Astrobiological Effects of Stellar Radiation in Circumstellar Environments

    Science.gov (United States)

    Cuntz, Manfred; Gurdemir, Levent; Guinan, Edward F.; Kurucz, Robert L.

    2006-10-01

    The centerpiece of all life on Earth is carbon-based biochemistry. Previous scientific research has suggested that biochemistry based on carbon may also play a decisive role in extraterrestrial life forms, i.e., alien life outside of Earth, if existent. In the following, we explore if carbon-based macromolecules (such as DNA) in the environments of stars other than the Sun are able to survive the effects of energetic stellar radiation, such as UV-C in the wavelength band between 200 and 290 nm. We focus on main-sequence stars akin to the Sun, but of hotter (F-type stars) and cooler (K- and M-type stars) surface temperature. Emphasis is placed on investigating the radiative environment in stellar habitable zones (HZs). Stellar habitable zones have an important relevance in astrobiology because they constitute circumstellar regions in which a planet of suitable size can have surface temperatures for water to exist in liquid form.

  9. Stabilization of magnetohydrodynamic instabilities in a current-carrying stellarator

    International Nuclear Information System (INIS)

    Matsuoka, K.; Miyamoto, K.

    1979-02-01

    Stable profiles against MHD instabilities are given in a cylindrical current-carrying stellarator. The comparison theorem, i.e., guiding principle for stabilization, is obtained in the same way as in a tokamak. As the external rotational transform due to an l = 2 helical field increases, MHD properties in a stellarator are improved than in a tokamak and the minimum value of q(a) which provides simultaneous stabilization of MHD modes can be lowered less than 2 even without a conducting shell. In an l = 3 stellarator, however, as shown from the Euler equation, the configuration becomes more unstable than in a tokamak and strong tailoring of the current profile is necessary in order to stabilize MHD modes. (author)

  10. Stellar magnetic activity – Star-Planet Interactions

    Directory of Open Access Journals (Sweden)

    Poppenhaeger, K.

    2015-01-01

    Full Text Available Stellar magnetic activity is an important factor in the formation and evolution of exoplanets. Magnetic phenomena like stellar flares, coronal mass ejections, and high-energy emission affect the exoplanetary atmosphere and its mass loss over time. One major question is whether the magnetic evolution of exoplanet host stars is the same as for stars without planets; tidal and magnetic interactions of a star and its close-in planets may play a role in this. Stellar magnetic activity also shapes our ability to detect exoplanets with different methods in the first place, and therefore we need to understand it properly to derive an accurate estimate of the existing exoplanet population. I will review recent theoretical and observational results, as well as outline some avenues for future progress.

  11. Nonlinear MHD and energetic particle modes in stellarators

    International Nuclear Information System (INIS)

    Strauss, H.R.

    2002-01-01

    The M3D code has been applied to ideal, resistive, two fluid, and hybrid simulations of compact quasi axisymmetric stellarators. When beta exceeds a threshold, low poloidal mode number (m=6∼18) modes grow exponentially, clearly distinguishable from the equilibrium evolution. Simulations of NCSX have beta limits are significantly higher than the infinite mode number ballooning limits. In the presence of resistivity, these modes occur well below the ideal limit. Their growth rate scaling with resistivity is similar to tearing modes. With sufficient viscosity, the growth rate becomes slow enough to allow calculations of magnetic island evolution. Hybrid gyrokinetic simulations with energetic particles indicate that global shear Alfven TAE - like modes can be destabilized in stellarators. Computations in a two - period compact stellarator obtained a predominantly n=1 toroidal mode with about the expected TAE frequency. Work is in progress to study fast ion-driven Alfven modes in NCSX. (author)

  12. Convective equilibrium and mixing-length theory for stellarator reactors

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    In high β stellarator and tokamak reactors, the plasma pressure gradient in some regions of the plasma may exceed the critical pressure gradient set by ballooning instabilities. In these regions, convective cells break out to enhance the transport. As a result, the pressure gradient can rise only slightly above the critical gradient and the plasma is in another state of equilibrium - ''convective equilibrium'' - in these regions. Although the convective transport cannot be calculated precisely, it is shown that the density and temperature profiles in the convective region can still be estimated. A simple mixing-length theory, similar to that used for convection in stellar interiors, is introduced in this paper to provide a qualitative description of the convective cells and to show that the convective transport is highly efficient. A numerical example for obtaining the density and temperature profiles in a stellarator reactor is given

  13. Scientific visualization of 3-dimensional optimized stellarator configurations

    International Nuclear Information System (INIS)

    Spong, D.A.

    1998-01-01

    The design techniques and physics analysis of modern stellarator configurations for magnetic fusion research rely heavily on high performance computing and simulation. Stellarators, which are fundamentally 3-dimensional in nature, offer significantly more design flexibility than more symmetric devices such as the tokamak. By varying the outer boundary shape of the plasma, a variety of physics features, such as transport, stability, and heating efficiency can be optimized. Scientific visualization techniques are an important adjunct to this effort as they provide a necessary ergonomic link between the numerical results and the intuition of the human researcher. The authors have developed a variety of visualization techniques for stellarators which both facilitate the design optimization process and allow the physics simulations to be more readily understood

  14. Radio continuum emission from young stellar objects in L1641

    International Nuclear Information System (INIS)

    Morgan, J.A.; Snell, R.L.; Strom, K.M.

    1990-01-01

    The results of a 6 and 20 cm radio continuum survey of young stellar objects in the L1641 region located south of the Orion Nebula are presented. Four are identified as low-luminosity young stellar objects in L1641 and three more as Herbig-Haro or Herbig-Haro-like objects. These objects have bolometric luminosities between 80 and 300 solar, and their 6-20 cm spectral index suggests optically thick, free-free emission. They are characterized by a rising spectrum between 2.2 and 25 microns, have no optical counterparts, and are associated with stellar wind activity. Thus, detectable radio continuum emission may be produced only by the youngest and most luminous objects in L1641. 34 refs

  15. UV Stellar Distribution Model for the Derivation of Payload

    Directory of Open Access Journals (Sweden)

    Young-Jun Choi

    1999-12-01

    Full Text Available We present the results of a model calculation of the stellar distribution in a UV and centered at 2175Å corresponding to the well-known bump in the interstellar extinction curve. The stellar distribution model used here is based on the Bahcall-Soneira galaxy model (1980. The source code for model calculation was designed by Brosch (1991 and modified to investigate various designing factors for UV satellite payload. The model predicts UV stellar densities in different sky directions, and its results are compared with the TD-1 star counts for a number of sky regions. From this study, we can determine the field of view, size of optics, angular resolution, and number of stars in one orbit. There will provide the basic constrains in designing a satellite payload for UV observations.

  16. Two-fluid limits on stellarator performance: Explanation of three stellarator puzzles and comparison to axisymmetric plasmas

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Strauss, H.R.; Park, W.; Fu, G.Y.; Breslau, J.A.; Chen, J.

    2005-01-01

    The basic two-fluid processes, those related to the nonlinearly self-consistent diamagnetic drifts of the electrons and ions, are shown to have fundamentally different effects on the steady state and beta limits of stellarator configurations, compared to MHD predictions. Nonlinear numerical simulation shows that the ideal MHD ballooning modes and the resistive MHD ballooning and interchange modes at relatively high mode numbers, that set the most severe theoretical limits on beta in stellarators with fixed boundary, are easily stabilized by two-fluid effects at realistic parameters, including finite Larmor radius effects related to the ion diamagnetic drift. Magnetic reconnection at low-order rational magnetic surfaces, on the other hand, is enhanced through the parallel component of the two-fluid electron pressure gradient in Ohm's law. The accelerated reconnection rates may impose the true intrinsic limit on beta in stellarators, as a 'soft' or confinement mediated limit in β e , due to steady confinement degradation in the presence of large magnetic islands. Study of the corresponding axisymmetric configurations shows that the helical component of the stellarator configuration provides an important amplifying factor for these effects. The two-fluid results may explain several previously puzzling experimental observations on stellarator behavior. (author)

  17. Evolution of rotating stellar clusters at the stage of inelastic collisions

    International Nuclear Information System (INIS)

    Romanova, M.M.

    1985-01-01

    The dynamics of a gas-stellar disk in a dense stellar cluster of small ellipticity (epsilon or approximately 0.2-0.3. Possible existence of a thin stellar disk in a dense stellar cluster is analysed. With epsilon in the above range, collisions between cluster and disk stars are shown to have no effect on the evolution of the disk up to the instability time, provided that the ratio of disk stellar mass to the cluster stellar mass > or approximately 0.04

  18. A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES

    International Nuclear Information System (INIS)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-01

    The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R ⊕ ) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters

  19. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.

    2017-11-01

    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  20. Stellar streams and the galaxies they reside in

    Science.gov (United States)

    Pearson, Sarah

    2018-01-01

    As galaxies collide, as smaller galaxies are disrupted by larger galaxies, or as clusters of stars orbit a galaxy, a gravitational tidal interaction unfolds and the systems tear apart into distinct morphological and kinematic structures. In my thesis, I have exploited these structures to understand various components of galaxies, such as the baryon cycle in dwarf galaxy interactions (Pearson et al. 2016, Pearson et al. 2017b). In this talk, I will focus on my thesis work related to the stellar stream emerging from the old, globular cluster, Palomar 5 (Pal 5), orbiting our own Milky Way. As the stellar stream members were once closely tied together in energy and angular momentum space, we can use their distribution in phase space to trace back where they were once located and what affected them along their paths. In particular, I will show that the mere existence of Pal 5’s thin stream can rule out a moderately triaxial potential model of our Galaxy (Pearson et al. 2015) and that the debris of Pal 5-like streams will spread much further in space in a triaxial potential (a mechanism which I dubbed “stream fanning”) . Additionally, I will show that the Milky Way's Galactic bar, can punch holes in stellar streams and explain the recently discovered length asymmetry between Pal 5’s leading and trailing arm (Pearson et al. 2017a). These holes grow and have locations along stellar streams dependent on the Galactic bar orientation, mass and rotational speed, which provides an intriguing methodology for studying our own Milky Way’s Galactic bar in more detail. The fact that the bar can create under densities in stellar streams, further demonstrates that we should be careful when interpreting gaps in stellar streams as indirect evidence of the existence of dark matter subhalos in our Galaxy.