Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping
Directory of Open Access Journals (Sweden)
Eleni Bisognin
2007-01-01
Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.
Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet
2017-11-01
In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.
Damped nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Nicholson, D.R.; Goldman, M.V.
1976-01-01
High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time
Deformation from symmetry for Schrodinger equations of higher order on unbounded domains
Directory of Open Access Journals (Sweden)
Addolorata Salvatore
2003-06-01
Full Text Available By means of a perturbation method recently introduced by Bolle, we discuss the existence of infinitely many solutions for a class of perturbed symmetric higher order Schrodinger equations with non-homogeneous boundary data on unbounded domains.
Exact solutions to two higher order nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Xu Liping; Zhang Jinliang
2007-01-01
Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)
Higher-order modulation instability in nonlinear fiber optics.
Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry
2011-12-16
We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society
Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, Kim Ø; Salerno, M.
2006-01-01
-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...
Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order
Directory of Open Access Journals (Sweden)
Taher S. Hassan
2016-01-01
Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t, i=1,…,n-1, with x0=x, ϕβ(u≔uβsgnu, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.
Higher-order techniques for some problems of nonlinear control
Directory of Open Access Journals (Sweden)
Sarychev Andrey V.
2002-01-01
Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.
Higher-Order Spectrum in Understanding Nonlinearity in EEG Rhythms
Directory of Open Access Journals (Sweden)
Cauchy Pradhan
2012-01-01
Full Text Available The fundamental nature of the brain's electrical activities recorded as electroencephalogram (EEG remains unknown. Linear stochastic models and spectral estimates are the most common methods for the analysis of EEG because of their robustness, simplicity of interpretation, and apparent association with rhythmic behavioral patterns in nature. In this paper, we extend the use of higher-order spectrum in order to indicate the hidden characteristics of EEG signals that simply do not arise from random processes. The higher-order spectrum is an extension Fourier spectrum that uses higher moments for spectral estimates. This essentially nullifies all Gaussian random effects, therefore, can reveal non-Gaussian and nonlinear characteristics in the complex patterns of EEG time series. The paper demonstrates the distinguishing features of bispectral analysis for chaotic systems, filtered noises, and normal background EEG activity. The bispectrum analysis detects nonlinear interactions; however, it does not quantify the coupling strength. The squared bicoherence in the nonredundant region has been estimated to demonstrate nonlinear coupling. The bicoherence values are minimal for white Gaussian noises (WGNs and filtered noises. Higher bicoherence values in chaotic time series and normal background EEG activities are indicative of nonlinear coupling in these systems. The paper shows utility of bispectral methods as an analytical tool in understanding neural process underlying human EEG patterns.
Semiclassical quantization of the nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Nohl, C.R.
1976-01-01
Using the functional integral technique of Dashen, Hasslacher, and Neveu, we perform a semiclassical quantization of the nonlinear Schrodinger equation (NLSE), which reproduces McGuire's exact result for the energy levels of the bound states of the theory. We show that the stability angle formalism leads to the one-loop normal ordering and self-energy renormalization expected from perturbation theory, and demonstrate that taking into account center-of-mass motion gives the correct nonrelativistic energy--momentum relation. We interpret the classical solution in the context of the quantum theory, relating it to the matrix element of the field operator between adjacent bound states in the limit of large quantum numbers. Finally, we quantize the NLSE as a theory of N component fermion fields and show that the semiclassical method yields the exact energy levels and correct degeneracies
Exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres
International Nuclear Information System (INIS)
Liu Chunping
2005-01-01
First, by using the generally projective Riccati equation method, many kinds of exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres are obtained in a unified way. Then, some relations among these solutions are revealed
Exact Solutions to Nonlinear Schroedinger Equation and Higher-Order Nonlinear Schroedinger Equation
International Nuclear Information System (INIS)
Ren Ji; Ruan Hangyu
2008-01-01
We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Schroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (GLGRM), the abundant solutions of NLSE and HONLSE are obtained
Collapse in a forced three-dimensional nonlinear Schrodinger equation
DEFF Research Database (Denmark)
Lushnikov, P.M.; Saffman, M.
2000-01-01
We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....
International Nuclear Information System (INIS)
Xiao Yafeng; Xue Haili; Zhang Hongqing
2011-01-01
Based on Jacobi elliptic function and the Lame equation, the perturbation method is applied to get the multi-order envelope periodic solutions of the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation. These multi-order envelope periodic solutions can degenerate into the different envelope solitary solutions. (authors)
Nonlinear damped Schrodinger equation in two space dimensions
Directory of Open Access Journals (Sweden)
Tarek Saanouni
2015-04-01
Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.
The matrix nonlinear Schrodinger equation in dimension 2
DEFF Research Database (Denmark)
Zuhan, L; Pedersen, Michael
2001-01-01
In this paper we study the existence of global solutions to the Cauchy problem for the matrix nonlinear Schrodinger equation (MNLS) in 2 space dimensions. A sharp condition for the global existence is obtained for this equation. This condition is in terms of an exact stationary solution...... of a semilinear elliptic equation. In the scalar case, the MNLS reduces to the well-known cubic nonlinear Schrodinger equation for which existence of solutions has been studied by many authors. (C) 2001 Academic Press....
On the solution of the nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Zayed, E.M.E.; Zedan, Hassan A.
2003-01-01
In this paper we study the nonlinear Schrodinger equation with respect to the unknown function S(x,t). New dimensional reduction and exact solution for a nonlinear Schrodinger equation are presented and a complete group classification is given with respect to the function S(x,t). Moreover, specializing the potential function S(x,t), new classes of invariant solution and group classification are obtained in the cases of physical interest
Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.
1998-01-01
We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....
Gap solitons in periodic Schrodinger lattice system with nonlinear hopping
Directory of Open Access Journals (Sweden)
Ming Cheng
2016-10-01
Full Text Available This article concerns the periodic discrete Schrodinger equation with nonlinear hopping on the infinite integer lattice. We obtain the existence of gap solitons by the linking theorem and concentration compactness method together with a periodic approximation technique. In addition, the behavior of such solutions is studied as $\\alpha\\to 0$. Notice that the nonlinear hopping can be sign changing.
Dynamics of breathers in discrete nonlinear Schrodinger models
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Johansson, Magnus; Aubry, Serge
1998-01-01
We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localized...
Multiple solutions to some singular nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Monica Lazzo
2001-01-01
Full Text Available We consider the equation $$ - h^2 Delta u + V_varepsilon(x u = |u|^{p-2} u $$ which arises in the study of standing waves of a nonlinear Schrodinger equation. We allow the potential $V_varepsilon$ to be unbounded below and prove existence and multiplicity results for positive solutions.
Collapse arresting in an inhomogeneous quintic nonlinear Schrodinger model
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Schjødt-Eriksen, Jens; Christiansen, Peter Leth
1999-01-01
Collapse of (1 + 1)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schrodinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up...
Numerical study of fractional nonlinear Schrodinger equations
Klein, Christian
2014-10-08
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.
Universality in an information-theoretic motivated nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Parwani, R; Tabia, G
2007-01-01
Using perturbative methods, we analyse a nonlinear generalization of Schrodinger's equation that had previously been obtained through information-theoretic arguments. We obtain analytical expressions for the leading correction, in terms of the nonlinearity scale, to the energy eigenvalues of the linear Schrodinger equation in the presence of an external potential and observe some generic features. In one space dimension these are (i) for nodeless ground states, the energy shifts are subleading in the nonlinearity parameter compared to the shifts for the excited states; (ii) the shifts for the excited states are due predominantly to contribution from the nodes of the unperturbed wavefunctions, and (iii) the energy shifts for excited states are positive for small values of a regulating parameter and negative at large values, vanishing at a universal critical value that is not manifest in the equation. Some of these features hold true for higher dimensional problems. We also study two exactly solved nonlinear Schrodinger equations so as to contrast our observations. Finally, we comment on the possible significance of our results if the nonlinearity is physically realized
Solutions to nonlinear Schrodinger equations for special initial data
Directory of Open Access Journals (Sweden)
Takeshi Wada
2015-11-01
Full Text Available This article concerns the solvability of the nonlinear Schrodinger equation with gauge invariant power nonlinear term in one space dimension. The well-posedness of this equation is known only for $H^s$ with $s\\ge 0$. Under some assumptions on the nonlinearity, this paper shows that this equation is uniquely solvable for special but typical initial data, namely the linear combinations of $\\delta(x$ and p.v. (1/x, which belong to $H^{-1/2-0}$. The proof in this article allows $L^2$-perturbations on the initial data.
Reduction of the state vector by a nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Pearle, P.
1976-01-01
It is hypothesized that the state vector describes the physical state of a single system in nature. Then it is necessary that the state vector of a macroscopic apparatus not assume the form of a superposition of macroscopically distinguishable state vectors. To prevent this, it is suggested that a nonlinear term be added to the Schrodinger equation, which rapidly drives the amplitude of one or another of the state vectors in such a superposition to one, and the rest to zero. It is proposed that it is the phase angles of the amplitudes immediately after a measurement which determine which amplitude is driven to one. A diffusion equation is arrived at to describe the reduction of an ensemble of state vectors corresponding to an ensemble of macroscopically identically prepared experiments. Then a nonlinear term to add to the Schrodinger equation is presented, and it is shown that this leads to the diffusion equation in a weak-coupling approximation
Exact solutions of a nonpolynomially nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Parwani, R.; Tan, H.S.
2007-01-01
A nonlinear generalisation of Schrodinger's equation had previously been obtained using information-theoretic arguments. The nonlinearities in that equation were of a nonpolynomial form, equivalent to the occurrence of higher-derivative nonlinear terms at all orders. Here we construct some exact solutions to that equation in 1+1 dimensions. On the half-line, the solutions resemble (exponentially damped) Bloch waves even though no external periodic potential is included. The solutions are nonperturbative as they do not reduce to solutions of the linear theory in the limit that the nonlinearity parameter vanishes. An intriguing feature of the solutions is their infinite degeneracy: for a given energy, there exists a very large arbitrariness in the normalisable wavefunctions. We also consider solutions to a q-deformed version of the nonlinear equation and discuss a natural discretisation implied by the nonpolynomiality. Finally, we contrast the properties of our solutions with other solutions of nonlinear Schrodinger equations in the literature and suggest some possible applications of our results in the domains of low-energy and high-energy physics
Combined solitary-wave solution for coupled higher-order nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Tian Jinping; Tian Huiping; Li Zhonghao; Zhou Guosheng
2004-01-01
Coupled nonlinear Schroedinger equations model several interesting physical phenomena. We used a trigonometric function transform method based on a homogeneous balance to solve the coupled higher-order nonlinear Schroedinger equations. We obtained four pairs of exact solitary-wave solutions including a dark and a bright-soliton pair, a bright- and a dark-soliton pair, a bright- and a bright-soliton pair, and the last pair, a combined bright-dark-soliton pair
Compound waves in a higher order nonlinear model of thermoviscous fluids
DEFF Research Database (Denmark)
Rønne Rasmussen, Anders; Sørensen, Mads Peter; Gaididei, Yuri B.
2016-01-01
A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter offers the possibility of predicting...
On realization of nonlinear systems described by higher-order differential equations
van der Schaft, Arjan
1987-01-01
We consider systems of smooth nonlinear differential and algebraic equations in which some of the variables are distinguished as “external variables.” The realization problem is to replace the higher-order implicit differential equations by first-order explicit differential equations and the
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan; Půža, B.
2015-01-01
Roč. 2015, January (2015), s. 17 ISSN 1687-2770 Institutional support: RVO:67985840 Keywords : higher order nonlinear functional-differential equations * two-point right-focal boundary value problem * strong singularity Subject RIV: BA - General Mathematics Impact factor: 0.642, year: 2015 http://link.springer.com/article/10.1186%2Fs13661-014-0277-1
Self-similar solutions of the modified nonlinear schrodinger equation
International Nuclear Information System (INIS)
Kitaev, A.V.
1986-01-01
This paper considers a 2 x 2 matrix linear ordinary differential equation with large parameter t and irregular singular point of fourth order at infinity. The leading order of the monodromy data of this equation is calculated in terms of its coefficients. Isomonodromic deformations of the equation are self-similar solutions of the modified nonlinear Schrodinger equation, and therefore inversion of the expressions obtained for the monodromy data gives the leading term in the time-asymptotic behavior of the self-similar solution. The application of these results to the type IV Painleve equation is considered in detail
Asymptotic behavior for a quadratic nonlinear Schrodinger equation
Directory of Open Access Journals (Sweden)
Pavel I. Naumkin
2008-02-01
Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.
Stokes phenomena and monodromy deformation problem for nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Chowdury, A.R.; Naskar, M.
1986-01-01
Following Flaschka and Newell, the inverse problem for Painleve IV is formulated with the help of similarity variables. The Painleve IV arises as the eliminant of the two second-order ordinary differential equations originating from the nonlinear Schrodinger equation. Asymptotic expansions are obtained near the singularities at zero and infinity of the complex eigenvalue plane. The corresponding analysis then displays the Stokes phenomena. The monodromy matrices connecting the solution Y /sub j/ in the sector S /sub j/ to that in S /sub j+1/ are fixed in structure by the imposition of certain conditions. It is then shown that a deformation keeping the monodromy data fixed leads to the nonlinear Schrodinger equation. While Flaschka and Newell did not make any absolute determination of the Stokes parameters, the present approach yields the values of the Stokes parameters in an explicit way, which in turn can determine the matrix connecting the solutions near zero and infinity. Finally, it is shown that the integral equation originating from the analyticity and asymptotic nature of the problem leads to the similarity solution previously determined by Boiti and Pampinelli
DEFF Research Database (Denmark)
Oster, Michael; Gaididei, Yuri B.; Johansson, Magnus
2004-01-01
We study the continuum limit of a nonlinear Schrodinger lattice model with both on-site and inter-site nonlinearities, describing weakly coupled optical waveguides or Bose-Einstein condensates. The resulting continuum nonlinear Schrodinger-type equation includes both nonlocal and nonlinear...
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, K. O.; Samuelsen, Mogens Rugholm
2010-01-01
We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the e...
On the so called rogue waves in nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Y. Charles Li
2016-04-01
Full Text Available The mechanism of a rogue water wave is still unknown. One popular conjecture is that the Peregrine wave solution of the nonlinear Schrodinger equation (NLS provides a mechanism. A Peregrine wave solution can be obtained by taking the infinite spatial period limit to the homoclinic solutions. In this article, from the perspective of the phase space structure of these homoclinic orbits in the infinite dimensional phase space where the NLS defines a dynamical system, we examine the observability of these homoclinic orbits (and their approximations. Our conclusion is that these approximate homoclinic orbits are the most observable solutions, and they should correspond to the most common deep ocean waves rather than the rare rogue waves. We also discuss other possibilities for the mechanism of a rogue wave: rough dependence on initial data or finite time blow up.
An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs
Directory of Open Access Journals (Sweden)
Eman S. Alaidarous
2013-01-01
Full Text Available In this research paper, we present higher-order quasilinearization methods for the boundary value problems as well as coupled boundary value problems. The construction of higher-order convergent methods depends on a decomposition method which is different from Adomain decomposition method (Motsa and Sibanda, 2013. The reported method is very general and can be extended to desired order of convergence for highly nonlinear differential equations and also computationally superior to proposed iterative method based on Adomain decomposition because our proposed iterative scheme avoids the calculations of Adomain polynomials and achieves the same computational order of convergence as authors have claimed in Motsa and Sibanda, 2013. In order to check the validity and computational performance, the constructed iterative schemes are also successfully applied to bifurcation problems to calculate the values of critical parameters. The numerical performance is also tested for one-dimension Bratu and Frank-Kamenetzkii equations.
Nonlinear optics in the LP(02) higher-order mode of a fiber.
Chen, Y; Chen, Z; Wadsworth, W J; Birks, T A
2013-07-29
The distinct disperion properties of higher-order modes in optical fibers permit the nonlinear generation of radiation deeper into the ultraviolet than is possible with the fundamental mode. This is exploited using adiabatic, broadband mode convertors to couple light efficiently from an input fundamental mode and also to return the generated light to an output fundamental mode over a broad spectral range. For example, we generate visible and UV supercontinuum light in the LP(02) mode of a photonic crystal fiber from sub-ns pulses with a wavelength of 532 nm.
A higher-order nonlinear Schrödinger equation with variable coefficients
Carvajal, X.; Linares, F.
2003-01-01
We study the initial value problem (IVP) associated to a higher-order nonlinear Schrödinger equation with variable coefficients. Under some regularity on its coefficients we establish local well-posedness for the IVP for data in $H^s(\\mathbb R)$, $s\\ge1/4$, improving previous results [22]. The main ingredient in our proof is an estimate of the maximal function associated to the linear solution similar to the sharp one obtained for linear solutions of the Schrödinger and K...
Directory of Open Access Journals (Sweden)
Ahmad Bashir
2010-01-01
Full Text Available We study an initial value problem for a coupled Caputo type nonlinear fractional differential system of higher order. As a first problem, the nonhomogeneous terms in the coupled fractional differential system depend on the fractional derivatives of lower orders only. Then the nonhomogeneous terms in the fractional differential system are allowed to depend on the unknown functions together with the fractional derivative of lower orders. Our method of analysis is based on the reduction of the given system to an equivalent system of integral equations. Applying the nonlinear alternative of Leray-Schauder, we prove the existence of solutions of the fractional differential system. The uniqueness of solutions of the fractional differential system is established by using the Banach contraction principle. An illustrative example is also presented.
Gazzola, Filippo; Sweers, Guido
2010-01-01
This monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or poly-harmonic operator as leading principal part. Underlying models and, in particular, the role of different boundary conditions are explained in detail. As for linear problems, after a brief summary of the existence theory and Lp and Schauder estimates, the focus is on positivity or - since, in contrast to second order equations, a general form of a comparison principle does not exist - on “near positivity.” The required kernel estimates are also presented in detail. As for nonlinear problems, several techniques well-known from second order equations cannot be utilized and have to be replaced by new and different methods. Subcritical, critical and supercritical nonlinearities are discussed and various existence and nonexistence results are proved. The interplay with the positivity topic from the ﬁrst part is emphasized and, moreover, a far-reaching Gidas-Ni-Nirenbe...
Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique
El-Beltagy, Mohamed A.; Al-Mulla, Noah
2014-01-01
Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.
Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique
El-Beltagy, Mohamed A.
2014-01-06
Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.
A novel algebraic procedure for solving non-linear evolution equations of higher order
International Nuclear Information System (INIS)
Huber, Alfred
2007-01-01
We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest
International Nuclear Information System (INIS)
Tian Bo; Gao Yitian
2005-01-01
A realistic, inhomogeneous fiber in the optical communication systems can be described by the perturbed nonlinear Schrodinger model (also named as the normalized nonlinear Schrodinger model with periodically varying coefficients, dispersion managed nonlinear Schrodinger model or nonlinear Schrodinger model with variable coefficients). Hereby, we extend to this model a direct method, perform symbolic computation and obtain two families of the exact, analytic bright-solitonic solutions, with or without the chirp respectively. The parameters addressed include the shape of the bright soliton, soliton amplitude, inverse width of the soliton, chirp, frequency, center of the soliton and center of the phase of the soliton. Of optical and physical interests, we discuss some previously-published special cases of our solutions. Those solutions could help the future studies on the optical communication systems. ms
Semiclassical limit and well-posedness of nonlinear Schrodinger-Poisson systems
Directory of Open Access Journals (Sweden)
Hailiang Li
2003-09-01
Full Text Available This paper concerns the well-posedness and semiclassical limit of nonlinear Schrodinger-Poisson systems. We show the local well-posedness and the existence of semiclassical limit of the two models for initial data with Sobolev regularity, before shocks appear in the limit system. We establish the existence of a global solution and show the time-asymptotic behavior of a classical solutions of Schrodinger-Poisson system for a fixed re-scaled Planck constant.
Directory of Open Access Journals (Sweden)
Christer Dalen
2017-10-01
Full Text Available A model reduction technique based on optimization theory is presented, where a possible higher order system/model is approximated with an unstable DIPTD model by using only step response data. The DIPTD model is used to tune PD/PID controllers for the underlying possible higher order system. Numerous examples are used to illustrate the theory, i.e. both linear and nonlinear models. The Pareto Optimal controller is used as a reference controller.
Staggered and short-period solutions of the saturable discrete nonlinear Schrodinger equation
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, K.O.; Samuelsen, Mogens Rugholm
2009-01-01
We point out that the nonlinear Schrodinger lattice with a saturable nonlinearity also admits staggered periodic aswell as localized pulse-like solutions. Further, the same model also admits solutions with a short period. We examine the stability of these solutions and find that the staggered as ...
Polynomially decaying transmission for the nonlinear schrodinger equation in a random medium
International Nuclear Information System (INIS)
Devillard, P.; Sovillard, B.
1986-01-01
This is the first study of one the transmission problems associate to the nonlinear Schrodinger equation with a random potential. We show that for almost every realization of the medium the rate of transmission vanishes when increasing the size of the medium; however, whereas it decays exponentially in the linear regime, it decays polynomially in the nonlinear one
Existence and concentration of semiclassical states for nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Shaowei Chen
2012-05-01
Full Text Available In this article, we study the semilinear Schrodinger equation $$ -epsilon^2Delta u+ u+ V(xu=f(u,quad uin H^1(mathbb{R}^N, $$ where $Ngeq 2$ and $epsilon>0$ is a small parameter. The function $V$ is bounded in $mathbb{R}^N$, $inf_{mathbb{R}^N}(1+V(x>0$ and it has a possibly degenerate isolated critical point. Under some conditions on f, we prove that as $epsilono 0$, this equation has a solution which concentrates at the critical point of V.
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan
-, č. 35 (2015), s. 23-50 ISSN 1126-8042 Institutional support: RVO:67985840 Keywords : higher order functional differential equations * Dirichlet boundary value problem * strong singularity Subject RIV: BA - General Mathematics http://ijpam.uniud.it/online_issue/201535/03-Mukhigulashvili.pdf
Liu, Lei; Tian, Bo; Wu, Xiao-Yu; Sun, Yan
2018-02-01
Under investigation in this paper is the higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials which can be applied in the nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein condensation. Based on the Kadomtsev-Petviashvili hierarchy reduction, we construct the Nth order rogue wave-like solutions in terms of the Gramian under the integrable constraint. With the help of the analytic and graphic analysis, we exhibit the first-, second- and third-order rogue wave-like solutions through the different dispersion, nonlinearity and linear potential coefficients. We find that only if the dispersion and nonlinearity coefficients are proportional to each other, heights of the background of those rogue waves maintain unchanged with time increasing. Due to the existence of complex parameters, such nonautonomous rogue waves in the higher-order cases have more complex features than those in the lower.
DEFF Research Database (Denmark)
Fuhrmann, David R.; Bingham, Harry B.; Madsen, Per A.
2004-01-01
of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep-water nonlinearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only...... insight into into the numerical behavior of this rather complicated system of nonlinear PDEs....
International Nuclear Information System (INIS)
Bouard, Anne de; Debussche, Arnaud
2006-01-01
In this article we analyze the error of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation with power nonlinearity. We consider supercritical or subcritical nonlinearity and the equation can be either focusing or defocusing. Allowing sufficient spatial regularity we prove that the numerical scheme has strong order 1/2 in general and order 1 if the noise is additive. Furthermore, we also prove that the weak order is always 1
Stabilization of the higher order nonlinear Schrödinger equation with ...
Indian Academy of Sciences (India)
18
self-steepening and delayed nonlinear response effect arising from stimulated Raman s- cattering ... The method is a power series expansion of the solution along this direction. ..... The proof of Theorem 1.1 is motivated by [12, 13]. Proof.
Curvature-induced symmetry breaking in nonlinear Schrodinger models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth
2000-01-01
We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states...
Directory of Open Access Journals (Sweden)
Xavier Carvajal
2004-01-01
Full Text Available We prove that the initial value problem associated with $$ partial_tu+ialpha partial^2_x u+Beta partial^3_x u +igamma|u|^2u = 0, quad x,t in mathbb{R}, $$ is locally well-posed in $H^s$ for $s>-1/4$.
Exact solutions of nonlinear generalizations of the Klein Gordon and Schrodinger equations
International Nuclear Information System (INIS)
Burt, P.B.
1978-01-01
Exact solutions of sine Gordon and multiple sine Gordon equations are constructed in terms of solutions of a linear base equation, the Klein Gordon equation and also in terms of nonlinear base equations where the nonlinearity is polynomial in the dependent variable. Further, exact solutions of nonlinear generalizations of the Schrodinger equation and of additional nonlinear generalizations of the Klein Gordon equation are constructed in terms of solutions of linear base equations. Finally, solutions with spherical symmetry, of nonlinear Klein Gordon equations are given. 14 references
Higher order criterion for the nonexistence of formal first integral for nonlinear systems
Directory of Open Access Journals (Sweden)
Zhiguo Xu
2017-11-01
Full Text Available The main purpose of this article is to find a criterion for the nonexistence of formal first integrals for nonlinear systems under general resonance. An algorithm illustrates an application to a class of generalized Lokta-Volterra systems. Our result generalize the classical Poincare's nonintegrability theorem and the existing results in the literature.
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.
1998-01-01
The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...
DEFF Research Database (Denmark)
Rasmussen, Kim; Christiansen, Peter Leth; Johansson, Magnus
1998-01-01
A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are exp...
Global well-posedness for nonlinear Schrodinger equations with energy-critical damping
Directory of Open Access Journals (Sweden)
Binhua Feng
2015-01-01
Full Text Available We consider the Cauchy problem for the nonlinear Schrodinger equations with energy-critical damping. We prove the existence of global in-time solutions for general initial data in the energy space. Our results extend some results from [1,2].
On a quantum version of conservation laws for derivative nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Sen, S.; Chowdhury, A.R.
1988-01-01
The authors derived the quantum mechanical versions of infinite number of conservation laws associated with Derivative Nonlinear Schrodinger equation with the help of a methodology used in string theory. The renormalised version of the conserved quantities are obtained with explicit forms of the counter terms
On existence of soliton solutions of arbitrary-order system of nonlinear Schrodinger equations
International Nuclear Information System (INIS)
Zhestkov, S.V.
2003-01-01
The soliton solutions are constructed for the system of arbitrary-order coupled nonlinear Schrodinger equations . The necessary and sufficient conditions of existence of these solutions are obtained. It is shown that the maximum number of solitons in nondegenerate case is 4L, where L is order of the system. (author)
Collapse arresting in an inhomogeneous two-dimensional nonlinear Schrodinger model
DEFF Research Database (Denmark)
Schjødt-Eriksen, Jens; Gaididei, Yuri Borisovich; Christiansen, Peter Leth
2001-01-01
Collapse of (2 + 1)-dimensional beams in the inhomogeneous two-dimensional cubic nonlinear Schrodinger equation is analyzed numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams that in a homogeneous medium would collapse may...
A study on linear and nonlinear Schrodinger equations by the variational iteration method
International Nuclear Information System (INIS)
Wazwaz, Abdul-Majid
2008-01-01
In this work, we introduce a framework to obtain exact solutions to linear and nonlinear Schrodinger equations. The He's variational iteration method (VIM) is used for analytic treatment of these equations. Numerical examples are tested to show the pertinent features of this method
Nonlinear Schrodinger equation: A testing ground for the quantization of nonlinear waves
International Nuclear Information System (INIS)
Klein, A.; Krejs, F.
1976-01-01
Quantization of the nonlinear Schrodinger equation is carried out by the method due to Kerman and Klein. A viable procedure is inferred from the quantum interpretation of the classical (soliton) solution. The ground-state energy for a system with n particles is calculated to an accuracy which includes the first quantum correction to the semiclassical result. It is demonstrated that the exact answer can be obtained systematically only at the next level of approximation. For the calculation of the first quantum correction, the quantum theory of the stability of periodic orbits in field theory is developed and discussed. Since one is dealing with a finite many-body problem, the field theory can be written so that no infinite terms are encountered, but the Hamiltonian can also be artificially rearranged so as to destory this feature. For learning purposes the calculations are carried out with the various alternatives, and our methods prove capable of providing a uniform final result
Ganji, S. S.; Domairry, G.; Davodi, A. G.; Babazadeh, H.; Seyedalizadeh Ganji, S. H.
The main objective of this paper is to apply the parameter expansion technique (a modified Lindstedt-Poincaré method) to calculate the first, second, and third-order approximations of motion of a nonlinear oscillator arising in rigid rod rocking back. The dynamics and frequency of motion of this nonlinear mechanical system are analyzed. A meticulous attention is carried out to the study of the introduced nonlinearity effects on the amplitudes of the oscillatory states and on the bifurcation structures. We examine the synchronization and the frequency of systems using both the strong and special method. Numerical simulations and computer's answers confirm and complement the results obtained by the analytical approach. The approach proposes a choice to overcome the difficulty of computing the periodic behavior of the oscillation problems in engineering. The solutions of this method are compared with the exact ones in order to validate the approach, and assess the accuracy of the solutions. In particular, APL-PM works well for the whole range of oscillation amplitudes and excellent agreement of the approximate frequency with the exact one has been demonstrated. The approximate period derived here is accurate and close to the exact solution. This method has a distinguished feature which makes it simple to use, and also it agrees with the exact solutions for various parameters.
Directory of Open Access Journals (Sweden)
Magdy A. El-Tawil
2009-01-01
Full Text Available A perturbing nonlinear Schrodinger equation is studied under general complex nonhomogeneities and complex initial conditions for zero boundary conditions. The perturbation method together with the eigenfunction expansion and variational parameters methods are used to introduce an approximate solution for the perturbative nonlinear case for which a power series solution is proved to exist. Using Mathematica, the symbolic solution algorithm is tested through computing the possible approximations under truncation procedures. The method of solution is illustrated through case studies and figures.
International Nuclear Information System (INIS)
Xu Guiqiong; Li Zhibin
2005-01-01
It is proven that generalized coupled higher-order nonlinear Schroedinger equations possess the Painleve property for two particular choices of parameters, using the Weiss-Tabor-Carnevale method and Kruskal's simplification. Abundant families of periodic wave solutions are obtained by using the Jacobi elliptic function expansion method with the assistance of symbolic manipulation system, Maple. It is also shown that these solutions exactly degenerate to bright soliton, dark soliton and mixed dark and bright soliton solutions with physical interests
Higher order terms of the nonlinear forces in plasmas with collisions at laser interaction
International Nuclear Information System (INIS)
Kentwell, G.W.; Hora, H.
1980-01-01
The evaluation of the general expression of the nonlinear force of laser-plasma interaction showed discrepancies depending on the assumptions of the phase and collisions in the expressions used for E and H. While the first order terms of the derivations are remaining unchanged, new third order terms are found for the case of perpendicular incidence without collisions. With collisions, the additional non-pondermotive terms are derived to be more general than known before. It is then possible to evaluate the forces for oblique incidence with collisions and find an absorption caused force in the plane of the plasma surface. (author)
Gao, Peng
2018-04-01
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.
Gao, Peng
2018-06-01
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.
Higher order analytical approximate solutions to the nonlinear pendulum by He's homotopy method
International Nuclear Information System (INIS)
Belendez, A; Pascual, C; Alvarez, M L; Mendez, D I; Yebra, M S; Hernandez, A
2009-01-01
A modified He's homotopy perturbation method is used to calculate the periodic solutions of a nonlinear pendulum. The method has been modified by truncating the infinite series corresponding to the first-order approximate solution and substituting a finite number of terms in the second-order linear differential equation. As can be seen, the modified homotopy perturbation method works very well for high values of the initial amplitude. Excellent agreement of the analytical approximate period with the exact period has been demonstrated not only for small but also for large amplitudes A (the relative error is less than 1% for A < 152 deg.). Comparison of the result obtained using this method with the exact ones reveals that this modified method is very effective and convenient.
Directory of Open Access Journals (Sweden)
Luis G. Garcia-Valdovinos
2015-04-01
Full Text Available Transparency has been a major objective in bilateral teleoperation systems, even in the absence of time delay induced by the communication channel, since a high degree of transparency would allow humans to drive the remote teleoperator as if he or she were directly interacting with the remote environment, with the remote teleoperator as a physical and sensorial extension of the operator. When fast convergence of position and force tracking errors are ensured by the control system, then complete transparency is obtained, which would ideally guarantee humans to be tightly kinaesthetically coupled. In this paper a model-free Cartesian second order sliding mode (SOSM PD control scheme for nonlinear master-slave systems is presented. The proposed scheme does not rely on velocity measurements and attains very fast convergence of position trajectories, with bounded tracking of force trajectories, rendering a high degree of transparency with lesser knowledge of the system. The degree of transparency can easily be improved by tuning a feedback gain in the force loop. A unique energy storage function is introduced; such that a similar Cartesian-based controller is implemented in the master and slave sides. The resulting properties of the Cartesian control structure allows the human operator to input directly Cartesian variables, which makes clearer the kinaesthetic coupling, thus the proposed controller becomes a suitable candidate for practical implementation. The performance of the proposed scheme is evaluated in a semi-experimental setup.
Modified wave operators for nonlinear Schrodinger equations in one and two dimensions
Directory of Open Access Journals (Sweden)
Nakao Hayashi
2004-04-01
Full Text Available We study the asymptotic behavior of solutions, in particular the scattering theory, for the nonlinear Schr"{o}dinger equations with cubic and quadratic nonlinearities in one or two space dimensions. The nonlinearities are summation of gauge invariant term and non-gauge invariant terms. The scattering problem of these equations belongs to the long range case. We prove the existence of the modified wave operators to those equations for small final data. Our result is an improvement of the previous work [13
Energy Technology Data Exchange (ETDEWEB)
Chin, Siu A., E-mail: chin@physics.tamu.edu [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Ashour, Omar A. [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Nikolić, Stanko N. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Belić, Milivoj R. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar)
2016-10-23
It is well known that Akhmediev breathers of the nonlinear cubic Schrödinger equation can be superposed nonlinearly via the Darboux transformation to yield breathers of higher order. Surprisingly, we find that the peak height of each Akhmediev breather only adds linearly to form the peak height of the final breather. Using this peak-height formula, we show that at any given periodicity, there exists a unique high-order breather of maximal intensity. Moreover, these high-order breathers form a continuous hierarchy, growing in intensity with increasing periodicity. For any such higher-order breather, a simple initial wave function can be extracted from the Darboux transformation to dynamically generate that breather from the nonlinear Schrödinger equation. - Highlights: • Proved an analytical formula for the peak-height of an nth-order Akhmediev breather. • Constructed nth-order Akhmediev breathers of maximal peak intensity. • Extracted initial wave functions that can be used experimentally to produce these maximal breathers in optical fibers.
DEFF Research Database (Denmark)
leMesurier, B.J.; Christiansen, Peter Leth; Gaididei, Yuri Borisovich
2004-01-01
The effect of attractive linear potentials on self-focusing in-waves modeled by a nonlinear Schrodinger equation is considered. It is shown that the attractive potential can prevent both singular collapse and dispersion that are generic in the cubic Schrodinger equation in the critical dimension 2...... losses, and known stable periodic behavior of certain solutions in the presence of attractive potentials....
A discrete homotopy perturbation method for non-linear Schrodinger equation
Directory of Open Access Journals (Sweden)
H. A. Wahab
2015-12-01
Full Text Available A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, appearance of the embedding parameter, different choices of the linear operator to the approximated solution to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger equation allow us whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the linear parts of the components of the solution series and hence a new discretised form is obtained. The general discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form.
Solitary waves for a coupled nonlinear Schrodinger system with dispersion management
Directory of Open Access Journals (Sweden)
Panayotis Panayotaros
2010-08-01
Full Text Available We consider a system of coupled nonlinear Schrodinger equations with periodically varying dispersion coefficient that arises in the context of fiber-optics communication. We use Lions's Concentration Compactness principle to show the existence of standing waves with prescribed L^2 norm in an averaged equation that approximates the coupled system. We also use the Mountain Pass Lemma to prove the existence of standing waves with prescribed frequencies.
Hs solutions for nonlinear Schrodinger equations with potentials superquadratic at infinity
International Nuclear Information System (INIS)
Zhang Guoping; Yajima, Kenji; Liu Fengshan
2006-01-01
In this Letter we study the initial value problem for the nonlinear Schrodinger equation with the potential V superquadratic at infinity. With the local smoothing property and Strichartz inequality obtained by the authors, we prove the existence and the uniqueness of the solution for H s -valued initial data and fractional s by combining the L 2 boundedness theory of pseudo differential operators and the fractional derivatives estimate
Zeng, Cheng; Liang, Shan; Xiang, Shuwen
2017-05-01
Continuous-time systems are usually modelled by the form of ordinary differential equations arising from physical laws. However, the use of these models in practice and utilizing, analyzing or transmitting these data from such systems must first invariably be discretized. More importantly, for digital control of a continuous-time nonlinear system, a good sampled-data model is required. This paper investigates the new consistency condition which is weaker than the previous similar results presented. Moreover, given the stability of the high-order approximate model with stable zero dynamics, the novel condition presented stabilizes the exact sampled-data model of the nonlinear system for sufficiently small sampling periods. An insightful interpretation of the obtained results can be made in terms of the stable sampling zero dynamics, and the new consistency condition is surprisingly associated with the relative degree of the nonlinear continuous-time system. Our controller design, based on the higher-order approximate discretized model, extends the existing methods which mainly deal with the Euler approximation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Erler, Norbert; Groß, Michael
2015-05-01
Since many years the relevance of fibre-reinforced polymers is steadily increasing in fields of engineering, especially in aircraft and automotive industry. Due to the high strength in fibre direction, but the possibility of lightweight construction, these composites replace more and more traditional materials as metals. Fibre-reinforced polymers are often manufactured from glass or carbon fibres as attachment parts or from steel or nylon cord as force transmission parts. Attachment parts are mostly subjected to small strains, but force transmission parts usually suffer large deformations in at least one direction. Here, a geometrically nonlinear formulation is necessary. Typical examples are helicopter rotor blades, where the fibres have the function to stabilize the structure in order to counteract large centrifugal forces. For long-run analyses of rotor blade deformations, we have to apply numerically stable time integrators for anisotropic materials. This paper presents higher-order accurate and numerically stable time stepping schemes for nonlinear elastic fibre-reinforced continua with anisotropic stress behaviour.
Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential
Directory of Open Access Journals (Sweden)
Runzhang Xu
2012-11-01
Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].
Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen
2017-12-01
In optical fibers, the higher order non-linear Schrödinger equation (NLSE) with cubic quintic nonlinearity describes the propagation of extremely short pulses. We constructed bright and dark solitons, solitary wave and periodic solitary wave solutions of generalized higher order NLSE in cubic quintic non Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physics and mathematics. Moreover, we have also presented the formation conditions on solitary wave parameters in which dark and bright solitons can exist for this media. We also gave graphically the movement of constructed solitary wave and soliton solutions, that helps to realize the physical phenomena's of this model. The stability of the model in normal dispersion and anomalous regime is discussed by using the modulation instability analysis, which confirms that all constructed solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method.
Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro
2014-05-01
This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if khthe aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.
Directory of Open Access Journals (Sweden)
Jinmyoung Seok
2015-07-01
Full Text Available In this article, we are interested in singularly perturbed nonlinear elliptic problems involving a fractional Laplacian. Under a class of nonlinearity which is believed to be almost optimal, we construct a positive solution which exhibits multiple spikes near any given local minimum components of an exterior potential of the problem.
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav; Růžička, František; Zloshchastiev, K. G.
2017-01-01
Roč. 9, č. 8 (2017), č. článku 165. ISSN 2073-8994 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : PT symmetry * nonlinear Schrodinger equations * logarithmic nonlinearities Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.457, year: 2016
Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen
2018-01-01
In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.
Vasta, M.; Roberts, J. B.
1998-06-01
Methods for using fourth order spectral quantities to estimate the unknown parameters in non-linear, randomly excited dynamic systems are developed. Attention is focused on the case where only the response is measurable and the excitation is unmeasurable and known only in terms of a stochastic process model. The approach is illustrated through application to a non-linear oscillator with both non-linear damping and stiffness and with excitation modelled as a stationary Gaussian white noise process. The methods have applications in studies of the response of structures to random environmental loads, such as wind and ocean wave forces.
Self-similar solutions with compactly supported profile of some nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Pascal Begout
2014-04-01
Full Text Available ``Sharp localized'' solutions (i.e. with compact support for each given time t of a singular nonlinear type Schr\\"odinger equation in the whole space $\\mathbb{R}^N$ are constructed here under the assumption that they have a self-similar structure. It requires the assumption that the external forcing term satisfies that $\\mathbf{f}(t,x=t^{-(\\mathbf{p}-2/2}\\mathbf{F}(t^{-1/2}x$ for some complex exponent $\\mathbf{p}$ and for some profile function $\\mathbf{F}$ which is assumed to be with compact support in $\\mathbb{R}^N$. We show the existence of solutions of the form $\\mathbf{u}(t,x=t^{\\mathbf{p}/2}\\mathbf{U}(t^{-1/2}x$, with a profile $\\mathbf{U}$, which also has compact support in $\\mathbb{R}^N$. The proof of the localization of the support of the profile $\\mathbf{U}$ uses some suitable energy method applied to the stationary problem satisfied by $\\mathbf{U}$ after some unknown transformation.
Peng, Wei-Qi; Tian, Shou-Fu; Zou, Li; Zhang, Tian-Tian
2018-01-01
In this paper, the extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms is investigated, whose particular cases are the Hirota equation, the Sasa-Satsuma equation and Lakshmanan-Porsezian-Daniel equation by selecting some specific values on the parameters of higher-order terms. We first study the stability analysis of the equation. Then, using the ansatz method, we derive its bright, dark solitons and some constraint conditions which can guarantee the existence of solitons. Moreover, the Ricatti equation extension method is employed to derive some exact singular solutions. The outstanding characteristics of these solitons are analyzed via several diverting graphics.
Energy Technology Data Exchange (ETDEWEB)
Zuo, Da-Wei [Beijing University of Aeronautics and Astronautics, Beijing (China). State Key Laboratory of Software Development Environment; Ministry of Education, Beijing (China). Key Laboratory of Fluid Mechanics; Shijiazhuang Tiedao University (China). Dept. of Mathematics and Physics; Gao, Yi-Tian; Sun, Yu-Hao; Feng, Yu-Jie; Xue, Long [Beijing University of Aeronautics and Astronautics, Beijing (China). State Key Laboratory of Software Development Environment; Ministry of Education, Beijing (China). Key Laboratory of Fluid Mechanics
2014-10-15
The nonlinear Schroedinger (NLS) equation appears in fluid mechanics, plasma physics, etc., while the Hirota equation, a higher-order NLS equation, has been introduced. In this paper, a higher-order Hirota system is investigated, which describes the wave propagation in an erbium-doped nonlinear fiber with higher-order dispersion. By virtue of the Darboux transformation and generalized Darboux transformation, multi-soliton solutions and higher-order rogue-wave solutions are derived, beyond the published first-order consideration. Wave propagation and interaction are analyzed: (i) Bell-shape solitons, bright- and dark-rogue waves are found; (ii) the two-soliton interaction is elastic, i.e., the amplitude and velocity of each soliton remain unchanged after the interaction; (iii) the coefficient in the system affects the direction of the soliton propagation, patterns of the soliton interaction, distance, and direction of the first-order rogue-wave propagation, as well as the range and direction of the second-order rogue-wave interaction.
International Nuclear Information System (INIS)
Zahran, M.A.; El-Shewy, E.K.
2008-01-01
The nonlinear properties of solitary wave structures are reported in an unmagnetized collisionless plasma comprising of cold relativistic electron fluid, Maxwellian hot electrons, relativistic electron beam, and stationary ions. The Korteweg--de Vries (KdV) equation has been derived using a reductive perturbation theory. As the wave amplitude increases, the width and velocity of the soliton deviate from the prediction of the KdV equation i.e. the breakdown of the KdV approximation. On the other hand, to overcome this weakness we extend our analysis to obtain the KdV equation with fifth-order dispersion term. The solution of the resulting equation has been obtained
International Nuclear Information System (INIS)
Tian Bo; Gao Yitian; Zhu Hongwu
2007-01-01
Symbolically investigated in this Letter is a variable-coefficient higher-order nonlinear Schroedinger (vcHNLS) model for ultrafast signal-routing, fiber laser systems and optical communication systems with distributed dispersion and nonlinearity management. Of physical and optical interests, with bilinear method extend, the vcHNLS model is transformed into a variable-coefficient bilinear form, and then an auto-Baecklund transformation is constructed. Constraints on coefficient functions are analyzed. Potentially observable with future optical-fiber experiments, variable-coefficient brightons are illustrated. Relevant properties and features are discussed as well. Baecklund transformation and other results of this Letter will be of certain value to the studies on inhomogeneous fiber media, core of dispersion-managed brightons, fiber amplifiers, laser systems and optical communication links with distributed dispersion and nonlinearity management
International Nuclear Information System (INIS)
Mohammadimehr, M.; Mohammadi-Dehabadi, A.A.; Maraghi, Z. Khoddami
2017-01-01
In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.
Energy Technology Data Exchange (ETDEWEB)
Mohammadimehr, M., E-mail: mmohammadimehr@kashanu.ac.ir [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Mohammadi-Dehabadi, A.A. [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Maraghi, Z. Khoddami [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of)
2017-04-01
In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.
Li, Ming-Zhen; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Liu, Lei; Du, Zhong
2017-12-01
In this paper, under investigation is a coupled variable-coefficient higher-order nonlinear Schrödinger system, which describes the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the Lax pair and binary Darboux transformation, we present the nondegenerate N-dark-dark soliton solutions. With the graphical simulation, soliton propagation and interaction are discussed with the group velocity dispersion and fourth-order dispersion effects, which affect the velocity but have no effect on the amplitude. Linear, parabolic and periodic one dark-dark solitons are displayed. Interactions between the two solitons are presented as well, which are all elastic.
Numerical Simulation of Freak Waves Based on the Four-Order Nonlinear Schr(o)dinger Equation
Institute of Scientific and Technical Information of China (English)
ZHANG Yun-qiu; ZHANG Ning-chuan; PEI Yu-guo
2007-01-01
A numerical wave model based on the modified four-order nonlinear Schrodinger (NLS) equation in deep water is developed to simulate freak waves. A standard split-step, pseudo-spectral method is used to solve NLS equation. The validation of the model is firstly verified, and then the simulation of freak waves is performed by changing sideband conditions. Results show that freak waves entirely consistent with the definition in the evolution of wave trains are obtained. The possible occurrence mechanism of freak waves is discussed and the relevant characteristics are also analyzed.
Su, Jing-Jing; Gao, Yi-Tian
2018-03-01
Under investigation in this paper is a higher-order nonlinear Schrödinger equation with space-dependent coefficients, related to an optical fiber. Based on the self-similarity transformation and Hirota method, related to the integrability, the N-th-order bright and dark soliton solutions are derived under certain constraints. It is revealed that the velocities and trajectories of the solitons are both affected by the coefficient of the sixth-order dispersion term while the amplitudes of the solitons are determined by the gain function. Amplitudes increase when the gain function is positive and decrease when the gain function is negative. Furthermore, we find that the intensities of dark solitons are presented as a superposition of the solitons and stationary waves.
International Nuclear Information System (INIS)
Li Juan; Zhang Haiqiang; Xu Tao; Zhang, Ya-Xing; Tian Bo
2007-01-01
For the long-distance communication and manufacturing problems in optical fibers, the propagation of subpicosecond or femtosecond optical pulses can be governed by the variable-coefficient nonlinear Schroedinger equation with higher order effects, such as the third-order dispersion, self-steepening and self-frequency shift. In this paper, we firstly determine the general conditions for this equation to be integrable by employing the Painleve analysis. Based on the obtained 3 x 3 Lax pair, we construct the Darboux transformation for such a model under the corresponding constraints, and then derive the nth-iterated potential transformation formula by the iterative process of Darboux transformation. Through the one- and two-soliton-like solutions, we graphically discuss the features of femtosecond solitons in inhomogeneous optical fibers
Sun, Yan; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Yuan, Yu-Qiang
2017-04-01
Under investigation in this paper is a variable-coefficient higher-order nonlinear Schrödinger equation, which has certain applications in the inhomogeneous optical fiber communication. Through the Hirota method, bilinear forms, dark one- and two-soliton solutions for such an equation are obtained. We graphically study the solitons with d1(z), d2(z) and d3(z), which represent the variable coefficients of the group-velocity dispersion, third-order dispersion and fourth-order dispersion, respectively. With the different choices of the variable coefficients, we obtain the parabolic, periodic and V-shaped dark solitons. Head-on and overtaking collisions are depicted via the dark two soliton solutions. Velocities of the dark solitons are linearly related to d1(z), d2(z) and d3(z), respectively, while the amplitudes of the dark solitons are not related to such variable coefficients.
International Nuclear Information System (INIS)
Khrennikov, A.
2005-01-01
We constructed the representation of contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function can be considered as Hilbert space projection of realistic dynamics in a pre space. The basic condition for representing the pre space-dynamics is the law of statistical conservation of energy-conservation of probabilities. The construction of the dynamical representation is an important step in the development of contextual statistical viewpoint of quantum processes. But the contextual statistical model is essentially more general than the quantum one. Therefore in general the Hilbert space projection of the pre space dynamics can be nonlinear and even irreversible (but it is always unitary). There were found conditions of linearity and reversibility of the Hilbert space dynamical projection. We also found conditions for the conventional Schrodinger dynamics (including time-dependent Hamiltonians). We remark that in general even the Schrodinger dynamics is based just on the statistical conservation of energy; for individual systems the law of conservation of energy can be violated (at least in our theoretical model)
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education. Erwin Schrodinger. Articles written in Resonance – Journal of Science Education. Volume 4 Issue 2 February 1999 pp 92-103 Classics. The Fundamental Idea of Wave Mechanics · Erwin Schrodinger · More Details Fulltext PDF ...
DEFF Research Database (Denmark)
Ernst, Erik
2003-01-01
This paper introduces the notion of higher-order inheritance hierarchies. They are useful because they provide well-known benefits of object-orientation at the level of entire hierarchies-benefits which are not available with current approaches. Three facets must be adressed: First, it must be po...
International Nuclear Information System (INIS)
Su, Chuan-Qi; Gao, Yi-Tian; Yu, Xin; Xue, Long; Aviation Univ. of Air Force, Liaoning
2015-01-01
Under investigation in this article is a higher-order nonlinear Schroedinger-Maxwell-Bloch (HNLS-MB) system for the optical pulse propagation in an erbium-doped fiber. Lax pair, Darboux transformation (DT), and generalised DT for the HNLS-MB system are constructed. Soliton solutions and rogue wave solutions are derived based on the DT and generalised DT, respectively. Properties of the solitons and rogue waves are graphically presented. The third-order dispersion parameter, fourth-order dispersion parameter, and frequency detuning all influence the characteristic lines and velocities of the solitons. The frequency detuning also affects the amplitudes of solitons. The separating function has no effect on the properties of the first-order rogue waves, except for the locations where the first-order rogue waves appear. The third-order dispersion parameter affects the propagation directions and shapes of the rogue waves. The frequency detuning influences the rogue-wave types of the module for the measure of polarization of resonant medium and the extant population inversion. The fourth-order dispersion parameter impacts the rogue-wave interaction range and also has an effect on the rogue-wave type of the extant population inversion. The value of separating function affects the spatial-temporal separation of constituting elementary rogue waves for the second-order and third-order rogue waves. The second-order and third-order rogue waves can exhibit the triangular and pentagon patterns under different choices of separating functions.
Du, Zhong; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Sun, Yan
2017-07-01
Subpicosecond or femtosecond optical pulse propagation in the inhomogeneous fiber can be described by a higher-order nonlinear Schrödinger equation with variable coefficients, which is investigated in the paper. Via the Ablowitz-Kaup-Newell-Segur system and symbolic computation, the Lax pair and infinitely-many conservation laws are deduced. Based on the Lax pair and a modified Darboux transformation technique, the first- and second-order rogue wave solutions are constructed. Effects of the groupvelocity dispersion and third-order dispersion on the properties of the first- and second-order rouge waves are graphically presented and analyzed: The groupvelocity dispersion and third-order dispersion both affect the ranges and shapes of the first- and second-order rogue waves: The third-order dispersion can produce a skew angle of the first-order rogue wave and the skew angle rotates counterclockwise with the increase of the groupvelocity dispersion, when the groupvelocity dispersion and third-order dispersion are chosen as the constants; When the groupvelocity dispersion and third-order dispersion are taken as the functions of the propagation distance, the linear, X-shaped and parabolic trajectories of the rogue waves are obtained.
Nonlinear Schrodinger elliptic systems involving exponential critical growth in R^2
Directory of Open Access Journals (Sweden)
Francisco S. B. Albuquerque Albuquerque
2014-02-01
Full Text Available This article concerns the existence and multiplicity of solutions for elliptic systems with weights, and nonlinearities having exponential critical growth. Our approach is based on the Trudinger-Moser inequality and on a minimax theorem.
International Nuclear Information System (INIS)
Zhestkov, S.V.; Romanenko, A.A.
2009-01-01
The problem of existence of soliton-like solutions of (1+1), (2+1), (3+1)-dimensional Schrodinger equations with the third power nonlinearity law is investigated. The numerical-analytical method of constructing solitons is developed. (authors)
Solution of (3+1-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method
Directory of Open Access Journals (Sweden)
Hassan A. Zedan
2012-01-01
Full Text Available Four-dimensional differential transform method has been introduced and fundamental theorems have been defined for the first time. Moreover, as an application of four-dimensional differential transform, exact solutions of nonlinear system of partial differential equations have been investigated. The results of the present method are compared very well with analytical solution of the system. Differential transform method can easily be applied to linear or nonlinear problems and reduces the size of computational work. With this method, exact solutions may be obtained without any need of cumbersome work, and it is a useful tool for analytical and numerical solutions.
DEFF Research Database (Denmark)
Israelsen, Stine Møller
This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...
Institute of Scientific and Technical Information of China (English)
ZHANG RongPei; YU XiJun; LI MingJun; LI XiangGui
2017-01-01
In this study,we present a conservative local discontinuous Galerkin (LDG) method for numerically solving the two-dimensional nonlinear Schr(o)dinger (NLS) equation.The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux.The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central,alternative and upwind-based flux.We will propose two kinds of time discretization methods for the semi-discrete formulation.One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation.The other one is Krylov implicit integration factor (ⅡF) method which demands much less computational effort.Various numerical experiments are presented to demonstrate the conservation law of mass and energy,the optimal rates of convergence,and the blow-up phenomenon.
International Nuclear Information System (INIS)
Esrick, M.A.
1981-01-01
A time-dependent, nonlinear, Schrodinger-like equation for the superconductivity order parameter is derived from the Gor'kov equations. Three types of traveling wave solutions of the equation are discussed. The phases and amplitudes of these solutions propagate at different speeds. The first type of solution has an amplitude that propagates as a soliton and it is suggested that this solution might correspond to the recently observed propagating collective modes of the order parameter. The amplitude of the second type of solution propagates as a periodic disturbance in space and time. It is suggested that this type of solution might explain the recently observed multiple values of the superconductor energy gap as well as the spatially inhomogenous superconducting state. The third type of solution, which is of a more general character, might provide some insight into non-periodic, inhomogeneous states occuring in superconductors. It is also proposed that quasiparticle injection and microwave irradiation might generate soliton-like disturbances in superconductors
DEFF Research Database (Denmark)
Pedersen, Martin Erland Vestergaard; Cheng, Ji; Xu, Chris
2013-01-01
An improved version of the generalized nonlinear Schrödinger equation is derived, which takes into account the correct dispersion of the transverse field distribution. The new improved version of the generalized nonlinear Schrödinger equation is verified to give the same results as the standard...
Gholami, Raheb; Ansari, Reza
2018-02-01
This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton's principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy's third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.
International Nuclear Information System (INIS)
Emamuddin, M.; Yasmin, S.; Mamun, A. A.
2013-01-01
The nonlinear propagation of dust-acoustic waves in a dusty plasma whose constituents are negatively charged dust, Maxwellian ions with two distinct temperatures, and electrons following q-nonextensive distribution, is investigated by deriving a number of nonlinear equations, namely, the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV), and the Gardner equations. The basic characteristics of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two temperature ions and electron nonextensivity on the basic features of DA K-dV, mK-dV, and Gardner solitons are also examined. It has been observed that the DA Gardner solitons exhibit negative (positive) solitons for q c (q>q c ) (where q c is the critical value of the nonextensive parameter q). The implications of our results in understanding the localized nonlinear electrostatic perturbations existing in stellar polytropes, quark-gluon plasma, protoneutron stars, etc. (where ions with different temperatures and nonextensive electrons exist) are also briefly addressed.
Directory of Open Access Journals (Sweden)
Bighnaraj Naik
2018-01-01
Full Text Available All the higher order ANNs (HONNs including functional link ANN (FLANN are sensitive to random initialization of weight and rely on the learning algorithms adopted. Although a selection of efficient learning algorithms for HONNs helps to improve the performance, on the other hand, initialization of weights with optimized weights rather than random weights also play important roles on its efficiency. In this paper, the problem solving approach of the teaching learning based optimization (TLBO along with learning ability of the gradient descent learning (GDL is used to obtain the optimal set of weight of FLANN learning model. TLBO does not require any specific parameters rather it requires only some of the common independent parameters like number of populations, number of iterations and stopping criteria, thereby eliminating the intricacy in selection of algorithmic parameters for adjusting the set of weights of FLANN model. The proposed TLBO-FLANN is implemented in MATLAB and compared with GA-FLANN, PSO-FLANN and HS-FLANN. The TLBO-FLANN is tested on various 5-fold cross validated benchmark data sets from UCI machine learning repository and analyzed under the null-hypothesis by using Friedman test, Holm’s procedure and post hoc ANOVA statistical analysis (Tukey test & Dunnett test.
Electromagnetic cloaking in higher order spherical cloaks
Sidhwa, H. H.; Aiyar, R. P. R. C.; Kulkarni, S. V.
2017-06-01
The inception of transformation optics has led to the realisation of the invisibility devices for various applications, one of which is spherical cloaking. In this paper, a formulation for a higher-order spherical cloak has been proposed to reduce its physical thickness significantly by introducing a nonlinear relation between the original and transformed coordinate systems and it has been verified using the ray tracing approach. Analysis has been carried out to observe the anomalies in the variation of refractive index for higher order cloaks indicating the presence of poles in the relevant equations. Furthermore, a higher-order spherical cloak with predefined values of the material characteristics on its inner and outer surfaces has been designed for practical application.
Directory of Open Access Journals (Sweden)
M.G. Hafez
2016-06-01
Full Text Available In this paper, the novel (G′/G-expansion method is applied to construct exact travelling wave solutions of the cubic nonlinear Schrodinger equation. This technique is straightforward and simple to use, and gives more new general solutions than the other existing methods. Various types of solitary and periodic wave solutions of this equation are derived. The obtained results may be helpful to describe the wave propagation in soliton physics, such as soliton propagation in optical fibers, modulus instability in plasma physics, etc. and provided us the firm mathematical foundation in soliton physics or any varied instances. Furthermore, three-dimensional modules plot of the solutions are also given to visualize the dynamics of the equation.
A Paraconsistent Higher Order Logic
DEFF Research Database (Denmark)
Villadsen, Jørgen
2004-01-01
of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order...... of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens. Many non-classical logics are, at the propositional level, funny toys which work quite good, but when one wants...
XY model with higher-order exchange.
Žukovič, Milan; Kalagov, Georgii
2017-08-01
An XY model, generalized by inclusion of up to an infinite number of higher-order pairwise interactions with an exponentially decreasing strength, is studied by spin-wave theory and Monte Carlo simulations. At low temperatures the model displays a quasi-long-range-order phase characterized by an algebraically decaying correlation function with the exponent η=T/[2πJ(p,α)], nonlinearly dependent on the parameters p and α that control the number of the higher-order terms and the decay rate of their intensity, respectively. At higher temperatures the system shows a crossover from the continuous Berezinskii-Kosterlitz-Thouless to the first-order transition for the parameter values corresponding to a highly nonlinear shape of the potential well. The role of topological excitations (vortices) in changing the nature of the transition is discussed.
Nonlocal higher order evolution equations
Rossi, Julio D.; Schö nlieb, Carola-Bibiane
2010-01-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove
Higher-Order Program Generation
DEFF Research Database (Denmark)
Rhiger, Morten
for OCaml, a dialect of ML, that provides run-time code generation for OCaml programs. We apply these byte-code combinators in semantics-directed compilation for an imperative language and in run-time specialization using type-directed partial evaluation. Finally, we present an approach to compiling goal......This dissertation addresses the challenges of embedding programming languages, specializing generic programs to specific parameters, and generating specialized instances of programs directly as executable code. Our main tools are higher-order programming techniques and automatic program generation....... It is our thesis that they synergize well in the development of customizable software. Recent research on domain-specific languages propose to embed them into existing general-purpose languages. Typed higher-order languages have proven especially useful as meta languages because they provide a rich...
Nonlocal higher order evolution equations
Rossi, Julio D.
2010-06-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.
Higher order correlations in computed particle distributions
International Nuclear Information System (INIS)
Hanerfeld, H.; Herrmannsfeldt, W.; Miller, R.H.
1989-03-01
The rms emittances calculated for beam distributions using computer simulations are frequently dominated by higher order aberrations. Thus there are substantial open areas in the phase space plots. It has long been observed that the rms emittance is not an invariant to beam manipulations. The usual emittance calculation removes the correlation between transverse displacement and transverse momentum. In this paper, we explore the possibility of defining higher order correlations that can be removed from the distribution to result in a lower limit to the realizable emittance. The intent is that by inserting the correct combinations of linear lenses at the proper position, the beam may recombine in a way that cancels the effects of some higher order forces. An example might be the non-linear transverse space charge forces which cause a beam to spread. If the beam is then refocused so that the same non-linear forces reverse the inward velocities, the resulting phase space distribution may reasonably approximate the original distribution. The approach to finding the location and strength of the proper lens to optimize the transported beam is based on work by Bruce Carlsten of Los Alamos National Laboratory. 11 refs., 4 figs
Classical higher-order processes
DEFF Research Database (Denmark)
Montesi, Fabrizio
2017-01-01
Classical Processes (CP) is a calculus where the proof theory of classical linear logic types processes à la Π-calculus, building on a Curry-Howard correspondence between session types and linear propositions. We contribute to this research line by extending CP with process mobility, inspired...... by the Higher-Order Π-calculus. The key to our calculus is that sequents are asymmetric: one side types sessions as in CP and the other types process variables, which can be instantiated with process values. The controlled interaction between the two sides ensures that process variables can be used at will......, but always respecting the linear usage of sessions expected by the environment....
Resilience and Higher Order Thinking
Directory of Open Access Journals (Sweden)
Ioan Fazey
2010-09-01
Full Text Available To appreciate, understand, and tackle chronic global social and environmental problems, greater appreciation of the importance of higher order thinking is required. Such thinking includes personal epistemological beliefs (PEBs, i.e., the beliefs people hold about the nature of knowledge and how something is known. These beliefs have profound implications for the way individuals relate to each other and the world, such as how people understand complex social-ecological systems. Resilience thinking is an approach to environmental stewardship that includes a number of interrelated concepts and has strong foundations in systemic ways of thinking. This paper (1 summarizes a review of educational psychology literature on PEBs, (2 explains why resilience thinking has potential to facilitate development of more sophisticated PEBs, (3 describes an example of a module designed to teach resilience thinking to undergraduate students in ways conducive to influencing PEBs, and (4 discusses a pilot study that evaluates the module's impact. Theoretical and preliminary evidence from the pilot evaluation suggests that resilience thinking which is underpinned by systems thinking has considerable potential to influence the development of more sophisticated PEBs. To be effective, however, careful consideration of how resilience thinking is taught is required. Finding ways to encourage students to take greater responsibility for their own learning and ensuring close alignment between assessment and desired learning outcomes are particularly important.
Asymptotic Expansions for Higher-Order Scalar Difference Equations
Directory of Open Access Journals (Sweden)
Ravi P. Agarwal
2007-04-01
Full Text Available We give an asymptotic expansion of the solutions of higher-order PoincarÃƒÂ© difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.
Asymptotic Expansions for Higher-Order Scalar Difference Equations
Directory of Open Access Journals (Sweden)
Pituk Mihály
2007-01-01
Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.
International Nuclear Information System (INIS)
Takahashi, Y.
1986-01-01
A brief but systematic discussion of the Schrodinger field is presented from the view point of quantized field theory. It is pointed out that the local momentum conservation equation is not of the usual continuity equation type when two-body potential interaction is presented and nevertheless the total momentum is globally conserved. The Schrodinger equation can be cast into a multicomponent equation containing only first order derivatives, depending on its spin contents. In case of spin 1/2, the g-factor is shown to be 2 even in purely non-relativistic Schrodinger field, in contrast with the general belief that g=2 is a relativistic effect
Higher order mode optical fiber Raman amplifiers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.
2016-01-01
We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....
Challenges in higher order mode Raman amplifiers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk
2015-01-01
A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...
Neural classifiers for learning higher-order correlations
International Nuclear Information System (INIS)
Gueler, M.
1999-01-01
Studies by various authors suggest that higher-order networks can be more powerful and biologically more plausible with respect to the more traditional multilayer networks. These architecture make explicit use of nonlinear interactions between input variables in the form of higher-order units or product units. If it is known a priori that the problem to be implemented possesses a given set of invariances like in the translation, rotation, and scale invariant recognition problems, those invariances can be encoded, thus eliminating all higher-order terms which are incompatible with the invariances. In general, however, it is a serious set-back that the complexity of learning increases exponentially with the size of inputs. This paper reviews higher-order networks and introduces an implicit representation in which learning complexity is mainly decided by the number of higher-order terms to be learned and increases only linearly with the input size
Neural Classifiers for Learning Higher-Order Correlations
Güler, Marifi
1999-01-01
Studies by various authors suggest that higher-order networks can be more powerful and are biologically more plausible with respect to the more traditional multilayer networks. These architectures make explicit use of nonlinear interactions between input variables in the form of higher-order units or product units. If it is known a priori that the problem to be implemented possesses a given set of invariances like in the translation, rotation, and scale invariant pattern recognition problems, those invariances can be encoded, thus eliminating all higher-order terms which are incompatible with the invariances. In general, however, it is a serious set-back that the complexity of learning increases exponentially with the size of inputs. This paper reviews higher-order networks and introduces an implicit representation in which learning complexity is mainly decided by the number of higher-order terms to be learned and increases only linearly with the input size.
Higher order Lie-Baecklund symmetries of evolution equations
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Roy Chowdhury, K.; Paul, S.
1983-10-01
We have considered in detail the analysis of higher order Lie-Baecklund symmetries for some representative nonlinear evolution equations. Until now all such symmetry analyses have been restricted only to the first order of the infinitesimal parameter. But the existence of Baecklund transformation (which can be shown to be an overall sum of higher order Lie-Baecklund symmetries) makes it necessary to search for such higher order Lie-Baecklund symmetries directly without taking recourse to the Baecklund transformation or inverse scattering technique. (author)
Higher Order Expectations in Asset Pricing
Philippe BACCHETTA; Eric VAN WINCOOP
2004-01-01
We examine formally Keynes' idea that higher order beliefs can drive a wedge between an asset price and its fundamental value based on expected future payoffs. Higher order expectations add an additional term to a standard asset pricing equation. We call this the higher order wedge, which depends on the difference between higher and first order expectations of future payoffs. We analyze the determinants of this wedge and its impact on the equilibrium price. In the context of a dynamic noisy r...
Higher order harmonics of reactor neutron equation
International Nuclear Information System (INIS)
Li Fu; Hu Yongming; Luo Zhengpei
1996-01-01
The flux mapping method using the higher order harmonics of the neutron equation is proposed. Based on the bi-orthogonality of the higher order harmonics, the process and formulas for higher order harmonics calculation are derived via the source iteration method with source correction. For the first time, not only any order harmonics for up-to-3-dimensional geometry are achieved, but also the preliminary verification to the capability for flux mapping have been carried out
The Schrodinger Eigenvalue March
Tannous, C.; Langlois, J.
2011-01-01
A simple numerical method for the determination of Schrodinger equation eigenvalues is introduced. It is based on a marching process that starts from an arbitrary point, proceeds in two opposite directions simultaneously and stops after a tolerance criterion is met. The method is applied to solving several 1D potential problems including symmetric…
DEFF Research Database (Denmark)
Appel, Claus; van Oostrom, Vincent; Simonsen, Jakob Grue
2010-01-01
We show that, contrary to the situation in first-order term rewriting, almost none of the usual properties of rewriting are modular for higher-order rewriting, irrespective of the higher-order rewriting format. We show that for the particular format of simply typed applicative term rewriting...... systems modularity of confluence, normalization, and termination can be recovered by imposing suitable linearity constraints....
Difference equations in massive higher order calculations
International Nuclear Information System (INIS)
Bierenbaum, I.; Bluemlein, J.; Klein, S.; Schneider, C.
2007-07-01
The calculation of massive 2-loop operator matrix elements, required for the higher order Wilson coefficients for heavy flavor production in deeply inelastic scattering, leads to new types of multiple infinite sums over harmonic sums and related functions, which depend on the Mellin parameter N. We report on the solution of these sums through higher order difference equations using the summation package Sigma. (orig.)
Higher-order chaotic oscillator using active bessel filter
DEFF Research Database (Denmark)
Lindberg, Erik; Mykolaitis, Gytis; Bumelien, Skaidra
2010-01-01
A higher-order oscillator, including a nonlinear unit and an 8th-order low-pass active Bessel filter is described. The Bessel unit plays the role of "three-in-one": a delay line, an amplifier and a filter. Results of hardware experiments and numerical simulation are presented. Depending...
Higher-order techniques in computational electromagnetics
Graglia, Roberto D
2016-01-01
Higher-Order Techniques in Computational Electromagnetics explains 'high-order' techniques that can significantly improve the accuracy, computational cost, and reliability of computational techniques for high-frequency electromagnetics, such as antennas, microwave devices and radar scattering applications.
Higher-order rewriting and partial evaluation
DEFF Research Database (Denmark)
Danvy, Olivier; Rose, Kristoffer H.
1998-01-01
We demonstrate the usefulness of higher-order rewriting techniques for specializing programs, i.e., for partial evaluation. More precisely, we demonstrate how casting program specializers as combinatory reduction systems (CRSs) makes it possible to formalize the corresponding program...
HIGHER ORDER THINKING IN TEACHING GRAMMAR
Directory of Open Access Journals (Sweden)
Citra Dewi
2017-04-01
Full Text Available The aim of this paper discussed about how to enhance students’ higher order thinking that should be done by teacher in teaching grammar. Usually teaching grammar was boring and has the same way to learn like change the pattern of sentence into positive, negative and introgative while the students’ need more various way to develop their thinking. The outcome of students’ competence in grammar sometimes not sufficient enough when the students’ occured some test international standart like Test of English Foreign Language, International English Language Testing. Whereas in TOEFL test it needed higher order thinking answer, so teacher should develop students’ higher order thingking in daily teaching grammar in order to make the students’ enhance their thinking are higher. The method was used in this paper by using field study based on the experience of teaching grammar. It can be shown by students’ toefl score was less in stucture and written expression. The result of this paper was after teacher gave some treatments to enhance students’ higher order thinking in teaching grammar, the students’ toefl scores are sufficient enough as a part of stucture and written expression. It can concluded that it needed some strategies to enhancce students higher order thinking by teaching grammar it can make students’ higher toefl score. Teachers should be creative and inovative to teach the students’ started from giving the students’ question or test in teaching grammar.
Interactions, strings and isotopies in higher order anisotropic superspaces
Vacaru, Sergiu Ion
2001-01-01
The monograph summarizes the author's results on the geometry of anholonomic and locally anisotropic interactions, published in J. Math. Phys., Nucl. Phys. B, Ann. Phys. (NY), JHEP, Rep. Math. Phys., Int. J. Theor. Phys. and in some former Soviet Union and Romanian scientific journals. The main subjects are in the theory of field interactions, strings and diffusion processes on spaces, superspaces and isospaces with higher order anisotropy and inhomogeneity. The approach proceeds by developing the concept of higher order anisotropic (super)space which unifies the logical and manthematical aspects of modern Kaluza--Klein theories and generalized Lagrange and Finsler geometry and leads to modeling of physical processes on higher order fiber (super)bundles provided with nonlinear and distinguished connections and metric structures. This book can be also considered as a pedagogical survey on the mentioned subjects.
Higher-order force gradient symplectic algorithms
Chin, Siu A.; Kidwell, Donald W.
2000-12-01
We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.
An Algorithm for Higher Order Hopf Normal Forms
Directory of Open Access Journals (Sweden)
A.Y.T. Leung
1995-01-01
Full Text Available Normal form theory is important for studying the qualitative behavior of nonlinear oscillators. In some cases, higher order normal forms are required to understand the dynamic behavior near an equilibrium or a periodic orbit. However, the computation of high-order normal forms is usually quite complicated. This article provides an explicit formula for the normalization of nonlinear differential equations. The higher order normal form is given explicitly. Illustrative examples include a cubic system, a quadratic system and a Duffing–Van der Pol system. We use exact arithmetic and find that the undamped Duffing equation can be represented by an exact polynomial differential amplitude equation in a finite number of terms.
Frontiers of higher order fuzzy sets
Tahayori, Hooman
2015-01-01
Frontiers of Higher Order Fuzzy Sets, strives to improve the theoretical aspects of general and Interval Type-2 fuzzy sets and provides a unified representation theorem for higher order fuzzy sets. Moreover, the book elaborates on the concept of gradual elements and their integration with the higher order fuzzy sets. This book also introduces new frameworks for information granulation based on general T2FSs, IT2FSs, Gradual elements, Shadowed sets and rough sets. In particular, the properties and characteristics of the new proposed frameworks are studied. Such new frameworks are shown to be more capable to be exploited in real applications. Higher order fuzzy sets that are the result of the integration of general T2FSs, IT2FSs, gradual elements, shadowed sets and rough sets will be shown to be suitable to be applied in the fields of bioinformatics, business, management, ambient intelligence, medicine, cloud computing and smart grids. Presents new variations of fuzzy set frameworks and new areas of applicabili...
Higher-order tensors in diffusion imaging
Schultz, T.; Fuster, A.; Ghosh, A.; Deriche, R.; Florack, L.M.J.; Lim, L.H.; Westin, C.-F.; Vilanova, A.; Burgeth, B.
2014-01-01
Diffusion imaging is a noninvasive tool for probing the microstructure of fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathematical language to model and analyze the large and complex data that is generated by its modern variants such as High Angular Resolution Diffusion
Analogy, higher order thinking, and education.
Richland, Lindsey Engle; Simms, Nina
2015-01-01
Analogical reasoning, the ability to understand phenomena as systems of structured relationships that can be aligned, compared, and mapped together, plays a fundamental role in the technology rich, increasingly globalized educational climate of the 21st century. Flexible, conceptual thinking is prioritized in this view of education, and schools are emphasizing 'higher order thinking', rather than memorization of a cannon of key topics. The lack of a cognitively grounded definition for higher order thinking, however, has led to a field of research and practice with little coherence across domains or connection to the large body of cognitive science research on thinking. We review literature on analogy and disciplinary higher order thinking to propose that relational reasoning can be productively considered the cognitive underpinning of higher order thinking. We highlight the utility of this framework for developing insights into practice through a review of mathematics, science, and history educational contexts. In these disciplines, analogy is essential to developing expert-like disciplinary knowledge in which concepts are understood to be systems of relationships that can be connected and flexibly manipulated. At the same time, analogies in education require explicit support to ensure that learners notice the relevance of relational thinking, have adequate processing resources available to mentally hold and manipulate relations, and are able to recognize both the similarities and differences when drawing analogies between systems of relationships. © 2015 John Wiley & Sons, Ltd.
Higher-Order Components for Grid Programming
Dünnweber, Jan
2009-01-01
Higher-Order Components were developed within the CoreGRID European Network of Excellence and have become an optional extension of the popular Globus middleware. This book provides the reader with hands-on experience, describing a collection of example applications from various fields of science and engineering, including biology and physics.
Higher order antibunching in intermediate states
International Nuclear Information System (INIS)
Verma, Amit; Sharma, Navneet K.; Pathak, Anirban
2008-01-01
Since the introduction of binomial state as an intermediate state, different intermediate states have been proposed. Different nonclassical effects have also been reported in these intermediate states. But till now higher order antibunching is predicted in only one type of intermediate state, which is known as shadowed negative binomial state. Recently we have shown that the higher order antibunching is not a rare phenomenon [P. Gupta, P. Pandey, A. Pathak, J. Phys. B 39 (2006) 1137]. To establish our earlier claim further, here we have shown that the higher order antibunching can be seen in different intermediate states, such as binomial state, reciprocal binomial state, hypergeometric state, generalized binomial state, negative binomial state and photon added coherent state. We have studied the possibility of observing the higher order subpoissonian photon statistics in different limits of intermediate states. The effects of different control parameters on the depth of non classicality have also been studied in this connection and it has been shown that the depth of nonclassicality can be tuned by controlling various physical parameters
Certified higher-order recursive path ordering
Koprowski, A.; Pfenning, F.
2006-01-01
The paper reports on a formalization of a proof of wellfoundedness of the higher-order recursive path ordering (HORPO) in the proof checker Coq. The development is axiom-free and fully constructive. Three substantive parts that could be used also in other developments are the formalizations of the
Higher-Order Minimal Functional Graphs
DEFF Research Database (Denmark)
Jones, Neil D; Rosendahl, Mads
1994-01-01
We present a minimal function graph semantics for a higher-order functional language with applicative evaluation order. The semantics captures the intermediate calls performed during the evaluation of a program. This information may be used in abstract interpretation as a basis for proving...
Higher Order Continuous SI Engine Observers
DEFF Research Database (Denmark)
Vesterholm, Thomas; Hendricks, Elbert; Houbak, Niels
1992-01-01
A nonlinear compensator for the fuel film dynamics and a second order nonlinear observer for a spark ignition engine are presented in this paper. The compensator and observer are realized as continuous differential equations and an especially designed integration algorithm is used to integrate them...
A Higher-Order Colon Translation
DEFF Research Database (Denmark)
Danvy, Olivier; Nielsen, Lasse Reichstein
2001-01-01
A lambda-encoding such as the CPS transformation gives rise to administrative redexes. In his seminal article ``Call-by-name, call-by-value and the lambda-calculus'', 25 years ago, Plotkin tackled administrative reductions using a so-called ``colon translation.'' 10 years ago, Danvy and Filinski...... integrated administrative reductions in the CPS transformation, making it operate in one pass. The technique applies to other lambda-encodings (e.g., variants of CPS), but we do not see it used in practice--instead, Plotkin's colon translation appears to be favored. Therefore, in an attempt to link both...... techniques, we recast Plotkin's proof of Indifference and Simulation to the higher-order specification of the one-pass CPS transformation. To this end, we extend his colon translation from first order to higher order...
Higher-Order and Symbolic Computation
DEFF Research Database (Denmark)
Danvy, Olivier; Mason, Ian
2008-01-01
a series of implementaions that properly account for multiple invocations of the derivative-taking opeatro. In "Adapting Functional Programs to Higher-Order Logic," Scott Owens and Konrad Slind present a variety of examples of terminiation proofs of functional programs written in HOL proof systems. Since......-calculus programs, historically. The anaylsis determines the possible locations of ambients and mirrors the temporla sequencing of actions in the structure of types....
Lagrangian procedures for higher order field equations
International Nuclear Information System (INIS)
Bollini, C.G.
1987-01-01
A Lagrangian procedure for a pedagogical way is presented for the treatment of higher order field equations. The energy-momentum tensor and the conserved density current are built. In particular the case in which the derivatives appear only in the invariant D'Alembertian operator is discussed. Some examples are discussed. The fields are quantized and the corresponding Hamilonian which is shown not to be positive defructed. Rules are given to write the causal propagators. (author) [pt
Lagrangian procedures for higher order field equations
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.
1986-01-01
We present in a pedagogical way a Lagrangian procedure for the treatment of higher order field equations. We build the energy-momentum tensor and the conserved density current. In particular we discuss the case in which the derivatives appear only in the invariant D'Alembertian operator. We discuss some examples. We quantize the fields and construct the corresponding Hamiltonian which is shown not to be positive definite. We give the rules for the causal propagators. (Author) [pt
Higher order modes of coupled optical fibres
International Nuclear Information System (INIS)
Alexeyev, C N; Yavorsky, M A; Boklag, N A
2010-01-01
The structure of hybrid higher order modes of two coupled weakly guiding identical optical fibres is studied. On the basis of perturbation theory with degeneracy for the vector wave equation expressions for modes with azimuthal angular number l ≥ 1 are obtained that allow for the spin–orbit interaction. The spectra of polarization corrections to the scalar propagation constants are calculated in a wide range of distances between the fibres. The limiting cases of widely and closely spaced fibres are studied. The obtained results can be used for studying the tunnelling of optical vortices in directional couplers and in matters concerned with information security
Ward identities of higher order Virasoro algebra
International Nuclear Information System (INIS)
Zha Chaozeng; Dolate, S.
1994-11-01
The general formulations of primary fields versus quasi-primary ones in the context of high order Virasoro algebra (HOVA) and the corresponding Ward identity are explored. The primary fields of conformal spins up to 8 are given in terms of quasi-primary fields, and the general features of the higher order expressions are also discussed. It is observed that the local fields, either primary of quasi-primary, carry the same numbers of central charges, and not all the primary fields contribute to the anomalies in the Ward identities. (author). 6 refs
Schrodinger cat state generation using a slow light
International Nuclear Information System (INIS)
Ham, B. S.; Kim, M. S.
2003-01-01
We show a practical application of giant Kerr nonlinearity to quantum information processing based on superposition of two distinct macroscopic states- Schrodinger cat state. The giant Kerr nonlinearity can be achieved by using electromagnetically induced transparency, in which light propagation should be slowed down so that a pi-phase shift can be easily obtained owing to increased interaction time.
Theorem Proving In Higher Order Logics
Carreno, Victor A. (Editor); Munoz, Cesar A.; Tahar, Sofiene
2002-01-01
The TPHOLs International Conference serves as a venue for the presentation of work in theorem proving in higher-order logics and related areas in deduction, formal specification, software and hardware verification, and other applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume. Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in theorem proving systems with those needing such libraries for their applications. Many of the major higher order theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support. This work is of interest in a number of application areas, such as formal methods development for hardware and software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by their authors at the workshop venue, and one invited talk.
Higher order cumulants in colorless partonic plasma
Energy Technology Data Exchange (ETDEWEB)
Cherif, S. [Sciences and Technologies Department, University of Ghardaia, Ghardaia, Algiers (Algeria); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria); Ahmed, M. A. A. [Department of Physics, College of Science, Taibah University Al-Madinah Al-Mounawwarah KSA (Saudi Arabia); Department of Physics, Taiz University in Turba, Taiz (Yemen); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria); Ladrem, M., E-mail: mladrem@yahoo.fr [Department of Physics, College of Science, Taibah University Al-Madinah Al-Mounawwarah KSA (Saudi Arabia); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria)
2016-06-10
Any physical system considered to study the QCD deconfinement phase transition certainly has a finite volume, so the finite size effects are inevitably present. This renders the location of the phase transition and the determination of its order as an extremely difficult task, even in the simplest known cases. In order to identify and locate the colorless QCD deconfinement transition point in finite volume T{sub 0}(V), a new approach based on the finite-size cumulant expansion of the order parameter and the ℒ{sub m,n}-Method is used. We have shown that both cumulants of higher order and their ratios, associated to the thermodynamical fluctuations of the order parameter, in QCD deconfinement phase transition behave in a particular enough way revealing pronounced oscillations in the transition region. The sign structure and the oscillatory behavior of these in the vicinity of the deconfinement phase transition point might be a sensitive probe and may allow one to elucidate their relation to the QCD phase transition point. In the context of our model, we have shown that the finite volume transition point is always associated to the appearance of a particular point in whole higher order cumulants under consideration.
Finding Higher Order Differentials of MISTY1
Tsunoo, Yukiyasu; Saito, Teruo; Kawabata, Takeshi; Nakagawa, Hirokatsu
MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it is recommended for Japanese e-Government ciphers by the CRYPTREC project. In this paper, we report on 12th order differentials in 3-round MISTY1 with FL functions and 44th order differentials in 4-round MISTY1 with FL functions both previously unknown. We also report that both data complexity and computational complexity of higher order differential attacks on 6-round MISTY1 with FL functions and 7-round MISTY1 with FL functions using the 46th order differential can be reduced to as much as 1/22 of the previous values by using multiple 44th order differentials simultaneously.
Three weights higher order Hardy type inequalities
Directory of Open Access Journals (Sweden)
Aigerim A. Kalybay
2006-01-01
Full Text Available We investigate the following three weights higher order Hardy type inequality (0.1 ‖g‖q,u≤ C‖Dρkg‖p,v where Dρi denotes the following weighted differential operator: {dig(tdti,i=0,1,...,m−1,di−mdti−m(p(tdmg(tdtm,i=m,m+1,...,k, for a weight function ρ(⋅. A complete description of the weights u, v and ρ so that (0.1 holds was given in [4] for the case 1
International Nuclear Information System (INIS)
Scully, M O
2008-01-01
The time dependent Schrodinger equation is frequently 'derived' by postulating the energy E → i h-bar (∂/∂t) and momentum p-vector → ( h-bar /i)∇ operator relations. In the present paper we review the quantum field theoretic route to the Schrodinger wave equation which treats time and space as parameters, not operators. Furthermore, we recall that a classical (nonlinear) wave equation can be derived from the classical action via Hamiltonian-Jacobi theory. By requiring the wave equation to be linear we again arrive at the Schrodinger equation, without postulating operator relations. The underlying philosophy is operational: namely 'a particle is what a particle detector detects.' This leads us to a useful physical picture combining the wave (field) and particle paradigms which points the way to the time-dependent Schrodinger equation
Adaptive approximation of higher order posterior statistics
Lee, Wonjung
2014-02-01
Filtering is an approach for incorporating observed data into time-evolving systems. Instead of a family of Dirac delta masses that is widely used in Monte Carlo methods, we here use the Wiener chaos expansion for the parametrization of the conditioned probability distribution to solve the nonlinear filtering problem. The Wiener chaos expansion is not the best method for uncertainty propagation without observations. Nevertheless, the projection of the system variables in a fixed polynomial basis spanning the probability space might be a competitive representation in the presence of relatively frequent observations because the Wiener chaos approach not only leads to an accurate and efficient prediction for short time uncertainty quantification, but it also allows to apply several data assimilation methods that can be used to yield a better approximate filtering solution. The aim of the present paper is to investigate this hypothesis. We answer in the affirmative for the (stochastic) Lorenz-63 system based on numerical simulations in which the uncertainty quantification method and the data assimilation method are adaptively selected by whether the dynamics is driven by Brownian motion and the near-Gaussianity of the measure to be updated, respectively. © 2013 Elsevier Inc.
Transverse tails and higher order moments
International Nuclear Information System (INIS)
Spence, W.L.; Decker, F.J.; Woodley, M.D.
1993-05-01
The tails that may be engendered in a beam's transverse phase space distribution by, e.g., intrabunch wakefields and nonlinear magnetic fields, are all important diagnostic and object of tuning in linear colliders. Wire scanners or phosphorescent screen monitors yield one dimensional projected spatial profiles of such beams that are generically asymmetric around their centroids, and therefore require characterization by the third moment left-angle x 3 right-angle in addition to the conventional mean-square or second moment. A set of measurements spread over sufficient phase advance then allows the complete set left-angle x 3 right-angle, left-angle xx' 2 right-angle, left-angle x' 3 right-angle, and left-angle x 2 x'right-angle to be deduced -- the natural extension of the well-known ''emittance measurement'' treatment of second moments. The four third moments may be usefully decomposed into parts rotating in phase space at the β-tron frequency and at its third harmonic, each specified by a phase-advance-invariant amplitude and a phase. They provide a framework for the analysis and tuning of transverse wakefield tails
Assessment of Schrodinger Eigenmaps for target detection
Dorado Munoz, Leidy P.; Messinger, David W.; Czaja, Wojtek
2014-06-01
Non-linear dimensionality reduction methods have been widely applied to hyperspectral imagery due to its structure as the information can be represented in a lower dimension without losing information, and because the non-linear methods preserve the local geometry of the data while the dimension is reduced. One of these methods is Laplacian Eigenmaps (LE), which assumes that the data lies on a low dimensional manifold embedded in a high dimensional space. LE builds a nearest neighbor graph, computes its Laplacian and performs the eigendecomposition of the Laplacian. These eigenfunctions constitute a basis for the lower dimensional space in which the geometry of the manifold is preserved. In addition to the reduction problem, LE has been widely used in tasks such as segmentation, clustering, and classification. In this regard, a new Schrodinger Eigenmaps (SE) method was developed and presented as a semi-supervised classification scheme in order to improve the classification performance and take advantage of the labeled data. SE is an algorithm built upon LE, where the former Laplacian operator is replaced by the Schrodinger operator. The Schrodinger operator includes a potential term V, that, taking advantage of the additional information such as labeled data, allows clustering of similar points. In this paper, we explore the idea of using SE in target detection. In this way, we present a framework where the potential term V is defined as a barrier potential: a diagonal matrix encoding the spatial position of the target, and the detection performance is evaluated by using different targets and different hyperspectral scenes.
Holographic conductivity of holographic superconductors with higher-order corrections
Energy Technology Data Exchange (ETDEWEB)
Sheykhi, Ahmad [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Ghazanfari, Afsoon; Dehyadegari, Amin [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2018-02-15
We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω/T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature. (orig.)
Higher order branching of periodic orbits from polynomial isochrones
Directory of Open Access Journals (Sweden)
B. Toni
1999-09-01
Full Text Available We discuss the higher order local bifurcations of limit cycles from polynomial isochrones (linearizable centers when the linearizing transformation is explicitly known and yields a polynomial perturbation one-form. Using a method based on the relative cohomology decomposition of polynomial one-forms complemented with a step reduction process, we give an explicit formula for the overall upper bound of branch points of limit cycles in an arbitrary $n$ degree polynomial perturbation of the linear isochrone, and provide an algorithmic procedure to compute the upper bound at successive orders. We derive a complete analysis of the nonlinear cubic Hamiltonian isochrone and show that at most nine branch points of limit cycles can bifurcate in a cubic polynomial perturbation. Moreover, perturbations with exactly two, three, four, six, and nine local families of limit cycles may be constructed.
Numerical study of fractional nonlinear Schrodinger equations
Klein, Christian; Sparber, Christof; Markowich, Peter A.
2014-01-01
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass
Analysis of wheezes using wavelet higher order spectral features.
Taplidou, Styliani A; Hadjileontiadis, Leontios J
2010-07-01
. This paves the way for the use of the wavelet higher order spectral features as an input vector to an efficient classifier. Apparently, this would integrate the intrinsic characteristics of wheezes within computerized diagnostic tools toward their more efficient evaluation.
Dynamical symmetries of semi-linear Schrodinger and diffusion equations
International Nuclear Information System (INIS)
Stoimenov, Stoimen; Henkel, Malte
2005-01-01
Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed
Fractional Schrodinger equations with new conditions
Directory of Open Access Journals (Sweden)
Abderrazek Benhassine
2018-01-01
Full Text Available In this article, we study the nonlinear fractional Schrodinger equation $$\\displaylines{ (-\\Delta^{\\alpha}u+ V(xu= f(x,u\\cr u\\in H^{\\alpha}(\\mathbb{R}^{n},\\mathbb{R}, }$$ where $(-\\Delta^{\\alpha}(\\alpha \\in (0, 1$ stands for the fractional Laplacian of order $\\alpha$, $x\\in \\mathbb{R}^{n}$, $V\\in C(\\mathbb{R}^{n},\\mathbb{R}$ may change sign and f is only locally defined near the origin with respect to u. Under some new assumptions on V and f, we show that the above system has infinitely many solutions near the origin. Some examples are also given to illustrate our main theoretical result.
Conceptualizing and Assessing Higher-Order Thinking in Reading
Afflerbach, Peter; Cho, Byeong-Young; Kim, Jong-Yun
2015-01-01
Students engage in higher-order thinking as they read complex texts and perform complex reading-related tasks. However, the most consequential assessments, high-stakes tests, are currently limited in providing information about students' higher-order thinking. In this article, we describe higher-order thinking in relation to reading. We provide a…
Critical behavior from Schrodinger representation
International Nuclear Information System (INIS)
Suranyi, P.
1992-01-01
In this paper, the Schrodinger equation for φ 4 field theory is reduced to an infinite set of integral equations. A systematic truncation scheme is proposed and it is solved in second order to obtain the approximate critical behavior of the renormalized mass. The correlation exponent is given as a solution of a transcendental equation. It is in good agreement with the Ising model in all physical dimensions
Analysis of higher order harmonics with holographic reflection gratings
Mas-Abellan, P.; Madrigal, R.; Fimia, A.
2017-05-01
Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.
Scattering of quantized solitary waves in the cubic Schrodinger equation
International Nuclear Information System (INIS)
Dolan, L.
1976-01-01
The quantum mechanics for N particles interacting via a delta-function potential in one space dimension and one time dimension is known. The second-quantized description of this system has for its Euler-Lagrange equations of motion the cubic Schrodinger equation. This nonlinear differential equation supports solitary wave solutions. A quantization of these solitons reproduces the weak-coupling limit to the known quantum mechanics. The phase shift for two-body scattering and the energy of the N-body bound state is derived in this approximation. The nonlinear Schrodinger equation is contrasted with the sine-Gordon theory in respect to the ideas which the classical solutions play in the description of the quantum states
Higher-Order Generalized Invexity in Control Problems
Directory of Open Access Journals (Sweden)
S. K. Padhan
2011-01-01
Full Text Available We introduce a higher-order duality (Mangasarian type and Mond-Weir type for the control problem. Under the higher-order generalized invexity assumptions on the functions that compose the primal problems, higher-order duality results (weak duality, strong duality, and converse duality are derived for these pair of problems. Also, we establish few examples in support of our investigation.
Skinner-Rusk unified formalism for higher-order systems
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2012-07-01
The Lagrangian-Hamiltonian unified formalism of R. Skinner and R. Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, first-order and higher-order field theories, and higher-order autonomous systems. In this work we present a generalization of this formalism for higher-order non-autonomous mechanical systems.
Nil Bohr-sets and almost automorphy of higher order
Huang, Wen; Ye, Xiangdong
2016-01-01
Two closely related topics, higher order Bohr sets and higher order almost automorphy, are investigated in this paper. Both of them are related to nilsystems. In the first part, the problem which can be viewed as the higher order version of an old question concerning Bohr sets is studied: for any d\\in \\mathbb{N} does the collection of \\{n\\in \\mathbb{Z}: S\\cap (S-n)\\cap\\ldots\\cap (S-dn)\
de Silva, Nalin
2010-01-01
Schr\\"odinger's cat appears to have been harassed in a chamber during the past eighty years or so by interpreting the role of the observer as a person, who sets an experiment and then observes results, may be after some time. The realist position tells us that the physical processes would take place independent of the observer with well defined properties, whereas the positivist position wants us to believe that nothing can be said of a system when it is not being observed. In this paper we q...
Existence of solutions to quasilinear Schrodinger equations with indefinite potential
Directory of Open Access Journals (Sweden)
Zupei Shen
2015-04-01
Full Text Available In this article, we study the existence and multiplicity of solutions of the quasilinear Schrodinger equation $$ -u''+V(xu-(|u| ^2''u=f(u $$ on $\\mathbb{R}$, where the potential $V$ allows sign changing and the nonlinearity satisfies conditions weaker than the classical Ambrosetti-Rabinowitz condition. By a local linking theorem and the fountain theorem, we obtain the existence and multiplicity of solutions for the equation.
Tunnelling effects of solitons in optical fibers with higher-order effects
Energy Technology Data Exchange (ETDEWEB)
Dai, Chao-Qing [Zhejiang A and F Univ., Lin' an (China). School of Sciences; Suzhou Univ., Jiangsu (China). School of Physical Science and Technology; Zhu, Hai-Ping [Zhejiang Lishui Univ., Zhejiang (China). School of Science; Zheng, Chun-Long [Shaoguan Univ., Guangdong (China). College of Physics and Electromechanical Engineering
2012-06-15
We construct four types of analytical soliton solutions for the higher-order nonlinear Schroedinger equation with distributed coefficients. These solutions include bright solitons, dark solitons, combined solitons, and M-shaped solitons. Moreover, the explicit functions which describe the evolution of the width, peak, and phase are discussed exactly. We finally discuss the nonlinear soliton tunnelling effect for four types of femtosecond solitons. (orig.)
Contribution of higher order terms in the reductive perturbation theory, 2
International Nuclear Information System (INIS)
Ichikawa, Y.H.; Mitsuhashi, Teruo; Konno, Kimiaki.
1977-01-01
Contribution of higher order terms in the reductive perturbation theory has been investigated for nonlinear propagation of strongly dispersive ion plasma wave. The basic set of fluid equation is reduced to a coupled set of the nonlinear Schroedinger equation for the first order perturbed potential and a linear inhomogeneous equation for the second order perturbed potential. A steady state solution of the coupled set of equations has been solved analytically in the asymptotic limit of small wave number. (auth.)
On higher-order corrections in M theory
International Nuclear Information System (INIS)
Howe, P.S.; Tsimpis, D.
2003-01-01
A theoretical analysis of higher-order corrections to D=11 supergravity is given in a superspace framework. It is shown that any deformation of D=11 supergravity for which the lowest-dimensional component of the four-form G 4 vanishes is trivial. This implies that the equations of motion of D=11 supergravity are specified by an element of a certain spinorial cohomology group and generalises previous results obtained using spinorial or pure spinor cohomology to the fully non-linear theory. The first deformation of the theory is given by an element of a different spinorial cohomology group with coefficients which are local tensorial functions of the massless supergravity fields. The four-form Bianchi Identities are solved, to first order and at dimension -{1/2}, in the case that the lowest-dimensional component of G 4 is non-zero. Moreover, it is shown how one can calculate the first-order correction to the dimension-zero torsion and thus to the supergravity equations of motion given an explicit expression for this object in terms of the supergravity fields. The version of the theory with both a four-form and a seven-form is discussed in the presence of the five-brane anomaly-cancelling term. It is shown that the supersymmetric completion of this term exists and it is argued that it is the unique anomaly-cancelling invariant at this dimension which is at least quartic in the fields. This implies that the first deformation of the theory is completely determined by the anomaly term from which one can, in principle, read off the corrections to all of the superspace field strength tensors. (author)
Higher-Order Hybrid Gaussian Kernel in Meshsize Boosting Algorithm
African Journals Online (AJOL)
In this paper, we shall use higher-order hybrid Gaussian kernel in a meshsize boosting algorithm in kernel density estimation. Bias reduction is guaranteed in this scheme like other existing schemes but uses the higher-order hybrid Gaussian kernel instead of the regular fixed kernels. A numerical verification of this scheme ...
Higher-order Jordan Osserman pseudo-Riemannian manifolds
International Nuclear Information System (INIS)
Gilkey, Peter B; Ivanova, Raina; Zhang Tan
2002-01-01
We study the higher-order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r, s) for certain values of (r, s). These pseudo-Riemannian manifolds are new and non-trivial examples of higher-order Osserman manifolds
Higher-order Jordan Osserman pseudo-Riemannian manifolds
Energy Technology Data Exchange (ETDEWEB)
Gilkey, Peter B [Mathematics Department, University of Oregon, Eugene, OR 97403 (United States); Ivanova, Raina [Mathematics Department, University of Hawaii - Hilo, 200 W Kawili St, Hilo, HI 96720 (United States); Zhang Tan [Department of Mathematics and Statistics, Murray State University, Murray, KY 42071 (United States)
2002-09-07
We study the higher-order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r, s) for certain values of (r, s). These pseudo-Riemannian manifolds are new and non-trivial examples of higher-order Osserman manifolds.
Schrodinger representation in renormalizable quantum field theory
International Nuclear Information System (INIS)
Symanzik, K.
1983-01-01
The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward
The differential geometry of higher order jets and tangent bundles
International Nuclear Information System (INIS)
De Leon, M.; Rodrigues, P.R.
1985-01-01
This chapter is devoted to the study of basic geometrical notions required for the development of the main object of the text. Some facts about Jet theory are reviewed. A particular case of Jet manifolds is considered: the tangent bundle of higher order. It is shown that this jet bundle possesses in a canonical way a certain kind of geometric structure, the so called almost tangent structure of higher order, and which is a generalization of the almost tangent geometry of the tangent bundle. Another important fact examined is the extension of the notion of 'spray' to higher order tangent bundles. (Auth.)
Higher-order harmonics of general limited diffraction Bessel beams
International Nuclear Information System (INIS)
Ding De-Sheng; Huang Jin-Huang
2016-01-01
In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m -th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. (special topic)
Higher-order harmonics of general limited diffraction Bessel beams
Ding, De-Sheng; Huang, Jin-Huang
2016-12-01
In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074038 and 11374051).
Protein scaffolds and higher-order complexes in synthetic biology
den Hamer, A.; Rosier, B.J.H.M.; Brunsveld, L.; de Greef, T.F.A.; Ryadnov, M.; Brunsveld, L.; Suga, H.
2017-01-01
Interactions between proteins control molecular functions such as signalling or metabolic activity. Assembly of proteins via scaffold proteins or in higher-order complexes is a key regulatory mechanism. Understanding and functionally applying this concept requires the construction, study, and
Generating superpositions of higher order bessel beams [Conference paper
CSIR Research Space (South Africa)
Vasilyeu, R
2009-10-01
Full Text Available An experimental setup to generate a superposition of higher-order Bessel beams by means of a spatial light modulator and ring aperture is presented. The experimentally produced fields are in good agreement with those calculated theoretically....
Higher-order curvature terms and extended inflation
International Nuclear Information System (INIS)
Wang Yun
1990-01-01
We consider higher-order curvature terms in context of the Brans-Dicke theory of gravity, and investigate the effects of these terms on extended inflationary theories. We find that the higher-order curvature terms tend to speed up inflation, although the original extended-inflation solutions are stable when these terms are small. Analytical solutions are found for two extreme cases: when the higher-order curvature terms are small, and when they dominate. A conformal transformation is employed in solving the latter case, and some of the subtleties in this technique are discussed. We note that percolation is less likely to occur when the higher-order curvature terms are present. An upper bound on α is expected if we are to avoid excessive and inadequate percolation of true-vacuum bubbles
Unambiguous formalism for higher order Lagrangian field theories
International Nuclear Information System (INIS)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn; Vankerschaver, Joris
2009-01-01
The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.
Higher-order RANS turbulence models for separated flows
National Aeronautics and Space Administration — Higher-order Reynolds-averaged Navier-Stokes (RANS) models are developed to overcome the shortcomings of second-moment RANS models in predicting separated flows....
A simplified parsimonious higher order multivariate Markov chain model
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.
A tridiagonal parsimonious higher order multivariate Markov chain model
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.
Application of Mass Lumped Higher Order Finite Elements
International Nuclear Information System (INIS)
J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau
2005-01-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied
The role of formative feedback in promoting higher order thinking ...
African Journals Online (AJOL)
The role of formative feedback in promoting higher order thinking skills in ... activities, task characteristics, validating students' thinking, and providing feedback. ... Keywords: classroom environment, formative assessment, formative feedback, ...
Higher order aberrations of the eye: Part one
Directory of Open Access Journals (Sweden)
Marsha Oberholzer
2016-06-01
Full Text Available This article is the first in a series of two articles that provide a comprehensive literature review of higher order aberrations (HOAs of the eye. The present article mainly explains the general principles of such HOAs as well as HOAs of importance, and the measuring apparatus used to measure HOAs of the eye. The second article in the series discusses factors contributing to variable results in measurements of HOAs of the eye. Keywords: Higher order aberrations; wavefront aberrations; aberrometer
All-fiber Raman Probe using Higher Order Modes
DEFF Research Database (Denmark)
Larsen, Stine Højer Møller; Rishøj, Lars Søgaard; Rottwitt, Karsten
2013-01-01
We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes.......We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes....
Linear matrix differential equations of higher-order and applications
Directory of Open Access Journals (Sweden)
Mustapha Rachidi
2008-07-01
Full Text Available In this article, we study linear differential equations of higher-order whose coefficients are square matrices. The combinatorial method for computing the matrix powers and exponential is adopted. New formulas representing auxiliary results are obtained. This allows us to prove properties of a large class of linear matrix differential equations of higher-order, in particular results of Apostol and Kolodner are recovered. Also illustrative examples and applications are presented.
Perturbative theory of higher-order collision-enhanced wave mixing
International Nuclear Information System (INIS)
Trebino, R.; Rahn, L.A.
1989-01-01
This paper reports on collision-enhanced resonances which represent an interesting class of nonlinear- optical processes. They occur because collisional dephasing can rephase quantum-mechanical amplitudes that ordinarily cancel out exactly, thereby allowing otherwise unobservable wave-mixing resonances to be seen. This is an especially interesting phenomenon because these resonances are coherent effects that are induced by an incoherent process (collisional dephasing). First predicted in the late 1970s and eventually observed in 1981, these novel effects have now been seen in a wide variety of four-wave-mixing experiments, ranging from self-focusing to coherent anti-Stokes Raman spectroscopy. Recently, the authors have extended these observations to higher order, where the authors have shown both experimentally and theoretically the higher-order, collision-enhanced effects exist in nonlinear optics, appearing as subharmonics of two-photon resonances. Indeed, the authors have found that collision-enhanced processes are ideal systems for studying higher-order, nonlinear-optical effects because very high orders can be made to contribute with little or no saturation braodening. Experiments on sodium in a flame using six- and eight-wave-mixing geometries have revealed still higher-order effects (at least as high- order as χ (13) )
Uniform decay for a local dissipative Klein-Gordon-Schrodinger type system
Directory of Open Access Journals (Sweden)
Marilena N. Poulou
2012-10-01
Full Text Available In this article, we consider a nonlinear Klein-Gordon-Schrodinger type system in $mathbb{R}^n$, where the nonlinear term exists and the damping term is effective. We prove the existence and uniqueness of a global solution and its exponential decay. The result is achieved by using the multiplier technique.
Directory of Open Access Journals (Sweden)
Kai Tsuruta
2013-05-01
Full Text Available We prove the existence of the wave operator for the Klein-Gordon-Schrodinger system with Yukawa coupling. This non-linearity type is below Strichartz scaling, and therefore classic perturbation methods will fail in any Strichartz space. Instead, we follow the "first iteration method" to handle these critical non-linearities.
Quantum Computer Games: Schrodinger Cat and Hounds
Gordon, Michal; Gordon, Goren
2012-01-01
The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…
Comparison of the Schrodinger and Salpeter equations
International Nuclear Information System (INIS)
Jacobs, S.; Olsson, M.G.
1985-01-01
A unified approach to the solution of the Schrodinger and spinless Salpeter equations is presented. Fits to heavy quark bound state energies using various potential models are employed to determine whether the Salpeter equation provides a better description of heavy quark systems than the Schrodinger equation
Higher-Order Approximation of Cubic-Quintic Duffing Model
DEFF Research Database (Denmark)
Ganji, S. S.; Barari, Amin; Babazadeh, H.
2011-01-01
We apply an Artificial Parameter Lindstedt-Poincaré Method (APL-PM) to find improved approximate solutions for strongly nonlinear Duffing oscillations with cubic-quintic nonlinear restoring force. This approach yields simple linear algebraic equations instead of nonlinear algebraic equations...
Higher Order Lagrange Finite Elements In M3D
International Nuclear Information System (INIS)
Chen, J.; Strauss, H.R.; Jardin, S.C.; Park, W.; Sugiyama, L.E.; Fu, G.; Breslau, J.
2004-01-01
The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles
Practical implementation of a higher order transverse leakage approximation
International Nuclear Information System (INIS)
Prinsloo, Rian H.; Tomašević
2011-01-01
Transverse integrated nodal diffusion methods currently represent the standard in full core neutronic simulation. The primary shortcoming in this approach, be it via the Analytic Nodal Method or Nodal Expansion Method, is the utilization of the quadratic transverse leakage approximation. This approach, although proven to work well for typical LWR problems, is not consistent with the formulation of nodal methods and can cause accuracy and convergence problems. In this work an improved, consistent quadratic leakage approximation is formulated, which derives from the class of higher order nodal methods developed some years ago. In this new approach, only information relevant to describing the transverse leak- age terms in the zero-order nodal equations are obtained from the higher order formalism. The method yields accuracy comparable to full higher order methods, but does not suffer from the same computational burden which these methods typically incur. (author)
Higher order multipoles and splines in plasma simulations
International Nuclear Information System (INIS)
Okuda, H.; Cheng, C.Z.
1978-01-01
The reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and the spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular the spline method may be useful in three-dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length. (Auth.)
Higher-order multipoles and splines in plasma simulations
International Nuclear Information System (INIS)
Okuda, H.; Cheng, C.Z.
1977-12-01
Reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular, spline method may be useful in three dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length
Multilevel Fast Multipole Method for Higher Order Discretizations
DEFF Research Database (Denmark)
Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik
2014-01-01
The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower...... order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined....
The Cauchy problem for higher order abstract differential equations
Xiao, Ti-Jun
1998-01-01
This monograph is the first systematic exposition of the theory of the Cauchy problem for higher order abstract linear differential equations, which covers all the main aspects of the developed theory. The main results are complete with detailed proofs and established recently, containing the corresponding theorems for first and incomplete second order cases and therefore for operator semigroups and cosine functions. They will find applications in many fields. The special power of treating the higher order problems directly is demonstrated, as well as that of the vector-valued Laplace transforms in dealing with operator differential equations and operator families. The reader is expected to have a knowledge of complex and functional analysis.
Gill, Tarsem Singh; Kaur, Ravinder; Mahajan, Ranju
2010-09-01
This paper presents an analysis of self-consistent, steady-state, theoretical model, which explains the ring formation in a Gaussian electromagnetic beam propagating in a magnetoplasma, characterized by relativistic nonlinearity. Higher order terms (up to r4) in the expansion of the dielectric function and the eikonal have been taken into account. The condition for the formation of a dark and bright ring derived earlier by Misra and Mishra [J. Plasma Phys. 75, 769 (2009)] has been used to study focusing/defocusing of the beam. It is seen that inclusion of higher order terms does significantly affect the dependence of the beam width on the distance of propagation. Further, the effect of the magnetic field and the nature of nonlinearity on the ring formation and self-focusing of the beam have been explored.
International Nuclear Information System (INIS)
Gill, Tarsem Singh; Kaur, Ravinder; Mahajan, Ranju
2010-01-01
This paper presents an analysis of self-consistent, steady-state, theoretical model, which explains the ring formation in a Gaussian electromagnetic beam propagating in a magnetoplasma, characterized by relativistic nonlinearity. Higher order terms (up to r 4 ) in the expansion of the dielectric function and the eikonal have been taken into account. The condition for the formation of a dark and bright ring derived earlier by Misra and Mishra [J. Plasma Phys. 75, 769 (2009)] has been used to study focusing/defocusing of the beam. It is seen that inclusion of higher order terms does significantly affect the dependence of the beam width on the distance of propagation. Further, the effect of the magnetic field and the nature of nonlinearity on the ring formation and self-focusing of the beam have been explored.
The Role of Formative Feedback in Promoting Higher Order ...
African Journals Online (AJOL)
DrNneka
An International Multi-disciplinary Journal, Ethiopia. AFRREV ... make contribution to this research gap by proposing a theoretical feedback model that can promote higher order thinking skills in the classroom. The proposed ..... process; students provided with tasks that are novel, complex, creative, and non- algorithmic ...
Developing Higher-Order Thinking Skills through WebQuests
Polly, Drew; Ausband, Leigh
2009-01-01
In this study, 32 teachers participated in a year-long professional development project related to technology integration in which they designed and implemented a WebQuest. This paper describes the extent to which higher-order thinking skills (HOTS) and levels of technology implementation (LoTI) occur in the WebQuests that participants designed.…
Hamiltonian formulation of theory with higher order derivatives
International Nuclear Information System (INIS)
Gitman, D.M.; Lyakhovich, S.L.; Tyutin, I.V.
1983-01-01
A method of ''hamiltonization'' of a special theory with higher order derivatives is described. In a nonspecial case the result coincides with the known Ostrogradsky formulation. It is shown that in the nonspecial theory the lagrange equations of motion are reduced to the normal form
Numerical methods of higher order of accuracy for incompressible flows
Czech Academy of Sciences Publication Activity Database
Kozel, K.; Louda, Petr; Příhoda, Jaromír
2010-01-01
Roč. 80, č. 8 (2010), s. 1734-1745 ISSN 0378-4754 Institutional research plan: CEZ:AV0Z20760514 Keywords : higher order methods * upwind methods * backward-facing step Subject RIV: BK - Fluid Dynamics Impact factor: 0.812, year: 2010
First Measurements of Higher Order Optics Parameters in the LHC
Vanbavinckhove, G; Bartolini, R; Calaga, R; Giovannozzi, M; Maclean, E H; Miyamoto, R; Schmidt, F; Tomas, R
2011-01-01
Higher order effects can play an important role in the performance of the LHC. Lack of knowledge of these pa- rameters can increase the tune footprint and compromise the beam lifetime. First measurements of these parameters at injection and flattop have been conducted. Detailed sim- ulations are compared to the measurements together with discussions on the measurement limitations.
Time-Discrete Higher-Order ALE Formulations: Stability
Bonito, Andrea; Kyza, Irene; Nochetto, Ricardo H.
2013-01-01
on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time
Meta-Logical Reasoning in Higher-Order Logic
DEFF Research Database (Denmark)
Villadsen, Jørgen; Schlichtkrull, Anders; Hess, Andreas Viktor
The semantics of first-order logic (FOL) can be described in the meta-language of higher-order logic (HOL). Using HOL one can prove key properties of FOL such as soundness and completeness. Furthermore, one can prove sentences in FOL valid using the formalized FOL semantics. To aid...
Decidable Fragments of a Higher Order Calculus with Locations
DEFF Research Database (Denmark)
Bundgaard, Mikkel; Godskesen, Jens Christian; Huttel, Hans
2009-01-01
Homer is a higher order process calculus with locations. In this paper we study Homer in the setting of the semantic finite control property, which is a finite reachability criterion that implies decidability of barbed bisimilarity. We show that strong and weak barbed bisimilarity are undecidable...
Computer-Mediated Assessment of Higher-Order Thinking Development
Tilchin, Oleg; Raiyn, Jamal
2015-01-01
Solving complicated problems in a contemporary knowledge-based society requires higher-order thinking (HOT). The most productive way to encourage development of HOT in students is through use of the Problem-based Learning (PBL) model. This model organizes learning by solving corresponding problems relative to study courses. Students are directed…
Constrained variational calculus for higher order classical field theories
Energy Technology Data Exchange (ETDEWEB)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn, E-mail: cedricmc@icmat.e, E-mail: mdeleon@icmat.e, E-mail: david.martin@icmat.e [Instituto de Ciencias Matematicas, CSIC-UAM-UC3M-UCM, Serrano 123, 28006 Madrid (Spain)
2010-11-12
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Constrained variational calculus for higher order classical field theories
International Nuclear Information System (INIS)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn
2010-01-01
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Higher-Order Integral Equation Methods in Computational Electromagnetics
DEFF Research Database (Denmark)
Jørgensen, Erik; Meincke, Peter
Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...
Higher-Order Separation Logic in Isabelle/HOLCF
DEFF Research Database (Denmark)
Varming, Carsten; Birkedal, Lars
2008-01-01
We formalize higher-order separation logic for a first-order imperative language with procedures and local variables in Isabelle/HOLCF. The assertion language is modeled in such a way that one may use any theory defined in Isabelle/HOLCF to construct assertions, e.g., primitive recursion, least o...
Order-sorted Algebraic Specifications with Higher-order Functions
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth
1995-01-01
This paper gives a proposal for how order-sorted algebraic specification languages can be extended with higher-order functions. The approach taken is a generalisation to the order-sorted case of an approach given by Mller, Tarlecki and Wirsing for the many-sorted case. The main idea in the proposal...
Enhancing Higher Order Thinking Skills through Clinical Simulation
Varutharaju, Elengovan; Ratnavadivel, Nagendralingan
2014-01-01
Purpose: The study aimed to explore, describe and analyse the design and implementation of clinical simulation as a pedagogical tool in bridging the deficiency of higher order thinking skills among para-medical students, and to make recommendations on incorporating clinical simulation as a pedagogical tool to enhance thinking skills and align the…
Improved Multilevel Fast Multipole Method for Higher-Order discretizations
DEFF Research Database (Denmark)
Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik
2014-01-01
The Multilevel Fast Multipole Method (MLFMM) allows for a reduced computational complexity when solving electromagnetic scattering problems. Combining this with the reduced number of unknowns provided by Higher-Order discretizations has proven to be a difficult task, with the general conclusion b...
Higher-Order Hierarchical Legendre Basis Functions in Applications
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter
2007-01-01
The higher-order hierarchical Legendre basis functions have been developed for eﬀective solution of integral equations with the method of moments. They are derived from orthogonal Legendre polynomials modiﬁed to enforce normal continuity between neighboring mesh elements, while preserving a high...
Higher order QCD corrections in small x physics
International Nuclear Information System (INIS)
Chachamis, G.
2006-11-01
We study higher order QCD corrections in small x Physics. The numerical implementation of the full NLO photon impact factor is the remaining necessary piece for the testing of the NLO BFKL resummation against data from physical processes, such as γ * γ * collisions. We perform the numerical integration over phase space for the virtual corrections to the NLO photon impact factor. This, along with the previously calculated real corrections, makes feasible in the near future first estimates for the γ*γ* total cross section, since the convolution of the full impact factor with the NLO BFKL gluon Green's function is now straightforward. The NLO corrections for the photon impact factor are sizeable and negative. In the second part of this thesis, we estimate higher order correction to the BK equation. We are mainly interested in whether partonic saturation delays or not in rapidity when going beyond the leading order. In our investigation, we use the so called 'rapidity veto' which forbid two emissions to be very close in rapidity, to 'switch on' higher order corrections to the BK equation. From analytic and numerical analysis, we conclude that indeed saturation does delay in rapidity when higher order corrections are taken into account. In the last part, we investigate higher order QCD corrections as additional corrections to the Electroweak (EW) sector. The question of whether BFKL corrections are of any importance in the Regge limit for the EW sector seems natural; although they arise in higher loop level, the accumulation of logarithms in energy s at high energies, cannot be dismissed without an investigation. We focus on the process γγ→ZZ. We calculate the pQCD corrections in the forward region at leading logarithmic (LL) BFKL accuracy, which are of the order of few percent at the TeV energy scale. (orig.)
Higher order QCD corrections in small x physics
Energy Technology Data Exchange (ETDEWEB)
Chachamis, G.
2006-11-15
We study higher order QCD corrections in small x Physics. The numerical implementation of the full NLO photon impact factor is the remaining necessary piece for the testing of the NLO BFKL resummation against data from physical processes, such as {gamma}{sup *}{gamma}{sup *} collisions. We perform the numerical integration over phase space for the virtual corrections to the NLO photon impact factor. This, along with the previously calculated real corrections, makes feasible in the near future first estimates for the {gamma}*{gamma}* total cross section, since the convolution of the full impact factor with the NLO BFKL gluon Green's function is now straightforward. The NLO corrections for the photon impact factor are sizeable and negative. In the second part of this thesis, we estimate higher order correction to the BK equation. We are mainly interested in whether partonic saturation delays or not in rapidity when going beyond the leading order. In our investigation, we use the so called 'rapidity veto' which forbid two emissions to be very close in rapidity, to 'switch on' higher order corrections to the BK equation. From analytic and numerical analysis, we conclude that indeed saturation does delay in rapidity when higher order corrections are taken into account. In the last part, we investigate higher order QCD corrections as additional corrections to the Electroweak (EW) sector. The question of whether BFKL corrections are of any importance in the Regge limit for the EW sector seems natural; although they arise in higher loop level, the accumulation of logarithms in energy s at high energies, cannot be dismissed without an investigation. We focus on the process {gamma}{gamma}{yields}ZZ. We calculate the pQCD corrections in the forward region at leading logarithmic (LL) BFKL accuracy, which are of the order of few percent at the TeV energy scale. (orig.)
Finite element method for time-space-fractional Schrodinger equation
Directory of Open Access Journals (Sweden)
Xiaogang Zhu
2017-07-01
Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.
Schr\\"odinger group and quantum finance
Romero, Juan M.; Lavana, Ulises; Martínez, Elio
2013-01-01
Using the one dimensional free particle symmetries, the quantum finance symmetries are obtained. Namely, it is shown that Black-Scholes equation is invariant under Schr\\"odinger group. In order to do this, the one dimensional free non-relativistic particle and its symmetries are revisited. To get the Black-Scholes equation symmetries, the particle mass is identified as the inverse of square of the volatility. Furthermore, using financial variables, a Schr\\"odinger algebra representation is co...
Higher-order harmonics of limited diffraction Bessel beams
Ding; Lu
2000-03-01
We investigate theoretically the nonlinear propagation of the limited diffraction Bessel beam in nonlinear media, under the successive approximation of the KZK equation. The result shows that the nth-order harmonic of the Bessel beam, like its fundamental component, is radially limited diffracting, and that the main beamwidth of the nth-order harmonic is exactly 1/n times that of the fundamental.
Self-similarity of higher-order moving averages
Arianos, Sergio; Carbone, Anna; Türk, Christian
2011-10-01
In this work, higher-order moving average polynomials are defined by straightforward generalization of the standard moving average. The self-similarity of the polynomials is analyzed for fractional Brownian series and quantified in terms of the Hurst exponent H by using the detrending moving average method. We prove that the exponent H of the fractional Brownian series and of the detrending moving average variance asymptotically agree for the first-order polynomial. Such asymptotic values are compared with the results obtained by the simulations. The higher-order polynomials correspond to trend estimates at shorter time scales as the degree of the polynomial increases. Importantly, the increase of polynomial degree does not require to change the moving average window. Thus trends at different time scales can be obtained on data sets with the same size. These polynomials could be interesting for those applications relying on trend estimates over different time horizons (financial markets) or on filtering at different frequencies (image analysis).
Higher order mode damping in Kaon factory RF cavities
International Nuclear Information System (INIS)
Enegren, T.; Poirier, R.; Griffin, J.; Walling, L.; Thiessen, H.A.; Smythe, W.R.
1989-05-01
Proposed designs for Kaon factory accelerators require that the rf cavities support beam currents on the order of several amperes. The beam current has Fourier components at all multiples of the rf frequency. Empty rf buckets produce additional components at all multiples of the revolution frequency. If a Fourier component of the beam coincides with the resonant frequency of a higher order mode of the cavity, which is inevitable if the cavity has a large frequency swing, significant excitation of this mode can occur. The induced voltage may then excite coupled bunch mode instabilities. Effective means are required to damp higher order modes without significantly affecting the fundamental mode. A mode damping scheme based on coupled transmission lines has been investigated and is report
Higher Order Differential Attack on 6-Round MISTY1
Tsunoo, Yukiyasu; Saito, Teruo; Nakashima, Hiroki; Shigeri, Maki
MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it has been recommended for Japanese e-Government ciphers by the CRYPTREC project. This paper reports a previously unknown higher order differential characteristic of 4-round MISTY1 with the FL functions. It also shows that a higher order differential attack that utilizes this newly discovered characteristic is successful against 6-round MISTY1 with the FL functions. This attack can recover a partial subkey with a data complexity of 253.7 and a computational complexity of 264.4, which is better than any previous cryptanalysis of MISTY1.
Higher-order risk preferences in social settings.
Heinrich, Timo; Mayrhofer, Thomas
2018-01-01
We study prudence and temperance (next to risk aversion) in social settings. Previous experimental studies have shown that these higher-order risk preferences affect the choices of individuals deciding privately on lotteries that only affect their own payoff. Yet, many risky and financially relevant decisions are made in the social settings of households or organizations. We elicit higher-order risk preferences of individuals and systematically vary how an individual's decision is made (alone or while communicating with a partner) and who is affected by the decision (only the individual or the partner as well). In doing so, we can isolate the effects of other-regarding concerns and communication on choices. Our results reveal that the majority of choices are risk averse, prudent, and temperate across social settings. We also observe that individuals are influenced significantly by the preferences of a partner when they are able to communicate and choices are payoff-relevant for both of them.
Higher-order geodesic deviations applied to the Kerr metric
Colistete, R J; Kerner, R
2002-01-01
Starting with an exact and simple geodesic, we generate approximate geodesics by summing up higher-order geodesic deviations within a general relativistic setting, without using Newtonian and post-Newtonian approximations. We apply this method to the problem of closed orbital motion of test particles in the Kerr metric spacetime. With a simple circular orbit in the equatorial plane taken as the initial geodesic, we obtain finite eccentricity orbits in the form of Taylor series with the eccentricity playing the role of a small parameter. The explicit expressions of these higher-order geodesic deviations are derived using successive systems of linear equations with constant coefficients, whose solutions are of harmonic oscillator type. This scheme gives best results when applied to orbits with low eccentricities, but with arbitrary possible values of (GM/Rc sup 2).
The higher order flux mapping method in large size PHWRs
International Nuclear Information System (INIS)
Kulkarni, A.K.; Balaraman, V.; Purandare, H.D.
1997-01-01
A new higher order method is proposed for obtaining flux map using single set of expansion mode. In this procedure, one can make use of the difference between predicted value of detector reading and their actual values for determining the strength of local fluxes around detector site. The local fluxes are arising due to constant perturbation changes (both extrinsic and intrinsic) taking place in the reactor. (author)
Practical Programming with Higher-Order Encodings and Dependent Types
DEFF Research Database (Denmark)
Poswolsky, Adam; Schürmann, Carsten
2008-01-01
, tedious, and error-prone. In this paper, we describe the underlying calculus of Delphin. Delphin is a fully implemented functional-programming language supporting reasoning over higher-order encodings and dependent types, while maintaining the benefits of HOAS. More specifically, just as representations...... for instantiation from those that will remain uninstantiated, utilizing a variation of Miller and Tiu’s ∇-quantifier [1]....
Modeling Human Behaviour with Higher Order Logic: Insider Threats
DEFF Research Database (Denmark)
Boender, Jaap; Ivanova, Marieta Georgieva; Kammuller, Florian
2014-01-01
it to the sociological process of logical explanation. As a case study on modeling human behaviour, we present the modeling and analysis of insider threats as a Higher Order Logic theory in Isabelle/HOL. We show how each of the three step process of sociological explanation can be seen in our modeling of insider’s state......, its context within an organisation and the effects on security as outcomes of a theorem proving analysis....
Higher order Bose-Einstein correlations in identical particle production
International Nuclear Information System (INIS)
Biyajima, M.
1990-01-01
A diagram technique to calculate the higher order Bose-Einstein correlations is formulated. This technique is applied to derive explicit expressions for the n-pion correlation functions for n = 2, 3, 4, and 5, and numerical predictions are given. In a comparison with the AFS and NA23 data on two-pion and three-pion Bose-Einstein correlations good agreement is obtained. 21 refs., 5 figs. (Authors)
Higher-Order Finite Element Solutions of Option Prices
DEFF Research Database (Denmark)
Raahauge, Peter
2004-01-01
Kinks and jumps in the payoff function of option contracts prevent an effectiveimplementation of higher-order numerical approximation methods. Moreover, thederivatives (the greeks) are not easily determined around such singularities, even withstandard lower-order methods. This paper suggests...... for prices as well as for first and second order derivatives(delta and gamma). Unlike similar studies, numerical approximation errors aremeasured both as weighted averages and in the supnorm over a state space includingtime-to-maturities down to a split second.KEYWORDS: Numerical option pricing, Transformed...
Higher-order Brunnian structures and possible physical realizations
DEFF Research Database (Denmark)
A. Baas, Nils; V. Fedorov, D.; S. Jensen, A.
2014-01-01
We consider few-body bound state systems and provide precise definitions of Borromean and Brunnian systems. The initial concepts are more than a hundred years old and originated in mathematical knot-theory as purely geometric considerations. About thirty years ago they were generalized and applied...... to the binding of systems in nature. It now appears that recent generalization to higher order Brunnian structures may potentially be realized as laboratory made or naturally occurring systems. With the binding energy as measure, we discuss possibilities of physical realization in nuclei, cold atoms...
Development of higher order mode couplers at Cornell
International Nuclear Information System (INIS)
Amato, J.C.
1988-01-01
Higher order mode (HOM) couplers are integral parts of a superconducting accelerator cavity. The damping which the couplers must provide is dictated by the frequency and shunt impedance of the cavity modes as well as by the stability requirements of the accelerator incorporating the cavities. Cornell's 5-cell 1500 MHz elliptical cavity was designed for use in a 50 x 50 GeV electron-positron storage ring with a total beam current of 3.5 mA (CESR-II). HOM couplers for the Cornell cavity were designed and evaluated with this machine in mind. The development of these couplers is described in this paper. 8 references, 8 figures
Theory of a higher-order Sturm-Liouville equation
Kozlov, Vladimir
1997-01-01
This book develops a detailed theory of a generalized Sturm-Liouville Equation, which includes conditions of solvability, classes of uniqueness, positivity properties of solutions and Green's functions, asymptotic properties of solutions at infinity. Of independent interest, the higher-order Sturm-Liouville equation also proved to have important applications to differential equations with operator coefficients and elliptic boundary value problems for domains with non-smooth boundaries. The book addresses graduate students and researchers in ordinary and partial differential equations, and is accessible with a standard undergraduate course in real analysis.
Integrable higher order deformations of Heisenberg supermagnetic model
International Nuclear Information System (INIS)
Guo Jiafeng; Yan Zhaowen; Wang Shikun; Wu Ke; Zhao Weizhong
2009-01-01
The Heisenberg supermagnet model is an integrable supersymmetric system and has a close relationship with the strong electron correlated Hubbard model. In this paper, we investigate the integrable higher order deformations of Heisenberg supermagnet models with two different constraints: (i) S 2 =3S-2I for S is an element of USPL(2/1)/S(U(2)xU(1)) and (ii) S 2 =S for S is an element of USPL(2/1)/S(L(1/1)xU(1)). In terms of the gauge transformation, their corresponding gauge equivalent counterparts are derived.
Oscillation of solutions of some higher order linear differential equations
Directory of Open Access Journals (Sweden)
Hong-Yan Xu
2009-11-01
Full Text Available In this paper, we deal with the order of growth and the hyper order of solutions of higher order linear differential equations $$f^{(k}+B_{k-1}f^{(k-1}+\\cdots+B_1f'+B_0f=F$$ where $B_j(z (j=0,1,\\ldots,k-1$ and $F$ are entire functions or polynomials. Some results are obtained which improve and extend previous results given by Z.-X. Chen, J. Wang, T.-B. Cao and C.-H. Li.
Higher order temporal finite element methods through mixed formalisms.
Kim, Jinkyu
2014-01-01
The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.
Programming real-time executives in higher order language
Foudriat, E. C.
1982-01-01
Methods by which real-time executive programs can be implemented in a higher order language are discussed, using HAL/S and Path Pascal languages as program examples. Techniques are presented by which noncyclic tasks can readily be incorporated into the executive system. Situations are shown where the executive system can fail to meet its task scheduling and yet be able to recover either by rephasing the clock or stacking the information for later processing. The concept of deadline processing is shown to enable more effective mixing of time and information synchronized systems.
Squeezing of higher order Hermite-Gauss modes
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard
2008-01-01
The present paper gives an overview of the experimental generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric ampli¯er (OPA). This work was awarded with The European Optical Society (EOS) price 2007. The purpose of the prize is to encourage a European dimension...... in research in pure and applied optics. The EOS prize is awarded based on the selection criteria of high professionalism, academic and technical quality. Following the EOS Prize rules, the conditions for eligibility are that the work was performed in Europe and that it is published under the auspices...
Higher-order dynamical effects in Coulomb dissociation
International Nuclear Information System (INIS)
Esbensen, H.
1994-06-01
We study the effect of higher-order processes in Coulomb dissociation of 11 Li by numerically solving the three-dimensional time-dependent Schroedinger equation for the relative motion of a di-neutron and the 9 Li core. Comparisons are made to first-order perturbation theory and to measurements. The calculated Coulomb reacceleration effects improve the agreement with experiment, but some discrepancy remains. The effects are much smaller in the dissociation of 11 Be, and they decrease with increasing beam energy. (orig.)
Inseparability inequalities for higher order moments for bipartite systems
International Nuclear Information System (INIS)
Agarwal, G S; Biswas, Asoka
2005-01-01
There are several examples of bipartite entangled states of continuous variables for which the existing criteria for entanglement using the inequalities involving the second-order moments are insufficient. We derive new inequalities involving higher order correlation, for testing entanglement in non-Gaussian states. In this context, we study an example of a non-Gaussian state, which is a bipartite entangled state of the form Ψ(x a , x b ) ∝ (αx a + βx b ) e -(x a 2 +x b 2 )/2 . Our results open up an avenue to search for new inequalities to test entanglement in non-Gaussian states
Higher-order thinking in foreign language learning
Bastos, Ascensão; Ramos, Altina
2017-01-01
A project is being conducted in English as a foreign language (EFL), involving eleventh graders in formal and non-formal learning contexts, in a Portuguese high school. The goal of this study is to examine the impact of cognitive tools and higher-order thinking processes on the learning of EFL and achievement of larger processes oriented to action, involving problem solving, decision-making and creation of new products. YouTube videos emerge as cognitive tools in the process. Final results sh...
Supersymmetric extensions of Schrodinger-invariance
International Nuclear Information System (INIS)
Henkel, Malte; Unterberger, Jeremie
2006-01-01
The set of dynamic symmetries of the scalar free Schrodinger equation in d space dimensions gives a realization of the Schrodinger algebra that may be extended into a representation of the conformal algebra in d+2 dimensions, which yields the set of dynamic symmetries of the same equation where the mass is not viewed as a constant, but as an additional coordinate. An analogous construction also holds for the spin-12 Levy-Leblond equation. An N=2 supersymmetric extension of these equations leads, respectively, to a 'super-Schrodinger' model and to the (3 vertical bar 2)-supersymmetric model. Their dynamic supersymmetries form the Lie superalgebras osp(2 vertical bar 2)-bar sh(2 vertical bar 2) and osp(2 vertical bar 4), respectively. The Schrodinger algebra and its supersymmetric counterparts are found to be the largest finite-dimensional Lie subalgebras of a family of infinite-dimensional Lie superalgebras that are systematically constructed in a Poisson algebra setting, including the Schrodinger-Neveu-Schwarz algebra sns (N) with N supercharges. Covariant two-point functions of quasiprimary superfields are calculated for several subalgebras of osp(2 vertical bar 4). If one includes both N=2 supercharges and time-inversions, then the sum of the scaling dimensions is restricted to a finite set of possible values
Analytic smoothing effect for the cubic hyperbolic Schrodinger equation in two space dimensions
Directory of Open Access Journals (Sweden)
Gaku Hoshino
2016-01-01
Full Text Available We study the Cauchy problem for the cubic hyperbolic Schrodinger equation in two space dimensions. We prove existence of analytic global solutions for sufficiently small and exponential decaying data. The method of proof depends on the generalized Leibniz rule for the generator of pseudo-conformal transform acting on pseudo-conformally invariant nonlinearity.
Compiler-Directed Transformation for Higher-Order Stencils
Energy Technology Data Exchange (ETDEWEB)
Basu, Protonu [Univ. of Utah, Salt Lake City, UT (United States); Hall, Mary [Univ. of Utah, Salt Lake City, UT (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-07-20
As the cost of data movement increasingly dominates performance, developers of finite-volume and finite-difference solutions for partial differential equations (PDEs) are exploring novel higher-order stencils that increase numerical accuracy and computational intensity. This paper describes a new compiler reordering transformation applied to stencil operators that performs partial sums in buffers, and reuses the partial sums in computing multiple results. This optimization has multiple effect son improving stencil performance that are particularly important to higher-order stencils: exploits data reuse, reduces floating-point operations, and exposes efficient SIMD parallelism to backend compilers. We study the benefit of this optimization in the context of Geometric Multigrid (GMG), a widely used method to solvePDEs, using four different Jacobi smoothers built from 7-, 13-, 27-and 125-point stencils. We quantify performance, speedup, andnumerical accuracy, and use the Roofline model to qualify our results. Ultimately, we obtain over 4× speedup on the smoothers themselves and up to a 3× speedup on the multigrid solver. Finally, we demonstrate that high-order multigrid solvers have the potential of reducing total data movement and energy by several orders of magnitude.
Time-Discrete Higher-Order ALE Formulations: Stability
Bonito, Andrea
2013-01-01
Arbitrary Lagrangian Eulerian (ALE) formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. This arbitrary extension has no effect on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time-dependent advection-diffusion-model problem in moving domains, and study their stability properties. The analysis hinges on the validity of the Reynold\\'s identity for dG. Exploiting the variational structure and assuming exact integration, we prove that our conservative and nonconservative dG schemes are equivalent and unconditionally stable. The same results remain true for piecewise polynomial ALE maps of any degree and suitable quadrature that guarantees the validity of the Reynold\\'s identity. This approach generalizes the so-called geometric conservation law to higher-order methods. We also prove that simpler Runge-Kutta-Radau methods of any order are conditionally stable, that is, subject to a mild ALE constraint on the time steps. Numerical experiments corroborate and complement our theoretical results. © 2013 Society for Industrial and Applied Mathematics.
Higher-Order Cyclostationarity Detection for Spectrum Sensing
Directory of Open Access Journals (Sweden)
Julien Renard
2010-01-01
Full Text Available Recent years have shown a growing interest in the concept of Cognitive Radios (CRs, able to access portions of the electromagnetic spectrum in an opportunistic operating way. Such systems require efficient detectors able to work in low Signal-to-Noise Ratio (SNR environments, with little or no information about the signals they are trying to detect. Energy detectors are widely used to perform such blind detection tasks, but quickly reach the so-called SNR wall below which detection becomes impossible Tandra (2005. Cyclostationarity detectors are an interesting alternative to energy detectors, as they exploit hidden periodicities present in man-made signals, but absent in noise. Such detectors use quadratic transformations of the signals to extract the hidden sine-waves. While most of the literature focuses on the second-order transformations of the signals, we investigate the potential of higher-order transformations of the signals. Using the theory of Higher-Order Cyclostationarity (HOCS, we derive a fourth-order detector that performs similarly to the second-order ones to detect linearly modulated signals, at SNR around 0 dB, which may be used if the signals of interest do not exhibit second-order cyclostationarity. More generally this paper reviews the relevant aspects of the cyclostationary and HOCS theory, and shows their potential for spectrum sensing.
A Study of Enhanced, Higher Order Boussinesq-Type Equations and Their Numerical Modelling
DEFF Research Database (Denmark)
Banijamali, Babak
model is designated for the solution of higher-order Boussinesq-type equations, formulated in terms of the horizontal velocity at an arbitrary depth vector. Various discretisation techniques and grid definitions have been considered in this endeavour, undertaking a detailed analysis of the selected......This project has encompassed efforts in two separate veins: on the one hand, the acquiring of highly accurate model equations of the Boussinesq-type, and on the other hand, the theoretical and practical work in implementing such equations in the form of conventional numerical models, with obvious...... potential for applications to the realm of numerical modelling in coastal engineering. The derivation and analysis of several forms of higher-order in dispersion and non-linearity Boussinesq-type equations have been undertaken, obtaining and investigating the properties of a new and generalised class...
Analysis of warping deformation modes using higher order ANCF beam element
Orzechowski, Grzegorz; Shabana, Ahmed A.
2016-02-01
Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.
Calculus for cognitive scientists higher order models and their analysis
Peterson, James K
2016-01-01
This book offers a self-study program on how mathematics, computer science and science can be profitably and seamlessly intertwined. This book focuses on two variable ODE models, both linear and nonlinear, and highlights theoretical and computational tools using MATLAB to explain their solutions. It also shows how to solve cable models using separation of variables and the Fourier Series.
Higher order perturbation theory - An example for discussion
International Nuclear Information System (INIS)
Lewins, J.D.; Parks, G.; Babb, A.L.
1986-01-01
Higher order perturbation theory is developed in the form of a Taylor series expansion to third order to calculate the thermal utilization of a nonuniform cell. The development takes advantage of the self-adjoint property of the diffusion operator to provide a simple development of this illustration of generalized perturbation theory employing scalar perturbation parameters. The results show how a designer might employ a second-order theory to quantify proposed design improvements, together with the limitations of second- and third-order theory. The chosen example has an exact optimization solution and thus provides a clear understanding of the role of perturbation theory at its various orders. Convergence and the computational advantages and disadvantages of the method are discussed
Higher-order force moments of active particles
Nasouri, Babak; Elfring, Gwynn J.
2018-04-01
Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.
Higher-order automatic differentiation of mathematical functions
Charpentier, Isabelle; Dal Cappello, Claude
2015-04-01
Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.
Influence of higher order modes on angled-facet amplifiers
DEFF Research Database (Denmark)
Wang, Z.; Mikkelsen, B.; Stubkjær, Kristian
1991-01-01
The influence of the first-order mode on the residual reflectivity of angled-facet amplifiers is analyzed. For a 7 degrees angled-facet ridge waveguide amplifier with a single-layer antireflective (AR) coating, a gain ripple lower than 1-dB at 25-dB gain can be obtained independent...... of the polarization, even in the presence of a first-order mode with a 15-dB gain. The tolerances for the thickness and refractive index of the AR coating are reduced by a factor of three compared to operation in the fundamental mode only. The influence of the higher order mode can virtually be suppressed...
Neutron scattering studies on chromatin higher-order structure
Energy Technology Data Exchange (ETDEWEB)
Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V. [Brookhaven National Laboratory, Upton, NY (United States)
1994-12-31
We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.
Minimization of heat slab nodes with higher order boundary conditions
International Nuclear Information System (INIS)
Solbrig, C.W.
1992-01-01
The accuracy of a numerical solution can be limited by the numerical approximation to the boundary conditions rather than the accuracy of the equations which describe the interior. The study presented in this paper compares the results from two different numerical formulations of the convective boundary condition on the face of a heat transfer slab. The standard representation of the boundary condition in a test problem yielded an unacceptable error even when the heat transfer slab was partitioned into over 300 nodes. A higher order boundary condition representation was obtained by using a second order approximation for the first derivative at the boundary and combining it with the general equation used for inner nodes. This latter formulation produced reasonable results when as few as ten nodes were used
Mixed Higher Order Variational Model for Image Recovery
Directory of Open Access Journals (Sweden)
Pengfei Liu
2014-01-01
Full Text Available A novel mixed higher order regularizer involving the first and second degree image derivatives is proposed in this paper. Using spectral decomposition, we reformulate the new regularizer as a weighted L1-L2 mixed norm of image derivatives. Due to the equivalent formulation of the proposed regularizer, an efficient fast projected gradient algorithm combined with monotone fast iterative shrinkage thresholding, called, FPG-MFISTA, is designed to solve the resulting variational image recovery problems under majorization-minimization framework. Finally, we demonstrate the effectiveness of the proposed regularization scheme by the experimental comparisons with total variation (TV scheme, nonlocal TV scheme, and current second degree methods. Specifically, the proposed approach achieves better results than related state-of-the-art methods in terms of peak signal to ratio (PSNR and restoration quality.
MHD stability analysis using higher order spline functions
Energy Technology Data Exchange (ETDEWEB)
Ida, Akihiro [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi (Japan); Todoroki, Jiro; Sanuki, Heiji
1999-04-01
The eigenvalue problem of the linearized magnetohydrodynamic (MHD) equation is formulated by using higher order spline functions as the base functions of Ritz-Galerkin approximation. When the displacement vector normal to the magnetic surface (in the magnetic surface) is interpolated by B-spline functions of degree p{sub 1} (degree p{sub 2}), which is continuously c{sub 1}-th (c{sub 2}-th) differentiable on neighboring finite elements, the sufficient conditions for the good approximation is given by p{sub 1}{>=}p{sub 2}+1, c{sub 1}{<=}c{sub 2}+1, (c{sub 1}{>=}1, p{sub 2}{>=}c{sub 2}{>=}0). The influence of the numerical integration upon the convergence of calculated eigenvalues is discussed. (author)
Higher-order momentum distributions and locally affine LDDMM registration
DEFF Research Database (Denmark)
Sommer, Stefan Horst; Nielsen, Mads; Darkner, Sune
2013-01-01
description of affine transformations and subsequent compact description of non-translational movement in a globally nonrigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction......To achieve sparse parametrizations that allow intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper...... higher-order momentum distributions in the large deformation diffeomorphic metric mapping (LDDMM) registration framework. While the zeroth-order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local...
Higher-order structure of Saccharomyces cerevisiae chromatin
International Nuclear Information System (INIS)
Lowary, P.T.; Widom, J.
1989-01-01
We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure
Higher order corrections to asymptotic-de Sitter inflation
Mohsenzadeh, M.; Yusofi, E.
2017-08-01
Since trans-Planckian considerations can be associated with the re-definition of the initial vacuum, we investigate further the influence of trans-Planckian physics on the spectra produced by the initial quasi-de Sitter (dS) state during inflation. We use the asymptotic-dS mode to study the trans-Planckian correction of the power spectrum to the quasi-dS inflation. The obtained spectra consist of higher order corrections associated with the type of geometry and harmonic terms sensitive to the fluctuations of space-time (or gravitational waves) during inflation. As an important result, the amplitude of the power spectrum is dependent on the choice of c, i.e. the type of space-time in the period of inflation. Also, the results are always valid for any asymptotic dS space-time and particularly coincide with the conventional results for dS and flat space-time.
Neutron scattering studies on chromatin higher-order structure
International Nuclear Information System (INIS)
Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V.
1994-01-01
We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist
Higher order statistical moment application for solar PV potential analysis
Basri, Mohd Juhari Mat; Abdullah, Samizee; Azrulhisham, Engku Ahmad; Harun, Khairulezuan
2016-10-01
Solar photovoltaic energy could be as alternative energy to fossil fuel, which is depleting and posing a global warming problem. However, this renewable energy is so variable and intermittent to be relied on. Therefore the knowledge of energy potential is very important for any site to build this solar photovoltaic power generation system. Here, the application of higher order statistical moment model is being analyzed using data collected from 5MW grid-connected photovoltaic system. Due to the dynamic changes of skewness and kurtosis of AC power and solar irradiance distributions of the solar farm, Pearson system where the probability distribution is calculated by matching their theoretical moments with that of the empirical moments of a distribution could be suitable for this purpose. On the advantage of the Pearson system in MATLAB, a software programming has been developed to help in data processing for distribution fitting and potential analysis for future projection of amount of AC power and solar irradiance availability.
Recognition of higher order patterns in proteins: immunologic kernels.
Directory of Open Access Journals (Sweden)
Robert D Bremel
Full Text Available By applying analysis of the principal components of amino acid physical properties we predicted cathepsin cleavage sites, MHC binding affinity, and probability of B-cell epitope binding of peptides in tetanus toxin and in ten diverse additional proteins. Cross-correlation of these metrics, for peptides of all possible amino acid index positions, each evaluated in the context of a ±25 amino acid flanking region, indicated that there is a strongly repetitive pattern of short peptides of approximately thirty amino acids each bounded by cathepsin cleavage sites and each comprising B-cell linear epitopes, MHC-I and MHC-II binding peptides. Such "immunologic kernel" peptides comprise all signals necessary for adaptive immunologic cognition, response and recall. The patterns described indicate a higher order spatial integration that forms a symbolic logic coordinating the adaptive immune system.
Higher-order phase transitions on financial markets
Kasprzak, A.; Kutner, R.; Perelló, J.; Masoliver, J.
2010-08-01
Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q'). It diverges for any negative scaling powers q' (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q'). This exponent is the nonanalytic (singular) or noninteger power of q', which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent α defining the stretched
Predictors of third and Higher order births in India
Directory of Open Access Journals (Sweden)
Payal Singh
2015-12-01
Full Text Available Background: Total fertility rate (TFR reflecting population growth is closely related to higher order parity progression. Many Indian states reached replacement level of TFR, but still states constituting nearly 40% population are with TFR ≥ 3. The predictors are the desire of son’s, poor contraceptives practices, younger age at marriage, child loss and shorter birth spacing. Objective: This analysis assessed the degree of relation of 3rd and higher order parity progression with the above mentioned predictors. Material and Methods: State/Union Territories wise proportions of women: progressing to ≥3 births, more sons desire, birth spacing <24 months, adopting modern contraception and median marriage age <18 years along with infant mortality rate (IMR were taken from NFHS-III report. Correlation matrix and stepwise forward multiple regression carried. Significance was seen at 5%. Results: Hindi speaking states constituting 38.92% nation population recorded TFR ≥3. Positive correlation of mothers progressing ≥ 3 births was highest (0.746 with those desiring more sons followed by IMR (0.445; while maximum negative correlation with those practicing modern contraceptives (-0.565 followed by median age at marriage (-0.391. Multiple regression analysis in order identified desire of more sons, practicing modern contraception and shorter birth spacing as the significant predictors and jointly explained 77.9% of the total variation with gain of 15.5% by adding modern contraceptive practice and 8.3% by adding shorter birth spacing. Conclusions: Desire of more sons appeared the most important predictor to progress ≥3 births that is governed by society culture and educational attainment, require attitudinal change. Further, mothers need motivation to practice both spacing and terminal methods once family is complete.
Higher-order conditioning is impaired by hippocampal lesions.
Gilboa, Asaf; Sekeres, Melanie; Moscovitch, Morris; Winocur, Gordon
2014-09-22
Behavior in the real world is rarely motivated by primary conditioned stimuli that have been directly associated with potent unconditioned reinforcers. Instead, motivation and choice behavior are driven by complex chains of higher-order associations that are only indirectly linked to intrinsic reward and often exert their influence outside awareness. Second-order conditioning (SOC) [1] is a basic associative-learning mechanism whereby stimuli acquire motivational salience by proxy, in the absence of primary incentives [2, 3]. Memory-systems theories consider first-order conditioning (FOC) and SOC to be prime examples of hippocampal-independent nondeclarative memory [4, 5]. Accordingly, neurobiological models of SOC focus almost exclusively on nondeclarative neural systems that support motivational salience and reward value. Transfer of value from a conditioned stimulus to a neutral stimulus is thought to require the basolateral amygdala [6, 7] and the ventral striatum [2, 3], but not the hippocampus. We developed a new paradigm to measure appetitive SOC of tones in rats. Hippocampal lesions severely impaired both acquisition and expression of SOC despite normal FOC. Unlike controls, rats with hippocampal lesions could not discriminate between positive and negative secondary conditioned tones, although they exhibited general familiarity with previously presented tones compared with new tones. Importantly, normal rats' behavior, in contrast to that of hippocampal groups, also revealed different confidence levels as indexed by effort, a central characteristic of hippocampal relational memory. The results indicate, contrary to current systems models, that representations of intrinsic relationships between reward value, stimulus identity, and motivation require hippocampal mediation when these relationships are of a higher order. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fractional equivalent Lagrangian densities for a fractional higher-order equation
International Nuclear Information System (INIS)
Fujioka, J
2014-01-01
In this communication we show that the equivalent Lagrangian densities (ELDs) of a fractional higher-order nonlinear Schrödinger equation with stable soliton-like solutions can be related in a hitherto unknown way. This new relationship is described in terms of a new fractional operator that includes both left- and right-sided fractional derivatives. Using this operator it is possible to generate new ELDs that contain different fractional parts, in addition to the already known ELDs, which only differ by a sum of first-order partial derivatives of two arbitrary functions. (fast track communications)
Experimental investigations of higher-order springing and whipping-WILS project
Directory of Open Access Journals (Sweden)
Hong Sa Young
2014-12-01
Full Text Available Springing and whipping are becoming increasingly important considerations in ship design as container ships increase in size. In this study, the springing and whipping characteristics of a large container ship were investigated through a series of systematic model tests in waves. A multi-segmented hull model with a backbone was adopted for measurement of springing and whipping signals. A conversion method for extracting torsion springing and whipping is described in this paper for the case of an open-section backbone. Higher-order springing, higher-mode torsion responses, and the effects of linear and nonlinear springing in irregular waves are highlighted in the discussion.
Breatherlike impurity modes in discrete nonlinear lattices
DEFF Research Database (Denmark)
Hennig, D.; Rasmussen, Kim; Tsironis, G. P.
1995-01-01
We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...
Soliton solutions for a quasilinear Schrodinger equation
Directory of Open Access Journals (Sweden)
Duchao Liu
2013-12-01
Full Text Available In this article, critical point theory is used to show the existence of nontrivial weak solutions to the quasilinear Schrodinger equation $$ -\\Delta_p u-\\frac{p}{2^{p-1}}u\\Delta_p(u^2=f(x,u $$ in a bounded smooth domain $\\Omega\\subset\\mathbb{R}^{N}$ with Dirichlet boundary conditions.
A Higher-Order Neural Network Design for Improving Segmentation Performance in Medical Image Series
International Nuclear Information System (INIS)
Selvi, Eşref; Selver, M Alper; Güzeliş, Cüneyt; Dicle, Oǧuz
2014-01-01
Segmentation of anatomical structures from medical image series is an ongoing field of research. Although, organs of interest are three-dimensional in nature, slice-by-slice approaches are widely used in clinical applications because of their ease of integration with the current manual segmentation scheme. To be able to use slice-by-slice techniques effectively, adjacent slice information, which represents likelihood of a region to be the structure of interest, plays critical role. Recent studies focus on using distance transform directly as a feature or to increase the feature values at the vicinity of the search area. This study presents a novel approach by constructing a higher order neural network, the input layer of which receives features together with their multiplications with the distance transform. This allows higher-order interactions between features through the non-linearity introduced by the multiplication. The application of the proposed method to 9 CT datasets for segmentation of the liver shows higher performance than well-known higher order classification neural networks
Higher order effects in electroweak theory 1981-12 (KEK)
International Nuclear Information System (INIS)
Aoki, Ken-ichi
1982-01-01
This is a brief report on the higher order or loop effects in electroweak theory. The discussion is based on the Weinberg Salam model and QCD. The loop correction to weak interaction is described. The renormalization conditions were applied to physical parameters, α(QED), M(W) and M(Z). It is expected to obtain experimentally the values of M(W) and M(Z) with the accuracy of 0.1 percent. In this scheme, the parameters were fixed loop by loop. The correction was evaluated along the present on-shell scheme. The general estimation of the order of correction was performed. The evaluation of the size of terms in one-loop correction was made. The examples of one loop analysis are presented. The leading logarithmic correction such as α ln(m 2 q 2 /M 2 ) is discussed. The system was described by H(eff) with the local operator O(i), in which the propagator of heavy particles was contracted. The effective interaction was obtained as C(i) (q 2 ) O(i), where C(i)(q 2 ) satisfies a proper equation of a renormalization group. As the practical examples, μ-decay, charged current and neutral current were studied. The correction to electron neutral current and the shift of M(W) and M(Z) were numerically obtained. Comments on quark mass and the uncertainty of sin 2 (theta) from the νN reaction are presented. (Kato, T.)
Higher-order scalar interactions and SM vacuum stability
Energy Technology Data Exchange (ETDEWEB)
Lalak, Zygmunt; Lewicki, Marek; Olszewski, Paweł [Institute of Theoretical Physics, Faculty of Physics, University of Warsawul. Hoża 69, Warsaw (Poland)
2014-05-26
Investigation of the structure of the Standard Model effective potential at very large field strengths opens a window towards new phenomena and can reveal properties of the UV completion of the SM. The map of the lifetimes of the vacua of the SM enhanced by nonrenormalizable scalar couplings has been compiled to show how new interactions modify stability of the electroweak vacuum. Whereas it is possible to stabilize the SM by adding Planck scale suppressed interactions and taking into account running of the new couplings, the generic effect is shortening the lifetime and hence further destabilisation of the SM electroweak vacuum. These findings have been illustrated with phase diagrams of modified SM-like models. It has been demonstrated that stabilisation can be achieved by lowering the suppression scale of higher order operators while picking up such combinations of new couplings, which do not deepen the new minima of the potential. Our results show the dependence of the lifetime of the electroweak minimum on the magnitude of the new couplings, including cases with very small couplings (which means very large effective suppression scale) and couplings vastly different in magnitude (which corresponds to two different suppression scales)
General relativity and gauge gravity theories of higher order
International Nuclear Information System (INIS)
Konopleva, N.P.
1998-01-01
It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G ∞4 as the local gauge symmetry group and the symmetrical tensor of rank two g μν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one
Predicting perceptual learning from higher-order cortical processing.
Wang, Fang; Huang, Jing; Lv, Yaping; Ma, Xiaoli; Yang, Bin; Wang, Encong; Du, Boqi; Li, Wu; Song, Yan
2016-01-01
Visual perceptual learning has been shown to be highly specific to the retinotopic location and attributes of the trained stimulus. Recent psychophysical studies suggest that these specificities, which have been associated with early retinotopic visual cortex, may in fact not be inherent in perceptual learning and could be related to higher-order brain functions. Here we provide direct electrophysiological evidence in support of this proposition. In a series of event-related potential (ERP) experiments, we recorded high-density electroencephalography (EEG) from human adults over the course of learning in a texture discrimination task (TDT). The results consistently showed that the earliest C1 component (68-84ms), known to reflect V1 activity driven by feedforward inputs, was not modulated by learning regardless of whether the behavioral improvement is location specific or not. In contrast, two later posterior ERP components (posterior P1 and P160-350) over the occipital cortex and one anterior ERP component (anterior P160-350) over the prefrontal cortex were progressively modified day by day. Moreover, the change of the anterior component was closely correlated with improved behavioral performance on a daily basis. Consistent with recent psychophysical and imaging observations, our results indicate that perceptual learning can mainly involve changes in higher-level visual cortex as well as in the neural networks responsible for cognitive functions such as attention and decision making. Copyright © 2015 Elsevier Inc. All rights reserved.
Estimation of uncertainties from missing higher orders in perturbative calculations
International Nuclear Information System (INIS)
Bagnaschi, E.
2015-05-01
In this proceeding we present the results of our recent study (hep-ph/1409.5036) of the statistical performances of two different approaches, Scale Variation (SV) and the Bayesian model of Cacciari and Houdeau (CH)(hep-ph/1105.5152) (which we also extend to observables with initial state hadrons), to the estimation of Missing Higher-Order Uncertainties (MHOUs)(hep-ph/1307.1843) in perturbation theory. The behavior of the models is determined by analyzing, on a wide set of observables, how the MHOU intervals they produce are successful in predicting the next orders. We observe that the Bayesian model behaves consistently, producing intervals at 68% Degree of Belief (DoB) comparable with the scale variation intervals with a rescaling factor r larger than 2 and closer to 4. Concerning SV, our analysis allows the derivation of a heuristic Confidence Level (CL) for the intervals. We find that assigning a CL of 68% to the intervals obtained with the conventional choice of varying the scales within a factor of two with respect to the central scale could potentially lead to an underestimation of the uncertainties in the case of observables with initial state hadrons.
Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.
Directory of Open Access Journals (Sweden)
Brendan Chambers
2016-08-01
Full Text Available Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated. We find that a dynamical feature dominates statistical descriptions of propagating activity for both neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs during ongoing activity to effectively generate postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent networks. Interplay between higher-order synaptic connectivity and the integrative properties of neurons constrains the structure of network dynamics and shapes the routing of information in neocortex.
Effective description of higher-order scalar-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Langlois, David [APC—Astroparticule et Cosmologie, Université Paris Diderot Paris 7, 75013 Paris (France); Mancarella, Michele; Vernizzi, Filippo [Institut de physique théorique, Université Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette (France); Noui, Karim, E-mail: langlois@apc.univ-paris7.fr, E-mail: michele.mancarella@cea.fr, E-mail: karim.noui@lmpt.univ-tours.fr, E-mail: filippo.vernizzi@cea.fr [Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Parc de Grandmont, 37200 Tours (France)
2017-05-01
Most existing theories of dark energy and/or modified gravity, involving a scalar degree of freedom, can be conveniently described within the framework of the Effective Theory of Dark Energy, based on the unitary gauge where the scalar field is uniform. We extend this effective approach by allowing the Lagrangian in unitary gauge to depend on the time derivative of the lapse function. Although this dependence generically signals the presence of an extra scalar degree of freedom, theories that contain only one propagating scalar degree of freedom, in addition to the usual tensor modes, can be constructed by requiring the initial Lagrangian to be degenerate. Starting from a general quadratic action, we derive the dispersion relations for the linear perturbations around Minkowski and a cosmological background. Our analysis directly applies to the recently introduced Degenerate Higher-Order Scalar-Tensor (DHOST) theories. For these theories, we find that one cannot recover a Poisson-like equation in the static linear regime except for the subclass that includes the Horndeski and so-called 'beyond Horndeski' theories. We also discuss Lorentz-breaking models inspired by Horava gravity.
Higher order mode analysis of the SNS superconducting linac
Sang Ho Kim; Dong Jeon; Sundelin, R
2001-01-01
Higher order modes (HOM's) of monopoles, dipoles, quadrupoles and sextupoles in beta =0.61 and beta =0.81 6-cell superconducting (SC) cavities for the Spallation Neutron Source (SNS) project, have been found up to about 3 GHz and their properties such as R/Q, trapping possibility, etc have been figured out concerning manufacturing imperfection. The main issues of HOM's are beam instabilities (published separately) and HOM induced power especially from TM monopoles. The time structure of SNS beam has three different time scales of pulses, which are micro-pulse, midi-pulse and macropulse. Each time structure will generate resonances. When a mode is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power. In order to understand the effects from such a complex beam time structure on the mode excitation and resulting HOM power, analytic expressions are developed. With these analytic expressions, the induced HOM voltage and HOM power were calculated by assuming e...
Scalar brane backgrounds in higher order curvature gravity
International Nuclear Information System (INIS)
Charmousis, Christos; Davis, Stephen C.; Dufaux, Jean-Francois
2003-01-01
We investigate maximally symmetric brane world solutions with a scalar field. Five-dimensional bulk gravity is described by a general lagrangian which yields field equations containing no higher than second order derivatives. This includes the Gauss-Bonnet combination for the graviton. Stability and gravitational properties of such solutions are considered, and we particularly emphasise the modifications induced by the higher order terms. In particular it is shown that higher curvature corrections to Einstein theory can give rise to instabilities in brane world solutions. A method for analytically obtaining the general solution for such actions is outlined. Generically, the requirement of a finite volume element together with the absence of a naked singularity in the bulk imposes fine-tuning of the brane tension. A model with a moduli scalar field is analysed in detail and we address questions of instability and non-singular self-tuning solutions. In particular, we discuss a case with a normalisable zero mode but infinite volume element. (author)
Correlated stopping, proton clusters and higher order proton cumulants
Energy Technology Data Exchange (ETDEWEB)
Bzdak, Adam [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Koch, Volker [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Skokov, Vladimir [RIKEN/BNL, Brookhaven National Laboratory, Upton, NY (United States)
2017-05-15
We investigate possible effects of correlations between stopped nucleons on higher order proton cumulants at low energy heavy-ion collisions. We find that fluctuations of the number of wounded nucleons N{sub part} lead to rather nontrivial dependence of the correlations on the centrality; however, this effect is too small to explain the large and positive four-proton correlations found in the preliminary data collected by the STAR collaboration at √(s) = 7.7 GeV. We further demonstrate that, by taking into account additional proton clustering, we are able to qualitatively reproduce the preliminary experimental data. We speculate that this clustering may originate either from collective/multi-collision stopping which is expected to be effective at lower energies or from a possible first-order phase transition, or from (attractive) final state interactions. To test these ideas we propose to measure a mixed multi-particle correlation between stopped protons and a produced particle (e.g. pion, antiproton). (orig.)
Near integrability of kink lattice with higher order interactions
Jiang, Yun-Guo; Liu, Jia-Zhen; He, Song
2017-11-01
We make use of Manton’s analytical method to investigate the force between kinks and anti-kinks at large distances in 1+1 dimensional field theory. The related potential has infinite order corrections of exponential pattern, and the coefficients for each order are determined. These coefficients can also be obtained by solving the equation of the fluctuations around the vacuum. At the lowest order, the kink lattice represents the Toda lattice. With higher order correction terms, the kink lattice can represent one kind of generic Toda lattice. With only two sites, the kink lattice is classically integrable. If the number of sites of the lattice is larger than two, the kink lattice is not integrable but is a near integrable system. We make use of Flaschka’s variables to study the Lax pair of the kink lattice. These Flaschka’s variables have interesting algebraic relations and non-integrability can be manifested. We also discuss the higher Hamiltonians for the deformed open Toda lattice, which has a similar result to the ordinary deformed Toda. Supported by Shandong Provincial Natural Science Foundation (ZR2014AQ007), National Natural Science Foundation of China (11403015, U1531105), S. He is supported by Max-Planck fellowship in Germany and National Natural Science Foundation of China (11305235)
Higher order corrections to energy levels of muonic atoms
International Nuclear Information System (INIS)
Rinker, G.A. Jr.; Steffen, R.M.
1975-08-01
In order to facilitate the analysis of muonic x-ray spectra, the results of numerical computations of all higher order quantum electrodynamical corrections to the energy levels of muonic atoms are presented in tabular and graphical form. These corrections include the vacuum polarization corrections caused by emission and reabsorption of virtual electron pairs to all orders, including ''double-bubble'' and ''cracked-egg'' diagrams. An estimate of the Delbruecke scattering-type correction is presented. The Lamb-shift (second- and fourth-order vertex) corrections have been calculated including the correction for the anomalous magnetic moment of the muon. The relativistic nuclear motion (or recoil) correction as well as the correction caused by the screening of the atomic electrons is presented in graphs. For the sake of completeness a graph of the nuclear polarization as computed on the basis of Chen's approach has been included. All calculations were made with a two-parameter Fermi distribution of the nuclear charge density. 7 figures, 23 references
Higher-order relativistic periastron advances and binary pulsars
International Nuclear Information System (INIS)
Damour, T.; Schafer, G.
1988-01-01
The contributions to the periastron advance of a system of two condensed bodies coming from relativistic dynamical effects of order higher than the usual first post-Newtonian (1PN) equations of motion are investigated. The structure of the solution of the orbital second post-Newtonian (2PN) equations of motion is given in a simple parametrized form. The contributions to the secular pariastron advance, and the period, of orbital 2PN effects are then explicitly worked out by using the Hamilton-Jacobi method. The spin-orbit contribution to the secular precession of the orbit in space is rederived in a streamlined way by making full use of Hamiltonian methods. These results are then applied to the theoretical interpretation of the observational data of pulsars in close eccentric binary systems. It is shown that the higher-order relativistic contributions are already of theoretical and astophysical significance for interpreting the high-precision measurement of the secular periastron advance of PSR 1913+16 achived by Taylor and coworkers. The case of extremely fast spinning (millisecond) binary pulsars is also discussed, and shown to offer an easier ground for getting new tests of general relativity, and/or, a direct measurement of the moment of inertia of a neutron star
Higher Order Modes Excitation of Micro Cantilever Beams
Jaber, Nizar
2014-05-01
In this study, we present analytical and experimental investigation of electrically actuated micro cantilever based resonators. These devices are fabricated using polyimide and coated with chrome and gold layers from both sides. The cantilevers are highly curled up due to stress gradient, which is a common imperfection in surface micro machining. Using a laser Doppler vibrometer, we applied a noise signal to experimentally find the first four resonance frequencies. Then, using a data acquisition card, we swept the excitation frequency around the first four natural modes of vibrations. Theoretically, we derived a reduced order model using the Galerkin method to simulate the dynamics of the system. Extensive numerical analysis and computations were performed. The numerical analysis was able to provide good matching with experimental values of the resonance frequencies. Also, we proved the ability to excite higher order modes using partial electrodes with shapes that resemble the shape of the mode of interest. Such micro-resonators are shown to be promising for applications in mass and gas sensing.
Higher-order scene statistics of breast images
Abbey, Craig K.; Sohl-Dickstein, Jascha N.; Olshausen, Bruno A.; Eckstein, Miguel P.; Boone, John M.
2009-02-01
Researchers studying human and computer vision have found description and construction of these systems greatly aided by analysis of the statistical properties of naturally occurring scenes. More specifically, it has been found that receptive fields with directional selectivity and bandwidth properties similar to mammalian visual systems are more closely matched to the statistics of natural scenes. It is argued that this allows for sparse representation of the independent components of natural images [Olshausen and Field, Nature, 1996]. These theories have important implications for medical image perception. For example, will a system that is designed to represent the independent components of natural scenes, where objects occlude one another and illumination is typically reflected, be appropriate for X-ray imaging, where features superimpose on one another and illumination is transmissive? In this research we begin to examine these issues by evaluating higher-order statistical properties of breast images from X-ray projection mammography (PM) and dedicated breast computed tomography (bCT). We evaluate kurtosis in responses of octave bandwidth Gabor filters applied to PM and to coronal slices of bCT scans. We find that kurtosis in PM rises and quickly saturates for filter center frequencies with an average value above 0.95. By contrast, kurtosis in bCT peaks near 0.20 cyc/mm with kurtosis of approximately 2. Our findings suggest that the human visual system may be tuned to represent breast tissue more effectively in bCT over a specific range of spatial frequencies.
Higher-order Skyrme hair of black holes
Gudnason, Sven Bjarke; Nitta, Muneto
2018-05-01
Higher-order derivative terms are considered as replacement for the Skyrme term in an Einstein-Skyrme-like model in order to pinpoint which properties are necessary for a black hole to possess stable static scalar hair. We find two new models able to support stable black hole hair in the limit of the Skyrme term being turned off. They contain 8 and 12 derivatives, respectively, and are roughly the Skyrme-term squared and the so-called BPS-Skyrme-term squared. In the twelfth-order model we find that the lower branches, which are normally unstable, become stable in the limit where the Skyrme term is turned off. We check this claim with a linear stability analysis. Finally, we find for a certain range of the gravitational coupling and horizon radius, that the twelfth-order model contains 4 solutions as opposed to 2. More surprisingly, the lowest part of the would-be unstable branch turns out to be the stable one of the 4 solutions.
Higher order total variation regularization for EIT reconstruction.
Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Zhang, Fan; Mueller-Lisse, Ullrich; Moeller, Knut
2018-01-08
Electrical impedance tomography (EIT) attempts to reveal the conductivity distribution of a domain based on the electrical boundary condition. This is an ill-posed inverse problem; its solution is very unstable. Total variation (TV) regularization is one of the techniques commonly employed to stabilize reconstructions. However, it is well known that TV regularization induces staircase effects, which are not realistic in clinical applications. To reduce such artifacts, modified TV regularization terms considering a higher order differential operator were developed in several previous studies. One of them is called total generalized variation (TGV) regularization. TGV regularization has been successively applied in image processing in a regular grid context. In this study, we adapted TGV regularization to the finite element model (FEM) framework for EIT reconstruction. Reconstructions using simulation and clinical data were performed. First results indicate that, in comparison to TV regularization, TGV regularization promotes more realistic images. Graphical abstract Reconstructed conductivity changes located on selected vertical lines. For each of the reconstructed images as well as the ground truth image, conductivity changes located along the selected left and right vertical lines are plotted. In these plots, the notation GT in the legend stands for ground truth, TV stands for total variation method, and TGV stands for total generalized variation method. Reconstructed conductivity distributions from the GREIT algorithm are also demonstrated.
Higher-order gravity and the classical equivalence principle
Accioly, Antonio; Herdy, Wallace
2017-11-01
As is well known, the deflection of any particle by a gravitational field within the context of Einstein’s general relativity — which is a geometrical theory — is, of course, nondispersive. Nevertheless, as we shall show in this paper, the mentioned result will change totally if the bending is analyzed — at the tree level — in the framework of higher-order gravity. Indeed, to first order, the deflection angle corresponding to the scattering of different quantum particles by the gravitational field mentioned above is not only spin dependent, it is also dispersive (energy-dependent). Consequently, it violates the classical equivalence principle (universality of free fall, or equality of inertial and gravitational masses) which is a nonlocal principle. However, contrary to popular belief, it is in agreement with the weak equivalence principle which is nothing but a statement about purely local effects. It is worthy of note that the weak equivalence principle encompasses the classical equivalence principle locally. We also show that the claim that there exists an incompatibility between quantum mechanics and the weak equivalence principle, is incorrect.
An efficient technique for higher order fractional differential equation.
Ali, Ayyaz; Iqbal, Muhammad Asad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Mohyud-Din, Syed Tauseef
2016-01-01
In this study, we establish exact solutions of fractional Kawahara equation by using the idea of [Formula: see text]-expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Higher-order ice-sheet modelling accelerated by multigrid on graphics cards
Brædstrup, Christian; Egholm, David
2013-04-01
Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.
Threshold resummation and higher order effects in QCD
International Nuclear Information System (INIS)
Ringer, Felix Maximilian
2015-01-01
Quantum chromodynamics (QCD) is a quantum field theory that describes the strong interactions between quarks and gluons, the building blocks of all hadrons. Thanks to the experimental progress over the past decades, there has been an ever-growing need for QCD precision calculations for scattering processes involving hadrons. For processes at large momentum transfer, perturbative QCD offers a systematic approach for obtaining precise predictions. This approach relies on two key concepts: the asymptotic freedom of QCD and factorization. In a perturbative calculation at higher orders, the infrared cancellation between virtual and real emission diagrams generally leaves behind logarithmic contributions. In many observables relevant for hadronic scattering these logarithms are associated with a kinematic threshold and are hence known as ''threshold logarithms''. They become large when the available phase space for real gluon emission shrinks. In order to obtain a reliable prediction from QCD, the threshold logarithms need to be taken into account to all orders in the strong coupling constant, a procedure known as ''threshold resummation''. The main focus of my PhD thesis is on studies of QCD threshold resummation effects beyond the next-to-leading logarithmic order. Here we primarily consider the production of hadron pairs in hadronic collisions as an example. In addition, we also consider hadronic jet production, which is particularly interesting for the phenomenology at the LHC. For both processes, we fully take into account the non-trivial QCD color structure of the underlying partonic hard- scattering cross sections. We find that threshold resummation leads to sizable numerical effects in the kinematic regimes relevant for comparisons to experimental data.
1957-2007: 50 Years of Higher Order Programming Languages
Directory of Open Access Journals (Sweden)
Alen Lovrenčić
2009-06-01
Full Text Available Fifty years ago one of the greatest breakthroughs in computer programming and in the history of computers happened -- the appearance of FORTRAN, the first higher-order programming language. From that time until now hundreds of programming languages were invented, different programming paradigms were defined, all with the main goal to make computer programming easier and closer to as many people as possible. Many battles were fought among scientists as well as among developers around concepts of programming, programming languages and paradigms. It can be said that programming paradigms and programming languages were very often a trigger for many changes and improvements in computer science as well as in computer industry. Definitely, computer programming is one of the cornerstones of computer science.Today there are many tools that give a help in the process of programming, but there is still a programming tasks that can be solved only manually. Therefore, programming is still one of the most creative parts of interaction with computers.Programmers should chose programming language in accordance to task they have to solve, but very often, they chose it in accordance to their personal preferences, their beliefs and many other subjective reasons.Nevertheless, the market of programming languages can be merciless to languages as history was merciless to some people, even whole nations. Programming languages and developers get born, live and die leaving more or less tracks and successors, and not always the best survives. The history of programming languages is closely connected to the history of computers and computer science itself. Every single thing from one of them has its reflexions onto the other. This paper gives a short overview of last fifty years of computer programming and computer programming languages, but also gives many ideas that influenced other aspects of computer science. Particularly, programming paradigms are described, their
Higher order energy transfer. Quantum electrodynamical calculations and graphical representation
International Nuclear Information System (INIS)
Jenkins, R.D.
2000-01-01
In Chapter 1, a novel method of calculating quantum electrodynamic amplitudes is formulated using combinatorial theory. This technique is used throughout instead of conventional time-ordered methods. A variety of hyperspaces are discussed to highlight isomorphism between a number of A generalisation of Pascal's triangle is shown to be beneficial in determining the form of hyperspace graphs. Chapter 2 describes laser assisted resonance energy transfer (LARET), a higher order perturbative contribution to the well-known process resonance energy transfer, accommodating an off resonance auxiliary laser field to stimulate the migration. Interest focuses on energy exchanges between two uncorrelated molecular species, as in a system where molecules are randomly oriented. Both phase-weighted and standard isotropic averaging are required for the calculations. Results are discussed in terms of a laser intensity-dependent mechanism. Identifying the applied field regime where LARET should prove experimentally significant, transfer rate increases of up to 30% are predicted. General results for three-center energy transfer are elucidated in chapter 3. Cooperative and accretive mechanistic pathways are identified with theory formulated to elicit their role in a variety of energy transfer phenomena and their relative dominance. In multichromophoric the interplay of such factors is analysed with regard to molecular architectures. The alignments and magnitudes of donor and acceptor transition moments and polarisabilities prove to have profound effects on achievable pooling efficiency for linear configurations. Also optimum configurations are offered. In ionic lattices, although both mechanisms play significant roles in pooling and cutting processes, only the accretive is responsible for sensitisation. The local, microscopic level results are used to gauge the lattice response, encompassing concentration and structural effects. (author)
Preparation and characterization of stable aqueous higher-order fullerenes
International Nuclear Information System (INIS)
Aich, Nirupam; Flora, Joseph R V; Saleh, Navid B
2012-01-01
Stable aqueous suspensions of nC 60 and individual higher fullerenes, i.e. C 70 , C 76 and C 84 , are prepared by a calorimetric modification of a commonly used liquid–liquid extraction technique. The energy requirement for synthesis of higher fullerenes has been guided by molecular-scale interaction energy calculations. Solubilized fullerenes show crystalline behavior by exhibiting lattice fringes in high resolution transmission electron microscopy images. The fullerene colloidal suspensions thus prepared are stable with a narrow distribution of cluster radii (42.7 ± 0.8 nm, 46.0 ± 14.0 nm, 60 ± 3.2 nm and 56.3 ± 1.1 nm for nC 60 , nC 70 , nC 76 and nC 84 , respectively) as measured by time-resolved dynamic light scattering. The ζ-potential values for all fullerene samples showed negative surface potentials with similar magnitude ( − 38.6 ± 5.8 mV, − 39.1 ± 4.2 mV, − 38.9 ± 5.8 mV and − 41.7 ± 5.1 mV for nC 60 , nC 70 , nC 76 and nC 84 , respectively), which provide electrostatic stability to the colloidal clusters. This energy-based modified solubilization technique to produce stable aqueous fullerenes will likely aid in future studies focusing on better applicability, determination of colloidal properties, and understanding of environmental fate, transport and toxicity of higher-order fullerenes. (paper)
Higher-order aberrations and visual acuity after LASEK.
Urgancioglu, Berrak; Bilgihan, Kamil; Ozturk, Sertac
2008-08-01
To determine ocular higher-order aberrations (HOAs) in eyes with supernormal vision after myopic astigmatic laser subepithelial keratomileusis (LASEK) and to compare the findings with those in eyes with natural supernormal vision. Ocular HOAs were measured after LASEK in 20 eyes of 12 myopic astigmatic patients with postoperative uncorrected visual acuity (UCVA) of >20/16 (group 1). Patients who were included in the study had no visual symptoms like glare, halo or double vision. The measurements were taken 8.3 +/- 3 months after LASEK surgery. In group 2 ocular HOAs were examined in 20 eyes of 10 subjects with natural UCVA of >20/16 as a control. Measurements were taken across a pupil with a diameter of 4.0 mm and 6.0 mm. Root-mean-square (RMS) values of HOAs, Z(3)-1, Z(3)1, Z(4)0, Z(5)-1, Z(5)1 and Z(6)0 were analyzed. The mean RMS values for each order were higher in group 1 when compared with group 2 at 4.0 mm and 6.0 mm pupil diameters. There was no statistically significant difference between groups in spherical and coma aberrations (P > 0.05). Mean RMS values for total HOAs were 0.187 +/- 0.09 microm at 4.0 mm and 0.438 +/- 0.178 microm at 6.0 mm pupil in group 1 and 0.120 +/- 0.049 microm at 4.0 mm and 0.344 +/- 0.083 microm at 6.0 mm pupil in group 2. The difference between groups in total HOAs was statistically significant at 4.0 mm and 6.0 mm pupil diameters (P < 0.05). Ocular HOAs exist in eyes with supernormal vision. After LASEK, the amount of HOAs of the eye increases under both mesopic and photopic conditions. However the amount of HOA increase does not seem to be consistent with visual symptoms.
Dynamics and phenomenology of higher order gravity cosmological models
Moldenhauer, Jacob Andrew
2010-10-01
I present here some new results about a systematic approach to higher-order gravity (HOG) cosmological models. The HOG models are derived from curvature invariants that are more general than the Einstein-Hilbert action. Some of the models exhibit late-time cosmic acceleration without the need for dark energy and fit some current observations. The open question is that there are an infinite number of invariants that one could select, and many of the published papers have stressed the need to find a systematic approach that will allow one to study methodically the various possibilities. We explore a new connection that we made between theorems from the theory of invariants in general relativity and these cosmological models. In summary, the theorems demonstrate that curvature invariants are not all independent from each other and that for a given Ricci Segre type and Petrov type (symmetry classification) of the space-time, there exists a complete minimal set of independent invariants (a basis) in terms of which all the other invariants can be expressed. As an immediate consequence of the proposed approach, the number of invariants to consider is dramatically reduced from infinity to four invariants in the worst case and to only two invariants in the cases of interest, including all Friedmann-Lemaitre-Robertson-Walker metrics. We derive models that pass stability and physical acceptability conditions. We derive dynamical equations and phase portrait analyses that show the promise of the systematic approach. We consider observational constraints from magnitude-redshift Supernovae Type Ia data, distance to the last scattering surface of the Cosmic Microwave Background radiation, and Baryon Acoustic Oscillations. We put observational constraints on general HOG models. We constrain different forms of the Gauss-Bonnet, f(G), modified gravity models with these observations. We show some of these models pass solar system tests. We seek to find models that pass physical and
Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation
DEFF Research Database (Denmark)
Rasmussen, Kim; Henning, D.; Gabriel, H.
1996-01-01
We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interes...... nonlinear Schrodinger equation. In this way eve are able to construct coherent solitonlike structures of profile determined by the map parameters.......We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interest...
An efficient higher order family of root finders
Petkovic, Ljiljana D.; Rancic, Lidija; Petkovic, Miodrag S.
2008-06-01
A one parameter family of iterative methods for the simultaneous approximation of simple complex zeros of a polynomial, based on a cubically convergent Hansen-Patrick's family, is studied. We show that the convergence of the basic family of the fourth order can be increased to five and six using Newton's and Halley's corrections, respectively. Since these corrections use the already calculated values, the computational efficiency of the accelerated methods is significantly increased. Further acceleration is achieved by applying the Gauss-Seidel approach (single-step mode). One of the most important problems in solving nonlinear equations, the construction of initial conditions which provide both the guaranteed and fast convergence, is considered for the proposed accelerated family. These conditions are computationally verifiable; they depend only on the polynomial coefficients, its degree and initial approximations, which is of practical importance. Some modifications of the considered family, providing the computation of multiple zeros of polynomials and simple zeros of a wide class of analytic functions, are also studied. Numerical examples demonstrate the convergence properties of the presented family of root-finding methods.
A novel nature inspired firefly algorithm with higher order neural network: Performance analysis
Directory of Open Access Journals (Sweden)
Janmenjoy Nayak
2016-03-01
Full Text Available The applications of both Feed Forward Neural network and Multilayer perceptron are very diverse and saturated. But the linear threshold unit of feed forward networks causes fast learning with limited capabilities, while due to multilayering, the back propagation of errors exhibits slow training speed in MLP. So, a higher order network can be constructed by correlating between the input variables to perform nonlinear mapping using the single layer of input units for overcoming the above drawbacks. In this paper, a Firefly based higher order neural network has been proposed for data classification for maintaining fast learning and avoids the exponential increase of processing units. A vast literature survey has been conducted to review the state of the art of the previous developed models. The performance of the proposed method has been tested with various benchmark datasets from UCI machine learning repository and compared with the performance of other established models. Experimental results imply that the proposed method is fast, steady, reliable and provides better classification accuracy than others.
Directory of Open Access Journals (Sweden)
Başak Karpuz
2009-05-01
where $n\\in[2,\\infty_{\\mathbb{Z}}$, $t_{0}\\in\\mathbb{T}$, $\\sup\\{\\mathbb{T}\\}=\\infty$, $A\\in\\rm{C_{rd}}([t_{0},\\infty_{\\mathbb{T}},\\mathbb{R}$ is allowed to alternate in sign infinitely many times, $B\\in\\rm{C_{rd}}([t_{0},\\infty_{\\mathbb{T}},\\mathbb{R}^{+}$, $F\\in\\rm{C_{rd}}(\\mathbb{R},\\mathbb{R}$ is nondecreasing, and $\\alpha,\\beta\\in\\rm{C_{rd}}([t_{0},\\infty_{\\mathbb{T}},\\mathbb{T}$ are unbounded increasing functions satisfying $\\alpha(t,\\beta(t\\leq t$ for all sufficiently large $t$. We give change of order formula for double(iterated integrals to prove our main result. Some simple examples are given to illustrate the applicability of our results too. In the literature, almost all of the results for \\eqref{asbeq1} with $\\mathbb{T}=\\mathbb{R}$ and $\\mathbb{T}=\\mathbb{Z}$ hold for bounded solutions. Our results are new and not stated in the literature even for the particular cases $\\mathbb{T}=\\mathbb{R}$ and/or $\\mathbb{T}=\\mathbb{Z}$.
Saidi, Lotfi; Ben Ali, Jaouher; Fnaiech, Farhat
2015-01-01
Condition monitoring and fault diagnosis of rolling element bearings timely and accurately are very important to ensure the reliability of rotating machinery. This paper presents a novel pattern classification approach for bearings diagnostics, which combines the higher order spectra analysis features and support vector machine classifier. The use of non-linear features motivated by the higher order spectra has been reported to be a promising approach to analyze the non-linear and non-Gaussian characteristics of the mechanical vibration signals. The vibration bi-spectrum (third order spectrum) patterns are extracted as the feature vectors presenting different bearing faults. The extracted bi-spectrum features are subjected to principal component analysis for dimensionality reduction. These principal components were fed to support vector machine to distinguish four kinds of bearing faults covering different levels of severity for each fault type, which were measured in the experimental test bench running under different working conditions. In order to find the optimal parameters for the multi-class support vector machine model, a grid-search method in combination with 10-fold cross-validation has been used. Based on the correct classification of bearing patterns in the test set, in each fold the performance measures are computed. The average of these performance measures is computed to report the overall performance of the support vector machine classifier. In addition, in fault detection problems, the performance of a detection algorithm usually depends on the trade-off between robustness and sensitivity. The sensitivity and robustness of the proposed method are explored by running a series of experiments. A receiver operating characteristic (ROC) curve made the results more convincing. The results indicated that the proposed method can reliably identify different fault patterns of rolling element bearings based on vibration signals. Copyright © 2014 ISA
Preparing Schrodinger cat states by parametric pumping
Leghtas, Zaki; Touzard, Steven; Pop, Ioan; Vlastakis, Brian; Zalys-Geller, Evan; Albert, Victor V.; Jiang, Liang; Frunzio, Luigi; Schoelkopf, Robert J.; Mirrahimi, Mazyar; Devoret, Michel H.
2014-03-01
Maintaining a quantum superposition state of light in a cavity has important applications for quantum error correction. We present an experimental protocol based on parametric pumping and Josephson circuits, which could prepare a Schrodinger cat state in a cavity. This is achieved by engineering a dissipative environment, which exchanges only pairs or quadruples of photons with our cavity mode. The dissipative nature of this preparation would lead to the observation of a dynamical Zeno effect, where the competition between a coherent drive and the dissipation reveals non trivial dynamics. Work supported by: IARPA, ARO, and NSF.
Rodríguez Fonollosa, Javier; Nikias, Chrysostomos L.
1993-01-01
The Wigner higher order moment spectra (WHOS) are defined as extensions of the Wigner-Ville distribution (WD) to higher order moment spectra domains. A general class of time-frequency higher order moment spectra is also defined in terms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to the properties...
Shimizu, Kenji
2017-10-01
The 2nd-order Korteweg-de Vries (KdV) equation and the Gardner (or extended KdV) equation are often used to investigate internal solitary waves, commonly observed in oceans and lakes. However, application of these KdV-type equations for continuously stratified fluids to geophysical problems is hindered by nonuniqueness of the higher-order coefficients and the associated correction functions to the wave fields. This study proposes to reduce arbitrariness of the higher-order KdV theory by considering its uniqueness in the following three physical senses: (i) consistency of the nonlinear higher-order coefficients and correction functions with the corresponding phase speeds, (ii) wavenumber-independence of the vertically integrated available potential energy, and (iii) its positive definiteness. The spectral (or generalized Fourier) approach based on vertical modes in the isopycnal coordinate is shown to enable an alternative derivation of the 2nd-order KdV equation, without encountering nonuniqueness. Comparison with previous theories shows that Parseval's theorem naturally yields a unique set of special conditions for (ii) and (iii). Hydrostatic fully nonlinear solutions, derived by combining the spectral approach and simple-wave analysis, reveal that both proposed and previous 2nd-order theories satisfy (i), provided that consistent definitions are used for the wave amplitude and the nonlinear correction. This condition reduces the arbitrariness when higher-order KdV-type theories are compared with observations or numerical simulations. The coefficients and correction functions that satisfy (i)-(iii) are given by explicit formulae to 2nd order and by algebraic recurrence relationships to arbitrary order for hydrostatic fully nonlinear and linear fully nonhydrostatic effects.
Breatherlike excitations in discrete lattices with noise and nonlinear damping
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri B.; Johansson, Magnus
1997-01-01
We discuss the stability of highly localized, ''breatherlike,'' excitations in discrete nonlinear lattices under the influence of thermal fluctuations. The particular model considered is the discrete nonlinear Schrodinger equation in the regime of high nonlinearity, where temperature effects...
Jia, Heping; Yang, Rongcao; Tian, Jinping; Zhang, Wenmei
2018-05-01
The nonautonomous nonlinear Schrödinger (NLS) equation with both varying linear and harmonic external potentials is investigated and the semirational rogue wave (RW) solution is presented by similarity transformation. Based on the solution, the interactions between Peregrine soliton and breathers, and the controllability of the semirational RWs in periodic distribution and exponential decreasing nonautonomous systems with both linear and harmonic potentials are studied. It is found that the harmonic potential only influences the constraint condition of the semirational solution, the linear potential is related to the trajectory of the semirational RWs, while dispersion and nonlinearity determine the excitation position of the higher-order RWs. The higher-order RWs can be partly, completely and biperiodically excited in periodic distribution system and the diverse excited patterns can be generated for different parameter relations in exponential decreasing system. The results reveal that the excitation of the higher-order RWs can be controlled in the nonautonomous system by choosing dispersion, nonlinearity and external potentials.
International Nuclear Information System (INIS)
Moore, B.R.; Turinsky, P.J.
1998-01-01
Boiling water reactor (BWR) loading pattern assessment requires solving the two-group, nodal form of the neutron diffusion equation and drift-flux form of the fluid equations simultaneously because these equation sets are strongly coupled via nonlinear feedback. To reduce the computational burden associated with the calculation of the core attributes (that is, core eigenvalue and thermal margins) of a perturbed BWR loading pattern, the analytical and numerical aspects of a higher order generalized perturbation theory (GPT) method, which correctly addresses the strong nonlinear feedbacks of two-phase flow, have been established. Inclusion of Jacobian information in the definition of the generalized flux adjoints provides for a rapidly convergent iterative method for solution of the power distribution and eigenvalue of a loading pattern perturbed from a reference state. Results show that the computational speedup of GPT compared with conventional forward solution methods demanding consistent accuracy is highly dependent on the number of spatial nodes utilized by the core simulator, varying from superior to inferior performance as the number of nodes increases
SOLUCIÓN DE LA ECUACIÓN NO LINEAL DE SCHRODINGER (1+1 EN UN MEDIO KERR
Directory of Open Access Journals (Sweden)
Francis Armando Segovia
2015-12-01
Full Text Available Se presenta un marco teórico y se muestra una simulación numérica de la propagación de solitones. Con especial atención a los solitones ópticos espaciales, se calcula analíticamente el perfil de solitón correspondiente a la ecuación Schrodinger no-lineal para un medio Kerr. Los resultados muestran que los solitones ópticos son pulsos estables cuya forma y espectro son preservados en grandes distancias.Solution of the nonlinear Schrodinger equation (1+1 in a Kerr mediumABSTRACTThis document presents a theoretical framework and shows a numerical simulation for the propagation of solitons. With special attention to the spatial optical solitons, we calculates analytically the profile of solitón corresponding to the non-linear Schrodinger equation for a Kerr medium. The results show that the optical solitons are stable pulses whose shape and spectrum are preserved at great distances.Keywords: nonlinear optics, nonlinear Schrodinger equation, solitons.
Reflectionless discrete Schr\\"odinger operators are spectrally atypical
VandenBoom, Tom
2017-01-01
We prove that, if an isospectral torus contains a discrete Schr\\"odinger operator with nonconstant potential, the shift dynamics on that torus cannot be minimal. Consequently, we specify a generic sense in which finite unions of nondegenerate closed intervals having capacity one are not the spectrum of any reflectionless discrete Schr\\"odinger operator. We also show that the only reflectionless discrete Schr\\"odinger operators having zero, one, or two spectral gaps are periodic.
Classification of stable solutions for non-homogeneous higher-order elliptic PDEs
Directory of Open Access Journals (Sweden)
Abdellaziz Harrabi
2017-04-01
Full Text Available Abstract Under some assumptions on the nonlinearity f, we will study the nonexistence of nontrivial stable solutions or solutions which are stable outside a compact set of R n $\\mathbb {R}^{n}$ for the following semilinear higher-order problem: ( − Δ k u = f ( u in R n , $$\\begin{aligned} (-\\Delta^{k} u= f(u \\quad \\mbox{in }\\mathbb {R}^{n}, \\end{aligned}$$ with k = 1 , 2 , 3 , 4 $k=1,2,3,4$ . The main methods used are the integral estimates and the Pohozaev identity. Many classes of nonlinearity will be considered; even the sign-changing nonlinearity, which has an adequate subcritical growth at zero as for example f ( u = − m u + λ | u | θ − 1 u − μ | u | p − 1 u $f(u= -m u +\\lambda|u|^{\\theta-1}u-\\mu |u|^{p-1}u$ , where m ≥ 0 $m\\geq0$ , λ > 0 $\\lambda>0$ , μ > 0 $\\mu>0$ , p , θ > 1 $p, \\theta>1$ . More precisely, we shall revise the nonexistence theorem of Berestycki and Lions (Arch. Ration. Mech. Anal. 82:313-345, 1983 in the class of smooth finite Morse index solutions as the well known work of Bahri and Lions (Commun. Pure Appl. Math. 45:1205-1215, 1992. Also, the case when f ( u u $f(uu$ is a nonnegative function will be studied under a large subcritical growth assumption at zero, for example f ( u = | u | θ − 1 u ( 1 + | u | q $f(u=|u|^{\\theta-1}u(1 + |u|^{q}$ or f ( u = | u | θ − 1 u e | u | q $f(u= |u|^{\\theta-1}u e^{|u|^{q}}$ , θ > 1 $\\theta>1$ and q > 0 $q>0$ . Extensions to solutions which are merely stable are discussed in the case of supercritical growth with k = 1 $k=1$ .
International Nuclear Information System (INIS)
Kavitha, L.; Mohamadou, A.; Parasuraman, E.; Gopi, D.; Akila, N.; Prabhu, A.
2016-01-01
The nonlinear localization phenomena in ferromagnetic spin lattices have attracted a steadily growing interest and their existence has been predicted in a wide range of physical settings. We investigate the onset of modulational instability of a plane wave in a discrete ferromagnetic spin chain with physically significant higher order dispersive octupole–dipole and dipole–dipole interactions. We derive the discrete nonlinear equation of motion with the aid of Holstein–Primakoff (H–P) transformation combined with Glauber's coherent state representation. We show that the discrete ferromagnetic spin dynamics is governed by an entirely new discrete NLS model with complex coefficients not reported so far. We report the study of modulational instability (MI) of the ferromagnetic chain with long range dispersive interactions both analytically in the frame work of linear stability analysis and numerically by means of molecular dynamics (MD) simulations. Our numerical simulations explore that the analytical predictions correctly describe the onset of instability. It is found that the presence of the various exchange and dispersive higher order interactions systematically favors the local gathering of excitations and thus supports the growth of high amplitude, long-lived discrete breather (DB) excitations. We analytically compute the strongly localized odd and even modes. Further, we employ the Jacobi elliptic function method to solve the nonlinear evolution equation and an exact propagating bubble-soliton solution is explored. - Highlights: • Higher order dispersive interactions plays significant role in ferromagnetic spin chain. • The energy localization is studied both analytically and numerically. • The existence of DBs are studied under the effect of higher order dispersive interaction.
The Meaning of Higher-Order Factors in Reflective-Measurement Models
Eid, Michael; Koch, Tobias
2014-01-01
Higher-order factor analysis is a widely used approach for analyzing the structure of a multidimensional test. Whenever first-order factors are correlated researchers are tempted to apply a higher-order factor model. But is this reasonable? What do the higher-order factors measure? What is their meaning? Willoughby, Holochwost, Blanton, and Blair…
On the expressiveness and decidability of higher-order process calculi
Lanese, Ivan; Perez, Jorge A.; Sangiorgi, Davide; Schmitt, Alan
In higher-order process calculi, the values exchanged in communications may contain processes. A core calculus of higher-order concurrency is studied; it has only the operators necessary to express higher-order communications: input prefix, process output, and parallel composition. By exhibiting a
Analysis of Buried Dielectric Objects Using Higher-Order MoM for Volume Integral Equations
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2004-01-01
A higher-order method of moments (MoM) is applied to solve a volume integral equation for dielectric objects in layered media. In comparison to low-order methods, the higher-order MoM, which is based on higher-order hierarchical Legendre vector basis functions and curvilinear hexahedral elements,...
Image denoising using the squared eigenfunctions of the Schrodinger operator
Kaisserli, Zineb; Laleg-Kirati, Taous-Meriem
2015-01-01
This study introduces a new image denoising method based on the spectral analysis of the semi-classical Schrodinger operator. The noisy image is considered as a potential of the Schrodinger operator, and the denoised image is reconstructed using the discrete spectrum of this operator. First results illustrating the performance of the proposed approach are presented and compared to the singular value decomposition method.
Newton-Cartan supergravity with torsion and Schrodinger supergravity
Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas
2015-01-01
We derive a torsionfull version of three-dimensional N - 2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The "superconformal" theory that we start with is Schrodinger supergravity which we obtain by gauging the Schrodinger superalgebra. We present
Image denoising using the squared eigenfunctions of the Schrodinger operator
Kaisserli, Zineb
2015-02-02
This study introduces a new image denoising method based on the spectral analysis of the semi-classical Schrodinger operator. The noisy image is considered as a potential of the Schrodinger operator, and the denoised image is reconstructed using the discrete spectrum of this operator. First results illustrating the performance of the proposed approach are presented and compared to the singular value decomposition method.
Schr"odinger's Unified Field Theory: Physics by Public Relations
Halpern, Paul
2009-05-01
We will explore the circumstances surrounding Erwin Schr"odinger's announcement in January 1947 that he had developed a comprehensive unified field theory of gravitation and electromagnetism. We will speculate on Schr"odinger's motivations for the mode and tone of his statements, consider the reaction of the international press within the context of the postwar era, and examine Einstein's response.
Lin, Ju; Li, Jie; Li, Xiaolei; Wang, Ning
2016-10-01
An acoustic reciprocity theorem is generalized, for a smoothly varying perturbed medium, to a hierarchy of reciprocity theorems including higher-order derivatives of acoustic fields. The standard reciprocity theorem is the first member of the hierarchy. It is shown that the conservation of higher-order interaction quantities is related closely to higher-order derivative distributions of perturbed media. Then integral reciprocity theorems are obtained by applying Gauss's divergence theorem, which give explicit integral representations connecting higher-order interactions and higher-order derivative distributions of perturbed media. Some possible applications to an inverse problem are also discussed.
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter
2004-01-01
An efficient higher-order method of moments (MoM) solution of volume integral equations is presented. The higher-order MoM solution is based on higher-order hierarchical Legendre basis functions and higher-order geometry modeling. An unstructured mesh composed of 8-node trilinear and/or curved 27...... of magnitude in comparison to existing higher-order hierarchical basis functions. Consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement with the analytical Mie series solution for a dielectric sphere as well as with results obtained...
Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling
Oguri, Akira; Hewson, A. C.
2018-03-01
We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017), 10.1103/PhysRevB.95.165404]. In our formulation, the Fermi-liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each other through the total vertex Γσ σ';σ'σ(ω ,ω';ω',ω ), which may be regarded as a generalized Landau quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω and ω' using the antisymmetry and analytic properties. The coefficients acquire additional contributions of three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves in a magnetic field.
Improving Spiking Dynamical Networks: Accurate Delays, Higher-Order Synapses, and Time Cells.
Voelker, Aaron R; Eliasmith, Chris
2018-03-01
Researchers building spiking neural networks face the challenge of improving the biological plausibility of their model networks while maintaining the ability to quantitatively characterize network behavior. In this work, we extend the theory behind the neural engineering framework (NEF), a method of building spiking dynamical networks, to permit the use of a broad class of synapse models while maintaining prescribed dynamics up to a given order. This theory improves our understanding of how low-level synaptic properties alter the accuracy of high-level computations in spiking dynamical networks. For completeness, we provide characterizations for both continuous-time (i.e., analog) and discrete-time (i.e., digital) simulations. We demonstrate the utility of these extensions by mapping an optimal delay line onto various spiking dynamical networks using higher-order models of the synapse. We show that these networks nonlinearly encode rolling windows of input history, using a scale invariant representation, with accuracy depending on the frequency content of the input signal. Finally, we reveal that these methods provide a novel explanation of time cell responses during a delay task, which have been observed throughout hippocampus, striatum, and cortex.
Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling.
Oguri, Akira; Hewson, A C
2018-03-23
We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017)PRBMDO2469-995010.1103/PhysRevB.95.165404]. In our formulation, the Fermi-liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each other through the total vertex Γ_{σσ^{'};σ^{'}σ}(ω,ω^{'};ω^{'},ω), which may be regarded as a generalized Landau quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω and ω^{'} using the antisymmetry and analytic properties. The coefficients acquire additional contributions of three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves in a magnetic field.
Transition of EMRIs through resonance: higher order corrections in resonant flux enhancement
Mihaylov, Deyan; Gair, Jonathan
2017-01-01
Extreme mass ratio inspirals (EMRIs) are candidate events for gravitational wave detection in the millihertz range (by detectors like LISA and eLISA). These events involve a stellar-mass black hole, or a similar compact object, descending into the gravitational field of a supermassive black hole, eventually merging with it. Properties of the inspiraling trajectory away from resonance are well known and have been studied extensively, however little is known about the behaviour of these binary systems at resonance, when the radial and lateral frequencies of the orbit become commensurate. There are two resonance models in the literature, the instantaneous frequency function by Gair, Bender, and Yunes, and the standard two timescales approach devised by Flanagan and Hinderer. We argue that the Gair, Bender and Yunes model provides a valid treatment of the resonance problem and extend this solution to higher order in the size of the on-resonance perturbation. The non-linear differential equations which arise in treating resonances are interesting from a mathematical view point. We present our algorithm for perturbative solutions and the results to third order in the infinitesimal parameter, and discuss the scope of this approach. Deyan Mihaylov is funded by the STFC.
Directory of Open Access Journals (Sweden)
Xiaojian Li
2018-05-01
Full Text Available Quantitative analysis of corticocortical signaling is needed to understand and model information processing in cerebral networks. However, higher-order pathways, hodologically remote from sensory input, are not amenable to spatiotemporally precise activation by sensory stimuli. Here, we combined parametric channelrhodopsin-2 (ChR2 photostimulation with multi-unit electrophysiology to study corticocortical driving in a parietofrontal pathway from retrosplenial cortex (RSC to posterior secondary motor cortex (M2 in mice in vivo. Ketamine anesthesia was used both to eliminate complex activity associated with the awake state and to enable stable recordings of responses over a wide range of stimulus parameters. Photostimulation of ChR2-expressing neurons in RSC, the upstream area, produced local activity that decayed quickly. This activity in turn drove downstream activity in M2 that arrived rapidly (5–10 ms latencies, and scaled in amplitude across a wide range of stimulus parameters as an approximately constant fraction (~0.1 of the upstream activity. A model-based analysis could explain the corticocortically driven activity with exponentially decaying kernels (~20 ms time constant and small delay. Reverse (antidromic driving was similarly robust. The results show that corticocortical signaling in this pathway drives downstream activity rapidly and scalably, in a mostly linear manner. These properties, identified in anesthetized mice and represented in a simple model, suggest a robust basis for supporting complex non-linear dynamic activity in corticocortical circuits in the awake state.
Li, Xiaojian; Yamawaki, Naoki; Barrett, John M; Körding, Konrad P; Shepherd, Gordon M G
2018-01-01
Quantitative analysis of corticocortical signaling is needed to understand and model information processing in cerebral networks. However, higher-order pathways, hodologically remote from sensory input, are not amenable to spatiotemporally precise activation by sensory stimuli. Here, we combined parametric channelrhodopsin-2 (ChR2) photostimulation with multi-unit electrophysiology to study corticocortical driving in a parietofrontal pathway from retrosplenial cortex (RSC) to posterior secondary motor cortex (M2) in mice in vivo . Ketamine anesthesia was used both to eliminate complex activity associated with the awake state and to enable stable recordings of responses over a wide range of stimulus parameters. Photostimulation of ChR2-expressing neurons in RSC, the upstream area, produced local activity that decayed quickly. This activity in turn drove downstream activity in M2 that arrived rapidly (5-10 ms latencies), and scaled in amplitude across a wide range of stimulus parameters as an approximately constant fraction (~0.1) of the upstream activity. A model-based analysis could explain the corticocortically driven activity with exponentially decaying kernels (~20 ms time constant) and small delay. Reverse (antidromic) driving was similarly robust. The results show that corticocortical signaling in this pathway drives downstream activity rapidly and scalably, in a mostly linear manner. These properties, identified in anesthetized mice and represented in a simple model, suggest a robust basis for supporting complex non-linear dynamic activity in corticocortical circuits in the awake state.
Higher-order harmonics coupling in different free-electron laser codes
Giannessi, L.; Freund, H. P.; Musumeci, P.; Reiche, S.
2008-08-01
The capability for simulation of the dynamics of a free-electron laser including the higher-order harmonics in linear undulators exists in several existing codes as MEDUSA [H.P. Freund, S.G. Biedron, and S.V. Milton, IEEE J. Quantum Electron. 27 (2000) 243; H.P. Freund, Phys. Rev. ST-AB 8 (2005) 110701] and PERSEO [L. Giannessi, Overview of Perseo, a system for simulating FEL dynamics in Mathcad, , in: Proceedings of FEL 2006 Conference, BESSY, Berlin, Germany, 2006, p. 91], and has been recently implemented in GENESIS 1.3 [See ]. MEDUSA and GENESIS also include the dynamics of even harmonics induced by the coupling through the betatron motion. In addition MEDUSA, which is based on a non-wiggler averaged model, is capable of simulating the generation of even harmonics in the transversally cold beam regime, i.e. when the even harmonic coupling arises from non-linear effects associated with longitudinal particle dynamics and not to a finite beam emittance. In this paper a comparison between the predictions of the codes in different conditions is given.
International Nuclear Information System (INIS)
Wang, Xin; Chen, Yong; Cao, Jianli
2015-01-01
In this paper, we utilize generalized Darboux transformation to study higher-order rogue wave solutions of the three-wave resonant interaction equation, which describes the propagation and mixing of waves with different frequencies in weakly nonlinear dispersive media. A general Nth-order rogue wave solution with two characteristic velocities structural parameters and 3N independent parameters under a determined plane-wave background and a specific parameter condition is derived. As an application, we show that four fundamental rogue waves with fundamental, two kinds of line and quadrilateral patterns, or six fundamental rogue waves with fundamental, triangular, two kinds of quadrilateral and circular patterns can emerge in the second-order rogue waves. Moreover, several important wave characteristics including the maximum values, the corresponding coordinate positions of the humps, and the stability problem for some special higher-order rogue wave solutions such as the fundamental and quadrilateral cases are discussed. (paper)
Mathematics Teachers’ Interpretation of Higher-Order Thinking in Bloom’s Taxonomy
Tony Thompson
2008-01-01
This study investigated mathematics teachers’ interpretation of higher-order thinking in Bloom’s Taxonomy. Thirty-two high school mathematics teachers from the southeast U.S. were asked to (a) define lower- and higher-order thinking, (b) identify which thinking skills in Bloom’s Taxonomy represented lower- and higher-order thinking, and (c) create an Algebra I final exam item representative of each thinking skill. Results indicate that mathematics teachers have difficulty interpreting the thi...
PRE-SERVICE MATHEMATICS TEACHERS’ CONCEPTION OF HIGHER-ORDER THINKING LEVEL IN BLOOM'S TAXONOMY
Damianus D Samo
2017-01-01
The purpose of this study is to explore pre-service mathematics teachers' conception of higher-order thinking in Bloom's Taxonomy, to explore pre-service mathematics teachers' ability in categorizing six cognitive levels of Bloom's Taxonomy as lower-order thinking and higher-order thinking, and pre-service mathematics teachers' ability in identifying some questionable items as lower-order and higher-order thinking. The higher-order thinking is the type of non-algorithm thinking which include ...
Analysis and Improvement of the Generic Higher-Order Masking Scheme of FSE 2012
Roy, Arnab; Venkatesh, Srinivas Vivek
2013-01-01
Masking is a well-known technique used to prevent block cipher implementations from side-channel attacks. Higher-order side channel attacks (e.g. higher-order DPA attack) on widely used block cipher like AES have motivated the design of efficient higher-order masking schemes. Indeed, it is known that as the masking order increases, the difficulty of side-channel attack increases exponentially. However, the main problem in higher-order masking is to design an efficient and secure technique for...
Massively Parallel Algorithms for Solution of Schrodinger Equation
Fijany, Amir; Barhen, Jacob; Toomerian, Nikzad
1994-01-01
In this paper massively parallel algorithms for solution of Schrodinger equation are developed. Our results clearly indicate that the Crank-Nicolson method, in addition to its excellent numerical properties, is also highly suitable for massively parallel computation.
Infinitely many solutions for fractional Schr\\"odinger equations in R^N
Directory of Open Access Journals (Sweden)
Caisheng Chen
2016-03-01
Full Text Available Using variational methods we prove the existence of infinitely many solutions to the fractional Schrodinger equation $$ (-\\Delta^su+V(xu=f(x,u, \\quad x\\in\\mathbb{R}^N, $$ where $N\\ge 2, s\\in (0,1$. $(-\\Delta^s$ stands for the fractional Laplacian. The potential function satisfies $V(x\\geq V_0>0$. The nonlinearity f(x,u is superlinear, has subcritical growth in u, and may or may not satisfy the (AR condition.
Ahmad, Raja; Nicholson, Jeffrey W.; Abedin, Kazi S.; Westbrook, Paul S.; Headley, Clifford; Wisk, Patrick W.; Monberg, Eric M.; Yan, Man F.; DiGiovanni, David J.
2018-02-01
Scaling the power-level of fiber sources has many practical advantages, while also enabling fundamental studies on the light-matter interaction in amorphous guiding media. In order to scale the power-level of fiber-sources without encountering nonlinear impairments, a strategy is to increase the effective-area of the guided optical-mode. Increasing the effective-area of the fundamental mode in a fiber, however, presents the challenges of increased susceptibility to mode-distortion and effective-area-reduction under the influence of bends. Therefore, higher-order-mode (HOM) fibers, which guide light in large effective-area (Aeff) Bessel-like modes, are a good candidate for scaling the power-level of robust fiber-sources. Many applications of high-power fiber-sources also demand a deterministic control on the polarization-state of light. Furthermore, a polarization-maintaining (PM)-type HOM fiber can afford the added possibility of coherent-beam combination and polarization multiplexing of high-power fiber-lasers. Previously, we reported polarization-maintaining operation in a 1.3 m length of PM-HOM fiber that was held straight. The PM-HOM fiber guided Bessel-like modes with Aeff ranging from 1200-2800 μm2. In this work, we report, for the first time, that the polarization-extinction-ratio (PER) of the HOM exceeds 10 dB in an 8 m long fiber that is coiled down to a diameter of 40 cm. This opens a path towards compact and polarization-controlled high-power fiber-systems.
Effects on noise properties of GPS time series caused by higher-order ionospheric corrections
Jiang, Weiping; Deng, Liansheng; Li, Zhao; Zhou, Xiaohui; Liu, Hongfei
2014-04-01
Higher-order ionospheric (HOI) effects are one of the principal technique-specific error sources in precise global positioning system (GPS) analysis. These effects also influence the non-linear characteristics of GPS coordinate time series. In this paper, we investigate these effects on coordinate time series in terms of seasonal variations and noise amplitudes. Both power spectral techniques and maximum likelihood estimators (MLE) are used to evaluate these effects quantitatively and qualitatively. Our results show an overall improvement for the analysis of global sites if HOI effects are considered. We note that the noise spectral index that is used for the determination of the optimal noise models in our analysis ranged between -1 and 0 both with and without HOI corrections, implying that the coloured noise cannot be removed by these corrections. However, the corrections were found to have improved noise properties for global sites. After the corrections were applied, the noise amplitudes at most sites decreased, among which the white noise amplitudes decreased remarkably. The white noise amplitudes of up to 81.8% of the selected sites decreased in the up component, and the flicker noise of 67.5% of the sites decreased in the north component. Stacked periodogram results show that, no matter whether the HOI effects are considered or not, a common fundamental period of 1.04 cycles per year (cpy), together with the expected annual and semi-annual signals, can explain all peaks of the north and up components well. For the east component, however, reasonable results can be obtained only based on HOI corrections. HOI corrections are useful for better detecting the periodic signals in GPS coordinate time series. Moreover, the corrections contributed partly to the seasonal variations of the selected sites, especially for the up component. Statistically, HOI corrections reduced more than 50% and more than 65% of the annual and semi-annual amplitudes respectively at the
Authentic Instruction for 21st Century Learning: Higher Order Thinking in an Inclusive School
Preus, Betty
2012-01-01
The author studied a public junior high school identified as successfully implementing authentic instruction. Such instruction emphasizes higher order thinking, deep knowledge, substantive conversation, and value beyond school. To determine in what ways higher order thinking was fostered both for students with and without disabilities, the author…
Fischer, Christopher; Bol, Linda; Pribesh, Shana
2011-01-01
This study investigated the extent to which higher-order thinking skills are promoted in social studies classes in high schools that are implementing smaller learning communities (SLCs). Data collection in this mixed-methods study included classroom observations and in-depth interviews. Findings indicated that higher-order thinking was rarely…
From "Hello" to Higher-Order Thinking: The Effect of Coaching and Feedback on Online Chats
Stein, David S.; Wanstreet, Constance E.; Slagle, Paula; Trinko, Lynn A.; Lutz, Michelle
2013-01-01
This exploratory study examined the effect of a coaching and feedback intervention in teaching presence and social presence on higher-order thinking in an online community of inquiry. Coaching occurred before each chat, and feedback was provided immediately afterwards. The findings suggest that over time, the frequency of higher-order thinking…
Comparing higher order models for the EORTC QLQ-C30
DEFF Research Database (Denmark)
Gundy, Chad M; Fayers, Peter M; Grønvold, Mogens
2012-01-01
To investigate the statistical fit of alternative higher order models for summarizing the health-related quality of life profile generated by the EORTC QLQ-C30 questionnaire.......To investigate the statistical fit of alternative higher order models for summarizing the health-related quality of life profile generated by the EORTC QLQ-C30 questionnaire....
Teaching Higher Order Thinking in the Introductory MIS Course: A Model-Directed Approach
Wang, Shouhong; Wang, Hai
2011-01-01
One vision of education evolution is to change the modes of thinking of students. Critical thinking, design thinking, and system thinking are higher order thinking paradigms that are specifically pertinent to business education. A model-directed approach to teaching and learning higher order thinking is proposed. An example of application of the…
Higher Order Thinking Skills among Secondary School Students in Science Learning
Saido, Gulistan Mohammed; Siraj, Saedah; Bin Nordin, Abu Bakar; Al Amedy, Omed Saadallah
2015-01-01
A central goal of science education is to help students to develop their higher order thinking skills to enable them to face the challenges of daily life. Enhancing students' higher order thinking skills is the main goal of the Kurdish Science Curriculum in the Iraqi-Kurdistan region. This study aimed at assessing 7th grade students' higher order…
Tanujaya, Benidiktus; Mumu, Jeinne; Margono, Gaguk
2017-01-01
Higher order thinking skills (HOTS) is one of important aspects in education. Students with high level of higher order thinking skills tend to be more successful. However, do this phenomenon also happen in the learning of Mathematics? To answer this question, this research aims to study the relationship between HOTS and students' academic…
Multi-domain, higher order level set scheme for 3D image segmentation on the GPU
DEFF Research Database (Denmark)
Sharma, Ojaswa; Zhang, Qin; Anton, François
2010-01-01
to evaluate level set surfaces that are $C^2$ continuous, but are slow due to high computational burden. In this paper, we provide a higher order GPU based solver for fast and efficient segmentation of large volumetric images. We also extend the higher order method to multi-domain segmentation. Our streaming...
Higher-order blackhole solutions in N=2 supergravity and Calabi-Yau string backgrounds
Behrndt, K.; Cardoso, G.L.; de Wit, B.Q.P.J.; Lüst, D.; Mohaupt, T.; Sabra, W.A.
1998-01-01
Based on special geometry, we consider corrections to N=2 extremal black-hole solutions and their entropies originating from higher-order derivative terms in N=2 supergravity. These corrections are described by a holomorphic function, and the higher-order black-hole solutions can be expressed in
Zhai, Yi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; He, Yuanqing; Chang, Shengjiang
2014-01-01
An achromatic element eliminating only longitudinal chromatic aberration (LCA) while maintaining transverse chromatic aberration (TCA) is established for the eye model, which involves the angle formed by the visual and optical axis. To investigate the impacts of higher-order aberrations on vision, the actual data of higher-order aberrations of human eyes with three typical levels are introduced into the eye model along visual axis. Moreover, three kinds of individual eye models are established to investigate the impacts of higher-order aberrations, chromatic aberration (LCA+TCA), LCA and TCA on vision under the photopic condition, respectively. Results show that for most human eyes, the impact of chromatic aberration on vision is much stronger than that of higher-order aberrations, and the impact of LCA in chromatic aberration dominates. The impact of TCA is approximately equal to that of normal level higher-order aberrations and it can be ignored when LCA exists.
The Higher Order Structure of Environmental Attitudes: A Cross-Cultural Examination
Directory of Open Access Journals (Sweden)
Taciano L. Milfont
2010-01-01
Full Text Available Past research has suggested that Preservation and Utilization are the two higher order dimensions forming the hierarchical structure of environmental attitudes. This means that these two higher order dimensions could group all kinds of perceptions or beliefs regarding the natural environment people have. A crosscultural study was conducted in Brazil, New Zealand, and South Africa to test this hierarchical structure of environmental attitudes. Results from single- and multi-group confirmatory factor analyses demonstrated that environmental attitudes are a multidimensional construct, and that their first-order factors associate to each other to form a vertical structure. However, the question whether the vertical structure comprise a single higher order factor or two higher order factors still remains unanswered. These results are discussed and directions for future research trying to demonstrate that Preservation and Utilization, taken as distinct second-order environmental attitudes factors, are more empirically meaningful than a single and generalised environmental attitudes higher order factor are presented.
International Nuclear Information System (INIS)
Purohit, Gunjan; Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.
2015-01-01
This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate
Three-dimensional freak waves and higher-order wave-wave resonances
Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.
2012-04-01
Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover
Verifying object-oriented programs with higher-order separation logic in Coq
DEFF Research Database (Denmark)
Bengtson, Jesper; Jensen, Jonas Braband; Sieczkowski, Filip
2011-01-01
We present a shallow Coq embedding of a higher-order separation logic with nested triples for an object-oriented programming language. Moreover, we develop novel specification and proof patterns for reasoning in higher-order separation logic with nested triples about programs that use interfaces...... and interface inheritance. In particular, we show how to use the higher-order features of the Coq formalisation to specify and reason modularly about programs that (1) depend on some unknown code satisfying a specification or that (2) return objects conforming to a certain specification. All of our results have...
Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems
International Nuclear Information System (INIS)
Prieto-Martinez, Pedro Daniel; Roman-Roy, Narciso
2011-01-01
The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view. (paper)
Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels
Yilmaz, Ferkan
2012-03-01
In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present simple and efficient closed-form expression to the higher order moments of the channel capacity of dual hop transmission system with Rayleigh fading channels. In order to analyze the behavior of the higher order capacity statistics and investigate the usefulness of the mathematical analysis, some selected numerical and simulation results are presented. Our results are found to be in perfect agreement. © 2012 IEEE.
Modular specification and verification for higher-order languages with state
DEFF Research Database (Denmark)
Svendsen, Kasper
The overall topic of this thesis is modular reasoning for higher-order languages with state. The thesis consists of four mostly independent chapters that each deal with a different aspect of reasoning about higher-order languages with state. The unifying theme throughout all four chapters is higher....... The third chapter of the thesis is a case study of the C# joins library. What makes this library interesting as a case study is that it combines a lot of advanced features (higher-order code with effects, concurrency, recursion through the store, shared mutable state, and fine-grained synchronization...
Analysis of Scattering by Inhomogeneous Dielectric Objects Using Higher-Order Hierarchical MoM
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter
2003-01-01
An efficient technique for the analysis of electromagnetic scattering by arbitrary shaped inhomogeneous dielectric objects is presented. The technique is based on a higher-order method of moments (MoM) solution of the volume integral equation. This higher-order MoM solution comprises recently...... that the condition number of the resulting MoM matrix is reduced by several orders of magnitude in comparison to existing higher-order hierarchical basis functions and, consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement...
Generating higher-order Lie algebras by expanding Maurer-Cartan forms
International Nuclear Information System (INIS)
Caroca, R.; Merino, N.; Salgado, P.; Perez, A.
2009-01-01
By means of a generalization of the Maurer-Cartan expansion method, we construct a procedure to obtain expanded higher-order Lie algebras. The expanded higher-order Maurer-Cartan equations for the case G=V 0 +V 1 are found. A dual formulation for the S-expansion multialgebra procedure is also considered. The expanded higher-order Maurer-Cartan equations are recovered from S-expansion formalism by choosing a special semigroup. This dual method could be useful in finding a generalization to the case of a generalized free differential algebra, which may be relevant for physical applications in, e.g., higher-spin gauge theories.
Modeling 3D PCMI using the Extended Finite Element Method with higher order elements
Energy Technology Data Exchange (ETDEWEB)
Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-03-31
This report documents the recent development to enable XFEM to work with higher order elements. It also demonstrates the application of higher order (quadratic) elements to both 2D and 3D models of PCMI problems, where discrete fractures in the fuel are represented using XFEM. The modeling results demonstrate the ability of the higher order XFEM to accurately capture the effects of a crack on the response in the vicinity of the intersecting surfaces of cracked fuel and cladding, as well as represent smooth responses in the regions away from the crack.
Higher-Order Blind Signal Feature Separation: An Enabling Technology for Battlefield Awareness
National Research Council Canada - National Science Library
Su, Wei; Kosinski, John A
2006-01-01
Higher-order transform blind signal feature classification is discussed for separating bar-shaped, circular, squared, circular-squared, and offset-diamonded constellation patterns of digital linear signals...
Higher-Order Wavefront Aberrations for Populations of Young Emmetropes and Myopes
Directory of Open Access Journals (Sweden)
Jinhua Bao
2009-01-01
Conclusions: Human eyes have systematical higher order aberrations in population, and factors that cause bilateral symmetry of wavefront aberrations between the right and left eyes made important contribution to the systematical aberrations.
Domin, Daniel S.
1999-01-01
The science laboratory instructional environment is ideal for fostering the development of problem-solving, manipulative, and higher-order thinking skills: the skills needed by today's learner to compete in an ever increasing technology-based society. This paper reports the results of a content analysis of ten general chemistry laboratory manuals. Three experiments from each manual were examined for evidence of higher-order cognitive activities. Analysis was based upon the six major cognitive categories of Bloom's Taxonomy of Educational Objectives: knowledge, comprehension, application, analysis, synthesis, and evaluation. The results of this study show that the overwhelming majority of general chemistry laboratory manuals provide tasks that require the use of only the lower-order cognitive skills: knowledge, comprehension, and application. Two of the laboratory manuals were disparate in having activities that utilized higher-order cognition. I describe the instructional strategies used within these manuals to foster higher-order cognitive development.
The Need to Deliver Higher-Order Skills in the Context of Marketing in SMEs
Copley, Paul
2013-01-01
It is argued that the delivery of learning and the development of skills and competences are central to SME success; and there appears to be a requirement for higher-order education and training that can deliver a
Covariant quantization of infinite spin particle models, and higher order gauge theories
International Nuclear Information System (INIS)
Edgren, Ludde; Marnelius, Robert
2006-01-01
Further properties of a recently proposed higher order infinite spin particle model are derived. Infinitely many classically equivalent but different Hamiltonian formulations are shown to exist. This leads to a condition of uniqueness in the quantization process. A consistent covariant quantization is shown to exist. Also a recently proposed supersymmetric version for half-odd integer spins is quantized. A general algorithm to derive gauge invariances of higher order Lagrangians is given and applied to the infinite spin particle model, and to a new higher order model for a spinning particle which is proposed here, as well as to a previously given higher order rigid particle model. The latter two models are also covariantly quantized
Higher-order asymptotic homogenization of periodic materials with low scale separation
Ameen, M.M.; Peerlings, R.H.J.; Geers, M.G.D
2016-01-01
In this work, we investigate the limits of classical homogenization theories pertaining to homogenization of periodic linear elastic composite materials at low scale separations and demonstrate the effectiveness of higher-order periodic homogenization in alleviating this limitation. Classical
Higher Order Thinking in the Australian Army Suite of Logistic Officer Courses
National Research Council Canada - National Science Library
Bradford, Scott R
2006-01-01
.... The current Suite of Logistic Officer Courses (SOLOC) has been recently criticized for failing to meet this requirement, with the general perception that there is a distinct lack of higher-order thinking competencies within this continuum...
Non-Poisson Dichotomous Noise: Higher-Order Correlation Functions and Aging
National Research Council Canada - National Science Library
Allegrini, Paolo; Grigolini, Paolo; Palatella, Luigi; West, Bruce J
2004-01-01
.... The transition of psi(tau) from the exponential to the nonexponential condition yields the breakdown of the usual factorization condition of higher-order correlation functions, as well as the birth of aging effects...
Jaber, Nizar; Ramini, Abdallah; Carreno, Armando Arpys Arevalo; Younis, Mohammad I.
2016-01-01
© 2016 IOP Publishing Ltd. In this study, we demonstrate analytically and experimentally the excitations of the higher order modes of vibrations in electrostatically actuated clamped-clamped microbeam resonators. The concept is based on using
A stable higher order space time Galerkin marching-on-in-time scheme
Pray, Andrew J.; Shanker, Balasubramaniam; Bagci, Hakan
2013-01-01
We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order
Connection between weighted LPC and higher-order statistics for AR model estimation
Kamp, Y.; Ma, C.
1993-01-01
This paper establishes the relationship between a weighted linear prediction method used for robust analysis of voiced speech and the autoregressive modelling based on higher-order statistics, known as cumulants
Visualization and processing of higher order descriptors for multi-valued data
Schultz, Thomas
2015-01-01
Modern imaging techniques and computational simulations yield complex multi-valued data that require higher-order mathematical descriptors. This book addresses topics of importance when dealing with such data, including frameworks for image processing, visualization, and statistical analysis of higher-order descriptors. It also provides examples of the successful use of higher-order descriptors in specific applications and a glimpse of the next generation of diffusion MRI. To do so, it combines contributions on new developments, current challenges in this area, and state-of-the-art surveys. Compared to the increasing importance of higher-order descriptors in a range of applications, tools for analysis and processing are still relatively hard to come by. Even though application areas such as medical imaging, fluid dynamics, and structural mechanics are very different in nature they face many shared challenges. This book provides an interdisciplinary perspective on this topic with contributions from key rese...
The geometry of higher-order Lagrange spaces applications to mechanics and physics
Miron, Radu
1997-01-01
This monograph is devoted to the problem of the geometrizing of Lagrangians which depend on higher-order accelerations It presents a construction of the geometry of the total space of the bundle of the accelerations of order k>=1 A geometrical study of the notion of the higher-order Lagrange space is conducted, and the old problem of prolongation of Riemannian spaces to k-osculator manifolds is solved Also, the geometrical ground for variational calculus on the integral of actions involving higher-order Lagrangians is dealt with Applications to higher-order analytical mechanics and theoretical physics are included as well Audience This volume will be of interest to scientists whose work involves differential geometry, mechanics of particles and systems, calculus of variation and optimal control, optimization, optics, electromagnetic theory, and biology
Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels
Yilmaz, Ferkan; Tabassum, Hina; Alouini, Mohamed-Slim
2012-01-01
In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2007-01-01
The problem of electromagnetic scattering by composite metallic and dielectric objects is solved using the coupled volume-surface integral equation (VSIE). The method of moments (MoM) based on higher-order hierarchical Legendre basis functions and higher-order curvilinear geometrical elements...... with the analytical Mie series solution. Scattering by more complex metal-dielectric objects are also considered to compare the presented technique with other numerical methods....
Ultra-compact Higher-Order-Mode Pass Filter in a Silicon Waveguide
DEFF Research Database (Denmark)
Guan, Xiaowei; Frandsen, Lars Hagedorn; Ding, Yunhong
2015-01-01
An 3.7 μm long higher-order-mode pass filter with an extinction ratio larger than 20 dB is demonstrated in a 1D corrugated silicon multimode waveguide......An 3.7 μm long higher-order-mode pass filter with an extinction ratio larger than 20 dB is demonstrated in a 1D corrugated silicon multimode waveguide...
Higher order mode of a microstripline fed cylindrical dielectric resonator antenna
Energy Technology Data Exchange (ETDEWEB)
Kumar, A. V. Praveen, E-mail: praveen.kumar@pilani.bits-pilani.ac.in [Department of Electrical and Electronics Engineering, BITS Pilani, Pilani, Rajasthan-333 031 (India)
2016-03-09
A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.
Defining Higher-Order Turbulent Moment Closures with an Artificial Neural Network and Random Forest
McGibbon, J.; Bretherton, C. S.
2017-12-01
Unresolved turbulent advection and clouds must be parameterized in atmospheric models. Modern higher-order closure schemes depend on analytic moment closure assumptions that diagnose higher-order moments in terms of lower-order ones. These are then tested against Large-Eddy Simulation (LES) higher-order moment relations. However, these relations may not be neatly analytic in nature. Rather than rely on an analytic higher-order moment closure, can we use machine learning on LES data itself to define a higher-order moment closure?We assess the ability of a deep artificial neural network (NN) and random forest (RF) to perform this task using a set of observationally-based LES runs from the MAGIC field campaign. By training on a subset of 12 simulations and testing on remaining simulations, we avoid over-fitting the training data.Performance of the NN and RF will be assessed and compared to the Analytic Double Gaussian 1 (ADG1) closure assumed by Cloudy Layers Unified By Binormals (CLUBB), a higher-order turbulence closure currently used in the Community Atmosphere Model (CAM). We will show that the RF outperforms the NN and the ADG1 closure for the MAGIC cases within this diagnostic framework. Progress and challenges in using a diagnostic machine learning closure within a prognostic cloud and turbulence parameterization will also be discussed.
Higher order aberrations in amblyopic children and their role in refractory amblyopia
Directory of Open Access Journals (Sweden)
Arnaldo Dias-Santos
2014-12-01
Full Text Available Objective: Some studies have hypothesized that an unfavourable higher order aberrometric profile could act as an amblyogenic mechanism and may be responsible for some amblyopic cases that are refractory to conventional treatment or cases of “idiopathic” amblyopia. This study compared the aberrometric profile in amblyopic children to that of children with normal visual development and compared the aberrometric profile in corrected amblyopic eyes and refractory amblyopic eyes with that of healthy eyes. Methods: Cross-sectional study with three groups of children – the CA group (22 eyes of 11 children with unilateral corrected amblyopia, the RA group (24 eyes of 13 children with unilateral refractory amblyopia and the C group (28 eyes of 14 children with normal visual development. Higher order aberrations were evaluated using an OPD-Scan III (NIDEK. Comparisons of the aberrometric profile were made between these groups as well as between the amblyopic and healthy eyes within the CA and RA groups. Results: Higher order aberrations with greater impact in visual quality were not significantly higher in the CA and RA groups when compared with the C group. Moreover, there were no statistically significant differences in the higher order aberrometric profile between the amblyopic and healthy eyes within the CA and RA groups. Conclusions: Contrary to lower order aberrations (e.g., myopia, hyperopia, primary astigmatism, higher order aberrations do not seem to be involved in the etiopathogenesis of amblyopia. Therefore, these are likely not the cause of most cases of refractory amblyopia.
Liang, B.; Iwnicki, S. D.; Zhao, Y.
2013-08-01
The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.
MIMO processing based on higher-order Poincaré spheres
Fernandes, Gil M.; Muga, Nelson J.; Pinto, Armando N.
2017-08-01
A multi-input multi-output (MIMO) algorithm based on higher-order Poincaré spheres is demonstrated for space-division multiplexing (SDM) systems. The MIMO algorithm is modulation format agnostic, robust to frequency offset and does not require training sequences. In this approach, the space-multiplexed signal is decomposed in sets of two tributary signals, with each set represented in a higher-order Poincaré sphere. For any arbitrary complex modulation format, the samples of two tributaries can be represented in a given higher-order Poincaré sphere with a symmetry plane. The crosstalk along propagation changes the spatial orientation of this plane and, therefore, it can be compensated by computing and realigning the best fit plane. We show how the transmitted signal can be successfully recovered using this procedure for all possible combinations of tributaries. Moreover, we analyze the convergence speed for the MIMO technique considering several optical-to-noise ratios.
Recurrent activity in higher order, modality non-specific brain regions
DEFF Research Database (Denmark)
Lou, Hans Olav Christensen; Joensson, Morten; Biermann-Ruben, Katja
2011-01-01
It has been proposed that the workings of the brain are mainly intrinsically generated recurrent neuronal activity, with sensory inputs as modifiers of such activity in both sensory and higher order modality non-specific regions. This is supported by the demonstration of recurrent neuronal activity...... in the visual system as a response to visual stimulation. In contrast recurrent activity has never been demonstrated before in higher order modality non-specific regions. Using magneto-encephalography and Granger causality analysis, we tested in a paralimbic network the hypothesis that stimulation may enhance...... causal recurrent interaction between higher-order, modality non-specific regions. The network includes anterior cingulate/medial prefrontal and posterior cingulate/medial parietal cortices together with pulvinar thalami, a network known to be effective in autobiographic memory retrieval and self...
Higher order polynomial expansion nodal method for hexagonal core neutronics analysis
International Nuclear Information System (INIS)
Jin, Young Cho; Chang, Hyo Kim
1998-01-01
A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy
FitzPatrick, Beverly; Hawboldt, John; Doyle, Daniel; Genge, Terri
2015-02-17
To determine whether national educational outcomes, course objectives, and classroom assessments for 2 therapeutics courses were aligned for curricular content and cognitive processes, and if they included higher-order thinking. Document analysis and student focus groups were used. Outcomes, objectives, and assessment tasks were matched for specific therapeutics content and cognitive processes. Anderson and Krathwohl's Taxonomy was used to define higher-order thinking. Students discussed whether assessments tested objectives and described their thinking when responding to assessments. There were 7 outcomes, 31 objectives, and 412 assessment tasks. The alignment for content and cognitive processes was not satisfactory. Twelve students participated in the focus groups. Students thought more short-answer questions than multiple choice questions matched the objectives for content and required higher-order thinking. The alignment analysis provided data that could be used to reveal and strengthen the enacted curriculum and improve student learning.
A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation
Diosady, Laslo T.; Murman, Scott M.
2018-01-01
A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.
Collocated electrodynamic FDTD schemes using overlapping Yee grids and higher-order Hodge duals
Deimert, C.; Potter, M. E.; Okoniewski, M.
2016-12-01
The collocated Lebedev grid has previously been proposed as an alternative to the Yee grid for electromagnetic finite-difference time-domain (FDTD) simulations. While it performs better in anisotropic media, it performs poorly in isotropic media because it is equivalent to four overlapping, uncoupled Yee grids. We propose to couple the four Yee grids and fix the Lebedev method using discrete exterior calculus (DEC) with higher-order Hodge duals. We find that higher-order Hodge duals do improve the performance of the Lebedev grid, but they also improve the Yee grid by a similar amount. The effectiveness of coupling overlapping Yee grids with a higher-order Hodge dual is thus questionable. However, the theoretical foundations developed to derive these methods may be of interest in other problems.
International Nuclear Information System (INIS)
Kawano, S.
2003-01-01
Magnetic materials consisting of rare earth ions form modulation structures such as a helical or sinusoidal structure caused by the oscillating magnetic interaction between rare earth ions due to RKKY magnetic interaction. These modulation structures, in some cases, develop further to higher order modulation structures by additional modulations caused by higher order crystalline electric field, magnetic interactions such as spin-lattice interaction, external magnetic field and pressure. The higher order modulation structures are observed in a spin-slip structure or a helifan structure in Ho, and a tilt helix structure in a TbEr alloy. Paramagnetic ions originated from frustration generate many magnetic phases under applied external magnetic field. KUR neutron diffraction groups have performed the development and adjustment of high-pressure instruments and external magnetic fields for neutron diffraction spectrometers. The studies of 'neutron diffraction under extreme conditions' by the seven groups are described in this report. (Y. Kazumata)
Development of a Higher Order Laminate Theory for Modeling Composites with Induced Strain Actuators
Chattopadhyay, Aditi; Seeley, Charles E.
1996-01-01
A refined higher order plate theory is developed to investigate the actuation mechanism of piezoelectric materials surface bonded or embedded in composite laminates. The current analysis uses a displacement field which accurately accounts for transverse shear stresses. Some higher order terms are identified by using the conditions that shear stresses vanish at all free surfaces. Therefore, all boundary conditions for displacements and stresses are satisfied in the present theory. The analysis is implemented using the finite element method which provides a convenient means to construct a numerical solution due to the discrete nature of the actuators. The higher order theory is computationally less expensive than a full three dimensional analysis. The theory is also shown to agree well with published experimental results. Numerical examples are presented for composite plates with thicknesses ranging from thin to very thick.
Application of Higher-Order Cumulant in Fault Diagnosis of Rolling Bearing
International Nuclear Information System (INIS)
Shen, Yongjun; Yang, Shaopu; Wang, Junfeng
2013-01-01
In this paper a new method of pattern recognition based on higher-order cumulant and envelope analysis is presented. The core of this new method is to construct analytical signals from the given signals and obtain the envelope signals firstly, then compute and compare the higher-order cumulants of the envelope signals. The higher-order cumulants could be used as a characteristic quantity to distinguish these given signals. As an example, this method is applied in fault diagnosis for 197726 rolling bearing of freight locomotive. The comparisons of the second-order, third-order and fourth-order cumulants of the envelope signals from different vibration signals of rolling bearing show this new method could discriminate the normal and two fault signals distinctly
Equivalence of two Fixed-Point Semantics for Definitional Higher-Order Logic Programs
Directory of Open Access Journals (Sweden)
Angelos Charalambidis
2015-09-01
Full Text Available Two distinct research approaches have been proposed for assigning a purely extensional semantics to higher-order logic programming. The former approach uses classical domain theoretic tools while the latter builds on a fixed-point construction defined on a syntactic instantiation of the source program. The relationships between these two approaches had not been investigated until now. In this paper we demonstrate that for a very broad class of programs, namely the class of definitional programs introduced by W. W. Wadge, the two approaches coincide (with respect to ground atoms that involve symbols of the program. On the other hand, we argue that if existential higher-order variables are allowed to appear in the bodies of program rules, the two approaches are in general different. The results of the paper contribute to a better understanding of the semantics of higher-order logic programming.
Neurodevelopmental outcomes of triplets or higher-order extremely low birth weight infants.
Wadhawan, Rajan; Oh, William; Vohr, Betty R; Wrage, Lisa; Das, Abhik; Bell, Edward F; Laptook, Abbot R; Shankaran, Seetha; Stoll, Barbara J; Walsh, Michele C; Higgins, Rosemary D
2011-03-01
Extremely low birth weight twins have a higher rate of death or neurodevelopmental impairment than singletons. Higher-order extremely low birth weight multiple births may have an even higher rate of death or neurodevelopmental impairment. Extremely low birth weight (birth weight 401-1000 g) multiple births born in participating centers of the Neonatal Research Network between 1996 and 2005 were assessed for death or neurodevelopmental impairment at 18 to 22 months' corrected age. Neurodevelopmental impairment was defined by the presence of 1 or more of the following: moderate to severe cerebral palsy; mental developmental index score or psychomotor developmental index score less than 70; severe bilateral deafness; or blindness. Infants who died within 12 hours of birth were excluded. Maternal and infant demographic and clinical variables were compared among singleton, twin, and triplet or higher-order infants. Logistic regression analysis was performed to establish the association between singletons, twins, and triplet or higher-order multiples and death or neurodevelopmental impairment, controlling for confounding variables that may affect death or neurodevelopmental impairment. Our cohort consisted of 8296 singleton, 2164 twin, and 521 triplet or higher-order infants. The risk of death or neurodevelopmental impairment was increased in triplets or higher-order multiples when compared with singletons (adjusted odds ratio: 1.7 [95% confidence interval: 1.29-2.24]), and there was a trend toward an increased risk when compared with twins (adjusted odds ratio: 1.27 [95% confidence: 0.95-1.71]). Triplet or higher-order births are associated with an increased risk of death or neurodevelopmental impairment at 18 to 22 months' corrected age when compared with extremely low birth weight singleton infants, and there was a trend toward an increased risk when compared with twins.
A finite deformation theory of higher-order gradient crystal plasticity
DEFF Research Database (Denmark)
Kuroda, Mitsutoshi; Tvergaard, Viggo
2008-01-01
crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution......For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation...
Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves
Heydari-Fard, M.; Hasani, S. N.
We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.
Higher-order resonant electronic recombination as a manifestation of configuration interaction
International Nuclear Information System (INIS)
Beilmann, C; Amaro, P; Tashenov, S; Bekker, H; Harman, Z; Crespo López-Urrutia, J R
2013-01-01
Theoretical and experimental investigations of higher-order electron–ion recombination resonances including inter-shell excitations are presented for L-shell ions of Kr with the aim of examining details of atomic structure calculations. The particular importance of electron–electron interaction and configuration mixing effects for these recombination processes enables their use for detailed tests of electron correlation effects. A test of the required level of considered mixing configurations is presented and further experiments involving higher-order recombination channels are motivated. (paper)
Higher order BLG supersymmetry transformations from 10-dimensional super Yang Mills
Energy Technology Data Exchange (ETDEWEB)
Hall, John [Alumnus of Physics Department, Imperial College,South Kensington, London, SW7 2AZ (United Kingdom); Low, Andrew [Physics Department, Wimbledon High School,Mansel Road, London, SW19 4AB (United Kingdom)
2014-06-26
We study a Simple Route for constructing the higher order Bagger-Lambert-Gustavsson theory - both supersymmetry transformations and Lagrangian - starting from knowledge of only the 10-dimensional Super Yang Mills Fermion Supersymmetry transformation. We are able to uniquely determine the four-derivative order corrected supersymmetry transformations, to lowest non-trivial order in Fermions, for the most general three-algebra theory. For the special case of Euclidean three-algbera, we reproduce the result presented in arXiv:1207.1208, with significantly less labour. In addition, we apply our method to calculate the quadratic fermion terms in the higher order BLG fermion supersymmetry transformation.
The Neutrosophic Logic View to Schrodinger's Cat Paradox, Revisited
Directory of Open Access Journals (Sweden)
Florentin Smarandache
2008-07-01
Full Text Available The present article discusses Neutrosophic logic view to Schrodinger's cat paradox. We argue that this paradox involves some degree of indeterminacy (unknown which Neutrosophic logic can take into consideration, whereas other methods including Fuzzy logic cannot. To make this proposition clear, we revisit our previous paper by offering an illustration using modified coin tossing problem, known as Parrondo's game.
Torsional Newton-Cartan geometry and the Schrodinger algebra
Bergshoeff, Eric A.; Hartong, Jelle; Rosseel, Jan
2015-01-01
We show that by gauging the Schrodinger algebra with critical exponent z and imposing suitable curvature constraints, that make diffeomorphisms equivalent to time and space translations, one obtains a geometric structure known as (twistless) torsional Newton-Cartan geometry (TTNC). This is a version
Boundary triples for Schrodinger operators with singular interactions on hypersurfaces
Czech Academy of Sciences Publication Activity Database
Behrndt, J.; Langer, M.; Lotoreichik, Vladimir
2016-01-01
Roč. 7, č. 2 (2016), s. 290-302 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : boundary triple * Weyl function * Schrodinger operator * singular potential * delta-interaction * hypersurface Subject RIV: BE - Theoretical Physics
Orbital stability of Gausson solutions to logarithmic Schrodinger equations
Directory of Open Access Journals (Sweden)
Alex H. Ardila
2016-12-01
Full Text Available In this article we prove of the orbital stability of the ground state for logarithmic Schrodinger equation in any dimension and under nonradial perturbations. This general stability result was announced by Cazenave and Lions [9, Remark II.3], but no details were given there.
A model for the stochastic origins of Schrodinger's equation
Davidson, Mark P.
2001-01-01
A model for the motion of a charged particle in the vacuum is presented which, although purely classical in concept, yields Schrodinger's equation as a solution. It suggests that the origins of the peculiar and nonclassical features of quantum mechanics are actually inherent in a statistical description of the radiative reactive force.
Toward an Understanding of Higher-Order Thinking among Minority Students.
Armour-Thomas, Eleanor; And Others
1992-01-01
Used principal-factors extraction with varimax rotation analysis to clarify nature and function of higher-order thinking among minority high school students (n=107) from economically disadvantaged backgrounds. Results allowed for specification of mental processes associated with the construct and the extent to which students reported awareness and…
Saragih, Sahat; Napitupulu, E. Elvis; Fauzi, Amin
2017-01-01
This research aims to develop a student-centered learning model based on local culture and instrument of mathematical higher order thinking of junior high school students in the frame of the 2013-Curriculum in North Sumatra, Indonesia. The subjects of the research are seventh graders which are taken proportionally random consisted of three public…
In-Service Teacher Education: Asking Questions for Higher Order Thinking in Visual Literacy
Moodley, Visvaganthie
2013-01-01
The kinds of questions teachers ask may thwart or promote learner high-order thinking; teachers themselves must have expertise in questioning skills to promote higher order cognition among learners. Drawing on experiential knowledge of assessment, and as an English-teaching professional development programme (PDP) facilitator, I demonstrate that…
Tanujaya, Benidiktus
2016-01-01
The purpose of this research was to develop an instrument that can be used to measure higher-order thinking skills (HOTS) in mathematics instruction of high school students. This research was conducted using a standard procedure of instrument development, from the development of conceptual definitions, development of operational definitions,…
The Higher Order Factor Structure and Gender Invariance of the Pathological Narcissism Inventory
Wright, Aidan G. C.; Lukowitsky, Mark R.; Pincus, Aaron L.; Conroy, David E.
2010-01-01
The Pathological Narcissism Inventory (PNI) is a recently developed multidimensional inventory for the assessment of pathological narcissism. The authors describe and report the results of two studies that investigate the higher order factor structure and gender invariance of the PNI. The results of the first study indicate that the PNI has a…
The advantage of higher-order theory of mind in the game of limited bidding
De Weerd, H.; Verheij, B.; van Eijck, J.; Verbrugge, L. C.
2011-01-01
Higher-order theory of mind is the ability to recursively model mental states of other agents. It is known that adults in general can reason adequately at the second order (covering attributions like "Alice knows that Bob knows that she wrote a novel under pseudonym"), but there are cognitive limits
Massive, massless and ghost modes of gravitational waves from higher-order gravity
DEFF Research Database (Denmark)
Bogdanos, Charalampos; Capozziello, Salvatore; De Laurentis, Mariafelicia
We linearize the field equations for higher order theories that contain scalar invariants other than the Ricci scalar. We find that besides a massless spin-2 field (the standard graviton), the theory contains also spin-0 and spin-2 massive modes with the latter being, in general, ghost modes. Then...
Method of applying single higher order polynomial basis function over multiple domains
CSIR Research Space (South Africa)
Lysko, AA
2010-03-01
Full Text Available A novel method has been devised where one set of higher order polynomial-based basis functions can be applied over several wire segments, thus permitting to decouple the number of unknowns from the number of segments, and so from the geometrical...
Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow
Watson, Willie R.; Jones, Michael G.
2017-01-01
Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner.
Controlled generation of higher-order Poincaré sphere beams from a laser
CSIR Research Space (South Africa)
Naidoo, Darryl
2016-03-01
Full Text Available . 10: 327-332 Controlled generation of higher-order Poincaré sphere beams from a laser Naidoo D Roux FS Dudley A Litvin I Piccirillo B Marrucci L Forbes A ABSTRACT: The angular momentum of light can be described by positions on a...
On the origin of higher braces and higher-order derivations
Czech Academy of Sciences Publication Activity Database
Markl, Martin
2015-01-01
Roč. 10, č. 3 (2015), s. 637-667 ISSN 2193-8407 Institutional support: RVO:67985840 Keywords : Koszul braces * Börjeseon braces * higher-order derivation Subject RIV: BA - General Mathematics Impact factor: 0.600, year: 2015 http://link.springer.com/article/10.1007/s40062-014-0079-2
Superpositions of higher-order bessel beams and nondiffracting speckle fields
CSIR Research Space (South Africa)
Dudley, Angela L
2009-08-01
Full Text Available speckle fields. The paper reports on illuminating a ring slit aperture with light which has an azimuthal phase dependence, such that the field produced is a superposition of two higher-order Bessel beams. In the case that the phase dependence of the light...
EXISTENCE OF PERIODIC SOLUTION TO HIGHER ORDER DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENT
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper,using the coincidence degree theory of Mawhin,we investigate the existence of periodic solutions to higher order differential equations with deviating argument. Some new results on the existence of periodic solutions to the equations are obtained. In addition,we give an example to illustrate the main results.
Dori, Yehudit J.; Tal, Revital T.; Tsaushu, Masha
2003-01-01
Teaching nonscience majors topics in biotechnology through case studies is the focus of this research. Our "Biotechnology, Environment, and Related Issues" module, developed within the "Science for All" framework, is aimed at elevating the level of students' scientific and technological literacy and their higher order thinking…
Oscillation of certain higher-order neutral partial functional differential equations.
Li, Wei Nian; Sheng, Weihong
2016-01-01
In this paper, we study the oscillation of certain higher-order neutral partial functional differential equations with the Robin boundary conditions. Some oscillation criteria are established. Two examples are given to illustrate the main results in the end of this paper.
McGill, Ryan J.; Canivez, Gary L.
2016-01-01
As recommended by Carroll, the present study examined the factor structure of the Wechsler Intelligence Scale for Children-Fourth Edition Spanish (WISC-IV Spanish) normative sample using higher order exploratory factor analytic techniques not included in the WISC-IV Spanish Technical Manual. Results indicated that the WISC-IV Spanish subtests were…
A review of higher order strain gradient theories of plasticity: Origins ...
Indian Academy of Sciences (India)
require higher order boundary conditions that enable us to model effects of disloca- ..... where ǫ0 is a reference strain, σ0 the yield stress and n the strain hardening exponent. The ...... Petch N J 1953 J. Iron Steel Inst. London 173: 25. Pantleon ...
Foundational (co)datatypes and (co)recursion for higher-order logic
Biendarra, Julian; Blanchette, Jasmin Christian; Bouzy, Aymeric; Desharnais, Martin; Fleury, Mathias; Hölzl, Johannes; Kunčar, Ondřej; Lochbihler, Andreas; Meier, Fabian; Panny, Lorenz; Popescu, Andrei; Sternagel, Christian; Thiemann, René; Traytel, Dmitriy; Dixon, C.; Finger, M.
2017-01-01
We describe a line of work that started in 2011 towards enriching Isabelle/HOL’s language with coinductive datatypes, which allow infinite values, and with a more expressive notion of inductive datatype than previously supported by any system based on higher-order logic. These (co)datatypes are
Higher-order QCD corrections to inclusive particle production in panti p collisions
International Nuclear Information System (INIS)
Borzumati, F.M.; Kniehl, B.A.; Kramer, G.
1992-10-01
Inclusive single-particle production cross sections have been calculated including higher-order QCD corrections. Transverse-momentum and rapidity distributions are presented and the scale dependence is studied. The results are compared with experimental data from the CERN Spanti pS Collider and the Fermilab Tevatron. (orig.)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.
Brady, Timothy F.; Tenenbaum, Joshua B.
2013-01-01
When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…
Higher order hierarchical discretization scheme for surface integral equations for layered media
DEFF Research Database (Denmark)
Jørgensen, Erik; Kim, Oleksiy S.; Meincke, Peter
2004-01-01
This paper presents an efficient technique for the analysis of electromagnetic scattering by arbitrarily shaped perfectly conducting objects in layered media. The technique is based on a higher order method of moments (MoM) solution of the electric field, magnetic field, or combined-field integra...
Shape invariant higher-order Bessel-like beams carrying orbital angular momentum
CSIR Research Space (South Africa)
Ismail, Y
2012-09-01
Full Text Available -1 Journal of Optics September 2012/ Vol. 14 Shape invariant higher-order Bessel-like beams carrying orbital angular momentum Y Ismail1,2, N Khilo3, V Belyi3 and A Forbes1,2 1 School of Physics, University of KwaZulu-Natal, Private Bag X54001...
Lim, Cher Ping; Tay, Lee Yong
2003-01-01
Based on a case study of an elementary school in Singapore, this article describes and analyzes how different types of ICT tools (informative, situating, constructive, and communicative tools) are used to engage students in higher-order thinking. The discussion emphasizes that the objective of the lesson and the orienting activities, rather than…
Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well
International Nuclear Information System (INIS)
Yépez, V. S.; Sagar, R. P.; Laguna, H. G.
2017-01-01
The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants. (author)
Gamino, Jacquelyn F.; Chapman, Sandra B.; Cook, Lori G.
2009-01-01
Little is known about strategic learning ability in preteens and adolescents with traumatic brain injury (TBI). Strategic learning is the ability to combine and synthesize details to form abstracted gist-based meanings, a higher-order cognitive skill associated with frontal lobe functions and higher classroom performance. Summarization tasks were…
Second- and Higher-Order Virial Coefficients Derived from Equations of State for Real Gases
Parkinson, William A.
2009-01-01
Derivation of the second- and higher-order virial coefficients for models of the gaseous state is demonstrated by employing a direct differential method and subsequent term-by-term comparison to power series expansions. This communication demonstrates the application of this technique to van der Waals representations of virial coefficients.…
Quantum Noether identities for non-local transformations in higher-order derivatives theories
International Nuclear Information System (INIS)
Li, Z.P.; Long, Z.W.
2003-01-01
Based on the phase-space generating functional of the Green function for a system with a regular/singular higher-order Lagrangian, the quantum canonical Noether identities (NIs) under a local and non-local transformation in phase space have been deduced, respectively. For a singular higher-order Lagrangian, one must use an effective canonical action I eff P in quantum canonical NIs instead of the classical I P in classical canonical NIs. The quantum NIs under a local and non-local transformation in configuration space for a gauge-invariant system with a higher-order Lagrangian have also been derived. The above results hold true whether or not the Jacobian of the transformation is equal to unity or not. It has been pointed out that in certain cases the quantum NIs may be converted to conservation laws at the quantum level. This algorithm to derive the quantum conservation laws is significantly different from the quantum first Noether theorem. The applications of our formulation to the Yang-Mills fields and non-Abelian Chern-Simons (CS) theories with higher-order derivatives are given, and the conserved quantities at the quantum level for local and non-local transformations are found, respectively. (orig.)
Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well
Yépez, V. S.; Sagar, R. P.; Laguna, H. G.
2017-12-01
The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.
Directory of Open Access Journals (Sweden)
Erkinjon Karimov
2017-10-01
Full Text Available In this work we discuss higher order multi-term partial differential equation (PDE with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.
Erkinjon Karimov; Sardor Pirnafasov
2017-01-01
In this work we discuss higher order multi-term partial differential equation (PDE) with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.
Tularam, Gurudeo Anand
2013-01-01
This paper addresses the importance of teaching mathematics in business and finance schools of tertiary institutions of Australia. The paper explores the nature of thinking and reasoning required for advancement financial or economic studies involves the use of higher order thinking and creativity skills (HOTS) for teaching in mathematics classes.…
Performance-Based Task Assessment of Higher-Order Proficiencies in Redesigned STEM High Schools
Ernst, Jeremy V.; Glennie, Elizabeth; Li, Songze
2017-01-01
This study explored student abilities in applying conceptual knowledge when presented with structured performance tasks. Specifically, the study gauged proficiency in higher-order applications of students enrolled in earth and environmental science or biology. The student sample was drawn from a Redesigned STEM high school model where a tested…
DEFF Research Database (Denmark)
Breinbjerg, Olav
1992-01-01
An approach for including higher order edge diffraction in the equivalent edge current (EEC) method is proposed. This approach, which applies to monostatic as well as bistatic radar configurations with perfectly conducting polygonal plates, involves three distinct sets of EECs. All of these sets...
Geometrical optics in general relativity: A study of the higher order corrections
International Nuclear Information System (INIS)
Anile, A.M.
1976-01-01
The higher order corrections to geometrical optics are studied in general relativity for an electromagnetic test wave. An explicit expression is found for the average energy--momentum tensor which takes into account the first-order corrections. Finally the first-order corrections to the well-known area-intensity law of geometrical optics are derived
Superpositions of higher-order bessel beams and nondiffracting speckle fields - (SAIP 2009)
CSIR Research Space (South Africa)
Dudley, Angela L
2009-07-01
Full Text Available speckle fields. The paper reports on illuminating a ring slit aperture with light which has an azimuthal phase dependence, such that the field produced is a superposition of two higher-order Bessel beams. In the case that the phase dependence of the light...
H2O2-induced higher order chromatin degradation: A novel ...
Indian Academy of Sciences (India)
Unknown
mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant concentrations rapidly induces higher order chromatin degradation (HOCD), i.e. enzymatic ... clease works through a single strand scission mechanism ... a great mutagenic risk to the surviving cells, because en-.
A Hybrid PO - Higher-Order Hierarchical MoM Formulation using Curvilinear Geometry Modeling
DEFF Research Database (Denmark)
Jørgensen, E.; Meincke, Peter; Breinbjerg, Olav
2003-01-01
which implies a very modest memory requirement. Nevertheless, the hierarchical feature of the basis functions maintains the ability to treat small geometrical details efficiently. In addition, the scatterer is modelled with higher-order curved patches which allows accurate modelling of curved surfaces...
Toledo, Santiago; Dubas, Justin M.
2016-01-01
An emphasis on higher-order thinking within the curriculum has been a subject of interest in the chemical and STEM literature due to its ability to promote meaningful, transferable learning in students. The systematic use of learning taxonomies could be a practical way to scaffold student learning in order to achieve this goal. This work proposes…
Higher-order multipole amplitude measurement in psi ' -> gamma chi(c2)
Ablikim, M.; Achasov, M. N.; Alberto, D.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Calcaterra, A. C.; Cao, G. F.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Leung, J. K. C.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, N. B.; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, X. T.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu; Nefedov, Y.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tian, H. L.; Toth, D.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, S. P.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.
2011-01-01
Using 106 x 10(6) psi' events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition psi' -> gamma chi(c2) -> gamma pi(+)pi(-)/gamma K+K- are measured. A fit to the chi(c2) production and decay angular distributions yields M2
Unifying refinement and hoare-style reasoning in a logic for higher-order concurrency
DEFF Research Database (Denmark)
Turon, Aaron; Dreyer, Derek; Birkedal, Lars
2013-01-01
Modular programming and modular verification go hand in hand, but most existing logics for concurrency ignore two crucial forms of modularity: *higher-order functions*, which are essential for building reusable components, and *granularity abstraction*, a key technique for hiding the intricacies ...
Scott, Kristin M; Barbarin, Oscar A; Brown, Jeffrey M
2013-01-01
This study examines the relations of higher order (i.e., abstract) thinking (HOT) skills to specific domains of social competence in Black boys (n = 108) attending publicly sponsored prekindergarten (pre-K) programs. Data for the study were collected as part of the National Center for Early Development and Learning (NCEDL) Multi-State Study, a national, longitudinal study examining the quality and outcomes in a representative sample of publicly sponsored pre-K programs in six states (N = 240). Pre-K and kindergarten teachers rated randomly selected children on measures of abstract thinking, self-regulation, and social functioning at the beginning and end of each school year. Applying structural equation modeling, compared with earlier time points, HOT measured in the fall of kindergarten significantly predicted each of the domains of social competence in the spring of kindergarten, with the exception of peer social skills, while controlling for general cognitive ability. Results suggest that early intervention to improve HOT may be an effective and more focused approach to address concerns about Black boys' early social competencies in specific domains and potentially reduce the risk of later social difficulties. © 2013 American Orthopsychiatric Association.
Three-dimensional solutions in media with spatial dependence of nonlinear refractive index
International Nuclear Information System (INIS)
Kovachev, L.M.; Kaymakanova, N.I.; Dakova, D.Y.; Pavlov, L.I.; Donev, S.G.; Pavlov, R.L.
2004-01-01
We investigate a nonparaxial vector generalization of the scalar 3D+1 Nonlinear Schrodinger Equation (NSE). Exact analytical 3D+1 soliton solutions are obtained for the first time in media of spatial dependence of the nonlinear refractive index
Quantifying the impact of scholarly papers based on higher-order weighted citations.
Bai, Xiaomei; Zhang, Fuli; Hou, Jie; Lee, Ivan; Kong, Xiangjie; Tolba, Amr; Xia, Feng
2018-01-01
Quantifying the impact of a scholarly paper is of great significance, yet the effect of geographical distance of cited papers has not been explored. In this paper, we examine 30,596 papers published in Physical Review C, and identify the relationship between citations and geographical distances between author affiliations. Subsequently, a relative citation weight is applied to assess the impact of a scholarly paper. A higher-order weighted quantum PageRank algorithm is also developed to address the behavior of multiple step citation flow. Capturing the citation dynamics with higher-order dependencies reveals the actual impact of papers, including necessary self-citations that are sometimes excluded in prior studies. Quantum PageRank is utilized in this paper to help differentiating nodes whose PageRank values are identical.
Bulgren, Janis; Deshler, Donald D; Lenz, B Keith
2007-01-01
The understanding and use of historical concepts specified in national history standards pose many challenges to students. These challenges include both the acquisition of content knowledge and the use of that knowledge in ways that require higher order thinking. All students, including adolescents with learning disabilities (LD), are expected to understand and use concepts of history to pass high-stakes assessments and to participate meaningfully in a democratic society. This article describes Content Enhancement Routines (CERs) to illustrate instructional planning, teaching, and assessing for higher order thinking with examples from an American history unit. Research on the individual components of Content Enhancement Routines will be illustrated with data from 1 of the routines. The potential use of integrated sets of materials and procedures across grade levels and content areas will be discussed.
Sapriadil, S.; Setiawan, A.; Suhandi, A.; Malik, A.; Safitri, D.; Lisdiani, S. A. S.; Hermita, N.
2018-05-01
Communication skill is one skill that is very needed in this 21st century. Preparing and teaching this skill in teaching physics is relatively important. The focus of this research is to optimizing of students’ scientific communication skills after the applied higher order thinking virtual laboratory (HOTVL) on topic electric circuit. This research then employed experimental study particularly posttest-only control group design. The subject in this research involved thirty senior high school students which were taken using purposive sampling. A sample of seventy (70) students participated in the research. An equivalent number of thirty five (35) students were assigned to the control and experimental group. The results of this study found that students using higher order thinking virtual laboratory (HOTVL) in laboratory activities had higher scientific communication skills than students who used the verification virtual lab.
An initial framework for the language of higher-order thinking mathematics practices
Staples, Megan E.; Truxaw, Mary P.
2012-09-01
This article presents an examination of the language demands of cognitively demanding tasks and proposes an initial framework for the language demands of higher-order mathematics thinking practices. We articulate four categories for this framework: language of generalisation, language of comparison, language of proportional reasoning, and language of analysing impact. These categories were developed out of our collaborative work to design and implement higher-order thinking tasks with a group of Grade 9 (14- and 15-year-olds) teachers teaching in a linguistically diverse setting; analyses of student work samples on these tasks; and our knowledge of the literature. We describe each type of language demand and then analyse student work in each category to reveal linguistic challenges facing students as they engage these mathematical tasks. Implications for teaching and professional development are discussed.
Evidence for higher-order effects in L-shell ionization by proton impact
International Nuclear Information System (INIS)
Sarkadi, L.; Mukoyama, T.
1988-01-01
It is widely believed that higher order processes of ion-atom collisions are negligible in cases of light projectiles like proton. Recent refined experiments tried to prove that the existence of such effects were comperable with the experimental errors, and they showed the unexpected relative importance of the higher order processes. Thus a new coupled channel calculation was performed for proton-gold atom collision in the energy range of 0.15-3.0 MeV, including dynamical subshell coupling effects. The results show that the deviations from the first order cross sections reach 40% at low collision energy. This result made necessary to correct the calculations of L-shell X-ray production cross sections. (D.G.) 6 refs
Higher-order meshing of implicit geometries, Part II: Approximations on manifolds
Fries, T. P.; Schöllhammer, D.
2017-11-01
A new concept for the higher-order accurate approximation of partial differential equations on manifolds is proposed where a surface mesh composed by higher-order elements is automatically generated based on level-set data. Thereby, it enables a completely automatic workflow from the geometric description to the numerical analysis without any user-intervention. A master level-set function defines the shape of the manifold through its zero-isosurface which is then restricted to a finite domain by additional level-set functions. It is ensured that the surface elements are sufficiently continuous and shape regular which is achieved by manipulating the background mesh. The numerical results show that optimal convergence rates are obtained with a moderate increase in the condition number compared to handcrafted surface meshes.
International Nuclear Information System (INIS)
Vogt, A; Soar, G.; Vermaseren, J.A.M.
2010-01-01
We have studied the physical evolution kernels for nine non-singlet observables in deep-inelastic scattering (DIS), semi-inclusive e + e - annihilation and the Drell-Yan (DY) process, and for the flavour-singlet case of the photon- and heavy-top Higgs-exchange structure functions (F 2 , F φ ) in DIS. All known contributions to these kernels show an only single-logarithmic large-x enhancement at all powers of (1-x). Conjecturing that this behaviour persists to (all) higher orders, we have predicted the highest three (DY: two) double logarithms of the higher-order non-singlet coefficient functions and of the four-loop singlet splitting functions. The coefficient-function predictions can be written as exponentiations of 1/N-suppressed contributions in Mellin-N space which, however, are less predictive than the well-known exponentiation of the ln k N terms. (orig.)
Quantifying the impact of scholarly papers based on higher-order weighted citations
Bai, Xiaomei; Zhang, Fuli; Hou, Jie; Kong, Xiangjie; Tolba, Amr; Xia, Feng
2018-01-01
Quantifying the impact of a scholarly paper is of great significance, yet the effect of geographical distance of cited papers has not been explored. In this paper, we examine 30,596 papers published in Physical Review C, and identify the relationship between citations and geographical distances between author affiliations. Subsequently, a relative citation weight is applied to assess the impact of a scholarly paper. A higher-order weighted quantum PageRank algorithm is also developed to address the behavior of multiple step citation flow. Capturing the citation dynamics with higher-order dependencies reveals the actual impact of papers, including necessary self-citations that are sometimes excluded in prior studies. Quantum PageRank is utilized in this paper to help differentiating nodes whose PageRank values are identical. PMID:29596426
ANOVA-HDMR structure of the higher order nodal diffusion solution
International Nuclear Information System (INIS)
Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.
2013-01-01
Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)
Higher-Order Structure in Bacterial VapBC Toxin-Antitoxin Complexes
DEFF Research Database (Denmark)
Bendtsen, Kirstine L; Brodersen, Ditlev E
2017-01-01
Toxin-antitoxin systems are widespread in the bacterial kingdom, including in pathogenic species, where they allow rapid adaptation to changing environmental conditions through selective inhibition of key cellular processes, such as DNA replication or protein translation. Under normal growth...... that allow auto-regulation of transcription by direct binding to promoter DNA. In this chapter, we review our current understanding of the structural characteristics of type II toxin-antitoxin complexes in bacterial cells, with a special emphasis on the staggering variety of higher-order architecture...... conditions, type II toxins are inhibited through tight protein-protein interaction with a cognate antitoxin protein. This toxin-antitoxin complex associates into a higher-order macromolecular structure, typically heterotetrameric or heterooctameric, exposing two DNA binding domains on the antitoxin...
Coaxial higher-order mode damper employing a high-pass filter
International Nuclear Information System (INIS)
Kang, Y.W.; Jiang, X.
1997-01-01
Two different types of coaxial higher-order mode (HOM) dampers have been investigated for the Advanced Photon Source (APS) storage ring cavities: e-probe dampers and h-loop dampers. Realization of the h-loop dampers has been difficult because the loop antenna couples not only to the HOMs but also to the accelerating mode and results in loss of Q at the fundamental frequency. Previously, a first-order fundamental rejection filter was tested with unsatisfactory rejection characteristics. This problem can be overcome by using a higher-order high-pass filter between the loop and the matched load. Prototype dampers have been fabricated and tested in a storage ring single-cell cavity and the damping characteristic was analyzed
Robust rooftop extraction from visible band images using higher order CRF
Li, Er
2015-08-01
In this paper, we propose a robust framework for building extraction in visible band images. We first get an initial classification of the pixels based on an unsupervised presegmentation. Then, we develop a novel conditional random field (CRF) formulation to achieve accurate rooftops extraction, which incorporates pixel-level information and segment-level information for the identification of rooftops. Comparing with the commonly used CRF model, a higher order potential defined on segment is added in our model, by exploiting region consistency and shape feature at segment level. Our experiments show that the proposed higher order CRF model outperforms the state-of-the-art methods both at pixel and object levels on rooftops with complex structures and sizes in challenging environments. © 1980-2012 IEEE.
John Carroll’s Views on Intelligence: Bi-Factor vs. Higher-Order Models
Directory of Open Access Journals (Sweden)
A. Alexander Beaujean
2015-10-01
Full Text Available The development of factor models is inextricably tied to the history of intelligence research. One of the most commonly-cited scholars in the field is John Carroll, whose three-stratum theory of cognitive ability has been one of the most influential models of cognitive ability in the past 20 years. Nonetheless, there is disagreement about how Carroll conceptualized the factors in his model. Some argue that his model is best represented through a higher-order model, while others argue that a bi-factor model is a better representation. Carroll was explicit about what he perceived the best way to represent his model, but his writings are not always easy to understand. In this article, I clarify his position by first describing the details and implications of bi-factor and higher-order models then show that Carroll’s published views are better represented by a bi-factor model.
A higher order space-time Galerkin scheme for time domain integral equations
Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam
2014-01-01
Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.
Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics
Directory of Open Access Journals (Sweden)
Khaled A. Gepreel
2013-01-01
Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.
Discrete Maximum Principle for Higher-Order Finite Elements in 1D
Czech Academy of Sciences Publication Activity Database
Vejchodský, Tomáš; Šolín, Pavel
2007-01-01
Roč. 76, č. 260 (2007), s. 1833-1846 ISSN 0025-5718 R&D Projects: GA ČR GP201/04/P021 Institutional research plan: CEZ:AV0Z10190503; CEZ:AV0Z20760514 Keywords : discrete maximum principle * discrete Grren´s function * higher-order elements Subject RIV: BA - General Mathematics Impact factor: 1.230, year: 2007
International Nuclear Information System (INIS)
Shi Yi; Nanjing Univ., JS; Wu Fengmei; Nanjing Univ., JS; Zheng Youdou; Nanjing Univ., JS; Suezawa, M.; Imai, M.; Sumino, K.
1996-01-01
Optically active processes of the higher-order bands (HOB) are investigated at different temperatures in fast neutron irradiated silicon using Fourier transform infrared absorption measurement. It is shown that the optically active process is nearly temperature independent below 80 K, the slow decay process remains up to a heating temperature of 180 K. The observations are analyzed in terms of the relaxation behavior of photoexcited carriers governed by fast neutron radiation induced defect clusters. (orig.)
Dynamic Correction of Higher-Order Deflection Aberrations in the Environmental SEM
Czech Academy of Sciences Publication Activity Database
Oral, Martin; Neděla, Vilém
2015-01-01
Roč. 21, S4 (2015), s. 194-199 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA14-22777S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : environmental SEM * ESEM * shifted deflection pivot point * Higher order deflection aberrations * vignetting * dynamic focusing * dynamic stigmator * dynamic correction Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015
Asymptotic estimates and exponential stability for higher-order monotone difference equations
Directory of Open Access Journals (Sweden)
Pituk Mihály
2005-01-01
Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.
Asymptotic estimates and exponential stability for higher-order monotone difference equations
Directory of Open Access Journals (Sweden)
Mihály Pituk
2005-03-01
Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.
A single dose of oxytocin nasal spray improves higher-order social cognition in schizophrenia.
Guastella, Adam J; Ward, Philip B; Hickie, Ian B; Shahrestani, Sara; Hodge, Marie Antoinette Redoblado; Scott, Elizabeth M; Langdon, Robyn
2015-11-01
Schizophrenia is associated with significant impairments in both higher and lower order social cognitive performance and these impairments contribute to poor social functioning. People with schizophrenia report poor social functioning to be one of their greatest unmet treatment needs. Recent studies have suggested the potential of oxytocin as such a treatment, but mixed results render it uncertain what aspects of social cognition are improved by oxytocin and, subsequently, how oxytocin might best be applied as a therapeutic. The aim of this study was to determine whether a single dose of oxytocin improved higher-order and lower-order social cognition performance for patients with schizophrenia across a well-established battery of social cognition tests. Twenty-one male patients received both a single dose of oxytocin nasal spray (24IU) and a placebo, two weeks apart in a randomized within-subjects placebo controlled design. Following each administration, participants completed the social cognition tasks, as well as a test of general neurocognition. Results revealed that oxytocin particularly enhanced performance on higher order social cognition tasks, with no effects on general neurocognition. Results for individual tasks showed most improvement on tests measuring appreciation of indirect hints and recognition of social faux pas. These results suggest that oxytocin, if combined to enhance social cognition learning, may be beneficial when targeted at higher order social cognition domains. This study also suggests that these higher order tasks, which assess social cognitive processing in a social communication context, may provide useful markers of response to oxytocin in schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.
On the mild solutions of higher-order differential equations in Banach spaces
Directory of Open Access Journals (Sweden)
Nguyen Thanh Lan
2003-01-01
Full Text Available For the higher-order abstract differential equation u(n(t=Au(t+f(t, t∈ℝ, we give a new definition of mild solutions. We then characterize the regular admissibility of a translation-invariant subspace ℳ of BUC(ℝ,E with respect to the above-mentioned equation in terms of solvability of the operator equation AX−Xn=C. As applications, periodicity and almost periodicity of mild solutions are also proved.
Tiruneh, Ababu Teklemariam
2013-01-01
Aitken extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduced that enables successive decomposition of high Eigen values of the iteration matrix to enable convergence. While extrapolation of a convergent fixed point iteration using a geometric series sum is a known form of Aitken acceleration, it is shown in this paper that the same formula can be used to ...
Exotic quantum holonomy and higher-order exceptional points in quantum kicked tops
Tanaka, Atushi; Kim, Sang Wook; Cheon, Taksu
2014-01-01
The correspondence between exotic quantum holonomy that occurs in families of Hermitian cycles, and exceptional points (EPs) for non-Hermitian quantum theory is examined in quantum kicked tops. Under a suitable condition, an explicit expressions of the adiabatic parameter dependencies of quasienergies and stationary states, which exhibit anholonomies, are obtained. It is also shown that the quantum kicked tops with the complexified adiabatic parameter have a higher order EP, which is broken i...
Growth of meromorphic solutions of higher-order linear differential equations
Directory of Open Access Journals (Sweden)
Wenjuan Chen
2009-01-01
Full Text Available In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L. Yuan, by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen, and the extended Winman-Valiron theory which proved by J. Wang and H.X. Yi. In addition, we also consider the nonhomogeneous linear differential equations.
Higher order multiple pregnancy outcomes in the Maltese islands 2000-2004
Savona-Ventura, Charles; Gatt, Miriam; Vella, Katya; Grima, Stephen
2008-01-01
Higher order multiple births have increased significantly in the last decades throughout the developed world. In spite of advances in obstetric care seen throughout the second half of the twentieth century, the perinatal outcomes associated with a multiple pregnancy remain associated with increased morbidity and mortality for the mother and the infants. This study attempts to assess the characteristics and outcomes of these maternities in the Maltese population. The National maternity data fo...
Soliton and periodic solutions for higher order wave equations of KdV type (I)
International Nuclear Information System (INIS)
Khuri, S.A.
2005-01-01
The aim of the paper is twofold. First, a new ansaetze is introduced for the construction of exact solutions for higher order wave equations of KdV type (I). We show the existence of a class of discontinuous soliton solutions with infinite spikes. Second, the projective Riccati technique is implemented as an alternate approach for obtaining new exact solutions, solitary solutions, and periodic wave solutions
Transition, coexistence, and interaction of vector localized waves arising from higher-order effects
International Nuclear Information System (INIS)
Liu, Chong; Yang, Zhan-Ying; Zhao, Li-Chen; Yang, Wen-Li
2015-01-01
We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relative background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.
Transition, coexistence, and interaction of vector localized waves arising from higher-order effects
Energy Technology Data Exchange (ETDEWEB)
Liu, Chong [School of Physics, Northwest University, Xi’an 710069 (China); Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn [School of Physics, Northwest University, Xi’an 710069 (China); Zhao, Li-Chen, E-mail: zhaolichen3@163.com [School of Physics, Northwest University, Xi’an 710069 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xi’an 710069 (China)
2015-11-15
We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relative background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.
Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.
Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P
2015-08-01
Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.
On the formulations of higher-order strain gradient crystal plasticity models
DEFF Research Database (Denmark)
Kuroda, M.; Tvergaard, Viggo
2008-01-01
Recently, several higher-order extensions to the crystal plasticity theory have been proposed to incorporate effects of material length scales that were missing links in the conventional continuum mechanics. The extended theories are classified into work-conjugate and non-work-conjugate types. A ...... deformation. In this paper, the discussion is extended to a more general situation, i.e. the context of multiple and three-dimensional slip deformations....
Wilson's theory of critical phenomena. Higher order corrections to critical exponents
International Nuclear Information System (INIS)
Zinn-Justin, J.
1973-01-01
The Wilson's theory of critical phenomena is presented, in the context of renormalized field theory in d dimension and of the Callan-Symanzik equations. This theory allows in particular to compute critical exponents that govern the behavior of some correlation functions near the critical temperature, as power series in epsilon=4-d, using the standard perturbation theory. Owing to the large value of the expansion parameter epsilon, whose physical value is one, it is very important to perform higher order calculations [fr
A stable higher order space time Galerkin marching-on-in-time scheme
Pray, Andrew J.
2013-07-01
We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order basis functions in time to improve the accuracy of the solver. The method is validated by showing convergence in temporal basis function order, time step size, and geometric discretization order. © 2013 IEEE.
Integrated Software Development System/Higher Order Software Conceptual Description (ISDS/HOS)
1976-11-01
Structured Flowchart Conventions 270 6.3.5.3 Design Diagram Notation 273 xii HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS...associated with the process steps. They also reference other HIPO diagrams as well an non-HIPO documentation such as flowcharts or decision tables of...syntax that is easy to learn and must provide the novice with some prompting to help him avoid classic beginner errors. Desirable editing capabilities
Energy Technology Data Exchange (ETDEWEB)
Pal' chikov, V.G. [National Research Institute for Physical-Technical and Radiotechnical Measurements - VNIIFTRI (Russian Federation)], E-mail: vitpal@mail.ru
2000-08-15
A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.