WorldWideScience

Sample records for higher viscosity contrasts

  1. Effect of ionic and non-ionic contrast media on whole blood viscosity, plasma viscosity and hematocrit in vitro

    International Nuclear Information System (INIS)

    Aspelin, P.

    1978-01-01

    The effect of the ionic contrast media diatrizoate, iocarmate and metrizoate and the non-ionic metrizamide on whole blood viscosity, plasma viscosity and hematocrit was investigated. All the contrast media increased whole blood and plasma viscosity and reduced the hematocrit. The whole blood viscosity increased with increasing osmolality of the contrast medium solutions, whereas the plasma viscosity increased with increasing viscosity of the contrast medium solutions. The higher the osmolality of the contrast media, the lower the hematocrit became. The normal shear-thinning (decreasing viscosity with increasing shear rate) property of blood was reduced when contrast medium was added to the blood. At 50 per cent volume ratio (contrast medium to blood), the ionic contrast media converted the blood into a shear-thickening (increasing viscosity with increasing shear rate) suspension, indicating a marked rigidification of the single red cell, while the non-ionic contrast medium still produced shear-thinning, indicating less rigidification of the red cell (p<0.01). (Auth.)

  2. Viscosity of iodinated contrast agents during renal excretion

    International Nuclear Information System (INIS)

    Jost, Gregor; Lengsfeld, Philipp; Lenhard, Diana C.; Pietsch, Hubertus; Huetter, Joachim; Sieber, Martin A.

    2011-01-01

    monomeric CAs. In contrast, a significantly higher urine flow was measured after the administration of the monomeric CAs as compared to the dimeric CAs. Conclusion: We demonstrated that the viscosity differences between monomeric and dimeric CAs are strongly enhanced due to a concentration process of the CAs upon increasing osmolalities, a process which is likely to take place in a similar manner in the tubular system. This result suggests that the viscosity of the dimeric agents increases dramatically in vivo and gives a plausible explanation for measured enhancement of urine viscosity upon dimeric CA administration. On the other hand, the higher osmolality of the monomeric agents causes an osmodiuresis, indicated by a higher urine flow, which leads to a faster elimination of the CAs from the kidney.

  3. Viscosity of iodinated contrast agents during renal excretion

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Gregor, E-mail: Gregor.Jost@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lengsfeld, Philipp, E-mail: Philipp.Lengsfeld@bayer.com [Global Medical Affairs Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lenhard, Diana C., E-mail: Diana.Lenhard@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Pietsch, Hubertus, E-mail: Hubertus.Pietsch@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Huetter, Joachim, E-mail: Joachim.Huetter@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Sieber, Martin A., E-mail: Martin.Sieber@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany)

    2011-11-15

    the monomeric CAs. In contrast, a significantly higher urine flow was measured after the administration of the monomeric CAs as compared to the dimeric CAs. Conclusion: We demonstrated that the viscosity differences between monomeric and dimeric CAs are strongly enhanced due to a concentration process of the CAs upon increasing osmolalities, a process which is likely to take place in a similar manner in the tubular system. This result suggests that the viscosity of the dimeric agents increases dramatically in vivo and gives a plausible explanation for measured enhancement of urine viscosity upon dimeric CA administration. On the other hand, the higher osmolality of the monomeric agents causes an osmodiuresis, indicated by a higher urine flow, which leads to a faster elimination of the CAs from the kidney.

  4. Impact of contrast agent viscosity on coronary balloon deflation times: bench testing results.

    Science.gov (United States)

    Mogabgab, Owen; Patel, Vishal G; Michael, Tesfaldet T; Kotsia, Anna; Christopoulos, George; Banerjee, Subhash; Brilakis, Emmanouil S

    2014-04-01

    To assess the impact of viscosity on angioplasty balloon deflation times. Lower contrast viscosity could result in more rapid coronary balloon deflation times. We performed a bench comparison of coronary balloon deflation times using 2 contrast agents with different viscosity (ioxaglate and iodixanol), 3 contrast dilutions, and 2 inflation syringe filling volumes. Ten identical pairs of coronary angioplasty balloons were used to conduct each comparison after balloon inflation to 12 atmospheres. Simultaneous deflations were performed under cineangiography. The time to full contrast extraction and the area of contrast remaining after 5 seconds of deflation (quantified by opaque pixel count) were compared between groups. The mean time to full contrast extraction during balloon deflation was 8.3 ± 2.5 seconds for ioxaglate (lower viscosity) versus 10.1 ± 2.9 seconds for iodixanol (higher viscosity) (17.4% decrease, P = 0.005), with a 35.6% (P = 0.004) reduction in contrast area at 5 seconds. Compared to 1:1 ioxaglate-saline mixture, 1:2 and 1:3 ioxaglate/saline mixes resulted in 26.7% (P deflation time, respectively, but at the expense of decreased balloon opacity. Filling the inflation syringe with 5 versus 15 ml of contrast/saline solution was associated with 7.5% decrease in balloon deflation time (P = 0.005), but no difference in contrast area at 5 seconds (P = 0.749). Use of a lower viscosity contrast agent and higher contrast dilution significantly reduced coronary balloon deflation times, whereas use of lower syringe filling volume had a modest effect. Rapid coronary balloon deflation could improve the safety of interventional procedures. © 2014 Wiley Periodicals, Inc.

  5. Caldera resurgence driven by magma viscosity contrasts.

    Science.gov (United States)

    Galetto, Federico; Acocella, Valerio; Caricchi, Luca

    2017-11-24

    Calderas are impressive volcanic depressions commonly produced by major eruptions. Equally impressive is the uplift of the caldera floor that may follow, dubbed caldera resurgence, resulting from magma accumulation and accompanied by minor eruptions. Why magma accumulates, driving resurgence instead of feeding large eruptions, is one of the least understood processes in volcanology. Here we use thermal and experimental models to define the conditions promoting resurgence. Thermal modelling suggests that a magma reservoir develops a growing transition zone with relatively low viscosity contrast with respect to any newly injected magma. Experiments show that this viscosity contrast provides a rheological barrier, impeding the propagation through dikes of the new injected magma, which stagnates and promotes resurgence. In explaining resurgence and its related features, we provide the theoretical background to account for the transition from magma eruption to accumulation, which is essential not only to develop resurgence, but also large magma reservoirs.

  6. Rôle of contrast media viscosity in altering vessel wall shear stress and relation to the risk of contrast extravasations.

    Science.gov (United States)

    Sakellariou, Sophia; Li, Wenguang; Paul, Manosh C; Roditi, Giles

    2016-12-01

    Iodinated contrast media (CM) are the most commonly used injectables in radiology today. A range of different media are commercially available, combining various physical and chemical characteristics (ionic state, osmolality, viscosity) and thus exhibiting distinct in vivo behaviour and safety profiles. In this paper, numerical simulations of blood flow with contrast media were conducted to investigate the effects of contrast viscosity on generated vessel wall shear stress and vessel wall pressure to elucidate any possible relation to extravasations. Five different types of contrast for Iodine fluxes ranging at 1.5-2.2gI/s were modelled through 18G and 20G cannulae placed in an ideal vein at two different orientation angles. Results demonstrate that the least viscous contrast media generate the least maximum wall shear stress as well as the lowest total pressure for the same flow rate. This supports the empirical clinical observations and hypothesis that more viscous contrast media are responsible for a higher percentage of contrast extravasations. In addition, results support the clinical hypothesis that a catheter tip directed obliquely to the vein wall always produces the highest maximum wall shear stress and total pressure due to impingement of the contrast jet on the vessel wall. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. [Comparison of iodinated and barium-containing contrast media of different viscosity in the detection of pharyngeal perforation].

    Science.gov (United States)

    Keberle, M; Wittenberg, G; Trusen, A; Baumgartner, W; Hahn, D

    2001-08-01

    In contrast to esophageal perforations, the more radiopaque barium-suspensions are not as important as iodinated aqueous contrast agents for the detection of pharyngeal perforations. This study was performed to find out whether the highly different viscosities (of iodinated and barium-containing contrast agents with comparable radiopacities) are a reason for this. Viscosity, subjective difference in contrast, and CT-density of an iodinated aqueous (Telebrix) and a 50 wt/vol% barium-containing contrast agent (Micropaque) were determined. Moreover, to exclude postoperative perforation, 104 patients were prospectively examined by pharyngography using both contrast media. Pharyngographies of patients with perforation were later compared by two independent readers. All patients with perforation were followed up clinically to exclude complications due to barium administration. In-vitro comparison showed comparable radiopacity but the 50 wt/vol% barium-suspension was much more viscous than the iodinated contrast agent. During pharyngography, totally, 14 perforations were clearly delineated with the iodinated aqueous contrast agent. However, two of them were not detected with the barium-suspension. All the other perforations presented equally. Given a sufficient radiopacity, a low viscosity appears to be essential for a contrast agent to detect especially pharyngeal perforations. Thus, we recommend the sole use of an iodinated contrast agent (at suspicion of aspiration as isoosmolar variant) for this purpose.

  8. Improvements in gastric diagnosis by using high density contrast media with low viscosity

    International Nuclear Information System (INIS)

    Toischer, H.P.

    1983-01-01

    In a retrospective clinical study, 150 unselected double contrast examinations of the stomach using conventional contrast media (100 g/100 ml barium sulphate) were compared with a similar number of examinations using a high density contrast medium of flow viscosity (250 g/100 ml barium sulphate). The high density contrast medium was distinctly better for demonstrating detail of the gastric mucosa. The uneveness of coating and instability of the older high density contrast media was observed in 15.5% of cases and, in no instance, did this make it impossible to reach a diagnosis. (orig.) [de

  9. Role of medium heterogeneity and viscosity contrast in miscible flow regimes and mixing zone growth: A computational pore-scale approach

    Science.gov (United States)

    Afshari, Saied; Hejazi, S. Hossein; Kantzas, Apostolos

    2018-05-01

    Miscible displacement of fluids in porous media is often characterized by the scaling of the mixing zone length with displacement time. Depending on the viscosity contrast of fluids, the scaling law varies between the square root relationship, a sign for dispersive transport regime during stable displacement, and the linear relationship, which represents the viscous fingering regime during an unstable displacement. The presence of heterogeneities in a porous medium significantly affects the scaling behavior of the mixing length as it interacts with the viscosity contrast to control the mixing of fluids in the pore space. In this study, the dynamics of the flow and transport during both unit and adverse viscosity ratio miscible displacements are investigated in heterogeneous packings of circular grains using pore-scale numerical simulations. The pore-scale heterogeneity level is characterized by the variations of the grain diameter and velocity field. The growth of mixing length is employed to identify the nature of the miscible transport regime at different viscosity ratios and heterogeneity levels. It is shown that as the viscosity ratio increases to higher adverse values, the scaling law of mixing length gradually shifts from dispersive to fingering nature up to a certain viscosity ratio and remains almost the same afterwards. In heterogeneous media, the mixing length scaling law is observed to be generally governed by the variations of the velocity field rather than the grain size. Furthermore, the normalization of mixing length temporal plots with respect to the governing parameters of viscosity ratio, heterogeneity, medium length, and medium aspect ratio is performed. The results indicate that mixing length scales exponentially with log-viscosity ratio and grain size standard deviation while the impact of aspect ratio is insignificant. For stable flows, mixing length scales with the square root of medium length, whereas it changes linearly with length during

  10. Contrast Media Viscosity versus Osmolality in Kidney Injury: Lessons from Animal Studies

    Science.gov (United States)

    Seeliger, Erdmann; Lenhard, Diana C.; Persson, Pontus B.

    2014-01-01

    Iodinated contrast media (CM) can induce acute kidney injury (AKI). CM share common iodine-related cytotoxic features but differ considerably with regard to osmolality and viscosity. Meta-analyses of clinical trials generally failed to reveal renal safety differences of modern CM with regard to these physicochemical properties. While most trials' reliance on serum creatinine as outcome measure contributes to this lack of clinical evidence, it largely relies on the nature of prospective clinical trials: effective prophylaxis by ample hydration must be employed. In everyday life, patients are often not well hydrated; here we lack clinical data. However, preclinical studies that directly measured glomerular filtration rate, intrarenal perfusion and oxygenation, and various markers of AKI have shown that the viscosity of CM is of vast importance. In the renal tubules, CM become enriched, as water is reabsorbed, but CM are not. In consequence, tubular fluid viscosity increases exponentially. This hinders glomerular filtration and tubular flow and, thereby, prolongs intrarenal retention of cytotoxic CM. Renal cells become injured, which triggers hypoperfusion and hypoxia, finally leading to AKI. Comparisons between modern CM reveal that moderately elevated osmolality has a renoprotective effect, in particular, in the dehydrated state, because it prevents excessive tubular fluid viscosity. PMID:24707482

  11. Influence of contrast media viscosity and temperature on injection pressure in computed tomographic angiography: a phantom study.

    Science.gov (United States)

    Kok, Madeleine; Mihl, Casper; Mingels, Alma A; Kietselaer, Bas L; Mühlenbruch, Georg; Seehofnerova, Anna; Wildberger, Joachim E; Das, Marco

    2014-04-01

    Iodinated contrast media (CM) in computed tomographic angiography is characterized by its concentration and, consecutively, by its viscosity. Viscosity itself is directly influenced by temperature, which will furthermore affect injection pressure. Therefore, the purposes of this study were to systematically evaluate the viscosity of different CM at different temperatures and to assess their impact on injection pressure in a circulation phantom. Initially, viscosity of different contrast media concentrations (240, 300, 370, and 400 mgI/mL) was measured at different temperatures (20°C-40°C) with a commercially available viscosimeter. In the next step, a circulation phantom with physical conditions was used. Contrast media were prepared at different temperatures (20°C, 30°C, 37°C) and injected through a standard 18-gauge needle. All other relevant parameters were kept constant (iodine delivery rate, 1.9 g I/s; total amount of iodine, 15 g I). Peak flow rate (in milliliter per second) and injection pressure (psi) were monitored. Differences in significance were tested using the Kruskal-Wallis test (Statistical Package for the Social Sciences). Viscosities for iodinated CM of 240, 300, 370, and 400 mg I/mL at 20°C were 5.1, 9.1, 21.2, and 28.8 mPa.s, respectively, whereas, at 40°C, these were substantially lower (2.8, 4.4, 8.7, and 11.2 mPa.s). In the circulation phantom, mean (SD) peak pressures for CM of 240 mg I/mL at 20°C, 30°C, and 37°C were 107 (1.5), 95 (0.6), and 92 (2.1) psi; for CM of 300 mg I/mL, 119 (1.5), 104 (0.6), and 100 (3.6) psi; for CM of 370 mg I/mL, 150 (0.6), 133 (4.4), and 120 (3.5) psi; and for CM of 400 mg I/mL, 169 (1.0), 140 (2.1), and 135 (2.9) psi, respectively, with all P values less than 0.05. Low concentration, low viscosity, and high temperatures of CM are beneficial in terms of injection pressure. This should also be considered for individually tailored contrast protocols in daily routine scanning.

  12. Molecular Viscosity Sensors with Two Rotators for Optimizing the Fluorescence Intensity-Contrast Trade-Off.

    Science.gov (United States)

    Lee, Seung-Chul; Lee, Chang-Lyoul; Heo, Jeongyun; Jeong, Chan-Uk; Lee, Gyeong-Hui; Kim, Sehoon; Yoon, Woojin; Yun, Hoseop; Park, Sung O; Kwak, Sang Kyu; Park, Sung-Ha; Kwon, O-Pil

    2018-02-26

    A series of fluorescent molecular rotors obtained by introducing two rotational groups ("rotators"), which exhibit different rotational and electron-donating abilities, are discussed. Whereas the control molecular rotor, PH, includes a single rotator (the widely used phenyl group), the PO molecular rotors consist of two rotators (a phenyl group and an alkoxy group), which exhibit simultaneous strongly electron-donating and easy rotational abilities. Compared with the control rotor PH, PO molecular rotors exhibited one order of magnitude higher quantum yield (fluorescence intensity) and simultaneously exhibited significantly higher fluorescence contrast. These properties are directly related to the strong electron-donating ability and low energy barrier of rotation of the alkoxy group, as confirmed by dynamic fluorescence experiments and quantum chemical calculations. The PO molecular rotors exhibited two fluorescence relaxation pathways, whereas the PH molecular rotor exhibited a single fluorescence relaxation pathway. Cellular fluorescence imaging with PO molecular rotors for mapping cellular viscosity was successfully demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Microfluidic breakups of confined droplets against a linear obstacle: The importance of the viscosity contrast

    Science.gov (United States)

    Salkin, Louis; Courbin, Laurent; Panizza, Pascal

    2012-09-01

    Combining experiments and theory, we investigate the break-up dynamics of deformable objects, such as drops and bubbles, against a linear micro-obstacle. Our experiments bring the role of the viscosity contrast Δη between dispersed and continuous phases to light: the evolution of the critical capillary number to break a drop as a function of its size is either nonmonotonic (Δη>0) or monotonic (Δη≤0). In the case of positive viscosity contrasts, experiments and modeling reveal the existence of an unexpected critical object size for which the critical capillary number for breakup is minimum. Using simple physical arguments, we derive a model that well describes observations, provides diagrams mapping the four hydrodynamic regimes identified experimentally, and demonstrates that the critical size originating from confinement solely depends on geometrical parameters of the obstacle.

  14. Effects of viscosity on power and hand injection of iso-osmolar iodinated contrast media through thin catheters.

    Science.gov (United States)

    Zhang, James J; Hogstrom, Barry; Malinak, Jiri; Ikei, Nobuhiro

    2016-05-01

    It can be challenging to achieve adequate vessel opacification during percutaneous coronary interventions when using thin catheters, hand injection, and iso-osmolar contrast media (CM) such as iodixanol (Visipaque™). To explore these limitations and the possibility to overcome them with iosimenol, a novel CM. Three X-ray contrast media with different concentrations were used in this study. A series of in vitro experiments established the relationship between injection pressure and flow rate in angiography catheters under various conditions. The experiments were conducted with power and hand injections and included a double-blind evaluation of user perception. By using hand injection, it was generally not possible to reach a maximum injection pressure exceeding 50 psi. The time within which volunteers were able to complete the injections, the area under the pressure-time curve (AUC), and assessment of ease of injection all were in favor of iosimenol compared with iodixanol, especially when using the 4F thin catheter. Within the pressure ranges tested, the power injections demonstrated that the amount of iodine delivered at a fixed pressure was strongly related to viscosity but unrelated to iodine concentration. There are substantial limitations to the amount of iodine that can be delivered through thin catheters by hand injection when iso-osmolar CM with high viscosity is used. The only viable solution, besides increasing the injection pressure, is to use a CM with lower viscosity, since the cost of increasing the concentration, in terms of increased viscosity and consequent reduction in flow, is too high. Iosimenol, an iso-osmolar CM with lower viscosity than iodixanol might therefore be a better alternative when thinner catheters are preferred, especially when the radial artery is used as the access site. © The Foundation Acta Radiologica 2015.

  15. Numerical modeling of frozen wave instability in fluids with high viscosity contrast

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimov, D V; Ivantsov, A O; Lyubimova, T P [Theoretical Physics Department, Perm State University, Perm (Russian Federation); Khilko, G L, E-mail: lyubimovat@mail.ru [Institute of Continuous Media Mechanics UB RAS, Perm (Russian Federation)

    2016-12-15

    This paper deals with the direct numerical simulation of quasi-stationary (frozen) wave formation at the interface of two immiscible fluids with large viscosity contrast, in a rectangular container subjected to the horizontal vibrations of finite frequency and amplitude. The critical conditions for the origination of a frozen wave as well as the dependences of the frozen wave height and wavelength on the vibration intensity are obtained. The time-evolution of the interface shape during the vibration period is analyzed. Numerical results are found to be in a good agreement with known experimental and linear stability results. The average deformation of the interface and the structure of average flows are calculated for different vibration intensities. It is shown that a change in the dependencies of the frozen wave characteristics on the vibration intensity follows a change in average flow structure. (paper)

  16. Effect of renal replacement therapy on viscosity in end-stage renal disease patients.

    Science.gov (United States)

    Feriani, M; Kimmel, P L; Kurantsin-Mills, J; Bosch, J P

    1992-02-01

    Viscosity, an important determinant of microcirculatory hemodynamics, is related to hematocrit (HCT), and may be altered by renal failure or its treatment. To assess these factors, we studied the effect of dialysis on the viscosity of whole blood, plasma, and reconstituted 70% HCT blood of eight continuous ambulatory peritoneal dialysis (CAPD) and nine hemodialysis (HD) patients under steady shear flow conditions at different shear rates, before and after dialysis, compared with nine normal subjects. The density of the red blood cells (RBCs), a marker of cell hydration, was measured in HD patients by a nonaqueous differential floatation technique. Whole blood viscosity was higher in controls than patients, and correlated with HCT before treatment (P less than 0.05) at shear rates of 11.5 to 230 s-1) in HD patients, and 23 to 230 s-1 in all end-stage renal disease (ESRD) patients. In contrast, whole blood viscosity correlated with HCT in CAPD patients only at the lowest shear rates (2.3 and 5.75 s-1, P less than 0.05). Plasma viscosity was higher in CAPD patients than both HD patients before treatment and controls (P less than 0.05, analysis of variance [ANOVA]), despite lower plasma total protein, albumin, and similar fibrinogen concentration compared with HD patients. When all samples were reconstituted to 70% HCT, CAPD patients had higher whole blood viscosity than control subjects'. The high HCT blood viscosity of the ESRD patients was higher than control subjects' at capillary shear rates, suggesting increased RBC aggregation and decreased RBC deformability in patients with renal disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Crustal Viscosity Structure Estimated from Multi-Phase Mixing Theory

    Science.gov (United States)

    Shinevar, W. J.; Behn, M. D.; Hirth, G.

    2014-12-01

    Estimates of lower crustal viscosity are typically constrained by analyses of isostatic rebound, post seismic creep, and laboratory-derived flow laws for crustal rocks and minerals. Here we follow a new approach for calculating the viscosity structure of the lower continental crust. We use Perple_X to calculate mineral assemblages for different crustal compositions. Effective viscosity is then calculated using the rheologic mixing model of Huet et al. (2014) incorporating flow laws for each mineral phase. Calculations are performed along geotherms appropriate for the Basin and Range, Tibetan Plateau, Colorado Plateau, and the San Andreas Fault. To assess the role of crustal composition on viscosity, we examined two compositional gradients extending from an upper crust with ~67 wt% SiO2 to a lower crust that is either: (i) basaltic with ~53 wt% SiO2 (Rudnick and Gao, 2003), or (ii) andesitic with ~64% SiO2 (Hacker et al., 2011). In all cases, the middle continental crust has a viscosity that is 2-3 orders of magnitude greater than that inferred for wet quartz, a common proxy for mid-crustal viscosities. An andesitic lower crust results in viscosities of 1020-1021 Pa-s and 1021-1022 Pa-s for hotter and colder crustal geotherms, respectively. A mafic lower crust predicts viscosities that are an order of magnitude higher for the same geotherm. In all cases, the viscosity calculated from the mixing model decreases less with depth compared to single-phase estimates. Lastly, for anhydrous conditions in which alpha quartz is stable, we find that there is a strong correlation between Vp/Vs and bulk viscosity; in contrast, little to no correlation exists for hydrous conditions.

  18. Effect of viscosity on learned satiation

    NARCIS (Netherlands)

    Mars, M.; Hogenkamp, P.S.; Gosses, A.M.; Stafleu, A.; Graaf, C.de

    2009-01-01

    A higher viscosity of a food leads to a longer orosensory stimulation. This may facilitate the learned association between sensory signals and metabolic consequences. In the current study we investigated the effect of viscosity on learned satiation. In two intervention groups a low viscosity (LV)

  19. Understanding the Viscosity of Liquids used in Infant Dysphagia Management.

    Science.gov (United States)

    Frazier, Jacqueline; Chestnut, Amanda H; Jackson, Arwen; Barbon, Carly E A; Steele, Catriona M; Pickler, Laura

    2016-10-01

    When assessing swallowing in infants, it is critical to have confidence that the liquids presented during the swallow study closely replicate the viscosity of liquids in the infant's typical diet. However, we lack research on rheological properties of frequently used infant formulas or breastmilk, and various forms of barium contrast media used in swallow studies. The aim of the current study was to provide objective viscosity measurements for typical infant liquid diet options and barium contrast media. A TA-Instruments AR2000 Advanced Rheometer was used to measure the viscosity of five standard infant formulas, three barium products, and two breastmilk samples. Additionally, this study measured the viscosity of infant formulas and breastmilk when mixed with powdered barium contrast in a 20 % weight-to-volume (w/v) concentration. The study findings determined that standard infant formulas and the two breastmilk samples had low viscosities, at the lower end of the National Dysphagia Diet (NDD) thin liquid range. Two specialty formulas tested had much thicker viscosities, close to the lower boundary of the NDD nectar-thick liquid range. The study showed differences in viscosity between 60 % w/v barium products (Liquid E-Z-Paque(®) and E-Z-Paque(®) powder); the powdered product had a much lower viscosity, despite identical barium concentration. When E-Z-Paque(®) powdered barium was mixed in a 20 % w/v concentration using water, standard infant formulas, or breastmilk, the resulting viscosities were at the lower end of the NDD thin range and only slightly thicker than the non-barium comparator liquids. When E-Z-Paque(®) powdered barium was mixed in a 20 % w/v concentration with the two thicker specialty formulas (Enfamil AR 20 and 24 kcal), unexpected alterations in their original viscosity occurred. These findings highlight the clinical importance of objective measures of viscosity as well as objective data on how infant formulas or breastmilk may change in

  20. Understanding the Viscosity of Liquids used in Infant Dysphagia Management

    Science.gov (United States)

    Frazier, Jackie; Chestnut, Amanda; Jackson, Arwen; Barbon, Carly E. A.; Steele, Catriona M.; Pickler, Laura

    2016-01-01

    When assessing swallowing in infants, it is critical to have confidence that the liquids presented during the swallow study closely replicate the viscosity of liquids in the infant's typical diet. However, we lack research on rheological properties of frequently used infant formulas or breastmilk, and various forms of barium contrast media used in swallow studies. The aim of the current study was to provide objective viscosity measurements for typical infant liquid diet options and barium contrast media. A TA-Instruments AR2000 Advanced Rheometer was used to measure the viscosity, five standard infant formulas, three barium products and two breastmilk samples. Additionally, this study measured the viscosity of infant formulas and breastmilk when mixed with powdered barium contrast in a 20% weight-to-volume (w/v) concentration. Study findings determined that standard infant formulas and the two breastmilk samples had low viscosities, at the lower end of the National Dysphagia Diet (NDD) thin liquid range. Two specialty formulas tested had much thicker viscosities, close to the NDD nectar-thick liquid range lower boundary. The study showed differences in viscosity between two 60% w/v barium products (Liquid E-Z-Paque® and E-Z-Paque® powder); the powdered product had a much lower viscosity, despite identical barium concentration. When E-Z-Paque® powdered barium was mixed in a 20% w/v concentration using water, standard infant formulas or breastmilk, the resulting viscosities were at the lower end of the NDD thin range, and only slightly thicker than the non-barium comparator liquids. When E-Z-Paque® powdered barium was mixed in a 20% w/v concentration with the two thicker specialty formulas (Enfamil AR 20kcal and 24 kcal), unexpected alterations in their original viscosity occurred. These findings highlight the clinical importance of objective measures of viscosity as well as objective data on how infant formulas or breastmilk may change in consistency when mixed

  1. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter

    2010-01-01

    , temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...... forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means...

  2. Development of contrast media

    International Nuclear Information System (INIS)

    Krause, W.

    1993-01-01

    Description of all contrast media (ionic and nonionic monomers, ionic and nonionic dimers) was presented. Chemotoxicity, osmolality and viscosity of some contrast agents were analyzed. The main adverse reactions to ionic and nonionic contrast media were described

  3. On Lateral Viscosity Contrast in the Mantle and the Rheology of Low-Frequency Geodynamics

    Science.gov (United States)

    Ivins, Erik R.; Sammis, Charles G.

    1995-01-01

    Mantle-wide heterogeneity is largely controlled by deeply penetrating thermal convective currents. These thermal currents are likely to produce significant lateral variation in rheology, and this can profoundly influence overall material behaviour. How thermally related lateral viscosity variations impact models of glacio-isostatic and tidal deformation is largely unknown. An important step towards model improvement is to quantify, or bound, the actual viscosity variations that characterize the mantle. Simple scaling of viscosity to shear-wave velocity fluctuations yields map-views of long- wavelength viscosity variation. These give a general quantitative description and aid in estimating the depth dependence of rheological heterogeneity throughout the mantle. The upper mantle is probably characterized by two to four orders of magnitude variation (peak-to-peak). Discrepant time-scales for rebounding Holocene shorelines of Hudson Bay and southern Iceland are consistent with this characterization. Results are given in terms of a local average viscosity ratio, (Delta)eta(bar)(sub i), of volumetric concentration, phi(sub i). For the upper mantle deeper than 340 km the following reasonable limits are estimated for (delta)eta(bar) approx. equal 10(exp -2): 0.01 less than or equal to phi less than or equal to 0.15. A spectrum of ratios (Delta)eta(bar)(sub i) less than 0.1 at concentration level eta(sub i) approx. equal 10(exp -6) - 10(exp -1) in the lower mantle implies a spectrum of shorter time-scale deformational response modes for second-degree spherical harmonic deformations of the Earth. Although highly uncertain, this spectrum of spatial variation allows a purely Maxwellian viscoelastic rheology simultaneously to explain all solid tidal dispersion phenomena and long-term rebound-related mantle viscosity. Composite theory of multiphase viscoelastic media is used to demonstrate this effect.

  4. Conditions of viscosity measurement for detecting irradiated peppers

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru

    1995-01-01

    Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as type of viscometer, shear rate and temperature. (author)

  5. Relaxation-based viscosity mapping for magnetic particle imaging

    Science.gov (United States)

    Utkur, M.; Muslu, Y.; Saritas, E. U.

    2017-05-01

    Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where ‘color MPI’ techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

  6. Evaluation of Relative Blood Viscosity During Menstruation in ...

    African Journals Online (AJOL)

    USER

    ABSTRACT. The changes in blood viscosity, plasma viscosity, haematocrit and erythrocyte sedimentation rate before ... higher (6.78±0.18mm/hr) during the menstrual phase than during the premenstrual phase ... MATERIALS AND METHODS.

  7. Viscosity of Industrially Important Zn-Al Alloys Part II: Alloys with Higher Contents of Al and Si

    Science.gov (United States)

    Nunes, V. M. B.; Queirós, C. S. G. P.; Lourenço, M. J. V.; Santos, F. J. V.; Nieto de Castro, C. A.

    2018-05-01

    The viscosity of Zn-Al alloys melts, with industrial interest, was measured for temperatures between 693 K and 915 K, with an oscillating cup viscometer, and estimated expanded uncertainties between 3 and 5 %, depending on the alloy. The influence of minor components, such as Si, Mg and Ce + La, on the viscosity of the alloys is discussed. An increase in the amount of Mg triggers complex melt/solidification processes while the addition of Ce and La renders alloys viscosity almost temperature independent. Furthermore, increases in Al and Si contents decrease melts viscosity and lead to an Arrhenius type behavior. This paper complements a previous study describing the viscosity of Zn-Al alloys with quasi-eutectic compositions.

  8. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  9. Evaluation of stability and viscosity measurement of emulsion from oil from production in northern oilfield in Thailand

    Science.gov (United States)

    Juntarasakul, O.; Maneeintr, K.

    2018-04-01

    Emulsion is normally present in oil due to the mixing occurring during oil recovery. The formation of emulsion can cause some problems in production and transportation. Viscosity and stability of emulsion play a key roles in oil transportation and separation to meet sales specification. Therefore, the aims of this research are to measure the viscosity of oil an emulsion and to evaluate the stability of emulsion of light oil from Fang oilfield in Thailand. The parameters of this study are temperature, shear rate and water cut ranging from 50 to 80 °C, 3.75 to 70 s-1 and 0 to 60%, respectively. These effects of parameters on viscosity and stability of emulsion are required for the design of the process and to increase oil production with various conditions. The results shows that viscosity decreases as temperature and shear rate increase. In contrast, viscosity becomes higher when water cut is lower. Furthermore, droplet sizes of water-in-oil emulsion at different conditions are investigated the stability of emulsion. The droplet sizes become smaller when high shear rate is applied and emulsion becomes more stable. Furthermore, correlations are developed to predict the viscosity and stability of the oil and emulsion from Thailand.

  10. Inference of viscosity jump at 670 km depth and lower mantle viscosity structure from GIA observations

    Science.gov (United States)

    Nakada, Masao; Okuno, Jun'ichi; Irie, Yoshiya

    2018-03-01

    A viscosity model with an exponential profile described by temperature (T) and pressure (P) distributions and constant activation energy (E_{{{um}}}^{{*}} for the upper mantle and E_{{{lm}}}^* for the lower mantle) and volume (V_{{{um}}}^{{*}} and V_{{{lm}}}^*) is employed in inferring the viscosity structure of the Earth's mantle from observations of glacial isostatic adjustment (GIA). We first construct standard viscosity models with an average upper-mantle viscosity ({\\bar{η }_{{{um}}}}) of 2 × 1020 Pa s, a typical value for the oceanic upper-mantle viscosity, satisfying the observationally derived three GIA-related observables, GIA-induced rate of change of the degree-two zonal harmonic of the geopotential, {\\dot{J}_2}, and differential relative sea level (RSL) changes for the Last Glacial Maximum sea levels at Barbados and Bonaparte Gulf in Australia and for RSL changes at 6 kyr BP for Karumba and Halifax Bay in Australia. Standard viscosity models inferred from three GIA-related observables are characterized by a viscosity of ˜1023 Pa s in the deep mantle for an assumed viscosity at 670 km depth, ηlm(670), of (1 - 50) × 1021 Pa s. Postglacial RSL changes at Southport, Bermuda and Everglades in the intermediate region of the North American ice sheet, largely dependent on its gross melting history, have a crucial potential for inference of a viscosity jump at 670 km depth. The analyses of these RSL changes based on the viscosity models with {\\bar{η }_{{{um}}}} ≥ 2 × 1020 Pa s and lower-mantle viscosity structures for the standard models yield permissible {\\bar{η }_{{{um}}}} and ηlm (670) values, although there is a trade-off between the viscosity and ice history models. Our preferred {\\bar{η }_{{{um}}}} and ηlm (670) values are ˜(7 - 9) × 1020 and ˜1022 Pa s, respectively, and the {\\bar{η }_{{{um}}}} is higher than that for the typical value of oceanic upper mantle, which may reflect a moderate laterally heterogeneous upper

  11. The effect of viscosity, friction, and sonication on the morphology and metabolite production from Aspergillus terreus ATCC 20542.

    Science.gov (United States)

    Rahim, Muhamad Hafiz Abd; Hasan, Hanan; Harith, Hanis H; Abbas, Ali

    2017-12-01

    This study investigates the effects of viscosity, friction, and sonication on the morphology and the production of lovastatin, (+)-geodin, and sulochrin by Aspergillus terreus ATCC 20542. Sodium alginate and gelatine were used to protect the fungal pellet from mechanical force by increasing the media viscosity. Sodium alginate stimulated the production of lovastatin by up to 329.0% and sulochrin by 128.7%, with inhibitory effect on (+)-geodin production at all concentrations used. However, the use of gelatine to increase viscosity significantly suppressed lovastatin, (+)-geodin, and sulochrin's production (maximum reduction at day 9 of 42.7, 60.8, and 68.3%, respectively), which indicated that the types of chemical play a major role in metabolite production. Higher viscosity increased both pellet biomass and size in all conditions. Friction significantly increased (+)-geodin's titre by 1527.5%, lovastatin by 511.1%, and sulochrin by 784.4% while reducing pellet biomass and size. Conversely, sonication produced disperse filamentous morphology with significantly lower metabolites. Sodium alginate-induced lovastatin and sulochrin production suggest that these metabolites are not affected by viscosity; rather, their production is affected by the specific action of certain chemicals. In contrast, low viscosity adversely affected (+)-geodin's production, while pellet disintegration can cause a significant production of (+)-geodin.

  12. Intrinsic viscosity of a suspension of cubes

    KAUST Repository

    Mallavajula, Rajesh K.

    2013-11-06

    We report on the viscosity of a dilute suspension of cube-shaped particles. Irrespective of the particle size, size distribution, and surface chemistry, we find empirically that cubes manifest an intrinsic viscosity [η]=3.1±0.2, which is substantially higher than the well-known value for spheres, [η]=2.5. The orientation-dependent intrinsic viscosity of cubic particles is determined theoretically using a finite-element solution of the Stokes equations. For isotropically oriented cubes, these calculations show [η]=3.1, in excellent agreement with our experimental observations. © 2013 American Physical Society.

  13. An empirical model for the melt viscosity of polymer blends

    International Nuclear Information System (INIS)

    Dobrescu, V.

    1981-01-01

    On the basis of experimental data for blends of polyethylene with different polymers an empirical equation is proposed to describe the dependence of melt viscosity of blends on component viscosities and composition. The model ensures the continuity of viscosity vs. composition curves throughout the whole composition range, the possibility of obtaining extremum values higher or lower than the viscosities of components, allows the calculation of flow curves of blends from the flow curves of components and their volume fractions. (orig.)

  14. Shear viscosity of liquid mixtures: Mass dependence

    International Nuclear Information System (INIS)

    Kaushal, Rohan; Tankeshwar, K.

    2002-06-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)

  15. Shear viscosity of liquid mixtures Mass dependence

    CERN Document Server

    Kaushal, R

    2002-01-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.

  16. Effects of age and viscosity on food transport and breathing-swallowing coordination during eating of two-phase food in nursing home residents.

    Science.gov (United States)

    Yamada, Tsuyoshi; Matsuo, Koichiro; Izawa, Masayuki; Yamada, Shizuru; Masuda, Yuji; Ogasawara, Tadashi

    2017-11-01

    When eating food that contains both liquid and solid phases, the liquid component frequently enters the hypopharynx before swallowing and can increase the risk of aspiration. Thus, we examined whether the initial viscosity of mixed consistency food could alter pre-swallow food transport and breathing-swallowing coordination in older adults. Fiberoptic endoscopy was recorded while 18 healthy young adults and 19 older adults ate 5 g of steamed rice combined with 3 mL of blue-dye water. Liquid viscosity was set at three levels by the addition of a thickening agent (0 wt%, thin; 2 wt%, thicker; 4 wt%, higher-viscosity, respectively). We measured the timing of swallow initiation and its corresponding respiratory phase for each participant. For thin mixed consistency food, whereas the timing of swallow initiation was comparable between young and older participants, swallowing was initiated during inspiration significantly more often in older participants (31.6 %) than in young participants (5.6 %). In contrast, the timing of swallow initiation was delayed in older participants for thicker and higher-viscosity foods, although swallowing was commonly initiated during expiration in both groups. In older adults, we observed that swallow initiation function was preserved for thin mixed consistency samples, but breathing-swallowing coupling was diminished. For higher-viscosity foods, swallow initiation was delayed in this group, but breathing-swallowing coordination was not disturbed, probably as a result of the slow bolus flow into the hypopharynx. Thus, it appears the initial viscosity of mixed consistency food profoundly affects food transport before swallowing as well as breathing-swallowing coordination in nursing home residents. Geriatr Gerontol Int 2017; 17: 2171-2177. © 2017 Japan Geriatrics Society.

  17. The effects of viscosity, surface tension, and flow rate on gasoil-water flow pattern in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Boogar, Rahman Sadeghi; Gheshlaghi, Reza; Mahdavi, Mahmood Akhavan [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2013-01-15

    A microchannel was fabricated with glass tubes to investigate the effect of viscosity, surface tension, and flow rate on the liquid-liquid two-phase flow regime. Water and gasoil were selected as aqueous and organic working fluids, respectively. The two fluids were injected into the microchannel and created either slug or parallel profile depending on the applied conditions. The range of Reynolds and capillary numbers was chosen in such a way that neither inertia nor interfacial tension forces were negligible. Xanthan gum was used to increase viscosity and Triton X-100 (TX-100) and Sodium Dodecyl Sulfate (SDS) were used to reduce the interfacial tension. The results demonstrated that higher value of viscosity and flow rate increased interfacial area, but slug flow regime remained unchanged. The two surfactants showed different effects on the flow regime and interfacial area. Addition of TX-100 did not change the slug flow but decreased the interfacial area. In contrast, addition of SDS increased interfacial area by decreasing the slug’s length in the low concentrations and by switching from slug to parallel regime at high concentrations.

  18. The experimental viscosity and calculated relative viscosity of liquid In-Sn allcoys

    International Nuclear Information System (INIS)

    Wu, A.Q.; Guo, L.J.; Liu, C.S.; Jia, E.G.; Zhu, Z.G.

    2007-01-01

    The experimental measured viscosity of liquid pure Sn, In 20 Sn 80 and In 80 Sn 20 alloys was studied, and to make a comparison, the calculated relative viscosity based on the pair distribution functions, g(r), has also been studied. There is one peak in each experimental viscosity and calculated relative-viscosity curve of liquid pure Sn about 1000 deg. C. One valley appears in each experimental viscosity and calculated viscosity curve of liquid In 20 Sn 80 alloy about 700 deg. C. There is no abnormal behavior on In 80 Sn 20 alloy. The behavior of experimental viscosity and calculated relative viscosity is coincident with each other. Those results conformed that the temperature-induced structure anomalies reported before did take place

  19. High pressure changes of the castor oil viscosity by ultrasonic method

    International Nuclear Information System (INIS)

    Rostocki, A J; Siegoczynski, R M; Kielczynski, P; Szalewski, M

    2008-01-01

    The pressure change of viscosity of castor oil have been measured by ultrasonic method within the range of pressure up to 0.9 GPa. For the measurement, the authors have applied a new ultrasonic method based on Bleustein-Gulyaev (B-G) waves. For the lower pressures (up to 0.3 GPa) the results have been compared with earlier results obtained by falling body method, whereas for the higher pressure range results were compared with those obtained by the flow type viscometer. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.4 GPa according to the Barus formula. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. The decomposition of the high pressure phase during the decompression process have shown very large hysteresis of viscosity on pressure. 4. After the decompression process the viscosity lasts higher then a initial value for several hours

  20. Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks

    Directory of Open Access Journals (Sweden)

    Luciano Pivoto Specht

    2007-03-01

    Full Text Available It is of a great importance to know binders' viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation.

  1. Viscosity properties of sodium borophosphate glasses

    International Nuclear Information System (INIS)

    Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K.

    2009-01-01

    The viscosity behavior of (1 - x)NaPO 3 -xNa 2 B 4 O 7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na 2 B 4 O 7 . The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO 4 units) to mixed BO 4 /BO 3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network

  2. Determination of Viscosity-Average Molecular Weight of Chitosan using Intrinsic Viscosity Measurement

    International Nuclear Information System (INIS)

    Norzita Yacob; Norhashidah Talip; Maznah Mahmud

    2011-01-01

    Molecular weight of chitosan can be determined by different techniques such as Gel Permeation Chromatography (GPC), Static Light Scattering (SLS) and intrinsic viscosity measurement. Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (author)

  3. Possible ambiguities when testing viscosity in compendial monographs - characterisation of grades of cellulose ethers.

    Science.gov (United States)

    Doelker, E

    2010-10-01

    The European Pharmacopoeia (Ph. Eur.) monographs for the water-soluble cellulose ethers require viscosity determination, either in the "Tests" section or in the non-mandatory "Functionality-related characteristics" section. Although the derivatives are chemically closely related and used for similar applications, the viscosity tests strongly differ. Some monographs generically speak of the rotating viscometer method (2.2.10) and a fixed shear rate (e.g. 10 s-1), which would necessitate an absolute measuring system, while others recommend the capillary viscometer method for product grades of less than 600 mPa∙s and the rotating viscometer method and given operating conditions for grades of higher nominal viscosity. Viscometer methods also differ between the United States Pharmacopeia/National Formulary (USP/NF) and the Japanese Pharmacopoeia (JP) monographs. In addition, for some cellulose ethers the tests sometimes diverge from one pharmacopoeia to the other, although the three compendiums are in a harmonisation process. But the main issue is that the viscometer methods originally employed by the product manufacturers are often not those described in the corresponding monographs and generally vary from one manufacturer to the other. The aim of this study was therefore to investigate whether such a situation could invalidate the present pharmacopoeial requirements. 2 per cent solutions of several viscosity grades of hydroxyethylcellulose, hypromellose and methylcellulose were prepared and their (apparent) viscosity determined using both relative and absolute viscometer methods. The viscometer method used not only affects the measured viscosity but experimental values generally do not correspond to the product nominal viscosities. It emerges that, in contrast to Newtonian solutions (i.e. those of grades of up to ca. 50 mPa∙s nominal viscosity), some of the viscometer methods currently specified in the monographs are not able unambiguously to characterise the

  4. Survey of the pharmacology of non-ionic X-ray contrast media

    International Nuclear Information System (INIS)

    Turnheim, K.

    1986-01-01

    The non-ionic X-ray contrast media metrizamide, iopamidol, iohexol, and iopromide do not bind calcium and are less hyperosmolar than the conventional ionic contrast media, for instance amidotrizoate (diatrizoate), iothalamte, or ioglicate. Hence the use of non-ionic contrast media is associated with less undesirable side-effects that are attributable to hypertonicity such as an increase in circulating plasma volume, decreased deformability of red blood cells, damage of vascular endothelium with consequent activation of blood coagulation, the complement system and fibrinolysis, increased release of bradykinin and histamine, cardiac arrhythimas, diuresis, vasodilation and decreased blood pressure, pain and heat sensation. Because of less dilution the quality of imaging is also better. According to the intravenous LD 50 in experimental animals the acute toxicity of non-ionic contrast media is lower than that of ionic media. With respect to contrast quality and the rate of side-effects tha various non-ionic contrast media appear to be equivalent. Despite their higher price and higher viscosity it is probable that the non-ionic contrast media will replace the classical ionic media, especially in angio- and myelography. (Author)

  5. VISCOSITY ANALYSIS OF EMPTY FRUIT BUNCH (EFB BIO-OIL

    Directory of Open Access Journals (Sweden)

    Z.S. Nazirah

    2013-12-01

    Full Text Available Empty fruit bunches (EFB are one of the solid wastes produced by the palm oil industry, which is increasing rapidly. The aim of this paper is to analyse the viscosity of empty fruit bunch (EFB bio-oil that can be extracted from all solid waste EFB as a sample, and a few processes were executed. The samples underwent two processes, which were pre-treatment and pyrolysis. The pre-treatment involved three processes, namely, cutting, shredding and sieving, which were necessary in order to prepare EFB into a particle size suitable for the reactor. After that, the samples were fed into the feedback reactor as feedstock for the pyrolysis process to produce bio-oil. Once the bio-oil was produced, its viscosity was tested using the Brookfield Viscometer in two conditions: before and after the chemical reaction. The bio-oil was treated by adding 10 ml and 20 ml of acetone respectively through the chemical reaction. The viscosity test was carried out at different temperatures, which were 25°C, 30°C, 35°C, 40°C, 45°C and 50°C respectively. The observed viscosity of the EFB bio-oil varied and was higher as the temperature decreased. In addition, the viscosity of the EFB bio-oil was higher when it reacted chemically with the acetone added. Therefore, the results showed that the chemical reaction with acetone has the potential to increase the viscosity of EFB bio-oil.

  6. Plasma viscosity increase with progression of peripheral arterial atherosclerotic disease.

    Science.gov (United States)

    Poredos, P; Zizek, B

    1996-03-01

    Increased blood and plasma viscosity has been described in patients with coronary and peripheral arterial disease. However, the relation of viscosity to the extent of arterial wall deterioration--the most important determinant of clinical manifestation and prognosis of the disease--is not well known. Therefore, the authors studied plasma viscosity as one of the major determinants of blood viscosity in patients with different stages of arterial disease of lower limbs (according to Fontaine) and its relation to the presence of some risk factors of atherosclerosis. The study encompassed four groups of subjects: 19 healthy volunteers (group A), 18 patients with intermittent claudication up to 200 m (stage II; group B), 15 patients with critical ischemia of lower limbs (stage III and IV; group C), and 16 patients with recanalization procedures on peripheral arteries. Venous blood samples were collected from an antecubital vein without stasis for the determination of plasma viscosity (with a rotational capillary microviscometer, PAAR), fibrinogen, total cholesterol, alpha-2-macroglobulin, and glucose concentrations. In patients with recanalization procedure local plasma viscosity was also determined from blood samples taken from a vein on the dorsum of the foot. Plasma viscosity was most significantly elevated in the patients with critical ischemia (1.78 mPa.sec) and was significantly higher than in the claudicants (1.68 mPa.sec), and the claudicants also had significantly higher viscosity than the controls (1.58 mPa.sec). In patients in whom a recanalization procedure was performed, no differences in systemic and local plasma viscosity were detected, neither before nor after recanalization of the diseased artery. In all groups plasma viscosity was correlated with fibrinogen concentration (r=0.70, P < 0.01) and total cholesterol concentration (r=0.24, P < 0.05), but in group C (critical ischemia) plasma viscosity was most closely linked to the concentration of alpha-2

  7. Determination of viscosity-average molecular weight of chitosan using intrinsic viscosity measurement

    International Nuclear Information System (INIS)

    Norzita Yacob; Norhashidah Talip; Maznah Mahmud; Nurul Aizam Idayu Mat Sani; Nor Akma Samsuddin; Norafifah Ahmad Fabillah

    2013-01-01

    Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. To study the effect of radiation on molecular weight, chitosan was first irradiated using electron beam at different doses prior to measurement. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (Author)

  8. Bulk viscosity in 2SC quark matter

    International Nuclear Information System (INIS)

    Alford, Mark G; Schmitt, Andreas

    2007-01-01

    The bulk viscosity of three-flavour colour-superconducting quark matter originating from the nonleptonic process u + s ↔ u + d is computed. It is assumed that up and down quarks form Cooper pairs while the strange quark remains unpaired (2SC phase). A general derivation of the rate of strangeness production is presented, involving contributions from a multitude of different subprocesses, including subprocesses that involve different numbers of gapped quarks as well as creation and annihilation of particles in the condensate. The rate is then used to compute the bulk viscosity as a function of the temperature, for an external oscillation frequency typical of a compact star r-mode. We find that, for temperatures far below the critical temperature T c for 2SC pairing, the bulk viscosity of colour-superconducting quark matter is suppressed relative to that of unpaired quark matter, but for T ∼> T c /30 the colour-superconducting quark matter has a higher bulk viscosity. This is potentially relevant for the suppression of r-mode instabilities early in the life of a compact star

  9. Effect of barium sulfate contrast medium on rheology and sensory texture attributes in a model food.

    Science.gov (United States)

    Ekberg, O; Bulow, M; Ekman, S; Hall, G; Stading, M; Wendin, K

    2009-03-01

    The swallowing process can be visualized using videoradiography, by mixing food with contrast medium, e.g., barium sulfate (BaSO(4)), making it radiopaque. The sensory properties of foods may be affected by adding this medium. To evaluate if and to what extent sensory and rheological characteristics of mango purée were altered by adding barium sulfate to the food. This study evaluated four food samples based on mango purée, with no or added barium sulfate contrast medium (0%, 12.5%, 25.0%, and 37.5%), by a radiographic method, and measured sensory texture properties and rheological characteristics. The sensory evaluation was performed by an external trained panel using quantitative descriptive analysis. The ease of swallowing the foods was also evaluated. The sensory texture properties of mango purée were significantly affected by the added barium in all evaluated attributes, as was the perception of particles. Moreover, ease of swallowing was significantly higher in the sample without added contrast medium. All samples decreased in extensional viscosity with increasing extension rate, i.e., all samples were tension thinning. Shear viscosity was not as dependent on the concentration of BaSO(4) as extensional viscosity. Addition of barium sulfate to a model food of mango purée has a major impact on perceived sensory texture attributes as well as on rheological parameters.

  10. Iodinated contrast media and contrast-induced nephropathy: is there a preferred cost-effective agent?

    Science.gov (United States)

    Sharma, Samin K

    2008-05-01

    Over 20 years have passed since the introduction of the tri-iodinated low-osmolar nonionic contrast agents such as iopamidol, iohexol, ioversol and iopromide. During this time, most cardiology practices have switched to these nonionic agents to avoid the nuisance side effects and cardiac adverse events associated with the older ionic contrast agents. Although the improved tolerability of the nonionic agents is generally attributed to their decreased osmolality (approximately half that of the older ionic contrast agents), in fact, these contrast agents also differ from the older agents in their ionicity, viscosity and direct chemotoxicity. The impact of these properties on safety, together with cost differences, should be considered when selecting a contrast agent.

  11. Effects of Contrast Media on Blood Rheology: Comparison in Humans, Pigs, and Sheep

    International Nuclear Information System (INIS)

    Laurent, Alexandre; Durussel, Jean Jacques; Dufaux, Jacques; Penhouet, Laurence; Bailly, Anne Laure; Bonneau, Michel; Merland, Jean Jacques

    1999-01-01

    Purpose: To compare whole blood viscosity and erythrocyte aggregation in humans, pigs, and sheep, before and after adding water-soluble iodinated contrast medium (CM). Methods: Two CMs were studied: iopromide (nonionic) and ioxaglate (ionic). The blood-CM viscosity was measured with a Couette viscometer. Erythrocyte aggregation was measured with an erythroaggregometer. Results: The blood-CM viscosity was increased up to +20% (relative to pure blood) with a CM concentration of 0%-10%. At CM concentrations from 10% to 50%, the viscosity decreased. The disaggregation shear stress was increased (relative to pure blood) at low CM concentration (0%-10%). When the CM concentration increased from 10% to 20%, the disaggregation shear stress was decreased, except with the pig blood-ioxaglate mixture. Conclusion: At low CM concentration the blood viscosity was increased in pig, sheep, and humans and the disaggregation shear stress was increased in pig and humans. The aggregation of sheep blood was too low to be detected by the erythroaggregometer. This rise can be explained by the formation of poorly deformable echinocytes. At higher CM concentration, the viscosity and the disaggregation shear stress decreased in relation to the blood dilution. We conclude that pig blood and sheep blood can both be used to study the effect of CM injection on blood viscosity. Nevertheless, the rheologic behavior of pig blood in terms of erythrocyte aggregation is closer to that of human blood than is sheep blood when mixed with CM. Pigs could thus be more suitable than sheep for in vivo studies of CM miscibility with blood during selective cannulation procedures

  12. The adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  13. Viscosity of komatiite liquid at high pressure and temperature

    Science.gov (United States)

    O Dwyer, L.; Lesher, C. E.; Wang, Y.

    2006-12-01

    The viscosities of komatiite liquids at high pressures and temperatures are being investigated by the in-situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reach superliquidus temperatures we use a double reservoir configuration, where marker spheres are placed at the top of both a main melt reservoir and an overlying reservoir containing a more refractory composition. Using this approach, we have successfully measured the viscosity of a komatiite from Gorgona Island (GOR-94-29; MgO - 17.8 wt.%; NBO/T = 1.6) up to 6 GPa and 1900 K. Under isothermal conditions, viscosity increases with pressure, consistent with the depolymerized nature of the komatiite. At 1900 K, viscosity increases from 1.5 (+- 0.3) Pa s at 3.5 GPa to 3.4 (+- 0.3) Pa s at 6 GPa, corresponding to an activation volume of 2.2 cm3/mol. At high pressures, the viscosities of Gorgona Island komatiite melt are an order of magnitude higher than those measured by Liebske et al. (2005, EPSL, v. 240) for peridotite melt (MgO 37.1 wt.%; NBO/T = 2.5), and similar in magnitude to molten diopside (NBO/T = 2) (Reid et al. 2003, PEPI, v. 139). The positive pressure dependence is consistent with the reduction in interatomic space diminishing the free volume of the liquid as it is compressed. Above 6 GPa the free volume reduction may become less important with the production of high-coordinated network formers, as attributed to the reversal of the pressure dependence of viscosity for peridotite melt at ~8.5 GPa and diopside melt at ~10 GPa. Experiments at higher pressures are underway to determine if a similar viscosity maximum occurs for komatiite melt and whether its pressure is greater than 10 GPa, as suggested by the data for peridotite and diopside melts.

  14. A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium.

    Science.gov (United States)

    Hamidi, Hossein; Mohammadian, Erfan; Junin, Radzuan; Rafati, Roozbeh; Manan, Mohammad; Azdarpour, Amin; Junid, Mundzir

    2014-02-01

    Theoretically, Ultrasound method is an economical and environmentally friendly or "green" technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille's equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation

  15. Lack of association between systolic blood pressure and blood viscosity in normotensive healthy subjects.

    Science.gov (United States)

    Irace, Concetta; Carallo, Claudio; Scavelli, Faustina; Loprete, Antonio; Merante, Valentina; Gnasso, Agostino

    2012-01-01

    A direct relationship between blood pressure and viscosity has frequently been reported, although clear data are not available. To better understand the relationship between these two variables, we evaluated blood viscosity and blood pressure in a group of healthy subjects without cardiovascular risk factors. Healthy subjects were selected from participants in a campaign of prevention of cardiovascular disease (n = 103). They underwent blood sampling for measurement of plasma and blood viscosity, haematocrit, blood lipids and glucose. The quantity and distribution of body fat was assessed by body mass index and waist/hip ratio, respectively. Systolic blood pressure (SBP) correlated significantly with age (r = 0.222) and waist/hip ratio (r = 0.374). Diastolic blood pressure (DBP) correlated significantly with waist/hip ratio (r = 0.216), haematocrit (r = 0.333) and blood viscosity (r = 0.258). Multiple linear regression analyses demonstrated that the only variable significantly associated with SBP was age, while haematocrit was the only variable significantly associated with DBP. Blood viscosity was closely related to waist/hip ratio. These findings show that SBP, in healthy subjects, is not influenced by haematocrit and blood viscosity. In contrast, DBP is related to the values of haematocrit. Among classical cardiovascular risk factors, waist/hip ratio is closely related to blood viscosity.

  16. A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells

    Directory of Open Access Journals (Sweden)

    Dongdong Su

    2016-08-01

    Full Text Available Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM.

  17. Dynamic viscosity of polymer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peterlin, A

    1982-03-01

    The dynamic viscosity investigation of solutions of long chain polymers in very viscous solvents has definitely shown the existence of the low and high frequency plateau with the gradual transition between them. In both extreme cases the extrapolation of the measured Newtonian viscosities of the plateaus to the infinite dilution yields the limiting intrinsic viscosities. Such a behavior is expected from the dynamic intrinsic viscosity of the necklace model of the linear polymer with finite internal viscosity. The plateau at low frequency shows up in any model of polymer solution. This work shows the constant dynamic intrinsic viscosity in both extreme cases is well reproducible by the necklace model with the internal viscosity acting only between the beads on the same link. 20 references.

  18. The viscosity window of the silicate glass foam production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2017-01-01

    which can offer a practical starting point for the optimisation procedure. The melt viscosity might be the most important parameter for controlling the foaming process and the glass foam density. In this work, we attempt to define a viscosity range in which foaming of different glasses results...... in a maximum of foam expansion. The expansion maximum is obtained for different glasses (labware, E-glass, CRT panel, soda-lime-silica) by foaming with CaCO3 at isokom temperature and from literature data. In general, the viscosity window was found to be within 104–106 Pa s when foaming with MnO2 or metal...... carbonates (CaCO3, Na2CO3, MgCO3, SrCO3, dolomite) whereas SiC requires higher temperatures and correspondingly lower viscosities (103.3–104.0 Pa s). These findings can help assessing the implementation of new resources in the glass foam production....

  19. The difference of contrast effects of myelography in normal dogs: Comparison of iohexol (180 mgI/ml), iohexol (240 mgI/ml) and iotrolan (240 mgI/ml)

    International Nuclear Information System (INIS)

    Shimizu, J.; Yamada, K.; Kishimoto, M.; Iwasaki, T.; Miyake, Y.

    2008-01-01

    The contrast effects of three different contrast media preparations (iohexol 180 mgI/ml, iohexol 240 mgI/ml and iotrolan 240 mgI/ml) in conventional and CT myelography were compared. Three beagle dogs were used and the study employed a cross-over method (total of 9) for each contrast media. The result of CT myelography showed that the contrast effect of iohexol (180 mgI/ml), which had low viscosity, was highest in cranial sites, and the contrast effect of high-viscosity iotrolan (240 mgI/ml) was highest in caudal sites 5 min after injection of the contrast media preparations. This shows that the diffusion of contrast media preparations in the subarachnoid space is influenced by viscosity. The results of conventional myelography also showed that the diffusion of contrast media preparations is influenced by viscosity. Therefore, it is important to identify the location of spinal lesions in veterinary practice, and low viscosity contrast medium preparation with wide spread contrast effects is considered suitable for myelography

  20. The thermo magnetic instability in hot viscose plasmas

    Science.gov (United States)

    Haghani, A.; Khosravi, A.; Khesali, A.

    2017-10-01

    Magnetic Rotational Instability (MRI) can not performed well in accretion disks with strong magnetic field. Studies have indicated a new type of instability called thermomagnetic instability (TMI) in systems where Nernst coefficient and gradient temperature were considered. Nernst coefficient would appear if Boltzman equation could be expanded through ω_{Be} (cyclotron frequency). However, the growth rate of this instability was two magnitude orders below MRI growth (Ωk), which could not act the same as MRI. Therefor, a higher growth rate of unstable modes was needed. In this paper, rotating viscid hot plasma with strong magnetic filed was studied. Firstly, a constant alpha viscosity was studied and then a temperature sensitive viscosity. The results showed that the temperature sensitive viscosity would be able to increase the growth rate of TMI modes significantly, hence capable of acting similar to MRI.

  1. Local viscosity distribution in bifurcating microfluidic blood flows

    Science.gov (United States)

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2018-03-01

    The red blood cell (RBC) aggregation phenomenon is majorly responsible for the non-Newtonian nature of blood, influencing the blood flow characteristics in the microvasculature. Of considerable interest is the behaviour of the fluid at the bifurcating regions. In vitro experiments, using microchannels, have shown that RBC aggregation, at certain flow conditions, affects the bluntness and skewness of the velocity profile, the local RBC concentration, and the cell-depleted layer at the channel walls. In addition, the developed RBC aggregates appear unevenly distributed in the outlets of these channels depending on their spatial distribution in the feeding branch, and on the flow conditions in the outlet branches. In the present work, constitutive equations of blood viscosity, from earlier work of the authors, are applied to flows in a T-type bifurcating microchannel to examine the local viscosity characteristics. Viscosity maps are derived for various flow distributions in the outlet branches of the channel, and the location of maximum viscosity magnitude is obtained. The viscosity does not appear significantly elevated in the branches of lower flow rate as would be expected on the basis of the low shear therein, and the maximum magnitude appears in the vicinity of the junction, and towards the side of the outlet branch with the higher flow rate. The study demonstrates that in the branches of lower flow rate, the local viscosity is also low, helping us to explain why the effects of physiological red blood cell aggregation have no adverse effects in terms of in vivo vascular resistance.

  2. Effect of ethanol, dry extract and reducing sugars on density and viscosity of Brazilian red wines.

    Science.gov (United States)

    Neto, Flávia S P P; de Castilhos, Maurício B M; Telis, Vânia R N; Telis-Romero, Javier

    2015-05-01

    Density and viscosity are properties that exert great influence on the body of wines. The present work aimed to evaluate the influence of the alcoholic content, dry extract, and reducing sugar content on density and viscosity of commercial dry red wines at different temperatures. The rheological assays were carried out on a controlled stress rheometer, using concentric cylinder geometry at seven temperatures (2, 8, 14, 16, 18, 20 and 26 °C). Wine viscosity decreased with increasing temperature and density was directly related to the wine alcohol content, whereas viscosity was closely linked to the dry extract. Reducing sugars did not influence viscosity or density. Wines produced from Italian grapes were presented as full-bodied with higher values for density and viscosity, which was linked to the higher alcohol content and dry extract, respectively. The results highlighted the major effects of certain physicochemical properties on the physical properties of wines, which in turn is important for guiding sensory assessments. © 2014 Society of Chemical Industry.

  3. Comparison of differently viscous iodinated and bariumcontaining contrast agents in the detection of pharyngeal perforation

    International Nuclear Information System (INIS)

    Keberle, M.; Wittenberg, G.; Trusen, A.; Hahn, D.; Baumgartner, W.

    2001-01-01

    Purpose: In contrast to esophageal perforations, the more radiopaque barium-suspensions are not as important as iodinated aqueous contrast agents for the detection of pharyngeal perforations. This study was performed to find out whether the highly different viscosities (of iodinated and barium-containing contrast agents with comparable radiopacities) are a reason for this. Methods: Viscosity, subjective difference in contrast, and CT-density of an iodinated aqueous (Telebrix) and a 50 wt/vol% barium-containing contrast agent (Micropaque) were determined. Moreover, to exclude postoperative perforation, 104 patients were prospectively examined by pharyngography using both contrast media. Pharyngographies of patients with perforation were later compared by two independent readers. All patients with perforation were followed up clinically to exclude complications due to barium administration. Results: In-vitro comparison showed comparable radiopacity but the 50 wt/vol% barium-suspension was much more viscous that the iodinated contrast agent. During pharyngography, totally, 14 perforations were clearly delineated with the iodinated aqueous contrast agent. However, two of them were not detected with the barium-suspension. All the other perforations presented equally. Conclusions: Given a sufficient radiopacity, a low viscosity appears to be essential for a contrast agent to detect especially pharyngeal perforations. Thus, we recommend the sole use of an iodinated contrast agent (at suspicion of aspiration as isoosmolar variant) for this purpose. (orig.) [de

  4. On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Ingo, E-mail: ingo.hoffmann@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Farago, Bela; Schweins, Ralf; Falus, Peter; Sharp, Melissa [Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Prévost, Sylvain [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Gradzielski, Michael, E-mail: michael.gradzielski@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany)

    2015-08-21

    Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and

  5. VARIATION IN MEAT COMPOSITION VISCOSITY DURING THE MIXING PROCESS

    Directory of Open Access Journals (Sweden)

    DANIELA IANIłCHI

    2008-10-01

    Full Text Available Animal raw material processing is directly influenced by the physical and chemical characteristics of the materials which also influence their water holding capacity. The various combinations and status of the raw materials used in the food industry determine specific behaviours that may influence the processing equipment performance and construction. The study on meat composition viscosity depending upon the added components, temperature and mixing time length, has shown that viscosity is increasing with lower added water percentage, lower mixing temperature and higher mixing time length.

  6. Direct observations of the viscosity of Earth's outer core and extrapolation of measurements of the viscosity of liquid iron

    International Nuclear Information System (INIS)

    Smylie, D E; Brazhkin, Vadim V; Palmer, Andrew

    2009-01-01

    Estimates vary widely as to the viscosity of Earth's outer fluid core. Directly observed viscosity is usually orders of magnitude higher than the values extrapolated from high-pressure high-temperature laboratory experiments, which are close to those for liquid iron at atmospheric pressure. It turned out that this discrepancy can be removed by extrapolating via the widely known Arrhenius activation model modified by lifting the commonly used assumption of pressure-independent activation volume (which is possible due to the discovery that at high pressures the activation volume increases strongly with pressure, resulting in 10 2 Pa s at the top of the fluid core, and in 10 11 Pa s at its bottom). There are of course many uncertainties affecting this extrapolation process. This paper reviews two viscosity determination methods, one for the top and the other for the bottom of the outer core, the former of which relies on the decay of free core nutations and yields 2371 ± 1530 Pa s, while the other relies on the reduction in the rotational splitting of the two equatorial translational modes of the solid inner core oscillations and yields an average of 1.247 ± 0.035 Pa s. Encouraged by the good performance of the Arrhenius extrapolation, a differential form of the Arrhenius activation model is used to interpolate along the melting temperature curve and to find the viscosity profile across the entire outer core. The viscosity variation is found to be nearly log-linear between the measured boundary values. (methodological notes)

  7. Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth's core

    International Nuclear Information System (INIS)

    Mineev, Vladimir N; Funtikov, Aleksandr I

    2004-01-01

    A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)

  8. Effect of viscosity on tear drainage and ocular residence time.

    Science.gov (United States)

    Zhu, Heng; Chauhan, Anuj

    2008-08-01

    An increase in residence time of dry eye medications including artificial tears will likely enhance therapeutic benefits. The drainage rates and the residence time of eye drops depend on the viscosity of the instilled fluids. However, a quantitative understanding of the dependence of drainage rates and the residence time on viscosity is lacking. The current study aims to develop a mathematical model for the drainage of Newtonian fluids and also for power-law non-Newtonian fluids of different viscosities. This study is an extension of our previous study on the mathematical model of tear drainage. The tear drainage model is modified to describe the drainage of Newtonian fluids with viscosities higher than the tear viscosity and power-law non-Newtonian fluids with rheological parameters obtained from fitting experimental data in literature. The drainage rate through canaliculi was derived from the modified drainage model and was incorporated into a tear mass balance to calculate the transients of total solute quantity in ocular fluids and the bioavailability of instilled drugs. For Newtonian fluids, increasing the viscosity does not affect the drainage rate unless the viscosity exceeds a critical value of about 4.4 cp. The viscosity has a maximum impact on drainage rate around a value of about 100 cp. The trends are similar for shear thinning power law fluids. The transients of total solute quantity, and the residence time agrees at least qualitatively with experimental studies. A mathematical model has been developed for the drainage of Newtonian fluids and power-law fluids through canaliculi. The model can quantitatively explain different experimental observations on the effect of viscosity on the residence of instilled fluids on the ocular surface. The current study is helpful for understanding the mechanism of fluid drainage from the ocular surface and for improving the design of dry eye treatments.

  9. Viscosity of egg white from hens of different strains fed with commercial and natural additives

    Directory of Open Access Journals (Sweden)

    Fernanda Papa Spada

    2012-03-01

    Full Text Available Yolk color and egg white (albumen cleanliness and viscosity are important parameters by which consumers judge the quality of eggs. This study aimed to investigate changes in albumen viscosity during storage of eggs for up to 36 days from two different commercial laying hen strains (Carijo Barbada and Isa Brown fed a diet containing annatto (1.5 and 2.0% or a synthetic additive without synthetic colorants (control. Analyses of humidity, albumen height, pH, viscosity, foam formation, and stability were carried out on eggs. Carijo Barbada strain had smaller albumen, lower humidity and higher egg white viscosity than Isa Brown strain; however, with storage, viscosity lowered significantly on both strains. Initially, the addition of 2.0% of annatto or a synthetic additive increased viscosity in both strains, but with storage only the control maintained longer viscosity. Lower viscosity did not change foam density and stability.

  10. Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity

    Science.gov (United States)

    Kobylkevich, Brian M.; Sarkar, Anyesha; Carlberg, Brady R.; Huang, Ling; Ranjit, Suman; Graham, David M.; Messerli, Mark A.

    2018-05-01

    Weak external electric fields (EFs) polarize cellular structure and direct most migrating cells (galvanotaxis) toward the cathode, making it a useful tool during tissue engineering and for healing epidermal wounds. However, the biophysical mechanisms for sensing weak EFs remain elusive. We have reinvestigated the mechanism of cathode-directed water flow (electro-osmosis) in the boundary layer of cells, by reducing it with neutral, viscous polymers. We report that increasing viscosity with low molecular weight polymers decreases cathodal migration and promotes anodal migration in a concentration dependent manner. In contrast, increased viscosity with high molecular weight polymers does not affect directionality. We explain the contradictory results in terms of porosity and hydraulic permeability between the polymers rather than in terms of bulk viscosity. These results provide the first evidence for controlled reversal of galvanotaxis using viscous agents and position the field closer to identifying the putative electric field receptor, a fundamental, outside-in signaling receptor that controls cellular polarity for different cell types.

  11. Alkali-aided enzymatic viscosity reduction of sugar beet mash for novel bioethanol production process

    International Nuclear Information System (INIS)

    Srichuwong, Sathaporn; Arakane, Mitsuhiro; Fujiwara, Maki; Zhang, Zilian; Takahashi, Hiroyuki; Tokuyasu, Ken

    2010-01-01

    Ethanol fermentation of fresh sugar beet mash (SBM) could give a benefit on reducing energy input for sugar diffusion, juice separation, and water evaporation as used in conventional practices, thus offering promise as a low energy process. Actions of cell-wall degrading enzymes provide a mash with low viscosity, which can be easily fermented to ethanol. However, a several-fold higher enzyme loading was required for viscosity reduction of SBM compared with that of potato mash. In this study, the use of dilute alkali treatment (0.025-0.15 N NaOH, 25 o C, 1 h) in enhancing enzymatic viscosity reduction of SBM was evaluated. The results showed that higher NaOH concentration enhanced demethylation and deacetylation of SBM, resulting in greater performances of the enzymes on reducing viscosity. Efficient enzymatic viscosity reduction of SBM was observed with the 0.1 N NaOH treatment. On the other hand, untreated SBM was highly resistant to viscosity reduction, even though a 20-fold more enzyme loading was used. The resulting mash containing 12-13% (w/v) sucrose yielded 7-8% (v/v) ethanol after 24 h of fermentation (90% efficiency). Accordingly, alkali treatment can be applied for facilitating the use of fresh sugar beet for ethanol production.

  12. GE-145, a new low-osmolar dimeric radiographic contrast medium

    International Nuclear Information System (INIS)

    Wistrand, Lars-G.; Rogstad, Astri; Hagelin, Gunnar

    2010-01-01

    Background: Contrast-induced nephrotoxicity is a significant risk when using radiographic contrast media clinically, especially in high risk patients. Consequently, there is a need for a new contrast agent with improved clinical safety with regards to nephrotoxicity. Purpose: To evaluate the physicochemical properties as well as the preclinical safety and biodistribution parameters of the newly developed radiographic contrast medium GE-145. Material and Methods: Standard methods for radiographic contrast media were used for evaluation of physicochemical properties. The acute toxicity in rats was studied at 8, 10, and 12.5 gI/kg, the clinical chemistry parameters were determined, and histology of the kidneys was performed. Biodistribution was studied in rats using 123 I-labeled GE-145. Results: GE-145 is more hydrophilic than iodixanol and has a considerably lower osmolality. The viscosity is similar to that of iodixanol and the protein binding is low. The acute toxicity is similar to that of iodixanol and the biodistribution is similar to that of other radiographic contrast media, showing mainly renal excretion. Kidney histology showed a moderate reversible vacuolization, similar to that of iodixanol. Conclusion: GE-145 exhibits similar preclinical properties to other dimeric radiographic contrast media. In addition, the low osmolality enables an iso-osmolar formulation containing a significantly higher concentration of electrolytes than Visipaque

  13. Temperature and particle-size dependent viscosity data for water-based nanofluids - Hysteresis phenomenon

    International Nuclear Information System (INIS)

    Nguyen, C.T.; Desgranges, F.; Roy, G.; Galanis, N.; Mare, T.; Boucher, S.; Angue Mintsa, H.

    2007-01-01

    In the present paper, we have investigated experimentally the influence of both the temperature and the particle size on the dynamic viscosities of two particular water-based nanofluids, namely water-Al 2 O 3 and water-CuO mixtures. The measurement of nanofluid dynamic viscosities was accomplished using a 'piston-type' calibrated viscometer based on the Couette flow inside a cylindrical measurement chamber. Data were collected for temperatures ranging from ambient to 75 deg. C, for water-Al 2 O 3 mixtures with two different particle diameters, 36 nm and 47 nm, as well as for water-CuO nanofluid with 29 nm particle size. The results show that for particle volume fractions lower than 4%, viscosities corresponding to 36 nm and 47 nm particle-size alumina-water nanofluids are approximately identical. For higher particle fractions, viscosities of 47 nm particle-size are clearly higher than those of 36 nm size. Viscosities corresponding to water-oxide copper are the highest among the nanofluids tested. The temperature effect has been investigated thoroughly. A more complete viscosity data base is presented for the three nanofluids considered, with several experimental correlations proposed for low particle volume fractions. It has been found that the application of Einstein's formula and those derived from the linear fluid theory seems not to be appropriate for nanofluids. The hysteresis phenomenon on viscosity measurement, which is believed to be the first observed for nanofluids, has raised serious concerns regarding the use of nanofluids for heat transfer enhancement purposes

  14. Technological characteristics of meat - viscosity

    OpenAIRE

    DIBĎÁK, Tomáš

    2012-01-01

    This bachelor thesis is focused on the technological characteristics of meat, mainly viscosity of meat. At the beginning I dealt with construction of meat and various types of meat: beef, veal, pork, mutton, rabbit, poultry and venison. Then I described basic chemical composition of meat and it?s characteristic. In detail I dealt with viscosity of meat. Viscosity is the ability of meat to bind water both own and added. I mentioned influences, which effects viscosity and I presented the possib...

  15. Pressure Dependence of Komatiite Liquid Viscosity and Implications for Magma Ocean Rheology

    Science.gov (United States)

    O'Dwyer Brown, L.; Lesher, C. E.; Terasaki, H. G.; Yamada, A.; Sakamaki, T.; Shibazaki, Y.; Ohtani, E.

    2009-12-01

    The viscosities of komatiite liquids at high pressures and temperatures were investigated using the in-situ falling sphere technique at BL04B1, SPring-8. Komatiites are naturally occurring magmas, rich in network modifying cations. Despite the refractory and fluid nature of komatiite, we successfully measured the viscosity of molten komatiites from Gorgona Island, Colombia (MgO = 17.8 wt.%; NBO/T = 1.5) between 11 and 13 GPa at 2000 C, and from Belingwe, Zimbabwe (MgO = 28.14 wt.%; NBO/T = 2.1) from 12 to 14 GPa at 2000 C. Under isothermal conditions, the viscosity of Gorgona Island komatiite melt increased with pressure, consistent with our previous measurements at lower pressures for this composition. We interpreted this positive pressure dependence as the result of reductions in interatomic space diminishing the free volume of the liquid when compressed. The viscosity of molten komatiite from Belingwe also increased up to 12 GPa, however between 12 and 14 GPa the viscosity is nearly constant. In previous studies of depolymerized silicate liquids, the pressure dependence of viscosity has been shown to reverse from positive to negative between 8 and 10 GPa with corresponding changes in activation volume [1] [2]. In contrast, the activation volume for Belingwe liquid decreases to near zero, but does not become negative above 11 GPa. Similarly, the activation volume for Gorgona Island komatiite remains positive throughout the pressure range investigated. Molecular dynamics simulations of simple MgO-SiO2 liquids with NBO/T > 2 also show a positive pressure dependence, reflecting the dominant control of free-volume reduction on the viscosity of depolymerized melts. However, the more rapid reduction in activation volume with pressure in komatiite liquids may be related to the presence of Al, Ti and other cations that interact and undergo coordination changes unavailable in simple silicate liquids. Along Hadean and post-Hadean mantle adiabats the net effect of

  16. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kono, M. [Faculty of Policy Studies, Chuo University, Tokyo 192-0393 (Japan); Vranjes, J. [Instituto de Astrofisica de Canarias, Tenerife E38205 (Spain); Departamento de Astrofisica, Universidad de La Laguna, Tenerife E38205 (Spain)

    2015-11-15

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  17. Capillary waves with surface viscosity

    Science.gov (United States)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  18. Double contrast barium meal and acetylcysteine

    International Nuclear Information System (INIS)

    Kinnunen, J.; Pietilae, J.; Ahovuo, J.; Mankinen, P.; Tervahartiala, P.

    1989-01-01

    In a prospective double blind study, acetylcysteine, a local and systemic respiratory tract mucolytic agent, or a placebo, were given to 100 patients prior to a double contrast barium meal to decrease the gastric mucus viscosity and to make the mucus layer thinner, in order to permit barium to outline the furrows surrounding the areae gastricae instead of the overlying thick mucus. However, acetylcysteine failed to improve either visualization of the areae gastricae or the general quality of the double contrast barium meal. (orig.)

  19. Effects of plasma viscosity modulation on cardiac function during moderate hemodilution

    Directory of Open Access Journals (Sweden)

    Chatpun Surapong

    2010-01-01

    Full Text Available Background : Previous studies have found that increasing plasma viscosity as whole blood viscosity decrease has beneficial effects in microvascular hemodynamics. As the heart couples with systemic vascular network, changes in plasma and blood viscosity during hemodilution determine vascular pressure drop and flow rate, which influence cardiac function. This study aimed to investigate how changes in plasma viscosity affect on cardiac function during acute isovolemic hemodilution. Materials and Methods: Plasma viscosity was modulated by hemodilution of 40% of blood volume with three different plasma expanders (PEs. Dextran 2000 kDa (Dx2M, 6.3 cP and dextran 70 kDa (Dx70, 3.0 cP were used as high and moderate viscogenic PEs, respectively. Polyethylene glycol conjugated with human serum albumin (PEG-HSA, 2.2 cP was used as low viscogenic PE. The cardiac function was assessed using a miniaturized pressure-volume conductance catheter. Results: After hemodilution, pressure dropped to 84%, 79%, and 78% of baseline for Dx2M, Dx70 and PEG-HSA, respectively. Cardiac output markedly increased for Dx2M and PEG-HSA. Dx2M significantly produced higher stroke work relative to baseline and compared to Dx70. Conclusion: Acute hemodilution with PEG-HSA without increasing plasma viscosity provided beneficial effects on cardiac function compared to Dx70, and similar to those measured with Dx2M. Potentially negative effects of increasing peripheral vascular resistance due to the increase in plasma viscosity were prevented.

  20. The viscosity of dimethyl ether

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Jakobsen, Jørgen

    2007-01-01

    and NOx traps are installed. The most significant problem encountered when engines are fuelled with DME is that the injection equipment breaks down prematurely due to extensive wear. This tribology issue can be explained by the very low lubricity and viscosity of DME. Recently, laboratory methods have...... appeared capable of measuring these properties of DME. The development of this is rendered difficult because DME has to be pressurised to remain in the liquid state and it dissolves most of the commercially available elastomers. This paper deals fundamentally with the measurement of the viscosity of DME...... and extends the discussion to the difficulty of viscosity establishing of very thin fluids. The main issue here is that it is not easy to calibrate the viscometers in the very low viscosity range corresponding to about one-fifth of that of water. The result is that the low viscosity is measured at high...

  1. Contrast characteristics of barium preparations and the timing of exposure

    OpenAIRE

    渋谷, 光一; 中桐, 義忠; 東, 義晴; 杉田, 勝彦; 小橋, 高郎; 大倉, 保彦; 丹谷, 延義; 三上, 泰隆; 平木, 祥夫

    1995-01-01

    We studied the relationship between the contrast characteristics of barium suspension and timing of exposure. We poured several kinds of barium preparations on the phantom manufactured by ourselves, and took X-ray pictures continuously by a DSA system. We analyzed each of the characteris-tics of the contrast. The time which was reguired for the contrast to reach the peak (Contrast Peak Time ; CPT) was unrelated with the kind of barium preparations used. It depended on the viscosity of the con...

  2. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Mohammad, E-mail: m_amani@sbu.ac.ir [Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Amani, Pouria, E-mail: pouria.amani@ut.ac.ir [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Kasaeian, Alibakhsh, E-mail: akasa@ut.ac.ir [Department of Renewable Energies, Faculty of New Science & Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Mahian, Omid, E-mail: omid.mahian@mshdiau.ac.ir [Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Kasaeian, Fazel, E-mail: f.kasa92@student.sharif.edu [Faculty of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Wongwises, Somchai, E-mail: somchai.won@kmutt.ac.th [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi (KMUTT), Bangmod, Bangkok (Thailand)

    2017-04-15

    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe{sub 2}O{sub 4}/water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is achieved at 3 vol% of nanoparticles and 20 °C under no magnetic field, whereas it increments to maximum viscosity ratio of 1.75 at 3 vol% of nanoparticles and 40 °C under 400 G magnetic field. Furthermore, new correlation is proposed for determination of viscosity of MnFe{sub 2}O{sub 4}/water nanofluids in terms of magnetic field intensity, volume concentration and temperature. - Highlights: • Viscosity of spinel-type manganese ferrite nanofluids is measured. • Effect of a constant magnetic field on the viscosity is investigated. • A novel correlation is proposed for estimation of the measured viscosity.

  3. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    International Nuclear Information System (INIS)

    Amani, Mohammad; Amani, Pouria; Kasaeian, Alibakhsh; Mahian, Omid; Kasaeian, Fazel; Wongwises, Somchai

    2017-01-01

    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe 2 O 4 /water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is achieved at 3 vol% of nanoparticles and 20 °C under no magnetic field, whereas it increments to maximum viscosity ratio of 1.75 at 3 vol% of nanoparticles and 40 °C under 400 G magnetic field. Furthermore, new correlation is proposed for determination of viscosity of MnFe 2 O 4 /water nanofluids in terms of magnetic field intensity, volume concentration and temperature. - Highlights: • Viscosity of spinel-type manganese ferrite nanofluids is measured. • Effect of a constant magnetic field on the viscosity is investigated. • A novel correlation is proposed for estimation of the measured viscosity.

  4. Dynamic viscosity versus probe-reported microviscosity of aqueous mixtures of poly(ethylene glycol)

    International Nuclear Information System (INIS)

    Bhanot, Chhavi; Trivedi, Shruti; Gupta, Arti; Pandey, Shubha; Pandey, Siddharth

    2012-01-01

    Highlights: ► Aqueous polymer mixtures, non-toxic media of huge industrial importance, are investigated. ► Bulk viscosity of aqueous. PEG mixtures is shown to vary widely with composition and temperature. ► T-dependent viscosity follows Arrhenius behavior suggesting aqueous PEGs to be Newtonian fluids. ► Microviscosity sensed by a fluorescence ratiometric probe is estimated and correlated with viscosity. ► Microviscosity correlates well with bulk viscosity at higher PEG concentrations. - Abstract: Correlation between the dynamic viscosity (η) and the microviscosity of a hybrid green medium constituted of water and poly(ethylene glycol) (PEG) of average molar mass (200, 400, and 600) g · mol −1 , respectively, is explored over the temperatures range (10 to 90) °C across the complete composition regime. The microviscosity is obtained using a fluorescence probe 1,3-bis-(1-pyrenyl)propane (BPP), which is manifested through the ratio of the monomer-to-intramolecular excimer intensities (I M /I E ). Aqueous PEG mixtures are observed to behave similar to Newtonian fluids as the temperature dependence of dynamic viscosity follows Arrhenius-type behavior. Surprisingly, a simple and convenient linear dependence of ln η with wt% PEG of the mixture is established. The BPP I M /I E is observed, in general, to increase with the bulk dynamic viscosity of the mixture having >10 wt% PEG suggesting a good correlation between the bulk dynamic viscosity and BPP-reported microviscosity when the viscosity of the aqueous PEG mixture is relatively high.

  5. Effect of viscosity on appetite and gastro-intestinal hormones

    DEFF Research Database (Denmark)

    Zijlstra, Nicolien; Mars, Monica; de Wijk, René A

    2009-01-01

    In previous studies we showed that higher viscosity resulted in lower ad libitum intake and that eating rate is an important factor. In this study we aimed to explore the effect of viscosity on the gastro-intestinal hormones ghrelin, CCK-8 and GLP-1. Thirty-two subjects (22+/-2 y, BMI 21.9+/-2.2 kg....../m(2)) participated in this cross-over study. Subjects received a fixed amount of a chocolate flavored milk-based liquid or semi-solid product similar in energy density and macronutrient composition. Before intake and 15, 30, 60 and 90 min thereafter, appetite was rated and blood was drawn to determine...... than the liquid. There was a significant product effect for fullness (p 0.03), desire to eat (p 0.04), appetite something sweet (p 0.002) and prospective consumption (p 0.0009). We observed no clear effect of viscosity on gastro-intestinal hormones. Only for desacyl ghrelin there was a significant...

  6. Viscosity in Modified Gravity 

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2012-11-01

    Full Text Available A bulk viscosity is introduced in the formalism of modified gravity. It is shownthat, based on a natural scaling law for the viscosity, a simple solution can be found forquantities such as the Hubble parameter and the energy density. These solutions mayincorporate a viscosity-induced Big Rip singularity. By introducing a phase transition inthe cosmic fluid, the future singularity can nevertheless in principle be avoided. 

  7. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  8. Free convective boundary layers in variable-viscosity fluids by the method of local nonsimilarity: application to plumes in the earth's mantle

    International Nuclear Information System (INIS)

    Quareni, F.; Yuen, D.A.; Eby, H.E.

    1983-01-01

    The effects due to departures from local similarity in steady-state boundary layers ascending through a fluid with strongly variable viscosity are examined with the local-nonsimilarity method. Both the absolute temperature and the hydrostatic pressure appear in the argument of an exponential in the viscosity function. The fluid-dynamical system studied here is that which characterizes plume structures in the Earth's mantle. By means of an iterative approach, two successive nonlinear boundary value problems are solved simultaneously and the errors incurred in the locally similar solutions are then assessed from a comparison between the first (locally similar) and the second level of a system of truncated equations. Three different sources of nonsimilarity have been considered: 1) localized radiogenic hearting within the plume, 2) ambient thermal stratification, 3) pressure dependence of mantle rheology. Of particular interest is an appraisal of the degree of accuracy of the locally similar solutions as a function of viscosity contrast within the boundary layer. For the range of viscosity contrast examined, up to 10 8 , the velocity and temperature fields between the first- and second-level solutions differ at most by 20 to 30%, for the rheological parameter values relevant to the Earth's mantle

  9. Effects of Nattokinase on Whole Blood Viscosity and Mortality

    Directory of Open Access Journals (Sweden)

    Melike Cengiz

    2011-12-01

    Full Text Available Objective: Nattokinase is a serin protease having potent fibrinolytic effect derived from fermentation of boiled soy bean by the use of Basillus Subtilis Natto. The aim of this experimental study is to investigate the effects of intragastric Nattokinase (6 mg/day administration for 7 days prior to formation of sepsis on plasma fibrinogen levels, whole blood viscosity and mortality in rats. Materials and Methods: Intraabdominal sepsis were performed by cecal ligation and puncture in rats supplemented with nattokinase or olive oil for 7 days prior to sepsis formation. Plasma fibrinogen, whole blood viscosity analysis and survival analysis was performed after intraabdominal sepsis formation. Results: Mean blood viscosity of rats was lower in Nattokinase and cecal ligation group at lowest shear rate (p<0.05. However, the differences between groups were not significant at higher shear rates. No difference was found in survival rates and survival times of Nattokinase and cecal ligation and cecal ligation and puncture groups. Conclusion: Our results were unable to show the effects of intragastric nattokinase supplementation prior to sepsis on plasma fibrinogen levels or whole blood viscosity, except low shear rate. Nattokinase did not altered survival in septic rats. (Journal of the Turkish Society Intensive Care 2011; 9: 85-9

  10. Effect of thrombus composition and viscosity on sonoreperfusion efficacy in a model of microvascular obstruction

    Science.gov (United States)

    Black, John J.; Yu, Francois T. H.; Schnatz, Rick G.; Flordeliza, Xucai Chen; Villanueva, S.; Pacella, John J.

    2016-01-01

    Distal embolization of microthrombi during stenting for myocardial infarction (MI) causes microvascular obstruction (MVO). We have previously shown that sonoreperfusion (SRP), a microbubble (MB)-mediated ultrasonic (US) therapy, resolves MVO from venous microthrombi in vitro in saline. However, blood is more viscous than saline and arterial thrombi that embolize during stenting are mechanically distinct from venous clot. Therefore, we tested the hypothesis that MVO created with arterial microthrombi are more resistant to SRP therapy compared with venous microthrombi and higher viscosity further increases the US requirement for effective SRP in an in vitro model of MVO. Lipid MB suspended in plasma with adjusted viscosity (1.1 or 4.0 cP) were passed through tubing bearing a mesh with 40 μm pores to simulate a microvascular cross-section; upstream pressure reflected thrombus burden. To simulate MVO, the mesh was occluded with either arterial or venous microthrombi to increase upstream pressure to 40±5 mmHg. Therapeutic long-tone-burst US was delivered to the occluded area for 20 min. MB activity was recorded with a passive cavitation detector (PCD). MVO caused by arterial microthrombi at either blood or plasma viscosity resulted in less effective SRP therapy, compared to venous thrombi. Higher viscosity further reduced the effectiveness of SRP therapy. PCD showed a decrease in inertial cavitation when viscosity was increased while stable cavitation was affected in a more complex manner. Overall, these data suggest that arterial thrombi may require higher acoustic pressure US than venous thrombi to achieve similar SRP efficacy, increased viscosity decreases SRP efficacy, and both inertial and stable cavitation are implicated in observed SRP efficacy. PMID:27207018

  11. Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations

    Science.gov (United States)

    Li, Xiaoyi; Gao, Hui; Soteriou, Marios C.

    2017-08-01

    Atomization of extremely high viscosity liquid can be of interest for many applications in aerospace, automotive, pharmaceutical, and food industries. While detailed atomization measurements usually face grand challenges, high-fidelity numerical simulations offer the advantage to comprehensively explore the atomization details. In this work, a previously validated high-fidelity first-principle simulation code HiMIST is utilized to simulate high-viscosity liquid jet atomization in crossflow. The code is used to perform a parametric study of the atomization process in a wide range of Ohnesorge numbers (Oh = 0.004-2) and Weber numbers (We = 10-160). Direct comparisons between the present study and previously published low-viscosity jet in crossflow results are performed. The effects of viscous damping and slowing on jet penetration, liquid surface instabilities, ligament formation/breakup, and subsequent droplet formation are investigated. Complex variations in near-field and far-field jet penetrations with increasing Oh at different We are observed and linked with the underlying jet deformation and breakup physics. Transition in breakup regimes and increase in droplet size with increasing Oh are observed, mostly consistent with the literature reports. The detailed simulations elucidate a distinctive edge-ligament-breakup dominated process with long surviving ligaments for the higher Oh cases, as opposed to a two-stage edge-stripping/column-fracture process for the lower Oh counterparts. The trend of decreasing column deflection with increasing We is reversed as Oh increases. A predominantly unimodal droplet size distribution is predicted at higher Oh, in contrast to the bimodal distribution at lower Oh. It has been found that both Rayleigh-Taylor and Kelvin-Helmholtz linear stability theories cannot be easily applied to interpret the distinct edge breakup process and further study of the underlying physics is needed.

  12. Comparison of parallel viscosity with neoclassical theory

    International Nuclear Information System (INIS)

    Ida, K.; Nakajima, N.

    1996-04-01

    Toroidal rotation profiles are measured with charge exchange spectroscopy for the plasma heated with tangential NBI in CHS heliotron/torsatron device to estimate parallel viscosity. The parallel viscosity derived from the toroidal rotation velocity shows good agreement with the neoclassical parallel viscosity plus the perpendicular viscosity. (μ perpendicular = 2 m 2 /s). (author)

  13. Anomalous viscosity behavior of a bicelle system with various molar ratios of short-and long-chain phospholipids

    International Nuclear Information System (INIS)

    Hwang, Jimmy S.; Oweimreen, Ghassan A.

    2003-01-01

    Viscosity versus temperature curves were obtained for five DMPC/DHPC/H2O bilayer systems with DMPC/DHPC molar ratios of 3.2, 2.8, 2.5, 2.0 and 1.5. The curves showed the viscosity maxima that shifted to higher temperatures as the mole fraction of DHPC increased. The maxima are extremely high for the first three systems and are estimated to be no less than 600 Pa,s. The shift to higher temperature is explained in terms of decrease in the the coalescence of the bicells as the mole fraction of DHPC increases. The maxima are attributed to two competing effects; the normal decrease in viscosity with temperature is counterbalanced at low to moderate temperatures with an increase in viscosity resulting from coalescence. Such coalescence increases as the DMPC /DHPC molar ratio increases. (author)

  14. Influence of Contrast Agent Dilution on Ballon Deflation Time and Visibility During Tracheal Balloon Dilation: A 3D Printed Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Tae; Park, Jung-Hoon; Shin, Ji Hoon, E-mail: jhshin@amc.seoul.kr; Kim, Namkug, E-mail: namkugkim@gmail.com [University of Ulsan College of Medicine, Departments of Radiology and Research Institute of Radiology, Asan Medical Center (Korea, Republic of); Kim, Sunghyun Daniel [Seoul National University College of Medicine (Korea, Republic of); Tsauo, Jiaywei; Kim, Kun Young [University of Ulsan College of Medicine, Departments of Radiology and Research Institute of Radiology, Asan Medical Center (Korea, Republic of); Kim, Guk Bae [University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Medical Center (Korea, Republic of); Song, Ho-Young [University of Ulsan College of Medicine, Departments of Radiology and Research Institute of Radiology, Asan Medical Center (Korea, Republic of)

    2017-02-15

    PurposeTo determine the effect of contrast medium dilution during tracheal balloon dilation on balloon deflation time and visibility using a 3-dimensional (3D) printed airway phantom.Materials and MethodsA comparison study to investigate balloon deflation times and image quality was performed using two contrast agents with different viscosities, i.e., iohexol and ioxithalamate, and six contrast dilutions with a 3D printed airway phantom.ResultsCompared to 1:0 concentration, 3:1, 2:1, 1:1, 1:2, and 1:3, contrast/saline ratios resulted in a 46% (56.2 s), 59.8% (73.1 s), 74.9% (91.6 s), 81.7% (99.8 s), and 83.5% (102 s) reduction for iohexol, respectively, and a 51.8% (54.7 s), 63.8% (67.6 s), 74.7% (79.2 s), 80.5% (85.3 s), and 82.4% (87.4 s) reduction for ioxithalamate, respectively, in the mean balloon deflation time, although at the expense of decreased balloon opacity (3.5, 6.9, 11.1, 12.4, and 13.9%, for iohexol, respectively, and 3.2, 6, 9.6, 10.8, and 12.4%, for ioxithalamate, respectively).ConclusionsUse of a lower viscosity contrast agent and higher contrast dilution is considered to be able to reduce balloon deflation times and then simultaneously decrease visualization of balloons. The rapid balloon deflation time is likely to improve the safe performance of interventional procedures.

  15. Influence of Contrast Agent Dilution on Ballon Deflation Time and Visibility During Tracheal Balloon Dilation: A 3D Printed Phantom Study.

    Science.gov (United States)

    Kim, Min Tae; Park, Jung-Hoon; Shin, Ji Hoon; Kim, Namkug; Kim, Sunghyun Daniel; Tsauo, Jiaywei; Kim, Kun Young; Kim, Guk Bae; Song, Ho-Young

    2017-02-01

    To determine the effect of contrast medium dilution during tracheal balloon dilation on balloon deflation time and visibility using a 3-dimensional (3D) printed airway phantom. A comparison study to investigate balloon deflation times and image quality was performed using two contrast agents with different viscosities, i.e., iohexol and ioxithalamate, and six contrast dilutions with a 3D printed airway phantom. Compared to 1:0 concentration, 3:1, 2:1, 1:1, 1:2, and 1:3, contrast/saline ratios resulted in a 46% (56.2 s), 59.8% (73.1 s), 74.9% (91.6 s), 81.7% (99.8 s), and 83.5% (102 s) reduction for iohexol, respectively, and a 51.8% (54.7 s), 63.8% (67.6 s), 74.7% (79.2 s), 80.5% (85.3 s), and 82.4% (87.4 s) reduction for ioxithalamate, respectively, in the mean balloon deflation time, although at the expense of decreased balloon opacity (3.5, 6.9, 11.1, 12.4, and 13.9%, for iohexol, respectively, and 3.2, 6, 9.6, 10.8, and 12.4%, for ioxithalamate, respectively). Use of a lower viscosity contrast agent and higher contrast dilution is considered to be able to reduce balloon deflation times and then simultaneously decrease visualization of balloons. The rapid balloon deflation time is likely to improve the safe performance of interventional procedures.

  16. Influence of Contrast Agent Dilution on Ballon Deflation Time and Visibility During Tracheal Balloon Dilation: A 3D Printed Phantom Study

    International Nuclear Information System (INIS)

    Kim, Min Tae; Park, Jung-Hoon; Shin, Ji Hoon; Kim, Namkug; Kim, Sunghyun Daniel; Tsauo, Jiaywei; Kim, Kun Young; Kim, Guk Bae; Song, Ho-Young

    2017-01-01

    PurposeTo determine the effect of contrast medium dilution during tracheal balloon dilation on balloon deflation time and visibility using a 3-dimensional (3D) printed airway phantom.Materials and MethodsA comparison study to investigate balloon deflation times and image quality was performed using two contrast agents with different viscosities, i.e., iohexol and ioxithalamate, and six contrast dilutions with a 3D printed airway phantom.ResultsCompared to 1:0 concentration, 3:1, 2:1, 1:1, 1:2, and 1:3, contrast/saline ratios resulted in a 46% (56.2 s), 59.8% (73.1 s), 74.9% (91.6 s), 81.7% (99.8 s), and 83.5% (102 s) reduction for iohexol, respectively, and a 51.8% (54.7 s), 63.8% (67.6 s), 74.7% (79.2 s), 80.5% (85.3 s), and 82.4% (87.4 s) reduction for ioxithalamate, respectively, in the mean balloon deflation time, although at the expense of decreased balloon opacity (3.5, 6.9, 11.1, 12.4, and 13.9%, for iohexol, respectively, and 3.2, 6, 9.6, 10.8, and 12.4%, for ioxithalamate, respectively).ConclusionsUse of a lower viscosity contrast agent and higher contrast dilution is considered to be able to reduce balloon deflation times and then simultaneously decrease visualization of balloons. The rapid balloon deflation time is likely to improve the safe performance of interventional procedures.

  17. An Investigation of Viscosities, Calorific Values and Densities of Binary Biofuel Blends

    Directory of Open Access Journals (Sweden)

    Che Mat Sharzali

    2017-01-01

    Full Text Available Straight vegetable oil (SVO biofuel is a promising alternative to petroleum diesel fuel primarily due to its comparable physical properties to that of petroleum diesel fuel. However, the relatively higher viscosity of SVO limits its direct application in diesel engine. To resolve this issue, binary biofuel blends was introduced in this study to reduce the viscosity of SVO. In this work, a novel biofuel namely Melaleuca Cajuputi oil (MCO was used and blended with refined palm oil (RPO. A total of four blends with the mixing ratios of 20%, 40%, 50% and 60% of MCO were prepared. Various key properties of dynamic viscosity, calorific value and density of the blends were measured and benchmarked against the biodiesel standards based on ASTM D6751. It was found that viscosity and density of the blends decreased with the increase of MCO fraction. Meanwhile, the calorific value of the blends increased linearly as the MCO fraction increased. The blend of 40RPO60MCO was found to have comparable key properties of viscosity, calorific value and density to those of petroleum diesel fuel and ASTM D6751 standard.

  18. The influence of grinding oil viscosity on grinding heat and burn damage in creep-feed grinding{copyright}

    Energy Technology Data Exchange (ETDEWEB)

    Zhen-Change Liu [Shandong Univ. of Technology, Jinan (China); Abe, Satoshi; Noda, Masahiro [Yushiro Chemical Industry Co. Ltd., Kanagawa (Japan)

    1995-08-01

    Grinding oils are widely used in precision grinding, such as tool grinding, thread grinding and gear grinding, during which processes grinding burn is the most prevalent damage affecting the integrity of ground surface. This paper discusses the influence of oil viscosity on grinding heat and burn damage in creep-feed-grinding. Experimental results indicated that, under lighter grinding conditions, the effects of oil viscosity was not observed, but under heavy grinding conditions grinding burn occurred when using low viscosity oil. When the viscosity of the oil was increased, grinding heat and burn damage tended to be reduced. As the viscosity was increased to a certain level, grinding burn reduction, by further increasing the viscosity, became less while other problems such as much higher oil pump noise and reduced oil flow occurred. It is clear that a viscosity limit exists for given grinding conditions. 5 refs., 4 figs., 3 tabs.

  19. Excessive Additive Effect On Engine Oil Viscosity

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2014-01-01

    Full Text Available The main goal of this paper is excessive additive (for oil filling effect on engine oil dynamic viscosity. Research is focused to commercially distribute automotive engine oil with viscosity class 15W–40 designed for vans. There were prepared blends of new and used engine oil without and with oil additive in specific ratio according manufacturer’s recommendations. Dynamic viscosity of blends with additive was compared with pure new and pure used engine oil. The temperature dependence dynamic viscosity of samples was evaluated by using rotary viscometer with standard spindle. Concern was that the oil additive can moves engine oil of several viscosity grades up. It is able to lead to failure in the engine. Mathematical models were used for fitting experimental values of dynamic viscosity. Exponential fit function was selected, which was very accurate because the coefficient of determination R2 achieved high values (0.98–0.99. These models are able to predict viscosity behaviour blends of engine oil and additive.

  20. Longitudinal and bulk viscosities of expanded rubidium

    International Nuclear Information System (INIS)

    Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K

    2003-01-01

    First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here

  1. Comparative evaluation of aqueous humor viscosity.

    Science.gov (United States)

    Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric

    2015-01-01

    To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.

  2. The influence of viscosity stratification on boundary-layer turbulence

    Science.gov (United States)

    Lee, Jin; Jung, Seo Yoon; Sung, Hyung Jin; Zaki, Tamer A.

    2012-11-01

    Direct numerical simulations of turbulent flows over isothermally-heated walls were performed to investigate the influence of viscosity stratification on boundary-layer turbulence and drag. The adopted model for temperature-dependent viscosity was typical of water. The free-stream temperature was set to 30°C, and two wall temperatures, 70°C and 99°C, were simulated. In the heated flows, the mean shear-rate is enhanced near the wall and reduced in the buffer region, which induces a reduction in turbulence production. On the other hand, the turbulence dissipation is enhanced near the wall, despite the the reduction in fluid viscosity. The higher dissipation is attributed to a decrease in the smallest length scales and near-wall fine-scale motions. The combined effect of the reduced production and enhanced dissipation leads to lower Reynolds shear stresses and, as a result, reduction of the skin-friction coefficient. Supported by the Engineering and Physical Sciences Research Council (Grant EP/F034997/1) and partially supported by the Erasmus Mundus Build on Euro-Asian Mobility (EM-BEAM) programme.

  3. Dynamic modeling of the horizontal eddy viscosity coefficient for quasigeostrophic ocean circulation problems

    Directory of Open Access Journals (Sweden)

    Romit Maulik

    2016-12-01

    Full Text Available This paper puts forth a simplified dynamic modeling strategy for the eddy viscosity coefficient parameterized in space and time. The eddy viscosity coefficient is dynamically adjusted to the local structure of the flow using two different nonlinear eddy viscosity functional forms to capture anisotropic dissipation mechanism, namely, (i the Smagorinsky model using the local strain rate field, and (ii the Leith model using the gradient of the vorticity field. The proposed models are applied to the one-layer and two-layer wind-driven quasigeostrophic ocean circulation problems, which are standard prototypes of more realistic ocean dynamics. Results show that both models capture the quasi-stationary ocean dynamics and provide the physical level of eddy viscosity distribution without using any a priori estimation. However, it is found that slightly less dissipative results can be obtained by using the dynamic Leith model. Two-layer numerical experiments also reveal that the proposed dynamic models automatically parameterize the subgrid-scale stress terms in each active layer. Furthermore, the proposed scale-aware models dynamically provide higher values of the eddy viscosity for smaller resolutions taking into account the local resolved flow information, and addressing the intimate relationship between the eddy viscosity coefficients and the numerical resolution employed by the quasigeostrophic models.

  4. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity

  5. Effect of the roughness of crucible on viscosity of liquid Pb38.1Sn61.9 alloy

    International Nuclear Information System (INIS)

    Wu Yuqin; Bian Xiufang; Mao Tan; Li Xuelian; Li Taibao; Wang Caidong

    2007-01-01

    The viscosity of the eutectic Pb 38.1 Sn 61.9 alloy has been measured by a torsional oscillation viscometer using three different crucibles which are made of the materials of highly sintered alumina (Al 2 O 3 ), quartz (SiO 2 ), and graphite (C) respectively. The roughness of crucibles has effect on the viscosity. The viscosity data obtained for SiO 2 and C crucibles were concentrated in the narrow range of about 0.5% and showed almost the same activation energy. However, the viscosity obtained using Al 2 O 3 crucible with the maximal roughness is higher than that using the other two crucibles. The discrepancy of viscosity obtained using those crucibles increases with the viscosity. In addition, the viscosity obtained using three kinds of crucibles in our work has a breakpoint at 488 K, which is approximate with the results of electrical conductivity and thermopower measurements reported by Plevachuk et al., which indicates the microstructure in melt changes before solidification

  6. The Friction Theory for Viscosity Modeling

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan

    2001-01-01

    , in the case when experimental information is available a more accurate modeling can be obtained by means of a simple tuning procedure. A tuned f-theory general model can deliver highly accurate viscosity modeling above the saturation pressure and good prediction of the liquid-phase viscosity at pressures......In this work the one-parameter friction theory (f-theory) general models have been extended to the viscosity prediction and modeling of characterized oils. It is demonstrated that these simple models, which take advantage of the repulsive and attractive pressure terms of cubic equations of state...... such as the SRK, PR and PRSV, can provide accurate viscosity prediction and modeling of characterized oils. In the case of light reservoir oils, whose properties are close to those of normal alkanes, the one-parameter f-theory general models can predict the viscosity of these fluids with good accuracy. Yet...

  7. Synergy of plasma resistivity and electron viscosity in mediating double tearing modes in cylindrical plasmas

    International Nuclear Information System (INIS)

    He Zhixiong; He, H D; Long, Y X; Mou, Z Z; Dong, J Q; Gao Zhe

    2010-01-01

    The linear behaviors of the double tearing mode (DTM) mediated by parallel electron viscosity and plasma resistivity in cylindrical plasmas with reversed magnetic shear and thus two resonant rational flux surfaces are numerically investigated in this paper. It is shown that DTMs mediated by electron viscosity alone behave similarly to the DTMs mediated by resistivity alone. DTMs mediated by electron viscosity are found to be enhanced by plasma resistivity, which is in such a range that the growth rate of the modes induced by the latter alone is comparable with that of the modes mediated by the former alone, and vice versa. Otherwise the growth rate of the modes is equal to the higher of the modes mediated by resistivity or electron viscosity alone when both resistivity and electron viscosity are taken into account. The enhancement is found to be closely related to the profiles of the stream function.

  8. Glass viscosity calculation based on a global statistical modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  9. Experimental study on the viscosity and adhesive performance of exogenous liquid fibrin glue.

    Science.gov (United States)

    Hayashi, Takuro; Hasegawa, Mitsuhiro; Inamasu, Joji; Adachi, Kazuhide; Nagahisa, Shinya; Hirose, Yuichi

    2014-01-01

    Exogenous fibrin glue (FG) is highly suitable for neurosurgical procedures, because of its viscosity and adhesive properties. Several FGs are commercially available, but only few reports detail their differences. In the present study, we investigated the viscosity and adhesive performance of two types of FG: one is derived from blood donated in Europe and the United States (CSL Behring's Beriplast(®), BP) and the other is derived from blood donated in Japan (the Chemo-Sero-Therapeutic Research Institute's Bolheal(®), BH). The viscosity test that measured fibrinogen viscosity revealed that BP had significantly higher viscosity than BH. Similarly, the dripping test showed that BP traveled a significantly shorter drip distance in the vertical direction than BH, although the transverse diameter of the coagulated FG did not differ statistically significantly. In the tensile strength test, BP showed superior adhesion performance over BH. The histological study of the hematoxylin-eosin-stained specimens in both groups showed favorable adhesion. Although further studies are required on its manufacturing and usage methods, FG shows differences in viscosity and adhesive performance according to the blood from which it is derived. We conclude that it is desirable to select the type and usage method of FG according to the characteristics of the surgical operation in question. Our findings suggest that FG produced from the blood donated in Europe and the United States might be more suitable for use in surgical procedures that demand an especially high degree of viscosity and rapid adhesive performance.

  10. Bulk viscosity of spin-one color superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sa' d, Basil A.

    2009-08-27

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  11. Bulk viscosity of spin-one color superconductors

    International Nuclear Information System (INIS)

    Sa'd, Basil A.

    2009-01-01

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  12. Viscosity of particle laden films

    Directory of Open Access Journals (Sweden)

    Timounay Yousra

    2017-01-01

    Full Text Available We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  13. Viscosity of particle laden films

    Science.gov (United States)

    Timounay, Yousra; Rouyer, Florence

    2017-06-01

    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  14. Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines

    Energy Technology Data Exchange (ETDEWEB)

    Tesfa, B.; Mishra, R.; Gu, F. [Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH (United Kingdom); Powles, N. [Chemistry and Forensic Science, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH (United Kingdom)

    2010-12-15

    Biodiesel is a promising non-toxic and biodegradable alternative fuel used in the transport sector. Nevertheless, the higher viscosity and density of biodiesel poses some acute problems when it is used it in unmodified engine. Taking this into consideration, this study has been focused towards two objectives. The first objective is to identify the effect of temperature on density and viscosity for a variety of biodiesels and also to develop a correlation between density and viscosity for these biodiesels. The second objective is to investigate and quantify the effects of density and viscosity of the biodiesels and their blends on various components of the engine fuel supply system such as fuel pump, fuel filters and fuel injector. To achieve first objective density and viscosity of rapeseed oil biodiesel, corn oil biodiesel and waste oil biodiesel blends (0B, 5B, 10B, 20B, 50B, 75B, and 100B) were tested at different temperatures using EN ISO 3675:1998 and EN ISO 3104:1996 standards. For both density and viscosity new correlations were developed and compared with published literature. A new correlation between biodiesel density and biodiesel viscosity was also developed. The second objective was achieved by using analytical models showing the effects of density and viscosity on the performance of fuel supply system. These effects were quantified over a wide range of engine operating conditions. It can be seen that the higher density and viscosity of biodiesel have a significant impact on the performance of fuel pumps and fuel filters as well as on air-fuel mixing behaviour of compression ignition (CI) engine. (author)

  15. Real-time viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators.

    Science.gov (United States)

    Bircher, Benjamin A; Duempelmann, Luc; Renggli, Kasper; Lang, Hans Peter; Gerber, Christoph; Bruns, Nico; Braun, Thomas

    2013-09-17

    A microcantilever based method for fluid viscosity and mass density measurements with high temporal resolution and microliter sample consumption is presented. Nanomechanical cantilever vibration is driven by photothermal excitation and detected by an optical beam deflection system using two laser beams of different wavelengths. The theoretical framework relating cantilever response to the viscosity and mass density of the surrounding fluid was extended to consider higher flexural modes vibrating at high Reynolds numbers. The performance of the developed sensor and extended theory was validated over a viscosity range of 1-20 mPa·s and a corresponding mass density range of 998-1176 kg/m(3) using reference fluids. Separating sample plugs from the carrier fluid by a two-phase configuration in combination with a microfluidic flow cell, allowed samples of 5 μL to be sequentially measured under continuous flow, opening the method to fast and reliable screening applications. To demonstrate the study of dynamic processes, the viscosity and mass density changes occurring during the free radical polymerization of acrylamide were monitored and compared to published data. Shear-thinning was observed in the viscosity data at higher flexural modes, which vibrate at elevated frequencies. Rheokinetic models allowed the monomer-to-polymer conversion to be tracked in spite of the shear-thinning behavior, and could be applied to study the kinetics of unknown processes.

  16. The relationship between viscosity and refinement efficiency of pure aluminum by Al-Ti-B refiner

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lina [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China)]. E-mail: xfliu@sdu.edu.cn

    2006-11-30

    The relationship between viscosity and refinement efficiency of pure aluminum with the addition of Al-Ti-B master alloy was studied in this paper. The experimental results show that when the grain size of solidified sample is finer the viscosity of the melt is higher after the addition of different Al-Ti-B master alloys. This indicates that viscosity can be used to approximately estimate the refinement efficiency of Al-Ti-B refiners in production to a certain extent. The main reason was also discussed in this paper by using transmission electron microscopy (TEM) analysis and differential scanning calorimetry (DSC) experiment.

  17. Whole-blood viscosity and the insulin-resistance syndrome.

    Science.gov (United States)

    Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E

    1998-02-01

    In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.

  18. Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Pan-Sang Kang

    2016-06-01

    Full Text Available Polymer flooding is now considered a technically- and commercially-proven method for enhanced oil recovery (EOR. The viscosity of the injected polymer solution is the key property for successful polymer flooding. Given that the viscosity of a polymer solution has a non-linear relationship with various influential parameters (molecular weight, degree of hydrolysis, polymer concentration, cation concentration of polymer solution, shear rate, temperature and that measurement of viscosity based on these parameters is a time-consuming process, the range of solution samples and the measurement conditions need to be limited and precise. Viscosity estimation of the polymer solution is effective for these purposes. An artificial neural network (ANN was applied to the viscosity estimation of FlopaamTM 3330S, FlopaamTM 3630S and AN-125 solutions, three commonly-used EOR polymers. The viscosities measured and estimated by ANN and the Carreau model using Lee’s correlation, the only method for estimating the viscosity of an EOR polymer solution in unmeasured conditions, were compared. Estimation accuracy was evaluated by the average absolute relative deviation, which has been widely used for accuracy evaluation of the results of ANN models. In all conditions, the accuracy of the ANN model is higher than that of the Carreau model using Lee’s correlation.

  19. Thermophysical Properties of Liquid Te: Density, Electrical Conductivity, and Viscosity

    Science.gov (United States)

    Li, C.; Su, C.; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.

    2004-01-01

    The thermophysical properties of liquid Te, namely, density, electrical conductivity, and viscosity, were determined using the pycnometric and transient torque methods from the melting point of Te (723 K) to approximately 1150 K. A maximum was observed in the density of liquid Te as the temperature was increased. The electrical conductivity of liquid Te increased to a constant value of 2.89 x 10(exp 5 OMEGA-1m-1) as the temperature was raised above 1000 K. The viscosity decreased rapidly upon heating the liquid to elevated temperatures. The anomalous behaviors of the measured properties are explained as caused by the structural transitions in the liquid and discussed in terms of Eyring's and Bachiskii's predicted behaviors for homogeneous liquids. The Properties were also measured as a function of time after the liquid was coded from approximately 1173 or 1123 to 823 K. No relaxation phenomena were observed in the properties after the temperature of liquid Te was decreased to 823 K, in contrast to the relaxation behavior observed for some of the Te compounds.

  20. Kinetics of sub-spinodal dewetting of thin films of thickness dependent viscosity.

    Science.gov (United States)

    Kotni, Tirumala Rao; Khanna, Rajesh; Sarkar, Jayati

    2017-05-04

    An alternative explanation of the time varying and very low growth exponents in dewetting of polymer films like polystyrene films is presented based on non-linear simulations. The kinetics of these films is explored within the framework of experimentally observed thickness dependent viscosity. These films exhibit sub-spinodal dewetting via formation of satellite holes in between primary dewetted holes under favorable conditions of excess intermolecular forces and film thicknesses. We find that conditions responsible for sub-spinodal dewetting concurrently lead to remarkable changes in the kinetics of dewetting of even primary holes. For example, the radius of the hole grows in time with a power-law growth exponent sequence of [Formula: see text], in contrast to the usual  ∼4/5. This is due to the cumulative effect of reduced rim mobility due to thickness dependent viscosity and hindrance created by satellite holes.

  1. Viscose kink and drift-kink modes in a tokamak

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhajlovskij, A.B.

    1988-01-01

    Intristic kink modes in a tokamak are theoretically investigated taking account of longitudinal viscosity of ions and electrons and drift effect. It is marked that dispersion equation of investigated modes coinsides in form with that for ballooning modes. It is shown that five types of intrinsic kink instability may be distinguished in disregard of viscosity and drift effects. Effect of stabilizing quasiideal viscose kink and viscose resistive kink modes by finite Larmuir ion radius is investigated. A branch of viscose reclosure mode which instability is due to electron viscosity is pointed out. A series of other viscose and drift-kink tokamak modes is considered. Both general disperse equations of the above-mentioned kink instability varieties, taking account of viscose and drift ones, and disperse equations of separate branches are presented

  2. VISCOSITY TEST OF VEHICLE ENGINE OILS

    OpenAIRE

    Rita Prasetyowati

    2016-01-01

    This study aims to determine the value of the kinematic viscosity lubricants motorcycle that has been used at various temperatures and the use of distance. This study also aims to remedy mengtahui how the value of the kinematic viscosity of the lubricant car that has been used in a wide range of temperature variation and distance usage. Viscosity liquid, in this case is the lubricants, can be determined using the Redwood viscometer By using Redwood viscometer, can be measured flow time requir...

  3. Viscosity Control Experiment Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Heidi E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bradley, Paul Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modify viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.

  4. A comparative study of high-viscosity cement percutaneous vertebroplasty vs. low-viscosity cement percutaneous kyphoplasty for treatment of osteoporotic vertebral compression fractures.

    Science.gov (United States)

    Sun, Kai; Liu, Yang; Peng, Hao; Tan, Jun-Feng; Zhang, Mi; Zheng, Xian-Nian; Chen, Fang-Zhou; Li, Ming-Hui

    2016-06-01

    The clinical effects of two different methods-high-viscosity cement percutaneous vertebroplasty (PVP) and low-viscosity cement percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCFs) were investigated. From June 2010 to August 2013, 98 cases of OVCFs were included in our study. Forty-six patients underwent high-viscosity PVP and 52 patients underwent low-viscosity PKP. The occurrence of cement leakage was observed. Pain relief and functional activity were evaluated using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), respectively. Restoration of the vertebral body height and angle of kyphosis were assessed by comparing preoperative and postoperative measurements of the anterior heights, middle heights and the kyphotic angle of the fractured vertebra. Nine out of the 54 vertebra bodies and 11 out of the 60 vertebra bodies were observed to have cement leakage in the high-viscosity PVP and low-viscosity PKP groups, respectively. The rate of cement leakage, correction of anterior vertebral height and kyphotic angles showed no significant differences between the two groups (P>0.05). Low-viscosity PKP had significant advantage in terms of the restoration of middle vertebral height as compared with the high-viscosity PVP (Pviscosity PVP and low-viscosity PKP have similar clinical effects in terms of the rate of cement leakage, restoration of the anterior vertebral body height, changes of kyphotic angles, functional activity, and pain relief. Low-viscosity PKP is better than high-viscosity PVP in restoring the height of the middle vertebra.

  5. Pressure Effect on Extensional Viscosity

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Kjær, Erik Michael

    1999-01-01

    The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves....... The experiments show a significant increase in extensional viscosity with increasing pressure....

  6. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  7. Effervescent agents in the double contrast examination of the stomach

    International Nuclear Information System (INIS)

    Virkkunen, P.; Kreula, J.

    1981-01-01

    The buffer capacities of the BaSO 4 contrast media are poor. Yet the pH changes caused by effervescent agents or gastric contents are insignificant for mucosal adsorption. The increase of the viscosity and decrease of the density impair the results of the examination. (Auth.)

  8. Viscosity measurement techniques in Dissipative Particle Dynamics

    Science.gov (United States)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  9. Inverse shear viscosity (fluidity) scaled with melting point properties: Almost 'universal' behaviour of heavier alkalis

    International Nuclear Information System (INIS)

    Tankeshwar, K.; March, N.H.

    1997-07-01

    Some numerical considerations relating to the potential of mean force at the melting point of Rb metal are first presented, which argue against the existence of a well defined activation energy for the shear viscosity of this liquid. Therefore, a scaling approach is developed, based on a well established formula for the viscosity η m of sp liquid metals at their melting points T m . This approach is shown to lead to an 'almost' universal plot of scaled fluidity η -1 η m against (T/T m ) 1/2 for the liquid alkali metals, excluding Li. This metal is anomalous because it is a strong scattering liquid, in marked contrast to the other alkali metals. (author). 9 refs, 3 figs, 1 tab

  10. Effect of Thrombus Composition and Viscosity on Sonoreperfusion Efficacy in a Model of Micro-Vascular Obstruction.

    Science.gov (United States)

    Black, John J; Yu, Francois T H; Schnatz, Rick G; Chen, Xucai; Villanueva, Flordeliza S; Pacella, John J

    2016-09-01

    Distal embolization of micro-thrombi during stenting for myocardial infarction causes micro-vascular obstruction (MVO). We have previously shown that sonoreperfusion (SRP), a microbubble (MB)-mediated ultrasound (US) therapy, resolves MVO from venous micro-thrombi in vitro in saline. However, blood is more viscous than saline, and arterial thrombi that embolize during stenting are mechanically distinct from venous clot. Therefore, we tested the hypothesis that MVO created with arterial micro-thrombi are more resistant to SRP therapy compared with venous micro-thrombi, and higher viscosity further increases the US requirement for effective SRP in an in vitro model of MVO. Lipid MBs suspended in plasma with adjusted viscosity (1.1 cP or 4.0 cP) were passed through tubing bearing a mesh with 40-μm pores to simulate a micro-vascular cross-section; upstream pressure reflected thrombus burden. To simulate MVO, the mesh was occluded with either arterial or venous micro-thrombi to increase upstream pressure to 40 mmHg ± 5 mmHg. Therapeutic long-tone-burst US was delivered to the occluded area for 20 min. MB activity was recorded with a passive cavitation detector. MVO caused by arterial micro-thrombi at either blood or plasma viscosity resulted in less effective SRP therapy compared to venous thrombi. Higher viscosity further reduced the effectiveness of SRP therapy. The passive cavitation detector showed a decrease in inertial cavitation when viscosity was increased, while stable cavitation was affected in a more complex manner. Overall, these data suggest that arterial thrombi may require higher acoustic pressure US than venous thrombi to achieve similar SRP efficacy; increased viscosity decreases SRP efficacy; and both inertial and stable cavitation are implicated in observed SRP efficacy. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Viscosity modification of high-oleic sunflower oil with polymeric additives for the design of new biolubricant formulations.

    Science.gov (United States)

    Quinchia, L A; Delgado, M A; Valencia, C; Franco, J M; Gallegos, C

    2009-03-15

    Although most common lubricants contain mineral or synthetic oils as basestocks, new environmental regulations are demanding environmentally friendly lubricants. In this sense, vegetable oils represent promising alternatives to mineral-based lubricants because of their high biodegradability, good lubricity, and low volatility. However, their poor thermooxidative stability and the small range of viscosity represent a clear disadvantage to be used as suitable biolubricants. The main objective of this work was to develop new environmentally friendly lubricant formulations with improved kinematic viscosity values and viscosity thermal susceptibility. With this aim, a high-oleic sunflower oil (HOSO) was blended with polymeric additives, such as ethylene vinyl acetate (EVA) and styrene-butadiene-styrene (SBS) copolymers, at different concentrations (0.5-5% w/w). Dynamic viscosity and density measurements were performed in a rotational rheometer and capillary densimeter, respectively, in a temperature range between 25 and 120 degrees C. An Arrhenius-like equation fits the evolution of viscosity with temperature fairly well. Both EVA and SBS copolymers may be satisfactorily used as additives to increase the viscosity of HOSO, thus improving the low viscosity values of this oil. HOSO viscosity increases with polymer concentration. Specifically, EVA/HOSO blends exhibit higher viscosity values, which are needed for applications such as lubrication of bearings and four-stroke engines. On the other hand, viscositythermal susceptibility of HOSO samples increases with EVA or SBS concentration.

  12. A mathematical model for the movement of food bolus of varying viscosities through the esophagus

    Science.gov (United States)

    Tripathi, Dharmendra

    2011-09-01

    This mathematical model is designed to study the influence of viscosity on swallowing of food bolus through the esophagus. Food bolus is considered as viscous fluid with variable viscosity. Geometry of esophagus is assumed as finite length channel and flow is induced by peristaltic wave along the length of channel walls. The expressions for axial velocity, transverse velocity, pressure gradient, volume flow rate and stream function are obtained under the assumptions of long wavelength and low Reynolds number. The impacts of viscosity parameter on pressure distribution, local wall shear stress, mechanical efficiency and trapping are numerically discussed with the help of computational results. On the basis of presented study, it is revealed that swallowing of low viscous fluids through esophagus requires less effort in comparison to fluids of higher viscosity. This result is similar to the experimental result obtained by Raut et al. [1], Dodds [2] and Ren et al. [3]. It is further concluded that the pumping efficiency increases while size of trapped bolus reduces when viscosity of fluid is high.

  13. Suprathermal viscosity of dense matter

    International Nuclear Information System (INIS)

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai

    2010-01-01

    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  14. Near-surface viscosity measurements with a love acoustic wave device

    International Nuclear Information System (INIS)

    Collings, A.F.; Cooper, B.J.; Lappas, S.; Sor, J.A.

    1999-01-01

    Full text: In the last decade, considerable research effort has been directed towards interfacing piezoelectric transducers with biological detection systems to produce efficient and highly selective biosensors. Several types of piezoelectric or, more specifically, acoustic wave transducers have been investigated. Our group has developed Love wave (guided surface skimming wave) devices which are made by attaching a thin overlayer with the appropriate acoustic properties to the surface of a conventional surface horizontal mode device. An optimised layer concentrates most of the propagating wave energy in the guiding layer and can improve the device sensitivity in detecting gas-phase mass loading on the surface some 20- to 40-fold. Love wave devices used in liquid phase sensing will also respond to viscous, as well as mass, loading on the device surface. We have studied the propagation of viscous waves into liquid sitting on a Love wave device both theoretically and experimentally. Modelling of the effect of a viscous liquid layer on a Love wave propagating in a layered medium predicts the velocity profile in the solid substrate and in the adjoining liquid. This is a function of the thickness of the guiding layer, the elastic properties of the guiding layer and the piezoelectric substrate, and of the viscosity and density of the liquid layer. We report here on measurements of the viscosity of aqueous glycerine solutions made with a quartz Love wave device with a 5.5 μm SiO 2 guiding layer. The linear relationship between the decrease in the device frequency and the square root of the viscosity density product is accurately observed at Newtonian viscosities. At higher viscosities, there is an increase in damping, the insertion loss of the device saturates, Δf is no longer proportional to (ηp) l/2 and reaches a maximum. We also show results for the determination of the gelation time in protein and inorganic aqueous gels and for the rate of change of viscosity with

  15. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  16. Electron treatment of wood pulp for the viscose process

    Science.gov (United States)

    Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.

    2000-03-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.

  17. The tribological behaviour of different clearance MOM hip joints with lubricants of physiological viscosities.

    Science.gov (United States)

    Hu, X Q; Wood, R J K; Taylor, A; Tuke, M A

    2011-11-01

    Clearance is one of the most influential parameters on the tribological performance of metal-on-metal (MOM) hip joints and its selection is a subject of considerable debate. The objective of this paper is to study the lubrication behaviour of different clearances for MOM hip joints within the range of human physiological and pathological fluid viscosities. The frictional torques developed by MOM hip joints with a 50 mm diameter were measured for both virgin surfaces and during a wear simulator test. Joints were manufactured with three different diametral clearances: 20, 100, and 200 microm. The fluid used for the friction measurements which contained different ratios of 25 percent newborn calf serum and carboxymethyl cellulose (CMC) with the obtained viscosities values ranging from 0.001 to 0.71 Pa s. The obtained results indicate that the frictional torque for the 20 microm clearance joint remains high over the whole range of the viscosity values. The frictional torque of the 100 microm clearance joint was low for the very low viscosity (0.001 Pa s) lubricant, but increased with increasing viscosity value. The frictional torque of the 200 microm clearance joint was high at very low viscosity levels, however, it reduced with increasing viscosity. It is concluded that a smaller clearance level can enhance the formation of an elastohydrodynamic lubrication (EHL) film, but this is at the cost of preventing fluid recovery between the bearing surfaces during the unloaded phase of walking. Larger clearance bearings allow a better recovery of lubricant during the unloaded phase, which is necessary for higher viscosity lubricants. The selection of the clearance value should therefore consider both the formation of the EHL film and the fluid recovery as a function of the physiological viscosity in order to get an optimal tribological performance for MOM hip joints. The application of either 25 per cent bovine serum or water in existing in vitro tribological study should

  18. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tongan [Pacific Northwest National Laboratory, Richland Washington; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington; Dixon, Derek R. [Pacific Northwest National Laboratory, Richland Washington; Kim, Dongsang [Pacific Northwest National Laboratory, Richland Washington; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington; Bonham, Charles C. [Pacific Northwest National Laboratory, Richland Washington; VanderVeer, Bradley J. [Pacific Northwest National Laboratory, Richland Washington; Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington; Weese, Brigitte L. [Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington

    2017-12-07

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.

  19. Elongational viscosity of narrow molar mass distribution polystyrene

    DEFF Research Database (Denmark)

    Bach, Anders; Almdal, Kristoffer; Rasmussen, Henrik Koblitz

    2003-01-01

    Transient and steady elongational viscosity has been measured for two narrow molar mass distribution polystyrene melts of molar masses 200 000 and 390 000 by means of a filament stretching rheometer. Total Hencky strains of about five have been obtained. The transient elongational viscosity rises...... above the linear viscoelastic prediction at intermediate strains, indicating strain hardening. The steady elongational viscosities are monotone decreasing functions of elongation rate. At elongation rates larger than the inverse reptation time, the steady elongational viscosity scales linearly...

  20. Upwind methods for the Baer–Nunziato equations and higher-order reconstruction using artificial viscosity

    International Nuclear Information System (INIS)

    Fraysse, F.; Redondo, C.; Rubio, G.; Valero, E.

    2016-01-01

    This article is devoted to the numerical discretisation of the hyperbolic two-phase flow model of Baer and Nunziato. A special attention is paid on the discretisation of intercell flux functions in the framework of Finite Volume and Discontinuous Galerkin approaches, where care has to be taken to efficiently approximate the non-conservative products inherent to the model equations. Various upwind approximate Riemann solvers have been tested on a bench of discontinuous test cases. New discretisation schemes are proposed in a Discontinuous Galerkin framework following the criterion of Abgrall and the path-conservative formalism. A stabilisation technique based on artificial viscosity is applied to the high-order Discontinuous Galerkin method and compared against classical TVD-MUSCL Finite Volume flux reconstruction.

  1. Upwind methods for the Baer–Nunziato equations and higher-order reconstruction using artificial viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Fraysse, F., E-mail: francois.fraysse@rs2n.eu [RS2N, St. Zacharie (France); E. T. S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid (Spain); Redondo, C.; Rubio, G.; Valero, E. [E. T. S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid (Spain)

    2016-12-01

    This article is devoted to the numerical discretisation of the hyperbolic two-phase flow model of Baer and Nunziato. A special attention is paid on the discretisation of intercell flux functions in the framework of Finite Volume and Discontinuous Galerkin approaches, where care has to be taken to efficiently approximate the non-conservative products inherent to the model equations. Various upwind approximate Riemann solvers have been tested on a bench of discontinuous test cases. New discretisation schemes are proposed in a Discontinuous Galerkin framework following the criterion of Abgrall and the path-conservative formalism. A stabilisation technique based on artificial viscosity is applied to the high-order Discontinuous Galerkin method and compared against classical TVD-MUSCL Finite Volume flux reconstruction.

  2. Viscosity calculations of simulated ion-exchange resin waste glasses

    International Nuclear Information System (INIS)

    Kim, Cheon Woo; Park, Jong Kil; Lee, Kyung Ho; Lee, Myung Chan; Song, Myung Jae; BRUNELOT, Pierre

    2000-01-01

    An induction cold crucible melter (CCM) located in the NETEC-KEPCO has been used to vitrify simulated ion-exchange resin. During vitrification, the CCM operations were tightly constrained by glass viscosity as an important process parameter. Understanding the role of viscosity and quantifying viscosity is highly required in the determination of optimized feed formulations and in the selection of the processing temperature. Therefore, existing process models of glass viscosity based on a relationship between the glass composition, its structure polymerization, and the temperature were searched and adapted to our borosilicate glass systems. Calculated data using a viscosity model based on calculation of non-bridging oxygen (NBO) were in good agreement with the measured viscosity data of benchmark glasses

  3. Time-Dependent Effect of Refrigeration on Viscosity and Conversion Kinetics of Dental Adhesive Resins

    Science.gov (United States)

    Faria-e-Silva, André L; Piva, Evandro; Moraes, Rafael R

    2010-01-01

    Objectives: This study evaluated the effect of refrigeration at 4°C and post-refrigeration times (immediate, 5, 10, 15, or 20 min) on the viscosity and conversion kinetics of adhesive bonding resins. Methods: Scotchbond Dual-Cure (3M ESPE) and Clearfil SE Bond (Kuraray) were tested. Control samples were kept at 25°C for 24 h. At each post-refrigeration time, the temperature was checked with a K-type thermocouple. Viscosity measurements as a function of temperature were performed using a cone-plate viscometer. Real-time polymerization was monitored by infrared spectroscopy. Degree of conversion (DC) was calculated for each second during polymerization, and the rate of polymerization analyzed. Data were separately submitted to two-way ANOVA and Tukey’s test (P<.05). Results: Clearfil presented faster increase in temperature after exposure to room temperature than Scotchbond. A continuous decrease in viscosity (Pa.s) was observed for both Scotchbond (0.49, 0.34, 0.30, 0.26, 0.23, 0.23) and Clearfil (0.38, 0.37, 0.34, 0.25, 0.24, 0.22). For Scotchbond, higher final DC was detected for the control (62.7%) compared with the immediate (53.3%) and 5 min (54.7%) groups. For Clearfil, the control sample (81.4%) showed higher DC than all refrigerated groups (68.8–69.5%). Clearfil always showed significantly higher DC than Scotchbond. Conclusions: Refrigeration presented a significant time- and material-dependent effect on the viscosity and polymerization kinetics of the bonding resins. Under clinical conditions, adhesive agents should be removed from the refrigerator at least 20 min before being used. PMID:20396445

  4. The micromechanics model analysis of the viscosity regulation of ultra-high strength concrete with low viscosity

    Science.gov (United States)

    Zhu, M.; Wang, F. G.; Wang, F. Z.; Liu, Y. P.

    2017-02-01

    The plastic viscosity of mortar and concrete with different binder content, sand ratio, water-binder ratio, microbead dosage and different class and dosage of fly ash were tested and calculated according tomicromechanics model proposed by A. Ghanbari and B.L. Karihaloo, The correlations between these parameters and fresh concrete workability were also investigated, which showed i. high consistence with the objective reality. When binder content, microbead dosage, fly ash dosage or the water-binder ratio was increased or sand ratio was reduced, the fresh concrete viscosity would decrease correspondingly. However their effects were not that same. The relationships between T50 a, V-funnel and inverted slump time with fresh concrete viscosity were established, respectively.

  5. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  6. Viscosity Meaurement Technique for Metal Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Heng [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering; Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  7. Viscosity Meaurement Technique for Metal Fuels

    International Nuclear Information System (INIS)

    Ban, Heng

    2015-01-01

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  8. Bulk viscosity of molecular fluids

    Science.gov (United States)

    Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.

    2018-05-01

    The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

  9. Entropy viscosity method applied to Euler equations

    International Nuclear Information System (INIS)

    Delchini, M. O.; Ragusa, J. C.; Berry, R. A.

    2013-01-01

    The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)

  10. Large particles increase viscosity and yield stress of pig cecal contents without changing basic viscoelastic properties.

    Science.gov (United States)

    Takahashi, Toru; Sakata, Takashi

    2002-05-01

    The viscosity of gut contents should influence digestion and absorption. Earlier investigators measured the viscosity of intestinal contents after the removal of solid particles. However, we previously found that removal of solid particles from pig cecal contents dramatically lowered the viscosity of the contents. Accordingly, we examined the contribution of large solid particles to viscoelastic parameters of gut contents in the present study. We removed large particles from pig cecal contents by filtration through surgical gauze. Then, we reconstructed the cecal contents by returning all, one half or none of the original amount of the large particles to the filtrate. We measured the viscosity, shear stress and shear rate of these reconstructed cecal contents using a tube-flow viscometer. The coefficient of viscosity was larger when the large-particle content was higher (P Bingham plastic nature irrespective of large-particle content. We calculated the yield stress of these fluids assuming that the fluids behave as Bingham plastic. The yield stress of the cecal contents was greater (P Bingham plastic characteristics to pig cecal contents.

  11. Universality of the high-temperature viscosity limit of silicate liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, John C.; Ellison, Adam J.

    2011-01-01

    We investigate the high-temperature limit of liquid viscosity by analyzing measured viscosity curves for 946 silicate liquids and 31 other liquids including metallic, molecular, and ionic systems. Our results show no systematic dependence of the high-temperature viscosity limit on chemical...... composition for the studied liquids. Based on theMauro-Yue-Ellison-Gupta-Allan (MYEGA) model of liquid viscosity, the high-temperature viscosity limit of silicate liquids is 10−2.93 Pa·s. Having established this value, there are only two independent parameters governing the viscosity-temperature relation...

  12. Should you trust your heavy oil viscosity measurement?

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.; Miller, K.; Almond, R. [Petrovera Resources Ltd., Edmonton, AB (Canada)

    2003-07-01

    For the last 60 years, the heavy oil and bitumen reservoirs from western Canada have been exploited with varying degrees of success. There are many factors that may effect heavy oil and bitumen production rates. Primary production rates, which vary greatly from field to field, were found to improve with the addition of steam. Viscosity is the single most valued criteria in predicting cold production response from a new field. It is also the criteria used to determine whether thermal process are needed to reduce oil viscosity, or whether horizontal or vertical wells should be used. This study examined why production forecasts based on oil viscosity alone have been poor. It is based on an extensive data collection project in the Elk Point area reservoir which has lower than expected and erratic cold production rates. Viscosity values from the same wells were found to vary by a factor of four or more. One of the objectives of this study was to encourage commercial labs to develop an industry-wide standard method of heavy oil sample cleaning and viscosity measurement. It is generally understood that viscosity increases with an increase in the concentration of asphaltenes, but there is little information to quantify the relationship. Some studies suggest that viscosity increases logarithmically with increasing asphaltenes. It was concluded that the prediction of the viscosity of heavy oils and bitumens is very empirical, but there are ways to improve data comparisons and evaluation by applying available information from other scientific fields. 23 refs., 5 tabs., 6 figs.

  13. Evaluation of the crude oil viscosity variation in function of the demulsifiers addition; Avaliacao da variacao da viscosidade de oleo cru em funcao da adicao de desemulsificante

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Jansen M.; Lucas, Elisabete F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: elucas@ima.ufrj.br; Neves, Guilherme B.M. [COMAB Especialidades Quimicas Ltda., Rio de Janeiro, RJ (Brazil)]. E-mail: tecnico@comabrio.com

    2003-07-01

    One way of improving well production is the addition of demulsifier already in the gas lift. This is due to the apparent viscosity of water-in-oil emulsions being higher than apparent viscosity of crude oil, which in turn is higher than the apparent viscosity of an water-in-oil dual phase admixture and is also higher than the apparent viscosity of an oil-in-water emulsion. However, there are some situations where, in order to obtain separate flows of oil and water phases, demulsifier should be added in specific amounts in order to promote the desired phase separation. In heavy oils water and oil phase separation may be hard to obtain, however, the right demulsifier amount may imply in a considerable decrease in petroleum viscosity even without the appearance of two phases, making the flow easier. This work has evaluated the viscosity of a heavy crude having API degree 14 and BSW 52%, as a function of the addition of different amounts of DEMTROL BR 67, manufactured by Dow Quimica/Comab, Brazil, as demulsifier. (author)

  14. Shear viscosity enhancement in water–nanoparticle suspensions

    International Nuclear Information System (INIS)

    Balasubramanian, Ganesh; Sen, Swarnendu; Puri, Ishwar K.

    2012-01-01

    Equilibrium molecular dynamics simulations characterize the increase in the shear viscosity of water around a suspended silicon dioxide nanoparticle. Water layering on the solid surface decreases the fraction of adjacent fluid molecules that are more mobile and hence less viscous, thereby increasing the shear viscosity. The contribution of the nanoparticle surface area to this rheological behavior is identified and an empirical model that accounts for it is provided. The model successfully reproduces the shear viscosity predictions from previous experimental measurements as well as our simulations. -- Highlights: ► Layering of water on the solid surfaces increases the fraction of less mobile molecules adjacent to them. ► A nondimensional parameter predicts of viscosity enhancement due to particle shape, volume fraction. ► Model predictions agree with the results of atomistic simulations and experimental measurements.

  15. Viscosity of melts in the sodium borosilicate system

    International Nuclear Information System (INIS)

    Tait, J.C.; Mandolesi, D.L.; Rummens, H.E.C.

    1984-01-01

    The viscosities of a series of glasses in the sodium borosilicate system (5-35Na 2 O, 5-35B 2 O 3 , 45-80SiO 2 mol%) have been determined between 950 and 1500 deg C, using a rotating bob viscometer. A simplex lattice experimental design was used to define a series of compositions suitable for numerical analysis of the data. The viscosity data were fitted using the Fulcher equation for each composition. Nonlinear regression analysis of the viscosities at constant temperatures gave expressions for the variation in viscosity as a function of composition. The results are displayed as isoviscosity contours on the Na 2 O-B 2 O 3 -SiO 2 composition diagram. The viscosity behaviour as a function of composition is discussed in terms of structural bonding in the melt. (author)

  16. Internal deformation in layered Zechstein-III K-Mg salts. Structures formed by complex deformation and high contrasts in viscosity observed in drill cores.

    Science.gov (United States)

    Raith, Alexander; Urai, Janos L.

    2016-04-01

    During the evaporation of a massive salt body, alternations of interrupted and full evaporation sequences can form a complex layering of different lithologies. Viscosity contrasts of up to five orders of magnitude between these different lithologies are possible in this environment. During the late stage of an evaporation cycle potassium and magnesium (K-Mg) salts are precipitated. These K-Mg salts are of economic interest but also a known drilling hazard due to their very low viscosity. How up to 200m thick layers of these evaporites affect salt deformation at different scales is not well known. A better understanding of salt tectonics with extreme mechanical stratification is needed for better exploration and production of potassium-magnesium salts and to predict the internal structure of potential nuclear waste repositories in salt. To gain a better understanding of the internal deformation of these layers we analyzed K-Mg salt rich drill cores out of the Zechstein III-1b subunit from the Veendam Pillow 10 km southeast of Groningen, near the city Veendam in the NE Netherlands. The study area has a complex geological history with multiple tectonic phases of extension and compression forming internal deformation in the pillow but also conserving most of the original layering. Beside halite the most common minerals in the ZIII-1b are carnallite, kieserite, anhydrite and bischofite alternating in thin layers of simple composition. Seismic interpretation revealed that the internal structure of the Veendam Pillow shows areas, in which the K-Mg salt rich ZIII 1b layer is much thicker than elsewhere, as a result of salt deformation. The internal structure of the ZIII-1b on the other hand, remains unknown. The core analysis shows a strong strain concentration in the weaker Bischofite (MgCl2*6H20) and Carnallite (KMgCl3*6H20) rich layers producing tectonic breccias and highly strained layers completely overprinting the original layering. Layers formed by alternating beds

  17. Jet collimation by turbulent viscosity. I

    International Nuclear Information System (INIS)

    Henriksen, R.N.

    1987-01-01

    In this paper it is assumed that the subscale turbulent eddies induced in an ambient medium by the emergence of a (already collimated) jet from a galactic nucleus (VLBI jet) are the source of the viscosity which causes material to be entrained into the large-scale (VLA) jet. New analytic solutions are derived by a generalization of the self-similar Ansatz used in the Landau-Squires solution to include variable density and viscosity. It is shown that such a process of viscous collimation of the VLA jets can account for the observed collimation-luminosity correlation, the magnetic flux, and the inferred mass flux of these jets. Order of magnitude comparisons of velocity and density fields with recently observed emission-line flow regions near radio jets are made. All of the viscosity-dependent observational checks imply roughly the same plausible value for the eddy viscosity. It is emphasized that storing the initial VLBI jet energy in the intermediate scales occupied by the turbulent eddies allows this energy to be largely undetected. 35 references

  18. Viscosity of Ga-Li liquid alloys

    Science.gov (United States)

    Vidyaev, Dmitriy; Boretsky, Evgeny; Verkhorubov, Dmitriy

    2018-03-01

    The measurement of dynamic viscosity of Ga-Li liquid alloys has been performed using low-frequency vibrational viscometer at five temperatures in the range 313-353 K and four gallium-based dilute alloy compositions containing 0-1.15 at.% Li. It was found that the viscosity of the considered alloys increases with decreasing temperature and increasing lithium concentration in the above ranges. It was shown that dependence of the viscosity of Ga-Li alloys in the investigated temperature range has been described by Arrhenius equation. For this equation the activation energy of viscous flow and pre-exponential factor were calculated. This study helped to determine the conditions of the alkali metals separating process in gallam-exchange systems.

  19. Response of cardiac endothelial nitric oxide synthase to plasma viscosity modulation in acute isovolemic hemodilution

    Directory of Open Access Journals (Sweden)

    Kanyanatt Kanokwiroon

    2014-01-01

    Full Text Available Background: Endothelial nitric oxide synthase (eNOS is generally expressed in endocardial cells, vascular endothelial cells and ventricular myocytes. However, there is no experimental study elucidating the relationship between cardiac eNOS expression and elevated plasma viscosity in low oxygen delivery pathological conditions such as hemorrhagic shock-resuscitation and hemodilution. This study tested the hypothesis that elevated plasma viscosity increases cardiac eNOS expression in a hemodilution model, leading to positive effects on cardiac performance. Materials and Methods: Two groups of golden Syrian hamster underwent an acute isovolemic hemodilution where 40% of blood volume was exchanged with 2% (low-viscogenic plasma expander [LVPE] or 6% (high-viscogenic plasma expander [HVPE] of dextran 2000 kDa. In control group, experiment was performed without hemodilution. All groups were performed in awake condition. Experimental parameters, i.e., mean arterial blood pressure (MAP, heart rate, hematocrit, blood gas content and viscosity, were measured. The eNOS expression was evaluated by eNOS Western blot analysis. Results: After hemodilution, MAP decreased to 72% and 93% of baseline in the LVPE and HVPE, respectively. Furthermore, pO 2 in the LVPE group increased highest among the groups. Plasma viscosity in the HVPE group was significantly higher than that in control and LVPE groups. The expression of eNOS in the HVPE group showed higher intensity compared to other groups, especially compared with the control group. Conclusion: Our results demonstrated that cardiac eNOS has responded to plasma viscosity modulation with HVPE and LVPE. This particularly supports the previous studies that revealed the positive effects on cardiac function in animals hemodiluted with HVPE.

  20. Viscosity of glasses containing simulated Savannah River Plant waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1978-08-01

    The viscosity of glass melts containing four simulated sludge types and two frit candidates (Frits 18 and 21) was measured over the temperature range 750 to 1200 0 C. The viscosity of melts made with either frit was reduced by the addition of high iron sludge, unchanged by average sludge, and increased by composite and high aluminum sludge. High aluminium sludge greatly increased the viscosity. Frit 21 (containing 4 wt % Li 2 O substituted for 4 wt % Na 2 O in Frit 18) was clearly better than Frit 18 in terms of its low viscosity. However, further reductions in viscosity are desirable, especially for glasses containing high aluminum sludge. Changing any frit component by 1 wt % did not significantly affect the viscosity of the glasses. Therefore, variability of 1 wt % in any frit component can be tolerated

  1. The role of viscosity in TATB hot spot ignition

    Science.gov (United States)

    Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.

    2012-03-01

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

  2. Bulk-viscosity-driven asymmetric inflationary universe

    International Nuclear Information System (INIS)

    Waga, I.; Lima, J.A.S.; Portugal, R.

    1987-01-01

    A primordial net bosinic charge is introduced in the context of the bulk-viscosity-driven inflationary models. The analysis is carried through a macroscopic point of view in the framework of the causal thermodynamic theory. The conditions for having exponetial and generalized inflation are obtained. A phenomenological expression for the bulk viscosity coefficient is also derived. (author) [pt

  3. Molecular mechanism of the viscosity of aqueous glucose solutions

    Science.gov (United States)

    Bulavin, L. A.; Zabashta, Yu. F.; Khlopov, A. M.; Khorol'skii, A. V.

    2017-01-01

    Experimental relations are obtained for the viscosity of aqueous glucose solutions in the temperature range of 10-80°C and concentration range 0.01-2.5%. It is found that the concentration dependence of fluidity is linear when the concentration is higher than a certain value and varies at different temperatures. The existence of such a dependence indicates that the mobilities of solvent and solute molecules are independent of the concentration of solutions. This assumption is used to construct a theoretical model, in which the structure of an aqueous glucose solution is presented as a combination of two weakly interacting networks formed by hydrogen bonds between water molecules and between glucose molecules. Theoretical relations are obtained using this model of network solution structure for the concentration and temperature dependence of solution viscosity. Experimental data are used to calculate the activation energies for water ( U w = 3.0 × 10-20 J) and glucose molecules ( U g = 2.8 × 10-20 J). It is shown that the viscosity of a solution in such a network structure is governed by the Brownian motion of solitons along the chains of hydrogen bonds. The weak interaction between networks results in the contributions to solution fluidity made by the motion of solitons in both of them being almost independent.

  4. Method for the preparation of new X-ray contrast media

    International Nuclear Information System (INIS)

    1977-01-01

    The chemical preparation is described of contrast media possessing an optimal combination of the following parameters: non-toxicity, non-ionogenicity, osmolality, viscosity, stability, ease and cheapness of preparation. Triiodinated and substituted isophtalamides are used with hydroxyethyl or hydroxypropyl groups as substituents. The result is an aqueous solution of isomers, from which the meso-isomer was removed by crystallization

  5. Measurement of viscosity of slush at high shear rates

    OpenAIRE

    小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru

    1988-01-01

    Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.

  6. Postoperative ocular higher-order aberrations and contrast sensitivity: femtosecond lenticule extraction versus pseudo small-incision lenticule extraction.

    Science.gov (United States)

    Tan, Deborah K L; Tay, Wan Ting; Chan, Cordelia; Tan, Donald T H; Mehta, Jodhbir S

    2015-03-01

    To evaluate and compare changes in contrast sensitivity and ocular higher-order aberrations (HOAs) after femtosecond lenticule extraction (FLEx) and pseudo small-incision lenticule extraction (SMILE). Singapore National Eye Centre, Singapore. Retrospective case series. Patients had femtosecond lenticule extraction (Group 1) or pseudo small-incision lenticule extraction (Group 2) between March 2010 and December 2011. The main outcome measures were manifest refraction, HOAs, and contrast sensitivity 1, 3, 6, and 12 months postoperatively. Fifty-two consecutive patients (102 eyes) were recruited, 21 patients (42 eyes) in Group 1 and the 31 patients (60 eyes) in Group 2. The uncorrected and corrected distance visual acuities were significantly better in Group 2 than in Group 1 at 12 months (P = .032). There was no significant increase in 3rd- or 4th-order aberrations at 1 year and no significant difference between the 2 groups preoperatively or postoperatively. At 1 year, there was a significant increase in mesopic contrast sensitivity in Group 2 at 1.5 cycles per degree (cpd) (P = .008) that was not found in Group 1, and photopic contrast sensitivity at 6.0 cpd was higher in Group 2 (P = .027). These results indicate that refractive lenticule extraction is safe and effective with no significant induction of HOAs or deterioration in contrast sensitivity at 1 year. Induction of HOAs was not significantly different between both variants of refractive lenticule extraction. However, there was significant improvement in photopic contrast sensitivity after pseudo small-incision lenticule extraction, which persisted through 1 year. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. The Viscosity of Organic Liquid Mixtures

    Science.gov (United States)

    Len, C. W.; Trusler, J. P. M.; Vesovic, V.; Wakeham, W. A.

    2006-01-01

    The paper reports measurements of the viscosity and density of two heavy hydrocarbon mixtures, Dutrex and Arab Light Flashed Distillate (ALFD), and of their mixtures with hydrogen. The measurements have been carried out with a vibrating-wire device over a range of temperatures from 399 to 547 K and at pressures up to 20 MPa. Measurements have also been carried out on systems in which hydrogen at different concentrations has been dissolved in the liquids. The measurements have an estimated uncertainty of ±5% for viscosity and ±2% for density and represent the first results on these prototypical heavy hydrocarbons. The results reveal that the addition of hydrogen reduces both the density and viscosity of the original hydrocarbon mixture at a particular temperature and pressure.

  8. Which side of the balance determines the frequency of vaso-occlusive crises in children with sickle cell anemia: Blood viscosity or microvascular dysfunction?

    Science.gov (United States)

    Charlot, Keyne; Romana, Marc; Moeckesch, Berenike; Jumet, Stéphane; Waltz, Xavier; Divialle-Doumdo, Lydia; Hardy-Dessources, Marie-Dominique; Petras, Marie; Tressières, Benoît; Tarer, Vanessa; Hue, Olivier; Etienne-Julan, Maryse; Antoine-Jonville, Sophie; Connes, Philippe

    2016-01-01

    Vascular resistance and tissue perfusion may be both affected by impaired vascular function and increased blood viscosity. Little is known about the effects of vascular function on the occurrence of painful vaso-occlusive crises (VOC) in children with sickle cell anemia (SCA). The aim of the present study was to determine which side of the balance (blood viscosity or vascular function) is the most deleterious in SCA and increases the risk for frequent hospitalized VOC. Microvascular function, microcirculatory oxygenation and blood viscosity were determined in a group of 22 SCA children/adolescents at steady state and a group of 13 healthy children/adolescents. Univariate analyses demonstrated blunted microvascular reactivity during local thermal heating test and decreased microcirculatory oxygenation in SCA children compared to controls. Multivariate analysis revealed that increased blood viscosity and decreased microcirculatory oxygenation were independent risk factors of frequent VOC in SCA. In contrast, the level of microvascular dysfunction does not predict VOC rate. In conclusion, increased blood viscosity is usually well supported in healthy individuals where vascular function is not impaired. However, in the context of SCA, microvascular function is impaired and any increase of blood viscosity or decrease in microcirculatory oxygenation would increase the risks for frequent VOC. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Double seismic zone in downgoing slabs and the viscosity of the mesosphere

    International Nuclear Information System (INIS)

    Sleep, N.H.

    1979-01-01

    The seismic zone beneath several island arcs between about 100 and 200 km depth consists of an upper zone having down-dip compression and a lower zone having down-dip tension. Several numerical models of the Aleutina arc were computed to test the hypothesis that these double seismic zones are due to sagging of the slab under its own weight. This sagging occurs because the asthenosphere (between about 100 and 200 km) provides little support or resistance to the slab, which is supported from below by the more viscous mesosphere and from above by the lithosphere. The viscosity of the mesosphere was constrained to the interval between 0.25 x 10 22 and 0.5 x 10 22 P by noting that the slab would have mainly down-dip compression at higher viscosities and mainly down-dip tension at lower viscosities. The deviatoric stress in the slab and the fault plane between the slab and the island arc is about 200--300 bars (expressed as shear stress). The models were calibrated to the observed depth and gravity anomalies in the trench

  10. Bulk viscosity and cosmological evolution

    International Nuclear Information System (INIS)

    Beesham, A.

    1996-01-01

    In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated

  11. In situ viscosity of oil sands using low field NMR

    International Nuclear Information System (INIS)

    Bryan, J.; Moon, D.; Kantzas, A.

    2005-01-01

    In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)

  12. On the measurement of magnetic viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, C. [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece); Efthimiadis, K.G., E-mail: kge@auth.gr [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece)

    2012-08-15

    This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved. - Highlights: Black-Right-Pointing-Pointer Magnetic viscosity is affected by initial measurement conditions. Black-Right-Pointing-Pointer Minor field deviations prior to its stabilization cause large changes in viscosity. Black-Right-Pointing-Pointer Viscosity is strongly dependent on the field change rate from saturation to the measurement field. Black-Right-Pointing-Pointer Small changes in field and temperature during the experiment can lead to false measurements. Black-Right-Pointing-Pointer Errors in measurements can be eliminated through the use of a proper fitting function.

  13. Utilizing the non-bridge oxygen model to predict the glass viscosity

    International Nuclear Information System (INIS)

    Choi, Kwansik; Sheng, Jiawei; Maeng, Sung Jun; Song, Myung Jae

    1998-01-01

    Viscosity is the most important process property of waste glass. Viscosity measurement is difficult and costs much. Non-bridging Oxygen (NBO) model which relates glass composition to viscosity had been developed for high level waste at the Savannah River Site (SRS). This research utilized this NBO model to predict the viscosity of KEPRI's 55 glasses. It was found that there was a linear relationship between the measured viscosity and the predicted viscosity. The NBO model could be used to predict glass viscosity in glass formulation development. However the precision of predicted viscosity is out of satisfaction because the composition ranges are very different between the SRS and KEPRI glasses. The modification of NBO calculation, which included modification of alkaline earth elements and TiO 2 , could not strikingly improve the precision of predicted values

  14. Changes in nucleoid viscosity following X-irradiation of rat thymic and splenic cells in vitro

    International Nuclear Information System (INIS)

    Tempel, K.

    1990-01-01

    In the present investigations, damage and repair of DNA supercoiling was measured in T- and S-cells following X-irradiation in vitro by using the nucleoid sedimentation technique and a simplified low-shearing viscometric test. - X-irradiation resulted in a dose(0.6-19.2 Gy)-dependent reduction in sedimentation and viscosity of nucleoids. Within a post-irradiation period of 30-45 min after a challenge dose of 19.2 Gy, DNA repair was accompanied by an increase in nucleoid sedimentation and viscosity in T-cells by about 60 and 300, in S-cells by almost 40 and 100%, resp. The increase in nucleoid viscosity within a 30 min repair period could be reduced in a concentration-dependent manner by DNA polymerase-inhibitors and proteinase K. - The higher DNA repair capacity of T-cells as reflected by UDS is confirmed therefore by the nucleoid characteristics. A part from this suggestion, measuring nucleoid viscosity may be considered as a sensitive, simple and rapid device to detect radiation-induced DNA supercoiling phenomena. (orig./MG)

  15. Negative viscosity can enhance learning of inertial dynamics.

    Science.gov (United States)

    Huang, Felix C; Patton, James L; Mussa-Ivaldi, Ferdinando A

    2009-06-01

    We investigated how learning of inertial load manipulation is influenced by movement amplification with negative viscosity. Using a force-feedback device, subjects trained on anisotropic loads (5 orientations) with free movements in one of three conditions (inertia only, negative viscosity only, or combined), prior to common evaluation conditions (prescribed circular pattern with inertia only). Training with Combined-Load resulted in lower error (6.89±3.25%) compared to Inertia-Only (8.40±4.32%) and Viscosity-Only (8.17±4.13%) according to radial deviation analysis (% of trial mean radius). Combined-Load and Inertia-Only groups exhibited similar unexpected no-load trials (8.38±4.31% versus 8.91±4.70% of trial mean radius), which suggests comparable low-impedance strategies. These findings are remarkable since negative viscosity, only available during training, evidently enhanced learning when combined with inertia. Modeling analysis suggests that a feedforward after-effect of negative viscosity cannot predict such performance gains. Instead, results from Combined-Load training are consistent with greater feedforward inertia compensation along with a small increase in impedance control. The capability of the nervous system to generalize learning from negative viscosity suggests an intriguing new method for enhancing sensorimotor adaptation.

  16. Viscosity of liquid sulfur under high pressure

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S

    2004-01-01

    The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry

  17. Laboratory Tests for Dispersive Soil Viscosity Determining

    Science.gov (United States)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Sobolev, E. S.

    2017-11-01

    There are several widespread methods for soil viscosity determining now. The standard shear test device and torsion test apparatus are the most commonly used installations to do that. However, the application of them has a number of disadvantages. Therefore, the specialists of Moscow State University of Civil Engineering proposed a new device to determine the disperse soil viscosity on the basis of a stabilometer with the B-type camera (viscosimeter). The paper considers the construction of a viscosimeter and the technique for determining soil viscosity inside this tool as well as some experimental verification results of its work.

  18. Viscosity effect in Landau's hydrodynamical model

    International Nuclear Information System (INIS)

    Hoang, T.F.; Phua, K.K.; Nanyang Univ., Singapore

    1979-01-01

    The Bose-Einstein distribution is used to investigate Landau's hydrodynamical model with viscosity. In case the viscosity dependence on the temperature is T 3 , the correction to the multiplicity behaves like I/E and is found to be negligible for the pp data. A discussion is presented on a possibility of reconciling E 1 / 2 and logE dependence of the multiplicity law. (orig.)

  19. Viscosity of aluminum under shock-loading conditions

    International Nuclear Information System (INIS)

    Ma Xiao-Juan; Liu Fu-Sheng; Zhang Ming-Jian; Sun Yan-Yun

    2011-01-01

    A reliable data treatment method is critical for viscosity measurements using the disturbance amplitude damping method of shock waves. In this paper the finite difference method is used to obtain the numerical solutions for the disturbance amplitude damping behaviour of the sinusoidal shock front in a flyer-impact experiment. The disturbance amplitude damping curves are used to depict the numerical solutions of viscous flow. By fitting the experimental data to the numerical solutions of different viscosities, we find that the effective shear viscosity coefficients of shocked aluminum at pressures of 42, 78 and 101 GPa are (1500±100) Pa·s, (2800±100) Pa·s and (3500±100) Pa·s respectively. It is clear that the shear viscosity of aluminum increases with an increase in shock pressure, so aluminum does not melt below a shock pressure of 101 GPa. This conclusion is consistent with the sound velocity measurement. (interdisciplinary physics and related areas of science and technology)

  20. Determination of Viscosity Versus Pressure by Means of a Clearance Seal

    DEFF Research Database (Denmark)

    Christiansen, Peter; Schmidt Hansen, Niels; Lund, Martin Thomas Overdahl

    2018-01-01

    This paper describes the construction and testing of a simple, experimental tool setup that enables determination of the pressure–viscosity relationship for high viscosity oils. Comparing the determined pressure–viscosity relationship with a reference rheometer measuring the viscosity at ambient ...

  1. Effects of ionic and nonionic contrast media on cardiohemodynamics and quality of radiographic image during canine angiography

    International Nuclear Information System (INIS)

    Nakamura, H.; Kurata, M.; Haruta, K.; Takeda, K.

    1994-01-01

    Cardiovascular responses and radiographic image quality during cerebral angiography, aortofemoral angiography and left ventriculography with nonionic ioxilan, iohexol or iopamidol were compared with those of ionic sodium meglumine diatrizoate in pentobarbital anesthetized dogs. Injection of all contrast media caused cardiovascular changes to a greater or lesser degree, e.g., hypotension, bradycardia, tachycardia, a decrease in left ventricular pressure (LVP) and its first derivative (dP/dt), and prolongation of the P-Q and Q-T intervals. Ionic diatrizoate had a greater effect on cardiovascular parameters than nonionic contrast media during angiography in all areas. Moreover, diatrizoate produced cardiac arrhythmias and prominent changes in blood rheology concerned with blood viscosity and deformability of the erythrocyte. The cause of various effects of contrast media seemed to lie mainly in osmolality, viscosity and partially ionic additives. The radiographic image quality of all of the contrast media used was similar, but nonionic ioxilan and iohexol with lower iodine content and low osmolality gave better radio opacity than ionic diatrizoate in cerebral angiography. These results suggested that nonionic contrast media should be recommended as a diagnostic tool for both animals and human patients in poor health

  2. Singularities and Entropy in Bulk Viscosity Dark Energy Model

    International Nuclear Information System (INIS)

    Meng Xinhe; Dou Xu

    2011-01-01

    In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ 0 + λ 1 (1 + z) n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ΛCDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r, s} as axes where the fixed point represents the ΛCDM model. The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling. (geophysics, astronomy, and astrophysics)

  3. ''Iodine delivery rate'' with catheterangiography under pressure conditions of hand injection

    International Nuclear Information System (INIS)

    Busch, H.P.; Stocker, K.P.

    1998-01-01

    Purpose: The aim of this study was to record the flow-rate and to calculate the 'iodine delivery rate' (IDR) of contrast media of various viscosities when the contrast media are injected by hand. Methods: Five different catheters for coronary angiography were tested with the injection system Medral Mark V Plus. Injections were performed with pressures of 100, 200 and 400 PSI. The contrast media examined were Imeron 350, Imeron 400, Omnipaque 350 and Ultravist 370. The IDR was calculated on the basis of the measured flow rate and the Iodine content of the contrast medium. Results: As was expected, the IDR was higher as the pressure increased. In addition to the iodine content the viscosity of the contrast medium is a very important factor for the IDR. At both 100 PSI and 200 PSI the increase of the IDR was higher with Imeron 350 than with Imeron 400. The comparison of contrast media with identical iodine contents but differing viscosities (Imeron 350, Omnipaque 350) clearly showed that the IDR depended on viscosity. Conclusion: The 'iodine delivery rate' is a decisive factor in the opacification of arterial vessels. Both iodine content and viscosity of a contrast medium are important for the IDR. Because of the low pressure at manual injection, contrast media with low viscosities should be used. A further possibility to increase the IDR is warming-up the contrast medium to body temperature. (orig.) [de

  4. Rapid viscosity measurements of powdered thermosetting resins

    Science.gov (United States)

    Price, H. L.; Burks, H. D.; Dalal, S. K.

    1978-01-01

    A rapid and inexpensive method of obtaining processing-related data on powdered thermosetting resins has been investigated. The method involved viscosity measurements obtained with a small specimen (less than 100 mg) parallel plate plastometer. A data acquisition and reduction system was developed which provided a value of viscosity and strain rate about 12-13 second intervals during a test. The effects of specimen compaction pressure and reduction of adhesion between specimen and parallel plates were examined. The plastometer was used to measure some processing-related viscosity changes of an addition polyimide resin, including changes caused by pre-test heat treatment, test temperature, and strain rate.

  5. Elongational viscosity of multiarm (Pom-Pom) polystyrene

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Almdal, Kristoffer

    2006-01-01

    -Pom was estimated to have 2.5 arms on average, while the estimate is 3.3 for the asymmetric star. The molar mass of each arm is about 27 kg/mol. The melts were characterized in the linear viscoelastic regime and in non-linear elongational rheometry. The transient elongational viscosity for the Pom-Pom molecule...... it corresponds well with an estimate of the maximum stretchability of the backbone. Time-strain separability was not observed for the 'Asymmetric star' molecule at the elongation rates investigated. The transient elongational viscosity for the 'Pom-Pom' molecule went through a reproducible maximum...... in the viscosity at the highest elongational rate....

  6. Dynamics of a Highly Viscous Circular Blob in Homogeneous Porous Media

    Directory of Open Access Journals (Sweden)

    Vandita Sharma

    2017-06-01

    Full Text Available Viscous fingering is ubiquitous in miscible displacements in porous media, in particular, oil recovery, contaminant transport in aquifers, chromatography separation, and geological CO2 sequestration. The viscosity contrasts between heavy oil and water is several orders of magnitude larger than typical viscosity contrasts considered in the majority of the literature. We use the finite element method (FEM-based COMSOL Multiphysics simulator to simulate miscible displacements in homogeneous porous media with very large viscosity contrasts. Our numerical model is suitable for a wide range of viscosity contrasts covering chromatographic separation as well as heavy oil recovery. We have successfully captured some interesting and previously unexplored dynamics of miscible blobs with very large viscosity contrasts in homogeneous porous media. We study the effect of viscosity contrast on the spreading and the degree of mixing of the blob. Spreading (variance of transversely averaged concentration follows the power law t 3 . 34 for the blobs with viscosity ∼ O ( 10 2 and higher, while degree of mixing is found to vary non-monotonically with log-mobility ratio. Moreover, in the limit of very large viscosity contrast, the circular blob behaves like an erodible solid body and the degree of mixing approaches the viscosity-matched case.

  7. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

    Science.gov (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing

    2017-12-01

    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  8. Rotational and spin viscosities of water: Application to nanofluidics

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Bruus, Henrik; Todd, B.D.

    2010-01-01

    In this paper we evaluate the rotational viscosity and the two spin viscosities for liquid water using equilibrium molecular dynamics. Water is modeled via the flexible SPC/Fw model where the Coulomb interactions are calculated via the Wolf method which enables the long simulation times required....... We find that the rotational viscosity is independent of the temperature in the range from 284 to 319 K. The two spin viscosities, on the other hand, decrease with increasing temperature and are found to be two orders of magnitude larger than that estimated by Bonthuis et al. [Phys. Rev. Lett. 103...

  9. Viscosity Prediction of Natural Gas Using the Friction Theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2002-01-01

    Based on the concepts of the friction theory (f-theory) for viscosity modeling, a procedure is introduced for predicting the viscosity of hydrocarbon mixtures rich in one component, which is the case for natural gases. In this procedure, the mixture friction coefficients are estimated with mixing...... rules based on the values of the pure component friction coefficients. Since natural gases contain mainly methane, two f-theory models are combined, where the friction coefficients of methane are estimated by a seven-constant f-theory model directly fitted to methane viscosities, and the friction...... coefficients of the other components are estimated by the one-parameter general f-theory model. The viscosity predictions are performed with the SRK, the PR, and the PRSV equations of state, respectively. For recently measured viscosities of natural gases, the resultant AAD (0.5 to 0.8%) is in excellent...

  10. [Comparison of diagnostic quality in hysterosalpingography between iodinated non-ionic contrast media with low and high osmolarity].

    Science.gov (United States)

    Piccotti, K; Guida, D; Carbonetti, F; Stefanetti, L; Macioce, A; Cremona, A; David, V

    Comparison of diagnostic quality in hysterosalpingography between low and high-osmolality contrast media. We performed a retrospective evaluation of two cohorts of patients who underwent HSG using contrast media with different osmolarity: the first group ,47 patients, underwent hysterosalpingography in the period September 2011-December 2012 using Iopromide 370 mg/ml; the second group, 50 patients, underwent HSG from January 2013 to October 2013 using Iomeprol 400 mg/ml. Three radiologists, in consensus reading,, reviewed the radiographs by assessing the following four parameters: opacification of the uterine cavity, uterine profiles definition, Fallopian tubes visualization, contrast media spillage into peritoneum. A score-scale from 0 to 3 was assigned for each of the mentioned parameter (0 = minimum non-diagnostic exam, 1 = sufficient examination; 2 = good quality examination; maximum 3 = high quality images). We documented a statistically significant higher quality in displaying Fallopian tubes among patients studied through high osmolarity contrast medium (Iopromide 370 mg/ml) than what obtained through lower osmolarity contrast medium (Iomeprol 400 mg/ml). The use of high osmolarity contrast medium enabled better visualization of the tubes and a greater number of diagnoses of chronic aspecific salpigintis due to the increased osmolality and viscosity of Iomeprol 400 mg/ml. There were no significant differences between the two contrast agents in the evaluation of intra-uterine pathology and in the evaluation of the tubal patency.

  11. Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants

    Science.gov (United States)

    Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding

    2016-11-01

    This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s-1 for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability.

  12. Mechanism of viscosity effect on magnetic island rotation

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailovskii, A.B.; Konovalov, S.V. [Institute of Nuclear Fusion, Russian Research Centre ' Kurchatov Institute' , Kurchatov Sq., 1, Moscow (Russian Federation); Pustovitov, V.D. [National Inst. for Fusion Science, Toki, Gifu (Japan); Tsypin, V.S. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, SP (Brazil)

    2000-04-01

    It is shown that plasma viscosity does not influence the magnetic island rotation directly. Nevertheless, it leads to nonstationarity of the plasma velocity. This nonstationarity is the reason of the viscosity effect on island rotation. (author)

  13. On the gravitational collapse of a gas cloud in the presence of bulk viscosity

    International Nuclear Information System (INIS)

    Carlevaro, Nakia; Montani, Giovanni

    2005-01-01

    We analyse the effects induced by the bulk (or second) viscosity on the dynamics associated with the extreme gravitational collapse. The aim of the work is to investigate whether the presence of viscous corrections to the evolution of a collapsing gas cloud influences the top-down fragmentation process. To this end, we generalize the approach presented by Hunter (1962 Astrophys. J. 136 594) to include in the dynamics of the (uniform and spherically symmetric) cloud the negative pressure contribution associated with the bulk viscosity phenomenology. Within the framework of a Newtonian approach (whose range of validity is outlined), we extend to the viscous case either the Lagrangian or the Eulerian motion of the system addressed in Hunter (1962 Astrophys. J. 136 594) and we treat the asymptotic evolution in correspondence with a viscosity coefficient of the form ζ = ζ 0 ρ 5/6 (ρ being the cloud density and ζ 0 = const). We show how the adiabatic-like behaviour of the gas (i.e. when the polytropic index γ takes values 4/3 < γ ≤ 5/3) is deeply influenced by viscous correction when its collapse reaches the extreme regime toward the singularity. In fact, for sufficiently large viscous contributions, density contrasts associated with a given scale of the fragmentation process acquire, asymptotically, a vanishing behaviour which prevents the formation of sub-structures. Since in the non-dissipative case density contrasts diverge (except for the purely adiabatic behaviour γ = 5/3 in which they remain constant), we can conclude that in the adiabatic-like collapse the top-down mechanism of structure formation is suppressed as soon as enough strong viscous effects are taken into account. Such a feature is not present in the isothermal-like (i.e. 1 ≤ γ < 4/3) collapse because the sub-structure formation is yet present and outlines the same behaviour as in the non-viscous case. We emphasize that in the adiabatic-like collapse the bulk viscosity is also responsible

  14. Viscosity of low-temperature substances at pressure

    International Nuclear Information System (INIS)

    Rudenko, N.S.; Slyusar', V.P.

    1976-01-01

    The review presents an analysis of data available on the viscosity coefficients of hydrogen, deuterohydrogen, deuterium, neon, argon, krypton, xenon, nitrogen and methane under pressure in the temperature range from triple points to 300 deg K. Averaged values of viscosity coefficients for all the substances listed above versus temperature, pressure and density are tabulated

  15. An eddy viscosity model for flow in a tube bundle

    International Nuclear Information System (INIS)

    Soussan, D.; Grandotto, M.

    1998-01-01

    The work described in this paper is part of the development of GENEPI a 3-dimensional finite element code, designed for the thermalhydraulic analysis of steam generators. It focuses on the implementation of two-phase flow turbulence-induced viscosity in a tube bundle. The GENEPI code, as other industrial codes, uses the eddy viscosity concept introduced by Boussinesq for single phase flow. The concept assumes that the turbulent momentum transfer is similar to the viscous shear stresses. Eddy viscosity formulation is reasonably well known for single phase flows, especially in simple geometries (i.e., in smooth tube, around a single body, or behind a row of bars/tubes), but there exists very little information on it for two-phase flows. An analogy between single and two-phases is used to set up a model for eddy viscosity. The eddy viscosity model examined in this paper is used for a tube bundle geometry and, therefore, is extended to include anisotropy to the classic model. Each of the main flow directions (cross flow inline, cross flow staggered, and parallel flows) gives rise to a specific eddy viscosity formula. The results from a parametric study indicate that the eddy viscosity in the staggered flow is roughly 1.5 times as large as that for the inline cross flow, 60 times as large as that for the parallel flow, and 105 as large as that for the molecular viscosity. Then, the different terms are combined with each other to result in a global eddy viscosity model for a steam generator tube bundle flow. (author)

  16. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles

    Directory of Open Access Journals (Sweden)

    Fatemeh eMomen-Heravi

    2012-05-01

    Full Text Available Microvesicles are nano-sized lipid vesicles released by all cells in vivo and in vitro. They are released physiologically under normal conditions but their rate of release is higher under pathological conditions such as tumors. Once released they end up in the systemic circulation and have been found and characterized in all biofluids such as plasma, serum, cerebrospinal fluid (CSF, breast milk, ascites, and urine. Microvesicles represent the status of the donor cell they are released from and they are currently under intense investigation as a potential source for disease biomarkers. Currently, the gold standard for isolating microvesicles is ultracentrifugation, although alternative techniques such as affinity purification have been explored. Viscosity is the resistance of a fluid to a deforming force by either shear or tensile stress. The different chemical and molecular compositions of biofluids have an effect on its viscosity and this could affect movements of the particles inside the fluid. In this manuscript we addressed the issue of whether viscosity has an effect on sedimentation efficiency of microvesicles using ultracentrifugation. We used different biofluids and spiked them with polystyrene beads and assessed their recovery using the Nanoparticle Tracking Analysis. We demonstrate that MVs recovery inversely correlates with viscosity and as a result, sample dilutions should be considered prior to ultracentifugation when processing any biofluids.

  17. The impact of food viscosity on eating rate, subjective appetite, glycemic response and gastric emptying rate.

    Directory of Open Access Journals (Sweden)

    Yong Zhu

    Full Text Available Understanding the impact of rheological properties of food on postprandial appetite and glycemic response helps to design novel functional products. It has been shown that solid foods have a stronger satiating effect than their liquid equivalent. However, whether a subtle change in viscosity of a semi-solid food would have a similar effect on appetite is unknown. Fifteen healthy males participated in the randomized cross-over study. Each participant consumed a 1690 kJ portion of a standard viscosity (SV and a high viscosity (HV semi-solid meal with 1000 mg acetaminophen in two separate sessions. At regular intervals during the three hours following the meal, subjective appetite ratings were measured and blood samples collected. The plasma samples were assayed for insulin, glucose-dependent insulinotropic peptide (GIP, glucose and acetaminophen. After three hours, the participants were provided with an ad libitum pasta meal. Compared with the SV meal, HV was consumed at a slower eating rate (P = 0.020, with postprandial hunger and desire to eat being lower (P = 0.019 and P<0.001 respectively while fullness was higher (P<0.001. In addition, consuming the HV resulted in lower plasma concentration of GIP (P<0.001, higher plasma concentration of glucose (P<0.001 and delayed gastric emptying as revealed by the acetaminophen absorption test (P<0.001. However, there was no effect of food viscosity on insulin or food intake at the subsequent meal. In conclusion, increasing the viscosity of a semi-solid food modulates glycemic response and suppresses postprandial satiety, although the effect may be short-lived. A slower eating rate and a delayed gastric emptying rate can partly explain for the stronger satiating properties of high viscous semi-solid foods.

  18. MHD [magnetohydrodynamic] modes driven by anomalous electron viscosity and their role in fast sawtooth crashes

    International Nuclear Information System (INIS)

    Aydemir, A.Y.

    1990-01-01

    We derive the dispersion relations for both small and large-Δ' modes (m ≥ 2, and m = 1 modes, respectively) driven by anomalous electron viscosity. Under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron thermal diffusivity, we find that the viscous mode typically has a higher growth rate than the corresponding resistive mode. We compare computational results in cylindrical and toroidal geometries with theory and present some nonlinear results for viscous m = 1 modes in both circular and D-shaped boundaries and discuss their possible rile in fast sawtooth crashes. 30 ref., 5 figs., 1 tab

  19. The influence of magnetic fields on crude oils viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Jose L.; Bombard, Antonio J. F. [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Ciencias Exatas. Lab. de Reologia

    2009-07-01

    The crystallization of paraffin causes serious problems in the process of transportation of petroleum. This phenomenon increases the crude oil viscosity and implies an organic resin accumulation on pipeline wall, resulting in a reduced flux area or totally blocked pipes. One of the most challenging tasks for pipeline maintenance is solving this problem at low cost. Therefore, a method that inhibits the crystallization of paraffin and reduces the viscosity of crude oil could have many useful applications within the petroleum industry. Recent studies showed that magnetic fields reduce the Wax Appearance Temperature (WAT) and the viscosity of paraffin-based crude oil. For better understanding of this discovery, a series of tests was performed. This paper will show the influence of a DC magnetic field on rheological proprieties of three crude oils with different paraffin concentrations: a crude oil sample with 11 % p/p of paraffin concentration (sample 1); a crude oil sample with 6 % p/p of paraffin concentration (sample 2); a mixture of paraffin plus light crude oil with a total of 11 % p/p of paraffin concentration. These samples were placed in an electromagnet that generates a magnetic field of 1.3 Tesla. The samples' temperatures were conditioned around their Wax Appearance Temperature (WAT), and they were exposed to the field. As the viscosity of crude oil is very sensitive to the changes in temperature, it was ensured that the temperature has remained constant throughout the process. The sample 1 revealed a considerable reduction of viscosity: its original viscosity was 66 cP before magnetic field exposure, after that its viscosity was reduced to 39 cP. The other samples showed the same viscosity, before and after the magnetic field exposure. Since the samples 1 and 3 have the same paraffin concentrations, the viscosity reduction is not due only to the presence of paraffin; there must be other factors responsible for the interaction of sample 1 with the

  20. Viscosity of melts of the system KCl-KBF4-K2TiF6

    International Nuclear Information System (INIS)

    Nguyen, D.K.; Danek, V.

    1997-01-01

    The viscosity of melts of the system KCl-KBF 4 -K 2 TiF 6 has been measured by means of the computerized torsional pendulum method. The viscosity of KCl is higher that of KBF 4 at the same temperature, most probably due to the substantial overheating of KBF 4 . In the ternary system the viscosity increases with increasing with increasing content of K 2 TiF 6 . Additivity of algorithms of viscosity was adopted as the ideal behaviour of the mixture. Negative deviations from such additive behaviour were found in the binary system KCl-KBF 4 probably due to the breaks of the weak B-Cl-B bridges caused by the excess of Cl - ions. Positive deviations from the ideal behaviour were found in the binaries KCl-K 2 TiF 6 and KBF 4 -K 2 TiF 6 due to the formation of larger anions TiF 6 Cl 3- and TiF 7 3- caused by the reactions K 2 TiF 6 (l) + KCl(l) = K 3 TiF 6 Cl(l) and KBF 4 (l) + K 2 TiF 6 (l) = K 3 TiF 7 (l) + BF 3 (g). Statistically significant ternary interaction confirmed that the above chemical reactions take place also in the ternary system. (authors)

  1. Shear viscosity of liquid argon and liquid rubidium

    International Nuclear Information System (INIS)

    Chiakwelu, O.

    1978-01-01

    A direct evaluation of the shear viscosity coefficient for models of liquid rubidium and liquid argon is presented by neglecting the cross-terms in the autocorrelation function of the transverse component of the momentum stress tensor. The time dependence of the shear viscosity for liquid argon is found to display a long decaying tail in qualitative agreement with a computer calculation of Levesque et al. However, the numerical values of the shear viscosity coefficients are smaller than the experimentally determined values of about 45% for liquid rubidium and 35% for liquid argon

  2. Structure and viscosity of a transformer oil-based ferrofluid under an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rajnak, M., E-mail: rajnak@saske.sk [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Timko, M.; Kopcansky, P.; Paulovicova, K. [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Tothova, J.; Kurimsky, J.; Dolnik, B.; Cimbala, R. [Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Avdeev, M.V. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Petrenko, V.I. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Feoktystov, A. [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching (Germany)

    2017-06-01

    Various structural changes of ferrofluids have been intensively studied under external magnetic fields. In this work we present an experimental evidence of similar changes induced by an electric field. In the context of the electric field effect on ferrofluids structure, we studied a simple ferrofluid consisting of iron oxide nanoparticles coated with oleic acid and dispersed in transformer oil. The structural changes have been observed both on macroscopic and microscopic scale. We also demonstrate a remarkable impact of the electric field on the ferrofluid viscosity in relation to the reported structural changes. It was found that the electric field induced viscosity changes are analogous to the magnetoviscous effect. These changes and the electroviscous effect are believed to stem from the dielectric permittivity contrast between the iron oxide nanoparticles and transformer oil, giving rise to the effective electric polarization of the nanoparticles. It is highlighted that this electrorheological effect should be considered in studies of ferrofluids for high voltage engineering applications, as it can have impact on the thermomagnetic convection or the dielectric breakdown performance. - Highlights: • An experimental evidence of the electric field induced structural changes in a ferrofluid is presented. • An electroviscous effect in the transformer oil-based ferrofluid is shown. • The dielectric contrast between the particles and the carrier fluid is the key factor. • The potential impact on the thermomagnetic convection of ferrofluids in power transformers is highlighted.

  3. Modeling of Viscosity and Thermal Expansion of Bioactive Glasses

    OpenAIRE

    Farid, Saad B. H.

    2012-01-01

    The behaviors of viscosity and thermal expansion for different compositions of bioactive glasses have been studied. The effect of phosphorous pentoxide as a second glass former in addition to silica was investigated. Consequently, the nonlinear behaviors of viscosity and thermal expansion with respect to the oxide composition have been modeled. The modeling uses published data on bioactive glass compositions with viscosity and thermal expansion. -regression optimization technique has been uti...

  4. How the dispersion of magnesium oxide nanoparticles effects on the viscosity of water-ethylene glycol mixture: Experimental evaluation and correlation development

    Science.gov (United States)

    Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid

    2017-03-01

    In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.

  5. Numerical models of salt diapir formation by down-building : the role of sedimentation rate, viscosity contrast, initial amplitude and wavelength

    OpenAIRE

    Fuchs, Lukas; Schmeling, H.; Koyi, Hemin

    2011-01-01

    Formation of salt diapirs has been described to be due to upbuilding (i. e. Rayleigh-Taylor like instability of salt diapirs piercing through a denser sedimentary overburden) or syndepositional down-building process (i. e. the top of the salt diapir remains at the surface all the time). Here we systematically analyse this second end-member mechanism by numerical modelling. Four parameters are varied: sedimentation rate nu(sed), salt viscosity eta(salt), amplitude delta of the initial perturba...

  6. Communication: Simple liquids' high-density viscosity.

    Science.gov (United States)

    Costigliola, Lorenzo; Pedersen, Ulf R; Heyes, David M; Schrøder, Thomas B; Dyre, Jeppe C

    2018-02-28

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  7. Communication: Simple liquids' high-density viscosity

    Science.gov (United States)

    Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-02-01

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  8. On-line measurement of food viscosity during flow

    DEFF Research Database (Denmark)

    Mason, Sarah Louise; Friis, Alan

    2006-01-01

    Sarah L. Mason and Alan Friis discuss some of the principles and equipment used to monitor food viscosity in real time.......Sarah L. Mason and Alan Friis discuss some of the principles and equipment used to monitor food viscosity in real time....

  9. On the bulk viscosity of relativistic matter

    International Nuclear Information System (INIS)

    Canuto, V.; Hsieh, S.-H.

    1978-01-01

    An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted resuls of Iso, Mori and Namiki. (author)

  10. Contrast enhanced MRA: do contrast agents with a higher T1 relaxitivity improve the visualization of carotid artery stenoses?

    International Nuclear Information System (INIS)

    Friese, S.; Krapf, H.; Skalej, M.; Kueker, W.; Fetter, M.; Vonthein, R.

    2001-01-01

    CE-MRA is a powerful tool for the non-invasive evaluation of carotid artery occlusive disease. However, due to certain drawbacks, it has not completely replaced DSA. The purpose of this study was to evaluate if Gd-BOPTA, a contrast agent with high T 1 relaxivity, can increase the diagnostic accuracy of CE-MRA. Material and Methods: The CE-MRA examinations of 54 consecutive patients were evaluated by two experienced radiologists, independently. The examinations of 27 patients were contrasted either with 20 ml Gd-BOPTA or with 20 ml Gd-DTPA. The reviewers were blinded to the contrast agent chosen and to the ultrasound results. They rated the overall image quality and the degree of the ICA stenoses. Results: For the estimation of the degree of the ICA stenoses there was a high interrater validity. In comparison to the ultrasound findings, 6 of 50 high-degree stenoses were underestimated as moderate stenoses. In one of seven sonographically occluded vessels, MRA revealed residual patency in the vessel lumen. It was not possible to identify the contrast agent that was taken for a study. Subjective estimation of the image quality (arterial contrast of the ICA, contrast of the other vessels, and general impression) did not significantly change with the contrast agent employed. Conclusion: The diagnostic accuracy of CE-MRA for the evaluation of internal carotid artery stenoses is not improved by Gd-BOPTA if identical volumina of contrast media are applied. The potential of this contrast agent can be the reduction of the amount of contrast without loss of diagnostic information. Further studies are necessary. (orig.) [de

  11. Spectroscopic studies on di-pophyrin rotor as micro-viscosity sensor

    Science.gov (United States)

    Doan, H.; Raut, S.; Kimbal, J.; Gryczynski, Z.; Dzyuba, S.; Balaz, M.

    2015-03-01

    In typical biological systems the fluid compartment makes up more than 70% percent of the system weight. A variety of mass and signal transportation as well as intermolecular interactions are often governed by viscosity. It is important to be able to measure/estimate viscosity and detect the changes in viscosity upon various stimulations. Understanding the influence of changes in viscosity is crucial and development of the molecular systems that sensitive to micro-viscosity is a goal of many researches. Molecular rotors have been considered the potential target since they present enhanced sensitivity to local viscosity that can strongly restrict molecular rotation. To understand the mechanics of rotor interaction with the environment we have been studied conjugated pophyrin-dimer rotor (DP) that emit in the near IR. Our goal is to investigate the photo physical properties such as absorption, transition moment orientation, emission and excitation, polarization anisotropy and fluorescence lifetime in various mediums of different viscosities from ethanol to poly vinyl alcohol (PVA) matrices. The results imply the influences of the medium's viscosity on the two distinct confirmations: planar and twisted conformations of DP. Linear dichroism from polarized absorption in PVA matrices shows various orientations of transition moments. Excitation anisotropy shows similar transition splitting between two conformations. Time resolved intensity decay at two different observations confirms the two different emission states and furthermore the communication between the two states in the form of energy transfer upon excitation.

  12. Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding

    2016-11-01

    This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s{sup −1} for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability. - Highlights: • Surfactants were employed to make adjustments of the hydrophobicity of particles. • Polar attractions between particles increased the viscosity considerably. • Loose and open flocculation was formed in CI/DA suspension. • The steric repulsion of oleic acid played a limited role in the stability.

  13. In vitro evaluation of the erosive potential of viscosity-modified soft acidic drinks on enamel.

    Science.gov (United States)

    Aykut-Yetkiner, Arzu; Wiegand, Annette; Ronay, Valerie; Attin, Rengin; Becker, Klaus; Attin, Thomas

    2014-04-01

    The objective of this in vitro study was to investigate the effect of viscosity-modified soft acidic drinks on enamel erosion. A total of 108 bovine enamel samples (∅ = 3 mm) were embedded in acrylic resin and allocated into six groups (n = 18). Soft acidic drinks (orange juice, Coca-Cola, Sprite) were used both in their regular forms and at a kinetic viscositiy of 5 mm(2)/s, which was adjusted by adding hydroxypropyl cellulose. All solutions were pumped over the enamel surface from a reservoir with a drop rate of 3 ml/min. Each specimen was eroded for 10 min at 20 °C. Erosion of enamel surfaces was measured using profilometry. Data were analyzed using independent t tests and one-way ANOVAs (p Coca-Cola, 5.60 ± 1.04 μm; Sprite, 5.49 ± 0.94 μm; orange juice, 1.35 ± 0.4 μm) than for the viscosity-modified drinks (Coca-Cola, 4.90 ± 0.34 μm; Sprite, 4.46 ± 0.39 μm; orange juice, 1.10 ± 0.22 μm). For both regular and viscosity-modified forms, Coca-Cola and Sprite caused higher enamel loss than orange juice. Increasing the viscosity of acidic soft drinks to 5 mm(2)/s reduced enamel erosion by 12.6-18.7 %. The erosive potential of soft acidic drinks is not only dependent on various chemical properties but also on the viscosity of the acidic solution and can be reduced by viscosity modification.

  14. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vold, E. L.; Molvig, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Joglekar, A. S. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Ortega, M. I. [University of New Mexico, Albuquerque, New Mexico 87131 (United States); Moll, R. [University of California, Santa Cruz, California 95064 (United States); Fenn, D. [Florida State University, Tallahassee, Florida 32306 (United States)

    2015-11-15

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.

  15. Applicability of viscosity measurement to the detection of irradiated peppers

    International Nuclear Information System (INIS)

    Hayashi, T.; Todoriki, S.; Kohyama, K.

    1996-01-01

    Starch is degraded by ionising radiation, resulting in a decrease in viscosity. The viscosities of black and white peppers which contain large amounts of starch are reduced by irradiation so, therefore, viscosity measurement has been proposed as a method to detect the irradiation treatment of these food products. Although detection of irradiated spices by thermoluminescence measurement has been established, it is useful to establish the viscosity measuring technique for detecting irradiated peppers, as this method is carried out widely in the laboratories of food controlling authorities and food processing companies. (author)

  16. Determination of viscosity in recirculating fluidized bed using radioactive tracer

    International Nuclear Information System (INIS)

    Silva, G.G. da.

    1986-01-01

    The use of radioactive tracer for measuring viscosity is proposed. The methodology relates the terminal velocity of a radioactive sphere in interior of fluid with the viscosity, which can be a fluidized bed or total flow of solids. The arrangement is composed by two γ detectors placed externally and along the bed. Both detectors are coupled by amplifier to electronic clock. The drop time of sphere between two detectors is measured. The bed viscosity two detectors is measured. The bed viscosity is calculated from mathematical correlations of terminal velocity of the sphere. (M.C.K.)

  17. Segment-based Eyring-Wilson viscosity model for polymer solutions

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat

    2005-01-01

    A theory-based model is presented for correlating viscosity of polymer solutions and is based on the segment-based Eyring mixture viscosity model as well as the segment-based Wilson model for describing deviations from ideality. The model has been applied to several polymer solutions and the results show that it is reliable both for correlation and prediction of the viscosity of polymer solutions at different molar masses and temperature of the polymer

  18. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  19. Effect of ion viscosity on neoclassical tearing mode

    International Nuclear Information System (INIS)

    Yoshida, Shigeki; Itoh, Sanae-I.; Yagi, Masatoshi; Azumi, Masafumi

    2004-01-01

    Linear stability analysis of neoclassical tearing mode (NTM) is performed on the basis of four-field reduced magnetohydrodynamic (MHD) model which takes account of fluctuating ion parallel flow and ion neoclassical viscosity. The dependence of the growth rate on the kinetic effects is investigated. It is shown that the linear NTM is stabilized by ion neoclassical viscosity and that the stabilizing effect of ion parallel compressibility is weak in the banana-plateau regime. It is found that not only ion neoclassical viscosity but also both ion and electron diamagnetic effects are important for the stabilization of NTM. (author)

  20. Shear viscosities of photons in strongly coupled plasmas

    Directory of Open Access Journals (Sweden)

    Di-Lun Yang

    2016-09-01

    Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  1. Design of Oil Viscosity Sensor Based on Plastic Optical Fiber

    Science.gov (United States)

    Yunus, Muhammad; Arifin, A.

    2018-03-01

    A research of plastic optical fiber based sensors have been studied for measurement of oil viscosity. This sensor was made with straight configuration, U configuration, and gamma configuration have two types, there are optical fiber sensor with cladding and without cladding. Viscosity sensor was made, dipped into an oil sample with a concentration of viscosity percentage about 270 mPa.s - 350 mPa.s. The light from the LED propagated into the optical fiber, then it was received by the photodetector converted to output power. When plastic optical fiber dipped into an oil sample, viscosity of oil affect increase of refractive index on optical fiber resulting in a bigger loss of power so the light intensity will be smaller, consequences the measured output power will be smaller. Sensitivity and resolution viscosity sensor without cladding peel showed the best result rather than viscosity sensor with cladding peel. The best result in the measurement showed in gamma configuration with 3 cm length of cladding peel and the diameter of bending 0,25 cm is the range 103,090 nWatt, sensitivity 1,289 nWatt/mPa.s, and resolution 0,776 mPa.s. This method is effectively and efficiently used as an oil viscosity sensor with high sensitivity and resolution.

  2. Bulk and shear viscosities of hot and dense hadron gas

    International Nuclear Information System (INIS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-01-01

    We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons

  3. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    The startup and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 kg/mole (PS52K) and 103 kg/mole (PS103K), and for three bidisperse polystyrene melts. The bidisperse melts consist of PS103K or PS52K and a monodisperse...... (closed loop proportional regulator) using the laser in such a way that the stretch rate at the neck is kept constant. The rheometer has been described in more detail in (A. Bach, H.K. Rasmussen and O. Hassager, Journal of Rheology, 47 (2003) 429). PS390K show a decrease in the steady viscosity as a power......-law function of the elongational rate (A. Bach, K. Almdal, H.K. Rasmussen and O. Hassager, Macromolecules 36 (2003) 5174). PS52K and PS103K show that the steady viscosity has a maximum that is respectively 100% and 50% above 3 times the zero-shear-rate viscosity. The bidisperse melts show a significant...

  4. Relating Fresh Concrete Viscosity Measurements from Different Rheometers.

    Science.gov (United States)

    Ferraris, Chiara F; Martys, Nicos S

    2003-01-01

    Concrete rheological properties need to be properly measured and predicted in order to characterize the workability of fresh concrete, including special concretes such as self-consolidating concrete (SCC). It was shown by a round-robin test held in 2000 [1,2] that different rheometer designs gave different values of viscosity for the same concrete. While empirical correlation between different rheometers was possible, for a procedure that is supposed to "scientifically" improve on the empirical slump tests, this situation is unsatisfactory. To remedy this situation, a new interpretation of the data was developed. In this paper, it is shown that all instruments tested could be directly and quantitatively compared in terms of relative plastic viscosity instead of the plastic viscosity alone. This should eventually allow the measurements from various rheometer designs to be directly calibrated against known standards of plastic viscosity, putting concrete rheometry and concrete workability on a sounder materials science basis.

  5. Various methods for determination of liquid viscosity with nuclear track membranes

    International Nuclear Information System (INIS)

    Guo Shilun

    1991-01-01

    A systematic study has been performed of the methods for determination of liquid viscosity with nuclear track membranes. Absolute and relative measurements have been suggested, the latter including relative measurements of absolute viscosity and kinematic viscosity. The study shows that the nuclear track membrane is a unique element for determination of liquid viscosity because it is small in volume, accurate in results and easy to manipulate in industries and laboratories

  6. Bulk viscosity, interaction and the viability of phantom solutions

    Energy Technology Data Exchange (ETDEWEB)

    Leyva, Yoelsy; Sepulveda, Mirko [Universidad de Tarapaca, Departamento de Fisica, Facultad de Ciencias, Arica (Chile)

    2017-06-15

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w < -1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data. (orig.)

  7. Dairy-Based Emulsions: Viscosity Affects Fat Difference Thresholds and Sweetness Perception.

    Science.gov (United States)

    Zahn, Susann; Hoppert, Karin; Ullrich, Franziska; Rohm, Harald

    2013-11-27

    In complex emulsions, viscosity or viscosity-associated sensory attributes such as creaminess are important for quality assessment and product differentiation. Two sets of emulsions with fat or locust bean gum content being varied at seven levels were developed; the two emulsions at each level had similar apparent viscosity. Additionally, sugar concentration was kept constant either with respect to total emulsion, or with respect to the aqueous phase. Series of two-alternative forced choice tests were performed with one constant stimulus, and just noticeable differences were calculated using probability regression. The results show that, when viscosity was not compensated, it was easy for the subjects to (a) distinguish emulsions with different fat content when the fat content was addressed in the question, and to (b) distinguish emulsions with different fat or locust bean gum content when creaminess was addressed. For the latter descriptor, it is of minor importance whether viscosity is altered by fat content or a thickener. Weber fractions that were calculated for viscosity were approximately 0.20. The quantitative effects of viscosity on sweetness, however, depend on how product rheology was modified.

  8. Topical contrast agents to improve soft-tissue contrast in the upper airway using cone beam CT: a pilot study.

    Science.gov (United States)

    Alsufyani, N A; Noga, M L; Finlay, W H; Major, P W

    2013-01-01

    The purpose of this study is to explore the topical use of radiographic contrast agents to enhance soft-tissue contrast on cone beam CT (CBCT) images. Different barium sulphate concentrations were first tested using an airway phantom. Different methods of barium sulphate application (nasal drops, syringe, spray and sinus wash) were then tested on four volunteers, and nebulized iodine was tested in one volunteer. CBCT images were performed and then assessed subjectively by two examiners for contrast agent uniformity and lack of streak artefact. 25.0% barium sulphate presented adequate viscosity and radiodensity. Barium sulphate administered via nasal drops and sprays showed non-uniform collection at the nostrils, along the inferior and/or middle nasal meatuses and posterior nasal choana. The syringe and sinus wash showed similar results with larger volumes collecting in the naso-oropharynx. Nebulized iodine failed to distribute into the nasal cavity and scarcely collected at the nostrils. All methods of nasal application failed to adequately reach or uniformly coat the nasal cavity beyond the inferior nasal meatuses. The key factors to consider for optimum topical radiographic contrast in the nasal airway are particle size, flow velocity and radio-opacity.

  9. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2015-01-01

    Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  10. Blood viscosity during coagulation at different shear rates

    Science.gov (United States)

    Ranucci, Marco; Laddomada, Tommaso; Ranucci, Matteo; Baryshnikova, Ekaterina

    2014-01-01

    Abstract During the coagulation process, blood changes from a liquid to a solid gel phase. These changes are reflected by changes in blood viscosity; however, blood viscosity at different shear rates (SR) has not been previously explored during the coagulation process. In this study, we investigated the viscosity changes of whole blood in 10 subjects with a normal coagulation profile, using a cone‐on‐plate viscosimeter. For each subject, three consecutive measurements were performed, at a SR of 20, 40, 80 sec−1. On the basis of the time‐dependent changes in blood viscosity, we identified the gel point (GP), the time‐to‐gel point (TGP), the maximum clot viscosity (MCV), and the clot lysis half‐time (CLH). The TGP significantly (P = 0.0023) shortened for increasing SR, and was significantly associated with the activated partial thromboplastin time at a SR of 20 sec−1 (P = 0.038) and 80 sec−1 (P = 0.019). The MCV was significantly lower at a SR of 80 sec−1 versus 40 sec−1 (P = 0.027) and the CLH significantly (P = 0.048) increased for increasing SR. These results demonstrate that measurement of blood viscosity during the coagulation process offers a number of potentially useful parameters. In particular, the association between the TGP and the activated partial thromboplastin time is an expression of the clotting time (intrinsic and common pathway), and its shortening for increasing SR may be interpreted the well‐known activating effects of SR on platelet activation and thrombin generation. Further studies focused on the TGP under conditions of hypo‐ or hypercoagulability are required to confirm its role in the clinical practice. PMID:24994896

  11. Effect of Yixinkangtai Capsule combined with diltiazem on endothelial function, blood viscosity and lipid metabolism in patients with unstable angina pectoris

    Directory of Open Access Journals (Sweden)

    Yu-Feng Yuan

    2017-10-01

    Full Text Available Objective: To discuss the effect of Yixinkangtai Capsule combined with diltiazem on endothelial function, blood viscosity and lipid metabolism in patients with unstable angina pectoris. Methods: A total of 150 patients with unstable angina pectoris who were treated in the hospital between February 2014 and February 2017 were divided into the control group (n=75 and the research group (n=75 according to the random number table method. Control group received clinical conventional therapy, research group received Yixinkangtai Capsule combined with diltiazem therapy on the basis of conventional therapy, and both groups received 3 months of treatment. Differences in endothelial function, blood viscosity and lipid metabolism were compared between the two groups of patients before and after treatment. Results: Before treatment, the differences in serum levels of endothelial function indexes, blood viscosity indexes and lipid metabolism indexes were not statistically significant between the two groups. After 3 months of treatment, serum NO level of research group was higher than that of control group while ET-1 level was lower than that of control group; serum blood viscosity index TXB2 content of research group was lower than that of control group while PGI2 content was higher than that of control group; serum lipid metabolism indexes TG, TC and LDL-C contents of research group were lower than those of control group while HDL-C content was higher than that of control group. Conclusion: Yixinkangtai Capsule combined with diltiazem therapy can effectively optimize the endothelial function, reduce the blood viscosity and balance the lipid metabolism in patients with unstable angina pectoris.

  12. Viscosity, thermal diffusivity and Prandtl number of nanoparticle suspensions

    Institute of Scientific and Technical Information of China (English)

    WANG Buxuan; ZHOU Leping; PENG Xiaofeng

    2004-01-01

    Using our reported experimental data of effective thermal conductivity, specific heat capacity and viscosity for CuO nanoparticle suspensions, the corresponding thermal diffusivity and Prandtl number are calculated. With the hard sphere model and considering effects of particle clustering and surface adsorption, the increase of viscosity for nanoparticle suspension observed is explained. It is shown that the effective thermal conductivity will be strongly affected by the formation and correlated spatial distribution of nanoparticle clusters when compared to viscosity in hosting liquid.

  13. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  14. Hyperintense acute reperfusion marker is associated with higher contrast agent dosage in acute ischaemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Ostwaldt, Ann-Christin; Schaefer, Tabea; Villringer, Kersten; Fiebach, Jochen B. [Charite Universitaetsmedizin Berlin, Academic Neuroradiology, Center for Stroke Research Berlin (CSB), Berlin (Germany); Rozanski, Michal; Ebinger, Martin [Charite Universitaetsmedizin Berlin, Academic Neuroradiology, Center for Stroke Research Berlin (CSB), Berlin (Germany); Charite Universitaetsmedizin, Department of Neurology, Berlin (Germany); Jungehuelsing, Gerhard J. [Stiftung des Buergerlichen Rechts, Juedisches Krankenhaus Berlin, Berlin (Germany)

    2015-11-15

    The hyperintense acute reperfusion marker (HARM) on fluid-attenuated inversion recovery (FLAIR) images is associated with blood-brain barrier (BBB) permeability changes. The aim of this study was to examine the influence of contrast agent dosage on HARM incidence in acute ischaemic stroke patients. We prospectively included 529 acute ischaemic stroke patients (204 females, median age 71 years). Patients underwent a first stroke-MRI within 24 hours from symptom onset and had a follow-up on day 2. The contrast agent Gadobutrol was administered to the patients for perfusion imaging or MR angiography. The total dosage was calculated as ml/kg body weight and ranged between 0.04 and 0.31 mmol/kg on the first examination. The incidence of HARM was evaluated on day 2 FLAIR images. HARM was detected in 97 patients (18.3 %). HARM incidence increased significantly with increasing dosages of Gadobutrol. Also, HARM positive patients were significantly older. HARM was not an independent predictor of worse clinical outcome, and we did not find an association with increase risk of haemorrhagic transformation. A higher dosage of Gadobutrol in acute stroke patients on initial MRI is associated with increased HARM incidence on follow-up. MRI studies on BBB should therefore standardize contrast agent dosages. (orig.)

  15. Kinematic viscosity of liquid Al-Cu alloys

    International Nuclear Information System (INIS)

    Konstantinova, N Yu; Popel, P S

    2008-01-01

    Temperature dependences of kinematic viscosity n of liquid Al 100-x -Cu x alloys (x = 0.0, 10.0, 17.1, 25.0, 32.2, 40.0 and 50.0 at.%) were measured. A technique based on registration of the period and the decrement of damping of rotating oscillations of a cylindrical crucible with a melt was used. Viscosity was calculated in low viscous liquids approximation. Measurements were carried out in vacuum in crucibles of BeO with a temperature step of 30 deg. C and isothermal expositions of 10 to 15 minutes during both heating up to 1100-1250 deg. C and subsequent cooling. We have discovered branching of heating and cooling curves v(T) (hysteresis of viscosity) below temperatures depending on the copper content: 950 deg. C at 10 and 17.1 at.% Cu, 1050 deg. C at 25 and 40 at.% Cu, 850 deg. C at 32.2 at.% Cu. For samples with 10 and 17.1 at.% Cu the cooling curve 'returns' to the heating one near 700 deg. C. An abnormally high spreading of results at repeated decrement measurements was fixed at heating of the alloy containing 50 at.% Cu above 1000 deg. C. During subsequent cooling the effect disappeared. Isotherms of kinematic viscosity have been fitted for several temperatures

  16. Effect of Viscosity on Liquid Curtain Stability

    Science.gov (United States)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Francis, Lorraine; Carvalho, Marcio; Dow Chemical Company Collaboration; PUC Rio Collaboration; University of Minnesota, Twin Cities Collaboration

    2016-11-01

    The effect of viscosity on the stability of Newtonian liquid curtains was explored by high-speed visualization. Glycerol/water solutions with viscosity ranging from 19.1 to 210 mPa.s were used as coating liquids. The experimental set-up used a slide die delivery and steel tube edge guides. The velocity along curtain at different positions was measured by tracking small particles at different flow conditions. The measurements revealed that away from edge guides, velocity is well described by free fall effect. However, close to edge guides, liquid moves slower, revealing formation of a viscous boundary layer. The size of boundary layer and velocity near edge guides are strong function of viscosity. The critical condition was determined by examining flow rate below which curtain broke. Curtain failure was initiated by growth of a hole within liquid curtain, close to edge guides. Visualization results showed that the hole forms in a circular shape then becomes elliptical as it grows faster in vertical direction compared to horizontal direction. As viscosity rises, minimum flow rate for destabilization of curtain increased, indicating connection between interaction with edge guides and curtain stability. We would like to acknowledge the financial support from the Dow Chemical Company.

  17. Sensor for Viscosity and Shear Strength Measurement

    International Nuclear Information System (INIS)

    Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.

    1998-01-01

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation

  18. Study on viscosity measurement using fiber Bragg grating micro-vibration

    International Nuclear Information System (INIS)

    Song, Le; Fang, Fengzhou; Zhao, Jibo

    2013-01-01

    It is now ascertained that traditional electric sensors are vulnerable to electromagnetic interference when measuring viscosity. Here, we propose a new viscosity-sensitive structure based on the fiber Bragg grating (FBG) sensing principle and a micro-vibration measurement method. The symmetric micro-vibration motivation method is also described, and a mathematical model for compensational voltage and fluid viscosity is established. The probe amplitude, which is produced by reciprocating stimulation, is accessible by means of an FBG sensor mounted on an equal-strength beam. Viscosity can be therefore calculated using a demodulation technique based on linear edge filtering with long period grating. After performing a group of verifying tests, the sensor has been subsequently calibrated with a series of standard fluids to determine uncertain parameters in the mathematical model. The results of the experiment show that the relative measurement error was less than 2% when the viscosity ranged from 200 to 500 mPa s. The proposed architecture utilizes the characteristics of anti-interference, fast response speed, high resolution and compact structure of FBG, thereby offering a novel modality to achieve an online viscosity measurement. (paper)

  19. Shear viscosity and imperfect fluidity in bosonic and fermionic superfluids

    Science.gov (United States)

    Boyack, Rufus; Guo, Hao; Levin, K.

    2014-12-01

    In this paper we address the ratio of the shear viscosity to entropy density η /s in bosonic and fermionic superfluids. A small η /s is associated with nearly perfect fluidity, and more general measures of the fluidity perfection/imperfection are of wide interest to a number of communities. We use a Kubo approach to concretely address this ratio via low-temperature transport associated with the quasiparticles. Our analysis for bosonic superfluids utilizes the framework of the one-loop Bogoliubov approximation, whereas for fermionic superfluids we apply BCS theory and its BCS-BEC extension. Interestingly, we find that the transport properties of strict BCS and Bogoliubov superfluids have very similar structures, albeit with different quasiparticle dispersion relations. While there is a dramatic contrast between the power law and exponential temperature dependence for η alone, the ratio η /s for both systems is more similar. Specifically, we find the same linear dependence (on the ratio of temperature T to inverse lifetime γ (T ) ) with η /s ∝T /γ (T ) , corresponding to imperfect fluidity. By contrast, near the unitary limit of BCS-BEC superfluids a very different behavior results, which is more consistent with near-perfect fluidity.

  20. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    International Nuclear Information System (INIS)

    Holmes, M J; Parker, N G; Povey, M J W

    2011-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 0 C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  1. Crystallization, Microstructure, and Viscosity Evolutions in Lithium Aluminosilicate Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-11-01

    Full Text Available Lithium aluminosilicate glass-ceramics have found widespread commercial success in areas such as consumer products, telescope mirrors, fireplace windows, etc. However, there is still much to learn regarding the fundamental mechanisms of crystallization, especially related to the evolution of viscosity as a function of the crystallization (ceramming process. In this study, the impact of phase assemblage and microstructure on the viscosity was investigated using high temperature X-ray diffraction (HTXRD, beam bending viscometry (BBV, and transmission electron microscopy (TEM. Results from this study provide a first direct observation of viscosity evolution as a function of ceramming time and temperature. Sharp viscosity increases due to phase separation, nucleation and phase transformation are noticed through BBV measurement. A near-net shape ceramming can be achieved in TiO2-containing compositions by keeping the glass at a high viscosity (> 109 Pa.s throughout the whole thermal treatment.

  2. Dairy-Based Emulsions: Viscosity Affects Fat Difference Thresholds and Sweetness Perception

    Directory of Open Access Journals (Sweden)

    Susann Zahn

    2013-11-01

    Full Text Available In complex emulsions, viscosity or viscosity-associated sensory attributes such as creaminess are important for quality assessment and product differentiation. Two sets of emulsions with fat or locust bean gum content being varied at seven levels were developed; the two emulsions at each level had similar apparent viscosity. Additionally, sugar concentration was kept constant either with respect to total emulsion, or with respect to the aqueous phase. Series of two-alternative forced choice tests were performed with one constant stimulus, and just noticeable differences were calculated using probability regression. The results show that, when viscosity was not compensated, it was easy for the subjects to (a distinguish emulsions with different fat content when the fat content was addressed in the question, and to (b distinguish emulsions with different fat or locust bean gum content when creaminess was addressed. For the latter descriptor, it is of minor importance whether viscosity is altered by fat content or a thickener. Weber fractions that were calculated for viscosity were approximately 0.20. The quantitative effects of viscosity on sweetness, however, depend on how product rheology was modified.

  3. A Riemann problem with small viscosity and dispersion

    Directory of Open Access Journals (Sweden)

    Kayyunnapara Thomas Joseph

    2006-09-01

    Full Text Available In this paper we prove existence of global solutions to a hyperbolic system in elastodynamics, with small viscosity and dispersion terms and derive estimates uniform in the viscosity-dispersion parameters. By passing to the limit, we prove the existence of solution the Riemann problem for the hyperbolic system with arbitrary Riemann data.

  4. Second viscosity effects in cosmology

    International Nuclear Information System (INIS)

    Potupa, A.S.

    1978-01-01

    The object of the investigation is to draw attention to two important aspects in the choice of a substance model, namely an allowance for the viscosity and behaviour of the metrics at the later stages of cosmological evolution. It is shown that in homogeneous cosmological models taking into account the viscosity there are solutions which realize interpolation between the Fridman and steady-state regimes. In a closed model a solution is obtained which corresponds to the ''curvature compensation'' regime with an unboundedly increasing radius. The problem of compensation of singularity at t → o is discussed as well as the choice of the equations of state for the early (hadron) stages of cosmological evolution in connection with the hydrodynamic theory of multiple hadron production

  5. Calculated viscosity-distance dependence for some actively flowing lavas

    International Nuclear Information System (INIS)

    Pieri, D.

    1987-01-01

    The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect

  6. Investigation of viscosity of whole hydrolyze sweetened condensed milk

    Directory of Open Access Journals (Sweden)

    O. Kalinina

    2015-05-01

    Full Text Available Introduction. Рaper is aimed at developing of low-lactose (hydrolyzed sweetened condensed milk products technology for lactose intolerant people and for the whole population. Materials and methods: Rheological characteristics were determined on a Reotest device by the 2 nd method of viscometry Results and discussion. Reasonability of ß-galactosidase use for milk lactose hydrolyze during the production of canned products with sugar was proved in the previous works. This technology gives possibility to increase the quality of condensed canned foods, to reduce sugar concentration till 50 %, to increase dietary properties. Due to the reducing of saccharose mass part till 22 and 31 % the products had a liquid consistency that’s why was a necessity to increase the viscosity properties of condensed products. One of method to increase the product viscosity is inoculation of stabilization systems. Reasonability of the usage of stabilization system Bivicioc 1L was proved. The researches of viscosity determination in whole hydrolyzed sweetened condensed milk were shown in the work. Relations of viscosity of whole hydrolyzed condensed milk to the deformation rate were presented. Conclusions Viscosity indices of experimental samples in the fresh produced products and during storage are determined and justified.

  7. A viscosity measurement during the high pressure phase transition in triolein

    International Nuclear Information System (INIS)

    Siegoczynski, R M; Rostocki, A J; Kielczynski, P; Szalewski, M

    2008-01-01

    The high-pressure properties of triolein, a subject of extensive research at the Faculty of Physics of Warsaw University of Technology (WUT) have been enhanced by the results of viscosity measurement within the pressure range up to 0.8 GPa. For the measurement the authors have adopted a new ultrasonic method based on Bleustein-Gulyaev waves, successfully developed earlier for the low pressures in the Section of Acoustoelectronics of the Institute of Fundamental Technological Research. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.5 GPa. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. Further exponential rise of viscosity with pressure of the high-pressure phase of triolein. 4. The pressure exponents of the viscosity of both phases were different (the high-pressure phase had much smaller exponent). 5. The decomposition of the high pressure phase due to the slow decompression have shown very large hysteresis of viscosity on pressure dependence

  8. Molecular dynamics calculation of shear viscosity for molten salt

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Yokokawa, Mitsuo; Ogawa, Toru

    1993-12-01

    A computer program of molecular dynamics simulation has been made to calculate shear viscosity of molten salt. Correlation function for an off-diagonal component of stress tensor can be obtained as the results of calculation. Shear viscosity is calculated by integration of the correlation function based on the Kubo-type formula. Shear viscosities for a molten KCl ranging in temperature from 1047K to 1273K were calculated using the program. Calculation of 10 5 steps (1 step corresponds to 5 x 10 -15 s) was performed for each temperature in the 216 ions system. The obtained results were in good agreement with the reported experimental values. The program has been vectorized to achieve a faster computation in supercomputer. It makes possible to calculate the viscosity using a large number of statistics amounting to several million MD steps. (author)

  9. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  10. Relationship Between Collateral Status, Contrast Transit, and Contrast Density in Acute Ischemic Stroke.

    Science.gov (United States)

    Kawano, Hiroyuki; Bivard, Andrew; Lin, Longting; Spratt, Neil J; Miteff, Ferdinand; Parsons, Mark W; Levi, Christopher R

    2016-03-01

    Collateral circulation is recognized to influence the life expectancy of the ischemic penumbra in acute ischemic stroke. The best method to quantify collateral status on acute imaging is uncertain. We aimed to determine the relationship between visual collateral status, quantitative collateral assessments, baseline computed tomographic perfusion measures, and tissue outcomes on follow-up imaging. Sixty-six consecutive patients with acute ischemic stroke clinically eligible for recanalization therapy and with M1 or M2 middle cerebral artery occlusion were evaluated. We compared the visual collateral scoring with measures of contrast peak time delay and contrast peak density. We also compared these measures for their ability to predict perfusion lesion and infarct core volumes, final infarct, and infarct growth. Shorter contrast peak time delay (P=0.041) and higher contrast peak density (P=0.002) were associated with good collateral status. Shorter contrast peak time delay correlated with higher contrast peak density (β=-4.413; P=0.037). In logistic regression analysis after adjustment for age, sex, onset-computed tomographic time, and occlusion site, higher contrast peak density was independently associated with good collateral status (P=0.009). Multiple regression analysis showed that higher contrast peak density was an independent predictor of smaller perfusion lesion volume (P=0.029), smaller ischemic core volume (P=0.044), smaller follow-up infarct volume (P=0.005), and smaller infarct growth volume (P=0.010). Visual collateral status, contrast peak density, and contrast peak time delay were inter-related, and good collateral status was strongly associated with contrast peak density. Contrast peak density in collateral vessel may be an important factor in tissue fate in acute ischemic stroke. © 2016 American Heart Association, Inc.

  11. Carbohydrate composition, viscosity, solubility, and sensory acceptance of sweetpotato- and maize-based complementary foods

    Science.gov (United States)

    Amagloh, Francis Kweku; Mutukumira, Anthony N.; Brough, Louise; Weber, Janet L.; Hardacre, Allan; Coad, Jane

    2013-01-01

    Background Cereal-based complementary foods from non-malted ingredients form a relatively high viscous porridge. Therefore, excessive dilution, usually with water, is required to reduce the viscosity to be appropriate for infant feeding. The dilution invariably leads to energy and nutrient thinning, that is, the reduction of energy and nutrient densities. Carbohydrate is the major constituent of food that significantly influences viscosity when heated in water. Objectives To compare the sweetpotato-based complementary foods (extrusion-cooked ComFa, roller-dried ComFa, and oven-toasted ComFa) and enriched Weanimix (maize-based formulation) regarding their 1) carbohydrate composition, 2) viscosity and water solubility index (WSI), and 3) sensory acceptance evaluated by sub-Sahara African women as model caregivers. Methods The level of simple sugars/carbohydrates was analysed by spectrophotometry, total dietary fibre by enzymatic-gravimetric method, and total carbohydrate and starch levels estimated by calculation. A Rapid Visco™ Analyser was used to measure viscosity. WSI was determined gravimetrically. A consumer sensory evaluation was used to evaluate the product acceptance of the roller-dried ComFa, oven-toasted ComFa, and enriched Weanimix. Results The sweetpotato-based complementary foods were, on average, significantly higher in maltose, sucrose, free glucose and fructose, and total dietary fibre, but they were markedly lower in starch content compared with the levels in the enriched Weanimix. Consequently, the sweetpotato-based complementary foods had relatively low apparent viscosity, and high WSI, than that of enriched Weanimix. The scores of sensory liking given by the caregivers were highest for the roller-dried ComFa, followed by the oven-toasted ComFa, and, finally, the enriched Weanimix. Conclusion The sweetpotato-based formulations have significant advantages as complementary food due to the high level of endogenous sugars and low starch content that

  12. Viscosity of liquids theory, estimation, experiment, and data

    CERN Document Server

    Viswanath, Dabir S; Prasad, Dasika HL; Dutt, Nidamarty VK; Rani, Kalipatnapu Y

    2007-01-01

    Single comprehensive book on viscosity of liquids, as opposed to most of the books in this area which are data books, i.e., a compilation of viscosity data from the literature, where the information is scattered and the description and analysis of the experimental methods and governing theory are not readily available in a single place.

  13. The effect of gasses on the viscosity of dimethyl ether

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Jakobsen, Jørgen

    2008-01-01

    media, but their effect on DME viscosity is unknown. Argon (Ar), nitrogen (NA carbon dioxide (CO2), hydrogen (H-2) and propane (C3H8) have been investigated at pressure levels of 12-15 bar. A Cannon-Manning semi-micro capillary glass viscometer, size 25, enclosed in a cylindrical pressure container......, of glass, submerged completely in a constant temperature bath, has been used. A distinct reduction of efflux times was found only for the gas, CO2. The reduction in efflux time was about 9%. The kinematic viscosity of pure DME was determined to be: 0.188 +/- 0.001 cSt, 25 degrees C. A previously reported...... viscosity of pure DME has been corrected for the surface tension effect. Viscosity determination was initially based on a direct comparison of efflux times of DME with that of distilled water. The calculation gave a revised viscosity of 0.186 +/- 0.002 cSt, 25 degrees C, consistent with the above...

  14. Anomalous intrinsic viscosity of octadecylamine-functionalised carbon nanotubes in suspension.

    Science.gov (United States)

    Donovan, K J; Scott, K

    2013-06-28

    Single walled carbon nanotubes, SWCNTs, are used as a model cylinder of nanoscopic dimensions for testing rheological theories of how addition of cylindrical particles affects the viscosity of a suspension of such particles. Using the rate of growth of the accompanying induced linear dichroism following application of an applied electric field, the dynamics of carbon nanotube alignment is studied in suspensions of octadecylamine functionalised single walled carbon nanotubes, ODA-SWCNTs, in 1,2 dichloroethane. From such measurements the viscosity of the suspension is measured as the concentration of the suspension is varied. While working within the dilute limit the viscosity is found to increase linearly with concentration and the intrinsic viscosity of the suspension is found to be 8000. This anomalously high intrinsic viscosity is compared with the predictions of various models for a rigid cylinder and found to be incompatible with any of the current models. Some suggestions are made as to the way this ODA-SWCNT result may be eventually accommodated within other models.

  15. A note on the mixture viscosity using the Shannak definition

    International Nuclear Information System (INIS)

    Awad, M.M.

    2014-01-01

    Highlights: • A note on the mixture viscosity using the Shannak definition is presented. • The Shannak definition gives μ (2ph) > μ f at low x. • Attention must be taken when using the Shannak definition at low x. - Abstract: In this study, a note on the mixture viscosity using the Shannak definition is presented [Shannak, B. A., 2008. Frictional pressure drop of gas liquid two-phase flow in pipes. Nucl. Eng. Des. 238, 3277–3284]. From his definition of the two-phase Reynolds number (Re (2ph) ), an expression of the two-phase viscosity (μ (2ph) ) is obtained. This expression of the two-phase viscosity (μ (2ph) ) satisfies the following important limiting conditions: i. at x = 0, μ (2ph) = μ f , and at x = 1, μ (2ph) = μ g . This definition of the two-phase viscosity (μ (2ph) ) can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach in circular pipes, minichannels and microchannels. By plotting μ (2ph) /μ f versus x for air–water system at atmospheric conditions using the Shannak definition as well as the other most commonly used formulas of the two-phase viscosity (μ (2ph) ) in gas–liquid two-phase flows such as McAdams et al. (1942), Cicchitti et al. (1960), and Awad and Muzychka (2008) (Definition 1, Definition 2, Definition 3, and Definition 4), it is clear that the Shannak definition of the two-phase viscosity gives μ (2ph) > μ f at low x. This is impossible because we must have μ g (2ph) f for 0 < x < 1. Therefore, attention must be taken when using the Shannak definition of the two-phase viscosity at low x

  16. On stability and monotonicity requirements of finite difference approximations of stochastic conservation laws with random viscosity

    KAUST Repository

    Pettersson, Per

    2013-05-01

    The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain and spatially varying viscosity. We investigate well-posedness, monotonicity and stability for the extended system resulting from the Galerkin projection of the advection-diffusion equation onto the stochastic basis functions. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability of the semi-discrete system.It is essential that the eigenvalues of the resulting viscosity matrix of the stochastic Galerkin system are positive and we investigate conditions for this to hold. When the viscosity matrix is diagonalizable, stochastic Galerkin and stochastic collocation are similar in terms of computational cost, and for some cases the accuracy is higher for stochastic Galerkin provided that monotonicity requirements are met. We also investigate the total spatial operator of the semi-discretized system and its impact on the convergence to steady-state. © 2013 Elsevier B.V.

  17. On stability and monotonicity requirements of finite difference approximations of stochastic conservation laws with random viscosity

    KAUST Repository

    Pettersson, Per; Doostan, Alireza; Nordströ m, Jan

    2013-01-01

    The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain and spatially varying viscosity. We investigate well-posedness, monotonicity and stability for the extended system resulting from the Galerkin projection of the advection-diffusion equation onto the stochastic basis functions. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability of the semi-discrete system.It is essential that the eigenvalues of the resulting viscosity matrix of the stochastic Galerkin system are positive and we investigate conditions for this to hold. When the viscosity matrix is diagonalizable, stochastic Galerkin and stochastic collocation are similar in terms of computational cost, and for some cases the accuracy is higher for stochastic Galerkin provided that monotonicity requirements are met. We also investigate the total spatial operator of the semi-discretized system and its impact on the convergence to steady-state. © 2013 Elsevier B.V.

  18. Comparsion of maximum viscosity and viscometric method for identification of irradiated sweet potato starch

    International Nuclear Information System (INIS)

    Yi, Sang Duk; Yang, Jae Seung

    2000-01-01

    A study was carried out to compare viscosity and maximum viscosity methods for the detection of irradiated sweet potato starch. The viscosity of all samples decreased by increasing stirring speeds and irradiation doses. This trend was similar for maximum viscosity. Regression coefficients and expressions of viscosity and maximum viscosity with increasing irradiation dose were 0.9823 (y=335.02e -0. 3 366x ) at 120 rpm and 0.9939 (y =-42.544x+730.26). This trend in viscosity was similar for all stirring speeds. Parameter A, B and C values showed a dose dependent relation and were a better parameter for detecting irradiation treatment than maximum viscosity and the viscosity value it self. These results suggest that the detection of irradiated sweet potato starch is possible by both the viscometric and maximum visosity method. Therefore, the authors think that the maximum viscosity method can be proposed as one of the new methods to detect the irradiation treatment for sweet potato starch

  19. High-pressure viscosity measurements for the ethanol plus toluene binary system

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.; Watson, G.

    2005-01-01

    measured with a classical capillary viscometer (Ubbelohde) with an uncertainty of 1%. A total of 209 experimental measurements have been obtained for this binary system, which reveals a non-monotonic behavior of the viscosity as a function of the composition, with a minimum. The viscosity behavior...... interacting system showing a negative deviation from ideality. The viscosity of this binary system is represented by the Grunberg-Nissan and the Katti-Chaudhri mixing laws with an overall uncertainty of 12% and 8%, respectively. The viscosity of methanol (23 point) has also been measured in order to verify...

  20. Bulk viscosity of hot dense Quark matter in the PNJL model

    International Nuclear Information System (INIS)

    Xiao Shisong; Guo Panpan; Zhang Le; Hou Defu

    2014-01-01

    Starting from the Kubo formula and the QCD low energy theorem, we study the the bulk viscosity of hot dense quark matter in the PNJL model from the equation of state. We show that the bulk viscosity has a sharp peak near the chiral phase transition, and that the ratio of bulk viscosity over entropy rises dramatically in the vicinity of the phase transition. These results agree with those from the lattice and other model calculations. In addition, we show that the increase of chemical potential raises the bulk viscosity. (authors)

  1. Influence of processing conditions on apparent viscosity and system parameters during extrusion of distiller's dried grains-based snacks.

    Science.gov (United States)

    Singha, Poonam; Muthukumarappan, Kasiviswanathan; Krishnan, Padmanaban

    2018-01-01

    A combination of different levels of distillers dried grains processed for food application (FDDG), garbanzo flour and corn grits were chosen as a source of high-protein and high-fiber extruded snacks. A four-factor central composite rotatable design was adopted to study the effect of FDDG level, moisture content of blends, extrusion temperature, and screw speed on the apparent viscosity, mass flow rate or MFR, torque, and specific mechanical energy or SME during the extrusion process. With increase in the extrusion temperature from 100 to 140°C, apparent viscosity, specific mechanical energy, and torque value decreased. Increase in FDDG level resulted in increase in apparent viscosity, SME and torque. FDDG had no significant effect (p > .5) on mass flow rate. SME also increased with increase in the screw speed which could be due to the higher shear rates at higher screw speeds. Screw speed and moisture content had significant negative effect ( p  extruder and the system parameters were affected by the processing conditions. This study will be useful for control of extrusion process of blends containing these ingredients for the development of high-protein high-fiber extruded snacks.

  2. The influence of tongue strength on oral viscosity discrimination acuity.

    Science.gov (United States)

    Steele, Catriona M

    2018-06-01

    The ability to generate tongue pressures is widely considered to be critical for liquid bolus propulsion in swallowing. It has been proposed that the application of tongue pressure may also serve the function of collecting sensory information regarding bolus viscosity (resistance to flow). In this study, we explored the impact of age-related reductions in tongue strength on oral viscosity discrimination acuity. The experiment employed a triangle test discrimination protocol with an array of xanthan-gum thickened liquids in the mildly to moderately thick consistency range. A sample of 346 healthy volunteers was recruited, with age ranging from 12 to 86 (164 men, 182 women). On average, participants were able to detect a 0.29-fold increase in xanthan-gum concentration, corresponding to a 0.5-fold increase in viscosity at 50/s. Despite having significantly reduced tongue strength on maximum isometric tongue-palate pressure tasks, and regardless of sex, older participants in this study showed no reductions in viscosity discrimination acuity. In this article, the relationship between tongue strength and the ability to discriminate small differences in liquid viscosity during oral processing is explored. Given that tongue strength declines with age in healthy adults and is also reduced in individuals with dysphagia, it is interesting to determine whether reduced tongue strength might contribute to difficulties in evaluating liquid viscosity during the oral stage of swallowing. Using an array of mildly to moderately thick xanthan-gum thickened liquids, this experiment failed to find any evidence that reductions in tongue strength influence oral viscosity discrimination acuity. © 2017 Wiley Periodicals, Inc.

  3. Prediction of the viscosity of lubricating oil blends at any temperature

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, R.M.; Bernardo, M.I.; Fernandez, A.M.; Folgueras, M.B. [University of Oviedo, Oveido (Spain). Dept. of Energy

    1996-04-01

    This paper discusses a method of predicting the viscosity of multicomponent base lubricating oil mixtures based on Andrade`s equation. The kinematic viscosity of three types of base lubricating oils and their binary and ternary mixtures were measured at different temperatures and the parameters of Andrade`s equation were calculated. The results obtained indicate that the Andrade parameters vary linearly with the mixture composition. From these linear equations, generalized mixing equations are derived which confirm the experimental results. By application of the mixing equations, a simple method is obtained for prediction of the viscosity of oil blends at any temperature from viscosity-temperature data of the oil components. The calculated viscosities gave an average absolute deviation of 10% over the temperature range 20-100{degree}C. 8 refs., 3 figs., 4 tabs.

  4. Experimental viscosity measurements of biodiesels at high pressure

    Directory of Open Access Journals (Sweden)

    Schaschke C.J.

    2016-01-01

    Full Text Available The viscosity of biodiesels of soybean and rapeseed biodiesels blended with mineral diesel fuel were measured at pressures of up to 200 MPa. Using a falling sinker-type viscometer reproducible viscosity data were obtained based on the time taken for a sinker to descend a fixed distance down an enclosed tube under the influence of gravity. Measurements were taken using pressures which correspond to those of interest in automotive common rail diesel engines, and at temperatures of between 25ºC and 80ºC. In all cases, the viscosity of the biodiesel blends were found to increase exponentially for which the blends were noted as being more viscous than pure mineral fuels. A pressure-freezing effect was not observed for the blends.

  5. Temperature Dependence of the Viscosity of Isotropic Liquids

    Science.gov (United States)

    Jadzyn, J.; Czechowski, G.; Lech, T.

    1999-04-01

    Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.

  6. The Impact of Waste Loading on Viscosity in the Frit 418-SB3 System

    International Nuclear Information System (INIS)

    PEELER, DAVID

    2004-01-01

    In this report, data are provided to gain insight into the potential impact of a lower viscosity glass on melter stability (i.e., pressure spikes, cold cap behavior) and/or pour stream stability. High temperature viscosity data are generated for the Frit 418-SB3 system as a function of waste loading (from 30 to 45 percent) and compared to similar data from other systems that have been (or are currently being) processed through the Defense Waste Processing Facility (DWPF) melter. The data are presented in various formats to potentially align the viscosity data with physical observations at various points in the melter system or critical DWPF processing unit operations. The expectations is that the data will be provided adequate insight into the vitrification parameters which might evolve into working solutions as DWPF strives to maximize waste throughput. This report attempts to provide insight into a physical interpretation of the data from a DWPF perspective. The theories present ed are certainly not an all inclusive list and the order in which they are present does imply a ranking, probability, or likelihood that the proposed theory is even plausible. The intent of this discussion is to provide a forum in which the viscosity data can be discussed in relation to possible mechanisms which could potentially lead to a workable solution as discussed in relation to possible solution as higher overall attainment is striven for during processing of the current or future sludge batches

  7. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  8. Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres.

    Science.gov (United States)

    Araújo, J; Vega, E; Lopes, C; Egea, M A; Garcia, M L; Souto, E B

    2009-08-01

    Poly(lactide-co-glycolide) acid (PLGA) nanospheres incorporating flurbiprofen (FB) were produced by the solvent displacement technique, for ocular applications aiming to avoid/minimize inflammation induced by surgical trauma. In this work, a PLGA of low viscosity has been tested and the results obtained were compared with those previously reported by Vega et al. The physicochemical properties of the developed formulations were evaluated by measuring particle size, zeta potential and FB entrapment efficiency, showing no significant differences. Release studies demonstrated that the formulation produced with PLGA of higher viscosity revealed a slower drug release rate. Stability analysis, for a period of 75 days, was performed using three complementary methods: (i) turbidity experiments using a Turbiscan optical analyzer, (ii) particle size measurements, and (iii) zeta potential analysis. The results revealed long-term physicochemical stability suitability for ophthalmic use, being independent from the polymer viscosity. The ocular tolerance was assessed by an alternative in vitro method to animal experimentation, the HET-CAM. For all developed formulations no ocular irritancy has been detected.

  9. Viscosity of diluted suspensions of vegetal particles in water

    Directory of Open Access Journals (Sweden)

    Szydłowska Adriana

    2017-01-01

    Full Text Available Viscosity and rheological behaviour of sewage as well as sludge are essential while designing apparatuses and operations employed in the sewage treatment process and its processing. With reference to these substances, the bio-suspensions samples of three size fractions ((i 150÷212 μm, (ii 106÷150 μm and (iii below106 μm of dry grass in water with solid volume fraction 8%, 10% and 11% were prepared. After twenty four hours prior to their preparation time, the suspension samples underwent rheometeric measurements with the use of a rotational rheometer with coaxial cylinders. On the basis of the obtained results, flow curves were plotted and described with both the power model and Herschel-Bulkley model. Moreover, the viscosity of the studied substances was determined that allowed to conclude that the studied bio-suspensions display features of viscoelastic fluids. The experimentally established viscosity was compared to the calculated one according to Manley and Manson equation, recommended in the literature. It occurred that the measured viscosity values substantially exceed the calculation viscosity values, even by 105 times. The observations suggest that it stems from water imbibition of fibrous vegetal particles, which causes their swelling and decreases the amount of liquid phase in the suspension.

  10. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Yong Du

    2013-01-01

    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  11. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    Science.gov (United States)

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method

    International Nuclear Information System (INIS)

    Landmann, S.; Kählert, H.; Thomsen, H.; Bonitz, M.

    2015-01-01

    We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility of the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas

  13. Effect of soft mode on shear viscosity of quark matter

    International Nuclear Information System (INIS)

    Fukutome, Takahiko; Iwasaki, Masaharu

    2008-01-01

    We calculate the shear viscosity of quark matter at finite temperature and density. If we assume that the quark interacts with the soft mode, which is a collective mode of a quark-antiquark pair, the self-energy of the quark is calculated by quasi-particle random phase approximation. It is shown that its imaginary part is large and its mean free path is short. With the use of the Kubo formula, the shear viscosity of quark matter decreases. The Reynolds number of quark matter is estimated to be about 10. As temperature increases, shear viscosity increases gradually for T>200 MeV. Moreover it is shown that the shear viscosity also increases with the chemical potential for μ>200 MeV. (author)

  14. Effect of lipid viscosity and high-pressure homogenization on the physical stability of "Vitamin E" enriched emulsion.

    Science.gov (United States)

    Alayoubi, Alaadin; Abu-Fayyad, Ahmed; Rawas-Qalaji, Mutasem M; Sylvester, Paul W; Nazzal, Sami

    2015-01-01

    Recently there has been a growing interest in vitamin E for its potential use in cancer therapy. The objective of this work was therefore to formulate a physically stable parenteral lipid emulsion to deliver higher doses of vitamin E than commonly used in commercial products. Specifically, the objectives were to study the effects of homogenization pressure, number of homogenizing cycles, viscosity of the oil phase, and oil content on the physical stability of emulsions fortified with high doses of vitamin E (up to 20% by weight). This was done by the use of a 27-run, 4-factor, 3-level Box-Behnken statistical design. Viscosity, homogenization pressure, and number of cycles were found to have a significant effect on particle size, which ranged from 213 to 633 nm, and on the percentage of vitamin E remaining emulsified after storage, which ranged from 17 to 100%. Increasing oil content from 10 to 20% had insignificant effect on the responses. Based on the results it was concluded that stable vitamin E rich emulsions could be prepared by repeated homogenization at higher pressures and by lowering the viscosity of the oil phase, which could be adjusted by blending the viscous vitamin E with medium-chain triglycerides (MCT).

  15. The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree.

    Science.gov (United States)

    Bi, Xiufang; Hemar, Yacine; Balaban, Murat O; Liao, Xiaojun

    2015-11-01

    The effect of ultrasound treatment on particle size, color, viscosity, polyphenol oxidase (PPO) activity and microstructure in diluted avocado puree was investigated. The treatments were carried out at 20 kHz (375 W/cm(2)) for 0-10 min. The surface mean diameter (D[3,2]) was reduced to 13.44 μm from an original value of 52.31 μm by ultrasound after 1 min. A higher L(∗) value, ΔE value and lower a(∗) value was observed in ultrasound treated samples. The avocado puree dilution followed pseudoplastic flow behavior, and the viscosity of diluted avocado puree (at 100 s(-1)) after ultrasound treatment for 1 min was 6.0 and 74.4 times higher than the control samples for dilution levels of 1:2 and 1:9, respectively. PPO activity greatly increased under all treatment conditions. A maximum increase of 25.1%, 36.9% and 187.8% in PPO activity was found in samples with dilution ratios of 1:2, 1:5 and 1:9, respectively. The increase in viscosity and measured PPO activity might be related to the decrease in particle size. The microscopy images further confirmed that ultrasound treatment induced disruption of avocado puree structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Time evolution of the eddy viscosity in two-dimensional navier-stokes flow

    Science.gov (United States)

    Chaves; Gama

    2000-02-01

    The time evolution of the eddy viscosity associated with an unforced two-dimensional incompressible Navier-Stokes flow is analyzed by direct numerical simulation. The initial condition is such that the eddy viscosity is isotropic and negative. It is shown by concrete examples that the Navier-Stokes dynamics stabilizes negative eddy viscosity effects. In other words, this dynamics moves monotonically the initial negative eddy viscosity to positive values before relaxation due to viscous term occurs.

  17. Measuring Shear Viscosity Using Transverse Momentum Correlations in Relativistic Nuclear Collisions

    International Nuclear Information System (INIS)

    Gavin, Sean; Abdel-Aziz, Mohamed

    2006-01-01

    Elliptic flow measurements at the Brookhaven National Laboratory Relativistic Heavy Ion Collider suggest that quark-gluon fluid flows with very little viscosity compared to weak-coupling expectations, challenging theorists to explain why this fluid is so nearly ''perfect.'' It is therefore vital to find quantitative experimental information on the viscosity of the fluid. We propose that measurements of transverse momentum fluctuations can be used to determine the shear viscosity. We use current data to estimate the viscosity-to-entropy ratio in the range from 0.08 to 0.3 and discuss how future measurements can reduce this uncertainty

  18. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  19. Vanishing Shear Viscosity Limit in the Magnetohydrodynamic Equations

    Science.gov (United States)

    Fan, Jishan; Jiang, Song; Nakamura, Gen

    2007-03-01

    We study an initial boundary value problem for the equations of plane magnetohydrodynamic compressible flows, and prove that as the shear viscosity goes to zero, global weak solutions converge to a solution of the original equations with zero shear viscosity. As a by-product, this paper improves the related results obtained by Frid and Shelukhin for the case when the magnetic effect is neglected.

  20. Temperature dependent kinematic viscosity of different types of engine oils

    Directory of Open Access Journals (Sweden)

    Libor Severa

    2009-01-01

    Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.

  1. Gravimetric capillary method for kinematic viscosity measurements

    Science.gov (United States)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  2. Fluctuation expressions for fast thermal transport processes: Vortex viscosity

    International Nuclear Information System (INIS)

    Evans, D.J.; Hanley, H.J.M.

    1982-01-01

    The vortex viscosity of a model diatomic fluid is calculated using both equilibrium and nonequilibrium molecular dynamics. The two calculations agree within statistical uncertainties. The results show that vortex viscosity does not have a conventional Kubo-Green relation. An argument as to why this is so is presented

  3. The Effects of Fat Structures and Ice Cream Mix Viscosity on Physical and Sensory Properties of Ice Cream.

    Science.gov (United States)

    Amador, Julia; Hartel, Rich; Rankin, Scott

    2017-08-01

    The purpose of this work was to investigate iciness perception and other sensory textural attributes of ice cream due to ice and fat structures and mix viscosity. Two studies were carried out varying processing conditions and mix formulation. In the 1st study, ice creams were collected at -3, -5, and -7.5 °C draw temperatures. These ice creams contained 0%, 0.1%, or 0.2% emulsifier, an 80:20 blend of mono- and diglycerides: polysorbate 80. In the 2nd study, ice creams were collected at -3 °C draw temperature and contained 0%, 0.2%, or 0.4% stabilizer, a blend of guar gum, locust bean gum, and carrageenan. Multiple linear regressions were used to determine relationships between ice crystal size, destabilized fat, and sensory iciness. In the ice and fat structure study, an inverse correlation was found between fat destabilization and sensory iciness. Ice creams with no difference in ice crystal size were perceived to be less icy with increasing amounts of destabilized fat. Destabilized fat correlated inversely with drip-through rate and sensory greasiness. In the ice cream mix viscosity study, an inverse correlation was found between mix viscosity and sensory iciness. Ice creams with no difference in ice crystal size were perceived to be less icy when formulated with higher mix viscosity. A positive correlation was found between mix viscosity and sensory greasiness. These results indicate that fat structures and mix viscosity have significant effects on ice cream microstructure and sensory texture including the reduction of iciness perception. © 2017 Institute of Food Technologists®.

  4. Effect of viscosity on seismic response of waste storage tanks

    International Nuclear Information System (INIS)

    Tang, Yu; Uras, R.A.; Chang, Yao-Wen.

    1992-06-01

    The dynamic response of liquid-storage tanks subjected to harmonic excitations and earthquake ground motions has been studied. A rigid tank of negligible mass, rigidly supported at the base having a diameter of 50 ft. and fluid height of 20.4 ft. was used in the computer analysis. The liquid is assumed to have a density of 1.5 g/ml. Viscosity values, μ = 60, 200, 100, and 10,000 cP, were used in the numerical analyses to study the effects of viscosity on sloshing wave height, impulsive and convective pressure on the tank wall, base shear and base moments. Harmonic excitations as well as earthquake ground motions were used as input motions. The harmonic excitations used in the analyses covers a wide range of frequencies, including both the resonant and non-resonant frequencies. Two earthquake motions were used. One matches the Newmark-Hall median response spectrum and is anchored at 0.24 g for a rock site with a damping of 2% and a time duration of 10 s. The other is the 1978 Tabas earthquake which had a peak ZPA of 0.81 g and a time duration of 29 s. A small tank, about 1/15 the size of the typical waste storage tank, was used in the harmonic excitation study to investigate the effect of viscosity on the response of liquid-storage tanks and how the viscosity effect is affected by the size of the storage tank. The results of this study show that for the typical waste storage tank subjected to earthquake motions, the effect of viscosity on sloshing wave height and impulsive and convective pressures is very small and can be neglected. For viscosity effect to become noticeable in the response of the typical waste storage tank, the waste viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP for some tanks

  5. A different interpretation of Einstein's viscosity equation provides accurate representations of the behavior of hydrophilic solutes to high concentrations.

    Science.gov (United States)

    Zavitsas, Andreas A

    2012-08-23

    Viscosities of aqueous solutions of many highly soluble hydrophilic solutes with hydroxyl and amino groups are examined with a focus on improving the concentration range over which Einstein's relationship between solution viscosity and solute volume, V, is applicable accurately. V is the hydrodynamic effective volume of the solute, including any water strongly bound to it and acting as a single entity with it. The widespread practice is to relate the relative viscosity of solute to solvent, η/η(0), to V/V(tot), where V(tot) is the total volume of the solution. For solutions that are not infinitely dilute, it is shown that the volume ratio must be expressed as V/V(0), where V(0) = V(tot) - V. V(0) is the volume of water not bound to the solute, the "free" water solvent. At infinite dilution, V/V(0) = V/V(tot). For the solutions examined, the proportionality constant between the relative viscosity and volume ratio is shown to be 2.9, rather than the 2.5 commonly used. To understand the phenomena relating to viscosity, the hydrodynamic effective volume of water is important. It is estimated to be between 54 and 85 cm(3). With the above interpretations of Einstein's equation, which are consistent with his stated reasoning, the relation between the viscosity and volume ratio remains accurate to much higher concentrations than those attainable with any of the other relations examined that express the volume ratio as V/V(tot).

  6. Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain

    Science.gov (United States)

    Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh

    2018-02-01

    This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.

  7. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity

    Science.gov (United States)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-04-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  8. PVT characterization and viscosity modeling and prediction of crude oils

    DEFF Research Database (Denmark)

    Cisneros, Eduardo Salvador P.; Dalberg, Anders; Stenby, Erling Halfdan

    2004-01-01

    In previous works, the general, one-parameter friction theory (f-theory), models have been applied to the accurate viscosity modeling of reservoir fluids. As a base, the f-theory approach requires a compositional characterization procedure for the application of an equation of state (EOS), in most...... pressure, is also presented. The combination of the mass characterization scheme presented in this work and the f-theory, can also deliver accurate viscosity modeling results. Additionally, depending on how extensive the compositional characterization is, the approach,presented in this work may also...... deliver accurate viscosity predictions. The modeling approach presented in this work can deliver accurate viscosity and density modeling and prediction results over wide ranges of reservoir conditions, including the compositional changes induced by recovery processes such as gas injection....

  9. Measurement of viscosity as a means to identify irradiated food

    International Nuclear Information System (INIS)

    Nuernberger, E.; Heide, L.; Boegl, K.W.

    1990-01-01

    The measurement of viscosity is a simple method to identify previous irradiation of some kinds of spices and foods, at least in combination with other methods. A possible change of the soaking capacity was examined up to a storage period of 18 months after irradiation of black pepper, white pepper, cinnamon, ginger and onion powder with a radiation dose of 10 kGy each. After irradiation, either increased or decreased viscosity values were measured; the results showed, also after the 18-months-storage period, considerable differences of the viscosity behaviour in non-irradiated and irradiated samples. The time of storage had no effect to the individual viscosity values, so that this method could also be applied to the examined spices after a longer storage period. (orig.) With 51 figs., 25 tabs [de

  10. Giant Viscosity Enhancement in a Spin-Polarized Fermi Liquid

    International Nuclear Information System (INIS)

    Akimoto, H.; Xia, J. S.; Adams, E. D.; Sullivan, N. S.; Candela, D.; Mullin, W. J.

    2007-01-01

    The viscosity is measured for a Fermi liquid, a dilute 3 He- 4 He mixture, under extremely high magnetic field/temperature conditions (B≤14.8 T, T≥1.5 mK). The spin-splitting energy μB is substantially greater than the Fermi energy k B T F ; as a consequence the polarization tends to unity and s-wave quasiparticle scattering is suppressed for T F . Using a novel composite vibrating-wire viscometer an enhancement of the viscosity is observed by a factor of more than 500 over its low-field value. Good agreement is found between the measured viscosity and theoretical predictions based upon a t-matrix formalism

  11. Viscosity change of coal during carbonization; Sekitan tanka hannochu no nendo henka

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, K.; Hayashi, J.; Kumagai, H.; Chiba, T. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology

    1996-10-28

    In relation to softening, melting and solidification of coal during heating, the effect of heating rate and nitrogen gas pressure on viscosity change, and change with time in the yield of pyridine extract were measured to study the mechanism of viscosity change. In experiment, six kinds of coals were used, and their needle penetration and dilatation were measured using compacted disk coal pellets. The coking and slight coking coal heat-treated under the same condition as the above experiment were used for pyridine extraction. As the experimental result, the apparent viscosity during coal heating was dependent on heating rate, nitrogen pressure and coal kinds. The minimum apparent viscosity decreased with an increase in heating rate and nitrogen pressure, and approached to a constant value. Like apparent viscosity change, the yield of pyridine extract was also dependent on heating rate, and its temperature range nearly agreed with that of apparent viscosity change. It was suggested that the viscosity is dependent on not only the mass fraction of plastic intermediate but also temperature and the relation between plastic intermediate and other components. 3 refs., 5 figs., 1 tab.

  12. Effect of temperature and chain length on the viscosity and surface tension of binary systems of N,N-dimethylformamide with 1-octanol, 1-nonanol and 1-decanol

    International Nuclear Information System (INIS)

    Mohammad, Abubaker A.; Alkhaldi, Khaled H.A.E.; AlTuwaim, Mohammad S.; Al-Jimaz, Adel S.

    2014-01-01

    Highlights: • Effect of temperature and chain length on η and σ of DMF + 1-alkanol binary systems. • Viscosity and surface tension were obtained. • Δη, Δσ and G ∗E were calculated using the experimental data. • H σ and S σ were determined using the surface tension data. • Semi-empirical relations were used to estimate the viscosity of liquid mixtures. - Abstract: Viscosity and surface tension of binary systems of N,N-dimethylformamide DMF with higher 1-alkanols (C 8 –C 10 ) were measured at atmospheric pressure and four different temperatures over the entire range of mole fraction. The experimental measurements were used to calculate the deviations in viscosity and surface tension. Furthermore, the excess Gibbs free energy of activation, surface enthalpy and surface entropy of the (DMF + 1-alkanols) binary mixtures were determined. In addition, the deviation and excess properties were fitted to the method of Redlich–Kister (R–K) polynomial. Viscosity data of the binary systems were correlated with three different expressions (Grunberg and Nissan, the three-body, and four-body McAllister). The effects of the chain length of the higher 1-alkanols and temperature were investigated

  13. Hall viscosity of a chiral two-orbital superconductor at finite temperatures

    Science.gov (United States)

    Yazdani-Hamid, Meghdad; Shahzamanian, Mohammad Ali

    2018-06-01

    The Hall viscosity known as the anti-symmetric part of the viscosity fourth-rank tensor. Such dissipationless response which appears for systems with broken time reversal symmetry. We calculate this non-dissipative quantity for a chiral two-orbital superconductor placed in a viscoelastic magnetic field using the linear response theory and apply our calculations to the putative multiband chiral superconductor Sr2RuO4. The chirality origin of a multiband superconductor arises from the interorbital coupling of the superconducting state. This feature leads to the robustness of the Hall viscosity against temperature and impurity effects. We study the temperature effect on the Hall viscosity at the one-loop approximation.

  14. Magnetisation processes and magnetic viscosity of mechanically alloyed SmCo5

    International Nuclear Information System (INIS)

    Ding, J.; Smith, P.A.I.; McCormick, P.G.; Street, R.

    1996-01-01

    Mechanically alloyed SmCo 5 materials with coercivities in the range of 50-75 kOe were studied in this work. Irreversible magnetisation processes were investigated by measuring remanences after initial magnetisation and after demagnetisation. A large deviation of the demagnetisation remanence from the Wohlfarth relationship indicated that interactions between grains play an important role in the irreversible magnetisation process. Viscosity tests showed nearly linear relationship between the magnetic field and the viscosity parameter for the initial magnetisation, while the viscosity was not strongly dependent on the field for the demagnetisation. High values of the viscosity parameter, Λ, between 120 to 220 Oe were measured at fields near coercivity. (orig.)

  15. Measuring Viscosities of Gases at Atmospheric Pressure

    Science.gov (United States)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  16. THERMODYNAMIC MODEL AND VISCOSITY OF SELECTED ZIRCONIA CONTAINING SILICATE GLASSES

    Directory of Open Access Journals (Sweden)

    MÁRIA CHROMČÍKOVÁ

    2013-03-01

    Full Text Available The compositional dependence of viscosity, and viscous flow activation energy of glasses with composition xNa2O∙(15-x K2O∙yCaO∙(10-yZnO∙zZrO2∙(75-zSiO2 (x = 0, 7.5, 15; y = 0, 5, 10; z = 0, 1, 3, 5, 7 was analyzed. The studied glasses were described by the thermodynamic model of Shakhmatkin and Vedishcheva considering the glass as an equilibrium ideal solution of species with stoichiometry given by the composition of stable crystalline phases of respective glass forming system. Viscosity-composition relationships were described by the regression approach considering the viscous flow activation energy and the particular isokome temperature as multilinear function of equilibrium molar amounts of system components. The classical approach where the mole fractions of individual oxides are considered as independent variables was compared with the thermodynamic model. On the basis of statistical analysis there was proved that the thermodynamic model is able to describe the composition property relationships with higher reliability. Moreover, due its better physical justification, thermodynamic model can be even used for predictive purposes.

  17. A new model for the accurate calculation of natural gas viscosity

    Directory of Open Access Journals (Sweden)

    Xiaohong Yang

    2017-03-01

    Full Text Available Viscosity of natural gas is a basic and important parameter, of theoretical and practical significance in the domain of natural gas recovery, transmission and processing. In order to obtain the accurate viscosity data efficiently at a low cost, a new model and its corresponding functional relation are derived on the basis of the relationship among viscosity, temperature and density derived from the kinetic theory of gases. After the model parameters were optimized using a lot of experimental data, the diagram showing the variation of viscosity along with temperature and density is prepared, showing that: ① the gas viscosity increases with the increase of density as well as the increase of temperature in the low density region; ② the gas viscosity increases with the decrease of temperature in high density region. With this new model, the viscosity of 9 natural gas samples was calculated precisely. The average relative deviation between these calculated values and 1539 experimental data measured at 250–450 K and 0.10–140.0 MPa is less than 1.9%. Compared with the 793 experimental data with a measurement error less than 0.5%, the maximum relative deviation is less than 0.98%. It is concluded that this new model is more advantageous than the previous 8 models in terms of simplicity, accuracy, fast calculation, and direct applicability to the CO2 bearing gas samples.

  18. ARRHENIUS MODEL FOR HIGH-TEMPERATURE GLASS VISCOSITY WITH A CONSTANT PRE-EXPONENTIAL FACTOR

    International Nuclear Information System (INIS)

    Hrma, Pavel R.

    2008-01-01

    A simplified form of the Arrhenius equation, ln η = A + B(x)/T, where η is the viscosity, T the temperature, x the composition vector, and A and B the Arrhenius coefficients, was fitted to glass-viscosity data for the processing temperature range (the range at which the viscosity is within 1 to 103 Pa.s) while setting A = constant and treating B(x) as a linear function of mass fractions of major components. Fitting the Arrhenius equation to over 550 viscosity data of commercial glasses and approximately 1000 viscosity data of glasses for nuclear-waste glasses resulted in the A values of -11.35 and -11.48, respectively. The R2 value ranged from 0.92 to 0.99 for commercial glasses and was 0.98 for waste glasses. The Arrhenius models estimate viscosities for melts of commercial glasses containing 42 to 84 mass% SiO2 within the temperature range of 1100 to 1550 C and viscosity range of 5 to 400 Pa.s and for waste glasses containing 32 to 60 mass% SiO2 within the temperature range of 850 to 1450 C and viscosity range of 0.4 to 250 Pa.s

  19. Timing of water plume eruptions on Enceladus explained by interior viscosity structure

    Science.gov (United States)

    Běhounková, Marie; Tobie, Gabriel; Čadek, Ondřej; Choblet, Gaël; Porco, Carolyn; Nimmo, Francis

    2015-08-01

    At the south pole of Saturn's icy moon Enceladus, eruptions of water vapour and ice emanate from warm tectonic ridges. Observations in the infrared and visible spectra have shown an orbital modulation of the plume brightness, which suggests that the eruption activity is influenced by tidal forces. However, the observed activity seems to be delayed by several hours with respect to predictions based on simple tidal models. Here we simulate the viscoelastic tidal response of Enceladus with a full three-dimensional numerical model and show that the delay in eruption activity may be a natural consequence of the viscosity structure in the south-polar region and the size of the putative subsurface ocean. By systematically comparing simulations of variations in normal stress along faults with plume brightness data, we show that the observed activity is reproduced for two classes of interior models with contrasting thermal histories: a low-viscosity convective region above a polar sea extending about 45°-60° from the south pole at a depth below the surface as small as 30 km, or a convecting ice shell of 60-70 km in thickness above a global ocean. Our analysis further shows that the eruption activity is controlled by the average normal stress applied across the cracks, thus providing a constraint on the eruption mechanism.

  20. Turbulent viscosity optimized by data assimilation

    Directory of Open Access Journals (Sweden)

    Y. Leredde

    Full Text Available As an alternative approach to classical turbulence modelling using a first or second order closure, the data assimilation method of optimal control is applied to estimate a time and space-dependent turbulent viscosity in a three-dimensional oceanic circulation model. The optimal control method, described for a 3-D primitive equation model, involves the minimization of a cost function that quantifies the discrepancies between the simulations and the observations. An iterative algorithm is obtained via the adjoint model resolution. In a first experiment, a k + L model is used to simulate the one-dimensional development of inertial oscillations resulting from a wind stress at the sea surface and with the presence of a halocline. These results are used as synthetic observations to be assimilated. The turbulent viscosity is then recovered without the k + L closure, even with sparse and noisy observations. The problems of controllability and of the dimensions of the control are then discussed. A second experiment consists of a two-dimensional schematic simulation. A 2-D turbulent viscosity field is estimated from data on the initial and final states of a coastal upwelling event.

    Key words. Oceanography: general (numerical modelling · Oceanography: physical (turbulence · diffusion · and mixing processes

  1. Estimation of the viscosities of liquid binary alloys

    Science.gov (United States)

    Wu, Min; Su, Xiang-Yu

    2018-01-01

    As one of the most important physical and chemical properties, viscosity plays a critical role in physics and materials as a key parameter to quantitatively understanding the fluid transport process and reaction kinetics in metallurgical process design. Experimental and theoretical studies on liquid metals are problematic. Today, there are many empirical and semi-empirical models available with which to evaluate the viscosity of liquid metals and alloys. However, the parameter of mixed energy in these models is not easily determined, and most predictive models have been poorly applied. In the present study, a new thermodynamic parameter Δ G is proposed to predict liquid alloy viscosity. The prediction equation depends on basic physical and thermodynamic parameters, namely density, melting temperature, absolute atomic mass, electro-negativity, electron density, molar volume, Pauling radius, and mixing enthalpy. Our results show that the liquid alloy viscosity predicted using the proposed model is closely in line with the experimental values. In addition, if the component radius difference is greater than 0.03 nm at a certain temperature, the atomic size factor has a significant effect on the interaction of the binary liquid metal atoms. The proposed thermodynamic parameter Δ G also facilitates the study of other physical properties of liquid metals.

  2. A viscosity and density meter with a magnetically suspended rotor

    International Nuclear Information System (INIS)

    Bano, Mikulas; Strharsky, Igor; Hrmo, Igor

    2003-01-01

    A device for measuring the viscosity and density of liquids is presented. It is a Couette-type viscometer that uses a submerged rotor to measure the viscosity without errors originating in the contact of the rotor with the sample/air boundary. The inner cylinder is a glass rotor suspended in the liquid, and the outer cylinder is also made of glass. The rotor is stabilized on the axis of the outer cylinder by an electromagnetic force controlled by feedback from the rotor's vertical position. In the lower part of the rotor is an aluminum cylinder located in a magnetic field generated by rotating permanent magnets. The interaction of this rotating magnetic field with eddy currents generated in the aluminum cylinder causes rotation of the rotor. This rotation is optically detected, and viscosity is calculated from the measured angular velocity of rotor. The density of the liquid is calculated from the applied vertical equilibrating force. A computer controls the whole measurement. The device works at constant temperature or while scanning temperature. The sample volume is 1.6 ml, and the accuracy of measurement of both viscosity and density is ∼0.1%. The range of measured densities is (0.7-1.4) g/ml, and viscosity can be measured in the range (3x10 -4 -0.3) Pa s. The shear rate of the viscosity measurement varies in the range (20-300) s-1. The accuracy of the temperature measurement is 0.02 K

  3. Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method.

    Science.gov (United States)

    Zhang, Yong; Otani, Akihito; Maginn, Edward J

    2015-08-11

    Equilibrium molecular dynamics is often used in conjunction with a Green-Kubo integral of the pressure tensor autocorrelation function to compute the shear viscosity of fluids. This approach is computationally expensive and is subject to a large amount of variability because the plateau region of the Green-Kubo integral is difficult to identify unambiguously. Here, we propose a time decomposition approach for computing the shear viscosity using the Green-Kubo formalism. Instead of one long trajectory, multiple independent trajectories are run and the Green-Kubo relation is applied to each trajectory. The averaged running integral as a function of time is fit to a double-exponential function with a weighting function derived from the standard deviation of the running integrals. Such a weighting function minimizes the uncertainty of the estimated shear viscosity and provides an objective means of estimating the viscosity. While the formal Green-Kubo integral requires an integration to infinite time, we suggest an integration cutoff time tcut, which can be determined by the relative values of the running integral and the corresponding standard deviation. This approach for computing the shear viscosity can be easily automated and used in computational screening studies where human judgment and intervention in the data analysis are impractical. The method has been applied to the calculation of the shear viscosity of a relatively low-viscosity liquid, ethanol, and relatively high-viscosity ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([BMIM][Tf2N]), over a range of temperatures. These test cases show that the method is robust and yields reproducible and reliable shear viscosity values.

  4. Drop splashing: the role of surface wettability and liquid viscosity

    Science.gov (United States)

    Almohammadi, Hamed; Amirfazli, Alidad; -Team

    2017-11-01

    There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.

  5. Temperature-dependent viscosities of eutectic Al-Si alloys modified with Sr and P

    Energy Technology Data Exchange (ETDEWEB)

    Song Xigui [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)], E-mail: sxglm@126.com; Bian Xiufang; Zhang Jingxiang; Zhang Jie [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)

    2009-06-24

    The viscosities of eutectic Al-12 wt.%Si alloy and those modified with Sr and P were investigated using high-temperature torsional oscillation viscometer. Strontium decreased melt's viscosity, while phosphorus increased viscosity. Both additional level and means of addition affected the variation of viscosity. The activation energy of viscous flow was strengthened after modification, but the influence of modification on the molar volume was perplexing.

  6. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    Science.gov (United States)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  7. Beyond baking soda: Demonstrating the link between volcanic eruptions and viscosity to all ages

    Science.gov (United States)

    Smithka, I. N.; Walters, R. L.; Harpp, K. S.

    2014-12-01

    Public interest in volcanic eruptions and societal relevance of volcanic hazards provide an excellent basis for successful earth science outreach. During a museum-based earth science outreach event free and open to the public, we used two new interactive experiments to illustrate the relationship between gas content, magma viscosity, and eruption style. Learning objectives for visitors are to understand: how gas drives volcanic eruptions, the differences between effusive and explosive eruption styles, viscosity's control on gas pressure within a magma reservoir, and the role of gas pressure on eruption style. Visitors apply the scientific method by asking research questions and testing hypotheses by conducting the experiments. The demonstrations are framed with real life examples of volcanic eruptions (e.g., Mt. St. Helens eruption in 1980), providing context for the scientific concepts. The first activity demonstrates the concept of fluid viscosity and how gas interacts with fluids of different viscosities. Visitors blow bubbles into water and corn syrup. The corn syrup is so viscous that bubbles are trapped, showing how a more viscous material builds up higher gas pressure. Visitors are asked which kind of magma (high or low viscosity) will produce an explosive eruption. To demonstrate an explosive eruption, visitors add an Alka-Seltzer tablet to water in a snap-top film canister. The reaction rapidly produces carbon dioxide gas, increasing pressure in the canister until the lid pops off and the canister launches a few meters into the air (tinyurl.com/nzsgfoe). Increasing gas pressure in the canister is analogous to gas pressure building within a magma reservoir beneath a volcano. The lid represents high-viscosity magma that prevents degassing, causing gas pressure to reach explosive levels. This interactive activity is combined with a display of an effusive eruption: add vinegar to baking soda in a model volcano to produce a quick-flowing eruption. These

  8. Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate

    International Nuclear Information System (INIS)

    Huang, Zhixian; Jiang, Haiming; Li, Ling; Wang, Hongxing; Qiu, Ting

    2015-01-01

    Highlights: • Density of ethyl trifluoroacetate was measured and its thermal expansion coefficient was determined. • Viscosity of ethyl trifluoroacetate was measured and fitted to the Andrade equation. • Saturated vapor pressure of ethyl trifluoroacetate was reported. • The Clausius–Clapeyron equation was used to calculate the molar evaporation enthalpy of ethyl trifluoroacetate. - Abstract: The properties of ethyl trifluoroacetate (CF 3 COOCH 2 CH 3 ) were measured as a function of temperature: density (278.08 to 322.50) K, viscosity (293.45 to 334.32) K, saturated vapor pressure (293.35 to 335.65) K. The density data were fitted to a quadratic polynomial equation, and the viscosity data were regressed to the Andrade equation. The correlation coefficient (R 2 ) of equations for density and viscosity are 0.9997 and 0.9999, respectively. The correlation between saturated vapor pressures and temperatures was achieved with a maximum absolute relative deviation of 0.142%. In addition, the molar evaporation enthalpy in the range of T = (293.35 to 335.65) K was estimated by the Clausius–Clapeyron equation

  9. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    Science.gov (United States)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  10. Predicting specific gravity and viscosity of biodiesel fuels

    OpenAIRE

    Tesfa, Belachew; Mishra, Rakesh; Gu, Fengshou; Ball, Andrew

    2009-01-01

    Biodiesel is a promising non-toxic and biodegradable alternative fuel in transport sector. Of all the biodiesel properties, specific gravity and viscosity are the most significant for the effects they have on the utilization of biodiesel fuels in unmodified engines. This paper presents models, which have been derived from experimental data, for predicting the specific gravity and dynamic viscosity of biodiesel at various temperatures and fractions. In addition a model has also been developed ...

  11. Use of the McQuarrie equation for the computation of shear viscosity via equilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Chialvo, A.A.; Debenedetti, P.G.

    1991-01-01

    To date, the calculation of shear viscosity for soft-core fluids via equilibrium molecular dynamics has been done almost exclusively using the Green-Kubo formalism. The alternative mean-squared displacement approach has not been used, except for hard-sphere fluids, in which case the expression proposed by Helfand [Phys. Rev. 119, 1 (1960)] has invariably been selected. When written in the form given by McQuarrie [Statistical Mechanics (Harper ampersand Row, New York, 1976), Chap. 21], however, the mean-squared displacement approach offers significant computational advantages over both its Green-Kubo and Helfand counterparts. In order to achieve comparable statistical significance, the number of experiments needed when using the Green-Kubo or Helfand formalisms is more than an order of magnitude higher than for the McQuarrie expression. For pairwise-additive systems with zero linear momentum, the McQuarrie method yields frame-independent shear viscosities. The hitherto unexplored McQuarrie implementation of the mean-squared displacement approach to shear-viscosity calculation thus appears superior to alternative methods currently in use

  12. Chebyshev super spectral viscosity method for water hammer analysis

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2013-09-01

    Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.

  13. On viscosity measurements of nanofluids in micro and mini tube flow

    International Nuclear Information System (INIS)

    Egan, V M; Walsh, P A; Walsh, E J

    2009-01-01

    This study presents measurements on the relative viscosity of Al 2 O 3 nanofluids, obtained using capillary and rotational viscometers. Suspension volume concentrations between 0.3% and 6.3% were considered and all exhibited Newtonian behaviour. This paper questions previously published data (Jang et al 2007 Appl. Phys. Lett. 91 243112) which show effective viscosity measurements of nanofluids to be strongly dependent on the tube dimension used in a microscale capillary viscometer. Hence, tubes of diameter 337 μm and 1017 μm were employed but no effect on relative viscosity was observed as all measurements compared favourably. Additionally, all viscosity measurements were found to correlate well using classical models when aggregate size was considered in calculating volume concentration.

  14. Study of shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  15. Separate density and viscosity measurements of unknown liquid using quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Feng Tan

    2016-09-01

    Full Text Available Aqueous liquids have a wide range of applications in many fields. Basic physical properties like the density and the viscosity have great impacts on the functionalities of a given ionic liquid. For the millions kinds of existing liquids, only a few have been systematically measured with the density and the viscosity using traditional methods. However, these methods are limited to measure the density and the viscosity of an ionic liquid simultaneously especially in processing micro sample volumes. To meet this challenge, we present a new theoretical model and a novel method to separate density and viscosity measurements with single quartz crystal microbalance (QCM in this work. The agreement of experimental results and theocratical calculations shows that the QCM is capable to measure the density and the viscosity of ionic liquids.

  16. Radiographic contrast media

    International Nuclear Information System (INIS)

    Golman, K.; Holtz, E.; Almen, T.

    1987-01-01

    Contrast media are used in diagnostic radiology to enhance the X-ray attenuation between a body structure of interest and the surrounding tissue. A detail becomes perceptible on a roentgenogram only when its contrast exceeds a minimum value in relation to the background. Small areas of interest must have higher contrast than the background. The contrast effect depends on concentration of the contrast media with the body. A high contrast media concentration difference thus gives rise to more morphological details in the radiographs. Contrast media can be divided into negative contrast media such as air and gas which attenuate X-rays less than the body tissues, and positive contrast materials which attenuate X-rays more than the body tissues. The positive contrast media all contain either iodine (atomic number 53) or barium (atomic number 56) and can be divided into water-insoluble and water-soluble contrast media

  17. Dynamic viscosity study of barley malt and chicory concentrates

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2016-01-01

    Full Text Available The purpose of research is to find optimal conditions for dispersing and subsequent dehydration of liquid food environments in the nozzle spray drying chamber through the study of dynamic changes in viscosity according to temperature, velocities gradients and dry residue content. The objects of study were roasted chicory and malt barley concentrates with dry residue content of 20, 40, 60 and 80%. Research of dynamic viscosity were carried out at the measuring complex based on the rotational viscometer Rheotest II, analog-to-digital converter, module Laurent and a personal computer with a unique software that allows to record in real time (not only on a tape recorder, but also in the form of graphic files the behavior of the viscosity characteristics of concentrates. Registration of changes of dynamic viscosity was carried out at a shear rate gradient from 1,0 с -1 to 27,0 с -1 and the products temperature thermostating : 35, 55, 75˚ C. The research results are presented in the form of graphic dependences of effective viscosity on shear rate and flow curves (dependencies of shear stresses on the velocity gradient, which defined flow regimes, the optimal modes of dispersion concentrates into spray dryer chambers in obtaining of powdered semi-finished products and instanting were found: dry residue content - 40 %, concentrate temperature - 75 ˚C, velocity gradient in the air channel of the nozzle at least 20 c-1

  18. Microfluidic method for measuring viscosity using images from smartphone

    Science.gov (United States)

    Kim, Sooyeong; Kim, Kyung Chun; Yeom, Eunseop

    2018-05-01

    The viscosity of a fluid is the most important characteristic in fluid rheology. Many microfluidic devices have been proposed for easily measuring the fluid viscosity of small samples. A hybrid system consisting of a smartphone and microfluidic device can offer a mobile laboratory for performing a wide range of detection and analysis functions related to healthcare. In this study, a new mobile sensing method based on a microfluidic device was proposed for fluid viscosity measurements. By separately delivering sample and reference fluids into the two inlets of a Y-shaped microfluidic device, an interfacial line is induced at downstream of the device. Because the interfacial width (W) between the sample and reference fluid flows was determined by their pressure ratio, the viscosity (μ) of the sample could be estimated by measuring the interfacial width. To distinguish the interfacial width of a sample, optical images of the flows at downstream of the Y-shaped microfluidic device were acquired using a smartphone. To check the measurement accuracy of the proposed method, the viscosities of glycerol mixtures were compared with those measured by a conventional viscometer. The proposed technique was applied to monitor the variations in blood and oil samples depending on storage or rancidity. We expect that this mobile sensing method based on a microfluidic device could be utilized as a viscometer with significant advantages in terms of mobility, ease-of-operation, and data management.

  19. Effective viscosity of dispersions approached by a statistical continuum method

    NARCIS (Netherlands)

    Mellema, J.; Willemse, M.W.M.

    1983-01-01

    The problem of the determination of the effective viscosity of disperse systems (emulsions, suspensions) is considered. On the basis of the formal solution of the equations governing creeping flow in a statistically homogeneous dispersion, the effective viscosity is expressed in a series expansion

  20. Field dependence of magnetic viscosity of CoCrTa in-plane media

    NARCIS (Netherlands)

    Phan le kim, P.L.K.; Lodder, J.C.; Popma, T.J.A.

    1999-01-01

    In this paper we will present a study of magnetic viscosity as a function of applied field of CoCrTa/Cr in-plane media. The viscosity versus applied field curves (viscosity curves) of the samples exhibit a sharp peak at remanence coercivity (Hcr). Their activation volume was found to be close to the

  1. NVP melt/magma viscosity: insight on Mercury lava flows

    Science.gov (United States)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina

    2016-04-01

    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  2. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2008-01-01

    The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

  3. Uni-axial Elongational Viscosity of Linear and Branched polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    About 40 years ago interest in the measurement of elongational viscosity of polymer melts started to grow. Here we present measurements of transient (and steady) uni-axial elongational viscosity, using the FSR, of the following melts: Four narrow MMD polystyrene (PS) samples with weight......-average molar mass Mw in the range of 50k to 390k. Three different bi-disperse samples, mixed from the narrow MMD PS. Two low-density polyethylene (LDPE) melts (Lupolen 1840D and 3020D). A steady-state viscosity was kept for 1-2.5 Hencky strain units in all measurements.The measurements on the bi-disperse PS...... melts have demonstrated that both the transient and steady elongational viscosity is quite sensitive to polydispersity. Bi-disperse PS resembles the behaviour of mono-disperse melts only at elongational rates larger then the inverse of maximal time constant of the smallest molecule. As observed in Boger...

  4. Viscosity-Induced Crossing of the Phantom Barrier

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2015-09-01

    Full Text Available We show explicitly, by using astrophysical data plus reasonable assumptions for the bulk viscosity in the cosmic fluid, how the magnitude of this viscosity may be high enough to drive the fluid from its position in the quintessence region at present time t = 0 across the barrier w = −1 into the phantom region in the late universe. The phantom barrier is accordingly not a sharp mathematical divide, but rather a fuzzy concept. We also calculate the limiting forms of various thermodynamical quantities, including the rate of entropy production, for a dark energy fluid near the future Big Rip singularity.

  5. Entropy viscosity method for nonlinear conservation laws

    KAUST Repository

    Guermond, Jean-Luc

    2011-05-01

    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  6. Entropy viscosity method for nonlinear conservation laws

    KAUST Repository

    Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan

    2011-01-01

    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  7. The Role of Viscosity in Causing the Plasma Poloidal Motion in Magnetic Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ake; Wang, Yuming; Liu, Jiajia; Zhou, Zhenjun; Shen, Chenglong; Liu, Rui; Zhuang, Bin; Zhang, Quanhao, E-mail: ymwang@ustc.edu.cn [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-08-20

    An interesting phenomenon, plasma poloidal motion, has been found in many magnetic clouds (MCs), and viscosity has been proposed as a possible mechanism. However, it is not clear how significant the role of viscosity is in generating such motion. In this paper, we conduct a statistical study of the MCs detected by the Wind spacecraft during 1995–2012. It is found that, for 19% of all the studied MCs (186), the poloidal velocities of the MC plasma near the MC boundaries are well correlated with those of the corresponding ambient solar wind plasma. A non-monotonic increase from inner to outer MCs suggests that the viscosity does play a role, albeit weak, on the poloidal motion in the MC statistically. The possible dependence on the solar wind parameters is then studied in detail for the nine selected crossings, which represent the viscosity characteristic. There is an evident negative correlation between the viscosity and the density, a weak negative correlation between the viscosity and the turbulence strength, and no clear correlation between the viscosity and the temperature.

  8. Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Xu, Q.; Zhao, T.S.; Zhang, C.

    2014-01-01

    Highlights: • The correlations of electrolyte viscosity and SOC are obtained. • Effect of SOC-dependent electrolyte viscosity is considered in this model. • This model enables a more realistic simulation of variable distributions. • It provides accurate estimations of pumping work and system efficiency. - Abstract: The viscosity of the electrolyte in vanadium redox flow batteries (VRFBs) varies during charge and discharge as the concentrations of acid and vanadium ions in the electrolyte continuously change with the state of charge (SOC). In previous VRFB models, however, the electrolyte has been treated as a constant-viscosity solution. In this work, a mass-transport and electrochemical model taking account of the effect of SOC-dependent electrolyte viscosity is developed. The comparison between the present model and the model with the constant-viscosity simplification indicates that the consideration of the SOC-dependent electrolyte viscosity enables (i) a more realistic simulation of the distributions of overpotential and current density in the electrodes, and (ii) more accurate estimations of pumping work and the system efficiency of VRFBs

  9. Solubility of carbon dioxide, methane, and ethane in 1-butanol and saturated liquid densities and viscosities

    International Nuclear Information System (INIS)

    Kariznovi, Mohammad; Nourozieh, Hossein; Abedi, Jalal

    2013-01-01

    Highlights: • Experimental solubilities of CH 4 , C 2 H 6 , and CO 2 in 1-butanol and saturated liquid properties. • Solubilities and saturated liquid densities were predicted with SRK and PR EOS. • Solubility of C 2 H 6 in 1-butanol is higher than CH 4 and CO 2 . • Liquid density and viscosity reduces with dissolution of CH 4 and C 2 H 6 . • Dissolution of CO 2 increases liquid density and reduces liquid viscosity. -- Abstract: A designed pressure–volume–temperature (PVT) apparatus has been used to measure the (vapor + liquid) equilibrium properties of three binary mixtures (methane +, ethane +, and carbon dioxide + 1-butanol) at two temperatures (303 and 323) K and at the pressures up to 6 MPa. The solubility of the compressed gases in 1-butanol and the saturated liquid densities and viscosities were measured. In addition, the density and viscosity of pure 1-butanol were measured at two temperatures (303 and 323) K and at the pressures up to 10 MPa. The experimental results show that the solubility of the gases in 1-butanol increases with pressure and decreases with temperature. The dissolution of gases in 1-butanol causes a decline in the viscosity of liquid phase. The saturated liquid density follows a decreasing trend with the solubility of methane and ethane. However, the dissolution of carbon dioxide in 1-butanol leads to an increase in the density of liquid phase. The experimental data are well correlated with Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR) equations of state (EOSs). SRK EOS was slightly superior for correlating the saturated liquid densities

  10. Effect of temperature and composition on density, viscosity and thermal conductivity of fatty acid methyl esters from soybean, castor and Jatropha curcas oils

    International Nuclear Information System (INIS)

    Ustra, Mara K.; Silva, Juliana R.F.; Ansolin, Marina; Balen, Manuela; Cantelli, Keli; Alkimim, Isabella P.; Mazutti, Marcio A.; Voll, Fernando A.P.; Cabral, Vladimir F.; Cardozo-Filho, Lúcio; Corazza, Marcos L.; Vladimir Oliveira, J.

    2013-01-01

    Highlights: ► Thermophysical properties of soybean, castor and Jatropha curcas oils and related systems. ► Effect of temperature and composition on density, viscosity and thermal conductivity of the systems studied. ► Density, dynamic viscosity and thermal conductivity data were correlated using empirical equations. -- Abstract: This work is focused on experimental determination of density, viscosity and thermal conductivity as a function of temperature and composition for fatty acid methyl esters (FAME) from soybean, castor and Jatropha curcas oils. Results show that an increase in temperature, over the range of (273 to 363) K, resulted in a decrease of all properties studied. FAME from soybean and J. curcas oils presented similar rheological behaviour, while FAME from castor oil presented higher values for density and viscosity. Density, dynamic viscosity and thermal conductivity data for all systems obtained here were correlated using empirical equations with good agreement between experimental and calculated values. Experimental data presented here may be useful as a database for specification purposes and equipment design and plant operation in the biodiesel industry

  11. Near Wellbore Hydraulic Fracture Propagation from Perforations in Tight Rocks: The Roles of Fracturing Fluid Viscosity and Injection Rate

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Fallahzadeh

    2017-03-01

    Full Text Available Hydraulic fracture initiation and near wellbore propagation is governed by complex failure mechanisms, especially in cased perforated wellbores. Various parameters affect such mechanisms, including fracturing fluid viscosity and injection rate. In this study, three different fracturing fluids with viscosities ranging from 20 to 600 Pa.s were used to investigate the effects of varying fracturing fluid viscosities and fluid injection rates on the fracturing mechanisms. Hydraulic fracturing tests were conducted in cased perforated boreholes made in tight 150 mm synthetic cubic samples. A true tri-axial stress cell was used to simulate real far field stress conditions. In addition, dimensional analyses were performed to correspond the results of lab experiments to field-scale operations. The results indicated that by increasing the fracturing fluid viscosity and injection rate, the fracturing energy increased, and consequently, higher fracturing pressures were observed. However, when the fracturing energy was transferred to a borehole at a faster rate, the fracture initiation angle also increased. This resulted in more curved fracture planes. Accordingly, a new parameter, called fracturing power, was introduced to relate fracture geometry to fluid viscosity and injection rate. Furthermore, it was observed that the presence of casing in the wellbore impacted the stress distribution around the casing in such a way that the fracture propagation deviated from the wellbore vicinity.

  12. Separation of gold nanorods by viscosity gradient centrifugation

    International Nuclear Information System (INIS)

    Dong, Suli; Wang, Yawei; Li, Xiaogang; Zhang, Qingquan; Liu, Xiaojun; Tu, Yang; Liang, Aiye

    2016-01-01

    Size-uniform gold nanorods (Au-NRs) are used in biosensing, bioimaging, photothermal therapy, drug and gene delivery, and controlled release. Monodisperse Au-NRs are usually obtained by separation steps following their synthesis, and centrifugation is widely used because of the ease of operation, high recovery, and the good availability of equipment. So far, the effect of viscosity on the separation of Au-NRs has not been investigated. We have developed a method for separation of monodisperse Au-NRs that is based on centrifugation in a viscosity gradient. Monodisperse Au-NRs obtained from gold nanoparticles were obtained by centrifugation in viscosity gradient adjusted with poly(2-ethyl-2-oxazoline). Au-NRs in sizes ranging from 25.6 to 26.1 nm in effective radius can be separated 5500 g within 5 min, which appears to be the fastest method for separation of Au-NRs. (author)

  13. Viscosity and attenuation of sound wave in high density deuterium

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Ariyasu, Tomio

    1985-01-01

    The penetration of low frequency sound wave into the fuel deuterium is discussed as for laser fusion. The sound velocity and the attenuation constant due to viscosity are calculated for high density (n = 10 24 -- 10 27 cm -3 , T = 10 -1 -- 10 4 eV) deuterium. The shear viscosity of free electron gas and the bulk viscosity due to ion-ion interaction mainly contribute to the attenuation of sound wave. The sound wave of the frequency below 10 10 Hz can easily penetrate through the compressed fuel deuterium of diameter 1 -- 10 3 μm. (author)

  14. Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction

    International Nuclear Information System (INIS)

    Feng Yan; Goree, J.; Liu Bin

    2011-01-01

    A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η and the wave-number-dependent viscosity η(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k) is validated by comparing the results of η(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η in the presence of a modest level of friction as in dusty plasma experiments.

  15. A new model for the accurate calculation of natural gas viscosity

    OpenAIRE

    Xiaohong Yang; Shunxi Zhang; Weiling Zhu

    2017-01-01

    Viscosity of natural gas is a basic and important parameter, of theoretical and practical significance in the domain of natural gas recovery, transmission and processing. In order to obtain the accurate viscosity data efficiently at a low cost, a new model and its corresponding functional relation are derived on the basis of the relationship among viscosity, temperature and density derived from the kinetic theory of gases. After the model parameters were optimized using a lot of experimental ...

  16. A Comparison of the Viscosities of Thickened Liquids for Pediatric Dysphagia.

    Science.gov (United States)

    Wijesinghe, Ranjith; Clifton, Mekale; Tarlton, Morgan; Heinsohn, Erica; Ewing, Mary

    It has been reported that Speech Language Pathologists in different facilities across the nation use a variety of thickening agents and recipes as therapeutic measures for infants and children diagnosed with dysphagia. Limited research has been completed in this area. Viscosity was tested to determine the thickness of each thickening agent mixed with infant formula. The values were then compared to the National Dysphagia Diet liquid levels to determine which thickening agent resulted in the desired viscosity levels. The thickeners were mixed with common infant formulas and soy formulas to determine if the type of formula impacted the viscosity. The main goal was to determine if the assumed thickness level (viscosity) of prescribed thickened liquids was actually being met. This topic is of high concern because of its impact on the safety and well-being of clients with dysphagia. A viscometer was used to collect the viscosity levels. Commercially available formulas selected for this study. The final results of our investigation will be presented during the APS meeting. This work is supported by a Ball State University Immersive Learning Grant.

  17. Neutron scattering studies of crude oil viscosity reduction with electric field

    Science.gov (United States)

    Du, Enpeng

    Small-angle neutron scattering (SANS) is a very powerful laboratory technique for micro structure research which is similar to the small angle X-ray scattering (SAXS) and light scattering for microstructure investigations in various materials. In small-angle neutron scattering (SANS) technique, the neutrons are elastically scattered by changes of refractive index on a nanometer scale inside the sample through the interaction with the nuclei of the atoms present in the sample. Because the nuclei of all atoms are compact and of comparable size, neutrons are capable of interacting strongly with all atoms. This is in contrast to X-ray techniques where the X-rays interact weakly with hydrogen, the most abundant element in most samples. The SANS refractive index is directly related to the scattering length density and is a measure of the strength of the interaction of a neutron wave with a given nucleus. It can probe inhomogeneities in the nanometer scale from 1nm to 1000nm. Since the SANS technique probes the length scale in a very useful range, this technique provides valuable information over a wide variety of scientific and technological applications, including chemical aggregation, defects in materials, surfactants, colloids, ferromagnetic correlations in magnetism, alloy segregation, polymers, proteins, biological membranes, viruses, ribosome and macromolecules. Quoting the Nobel committee, when awarding the prize to C. Shull and B. Brockhouse in 1994: "Neutrons tell you where the atoms are and what the atoms do". At NIST, there is a single beam of neutrons generated from either reactor or pulsed neutron source and selected by velocity selector. The beam passes through a neutron guide then scattered by the sample. After the sample chamber, there are 2D gas detectors to collect the elastic scattering information. SANS usually uses collimation of the neutron beam to determine the scattering angle of a neutron, which results in an even lower signal-to-noise ratio for

  18. The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic–water particles

    Directory of Open Access Journals (Sweden)

    J. W. Grayson

    2017-07-01

    Full Text Available The viscosities of three polyols and three saccharides, all in the non-crystalline state, have been studied. Two of the polyols (2-methyl-1,4-butanediol and 1,2,3-butanetriol were studied under dry conditions, the third (1,2,3,4-butanetetrol was studied as a function of relative humidity (RH, including under dry conditions, and the saccharides (glucose, raffinose, and maltohexaose were studied as a function of RH. The mean viscosities of the polyols under dry conditions range from 1.5  ×  10−1 to 3.7  ×  101 Pa s, with the highest viscosity being that of the tetrol. Using a combination of data determined experimentally here and literature data for alkanes, alcohols, and polyols with a C3 to C6 carbon backbone, we show (1 there is a near-linear relationship between log10 (viscosity and the number of hydroxyl groups in the molecule, (2 that on average the addition of one OH group increases the viscosity by a factor of approximately 22 to 45, (3 the sensitivity of viscosity to the addition of one OH group is not a strong function of the number of OH functional groups already present in the molecule up to three OH groups, and (4 higher sensitivities are observed when the molecule has more than three OH groups. Viscosities reported here for 1,2,3,4-butanetetrol particles are lower than previously reported measurements using aerosol optical tweezers, and additional studies are required to resolve these discrepancies. For saccharide particles at 30 % RH, viscosity increases by approximately 2–5 orders of magnitude as molar mass increases from 180 to 342 g mol−1, and at 80 % RH, viscosity increases by approximately 4–5 orders of magnitude as molar mass increases from 180 to 991 g mol−1. These results suggest oligomerization of highly oxidized compounds in atmospheric secondary organic aerosol (SOA could lead to large increases in viscosity, and may be at least partially responsible for the high

  19. Viscosity Prediction of Hydrocarbon Mixtures Based on the Friction Theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2001-01-01

    The application and capability of the friction theory (f-theory) for viscosity predictions of hydrocarbon fluids is further illustrated by predicting the viscosity of binary and ternary liquid mixtures composed of n-alkanes ranging from n-pentane to n-decane for wide ranges of temperature and from...

  20. Viscosity and density models for copper electrorefining electrolytes

    OpenAIRE

    Kalliomäki Taina; Aji Arif T.; Aromaa Jari; Lundström Mari

    2016-01-01

    Viscosity and density are highly important physicochemical properties of copper electrolyte since they affect the purity of cathode copper and energy consumption [1, 2] affecting the mass and heat transfer conditions in the cell [3]. Increasing viscosity and density decreases the rate in which the anode slime falls to the bottom of the cell [4, 5] and lowers the diffusion coefficient of cupric ion (DCu2+) [6]. Decreasing the falling rate of anode slime increases movement of the slime to other...

  1. Sensitivity of viscosity Arrhenius parameters to polarity of liquids

    Science.gov (United States)

    Kacem, R. B. H.; Alzamel, N. O.; Ouerfelli, N.

    2017-09-01

    Several empirical and semi-empirical equations have been proposed in the literature to estimate the liquid viscosity upon temperature. In this context, this paper aims to study the effect of polarity of liquids on the modeling of the viscosity-temperature dependence, considering particularly the Arrhenius type equations. To achieve this purpose, the solvents are classified into three groups: nonpolar, borderline polar and polar solvents. Based on adequate statistical tests, we found that there is strong evidence that the polarity of solvents affects significantly the distribution of the Arrhenius-type equation parameters and consequently the modeling of the viscosity-temperature dependence. Thus, specific estimated values of parameters for each group of liquids are proposed in this paper. In addition, the comparison of the accuracy of approximation with and without classification of liquids, using the Wilcoxon signed-rank test, shows a significant discrepancy of the borderline polar solvents. For that, we suggested in this paper new specific coefficient values of the simplified Arrhenius-type equation for better estimation accuracy. This result is important given that the accuracy in the estimation of the viscosity-temperature dependence may affect considerably the design and the optimization of several industrial processes.

  2. On the measurement of the relative viscosity of suspensions

    International Nuclear Information System (INIS)

    Acrivos, A.; Fan, X.; Mauri, R.

    1994-01-01

    The relative viscosity of a suspension of rigid, noncolloidal particles immersed in a Newtonian fluid was measured in a Couette device and was found to be shear thinning even for values of the solids fraction as low as 20%. Although such behavior was reported previously, no satisfactory explanation appears to have been given thus far. It shall be shown presently, however, that, at least for our systems, this shear-thinning effect was due to a slight mismatch in the densities of the two phases. Moreover, the apparent relative viscosities measured in our apparatus were found to be in excellent agreement with those predicted theoretically using a model, originally proposed by Leighton and Acrivos [Chem. Eng. Sci. 41, 1377--1384 (1986)], to describe viscous resuspension, according to which the measured relative viscosity should depend on the bulk particle concentration and on the dimensionless Shields number A, and should attain its correct value for a well-mixed suspension only as A→∞. The predictions of this model are also in excellent agreement with the measured transient response of the apparent relative viscosity due to a sudden change in the shear rate

  3. Microcantilever based disposable viscosity sensor for serum and blood plasma measurements.

    Science.gov (United States)

    Cakmak, Onur; Elbuken, Caglar; Ermek, Erhan; Mostafazadeh, Aref; Baris, Ibrahim; Erdem Alaca, B; Kavakli, Ibrahim Halil; Urey, Hakan

    2013-10-01

    This paper proposes a novel method for measuring blood plasma and serum viscosity with a microcantilever-based MEMS sensor. MEMS cantilevers are made of electroplated nickel and actuated remotely with magnetic field using an electro-coil. Real-time monitoring of cantilever resonant frequency is performed remotely using diffraction gratings fabricated at the tip of the dynamic cantilevers. Only few nanometer cantilever deflection is sufficient due to interferometric sensitivity of the readout. The resonant frequency of the cantilever is tracked with a phase lock loop (PLL) control circuit. The viscosities of liquid samples are obtained through the measurement of the cantilever's frequency change with respect to a reference measurement taken within a liquid of known viscosity. We performed measurements with glycerol solutions at different temperatures and validated the repeatability of the system by comparing with a reference commercial viscometer. Experimental results are compared with the theoretical predictions based on Sader's theory and agreed reasonably well. Afterwards viscosities of different Fetal Bovine Serum and Bovine Serum Albumin mixtures are measured both at 23°C and 37°C, body temperature. Finally the viscosities of human blood plasma samples taken from healthy donors are measured. The proposed method is capable of measuring viscosities from 0.86 cP to 3.02 cP, which covers human blood plasma viscosity range, with a resolution better than 0.04 cP. The sample volume requirement is less than 150 μl and can be reduced significantly with optimized cartridge design. Both the actuation and sensing are carried out remotely, which allows for disposable sensor cartridges. Copyright © 2013. Published by Elsevier Inc.

  4. Measurements of the viscosity of carbon dioxide at temperatures from (253.15 to 473.15) K with pressures up to 1.2 MPa

    International Nuclear Information System (INIS)

    Schäfer, Michael; Richter, Markus; Span, Roland

    2015-01-01

    Highlights: • A new rotating-body viscometer for the low-pressure region was presented. • A viscosity dependent offset was compensated by calibrating the viscometer. • The viscosity of carbon dioxide was measured at low pressures. • Measurements were carried out from T = (253.15 to 473.15) K with p ≤ 1.2 MPa. • The relative expanded combined uncertainty (k = 2) was U r,c (η) = (0.20 to 0.41)%. - Abstract: The viscosity of carbon dioxide was measured over the temperature range T = (253.15 to 473.15) K with pressures up to 1.2 MPa utilizing a new rotating-body viscometer. The relative expanded combined uncertainty (k = 2) in viscosity (including uncertainties of temperature and pressure) was (0.20 to 0.41)%. The instrument was specifically designed for measurements at low gas densities and enables measurements of the dynamic viscosity at temperatures between T = 253.15 K and T = 473.15 K with pressures up to 2 MPa. For carbon dioxide, the fluid specific measuring range with regard to pressure was limited to 1.2 MPa due to the formation of disturbing vortices inside the measuring cell at higher pressures. The model function for the viscosity measurement was extended in such a way that the dynamic viscosity was measured relative to helium. Therefore, the influence of the geometry of the concentric cylindrical system inside the measuring cell became almost negligible. Moreover, a systematic offset resulting from a small but inevitable eccentricity of the cylindrical system was compensated for. The residual damping, usually measured in vacuum, was calibrated in the entire temperature range using viscosity values of helium, neon and argon calculated ab initio; at T = 298.15 K recommended reference values were used. A viscosity dependent offset of the measured viscosities, which was observed in previously published data, did not occur when using the calibrated residual damping. The new carbon dioxide results were compared to other experimental literature data

  5. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor

    Directory of Open Access Journals (Sweden)

    Amir Rabani

    2016-10-01

    Full Text Available The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.

  6. Variation of velocity profile according to blood viscosity in a microfluidic channel

    Science.gov (United States)

    Yeom, Eunseop; Kang, Yang Jun; Lee, Sang-Joon

    2014-11-01

    The shear-thinning effect of blood flows is known to change blood viscosity. Since blood viscosity and motion of red blood cells (RBCs) are closely related, hemorheological variations have a strong influence on hemodynamic characteristics. Therefore, understanding on the relationship between the hemorheological and hemodynamic properties is importance for getting more detailed information on blood circulation in microvessels. In this study, the blood viscosity and velocity profiles in a microfluidic channel were systematically investigated. Rat blood was delivered in the microfluidic device which can measure blood viscosity by monitoring the flow-switching phenomenon. Velocity profiles of blood flows in the microchannel were measured by using a micro-particle image velocimetry (PIV) technique. Shape of velocity profiles measured at different flow rates was quantified by using a curve-fitting equation. It was observed that the shape of velocity profiles is highly correlated with blood viscosity. The study on the relation between blood viscosity and velocity profile would be helpful to understand the roles of hemorheological and hemodynamic properties in cardiovascular diseases. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2008-0061991).

  7. Sweetness and other sensory properties of model fruit drinks: Does viscosity have an impact?

    Science.gov (United States)

    Brandenstein, Cai V S; Busch-Stockfisch, Mechthild; Fischer, Markus

    2015-03-15

    The impact of thickening agents and viscosity levels on sensory perception was studied in model fruit drinks. Four formulations were prepared that varied in the sweetener blend (erythritol, maltitol and/or steviol glycosides). Locust bean gum and its blends with either xanthan or carrageenan were used to adjust viscosity levels (20, 40, and 70 mPa s). The ranges of viscosity and sweetness level were selected to represent a typical concentration range in commercially available beverages. An increase in viscosity resulted in significant increases in pulpiness, sliminess and perceived viscosity (P-values ≤ 0.001), which were not dependent on sweeteners or hydrocolloid type. Taste perception remained largely unchanged irrespective of the hydrocolloid used. The impact of viscosity on sweetness and taste perception was much smaller in the concentrations used than has been generally reported. The effect of the type of hydrocolloid on the perception of taste attributes was greater than that of viscosity. © 2014 Society of Chemical Industry.

  8. Shear viscosity, cavitation and hydrodynamics at LHC

    International Nuclear Information System (INIS)

    Bhatt, Jitesh R.; Mishra, Hiranmaya; Sreekanth, V.

    2011-01-01

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid becomes invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early stage. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal terms used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  9. Viscosity, ion mobility, and the lambda transition

    International Nuclear Information System (INIS)

    Goodstein, D.L.

    1977-01-01

    A model is presented of the lambda transition in superfluid helium in which fluctuations near the transition are approximated by distinct regions of normal fluid and superfluid. The macroscopic viscosity of such a medium is computed. The ion mobility is also computed, taking into account a region of normal fluid around the ion induced by electrostriction. The results are, for the viscosity, eta/sub lambda/ - eta approx. t/sup 0.67/ and for the mobility μ - μ/sub lambda/ approx. t/sup 0.92/, both in excellent agreement with recent experiments. The model suggests that the lambda transition itself is the point at which superfluid regions become macroscopically connected

  10. Heritability and Seasonal Changes in Viscosity of Slash Pine Oleoresin

    Science.gov (United States)

    Robert D. McReynolds

    1971-01-01

    Oleoresin viscosity was measured in slash pine (Pinus elliottii var. elliottii) trees of known genetic origin over a 1-year period. A strong broad-sense heritability of this trait was found. Seasonal variation followed a definite pattern, with the highest viscosities occurring in early spring and a gradual decline occurring in...

  11. Excess molar volumes and viscosities of binary mixtures of 1,2

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 113; Issue 3. Excess molar volumes and viscosities of binary mixtures of 1,2-diethoxyethane with chloroalkanes ... The Bloomfield and Dewan model has been used to calculate viscosity ...

  12. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  13. Using Of Viscosity Property For Identification Of Irradiated Black Pepper And Cumin

    International Nuclear Information System (INIS)

    ALI, H.G.M.

    2009-01-01

    In the present investigation, the viscosity measurement was used for detecting irradiated black pepper and cumin during storage period. All samples under investigation were packed in polyethylene bags then irradiated at 3, 5, 7 and 10 kGy and stored for 12 months at room temperature then viscosity were measured under extremely alkaline condition (ph 13.8). The results indicated that irradiation treatment caused significant decrease in apparent viscosity values, where it decreased from 67.3 in control sample to 49.7, 42.3, 38.7 and 32.7 mpa.s in black pepper, while the viscosity of cumin was decreased from 74 mpa.s for control to 64.9, 41.7, 25.3 and 11.3 mpa.s for samples. The viscosity of black pepper and cumin were decreased significantly with increasing the radiation dose and during storage period. It was decreased from 67.3 for control to 67.0, 47.7, 32.3 and 17.7 mpa.s after 3, 6, 9 and 12 months, respectively, in black pepper while the viscosity of cumin samples was decreased significantly from 74 for control to 50.3, 17.1, 9.5 and 7.2 mpa.s after the same months. The data also showed that the moisture and carbohydrate contents were decreased by increasing the radiation dose. It could be concluded that the viscosity parameter can be used to identify of black pepper and cumin samples after irradiation and during 12 months of storage at ambient temperature.

  14. [Relations between plasma-erythrocyte viscosity factors and ESR].

    Science.gov (United States)

    Cortinovis, A; Crippa, A; Crippa, M; Bosoni, T; Moratti, R

    1992-09-01

    The ESR is usually put in relationship: to the real density of the RBCs (erythrocytes) (difference between the RBC specific gravity and the plasma one), and to the resistance that the RBCs meet moving in a medium, which is due to the plasma viscosity and to the total external RBC surface. When the RBCs take shape of aggregates, their external surface is decreased and ESR increases. The most important plasma factor causing changes in ESR is the fibrinogen level followed by the plasma globulins and by the products arising from the tissue damage. The resistance that the RBCs meet moving in the plasma is well expressed by the measurement of the plasma-RBC viscosity considering that is inclusive of both factors that are the plasma viscosity and the external RBC surface. The plasma-RBC viscosity is the resultant of several factors: Fa = Fb - Fe - Fs - Fm, were: Fa is the resultant, Fb the attracting forces due to the proteic macromolecules, Fe the repulsing forces due the negative charges. Fs the repulsing forces due to the shear-stress, Fm the force which opposes itself against the surface tension of the aggregation; it depends on the RBC morphology and on the RBC rigidity. The ESR has been recently used like an index of the RBC aggregation. The Authors study the relationship between several hemorheological parameters and the ESR in infective and inflammatory processes.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Online shear viscosity measurement of starchy melts enriched in wheat bran.

    Science.gov (United States)

    Robin, Frédéric; Bovet, Nicolas; Pineau, Nicolas; Schuchmann, Heike P; Palzer, Stefan

    2011-01-01

    Addition of wheat bran to flours modifies their expansion properties after cooking extrusion. This can be attributed to changes in the melt shear viscosity at the die. The effect of wheat bran concentration added to achieve 2 levels of dietary fibers of 12. 6% and 24.4%, and process conditions on the shear viscosity of wheat flour was therefore assessed using an online twin-slit rheometer. The shear viscosity measured at 30 s⁻¹ ranged from 9.5 × 10³ to 53.4 × 10³ Pa s. Regardless of the process conditions and bran concentration, the extruded melts showed a pseudoplastic behavior with a power law index n ranging from 0.05 to 0.27. Increasing the barrel temperature of the extruder from 120 to 180 °C, the water content from 18% to 22% or the screw speed from 400 to 800 rpm significantly decreased the melt shear viscosity at the extruder exit. The addition of bran significantly increased the melt shear viscosity only at the highest bran concentration. The effect was process condition dependant. Mathematical interpretations, based upon observations, of the experimental data were carried out. They can be used to predict the effect of the process conditions on the melt shear viscosity at the die of extruded wheat flour with increasing bran concentration. The viscosity data will be applied in future works to study the expansion properties of extruded wheat flour supplemented with bran. Incorporation of wheat bran, a readily available and low cost by-product, in extruded puffed foods is constrained due to its negative effect on the product texture. Understanding the effect of wheat bran on rheological properties of extruded melts, driving the final product properties, is essential to provide solutions to the food industry and enhance its use. © 2011 Institute of Food Technologists®

  16. The influence of magma viscosity on convection within a magma chamber

    Science.gov (United States)

    Schubert, M.; Driesner, T.; Ulmer, P.

    2012-12-01

    Magmatic-hydrothermal ore deposits are the most important sources of metals like Cu, Mo, W and Sn and a major resource for Au. It is well accepted that they are formed by the release of magmatic fluids from a batholith-sized magma body. Traditionally, it has been assumed that crystallization-induced volatile saturation (called "second boiling") is the main mechanism for fluid release, typically operating over thousands to tens of thousands of years (Candela, 1991). From an analysis of alteration halo geometries caused by magmatic fluids, Cathles and Shannon (2007) suggested much shorter timescales in the order of hundreds of years. Such rapid release of fluids cannot be explained by second boiling as the rate of solidification scales with the slow conduction of heat away from the system. However, rapid fluid release is possible if convection is assumed within the magma chamber. The magma would degas in the upper part of the magma chamber and volatile poor magma would sink down again. Such, the rates of degassing can be much higher than due to cooling only. We developed a convection model using Navier-Stokes equations provided by the computational fluid dynamics platform OpenFOAM that gives the possibility to use externally derived meshes with complex (natural) geometries. We implemented a temperature, pressure, composition and crystal fraction dependent viscosity (Ardia et al., 2008; Giordano et al., 2008; Moore et al., 1998) and a temperature, pressure, composition dependent density (Lange1994). We found that the new viscosity and density models strongly affect convection within the magma chamber. The dependence of viscosity on crystal fraction has a particularly strong effect as the steep viscosity increase at the critical crystal fraction leads to steep decrease of convection velocity. As the magma chamber is cooling from outside to inside a purely conductive layer is developing along the edges of the magma chamber. Convection continues in the inner part of the

  17. Titin-Actin Interaction: PEVK-Actin-Based Viscosity in a Large Animal

    Directory of Open Access Journals (Sweden)

    Charles S. Chung

    2011-01-01

    Full Text Available Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio ~0.5–1.0 than mice (N2BA:N2B ratio ~0.2. To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL to SL of 2.15 μm. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1–400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 μm and by 50% at 2.25 μm, suggesting a SL-dependent nature of viscosity that might prevent SL ``overshoot’’ at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.

  18. Determination of the density and the viscosities of biodiesel-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Ertan; Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Kocaeli (Turkey)

    2008-12-15

    In this study, commercially available two different diesel fuels were blended with the biodiesels produced from six different vegetable oils (sunflower, canola, soybean, cottonseed, corn oils and waste palm oil). The blends (B2, B5, B10, B20, B50 and B75) were prepared on a volume basis. The key fuel properties such as density and viscosities of the blends were measured by following ASTM test methods. Generalized equations for predicting the density and viscosities for the blends were given and a mixing equation, originally proposed by Arrhenius and described by Grunberg and Nissan, was used to predict the viscosities of the blends. For all blends, it was found that there is an excellent agreement between the measured and estimated values of the density and viscosities. According to the results, the density and viscosities of the blends increased with the increase of biodiesel concentration in the fuel blend. (author)

  19. Searching for perfect fluids: quantum viscosity in a universal Fermi gas

    International Nuclear Information System (INIS)

    Cao, C; Elliott, E; Wu, H; Thomas, J E

    2011-01-01

    We measure the shear viscosity in a two-component Fermi gas of atoms, tuned to a broad s-wave collisional (Feshbach) resonance. At resonance, the atoms strongly interact and exhibit universal behavior, where the equilibrium thermodynamic properties and transport coefficients are universal functions of density n and temperature T. We present a new calibration of the temperature as a function of global energy, which is directly measured from the cloud profiles. Using the calibration, the trap-averaged shear viscosity in units of ℎn is determined as a function of the reduced temperature at the trap center, from nearly the ground state to the unitary two-body regime. Low-temperature data are obtained from the damping rate of the radial breathing mode, whereas high-temperature data are obtained from hydrodynamic expansion measurements. We also show that the best fit to the high-temperature expansion data is obtained for a vanishing bulk viscosity. The measured trap-averaged entropy per particle and shear viscosity are used to estimate the ratio of shear viscosity to entropy density, which is compared with that conjectured for a perfect fluid.

  20. Effect of β-cyclodextrin on Rheological Properties of some Viscosity Modifiers.

    Science.gov (United States)

    Rao, G Chandra Sekhara; Ramadevi, K; Sirisha, K

    2014-01-01

    Cyclodextrins are a group of novel excipients, extensively used in the present pharmaceutical industry. Sometimes they show significant interactions with other conventional additives used in the formulation of dosage forms. The effect of β-cyclodextrin on the rheological properties of aqueous solutions of some selected viscosity modifiers was studied in the present work. β-cyclodextrin showed two different types of effects on the rheology of the selected polymers. In case of natural polymers like xanthan gum and guar gum, enhanced apparent viscosity was found and in case of semi-synthetic polymers like sodium carboxymethyl cellulose and methyl cellulose, reduction in apparent viscosity was found. β-cyclodextrin was included at 0.5, 1 and 2% w/v concentrations into the polymeric solutions. These findings are useful in the adjustment of concentrations of viscosity modifiers during the formulation of physically stable disperse systems.

  1. Experimental study of electric conductivity, density and viscosity of Wood's alloy

    International Nuclear Information System (INIS)

    Kazandzhan, B.I.; Matveev, V.M.; Savich, T.B.; Umarov, A.M.

    1989-01-01

    Electric conductivity, density and kinematic viscosity of commercially pure Wood's alloy are obtained in a wide temperature range. Electric conductivity and density are investigated from the room temperature to 1000 K. Measurements of kinematic viscosity are carried out from 372 to 1000 K by means of torsional vibrations method using informatiom computer system permitting to automate data acquisition and processing and to increase the measurement accuracy. On the basis of analysis the character of electric conductivity and kinematic viscosity polyterms Wood's alloy liquidus and solidus temperatures are estimated

  2. Approximate Solution of Dam-break Flow of Low Viscosity Bingham Fluid

    Science.gov (United States)

    Puay, How Tion; Hosoda, Takashi

    In this study, we investigate the characteristics of dam-break flow of low viscosity Bingham fluid by deriving an approximate solution for the time development of the front position and depth at the origin of the flow. The asymptotic solutions representing the characteristic of Bingham fluid in the limit of low plastic viscosity are verified with a depth-averaged numerical model. Numerical simulations showed that with the decrease of plastic viscosity, the time development of the front position and depth at the origin approach to the theoretical asymptotic solution.

  3. Time Dependent and Steady Uni-axial Elongational Viscosity

    DEFF Research Database (Denmark)

    Nielsen, Jens K.; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    Here we present measurements of transient and steady uni-axial elongational viscosity, using the Filament Stretching Rheometer1 or FSR1 (see Fig. 1) of the following melts: Four narrow MMD polystyrene (PS) samples with weight-average molar mass Mw in the range of 50k to 390k. Three different bi......-disperse samples, mixed from the narrow MMD PS. Two low-density polyethylene (LDPE) melts (Lupolen 1840D and 3020D). A steady-state viscosity was kept for 1-2.5 Hencky strain units in all measurements....

  4. Viscosity Measurement: A Virtual Experiment - Abstract of Issues 9907W

    Science.gov (United States)

    Papadopoulos, N.; Pitta, A. T.; Markopoulos, N.; Limniou, M.; Lemos, M. A. N. D. A.; Lemos, F.; Freire, F. G.

    1999-11-01

    Viscosity Measurement: A Virtual Experiment simulates a series of viscosity experiments. Viscosity is an important subject in chemistry and chemical engineering. It is important when dealing with intermolecular forces in liquids and gases and it has enormous relevance in all technological aspects of equipment dealing with liquids or gases. Most university-level chemistry courses include viscosity to some extent. Viscosity Measurement includes three virtual experiments: an Ostwald viscometer simulator, a falling-ball viscometer simulator, and a balance simulator for a simple determination of the density of a liquid. The Ostwald viscometer simulator and the balance simulator allow the student to find out how composition and temperature influence the density and viscosity of an ethanol-water mixture. The falling-ball viscometer simulator allows the student to determine experimentally the size and density of the ball required to measure viscosity of various liquids. Each virtual experiment includes a corresponding theoretical section. Support from the program is sufficient to enable the students to carry out a virtual experiment sensibly and on their own. Preparation is not essential. Students can use the program unsupervised, thus saving staff time and allowing flexibility in students' time. The design of the program interface plays a key role in the success of a simulated experiment. Direct manipulation has greater intuitive appeal than alternative interface forms such as menus and has been observed to provide performance and learning advantages (1). We tried to design an interface that is visually attractive, is user friendly with simple and intuitive navigation, and provides appropriate schematic animations to clarify the principles of the laboratory procedures. The opening screen presents the virtual experiments that can be selected. Clicking an icon takes the student to the appropriate section. Viscosity Measurement allows the student to concentrate on the

  5. Viscosity measurements of molten refractory metals using an electrostatic levitator

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Paradis, Paul-François; Okada, Junpei T; Watanabe, Yuki

    2012-01-01

    Viscosities of several refractory metals (titanium, nickel, zirconium, niobium, ruthenium, rhodium, hafnium, iridium and platinum) and terbium have been measured by the oscillation drop method with an improved procedure. The measured data were less scattered than our previous measurements. Viscosities at their melting temperatures showed good agreement with literature values and some predicted values. (paper)

  6. Polymeric nanoparticles as OCT contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Al Rawashdeh, Wa' el [RWTH Aachen University, Experimental Molecular Imaging (Germany); Kray, Stefan [RWTH Aachen University, Institute for Semiconductor Electronics (Germany); Pich, Andrij; Pargen, Sascha; Balaceanu, Andreea [RWTH Aachen University, Interactive Material Research (DWI) (Germany); Lenz, Markus; Spoeler, Felix [RWTH Aachen University, Institute for Semiconductor Electronics (Germany); Kiessling, Fabian, E-mail: fkiessling@ukaachen.de; Lederle, Wiltrud [RWTH Aachen University, Experimental Molecular Imaging (Germany)

    2012-12-15

    In this study, the optical properties of two nano-sized polymer colloids in optical coherence tomography (OCT) were compared in vitro with respect to their potential use as contrast agents. We used two types of particles: compact hydrophobic spherical polystyrene (PS) particles and soft water-swollen nanogel (NG) particles both with grafted hydrophilic shell, both prepared at two different sizes (PS at 300 and 150 nm, NG at 300 and 200 nm). The OCT backscattering signals of the particles in a vessel-mimicking highly scattering agar/TiO{sub 2} phantom were compared on either number of particles or weight percent. Larger particles and higher concentrations produced higher OCT contrast. At each concentration tested, a markedly higher contrast was achieved by PS particles than NG particles. PS particles generated a markedly higher OCT contrast than the phantom at concentrations of at least 1 Multiplication-Sign 10{sup 10} or 0.1 % for PS 300 nm and at least 3 Multiplication-Sign 10{sup 11} particles/mL or 0.4 % for PS 150 nm. The contrast generated by NG 300 nm was above the phantom contrast at concentrations of at least 3 Multiplication-Sign 10{sup 11} particles/mL or 1 %, whereas NG 200 nm only at 4 %. At any given weight percent, the differences in OCT contrast between differently sized particles were much less evident than in the comparison based on particle number. PS 300 nm generated also a good contrast ex vivo on chicken muscle tissue. These results strongly suggest that PS spheres have strong potential as intravascular OCT contrast agent, while NG particles need further contrast enhancer for being used as OCT contrast agent.

  7. Experimental and modeling investigations of solubility and saturated liquid densities and viscosities for binary systems (methane +, ethane +, and carbon dioxide + 2-propanol)

    International Nuclear Information System (INIS)

    Nourozieh, Hossein; Kariznovi, Mohammad; Abedi, Jalal

    2013-01-01

    Highlights: • Solubilities of CH 4 , C 2 H 6 , and CO 2 in 2-propanol and saturated density and viscosity. • Solubility of C 2 H 6 in 2-propanol is higher than CH 4 and CO 2 . • Dissolution of CO 2 increases liquid density and reduces liquid viscosity. • Liquid density and viscosity reduces with dissolution of CH 4 and C 2 H 6 . • Solubilities and saturated liquid densities were predicted with SRK and PR EOS. -- Abstract: Solubilities of methane, ethane, and carbon dioxide in 2-propanol have been measured at the temperatures (303 and 323) K and at the pressures up to 6 MPa using an in-house designed PVT apparatus. The saturated liquid properties, density and viscosity, were also measured in each experiment. Prior to the phase equilibrium measurements, the density and viscosity of pure 2-propanol were measured at the temperatures (303 and 323) K over the pressure range (0.1 to 10) MPa. The dissolution of carbon dioxide in 2-propanol caused a decline in the viscosity of saturated liquid phase while an increase in the density of gas-expanded liquid was observed. The viscosity-pressure trends for methane- and ethane-saturated liquid viscosities were similar to carbon dioxide, but the saturated liquid densities decreased with the dissolution of methane and ethane in 2-propanol. Solubility increased with pressure and decreased with temperature for all compressed gases (methane, ethane and carbon dioxide). The experimental data were well correlated using Soave–Redlich–Kwong and Peng–Robinson equations of state. The solubilities and saturated liquid densities were well represented with both equations of state, and there is no superior equation of state for the modeling of the phase compositions and saturated liquid densities

  8. Experimental density and viscosity measurements of di(2ethylhexyl)sebacate at high pressure

    International Nuclear Information System (INIS)

    Paredes, Xavier; Fandino, Olivia; Pensado, Alfonso S.; Comunas, Maria J.P.; Fernandez, Josefa

    2012-01-01

    Highlights: → We measure viscosities for di(2-ethylhexyl)sebacate from (298.15 to 398.15) K and up to 60 MPa. → We measure densities for DEHS from (298.15 to 373.15) K and from (0.1 to 60) MPa. → The reported and lit. data were used in a viscosity correlation from (273 to 491) K and up to 1.1 GPa. → This correlation could be used in industrial equipment that operate at high pressures. - Abstract: Experimental densities and dynamic viscosities of di(2-ethylhexyl)sebacate (DEHS) are the object of study in this work. DEHS could be a useful industrial reference fluid for moderately high viscosity at high pressures as it is often used as a pressure transmitting fluid. At atmospheric pressure the density and viscosity measurements have been performed in a rotational SVM 3000 Stabinger viscometer from (273.15 to 373.15) K, whereas from (0.1 to 60) MPa and from (298.15 to 398.15) K an automated Anton Paar DMA HPM vibrating-tube densimeter, and a high-pressure rolling-ball viscometer were used. Several Vogel-Fulcher-Tammann type equations were used to fit the experimental values of viscosity to the pressure and temperature. The measured viscosity data have been used together with previous data found in the literature to establish a correlation of the viscosity surface η(T, p) of DEHS, covering a temperature range from (273 to 491) K and pressure up to 1.1 GPa. This correlation could be used in industrial equipment like viscometers and other devices that operate at high pressures. Our viscosity data have also been fitted as a function of temperature and volume to the thermodynamic scaling model of Roland et al. [C.M. Roland, S. Bair, R. Casalini, J. Chem. Phys. 125 (2006) 124508].

  9. Evolving chemometric models for predicting dynamic process parameters in viscose production

    Energy Technology Data Exchange (ETDEWEB)

    Cernuda, Carlos [Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz (Austria); Lughofer, Edwin, E-mail: edwin.lughofer@jku.at [Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz (Austria); Suppan, Lisbeth [Kompetenzzentrum Holz GmbH, St. Peter-Str. 25, 4021 Linz (Austria); Roeder, Thomas; Schmuck, Roman [Lenzing AG, 4860 Lenzing (Austria); Hintenaus, Peter [Software Research Center, Paris Lodron University Salzburg (Austria); Maerzinger, Wolfgang [i-RED Infrarot Systeme GmbH, Linz (Austria); Kasberger, Juergen [Recendt GmbH, Linz (Austria)

    2012-05-06

    forgetting mechanisms may be integrated in order to out-date older learned relations and to account for more flexibility of the models. The results show that our approach is able to overcome the huge prediction errors produced by various state-of-the-art chemometric models. It achieves a high correlation between observed and predicted target values in the range of [0.95,0.98] over a 3 months period while keeping the relative error below the reference error value of 3%. In contrast, the off-line techniques achieved correlations below 0.5, ten times higher error rates and the more deteriorate, the more time passes by.

  10. Compressive Phase Contrast Tomography

    International Nuclear Information System (INIS)

    Maia, Filipe; MacDowell, Alastair; Marchesini, Stefano; Padmore, Howard A.; Parkinson, Dula Y.; Pien, Jack; Schirotzek, Andre; Yang, Chao

    2010-01-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  11. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks

    International Nuclear Information System (INIS)

    Walton, O.R.; Braun, R.L.

    1986-01-01

    Employing nonequilibrium molecular-dynamics methods the effects of two energy loss mechanisms on viscosity, stress, and granular-temperature in assemblies of nearly rigid, inelastic frictional disks undergoing steady-state shearing are calculated. Energy introduced into the system through forced shearing is dissipated by inelastic normal forces or through frictional sliding during collisions resulting in a natural steady-state kinetic energy density (granular-temperature) that depends on the density and shear rate of the assembly and on the friction and inelasticity properties of the disks. The calculations show that both the mean deviatoric particle velocity and the effective viscosity of a system of particles with fixed friction and restitution coefficients increase almost linearly with strain rate. Particles with a velocity-dependent coefficient of restitution show a less rapid increase in both deviatoric velocity and viscosity as strain rate increases. Particles with highly dissipative interactions result in anisotropic pressure and velocity distributions in the assembly, particularly at low densities. At very high densities the pressure also becomes anisotropic due to high contact forces perpendicular to the shearing direction. The mean rotational velocity of the frictional disks is nearly equal to one-half the shear rate. The calculated ratio of shear stress to normal stress varies significantly with density while the ratio of shear stress to total pressure shows much less variation. The inclusion of surface friction (and thus particle rotation) decreases shear stress at low density but increases shear stress under steady shearing at higher densities

  12. Studying effect of carrier fluid viscosity in magnetite based ferrofluids using optical tweezers

    Science.gov (United States)

    Savitha, S.; Iyengar, Shruthi S.; Ananthamurthy, Sharath; Bhattacharya, Sarbari

    2018-02-01

    Ferrofluids with varying viscosities of carrier fluids have been prepared with magnetite (Fe3O4) nanoparticles. The nanoparticles were synthesized by chemical co-precipitation and characterized using X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). They were found to be nearly spherical in shape with an almost uniform size of 13nm. The superparamagnetic nature of the water based ferrofluids at room temperature was established by SQUID magnetometry. Dynamic light scattering (DLS) was carried out to establish the size of the nanoparticle clusters in the ferrofluids synthesized. The results indicate an increase in cluster size with increase in carrier fluid viscosity. This is supported by results from Raman Spectroscopy. A further attempt to characterise these ferrofluids was made by studying the behaviour of well characterised non-magnetic micron sized probes that are optically trapped while suspended in the ferrofluid. An increase in carrier fluid viscosity results in a decrease in corner frequency when only the carrier fluid is used as the suspending medium. When the magnetic component is also present the corner frequency is higher than with just the carrier fluid. This relative increase happens at all laser powers at the trapping plane. This trend is also found to be independent of the size and material of the probe particle. Comparisons of various parameters that influence optical trapping lead us to believe that the enhancement could be due to a directed motion of the magnetic clusters in the presence of an optical trap.

  13. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    is in exact conformity with all the previous measurements [7,10–13]. The CASCADE calculations (solid lines in figure 1) used in this first level of analysis do not include any viscosity or temperature-dependent nuclear level density parameter a. The γ and particle decay are calculated using the standard prescriptions as ...

  14. Mantle viscosity structure constrained by joint inversions of seismic velocities and density

    Science.gov (United States)

    Rudolph, M. L.; Moulik, P.; Lekic, V.

    2017-12-01

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle upwellings, sinking of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Modeling the long-wavelength dynamic geoid allows us to constrain the radial viscosity profile of the mantle. Typically, in inversions for the mantle viscosity structure, wavespeed variations are mapped into density variations using a constant- or depth-dependent scaling factor. Here, we use a newly developed joint model of anisotropic Vs, Vp, density and transition zone topographies to generate a suite of solutions for the mantle viscosity structure directly from the seismologically constrained density structure. The density structure used to drive our forward models includes contributions from both thermal and compositional variations, including important contributions from compositionally dense material in the Large Low Velocity Provinces at the base of the mantle. These compositional variations have been neglected in the forward models used in most previous inversions and have the potential to significantly affect large-scale flow and thus the inferred viscosity structure. We use a transdimensional, hierarchical, Bayesian approach to solve the inverse problem, and our solutions for viscosity structure include an increase in viscosity below the base of the transition zone, in the shallow lower mantle. Using geoid dynamic response functions and an analysis of the correlation between the observed geoid and mantle structure, we demonstrate the underlying reason for this inference. Finally, we present a new family of solutions in which the data uncertainty is accounted for using covariance matrices associated with the mantle structure models.

  15. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems

    International Nuclear Information System (INIS)

    Toghraie, Davood; Alempour, Seyed Mohammadbagher; Afrand, Masoud

    2016-01-01

    In this paper, experimental determination of dynamic viscosity of water based magnetite nanofluid (Fe 3 O 4 /water) was performed. The viscosity was measured in the temperature range of 20–55 °C for various samples with solid volume fractions of 0.1%, 0.2%, 0.4%, 1%, 2% and 3%. The results showed that the viscosity considerably decreases with increasing temperature. Moreover, the viscosity enhances with an increase in the solid volume fraction, remarkably. The calculated viscosity ratios showed that the maximum viscosity enhancement was 129.7%. Using experimental data, a new correlation has been proposed to predict the viscosity of magnetite nanofluid (Fe 3 O 4 /water). A comparison between the experimental results and the correlation outputs showed that the proposed model has a suitable accuracy. - Highlights: • Preparing Magnetite nanofluids with solid volume fractions up to 3%. • Measuring viscosity in temperature range of 20–55 °C using Brookfield Viscometer. • Maximum viscosity enhancement occurred at volume fraction of 3% and was 129.7%. • Proposing new correlation to predict the viscosity of Fe3O4/water nanofluid.

  16. A model for the viscosity of dilute smectite gels

    International Nuclear Information System (INIS)

    Liu, Di; Liu, Longcheng

    2010-01-01

    Document available in extended abstract form only. A simple yet accurate model describing the viscosity of dilute suspensions of sodium montmorillonite in low ionic strength waters is presented. Taking the clay particle and the surrounding clouds of ions as whole as an uncharged but soft particle, the Huggins' equation is extended in the model to account for both the primary and the secondary electro-viscous effects, by use of the notion of an effective volume fraction. In the model, however, we do not represent the clay particle as a sphere surrounded by immobile water layer with thickness of a Debye length, as did by Adachi et al. (1998) who used the co-volume fraction to approximate the effective volume fraction. We visualize the effective geometry of the particle and the associated ionic atmosphere as an ellipsoid. This representation is more practical and more plausible, because in the limit of large ionic strength, the electrolyte ions have been screened to a significant extent so that the charged particle behaves just like an uncharged one. As a result, the application of the Simha's equation of intrinsic viscosity for ellipsoidal particle following with random Brownian motion enables us to obtain an analytical expression for the primary electro-viscous effect. More importantly, the available models for hard plate-like particles can be used to aid in the quantification of the secondary electro-viscous effect. The development of the model is based firmly on precise measurements of the viscosity of sufficiently dilute suspensions of sodium montmorillonite in low concentration NaCl solutions (at room temperature) using Ostwald capillary viscometers. The obtained data clearly demonstrate the primary and the secondary electro-viscous effects. That is, with an decrease of ionic strength, the intrinsic viscosity which is the intercept of the extrapolation of the plot at zero volume fraction will increase, and the slope of the linear part which appears in

  17. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    International Nuclear Information System (INIS)

    Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2008-01-01

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 deg. C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  18. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    Science.gov (United States)

    Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2008-12-01

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 °C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  19. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Hee-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Kwang-Won [Department of Orthopaedic Surgery, Eulji University School of Medicine, Daejeon 302-799 (Korea, Republic of); Chung, Young-Jin [Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2008-12-15

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 deg. C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  20. Gluon gas viscosity in nonperturbative region

    International Nuclear Information System (INIS)

    Il'in, S.V.; Mogilevskij, O.A.; Smolyanskij, S.A.; Zinov'ev, G.M.

    1992-01-01

    Using the Green-Kubo-type formulae and the cutoff model motivated by Monte Carlo lattice gluodynamics simulations we find the temperature behaviour of shear viscosity of gluon gas in the region of deconfinement phase transition. 22 refs.; 1 fig. (author)

  1. A Deoxyuridine-Based Far-Red Emitting Viscosity Sensor.

    Science.gov (United States)

    Wang, Mengyuan; Zhang, Yuanwei; Yue, Xiling; Yao, Sheng; Bondar, Mykhailo V; Belfield, Kevin D

    2016-05-30

    A novel deoxyuridine (dU) benzothiazolium (BZ) derivative, referred to as dU-BZ, is reported that was synthesized via Sonogashira coupling reaction methodology. The deoxyuridine building block was introduced to enhance hydrophilicity, while an alkynylated benzothiazolium dye was incorporated for long wavelength absorption to reduce potential phototoxicity that is characteristic of using UV light to excite common fluorphores, better discriminate from native autofluorescence, and potentially facilitate deep tissue imaging. An impressive 30-fold enhancement of fluorescence intensity of dU-BZ was achieved upon increasing viscosity. Fluorescence quantum yields in 99% glycerol/1% methanol (v/v) solution as a function of temperature (293-343 K), together with viscosity-dependent fluorescence lifetimes and radiative and non-radiative rate constants in glycerol/methanol solutions (ranging from 4.8 to 950 cP) were determined. Both fluorescence quantum yields and lifetimes increased with increased viscosity, consistent with results predicted by theory. This suggests that the newly-designed compound, dU-BZ, is capable of functioning as a probe of local microviscosity, an aspect examined by in vitro bioimaging experiments.

  2. A Deoxyuridine-Based Far-Red Emitting Viscosity Sensor

    Directory of Open Access Journals (Sweden)

    Mengyuan Wang

    2016-05-01

    Full Text Available A novel deoxyuridine (dU benzothiazolium (BZ derivative, referred to as dU-BZ, is reported that was synthesized via Sonogashira coupling reaction methodology. The deoxyuridine building block was introduced to enhance hydrophilicity, while an alkynylated benzothiazolium dye was incorporated for long wavelength absorption to reduce potential phototoxicity that is characteristic of using UV light to excite common fluorphores, better discriminate from native autofluorescence, and potentially facilitate deep tissue imaging. An impressive 30-fold enhancement of fluorescence intensity of dU-BZ was achieved upon increasing viscosity. Fluorescence quantum yields in 99% glycerol/1% methanol (v/v solution as a function of temperature (293–343 K, together with viscosity-dependent fluorescence lifetimes and radiative and non-radiative rate constants in glycerol/methanol solutions (ranging from 4.8 to 950 cP were determined. Both fluorescence quantum yields and lifetimes increased with increased viscosity, consistent with results predicted by theory. This suggests that the newly-designed compound, dU-BZ, is capable of functioning as a probe of local microviscosity, an aspect examined by in vitro bioimaging experiments.

  3. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  4. Green-Kubo relations for the viscosity of biaxial nematic liquid crystals

    Science.gov (United States)

    Sarman, Sten

    1996-09-01

    We derive Green-Kubo relations for the viscosities of a biaxial nematic liquid crystal. In this system there are seven shear viscosities, three twist viscosities, and three cross coupling coefficients between the antisymmetric strain rate and the symmetric traceless pressure tensor. According to the Onsager reciprocity relations these couplings are equal to the cross couplings between the symmetric traceless strain rate and the antisymmetric pressure. Our method is based on a comparison of the microscopic linear response generated by the SLLOD equations of motion for planar Couette flow (so named because of their close connection to the Doll's tensor Hamiltonian) and the macroscopic linear phenomenological relations between the pressure tensor and the strain rate. In order to obtain simple Green-Kubo relations we employ an equilibrium ensemble where the angular velocities of the directors are identically zero. This is achieved by adding constraint torques to the equations for the molecular angular accelerations. One finds that all the viscosity coefficients can be expressed as linear combinations of time correlation function integrals (TCFIs). This is much simpler compared to the expressions in the conventional canonical ensemble, where the viscosities are complicated rational functions of the TCFIs. The reason for this is, that in the constrained angular velocity ensemble, the thermodynamic forces are given external parameters whereas the thermodynamic fluxes are ensemble averages of phase functions. This is not the case in the canonical ensemble. The simplest way of obtaining numerical estimates of viscosity coefficients of a particular molecular model system is to evaluate these fluctuation relations by equilibrium molecular dynamics simulations.

  5. Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system.

    Science.gov (United States)

    Shimokawa, Y; Matsuura, Y; Hirano, T; Sakai, K

    2016-12-01

    Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ⋅ s.

  6. Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system

    Science.gov (United States)

    Shimokawa, Y.; Matsuura, Y.; Hirano, T.; Sakai, K.

    2016-12-01

    Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ṡ s.

  7. Detection of irradiated peppers by viscosity measurement at extremely high pH

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko

    1996-01-01

    The viscosities of aqueous suspensions of irradiated peppers determined after heat gelatinization were influenced by the pH of the suspension to a greater degree than those of unirradiated ones. Viscosity measurement under an extremely alkaline condition (pH 13.8) resulted in a significant different between irradiated peppers and unirradiated ones, irrespective of the planting locality and storage period. All of the pepper samples irradiated at 5 kGy showed viscosity values significantly lower than unirradiated ones. (Author)

  8. Boundary layers and the vanishing viscosity limit for incompressible 2D flow

    OpenAIRE

    Filho, Milton C. Lopes

    2007-01-01

    This manuscript is a survey on results related to boundary layers and the vanishing viscosity limit for incompressible flow. It is the lecture notes for a 10 hour minicourse given at the Morningside Center, Academia Sinica, Beijing, PRC from 11/28 to 12/07, 2007. The main topics covered are: a derivation of Prandtl's boundary layer equation; an outline of the rigorous theory of Prandtl's equation, without proofs; Kato's criterion for the vanishing viscosity limit; the vanishing viscosity limi...

  9. Measuring the density and viscosity of H2S-loaded aqueous methyldiethanolamine solution

    International Nuclear Information System (INIS)

    Shokouhi, Mohammad; Ahmadi, Reza

    2016-01-01

    Highlights: • Measurement solubility of H 2 S in 46.78 mass% MDEA aqueous solutions. • Measurement density of H 2 S loaded of MDEA aqueous solution. • Measurement viscosity of H 2 S loaded of MDEA aqueous solution. • Correlation of the density and viscosity of H 2 S loaded of MDEA aqueous solution using modified setchenow equation. - Abstract: The density and viscosity of H 2 S-loaded aqueous 46.78 mass% methyldiethanolamine solution were experimentally measured accompanied with the solubility of H 2 S at temperatures (313.15, 328.15 and 343.15) K, pressures from vapor pressure of fresh solution up to 1.0 MPa and loadings up to 1.00 mol of H 2 S per 1 mol of amine. All experimental trials have been carried out using the new setup developed in our laboratory. It was observed that both density and viscosity of mixtures decrease by increasing temperature and density increase by increasing acid gas solubility (loading) by about 4.7%, whereas viscosity has a complicated behavior with H 2 S solubility. Viscosity decreases by increasing acid gas solubility (loading) at 313.15 K by about 20.6% and at 328.15 K by about 15.0%, but it is comparable at 343.15 K in terms of H 2 S solubility. Finally, the experimental density and viscosity data correlated using Modified Setchenow equation.

  10. Effects of the positioning force of electrostatic levitators on viscosity measurements

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Paradis, Paul-Francois; Koike, Noriyuki; Watanabe, Yuki

    2009-01-01

    Electrostatic levitators use strong electric fields to levitate and accurately position a sample against gravity. In this study, the effects of the electric field are investigated with regard to viscosity measurements conducted with the oscillating drop method. The effects of the external field on viscosity measurements are experimentally confirmed by changing the sample size. Moreover, a numerical simulation based on a simple mass-spring-damper system can reproduce the experimental observations. Based on the above results, measurement procedures are improved. These help to minimize the effect of the positioning force and to increase the accuracy of the viscosity measurements.

  11. Deep and wide gaps by super Earths in low-viscosity discs

    Science.gov (United States)

    Ginzburg, Sivan; Sari, Re'em

    2018-06-01

    Planets can open cavities (gaps) in the protoplanetary gaseous discs in which they are born by exerting gravitational torques. Viscosity counters these torques and limits the depletion of the gaps. We present a simple one-dimensional scheme to calculate the gas density profile inside gaps by balancing the gravitational and viscous torques. By generalizing the results of Goodman & Rafikov (2001), our scheme properly accounts for the propagation of angular momentum by density waves. This method allows us to easily study low-viscosity discs, which are challenging for full hydrodynamical simulations. We complement our numerical integration by analytical equations for the gap's steady-state depth and width as a function of the planet's to star's mass ratio μ, the gas disc's aspect ratio h, and its Shakura & Sunyaev viscosity parameter α. Specifically, we focus on low-mass planets (μ < μth ≡ h3) and identify a new low-viscosity regime, α < h(μ/μth)5, in which the classical analytical scaling relations are invalid. Equivalently, this low-viscosity regime applies to every gap that is depleted by more than a factor of (μth/μ)3 relative to the unperturbed density. We show that such gaps are significantly deeper and wider than previously thought, and consequently take a longer time to reach equilibrium.

  12. Viscosity measurement - probably a means for detecting radiation treatment of spices?

    International Nuclear Information System (INIS)

    Heide, L.; Albrich, S.; Boegl, K.W.

    1987-12-01

    The viscosity of 13 different spices and dried vegetables in total was measured. Optimal conditions were first determined for each product, i.e. concentration, pH-value, temperature, particle size and soaking time. For method evaluation, examinations were primarily performed to study the effect of storage, the reproducibility and the influence of the different varieties of the same spice. In supplement, for pepper, the viscosity was measured as a function of radiation dose. In summation, significant changes in the gel forming capability after irradiation could be observed after preliminary experiments in 8 dried spices (ginger, carrots, leek, cloves, pepper, celery, cinnamon and onions). With 3 spices (ginger, pepper and cinnamon) could the results from examining all different varieties of the same spice be substantiated. An additional influence of storage time on viscosity could not be proved during the investigative period of 8 months. Generally seen, there is no possibility of being able to identify an irradiated spice on the basis of viscosity measurements alone, since the difference between the varieties of one and the same spice is considerably great. However, radiation treatment can be reliably excluded with ginger, pepper and cinnamon, if the viscosities are high (10-20 Pa x s). (orig./MG) [de

  13. Effect of Polyvinyl Siloxane Viscosity on Accuracy of Dental Implant Impressions

    Directory of Open Access Journals (Sweden)

    Ahmad Ghahremanloo

    2017-02-01

    Full Text Available Objectives: The aim of this study was to compare the accuracy of dental implant impressions obtained by a combination of different impression techniques and viscosities of polyvinyl siloxane (PVS.Materials and Methods: Four parallel fixtures were placed between mental foramina in a master model of lower dental arch. Three different viscosities (putty/light body, medium body/light body, and monophase: heavy body and direct and indirect techniques (six groups were used, and seven impressions were obtained from each group (n=42. To measure the accuracy of impressions, drift, horizontal, and vertical angles of the implants, as well as the hex rotation of the implants in casts were evaluated using a digitizer device (1μm accuracy, in comparison with master arch. Data were analyzed using five-factor two-way ANOVA and Tukey’s post-hoc test.Results: The accuracy of impressions was assessed and the results showed that direct technique was not significantly different from indirect technique (P>0.05. Also, there were no significant differences between the mentioned viscosities except for the horizontal angle (P=0.006.Conclusions: Viscosity of impression materials is of high significance for the accuracy of dental impressions.Keywords: Dental Materials; Dental Implants; Dental Impression Technique; Viscosity; Vinyl Polysiloxane; Dimensional Measurement Accuracy

  14. The effect of low molecular weight multifunctional additives on heavy oil viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, T.B.P.; Yarranton, H.W.; Larter, S.R. [Calgary Univ., AB (Canada)

    2010-07-01

    Crude oils contain many small multifunctional low molecular weight components that act as linking molecules between larger functionalized species. The linkage molecules have a significant impact on the flow properties of hydrocarbon systems. This study investigated the use of a low molecular weight multiheteroatom species (LMWMH) as a molecular Velcro linking high molecular weight components together. LMWMH species were added to Albertan bitumens and heavy oil, and their impact on viscosity was investigated. Results of the experimental studies were then compared with the effects of hydrocarbon solvents on similar samples. The LMWMH species included bifunctional species and analogous alkyl and aryl monoamines that acted as blocking molecules to hinder the association of larger petroleum species. Density and viscosity measurements were conducted. A correlation method was used to predict the viscosity of the solvent-diluted heavy oil and bitumen samples. The study showed that of the tested additives, only aniline demonstrated an additional viscosity-reducing effect. The aniline inhibited asphaltene association and is a promising candidate for enhanced in-situ bitumen viscosity reduction. 23 refs., 4 tabs.

  15. Shear viscosity of the quark-gluon plasma in a kinetic theory approach

    International Nuclear Information System (INIS)

    Puglisi, A.; Plumari, S.; Scardina, F.; Greco, V.

    2014-01-01

    One of the main results of heavy ions collision (HIC) at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s=1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green-Kubo relations give us an exact expression to compute these coefficients. We compute shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigate a system of particles interacting via anisotropic and energy dependent cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. The correct analytic formula for shear viscosity can be used to develop a transport theory with a fixed η/s and have a comparison with physical observables like elliptic flow

  16. Magnetic viscosity study in FePt/C granular films

    International Nuclear Information System (INIS)

    Huang, Y.; Butler, W.; Zhang, Y.; Hadjipanayis, G.C.; Weller, D.

    2004-01-01

    The magnetic viscosity of FePt/C granular thin films was studied in the temperature range from 2 to 300 K in order to examine the thermal stability of the nanoparticles. The magnetic viscosity coefficient (S max ) was found to decrease with temperature because of decreased thermal activation. At low temperatures, S max showed an almost linear dependence on temperature. However, S max does not extrapolate to zero but seems to have a finite value at cryogenic temperatures

  17. Coefficients of viscosity for heavy impurity element in tokamak

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharif, R N; Bekhit, A M [Plasma Physics dept., NRC, Atomic energy Authority, Cairo, (Egypt)

    1997-12-31

    The transport of heavy impurity element in to tokamak was studied theoretically. The viscosity coefficients of chromium impurities has been calculated in 13 and 21 moment approximation, in the limit of strong fields where is the gyrofrequency of species it was found that the off diagonal coefficient approximately tends to zero. This means that the friction force in the off-diagonal direction is very small, for the perpendicular viscosity coefficient the two approximation coincide to each other. 3 figs.

  18. Effect of gamma irradiation on viscosity of aqueous solutions of some natural polymers

    International Nuclear Information System (INIS)

    Nguyen Tan Man; Truong Thi Hanh; Le Quang Luan; Le Hai; Nguyen Quoc Hien

    2000-01-01

    Effect of gamma irradiation on viscosity of aqueous solution of alginate and carbon xylmethyl cellulose (CMC) irradiated in solid state has been carried out. the viscosity of aqueous solution of alginate and CMC decreased remarkably with increasing dose and the viscosity of 2% solution of above polymers irradiated at 50 kGy was about 100 times lower than the original one. (author)

  19. Pipeline flow of heavy oil with temperature-dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Maza Quinones, Danmer; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msc@puc-rio.br

    2010-07-01

    The heavy oil produced offshore needs to be transported through pipelines between different facilities. The pipelines are usually laid down on the seabed and are submitted to low temperatures. Although heavy oils usually present Newtonian behavior, its viscosity is a strong function of temperature. Therefore, the prediction of pressure drops along the pipelines should include the solution of the energy equation and the dependence of viscosity to temperature. In this work, an asymptotic model is developed to study this problem. The flow is considered laminar and the viscosity varies exponentially with temperature. The model includes one-dimensional equations for the temperature and pressure distribution along the pipeline at a prescribed flow rate. The solution of the coupled differential equation is obtained by second-order finite difference. Results show a nonlinear behavior as a result of coupled interaction between the velocity, temperature, and temperature dependent material properties. (author)

  20. Estimation of shear viscosity based on transverse momentum correlations

    International Nuclear Information System (INIS)

    Sharma, Monika

    2009-01-01

    Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of 'shear viscosity-to-entropy' ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at √(s NN )=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.

  1. Estimation of shear viscosity based on transverse momentum correlations

    Science.gov (United States)

    STAR Collaboration; Sharma, Monika; STAR Collaboration

    2009-11-01

    Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of “shear viscosity-to-entropy” ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at s=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C˜ introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.

  2. Dependence of Helium II viscosity properties on oscillation frequency

    International Nuclear Information System (INIS)

    Nadirashvili, Z.S.; Tsakadze, J.S.

    1979-01-01

    The causes of a discrepancy in the results of measurements of He II viscosity below Tapprox. =1.6 K obtained with different measurement methods are investigated. It is shown that to obtain correct results in oscillation experiments, the condition delta>>lambda/sub ph/ should obtain, where delta is the depth of viscous wave penetration and lambda/sub ph/ is the phonon free path length. Results of viscosity measurements at different ratios delta/lambda/sub ph/ (by a wire viscometer) are presented. It is shown that for the condition delta>>lambda/sub ph/, the results obtained are in good agreement with the results of Andronikashvili (in which delta/lambda/sub ph/>100). If the mentioned relation is not satisfied, then as the value of the ratio delta/lambda/sub ph/ is decreased, the value measured for the viscosity is increasingly lower than the results of Andronikashvili

  3. Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant

    International Nuclear Information System (INIS)

    Kole, Madhusree; Dey, T K

    2010-01-01

    Various suspensions containing Al 2 O 3 nanoparticles ( 2 O 3 nanoparticles as well as temperature between 10 and 80 0 C. The prepared nanofluid, containing only 0.035 volume fraction of Al 2 O 3 nanoparticles, displays a fairly higher thermal conductivity than the base fluid and a maximum enhancement (k nf /k bf ) of ∼10.41% is observed at room temperature. The thermal conductivity enhancement of the Al 2 O 3 nanofluid based on engine coolant is proportional to the volume fraction of Al 2 O 3 . The volume fraction and temperature dependence of the thermal conductivity of the studied nanofluids present excellent correspondence with the model proposed by Prasher et al (2005 Phys. Rev. Lett. 94 025901), which takes into account the role of translational Brownian motion, interparticle potential and convection in fluid arising from Brownian movement of nanoparticles for thermal energy transfer in nanofluids. Viscosity data demonstrate transition from Newtonian characteristics for the base fluid to non-Newtonian behaviour with increasing content of Al 2 O 3 in the base fluid (coolant). The data also show that the viscosity increases with an increase in concentration and decreases with an increase in temperature. An empirical correlation of the type log(μ nf ) = A exp(-BT) explains the observed temperature dependence of the measured viscosity of Al 2 O 3 nanofluid based on car engine coolant. We further confirm that Al 2 O 3 nanoparticle concentration dependence of the viscosity of nanofluids is very well predicted on the basis of a recently reported theoretical model (Masoumi et al 2009 J. Phys. D: Appl. Phys. 42 055501), which considers Brownian motion of nanoparticles in the nanofluid.

  4. Influence of fluid viscosity on vortex cavitation at a suction pipe inlet

    International Nuclear Information System (INIS)

    Ezure, Toshiki; Ito, Kei; Kamide, Hideki; Kameyama, Yuri; Kunugi, Tomoaki

    2016-01-01

    Cavitation is a highly important issue in various fluid machineries. In the design of an advanced loop-type sodium-cooled fast reactor in Japan, vortex cavitation is also a significant issue for the integrity of the reactor structure. Thus, an evaluation method for vortex cavitation is required. In this study, vortex cavitation at a single suction pipe inlet was studied under several different viscosity conditions including its transient behavior. The intermittent occurrence behaviors of vortex cavitation were grasped by visualization measurements. The experimental results showed that the influence of the kinematic viscosity was obvious under a high kinematic viscosity. However, the influence became smaller with decreasing kinematic viscosity. From these results, the non-dimensional circulation, which was defined as the ratio of the local circulation to the kinematic viscosity, was deduced as an evaluation parameter to estimate the influence of the kinematic viscosity. Cavitation factors at transition points from continuous occurrence to intermittent occurrences were also evaluated as representative points where vortex cavitation occurs. Then, the occurrences of vortex cavitation were expressed as a relation between the cavitation factor at transition points and the non-dimensional circulation. As a result, it was clarified that the cavitation factor at transition points increased linearly in relatively small non-dimensional circulation, while it was nearly constant in relatively large non-dimensional circulation. (author)

  5. Electron-processing technology: A promising application for the viscose industry

    Science.gov (United States)

    Stepanik, T. M.; Rajagopal, S.; Ewing, D.; Whitehouse, R.

    1998-06-01

    In marketing its IMPELA ® line of high power, high-throughput industrial accelerators, Atomic Energy of Canada Limited (AECL) is working with viscose (rayon) companies world-wide to integrate electron-processing technology as part of the viscose manufacturing process. The viscose industry converts cellulose wood pulp into products such as staple fiber, filament, cord, film, packaging, and non-edible sausage casings. This multibillion dollar industry is currently suffering from high production costs, and is facing increasingly stringent environmental regulations. The use of electron-treated pulp can significantly lower production costs and can provide equally significant environmental benefits. This paper describes our current understanding of the benefits of using electron-treated pulp in this process, and AECL's efforts in developing this technology.

  6. Excess Molar Volumes and Viscosities of Binary Mixture of Diethyl Carbonate+Ethanol at Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    MA Peisheng; LI Nannan

    2005-01-01

    The purpose of this work was to report excess molar volumes and dynamic viscosities of the binary mixture of diethyl carbonate (DEC)+ethanol. Densities and viscosities of the binary mixture of DEC+ethanol at temperatures 293.15 K-343.15 K and atmospheric pressure were determined over the entire composition range. Densities of the binary mixture of DEC+ethanol were measured by using a vibrating U-shaped sample tube densimeter. Viscosities were determined by using Ubbelohde suspended-level viscometer. Densities are accurate to 1.0×10-5 g·cm-3, and viscosities are reproducible within ±0.003 mPa·s. From these data, excess molar volumes and deviations in viscosity were calculated. Positive excess molar volumes and negative deviations in viscosity for DEC+ethanol system are due to the strong specific interactions.All excess molar vo-lumes and deviations in viscosity fit to the Redlich-Kister polynomial equation.The fitting parameters were presented,and the average deviations and standard deviations were also calculated.The errors of correlation are very small.It proves that it is valuable for estimating densities and viscosities of the binary mixture by the correlated equation.

  7. Empirical equations for viscosity and specific heat capacity determination of paraffin PCM and fatty acid PCM

    Science.gov (United States)

    Barreneche, C.; Ferrer, G.; Palacios, A.; Solé, A.; Inés Fernández, A.; Cabeza, L. F.

    2017-10-01

    Phase change materials (PCM) used in thermal energy storage (TES) systems have been presented, over recent years, as one of the most effective options in energy storage. Paraffin and fatty acids are some of the most used PCM in TES systems, as they have high phase change enthalpy and in addition they do not present subcooling nor hysteresis and have proper cycling stability. The simulations and design of TES systems require the knowledge of the thermophysical properties of PCM. Thermal conductivity, viscosity, specific heat capacity (Cp) can be experimentally determined, but these are material and time consuming tasks. To avoid or to reduce them, and to have reliable data without the need of experimentation, thermal properties can be calculated by empirical equations. In this study, five different equations are given to calculate the viscosity and specific heat capacity of fatty acid PCM and paraffin PCM. Two of these equations concern, respectively, the empirical calculation of the viscosity and liquid Cp of the whole paraffin PCM family, while the other three equations presented are for the corresponding calculation of viscosity, solid Cp, liquid Cp of the whole fatty acid family of PCM. Therefore, this study summarize the work performed to obtain the main empirical equations to measure the above mentioned properties for whole fatty acid PCM family and whole paraffin PCM family. Moreover, empirical equations have been obtained to calculate these properties for other materials of these PCM groups and these empirical equations can be extrapolated for PCM with higher or lower phase change temperatures within a lower relative error 4%.

  8. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum.

    Science.gov (United States)

    Shak, S; Capon, D J; Hellmiss, R; Marsters, S A; Baker, C L

    1990-12-01

    Respiratory distress and progressive lung destruction in cystic fibrosis can be attributed to bacterial persistence and the accumulation of viscous purulent secretions in the airways. More than 30 yr ago it was suggested that the large amounts of DNA in purulent secretions contribute to its viscosity and that bovine pancreatic DNase I could reduce the viscosity. To evaluate the potential clinical utility of recombinant human DNase I (rhDNase) in the treatment of cystic fibrosis, we have cloned, sequenced, and expressed rhDNase. Catalytic amounts of rhDNase greatly reduce the viscosity of purulent cystic fibrosis sputum, transforming it within minutes from a nonflowing viscous gel to a flowing liquid. The reduction in viscosity is associated with a decrease in size of DNA in the sputum. Inhalation of a rhDNase aerosol may be a simple direct approach that will help individuals with cystic fibrosis and other patients with pneumonia or bronchitis to clear their airways of purulent secretions.

  9. Viscosity and Analytical Differences between Raw Milk and UHT Milk of Czech Cows

    Directory of Open Access Journals (Sweden)

    Kumbár V.

    2015-06-01

    Full Text Available Viscosity and analytical differences in four milk samples from Czech cows were described. Three samples of UHT milk (0.5%, 1.5%, and 3.5% fat and one sample of raw milk from a Czech bio-farm were analyzed. The following analytical properties were observed: titratable acidity, fat content, dry matter content, and protein content. Titratable acidity and dry matter content decreased in dependence upon the increasing milk fat content. The protein content ranged 3.51-3.57 g per 100 g milk. The milk flow behaviour represented by density, dynamic and kinematic viscosity, as well as the dependence of the milk flow behaviour on temperature were investigated. These properties were measured using a digital densitometer and a rotary viscometer. Milk density was studied at temperatures ranging 0-60 °C and dynamic viscosity at 0-100 °C. With increasing temperature, the density and dynamic viscosity of the studied milk samples decreased. The temperature dependence of dynamic viscosity was manifested in all samples. Kinematic viscosity was calculated from experimental data. Furthermore, mathematical models using Power law and Gaussian fitting were constructed. Determination coefficients achieved high values (0.843-0.997.

  10. Decreased hematocrit-to-viscosity ratio and increased lactate dehydrogenase level in patients with sickle cell anemia and recurrent leg ulcers.

    Directory of Open Access Journals (Sweden)

    Philippe Connes

    Full Text Available Leg ulcer is a disabling complication in patients with sickle cell anemia (SCA but the exact pathophysiological mechanisms are unknown. The aim of this study was to identify the hematological and hemorheological alterations associated with recurrent leg ulcers. Sixty-two SCA patients who never experienced leg ulcers (ULC- and 13 SCA patients with a positive history of recurrent leg ulcers (ULC+--with no leg ulcers at the time of the study--were recruited. All patients were in steady state condition. Blood was sampled to perform hematological, biochemical (hemolytic markers and hemorheological analyses (blood viscosity, red blood cell deformability and aggregation properties. The hematocrit-to-viscosity ratio (HVR, which reflects the red blood cell oxygen transport efficiency, was calculated for each subject. Patients from the ULC+ group were older than patients from the ULC- group. Anemia (red blood cell count, hematocrit and hemoglobin levels was more pronounced in the ULC+ group. Lactate dehydrogenase level was higher in the ULC+ group than in the ULC- group. Neither blood viscosity, nor RBC aggregation properties differed between the two groups. HVR was lower and RBC deformability tended to be reduced in the ULC+ group. Our study confirmed increased hemolytic rate and anemia in SCA patients with leg ulcers recurrence. Furthermore, our data suggest that although systemic blood viscosity is not a major factor involved in the pathophysiology of this complication, decreased red blood cell oxygen transport efficiency (i.e., low hematocrit/viscosity ratio may play a role.

  11. Effect of Qingnao tablet on blood viscosity of rat model of blood stasis induced by epinephrine

    Science.gov (United States)

    Xie, Guoqi; Hao, Shaojun; Ma, Zhenzhen; Liu, Xiaobin; Li, Jun; Li, Wenjun; Zhang, Zhengchen

    2018-04-01

    To establish a rat model of blood stasis with adrenaline (Adr) subcutaneous injection and ice bath stimulation. The effects of different doses on the blood viscosity of blood stasis model rats were observed. The rats were randomly divided into 6 groups: blank control group (no model), model group, positive control group, high, middle and low dose group. The whole blood viscosity and plasma viscosity were detected by blood viscosity instrument. Compared with the blank group, model group, high shear, low shear whole blood viscosity and plasma viscosity were significantly increased, TT PT significantly shortened, APTT was significantly prolonged, FIB increased significantly, indicating that the model was successful. Compared with the model group, can significantly reduce the Naoluotong group (cut, low cut). Qingnaopian high dose group (low cut), middle dose group (cut, low shear blood viscosity) (Pgroup, high dose group (Pgroup (Pblood rheology of blood stasis mice abnormal index, decrease the blood viscosity, blood stasis has certain hemostatic effect.

  12. Reduced viscosity for flagella moving in a solution of long polymer chains

    Science.gov (United States)

    Zhang, Yuchen; Li, Gaojin; Ardekani, Arezoo M.

    2018-02-01

    The bacterial flagellum thickness is smaller than the radius of gyration of long polymer chain molecules. The flow velocity gradient over the length of polymer chains can be nonuniform and continuum models of polymeric liquids break in this limit. In this work, we use Brownian dynamics simulations to study a rotating helical flagellum in a polymer solution and overcome this limitation. As the polymer size increases, the viscosity experienced by the flagellum asymptotically reduces to the solvent viscosity. The contribution of polymer molecules to the local viscosity in a solution of long polymer chains decreases with the inverse of polymer size to the power 1/2. The difference in viscosity experienced by the bacterial cell body and flagella can predict the nonmonotonic swimming speed of bacteria in polymer solutions.

  13. Fluid friction and wall viscosity of the 1D blood flow model.

    Science.gov (United States)

    Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-02-29

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Viscosity and Liquid Density of Asymmetric n-Alkane Mixtures: Measurement and Modelling

    DEFF Research Database (Denmark)

    Queimada, António J.; Marrucho, Isabel M.; Coutinho, João A.P.

    2005-01-01

    Viscosity and liquid density Measurements were performed, at atmospheric pressure. in pure and mixed n-decane. n-eicosane, n-docosane, and n-tetracosane from 293.15 K (or above the melting point) up to 343.15 K. The viscosity was determined with a rolling ball viscometer and liquid densities...... with a vibrating U-tube densimeter. Pure component results agreed, oil average, with literature values within 0.2% for liquid density and 3% for viscosity. The measured data were used to evaluate the performance of two models for their predictions: the friction theory coupled with the Peng-Robinson equation...... of state and a corresponding states model recently proposed for surface tension, viscosity, vapor pressure, and liquid densities of the series of n-alkanes. Advantages and shortcoming of these models are discussed....

  15. Viscosities in the Gluon-Plasma within a Quasiparticle Model

    CERN Document Server

    Bluhm, M; Redlich, K

    2009-01-01

    A phenomenological quasiparticle model, featuring dynamically generated self-energies of excitation modes, successfully describes lattice QCD results relevant for the QCD equation of state and related quantities both at zero and non-zero net baryon density. Here, this model is extended to study bulk and shear viscosities of the gluon-plasma within an effective kinetic theory approach. In this way, the compatibility of the employed quasiparticle ansatz with the apparent low viscosities of the strongly coupled deconfined gluonic medium is shown.

  16. The Role of Viscosity Contrast on the Plume Structure and Dynamics in High Rayleigh Number Convection

    Science.gov (United States)

    Kr, Sreenivas; Prakash, Vivek N.; Arakeri, Jaywant H.

    2010-11-01

    We study the plume structure in high Rayleigh number convection in the limit of large Prandtl numbers. This regime is relevant in Mantle convection, where the plume dynamics is not well understood due to complex rheology and chemical composition. We use analogue laboratory experiments to mimic mantle convection. Our focus in this paper is to understand the role of viscosity ratio, U, between the plume fluid and the ambient fluid on the structure and dynamics of the plumes. The PLIF technique has been used to visualize the structures of plumes rising from a planar source of compositional buoyancy at different regimes of U (1/300 to 2500). In the near-wall planform when U is one, a well-known dendritic line plume structure is observed. As U increases (U > 1; mantle hot spots), there is a morphological transition from line plumes to discrete spherical blobs, accompanied by an increase in the plume spacing and thickness. In vertical sections, as U increases (U > 1), the plume head shape changes from a mushroom-like structure to a "spherical-blob." When the U is decreased below one, (U<1; subduction regime), the formation of cellular patterns is favoured with sheet plumes. Both velocity and mixing efficiency are maximum when U is one, and decreases for extreme values of U. We quantify the morphological changes, dynamics and mixing variations of the plumes from experiments at different regimes.

  17. Refractive index and viscosity: dual sensing with plastic fibre gratings

    Science.gov (United States)

    Ferreira, Ricardo; Bilro, Lúcia; Marques, Carlos; Oliveira, Ricardo; Nogueira, Rogério

    2014-05-01

    A refractive index and viscosity sensor based on FBGs in mPOF is reported for the first time. The refractive index was measured with a sensitivity of -10:98nm=RIU and a resolution of 1 - 10-4RIU. Viscosity measurements were performed with acousto-optic modulation, obtaining a sensitivity of -94:42%=mPa • s and a resolution of 0:06mPa • s.

  18. Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    Science.gov (United States)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2018-06-01

    Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.

  19. Effect of tellurium on viscosity and liquid structure of GaSb melts

    Energy Technology Data Exchange (ETDEWEB)

    Ji Leilei [School of Material Science and Engineering, Jinan University, Jinan 250022 (China); Geng Haoran [School of Material Science and Engineering, Jinan University, Jinan 250022 (China)], E-mail: mse_genghr@ujn.edu.cn; Sun Chunjing [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Teng Xinying; Liu Yamei [School of Material Science and Engineering, Jinan University, Jinan 250022 (China)

    2008-04-03

    The behavior of GaSb melt with tellurium addition was investigated using viscometer and differential scanning calorimetry (DSC). Normally, the viscosity of all melts measured decreased with the increasing temperature. However, anomalous transition points were observed in the temperature dependence of viscosity for Ga-Sb-Te system. Corresponded with the abnormal points on the viscosity-temperature curves, there were thermal effect peaks on the DSC curves. Furthermore, viscous activation energy and flow units of these melts and their structural features were discussed in this paper.

  20. Study of thermal and chemical effects on cellulase enzymes: Viscosity measurements

    International Nuclear Information System (INIS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-01-01

    The behaviour of cellulase enzymes in phosphate saline buffer has been studied over a wide range of temperatures and enzyme concentrations by using viscosity measurements. To characterize the conformation change of cellulase versus temperature and chemical denaturants, such as guanidinium chloride (GdmCl) and urea, the information about the intrinsic viscosity and the hydrodynamic radius are necessary. The dependence of the intrinsic viscosity and the hydrodynamic radius in its random coil conformation on temperature and denaturant concentration were studied. Our results and discussions are limited to the dilute regime of concentration because of abnormalities in conformation observed in the very dilute regime due to the presence of capillary absorption effects.

  1. Study of thermal and chemical effects on cellulase enzymes: Viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ghaouar, N., E-mail: naoufel-ghaouar@lycos.co [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia); Aschi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Belbahri, L. [Agronomy Department, School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150, Route de Presinge, 1254 Jussy (Switzerland); Trabelsi, S.; Gharbi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia)

    2009-11-15

    The behaviour of cellulase enzymes in phosphate saline buffer has been studied over a wide range of temperatures and enzyme concentrations by using viscosity measurements. To characterize the conformation change of cellulase versus temperature and chemical denaturants, such as guanidinium chloride (GdmCl) and urea, the information about the intrinsic viscosity and the hydrodynamic radius are necessary. The dependence of the intrinsic viscosity and the hydrodynamic radius in its random coil conformation on temperature and denaturant concentration were studied. Our results and discussions are limited to the dilute regime of concentration because of abnormalities in conformation observed in the very dilute regime due to the presence of capillary absorption effects.

  2. Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers †

    KAUST Repository

    Hong, Bingbing

    2010-10-14

    Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients with high accuracy for all of the molar masses studied, but the statistical uncertainties in the viscosity calculations were significantly larger for longer chains. There is good agreement of the calculated viscosities and densities with available experimental data, and thus, the simulations can be used to bridge gaps in the data and for extrapolations with respect to chain length, temperature, and pressure. We explored the convergence characteristics of the Green-Kubo formulas for different chain lengths and propose minimal production times required for convergence of the transport properties. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. © 2010 American Chemical Society.

  3. Hall viscosity of hierarchical quantum Hall states

    Science.gov (United States)

    Fremling, M.; Hansson, T. H.; Suorsa, J.

    2014-03-01

    Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.

  4. RELAP-7 Numerical Stabilization: Entropy Viscosity Method

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Berry; M. O. Delchini; J. Ragusa

    2014-06-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.

  5. Dietary fibres in the regulation of appetite and food intake. Importance of viscosity.

    Science.gov (United States)

    Kristensen, Mette; Jensen, Morten Georg

    2011-02-01

    Dietary fibres have many functions in the diet, one of which may be to promote control of energy intake and reduce the risk of developing obesity. This is linked to the unique physico-chemical properties of dietary fibres which aid early signalling of satiation and prolonged or enhanced sensation of satiety. Particularly the ability of some dietary fibres to increase viscosity of intestinal contents offers numerous opportunities to affect appetite regulation. Few papers on the satiating effect of dietary fibres include information on the physico-chemical characteristics of the dietary fibres being tested, including molecular weight and viscosity. For viscosity to serve as a proxy for soluble dietary fibres it is essential to have an understanding of individual dietary fibre viscosity characteristics. The goal of this paper is to provide a brief overview on the role of dietary fibres in appetite regulation highlighting the importance of viscosity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Lack of age-related increase in carotid artery wall viscosity in cardiorespiratory fit men

    Science.gov (United States)

    Kawano, Hiroshi; Yamamoto, Kenta; Gando, Yuko; Tanimoto, Michiya; Murakami, Haruka; Ohmori, Yumi; Sanada, Kiyoshi; Tabata, Izumi; Higuchi, Mitsuru; Miyachi, Motohiko

    2013-01-01

    Objectives: Age-related arterial stiffening and reduction of arterial elasticity are attenuated in individuals with high levels of cardiorespiratory fitness. Viscosity is another mechanical characteristic of the arterial wall; however, the effects of age and cardiorespiratory fitness have not been determined. We examined the associations among age, cardiorespiratory fitness and carotid arterial wall viscosity. Methods: A total of 111 healthy men, aged 25–39 years (young) and 40–64 years (middle-aged), were divided into either cardiorespiratory fit or unfit groups on the basis of peak oxygen uptake. The common carotid artery was measured noninvasively by tonometry and automatic tracking of B-mode images to obtain instantaneous pressure and diameter hysteresis loops, and we calculated the effective compliance, isobaric compliance and viscosity index. Results: In the middle-aged men, the viscosity index was larger in the unfit group than in the fit group (2533 vs. 2018 mmHg·s/mm, respectively: P viscosity index was increased with advancing age, but these parameters were unaffected by cardiorespiratory fitness level. Conclusion: These results suggest that the wall viscosity in the central artery is increased with advancing age and that the age-associated increase in wall viscosity may be attenuated in cardiorespiratory fit men. PMID:24029868

  7. Adequacy of human milk viscosity to respond to infants with dysphagia: experimental study

    Directory of Open Access Journals (Sweden)

    Mariangela Bartha de Mattos de Almeida

    2011-12-01

    Full Text Available Neonatal nutrition is an important subject in health in the short, medium and long term. In preterm newborns, nutrition assumes a predominant role for the child's overall development. Babies with uncoordinated swallowing or respiration may not have the necessary oral abilities to suck the mother's breast and will need to implement different feeding practices; one of them is changing the consistency of the milk offered. Objectives: Determine viscosity variations of untreated human and pasteurized milk without and with thickening to adapt the diet to the needs of dysphagic infants hospitalized in the Neonatal Intensive Cara Unit (NICU. Material and Methods: The authors altered the viscosity of natural infant powdered milk and, after thickening, determined and adopted a thickening standard for human milk. Untreated human and pasteurized milk was thickened in concentrations of 2%, 3%, 5% and 7% and the viscosity were determined every 20 minutes for a period of 60 minutes at a temperature of 37ºC. Results: The infant lactose formula thickened at concentrations of 2% and 3% produced viscosities of 8.97cP and 27.73 cP, respectively. The increases were significantly different after 1 hour. Inversely, untreated human milk at 2%, 3%, 5% and 7% produced diminished viscosity over time; the changes were more accentuated in the first 20 minutes. In pasteurized human milk, the 2% concentration had no variation in viscosity, but with the 3%, 5% and 7% concentrations, there was a significant decrease in the first 20 minutes with stability observed in the subsequent times. Conclusion: In powdered milk, the viscosity increases over time; the viscosity in human milk diminishes. The results point out the importance not only of considering the concentration of the thickener but also the time being administered after its addition to effectively treat dysphagic infants.

  8. Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships

    International Nuclear Information System (INIS)

    Ojovan, Michael I; Travis, Karl P; Hand, Russell J

    2007-01-01

    Doremus's model of viscosity assumes that viscous flow in amorphous materials is mediated by broken bonds (configurons). The resulting equation contains four coefficients, which are directly related to the entropies and enthalpies of formation and motion of the configurons. Thus by fitting this viscosity equation to experimental viscosity data these enthalpy and entropy terms can be obtained. The non-linear nature of the equation obtained means that the fitting process is non-trivial. A genetic algorithm based approach has been developed to fit the equation to experimental viscosity data for a number of glassy materials, including SiO 2 , GeO 2 , B 2 O 3 , anorthite, diopside, xNa 2 O-(1-x)SiO 2 , xPbO-(1-x)SiO 2 , soda-lime-silica glasses, salol, and α-phenyl-o-cresol. Excellent fits of the equation to the viscosity data were obtained over the entire temperature range. The fitting parameters were used to quantitatively determine the enthalpies and entropies of formation and motion of configurons in the analysed systems and the activation energies for flow at high and low temperatures as well as fragility ratios using the Doremus criterion for fragility. A direct anti-correlation between fragility ratio and configuron percolation threshold, which determines the glass transition temperature in the analysed materials, was found

  9. Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition

    Science.gov (United States)

    Wong DeRieux, Wing-Sy; Li, Ying; Lin, Peng; Laskin, Julia; Laskin, Alexander; Bertram, Allan K.; Nizkorodov, Sergey A.; Shiraiwa, Manabu

    2018-05-01

    Secondary organic aerosol (SOA) accounts for a large fraction of submicron particles in the atmosphere. SOA can occur in amorphous solid or semi-solid phase states depending on chemical composition, relative humidity (RH), and temperature. The phase transition between amorphous solid and semi-solid states occurs at the glass transition temperature (Tg). We have recently developed a method to estimate Tg of pure compounds containing carbon, hydrogen, and oxygen atoms (CHO compounds) with molar mass less than 450 g mol-1 based on their molar mass and atomic O : C ratio. In this study, we refine and extend this method for CH and CHO compounds with molar mass up to ˜ 1100 g mol-1 using the number of carbon, hydrogen, and oxygen atoms. We predict viscosity from the Tg-scaled Arrhenius plot of fragility (viscosity vs. Tg/T) as a function of the fragility parameter D. We compiled D values of organic compounds from the literature and found that D approaches a lower limit of ˜ 10 (±1.7) as the molar mass increases. We estimated the viscosity of α-pinene and isoprene SOA as a function of RH by accounting for the hygroscopic growth of SOA and applying the Gordon-Taylor mixing rule, reproducing previously published experimental measurements very well. Sensitivity studies were conducted to evaluate impacts of Tg, D, the hygroscopicity parameter (κ), and the Gordon-Taylor constant on viscosity predictions. The viscosity of toluene SOA was predicted using the elemental composition obtained by high-resolution mass spectrometry (HRMS), resulting in a good agreement with the measured viscosity. We also estimated the viscosity of biomass burning particles using the chemical composition measured by HRMS with two different ionization techniques: electrospray ionization (ESI) and atmospheric pressure photoionization (APPI). Due to differences in detected organic compounds and signal intensity, predicted viscosities at low RH based on ESI and APPI measurements differ by 2-5 orders

  10. Measurements and correlation of viscosities and conductivities for the mixtures of ethylammonium nitrate with organic solvents

    International Nuclear Information System (INIS)

    Litaeim, Yousra; Zarrougi, Ramzi; Dhahbi, Mahmoud

    2009-01-01

    Room temperature ionic liquids (IL) as a new class of organic molten salts have been considered as an alternative of traditional organic solvents (OS). The physico-chemical transport properties of mixtures IL/OS were investigated and described by ion-ion, ion solvent and solvent-solvent interactions. Ethylammonium nitrate (EAN) was studied in presence of two types of organic solvents: the dimethyl carbonate (DMC) and the formamide (FA). The variation of the viscosity with salt concentration and temperature shows that EAN ions behave as a structure breaker for the DMC. However, no effect was recorded in the case of FA. Concentrated electrolyte solutions behave as very structured media and checked a theory of pseudo-lattice. The existence of a conductivity maximum indicates two competing effects; the increasing number of charge carriers and the higher viscosity of the electrolyte as the salt concentration was raised. The use of the Walden product to investigate ionic interactions of EAN with both solvents was discussed. A study of the effect of temperature on the conductivity and viscosity reveals that both systems (EAN/DMC and EAN/FA) obey an Arrhenius low. The activation energies for the tow transport process (Ea,L and Ea,h) as a function of the salt concentration were evaluated.

  11. Viscosity of HI-I2-H2O solution at atmospheric pressure

    International Nuclear Information System (INIS)

    Chen, Songzhe; Zhang, Ping; Wang, Laijun; Xu, Jingming; Gao, Mengxue

    2014-01-01

    Iodine-Sulfur thermochemical cycle (IS-cycle) is one of the most promising massive hydrogen production methods. Basic properties data of the HI-I 2 -H 2 O solution involved in the HI decomposition section of IS-cycle are found to be very important. HI, I 2 , and H 2 O make up a highly non-ideal solution system. Viscosity and its variation with the composition/temperature are very essential for the flowsheet work and HI-H 2 O-I 2 solution’s fluid simulation, especially in the distillation and electro-electrodialysis processes. In this paper, viscosity values of HI-H 2 O-I 2 solutions were measured at atmospheric pressure and varying temperatures (from 20 to 125 ºC). As for the composition, the HI/H2O molar ratio of the samples ranged from 1:5.36 to 1:12.00, while the HI/I 2 molar ratio from 1.0 to 1.4.0. Both temperature and composition have dramatic influence on the viscosity. Increasing temperature or H 2 O/HI molar ratio will lead to the reduction of viscosity; while increasing of I 2 /HI molar ratio results in the increase of viscosity. It was also found that I 2 content has a larger and more complex influence on the viscosity of the HI-H 2 O-I 2 solution than H 2 O content does, especially at low temperature (<50 °C). (author)

  12. Bulk and shear viscosities of the gluon plasma in a quasiparticle description

    CERN Document Server

    Bluhm, M; Redlich, K

    2011-01-01

    Bulk and shear viscosities of deconfined gluonic matter are investigated within an effective kinetic theory by describing the strongly interacting medium phenomenologically in terms of quasiparticle excitations with medium-dependent self-energies. In this approach, local conservation of energy and momentum follows from a Boltzmann-Vlasov type kinetic equation and guarantees thermodynamic self-consistency. We show that the resulting transport coefficients reproduce the parametric dependencies on temperature and coupling obtained in perturbative QCD at large temperatures and small running coupling. The extrapolation into the non-perturbative regime results in a decreasing specific shear viscosity with decreasing temperature, exhibiting a minimum in the vicinity of the deconfinement transition temperature, while the specific bulk viscosity is sizeable in this region falling off rapidly with increasing temperature. The temperature dependence of specific bulk and shear viscosities found within this quasiparticle d...

  13. Electro-optical properties of low viscosity driven holographic polymer dispersed liquid crystals

    Science.gov (United States)

    Moon, K. R.; Bae, S. Y.; Kim, B. K.

    2015-04-01

    Relative diffraction efficiency (RDE), operating voltage, and response times are most important performance characteristics of holographic polymer dispersed liquid crystals (HPDLC). Two types of triallyl isocyanurate (TI) having different structures were incorporated into the conventional transmission grating of HPDLC. Premix viscosity decreased by 13-18% with up to 3% TI, beyond which it increased. TI eliminated induction period and augmented initial grating formation rate at all contents. Saturation RDE increased over 200% while threshold voltage and rise time decreased to about half and 2/3, respectively up to 3% TI, beyond which the tendencies were reversed. Among the two TIs, low viscosity monomer (TA) showed high RDE, while high miscibility monomer (TE) low characteristic voltages and short response times. It is concluded that grating formation is largely favored by low viscosity, while interface tensions and electro-optical performances by miscibility at similar viscosities.

  14. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-08-17

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines. Utilizing higher-molecular-weight alcohols as fuels requires careful analysis of their fuel properties. ASTM standards provide fuel property requirements for spark-ignition (SI) and compression-ignition (CI) engines such as the stability, lubricity, viscosity, and cold filter plugging point (CFPP) properties of blends of higher alcohols. Important combustion properties that are studied include laminar and turbulent flame speeds, flame blowout/extinction limits, ignition delay under various mixing conditions, and gas-phase and particulate emissions. The chapter focuses on the combustion of higher alcohols in reciprocating SI and CI engines and discusses higher alcohol performance in SI and CI engines. Finally, the chapter identifies the sources, production pathways, and technologies currently being pursued for production of some fuels, including n-butanol, iso-butanol, and n-octanol.

  15. Shear viscosity and thermal conductivity of nuclear 'pasta'

    International Nuclear Information System (INIS)

    Horowitz, C. J.; Berry, D. K.

    2008-01-01

    We calculate the shear viscosity η and thermal conductivity κ of a nuclear pasta phase in neutron star crusts. This involves complex nonspherical shapes. We use semiclassical molecular dynamics simulations involving 40, 000 to 100, 000 nucleons. The viscosity η can be simply expressed in terms of the height Z* and width Δq of the peak in the static structure factor S p (q). We find that η increases somewhat, compared to a lower density phase involving spherical nuclei, because Z* decreases from form factor and ion screening effects. However, we do not find a dramatic increase in η from nonspherical shapes, as may occur in conventional complex fluids

  16. Effect of electron beam irradiation on viscosity/temperature characteristics of cellulose derivatives

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Villavicencio, A.L.C.; Yamasaki, M.C.R.

    1991-11-01

    The direct relationship between intrinsic viscosity and molecular weight of polymers allowed to attend the aggregation, cross-linking and degradation processes induced by electron beam irradiation on carboxymethylcellulose and hydroxiethylcellulose in aqueous solutions. The changes in viscosity were related to irradiation doses from 2.5x10 4 Gy to 25x10 4 Gy at 5 0 C, 25 0 C, 50 0 C and 75 0 C measured at different intervals after irradiation. The results showed the viscosity decrease characteristics as a function of those parameters for each one of the polymers. (author)

  17. Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations

    Directory of Open Access Journals (Sweden)

    Espen R. Jakobsen

    2002-05-01

    Full Text Available Using the maximum principle for semicontinuous functions [3,4], we prove a general ``continuous dependence on the nonlinearities'' estimate for bounded Holder continuous viscosity solutions of fully nonlinear degenerate elliptic equations. Furthermore, we provide existence, uniqueness, and Holder continuity results for bounded viscosity solutions of such equations. Our results are general enough to encompass Hamilton-Jacobi-Bellman-Isaacs's equations of zero-sum, two-player stochastic differential games. An immediate consequence of the results obtained herein is a rate of convergence for the vanishing viscosity method for fully nonlinear degenerate elliptic equations.

  18. Study on viscosity modification of human and formula milk for infants with dysphagia

    Directory of Open Access Journals (Sweden)

    Mariangela Bartha de Mattos Almeida

    Full Text Available ABSTRACT Purpose: to analyze the modification of the viscosity of human milk and infant formula. Methods: three studies were performed to assess the viscosity and effect of time on infant formula with a thickener, at concentrations of 2, 3, and 5%, as well as raw and pasteurized human milk at concentrations of 2, 3, 5, and 7% at 37ºC, for 60 minutes. Rice cereal was used as a thickening agent. The viscosity was evaluated using a Ford Cup-type viscometer, and the samples were analyzed at 20-minute intervals. Significant differences were assessed using the ANOVA test. Results: no significant differences in viscosity were observed over time in concentrations of 2, 3, and 5%. There was a difference in the viscosity between human milk and infant formula, in concentrations of 2% and 5%, 2% and 7%, 3% and 5%, and 3% and 7%, independently of the time intervals evaluated. Conclusion: the findings of this study demonstrate the need for different concentrations of the thickening agent for human milk and infant formula. Rice cereal is a suitable therapeutic option for newborns presented with dysphagia in concentrations of 2, 3, 5, and 7%, due to its effect on the viscosity and flow reduction, provided that the feeding time is considered.

  19. Viscosity Measurements of "FeO"-SiO2 Slag in Equilibrium with Metallic Fe

    Science.gov (United States)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2013-06-01

    The current study delivered the measurements of viscosities in the system "FeO"-SiO2 in equilibrium with metallic Fe in the composition range between 15 and 40 wt pct SiO2. The experiments were carried out in the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C) using a rotational spindle technique. An analysis of the quenched sample by electron probe X-ray microanalysis (EPMA) after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The current results are compared with available literature data. The significant discrepancies of the viscosity measurements in this system have been clarified. The possible reasons affecting the accuracy of the viscosity measurement have been discussed. The activation energies derived from the experimental data have a sharp increase at about 33 wt pct SiO2, which corresponds to the composition of fayalite (Fe2SiO4). The modified quasi-chemical model was constructed in the system "FeO"-SiO2 to describe the current viscosity data.

  20. Convergence of a residual based artificial viscosity finite element method

    KAUST Repository

    Nazarov, Murtazo

    2013-02-01

    We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.

  1. A Low Viscosity Lunar Magma Ocean Forms a Stratified Anorthitic Flotation Crust With Mafic Poor and Rich Units: Lunar Magma Ocean Viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Dygert, Nick [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville TN USA; Lin, Jung-Fu [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Marshall, Edward W. [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Kono, Yoshio [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne IL USA; Gardner, James E. [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA

    2017-11-21

    Much of the lunar crust is monomineralic, comprising >98% plagioclase. The prevailing model argues the crust accumulated as plagioclase floated to the surface of a solidifying lunar magma ocean (LMO). Whether >98% pure anorthosites can form in a flotation scenario is debated. An important determinant of the efficiency of plagioclase fractionation is the viscosity of the LMO liquid, which was unconstrained. Here we present results from new experiments conducted on a late LMO-relevant ferrobasaltic melt. The liquid has an exceptionally low viscosity of 0.22 $+0.11\\atop{-0.19}$to 1.45 $+0.46\\atop{-0.82}$ Pa s at experimental conditions (1,300–1,600°C; 0.1–4.4 GPa) and can be modeled by an Arrhenius relation. Extrapolating to LMO-relevant temperatures, our analysis suggests a low viscosity LMO would form a stratified flotation crust, with the oldest units containing a mafic component and with very pure younger units. Old, impure crust may have been buried by lower crustal diapirs of pure anorthosite in a serial magmatism scenario.

  2. Role of viscosity in nonlinear effects

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, G V; Peshkin, M A; Polyakov, Ye Ye

    1980-01-01

    Data are presented on laboratory experiments for filtering of gases of liquids in clay, slightly permeable core samples. A method is proposed for processing the results of experiments which makes it possible to isolate the effect of viscosity of the fluid on the defined quantity of maximum pressure differential.

  3. Experimental study on density, thermal conductivity, specific heat, and viscosity of water-ethylene glycol mixture dispersed with carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Ganeshkumar Jayabalan

    2017-01-01

    Full Text Available This article presents the effect of adding multi wall carbon nanotubes (MWCNT in water – ethylene glycol mixture on density and various thermophysical properties such as thermal conductivity, specific heat and viscosity. Density of nanofluids was measured using standard volumetric flask method and the data showed a good agreement with the mixing theory. The maximum thermal conductivity enhancement of 11 % was noticed for the nanofluids with 0.9 wt. %. Due to lower specific heat of the MWCNT, the specific heat of the nanofluids decreased in proportion with the MWCNT concentration. The rheological analysis showed that the transition region from shear thinning to Newtonian extended to the higher shear stress range compared to that of base fluids. Viscosity ratio of the nanofluids augmented anomalously with respect to increase in temperature and about 2.25 fold increase was observed in the temperature range of 30 – 40 ˚C. The modified model of Maron and Pierce predicted the viscosity of the nanofluids with the inclusion of effect of aspect ratio of MWCNT and nanoparticle aggregates.

  4. Shear and bulk viscosity of high-temperature gluon plasma

    Science.gov (United States)

    Zhang, Le; Hou, De-Fu

    2018-05-01

    We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

  5. Transient extensional viscosity of polymer melts in the filament stretching rheometer

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Bach, Anders; Bastian, Heike

    2002-01-01

    In many polymer processing operations, the polymer molecules becomes highly elongated and the extensional viscosity becomes an inportant parameter in estimating properties during and after the process.......In many polymer processing operations, the polymer molecules becomes highly elongated and the extensional viscosity becomes an inportant parameter in estimating properties during and after the process....

  6. Study of specific loss power of magnetic fluids with various viscosities

    Energy Technology Data Exchange (ETDEWEB)

    Phong, P.T., E-mail: phamthanhphong@tdt.edu.vn [Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Nguyen, L.H., E-mail: luuhuunguyen@ukh.edu.vn [Institute of Materials Science, Vietnam Academy of Science and Technology,18- Hoang Quoc Viet Street, Cau Giay District, Ha Noi City (Viet Nam); Khanh Hoa University, 1- Nguyen Chanh Street, Nha Trang City, Khanh Hoa Province (Viet Nam); Phong, L.T.H., E-mail: lthp52a@gmail.com [Institute of Materials Science, Vietnam Academy of Science and Technology,18- Hoang Quoc Viet Street, Cau Giay District, Ha Noi City (Viet Nam); Nam, P.H., E-mail: namph.ims@gmail.com [Institute of Materials Science, Vietnam Academy of Science and Technology,18- Hoang Quoc Viet Street, Cau Giay District, Ha Noi City (Viet Nam); Manh, D.H., E-mail: manhdh.ims@gmail.com [Institute of Materials Science, Vietnam Academy of Science and Technology,18- Hoang Quoc Viet Street, Cau Giay District, Ha Noi City (Viet Nam); Lee, I.J., E-mail: lij@dongguk.ac.kr [Department of Advanced Materials Chemistry, Dongguk University-Gyeongju, Dongdae-roDongdae-ro 123, Gyeongju-Si, Gyeongbuk 38066 (Korea, Republic of); Phuc, N.X., E-mail: phucnx1949@gmail.com [Institute of Materials Science, Vietnam Academy of Science and Technology,18- Hoang Quoc Viet Street, Cau Giay District, Ha Noi City (Viet Nam)

    2017-04-15

    Abstracts: Using hydrothermal method, CoFe{sub 2}O{sub 4} (hard ferrite) and MnFe{sub 2}O{sub 4} (soft ferrite) nanoparticles of size up to 20 nm were synthesized and the viscosities were controlled using various concentrations of agar. The hydrodynamic diameter of these particles was measured and fitted to a lognormal distribution and the results showed their polydispersity is very narrow. From the calorimetric measurements of the particles stabilized in agar solutions, we have demonstrated that at a given frequency, the dependence of the specific loss power of magnetic fluids on the viscosity is in good agreement with the theoretical predictions made in the earlier studies. - Highlights: • CoFe{sub 2}O{sub 4} (hard ferrite) and MnFe{sub 2}O{sub 4} (soft ferrite) nanoparticles size up to 20 nm were synthesized. • The relaxation loss depends on both the particle's intrinsic properties and the viscosity of the environment. • The SLP of hard nanoparticles strongly decreases with increasing the viscosity whereas that of soft nanoparticles remains almost unchanged.

  7. Measurement of changes in viscosity in polymers with gamma-ray dose using a differential viscometer

    International Nuclear Information System (INIS)

    Santra, L.; Bhaumik, D.; Roy, S.C.

    1988-01-01

    Although some works on changes in viscosity of liquids with gamma-ray dose have been made near the ''gel point'', very little works have been done bellow this point. Changes in viscosities of different-grade silicone fluids below gel point have been measured using a differential viscometer developed in our laboratory, capable of measuring change in viscosities of two liquids directly. Preliminary results on viscosity changes when irradiated with energetic alpha particles will also be reported [pt

  8. Measurement of changes in viscosity in polymers with gamma-ray dose using a differential viscometer

    International Nuclear Information System (INIS)

    Santra, L.; Bhaumik, D.; Roy, S.C.

    1989-01-01

    Although some works on changes in viscosity of liquids with gamma-ray dose have been made near the 'gel point', very little works have been done below this point. Changes in viscosities of different-grade silicone fluids below gel point have been measured using a differential viscometer developed in our laboratory, capable of measuring change in viscosities of two liquids directly. Preliminary results on viscosity changes when irradiated with energetic alpha particles will also be reported. (orig.)

  9. Skyrmions and Hall viscosity

    Science.gov (United States)

    Kim, Bom Soo

    2018-05-01

    We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physical quantities based on symmetries and have been previously applied to quantum Hall systems.

  10. Viscosity and diffusivity in melts: from unary to multicomponent systems

    Science.gov (United States)

    Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun

    2014-05-01

    Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.

  11. Microfluidics for simultaneous quantification of platelet adhesion and blood viscosity

    Science.gov (United States)

    Yeom, Eunseop; Park, Jun Hong; Kang, Yang Jun; Lee, Sang Joon

    2016-01-01

    Platelet functions, including adhesion, activation, and aggregation have an influence on thrombosis and the progression of atherosclerosis. In the present study, a new microfluidic-based method is proposed to estimate platelet adhesion and blood viscosity simultaneously. Blood sample flows into an H-shaped microfluidic device with a peristaltic pump. Since platelet aggregation may be initiated by the compression of rotors inside the peristaltic pump, platelet aggregates may adhere to the H-shaped channel. Through correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (APlatelet) can be estimated without labeling platelets. The platelet function is estimated by determining the representative index IA·T based on APlatelet and contact time. Blood viscosity is measured by monitoring the flow conditions in the one side channel of the H-shaped device. Based on the relation between interfacial width (W) and pressure ratio of sample flows to the reference, blood sample viscosity (μ) can be estimated by measuring W. Biophysical parameters (IA·T, μ) are compared for normal and diabetic rats using an ex vivo extracorporeal model. This microfluidic-based method can be used for evaluating variations in the platelet adhesion and blood viscosity of animal models with cardiovascular diseases under ex vivo conditions. PMID:27118101

  12. Calculation of the viscosity of nuclear waste glass systems

    International Nuclear Information System (INIS)

    Shah, R.; Behrman, E.C.; Oksoy, D.

    1990-01-01

    Viscosity is one of the most important processing parameters and one of the most difficult to calculate theoretically, particularly for multicomponent systems like nuclear waste glasses. Here, the authors propose a semi-empirical approach based on the Fulcher equation, involving identification of key variables, for which coefficients are then determined by regression analysis. Results are presented for two glass systems, and compared to results of previous workers and to experiment. The authors also sketch a first-order statistical mechanical perturbation theory calculation for the effects on viscosity of a change in composition of the melt

  13. Applying Magneto-rheology to Reduce Blood Viscosity and Suppress Turbulence to Prevent Heart Attacks

    Science.gov (United States)

    Tao, R.

    Heart attacks are the leading causes of death in USA. Research indicates one common thread, high blood viscosity, linking all cardiovascular diseases. Turbulence in blood circulation makes different regions of the vasculature vulnerable to development of atherosclerotic plaque. Turbulence is also responsible for systolic ejection murmurs and places heavier workload on heart, a possible trigger of heart attacks. Presently, neither medicine nor method is available to suppress turbulence. The only method to reduce the blood viscosity is to take medicine, such as aspirin. However, using medicine to reduce the blood viscosity does not help suppressing turbulence. In fact, the turbulence gets worse as the Reynolds number goes up with the viscosity reduction by the medicine. Here we report our new discovery: application of a strong magnetic field to blood along its flow direction, red blood cells are polarized in the magnetic field and aggregated into short chains along the flow direction. The blood viscosity becomes anisotropic: Along the flow direction the viscosity is significantly reduced, but in the directions perpendicular to the flow the viscosity is considerably increased. In this way, the blood flow becomes laminar, turbulence is suppressed, the blood circulation is greatly improved, and the risk for heart attacks is reduced. While these effects are not permanent, they last for about 24 hours after one magnetic therapy treatment.

  14. Correlation of shear and dielectric ion viscosity of dental resins - Influence of composition, temperature and filler content.

    Science.gov (United States)

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard

    2016-07-01

    Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Viscosity Measurements of SiO2-"FeO"-MgO System in Equilibrium with Metallic Fe

    Science.gov (United States)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2014-01-01

    The present study delivers the measurements of viscosities in the SiO2-"FeO"-MgO system in equilibrium with metallic Fe. The rotational spindle technique was used for the measurements at the temperature range of 1523 K to 1773 K (1250 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The viscosity measurements were carried out at 31 to 47 mol pct SiO2 and up to 18.8 mol pct MgO. Analysis of the quenched sample by Electron probe X-ray microanalysis after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The replacement of "FeO" by MgO was found to increase viscosity and activation energy of the SiO2-"FeO"-MgO slags. The modified Quasi-chemical Viscosity Model was further optimized in this system based on the current viscosity measurements.

  16. Reinventing Design Principles for Developing Low-Viscosity Carbon Dioxide-Binding Organic Liquids for Flue Gas Clean Up

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-01-11

    Anthropogenic carbon dioxide (CO2) emission from point sources, such as coal fired-power plants, account for the majority of the green houses gasses in the atmosphere. Capture, storage and utilization are required to mitigate adverse environmental effects. Aqueous amine-based CO2 capture solvents are currently considered the industry standard, but deployment to market is limited by their high regeneration energy demand. In that context, energy efficient and less-viscous water-lean transformational solvent systems known as CO2 Binding Organic Liquids (CO2BOLs) are being developed in our group to advance this technology to commercialization. Herein, we present a logical design approach based on fundamental concepts of organic chemistry and computer simulations aimed at lowering solvent viscosity. Conceptually, viscosity reduction would be achieved by systemmatic methods such as introduction of steric hindrance on the anion to minimize the intermolecular cation-anion interactions, fine tuning the electronics, hydrogen bonding orientation and strength, and charge solvation. Conventional standard trial-and-error approaches while effective, are time consuming and economically expensive. Herein, we rethink the metrics and design principles of low-viscosity CO2 capture solvents using a combined synthesis and computational modeling approach. We critically study the impacts of modyfying factors such as as orientation of hydrogen bonding, introduction of higher degrees of freedom and cation or anion charge solvation and assess if or how each factor impacts viscosity of CO2BOL CO2 capture solvents. Ultimately, we found that hydrogen bond orientation and strength is predominantly influencing the viscosity in CO2BOL solvents. With this knowledge, a new 1-MEIPADM-2-BOL CO2BOL variant was synthesized and tested, resulting in a solvent that is approximately 60% less viscous at 25 mol

  17. Phenomenological and statistical analyses of turbulence in forced convection with temperature-dependent viscosity under non-Boussinesq condition.

    Science.gov (United States)

    Yahya, S M; Anwer, S F; Sanghi, S

    2013-10-01

    In this work, Thermal Large Eddy Simulation (TLES) is performed to study the behavior of weakly compressible Newtonian fluids with anisotropic temperature-dependent viscosity in forced convection turbulent flow. A systematic analysis of variable-viscosity effects, isolated from gravity, with relevance to industrial cooling/heating applications is being carried out. A LES of a planar channel flow with significant heat transfer at a low Mach number was performed to study effects of fluid property variation on the near-wall turbulence structure. In this flow configuration the top wall is maintained at a higher temperature (T hot ) than the bottom wall (T cold ). The temperature ratio (R θ = T hot /T cold ) is fixed at 1.01, 2 and 3 to study the effects of property variations at low Mach number. Results indicate that average and turbulent fields undergo significant changes. Compared with isothermal flow with constant viscosity, we observe that turbulence is enhanced in the cold side of the channel, characterized by locally lower viscosity whereas a decrease of turbulent kinetic energy is found at the hot wall. The turbulent structures near the cold wall are very short and densely populated vortices but near the hot wall there seems to be a long streaky structure or large elongated vortices. Spectral study reveals that turbulence is completely suppressed at the hot side of the channel at a large temperature ratio because no inertial zone is obtained (i.e. index of Kolmogorov scaling law is zero) from the spectra in these region.

  18. Use of Intrinsic Viscosity for evaluation of polymer-solvent affinity

    DEFF Research Database (Denmark)

    Marani, Debora; Hjelm, Johan; Wandel, Marie

    2013-01-01

    The objective of the current paper was to define a rheological method for the study of the solvent/binder affinity. The adopted strategy involves the study of the intrinsic viscosity [η] of polymer solutions. [η] was estimated via an extrapolation procedure using the Huggins and Kramer equations....... The intrinsic viscosity and the Mark-Houwink shape parameter were estimated for the three polymers and used as criteria for estimating the polymer/solvent affinity....

  19. Improved radiological diagnosis in the stomach by means of an improved contrast material

    International Nuclear Information System (INIS)

    Lotz, W.; Liebenow, S.

    1979-01-01

    Our experience with a cheap contrast medium, which we prepare ourselves, is described, stretching over a period of 18 months. It is based on the bubbly barium first described by Op den Orth and is made by means of carbone dioxide in a soda water syphon. It is better for detailed contrast examination of the stomach than the commercially available contrast media. It is thought that this is due to optimal viscosity for wetting of the mucosa, optimal size of the barium sulphate particles, which are larger than one micron, and greater distension of the stomach due to greater quantities of CO 2 . The use of bubbly barium for routine examination of the stomach, using double contrast and hypotonia with graded compresseion, almost always results in demonstration of the areae gastricae in large parts of the stomach. We regard this as a sign of a good examination, since we are then able to demonstrate small lesions such as complete or incomplete erosions, ulcer scars of flat ulcers. (orig.) [de

  20. Effects of powdered versus liquid barium on the viscosity of fluids used in modified swallow studies

    International Nuclear Information System (INIS)

    Baron, J.; Alexander, T.

    2003-01-01

    To determine if the viscosity of thickened juice mixtures used in modified barium swallow studies significantly changes with the addition of powdered barium. We also describe a test formulation created using liquid barium, which has a negligible effect on juice viscosity. The viscosities of water and standardized honey- and nectar-consistency juices mixed with different amounts of powdered barium were measured by timing the laminar flow of a given initial hydrostatic head of fluid under gravity though an orifice of fixed diameter. Standardized juices were then mixed with a liquid formulation of barium and with measured quantities of water to produce viscosities that more closely equated with those of the standardized juices. With the addition of powdered barium, viscosity increased in all fluids, most markedly with the nectar-consistency juice. Liquid barium formulations maintained the viscosities of the original thickened juices. Rendering juices radio-opaque with barium powder results in dramatic increases in the viscosity of the resulting mixture and compromises diagnostic accuracy. Liquid barium preparations have the advantage that they can be rapidly and accurately dispensed by syringe, and their use does not significantly increase the viscosity of the preparation. (author)

  1. Effects of powdered versus liquid barium on the viscosity of fluids used in modified swallow studies

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J.; Alexander, T. [Univ. of Alberta, Dept. of Radiology, Edmonton, Alberta (Canada)

    2003-06-01

    To determine if the viscosity of thickened juice mixtures used in modified barium swallow studies significantly changes with the addition of powdered barium. We also describe a test formulation created using liquid barium, which has a negligible effect on juice viscosity. The viscosities of water and standardized honey- and nectar-consistency juices mixed with different amounts of powdered barium were measured by timing the laminar flow of a given initial hydrostatic head of fluid under gravity though an orifice of fixed diameter. Standardized juices were then mixed with a liquid formulation of barium and with measured quantities of water to produce viscosities that more closely equated with those of the standardized juices. With the addition of powdered barium, viscosity increased in all fluids, most markedly with the nectar-consistency juice. Liquid barium formulations maintained the viscosities of the original thickened juices. Rendering juices radio-opaque with barium powder results in dramatic increases in the viscosity of the resulting mixture and compromises diagnostic accuracy. Liquid barium preparations have the advantage that they can be rapidly and accurately dispensed by syringe, and their use does not significantly increase the viscosity of the preparation. (author)

  2. Translocation of a polymer through a nanopore across a viscosity gradient.

    Science.gov (United States)

    de Haan, Hendrick W; Slater, Gary W

    2013-04-01

    The translocation of a polymer through a pore in a membrane separating fluids of different viscosities is studied via several computational approaches. Starting with the polymer halfway, we find that as a viscosity difference across the pore is introduced, translocation will predominately occur towards one side of the membrane. These results suggest an intrinsic pumping mechanism for translocation across cell walls which could arise whenever the fluid across the membrane is inhomogeneous. Somewhat surprisingly, the sign of the preferred direction of translocation is found to be strongly dependent on the simulation algorithm: for Langevin dynamics (LD) simulations, a bias towards the low viscosity side is found while for Brownian dynamics (BD), a bias towards the high viscosity is found. Examining the translocation dynamics in detail across a wide range of viscosity gradients and developing a simple force model to estimate the magnitude of the bias, the LD results are demonstrated to be more physically realistic. The LD results are also compared to those generated from a simple, one-dimensional random walk model of translocation to investigate the role of the internal degrees of freedom of the polymer and the entropic barrier. To conclude, the scaling of the results across different polymer lengths demonstrates the saturation of the directional preference with polymer length and the nontrivial location of the maximum in the exponent corresponding to the scaling of the translocation time with polymer length.

  3. Tomato juices and tomato juice concentrates : a study of factors contributing to their gross viscosity

    NARCIS (Netherlands)

    Heutink, R.

    1986-01-01

    The gross viscosity of tomato juice and tomato juice concentrates was found to be determined primarily by the water insoluble solids (WIS) content. The serum viscosity did not contribute to gross viscosity. The WIS consisted of whole tomato cells, vascular bundles and skin fragments. In general the

  4. Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition

    Directory of Open Access Journals (Sweden)

    W.-S. W. DeRieux

    2018-05-01

    Full Text Available Secondary organic aerosol (SOA accounts for a large fraction of submicron particles in the atmosphere. SOA can occur in amorphous solid or semi-solid phase states depending on chemical composition, relative humidity (RH, and temperature. The phase transition between amorphous solid and semi-solid states occurs at the glass transition temperature (Tg. We have recently developed a method to estimate Tg of pure compounds containing carbon, hydrogen, and oxygen atoms (CHO compounds with molar mass less than 450 g mol−1 based on their molar mass and atomic O : C ratio. In this study, we refine and extend this method for CH and CHO compounds with molar mass up to ∼ 1100 g mol−1 using the number of carbon, hydrogen, and oxygen atoms. We predict viscosity from the Tg-scaled Arrhenius plot of fragility (viscosity vs. Tg∕T as a function of the fragility parameter D. We compiled D values of organic compounds from the literature and found that D approaches a lower limit of ∼ 10 (±1.7 as the molar mass increases. We estimated the viscosity of α-pinene and isoprene SOA as a function of RH by accounting for the hygroscopic growth of SOA and applying the Gordon–Taylor mixing rule, reproducing previously published experimental measurements very well. Sensitivity studies were conducted to evaluate impacts of Tg, D, the hygroscopicity parameter (κ, and the Gordon–Taylor constant on viscosity predictions. The viscosity of toluene SOA was predicted using the elemental composition obtained by high-resolution mass spectrometry (HRMS, resulting in a good agreement with the measured viscosity. We also estimated the viscosity of biomass burning particles using the chemical composition measured by HRMS with two different ionization techniques: electrospray ionization (ESI and atmospheric pressure photoionization (APPI. Due to differences in detected organic compounds and signal intensity, predicted viscosities at low RH based on ESI and

  5. Viscosity characteristics of selected volcanic rock melts

    Science.gov (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  6. Influence of dispersing additives and blend composition on stability of marine high-viscosity fuels

    Directory of Open Access Journals (Sweden)

    Т. Н. Митусова

    2017-12-01

    Full Text Available The article offers a definition of the stability of marine high-viscosity fuel from the point of view of the colloid-chemical concept of oil dispersed systems. The necessity and importance of the inclusion in the current regulatory requirements of this quality parameter of high-viscosity marine fuel is indicated. The objects of the research are high-viscosity marine fuels, the basic components of which are heavy oil residues: fuel oil that is the atmospheric residue of oil refining and viscosity breaking residue that is the product of light thermal cracking of fuel oil. As a thinning agent or distillate component, a light gas oil was taken from the catalytic cracking unit. The stability of the obtained samples was determined through the xylene equivalent index, which characterizes the stability of marine high-viscosity fuel to lamination during storage, transportation and operation processes. To improve performance, the resulting base compositions of high-viscosity marine fuels were modified by introducing small concentrations (0.05 % by weight of stabilizing additives based on oxyethylated amines of domestic origin and alkyl naphthalenes of foreign origin.

  7. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  8. Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches

    International Nuclear Information System (INIS)

    Almasi, Mohammad

    2014-01-01

    Graphical abstract: Viscosity deviations △η vs. mole fraction of FA, for binary mixtures of FA with (□) 2-PrOH, (●) 2-BuOH, (■) 2-PenOH, (◀) 2-HexOH, (◊) 2-HepOH at T = 298.15 K. The solid curves were calculated from Redlich–Kister type equation. -- Highlights: • Densities and viscosities of the mixtures (formamide + 2-alkanols) were measured. • Experiments were performed over the entire mole fraction at four temperatures. • SAFT and PC-SAFT were applied to predict the volumetric behavior of mixtures. • PRSV equation of state (EOS) has been used to predict the binary viscosities. -- Abstract: Densities and viscosities of binary liquid mixtures of formamide (FA) with polar solvents namely, 2-PrOH, 2-BuOH, 2-PenOH, 2-HexOH, and 2-HepOH, have been measured as a function of composition range at temperatures (298.15, 303.15, 308.15, 313.15) K and ambient pressure. From experimental data, excess molar volumes, V m E and viscosity deviations Δη, were calculated and correlated by Redlich–Kister type function. The effect of temperature and chain-length of the 2-alkanols on the excess molar volumes and viscosity deviations are discussed in terms of molecular interaction between unlike molecules. The statistical associating fluid theory (SAFT), and perturbed chain statistical associating fluid theory (PC-SAFT) were applied to correlate and predict the volumetric behavior of the mixtures. The best predictions were achieved with the PC-SAFT equation of state. Also the Peng–Robinson–Stryjek–Vera equation of state has been used to predict the viscosity of binary mixtures

  9. Characterizing Vibrating Cantilevers for Liquid Viscosity and Density Sensing

    Directory of Open Access Journals (Sweden)

    Bernhard Jakoby

    2008-10-01

    Full Text Available Miniaturized liquid sensors are essential devices in online process or condition monitoring. In case of viscosity and density sensing, microacoustic sensors such as quartz crystal resonators or SAW devices have proved particularly useful. However, these devices basically measure a thin-film viscosity, which is often not comparable to the macroscopic parameters probed by conventional viscometers. Miniaturized cantilever-based devices are interesting alternatives for such applications, but here the interaction between the liquid and the oscillating beam is more involved. In our contribution, we describe a measurement setup, which allows the investigation of this interaction for different beam cross-sections. We present an analytical model based on an approximation of the immersed cantilever as an oscillating sphere comprising the effective mass and the intrinsic damping of the cantilever and additional mass and damping due to the liquid loading. The model parameters are obtained from measurements with well-known sample liquids by a curve fitting procedure. Finally, we present the measurement of viscosity and density of an unknown sample liquid, demonstrating the feasibility of the model.

  10. Divergent trend in density versus viscosity of ionic liquid/water mixtures: a molecular view from guanidinium ionic liquids.

    Science.gov (United States)

    Singh, Akhil Pratap; Gardas, Ramesh L; Senapati, Sanjib

    2015-10-14

    Ionic liquids (ILs) have shown great potential in the dissolution and stability of biomolecules when a low-to-moderate quantity of water is added. Hence, determining the thermophysical properties and understanding these novel mixtures at the molecular level are of both fundamental and practical importance. In this context, here we report the synthesis of two nontoxic guanidinium cation based ILs, tetramethylguanidinium benzoate [TMG][BEN] and tetramethylguanidinium salicylate [TMG][SAL], and present a detailed comparison of their thermophysical properties in the presence of water. The results show that the [TMG][SAL]/water mixtures have higher density and higher apparent molar volume, but a lower viscosity and higher compressibility than the [TNG][BEN]/water mixtures. The measured viscosity and compressibility data are explained from ab initio quantum mechanical calculations and liquid-phase molecular dynamics simulations, where salicylate anions of denser [TMG][SAL]/water were found to exist as isolated ions due to intramolecular H-bonding. On the contrary, intermolecular H-bonding among the benzoate anions and their strong tendency to form an extended H-bonding network with water made [TMG][BEN]/water solutions more viscous and less compressible. This study shows the importance of probing these emerging solvents at the molecular-to-atomic level, which could be helpful in their optimal usage for task-specific applications.

  11. The Flow of a Variable Viscosity Fluid down an Inclined Plane with a Free Surface

    Directory of Open Access Journals (Sweden)

    M. S. Tshehla

    2013-01-01

    Full Text Available The effect of a temperature dependent variable viscosity fluid flow down an inclined plane with a free surface is investigated. The fluid film is thin, so that lubrication approximation may be applied. Convective heating effects are included, and the fluid viscosity decreases exponentially with temperature. In general, the flow equations resulting from the variable viscosity model must be solved numerically. However, when the viscosity variation is small, then an asymptotic approximation is possible. The full solutions for the temperature and velocity profiles are derived using the Runge-Kutta numerical method. The flow controlling parameters such as the nondimensional viscosity variation parameter, the Biot and the Brinkman numbers, are found to have a profound effect on the resulting flow profiles.

  12. Time dependent plasma viscosity and relation between neoclassical transport and turbulent transport

    International Nuclear Information System (INIS)

    Shaing, K.C.

    2005-01-01

    Time dependent plasma viscosities for asymmetric toroidal plasmas in various collisionality regimes are calculated. It is known that in the symmetric limit the time dependent plasma viscosities accurately describe plasma flow damping rate. Thus, time dependent plasma viscosities are important in modeling the radial electric field of the zonal flow. From the momentum balance equation, it is shown that, at the steady state, the balance of the viscosity force and the momentum source determines the radial electric field of the zonal flow. Thus, for a fixed source, the smaller the viscous force is, the larger the value of the radial electric field is, which in turn suppresses the turbulence fluctuations more and improves turbulence transport. However, the smaller the viscous force also implies the smaller the neoclassical transport fluxes based on the neoclassical flux-force relationship. We thus show that when neoclassical transport fluxes are improved so are the turbulent fluxes in toroidal plasmas. (author)

  13. Temperature dependence of shear viscosity of SU(3)-gluodynamics within lattice simulation

    Energy Technology Data Exchange (ETDEWEB)

    Astrakhantsev, N.Yu. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation); Moscow Institute of Physics and Technology,9 Institutskii per., 141700, Dolgoprudny (Russian Federation); Braguta, V.V. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation); Institute for High Energy Physics NRC “Kurchatov Institute”,1 Pobedy St., Protvino, 142281 (Russian Federation); School of Biomedicine, Far Eastern Federal University,8 Sukhanova St., 690950, Vladivostok (Russian Federation); Kotov, A.Yu. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation)

    2017-04-18

    In this paper we study the SU(3)-gluodynamics shear viscosity temperature dependence on the lattice. To do so, we measure the correlation functions of the energy-momentum tensor in the range of temperatures T/T{sub c}∈[0.9,1.5]. To extract the shear viscosity we used two approaches. The first one is to fit the lattice data with a physically motivated ansatz for the spectral function with unknown parameters and then determine the shear viscosity. The second approach is to apply the Backus-Gilbert method allowing to extract the shear viscosity from the lattice data nonparametrically. The results obtained within both approaches agree with each other. Our results allow us to conclude that within the range T/T{sub c}∈[0.9,1.5] the SU(3)-gluodynamics reveals the properties of a strongly interacting system, which cannot be described perturbatively, and has the ratio η/s close to the value 1/4π of the N=4 Supersymmetric Yang-Mills theory.

  14. Elevated 1-h post-challenge plasma glucose levels in subjects with normal glucose tolerance or impaired glucose tolerance are associated with whole blood viscosity.

    Science.gov (United States)

    Marini, Maria Adelaide; Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio

    2017-08-01

    It has been suggested that glucose levels ≥155 mg/dl at 1-h during an oral glucose tolerance test (OGTT) may predict development of type 2 diabetes and cardiovascular events among adults with normal glucose tolerance (NGT 1 h-high). Studies showed a link between increased blood viscosity and type 2 diabetes. However, whether blood viscosity is associated with dysglycemic conditions such as NGT 1 h-high, impaired glucose tolerance (IGT) or impaired fasting glucose (IFG) is unsettled. 1723 non-diabetic adults underwent biochemical evaluation and OGTT. A validated formula based on hematocrit and total plasma proteins was employed to estimate whole blood viscosity. Subjects were categorized into NGT with 1 h glucose h-low), NGT-1 h-high, IFG and/or IGT. Hematocrit and blood viscosity values appeared significantly higher in individuals with NGT 1 h-high, IFG and/or IGT as compared to NGT 1 h-low subjects. Blood viscosity was significantly correlated with age, waist circumference, blood pressure, HbA1c, fasting, 1- and 2-h post-challenge insulin levels, total cholesterol and low-density lipoprotein, triglycerides, fibrinogen, white blood cell, and inversely correlated with high-density lipoprotein and insulin sensitivity. Of the four glycemic parameters, 1-h post-challenge glucose showed the strongest correlation with blood viscosity (β = 0.158, P h post-challenge plasma glucose. They also suggest that a subgroup of NGT individuals with 1-h post-challenge plasma >155 mg/dl have increased blood viscosity comparable to that observed in subjects with IFG and/or IGT.

  15. glutamic acid from high-viscosity fermentation broth

    African Journals Online (AJOL)

    Measurement of IR spectrum was performed using an IR spectrophotometer with ... Results: The results showed that the γ-PGA yield was 35 g/L. The viscosity of ... of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), ...

  16. Chebyshev super spectral viscosity method for a fluidized bed model

    International Nuclear Information System (INIS)

    Sarra, Scott A.

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations

  17. Effect of Fluid Dynamic Viscosity on the Strength of Chalk

    DEFF Research Database (Denmark)

    Hedegaard, K.; Fabricius, Ida Lykke

    The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...... of the chalk decreases with increasing dynamic viscosity. The proposed qualitative explanation is that pressure difference supports and enhances the generation of microscopic shear and tensile failures....

  18. Options for refractive index and viscosity matching to study variable density flows

    Science.gov (United States)

    Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.

    2018-02-01

    Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a

  19. Effect of sodium bicarbonate pretreatment on barium coating of mucosa during double contrast barium meal

    International Nuclear Information System (INIS)

    Kinnunen, J.; Toetterman, S.; Kaila, R.; Pietilae, J.; Linden, H.; Tervahartiala, P.

    1983-01-01

    The radiographic pattern of the areae gastricae is produced by barium lying in the intersecting furrows of the gastric mucosal surface. However, if the mucus layer on the gastric mucosa is thick, it interferes with the barium coating of the areae gastricae during double contrast barium meal. As sodium bicarbonate decreases the viscosity of mucus and thus may make the gastric mucus layer thinner, it was evaluated as a pretreatment agent in a routine double contrast upper-gastrointestinal study to improve the visualization of the areae gastricae. In a single blind study, 53 of 106 patients took sodium bicarbonate water mixtures at bedtime the day before and on the morning of the examination. According to the results of the present study mucolysis induced by the used doses of sodium bicarbonate does not significantly affect micromucosal visualization during double-contrast barium meal. (orig.) [de

  20. Effect of sodium bicarbonate pretreatment on barium coating of mucosa during double contrast barium meal

    Energy Technology Data Exchange (ETDEWEB)

    Kinnunen, J.; Toetterman, S.; Kaila, R.; Pietilae, J.; Linden, H.; Tervahartiala, P.

    1983-08-01

    The radiographic pattern of the areae gastricae is produced by barium lying in the intersecting furrows of the gastric mucosal surface. However, if the mucus layer on the gastric mucosa is thick, it interferes with the barium coating of the areae gastricae during double contrast barium meal. As sodium bicarbonate decreases the viscosity of mucus and thus may make the gastric mucus layer thinner, it was evaluated as a pretreatment agent in a routine double contrast upper-gastrointestinal study to improve the visualization of the areae gastricae. In a single blind study, 53 of 106 patients took sodium bicarbonate water mixtures at bedtime the day before and on the morning of the examination. According to the results of the present study mucolysis induced by the used doses of sodium bicarbonate does not significantly affect micromucosal visualization during double-contrast barium meal.

  1. Improvement of flavor and viscosity in hot and cold break tomato juice and sauce by peel removal.

    Science.gov (United States)

    Mirondo, Rita; Barringer, Sheryl

    2015-01-01

    Tomatoes are typically not peeled before being made into juice but the peels contain enzymes that affect the odor, flavor, and viscosity of the juice. The peels are removed in the finisher, but their presence during the break process may affect quality. Juice was processed from peeled and unpeeled tomatoes using hot or cold break. The juices were pasteurized by high temperature short time (HTST), low temperature long time (LTLT), or with a retort. The control samples were treated with 10% calcium chloride to stop enzymatic activity in the juice. Sauce was made from juice and the tomato products were analyzed for volatiles, color, viscosity, and by sensory. Cold break juice made with peel contained higher levels of some lipoxygenase-, carotenoid-, and amino acid-derived volatiles, than the juice made without peel. Because of the lack of enzyme activity, hot break juices had lower levels of these volatiles and there was no significant difference between hot break juices made with and without peel. CaCl2 -treated and HTST juice had higher levels of most of the volatiles than LTLT, including the lipoxygenase-derived volatiles. The presence of peel produced a significant decrease in the viscosity of the cold break juice and sauce. There was no significant difference in the hue angle, total soluble solids, pH, titratable acidity, and vitamin C for most of the treatments. The texture, flavor, and overall liking of cold break juice made without peel were preferred over cold break juice made with peel whereas the color was less preferred. Between the sauces no significant differences in preference were obtained. © 2014 Institute of Food Technologists®

  2. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  3. Gamma radiation effect on agar viscosity for use in food industry

    International Nuclear Information System (INIS)

    Aliste, Antonio J.; Del Mastro, Nelida L.

    1999-01-01

    The application of food radiation processing is increasing worldwide mainly because of its efficiency in the industrial decontamination of packaged food products. Indeed, the process neither introduces any undesirable elements nor increases the temperature, thus allowing the preparation of ready-to-use products which remain stable for long periods at room temperature. The aim of this work was to study the effect of Co-60 gamma radiation on the viscosity of agar. This hydrocolloid derived from seaweed is a galactose polymer with a high hysteresis capacity (great difference among melting and gelification temperature) which is extremely important when used as additive for the food industry. Commercial agar was irradiated with doses of 0, 1, 5 and 10 kGy. Proper dilutions were prepared and the viscosity was measured in a Brookfield model LVDVIII viscosimeters. The relationships viscosity/dose for the temperatures of 45 deg C and 60 deg C were established. The decrease of the viscosity was 71.4% and 49.6% respectively when the applied dose was 10 kGy. The implications of the use of this additive in food irradiation are discussed. (author)

  4. Effect of Polyvinyl Siloxane Viscosity on Accuracy of Dental Implant Impressions.

    Science.gov (United States)

    Ghahremanloo, Ahmad; Seifi, Mahdieh; Ghanbarzade, Jalil; Abrisham, Seyyed Mohammad; Javan, Rashid Abdolah

    2017-01-01

    The aim of this study was to compare the accuracy of dental implant impressions obtained by a combination of different impression techniques and viscosities of polyvinyl siloxane (PVS). Four parallel fixtures were placed between mental foramina in a master model of lower dental arch. Three different viscosities (putty/light body, medium body/light body, and monophase: heavy body) and direct and indirect techniques (six groups) were used, and seven impressions were obtained from each group (n=42). To measure the accuracy of impressions, drift, horizontal, and vertical angles of the implants, as well as the hex rotation of the implants in casts were evaluated using a digitizer device (1μm accuracy), in comparison with master arch. Data were analyzed using five-factor two-way ANOVA and Tukey's post-hoc test. The accuracy of impressions was assessed and the results showed that direct technique was not significantly different from indirect technique (P>0.05). Also, there were no significant differences between the mentioned viscosities except for the horizontal angle (P=0.006). Viscosity of impression materials is of high significance for the accuracy of dental impressions.

  5. Determination of liquid viscosity at high pressure by DLS

    International Nuclear Information System (INIS)

    Fukui, K; Asakuma, Y; Maeda, K

    2010-01-01

    The movement of particles with a size smaller than few microns is governed by random Brownian motion. This motion causes the fluid to flow around the particles. The force acting upon Brownian particles as well as their velocities are measured by using the dynamic light scattering (DLS) technique. It provides the relationship between fluid shear stress and shear rate over the Brownian particle and determines the viscosity properties of the fluid. In this study, we propose a new rheometer which is widely applicable to fluid viscosity measurements at both normal and high pressure levels for Newtonian and non- Newtonian fluids.

  6. Density and viscosity modeling and characterization of heavy oils

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Andersen, Simon Ivar; Creek, J

    2005-01-01

    to thousands of mPa center dot s. Essential to the presented extended approach for heavy oils is, first, achievement of accurate P nu T results for the EOS-characterized fluid. In particular, it has been determined that, for accurate viscosity modeling of heavy oils, a compressibility correction in the way...... are widely used within the oil industry. Further work also established the basis for extending the approach to heavy oils. Thus, in this work, the extended f-theory approach is further discussed with the study and modeling of a wider set of representative heavy reservoir fluids with viscosities up...

  7. Shear viscosity coefficient from microscopic models

    International Nuclear Information System (INIS)

    Muronga, Azwinndini

    2004-01-01

    The transport coefficient of shear viscosity is studied for a hadron matter through microscopic transport model, the ultrarelativistic quantum molecular dynamics (UrQMD), using the Green-Kubo formulas. Molecular-dynamical simulations are performed for a system of light mesons in a box with periodic boundary conditions. Starting from an initial state composed of π,η,ω,ρ,φ with a uniform phase-space distribution, the evolution takes place through elastic collisions, production, and annihilation. The system approaches a stationary state of mesons and their resonances, which is characterized by common temperature. After equilibration, thermodynamic quantities such as the energy density, particle density, and pressure are calculated. From such an equilibrated state the shear viscosity coefficient is calculated from the fluctuations of stress tensor around equilibrium using Green-Kubo relations. We do our simulations here at zero net baryon density so that the equilibration times depend on the energy density. We do not include hadron strings as degrees of freedom so as to maintain detailed balance. Hence we do not get the saturation of temperature but this leads to longer equilibration times

  8. Barium sulphate preparations for use in double contrast examination of the upper gastrointestinal tract

    International Nuclear Information System (INIS)

    Anderson, W.; Harthill, J.E.; James, W.B.; Montgomery, D.

    1980-01-01

    Physical properties relevant to upper gastrointestinal radiology have been compared for five barium sulphate preparations and related to radiographic results. Evaluation of particles (size and stability) and whole suspension (dispersibility and fluidity) resulted in ranking of the preparations generally in accord with that based on radiological experience in double contrast examinations of the stomach. Experiments with extirpated pig stomach revealed a tendency for large particles in a low viscosity barium sulphate suspension to settle in mucosal grooves. This is believed to contribute to good radiographic definition of both the areae gastricae and small lesions. Particle size is therefore important and susceptibility to flocculation, a possible cause of random change in size during use, was assessed by measuring particle electrophoretic mobility under varying conditions; quantitative differences in suspension flow and dispersibility were also demonstrated. Fluidity and dispersibility together with rapid sedimentation of suitably sized particles resistant to flocculation underlie the successful use of low viscosity high density barium sulphate suspensions. (U.K.)

  9. High Ra, high Pr convection with viscosity gradients

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.

  10. Hydrodynamic radii of polyethylene glycols in different solvents determined from viscosity measurements

    NARCIS (Netherlands)

    Dohmen-Speelmans, M.P.J.; Pereira, A.M.; Timmer, J.M.K.; Benes, N.E.; Keurentjes, J.T.F.

    2008-01-01

    The hydrodynamic radius, rh, of low molar mass polyethylene glycol, MPEG = (200 to 1000) g·mol-1, in a homologous series of primary alcohols, acetone, and toluene has been determined from viscosity measurements. The viscosity data have been collected using a fast one-point method as well as a more

  11. Blood and plasma viscosity in diabetes: possible contribution to late organ complications?

    NARCIS (Netherlands)

    Schut, N. H.; van Arkel, E. C.; Hardeman, M. R.; Bilo, H. J.; Michels, R. P.; Vreeken, J.

    1992-01-01

    It has been postulated that an increased whole blood and plasma viscosity contribute to diabetic organ complications. Blood viscosity was measured in 30 controls and four groups of insulin-dependent diabetic patients at three shear rates: 70 sec-1, 0.5 sec-1 and 0.05 sec-1. Results were compared

  12. Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid.

    Science.gov (United States)

    Tabassum, Rabil; Mehmood, R; Nadeem, S

    2017-09-01

    This study inspects the influence of temperature dependent viscosity on Oblique flow of micropolar nanofluid. Fluid viscosity is considered as an exponential function of temperature. Governing equations are converted into dimensionless forms with aid of suitable transformations. Outcomes of the study are shown in graphical form and discussed in detail. Results revealed that viscosity parameter has pronounced effects on velocity profiles, temperature distribution, micro-rotation, streamlines, shear stress and heat flux. It is found that viscosity parameter enhances the temperature distribution, tangential velocity profile, normal component of micro-rotation and shear stress at the wall while it has decreasing effect on tangential component of micro-rotation and local heat flux. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Magnetization-dependent viscosity in brute-force-polarized liquid 3He

    DEFF Research Database (Denmark)

    Vermeulen, G.A.; Schuhl, A.; Joffrin, J.

    1988-01-01

    A new method to measure the magnetization dependence of the viscosity in polarized liquid He3 is presented. The magnetization is obtained by "brute-force polarization" at 45 mK in magnetic fields up to 11 T; it is subsequently destroyed by saturation of the NMR signal. Our result, a relative...... increase of the viscosity of (31.5)×10-3 at 3.9% polarization and a pressure of 30 bars, disagrees with a prediction based on the "nearly metamagnetic" model....

  14. Relationship between viscosity of the ankle joint complex and functional ankle instability for inversion ankle sprain patients.

    Science.gov (United States)

    Lin, Che-Yu; Kang, Jiunn-Horng; Wang, Chung-Li; Shau, Yio-Wha

    2015-03-01

    Measurement of viscosity of the ankle joint complex is a novel method to assess mechanical ankle instability. In order to further investigate the clinical significance of the method, this study intended to investigate the relationship between ankle viscosity and severity of functional ankle instability. Cross-sectional study. 15 participants with unilateral inversion ankle sprain and 15 controls were recruited. Their ankles were further classified into stable and unstable ankles. Ankle viscosity was measured by an instrumental anterior drawer test. Severity of functional ankle instability was measured by the Cumberland Ankle Instability Tool. Unstable ankles were compared with stable ankles. Injured ankles were compared with uninjured ankles of both groups. The spearman's rank correlation coefficient was applied to determine the relationship between ankle viscosity and severity of functional ankle instability in unstable ankles. There was a moderate relationship between ankle viscosity and severity of functional ankle instability (r=-0.64, pankles exhibited significantly lower viscosity (pankle instability (pankles. Injured ankles exhibited significantly lower viscosity and more severe functional ankle instability than uninjured ankles (pankle viscosity and severity of functional ankle instability. This finding suggested that, severity of functional ankle instability may be partially attributed to mechanical insufficiencies such as the degenerative changes in ankle viscosity following the inversion ankle sprain. In clinical application, measurement of ankle viscosity could be a useful tool to evaluate severity of chronic ankle instability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Imaging by the SSFSE single slice method at different viscosities of bile

    International Nuclear Information System (INIS)

    Kubo, Hiroya; Usui, Motoki; Fukunaga, Kenichi; Yamamoto, Naruto; Ikegami, Toshimi

    2001-01-01

    The single shot fast spin echo single thick slice method (single slice method) is a technique that visualizes the water component alone using a heavy T 2 . However, this method is considered to be markedly affected by changes in the viscosity of the material because a very long TE is used, and changes in the T 2 value, which are related to viscosity, directly affect imaging. In this study, we evaluated the relationship between the effects of TE and the T 2 value of bile in the single slice method and also examined the relationship between the signal intensity of bile on T 1 - and T 2 -weighted images and imaging by MR cholangiography (MRC). It was difficult to image bile with high viscosities at a usual effective TE level of 700-1,500 ms. With regard to the relationship between the signal intensity of bile and MRC imaging, all T 2 values of the bile samples showing relatively high signal intensities on the T 1 -weighted images suggested high viscosities, and MRC imaging of these bile samples was poor. In conclusion, MRC imaging of bile with high viscosities was poor with the single slice method. Imaging by the single slice method alone of bile showing a relatively high signal intensity on T 1 -weighted images should be avoided, and combination with other MRC sequences should be used. (author)

  16. THE ENZYMATIC EFFECT (α-AMYLASE ON VISCOSITY AND CARBOHYDRATE COMPOSITION OF MAIZE FLOUR MODIFIED

    Directory of Open Access Journals (Sweden)

    Suarni Suarni

    2010-06-01

    Full Text Available Technology is required in making new product of maize flour. Enzymatic modification of three varieties of maize flours i.e. MS2, Srikandi and Local product has been conducted using α-amylase from mung bean sprouts has been carried out in Laboratorium Bioproses BB Pascapanen Bogor. A research was performed used the flour without addition of sprouts (as control and with addition of 10, 20, 30 % of sprouts. Parameters observed were the change in viscosity of the maize flour; amylose, glucose and oligosaccharide contents. Results showed that there were changes in polymerization degree, dextrose equivalent, amylase content, viscosity (50 oC, viscosity (50 ºC/20΄, and carbohydrate composition. An enzymatic treatment using 20% of sprout to the three varieties gave results as follows:  amylose content was 20.02 - 24.02%, viscosity (50 ºC was  210 - 230 BU, and viscosity (50 ºC/20΄ was 200 - 220 BU. Functional properties of the flour fulfilled with the soft texture product, such as  food material for children under five years old. Data of the modified flour can be utilized by consuments as an alternative food material.   Keywords: modified maize flour, viscosity and carbohydrate composition

  17. High Resolution Viscosity Measurement by Thermal Noise Detection

    Directory of Open Access Journals (Sweden)

    Felipe Aguilar Sandoval

    2015-11-01

    Full Text Available An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.

  18. Shear viscosity and entropy of a pion gas

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Jean-Bernard; Oliinychenko, Dmytro; Schaefer, Anna; Petersen, Hannah [FIAS, Goethe University, Frankfurt (Germany)

    2016-07-01

    A model of microscopic non-equilibrium dynamics for classical point particles is used to calculate the transport coefficients of dense hadronic matter. Specifically, the shear viscosity to entropy density ratio is investigated, and the temperature dependence between 100 MeV and 300 MeV is explored. Calculations are made at corresponding particle densities going from 0.01 to 0.34 in a pion box simulating infinite matter. The results for the entropy and shear viscosity are then compared to analytic estimates. In addition, massless particles as well as ρ-meson resonance excitations are included. This will be the starting point for the calculation of more transport coefficients as functions of T and μ{sub B}; expanding systems could also be considered.

  19. Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities

    Directory of Open Access Journals (Sweden)

    Qingsong Bai

    2016-01-01

    Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.

  20. Viscosity and transient electric birefringence study of clay colloidal aggregation.

    Science.gov (United States)

    Bakk, Audun; Fossum, Jon O; da Silva, Geraldo J; Adland, Hans M; Mikkelsen, Arne; Elgsaeter, Arnljot

    2002-02-01

    We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring stationary shear viscosity and transient electrically induced birefringence (TEB). On one hand the viscosity data are consistent with the particles being spheres and the particles being associated with large amount bound water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by employing two different models of aggregate size (effective hydrodynamic radius) distribution: (1) bidisperse model and (2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experimental TEB data and they indicate that the suspension consists of polydisperse particles. The models also appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low salt concentrations seem to be monomers and oligomers.