WorldWideScience

Sample records for higher order hermite-gaussian

  1. Squeezing of higher order Hermite-Gauss modes

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard

    2008-01-01

    The present paper gives an overview of the experimental generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric ampli¯er (OPA). This work was awarded with The European Optical Society (EOS) price 2007. The purpose of the prize is to encourage a European dimension...... in research in pure and applied optics. The EOS prize is awarded based on the selection criteria of high professionalism, academic and technical quality. Following the EOS Prize rules, the conditions for eligibility are that the work was performed in Europe and that it is published under the auspices...

  2. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    Science.gov (United States)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  3. New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states

    International Nuclear Information System (INIS)

    Fan Hong-Yi; Wang Zhen

    2014-01-01

    For directly normalizing the photon non-Gaussian states (e.g., photon added and subtracted squeezed states), we use the method of integration within an ordered product (IWOP) of operators to derive some new bosonic operator-ordering identities. We also derive some new integration transformation formulas about one- and two-variable Hermite polynomials in complex function space. These operator identities and associative integration formulas provide much convenience for constructing non-Gaussian states in quantum engineering. (general)

  4. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere.

    Science.gov (United States)

    Eyyuboğlu, Halil Tanyer

    2005-08-01

    Hermite-cosine-Gaussian (HcosG) laser beams are studied. The source plane intensity of the HcosG beam is introduced and its dependence on the source parameters is examined. By application of the Fresnel diffraction integral, the average receiver intensity of HcosG beam is formulated for the case of propagation in turbulent atmosphere. The average receiver intensity is seen to reduce appropriately to various special cases. When traveling in turbulence, the HcosG beam initially experiences the merging of neighboring beam lobes, and then a TEM-type cosh-Gaussian beam is formed, temporarily leading to a plain cosh-Gaussian beam. Eventually a pure Gaussian beam results. The numerical evaluation of the normalized beam size along the propagation axis at selected mode indices indicates that relative spreading of higher-order HcosG beam modes is less than that of the lower-order counterparts. Consequently, it is possible at some propagation distances to capture more power by using higher-mode-indexed HcosG beams.

  5. Hermite-Gaussian beams with self-forming spiral phase distribution

    Science.gov (United States)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2014-05-01

    Spiral laser beams is a family of laser beams that preserve the structural stability up to scale and rotate with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Spiral beams have a complicated phase distribution in cross section. This paper describes the results of analytical and computer simulation of Hermite-Gaussian beams with self-forming spiral phase distribution. In the simulation used a laser beam consisting of the sum of the two modes HG TEMnm and TEMn1m1. The coefficients n1, n, m1, m were varied. Additional phase depending from the coefficients n, m, m1, n1 imposed on the resulting beam. As a result, formed the Hermite Gaussian beam phase distribution which takes the form of a spiral in the process of distribution. For modeling was used VirtualLab 5.0 (manufacturer LightTrans GmbH).

  6. On the representation of the diffracted field of Hermite-Gaussian modes in an alien basis and the young diffraction principle

    International Nuclear Information System (INIS)

    Smirnov, V.N.; Strokovskii, G.A.

    1994-01-01

    An analytical form of expansion coefficients of a diffracted field for an arbitrary Hermite-Gaussian beam in an alien Hermite-Gaussian basis is obtained. A possible physical interpretation of the well-known Young phenomenological diffraction principle and experiments on diffraction of Hermite-Gaussian beams of the lowest types (n = 0 - 5) from half-plane are discussed. The case of nearly homogenous expansion corresponding to misalignment and mismatch of optical systems is also analyzed. 7 refs., 2 figs

  7. Higher-Order Hybrid Gaussian Kernel in Meshsize Boosting Algorithm

    African Journals Online (AJOL)

    In this paper, we shall use higher-order hybrid Gaussian kernel in a meshsize boosting algorithm in kernel density estimation. Bias reduction is guaranteed in this scheme like other existing schemes but uses the higher-order hybrid Gaussian kernel instead of the regular fixed kernels. A numerical verification of this scheme ...

  8. Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system.

    Science.gov (United States)

    Sun, Dong; Zhao, Daomu

    2005-08-01

    By introducing the hard-aperture function into a finite sum of complex Gaussian functions, the approximate analytical expressions of the Wigner distribution function for Hermite-cosine-Gaussian beams passing through an apertured paraxial ABCD optical system are obtained. The analytical results are compared with the numerically integrated ones, and the absolute errors are also given. It is shown that the analytical results are proper and that the calculation speed for them is much faster than for the numerical results.

  9. Design of high-order rotation invariants from Gaussian-Hermite moments

    Czech Academy of Sciences Publication Activity Database

    Yang, Bo; Flusser, Jan; Suk, Tomáš

    2015-01-01

    Roč. 113, č. 1 (2015), s. 61-67 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Rotationinvariants * Geometric moments * Gaussian–Hermite moments * Recurrentrelation Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.063, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0441266.pdf

  10. Sixth- and eighth-order Hermite integrator for N-body simulations

    Science.gov (United States)

    Nitadori, Keigo; Makino, Junichiro

    2008-10-01

    We present sixth- and eighth-order Hermite integrators for astrophysical N-body simulations, which use the derivatives of accelerations up to second-order ( snap) and third-order ( crackle). These schemes do not require previous values for the corrector, and require only one previous value to construct the predictor. Thus, they are fairly easy to implement. The additional cost of the calculation of the higher-order derivatives is not very high. Even for the eighth-order scheme, the number of floating-point operations for force calculation is only about two times larger than that for traditional fourth-order Hermite scheme. The sixth-order scheme is better than the traditional fourth-order scheme for most cases. When the required accuracy is very high, the eighth-order one is the best. These high-order schemes have several practical advantages. For example, they allow a larger number of particles to be integrated in parallel than the fourth-order scheme does, resulting in higher execution efficiency in both general-purpose parallel computers and GRAPE systems.

  11. Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile

    International Nuclear Information System (INIS)

    Nanda, Vikas; Kant, Niti; Wani, Manzoor Ahmad

    2013-01-01

    The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the presence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-cosh-Gaussian laser beam with decentered parameter and magnetic field has been studied, and strong self-focusing is reported. It is investigated that decentered parameter 'b' plays a significant role for the self-focusing of the laser beam and is very sensitive as in case of extraordinary mode. For mode indices, m = 0, 1, 2, and b = 4.00, 3.14, and 2.05, strong self-focusing is observed. Similarly in case of ordinary mode, for m = 0, 1, 2 and b = 4.00, 3.14, 2.049, respectively, strong self-focusing is reported. Further, it is seen that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For mode indices m = 0, 1, and 2, diffraction term becomes more dominant over nonlinear term for decentered parameter b=0. For selective higher values of decentered parameter in case of mode indices m=0, 1, and 2, self-focusing effect becomes strong for extraordinary mode. Also increase in the value of magnetic field enhances the self-focusing ability of the laser beam, which is very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers

  12. Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti; Wani, Manzoor Ahmad [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2013-11-15

    The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the presence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-cosh-Gaussian laser beam with decentered parameter and magnetic field has been studied, and strong self-focusing is reported. It is investigated that decentered parameter 'b' plays a significant role for the self-focusing of the laser beam and is very sensitive as in case of extraordinary mode. For mode indices, m = 0, 1, 2, and b = 4.00, 3.14, and 2.05, strong self-focusing is observed. Similarly in case of ordinary mode, for m = 0, 1, 2 and b = 4.00, 3.14, 2.049, respectively, strong self-focusing is reported. Further, it is seen that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For mode indices m = 0, 1, and 2, diffraction term becomes more dominant over nonlinear term for decentered parameter b=0. For selective higher values of decentered parameter in case of mode indices m=0, 1, and 2, self-focusing effect becomes strong for extraordinary mode. Also increase in the value of magnetic field enhances the self-focusing ability of the laser beam, which is very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers.

  13. Coherent mode decomposition using mixed Wigner functions of Hermite-Gaussian beams.

    Science.gov (United States)

    Tanaka, Takashi

    2017-04-15

    A new method of coherent mode decomposition (CMD) is proposed that is based on a Wigner-function representation of Hermite-Gaussian beams. In contrast to the well-known method using the cross spectral density (CSD), it directly determines the mode functions and their weights without solving the eigenvalue problem. This facilitates the CMD of partially coherent light whose Wigner functions (and thus CSDs) are not separable, in which case the conventional CMD requires solving an eigenvalue problem with a large matrix and thus is numerically formidable. An example is shown regarding the CMD of synchrotron radiation, one of the most important applications of the proposed method.

  14. Generating higher-order radial Laguerre-Gaussian modes using a digital laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2015-07-01

    Full Text Available Using the digital laser one can generate various types of modes, like, Laguerre-Gaussian modes. The digital laser was forced to generate high-order radial Laguerre-Gaussian modes, LGp , with zero azimuthal order, by loading a digital hologram...

  15. Scattering of aerosol particles by a Hermite-Gaussian beam in marine atmosphere.

    Science.gov (United States)

    Huang, Qingqing; Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Yan, Xu; Liu, Songhua

    2017-07-01

    Based on the complex-source-point method and the generalized Lorenz-Mie theory, the scattering properties and polarization of aerosol particles by a Hermite-Gaussian (HG) beam in marine atmosphere is investigated. The influences of beam mode, beam width, and humidity on the scattered field are analyzed numerically. Results indicate that when the number of HG beam modes u (v) increase, the radar cross section of aerosol particles alternating appears at maximum and minimum values in the forward and backward scattering, respectively, because of the special petal-shaped distribution of the HG beam. The forward and backward scattering of aerosol particles decreases with the increase in beam waist. When beam waist is less than the radius of the aerosol particle, a minimum value is observed in the forward direction. The scattering properties of aerosol particles by the HG beam are more sensitive to the change in relative humidity compared with those by the plane wave and the Gaussian beam (GB). The HG beam shows superiority over the plane wave and the GB in detecting changes in the relative humidity of marine atmosphere aerosol. The effects of relative humidity on the polarization of the HG beam have been numerically analyzed in detail.

  16. Concentric layered Hermite scatterers

    Science.gov (United States)

    Astheimer, Jeffrey P.; Parker, Kevin J.

    2018-05-01

    The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.

  17. Scale invariants from Gaussian-Hermite moments

    Czech Academy of Sciences Publication Activity Database

    Yang, B.; Kostková, Jitka; Flusser, Jan; Suk, Tomáš

    2017-01-01

    Roč. 132, č. 1 (2017), s. 77-84 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Scale invariants * Gaussian–Hermite moments * Variable modulation * Normalization * Zernike moments Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0466031.pdf

  18. Hermite scatterers in an ultraviolet sky

    Science.gov (United States)

    Parker, Kevin J.

    2017-12-01

    The scattering from spherical inhomogeneities has been a major historical topic in acoustics, optics, and electromagnetics and the phenomenon shapes our perception of the world including the blue sky. The long wavelength limit of ;Rayleigh scattering; is characterized by intensity proportional to k4 (or λ-4) where k is the wavenumber and λ is the wavelength. With the advance of nanotechnology, it is possible to produce scatterers that are inhomogeneous with material properties that are functions of radius r, such as concentric shells. We demonstrate that with proper choice of material properties linked to the Hermite polynomials in r, scatterers can have long wavelength scattering behavior of higher powers: k8, k16, and higher. These ;Hermite scatterers; could be useful in providing unique signatures (or colors) to regions where they are present. If suspended in air under white light, the back-scattered spectrum would be shifted from blue towards violet and then ultraviolet as the higher order Hermite scatterers were illuminated.

  19. Higher Order and Fractional Diffusive Equations

    Directory of Open Access Journals (Sweden)

    D. Assante

    2015-07-01

    Full Text Available We discuss the solution of various generalized forms of the Heat Equation, by means of different tools ranging from the use of Hermite-Kampé de Fériet polynomials of higher and fractional order to operational techniques. We show that these methods are useful to obtain either numerical or analytical solutions.

  20. 3D rotation invariants of Gaussian-Hermite moments

    Czech Academy of Sciences Publication Activity Database

    Yang, Bo; Flusser, Jan; Suk, Tomáš

    2015-01-01

    Roč. 54, č. 1 (2015), s. 18-26 ISSN 0167-8655 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Rotation invariants * Orthogonal moments * Gaussian–Hermite moments * 3D moment invariants Subject RIV: IN - Informatics, Computer Science Impact factor: 1.586, year: 2015 http://library.utia.cas.cz/separaty/2014/ZOI/yang-0438325.pdf

  1. Hermite-Hadamard Type Integral Inequalities for Functions Whose Second-Order Mixed Derivatives Are Coordinated (s,m-P-Convex

    Directory of Open Access Journals (Sweden)

    Yu-Mei Bai

    2018-01-01

    Full Text Available We establish some new Hermite-Hadamard type integral inequalities for functions whose second-order mixed derivatives are coordinated (s,m-P-convex. An expression form of Hermite-Hadamard type integral inequalities via the beta function and the hypergeometric function is also presented. Our results provide a significant complement to the work of Wu et al. involving the Hermite-Hadamard type inequalities for coordinated (s,m-P-convex functions in an earlier article.

  2. Propagation of a general-type beam through a truncated fractional Fourier transform optical system.

    Science.gov (United States)

    Zhao, Chengliang; Cai, Yangjian

    2010-03-01

    Paraxial propagation of a general-type beam through a truncated fractional Fourier transform (FRT) optical system is investigated. Analytical formulas for the electric field and effective beam width of a general-type beam in the FRT plane are derived based on the Collins formula. Our formulas can be used to study the propagation of a variety of laser beams--such as Gaussian, cos-Gaussian, cosh-Gaussian, sine-Gaussian, sinh-Gaussian, flat-topped, Hermite-cosh-Gaussian, Hermite-sine-Gaussian, higher-order annular Gaussian, Hermite-sinh-Gaussian and Hermite-cos-Gaussian beams--through a FRT optical system with or without truncation. The propagation properties of a Hermite-cos-Gaussian beam passing through a rectangularly truncated FRT optical system are studied as a numerical example. Our results clearly show that the truncated FRT optical system provides a convenient way for laser beam shaping.

  3. High-Order Local Pooling and Encoding Gaussians Over a Dictionary of Gaussians.

    Science.gov (United States)

    Li, Peihua; Zeng, Hui; Wang, Qilong; Shiu, Simon C K; Zhang, Lei

    2017-07-01

    Local pooling (LP) in configuration (feature) space proposed by Boureau et al. explicitly restricts similar features to be aggregated, which can preserve as much discriminative information as possible. At the time it appeared, this method combined with sparse coding achieved competitive classification results with only a small dictionary. However, its performance lags far behind the state-of-the-art results as only the zero-order information is exploited. Inspired by the success of high-order statistical information in existing advanced feature coding or pooling methods, we make an attempt to address the limitation of LP. To this end, we present a novel method called high-order LP (HO-LP) to leverage the information higher than the zero-order one. Our idea is intuitively simple: we compute the first- and second-order statistics per configuration bin and model them as a Gaussian. Accordingly, we employ a collection of Gaussians as visual words to represent the universal probability distribution of features from all classes. Our problem is naturally formulated as encoding Gaussians over a dictionary of Gaussians as visual words. This problem, however, is challenging since the space of Gaussians is not a Euclidean space but forms a Riemannian manifold. We address this challenge by mapping Gaussians into the Euclidean space, which enables us to perform coding with common Euclidean operations rather than complex and often expensive Riemannian operations. Our HO-LP preserves the advantages of the original LP: pooling only similar features and using a small dictionary. Meanwhile, it achieves very promising performance on standard benchmarks, with either conventional, hand-engineered features or deep learning-based features.

  4. Rotation invariants from Gaussian-Hermite moments of color images

    Czech Academy of Sciences Publication Activity Database

    Yang, B.; Suk, Tomáš; Flusser, Jan; Shi, Z.; Chen, X.

    2018-01-01

    Roč. 143, č. 1 (2018), s. 282-291 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Color images * Object recognition * Rotation invariants * Gaussian–Hermite moments * Joint invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/suk-0479748.pdf

  5. Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion.

    Science.gov (United States)

    Coelho, Rodrigo C V; Ilha, Anderson; Doria, Mauro M; Pereira, R M; Aibe, Valter Yoshihiko

    2014-04-01

    The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried to the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by Yang et al. [Shi and Yang, J. Comput. Phys. 227, 9389 (2008); Yang and Hung, Phys. Rev. E 79, 056708 (2009)] through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded to fourth order in the Hermite polynomials.

  6. Analytical investigation on domain of decentered parameter for self-focusing of Hermite-cosh-Gaussian laser beam in collisional plasma

    Science.gov (United States)

    Valkunde, Amol T.; Patil, Sandip D.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Takale, Mansing V.; Fulari, Vijay J.

    2018-03-01

    In the present paper, an analytically investigated domain of decentered parameter and its effect on the self-focusing of Hermit-cosh-Gaussian (HChG) laser beams in a collisional plasma have been studied theoretically. The nonlinearity in the dielectric constant of plasma arising due to the nonuniform heating of carriers along the wavefront of the laser beam has been employed in the present investigation. The nonlinear differential equation of beam width parameter for various laser modes of HChG beam is obtained by following the standard Akhamanov's parabolic equation approach under Wentzel-Kramers-Brillouin and paraxial approximations. The analytical treatment has enabled us to define three distinct regions: self-focusing, self-trapping and defocusing, which are presented graphically.

  7. A Detailed Derivation of Gaussian Orbital-Based Matrix Elements in Electron Structure Calculations

    Science.gov (United States)

    Petersson, T.; Hellsing, B.

    2010-01-01

    A detailed derivation of analytic solutions is presented for overlap, kinetic, nuclear attraction and electron repulsion integrals involving Cartesian Gaussian-type orbitals. It is demonstrated how s-type orbitals can be used to evaluate integrals with higher angular momentum via the properties of Hermite polynomials and differentiation with…

  8. Cylindrical particle manipulation and negative spinning using a nonparaxial Hermite-Gaussian light-sheet beam

    Science.gov (United States)

    Mitri, F. G.

    2016-10-01

    Based on the angular spectrum decomposition method (ASDM), a nonparaxial solution for the Hermite-Gaussian (HG m ) light-sheet beam of any order m is derived. The beam-shape coefficients (BSCs) are expressed in a compact form and computed using the standard Simpson’s rule for numerical integration. Subsequently, the analysis is extended to evaluate the longitudinal and transverse radiation forces as well as the spin torque on an absorptive dielectric cylindrical particle in 2D without any restriction to a specific range of frequencies. The dynamics of the cylindrical particle are also examined based on Newton’s second law of motion. The numerical results show that a Rayleigh or Mie cylindrical particle can be trapped, pulled or propelled in the optical field depending on its initial position in the cross-sectional plane of the HG m light-sheet. Moreover, negative or positive axial spin torques can arise depending on the choice of the non-dimensional size parameter ka (where k is the wavenumber and a is the radius of the cylinder) and the location of the absorptive cylinder in the beam. This means that the HG m light-sheet beam can induce clockwise or anti-clockwise rotations depending on its shift from the center of the cylinder. In addition, individual vortex behavior can arise in the cross-sectional plane of wave propagation. The present analysis presents an analytical model to predict the optical radiation forces and torque induced by a HG m light-sheet beam on an absorptive cylinder for applications in optical light-sheet tweezers, optical micro-machines, particle manipulation and opto-fluidics to name a few areas of research.

  9. Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders

    KAUST Repository

    El Beltagy, Mohamed

    2016-01-01

    In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.

  10. Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders

    KAUST Repository

    El Beltagy, Mohamed

    2016-01-06

    In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.

  11. Selective excitation of higher-radial-order Laguerre-Gaussian beams using a solid-state digital laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2017-01-01

    Full Text Available Filter (LF) was introduced to only transmit 1064 nm and block the 808 nm pump. The laser beam was transmitted out of the cavity through an output coupler mirror (M3 on Figure 1) and was 1:1 relay imaged using two 125 mm lenses (L3 and L4) to a Photon...; Published December 30, 2016 Citation: Bell T, Ngcobo S (2016) Selective Excitation of Higher-radial-order Laguerre-Gaussian Beams Using a Solid-state Digital Laser. J Laser Opt Photonics 3: 144. doi: 10.4172/2469-410X.1000144 Copyright: © 2016 Bell T, et...

  12. Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique

    KAUST Repository

    El-Beltagy, Mohamed A.

    2014-01-06

    Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.

  13. Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique

    KAUST Repository

    El-Beltagy, Mohamed A.; Al-Mulla, Noah

    2014-01-01

    Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.

  14. Fourier-Hermite communications; where Fourier meets Hermite

    NARCIS (Netherlands)

    Korevaar, C.W.; Kokkeler, Andre B.J.; de Boer, Pieter-Tjerk; Smit, Gerardus Johannes Maria

    A new signal set, based on the Fourier and Hermite signal bases, is introduced. It combines properties of the Fourier basis signals with the perfect time-frequency localization of the Hermite functions. The signal set is characterized by both a high spectral efficiency and good time-frequency

  15. Jitter-Robust Orthogonal Hermite Pulses for Ultra-Wideband Impulse Radio Communications

    Directory of Open Access Journals (Sweden)

    Ryuji Kohno

    2005-03-01

    Full Text Available The design of a class of jitter-robust, Hermite polynomial-based, orthogonal pulses for ultra-wideband impulse radio (UWB-IR communications systems is presented. A unified and exact closed-form expression of the auto- and cross-correlation functions of Hermite pulses is provided. Under the assumption that jitter values are sufficiently smaller than pulse widths, this formula is used to decompose jitter-shifted pulses over an orthonormal basis of the Hermite space. For any given jitter probability density function (pdf, the decomposition yields an equivalent distribution of N-by-N matrices which simplifies the convolutional jitter channel model onto a multiplicative matrix model. The design of jitter-robust orthogonal pulses is then transformed into a generalized eigendecomposition problem whose solution is obtained with a Jacobi-like simultaneous diagonalization algorithm applied over a subset of samples of the channel matrix distribution. Examples of the waveforms obtained with the proposed design and their improved auto- and cross-correlation functions are given. Simulation results are presented, which demonstrate the superior performance of a pulse-shape modulated (PSM- UWB-IR system using the proposed pulses, over the same system using conventional orthogonal Hermite pulses, in jitter channels with additive white Gaussian noise (AWGN.

  16. Fractional Delayer Utilizing Hermite Interpolation with Caratheodory Representation

    Directory of Open Access Journals (Sweden)

    Qiang DU

    2018-04-01

    Full Text Available Fractional delay is indispensable for many sorts of circuits and signal processing applications. Fractional delay filter (FDF utilizing Hermite interpolation with an analog differentiator is a straightforward way to delay discrete signals. This method has a low time-domain error, but a complicated sampling module than the Shannon sampling scheme. A simplified scheme, which is based on Shannon sampling and utilizing Hermite interpolation with a digital differentiator, will lead a much higher time-domain error when the signal frequency approaches the Nyquist rate. In this letter, we propose a novel fractional delayer utilizing Hermite interpolation with Caratheodory representation. The samples of differential signal are obtained by Caratheodory representation from the samples of the original signal only. So, only one sampler is needed and the sampling module is simple. Simulation results for four types of signals demonstrate that the proposed method has significantly higher interpolation accuracy than Hermite interpolation with digital differentiator.

  17. Solution of Stochastic Nonlinear PDEs Using Automated Wiener-Hermite Expansion

    KAUST Repository

    Al-Juhani, Amnah

    2014-01-06

    The solution of the stochastic differential equations (SDEs) using Wiener-Hermite expansion (WHE) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In WHE approach, there is no randomness directly involved in the computations. One does not have to rely on pseudo random number generators, and there is no need to solve the SDEs repeatedly for many realizations. Instead, the deterministic system is solved only once. For previous research efforts see [2, 4].

  18. Closed-form expressions for time-frequency operations involving Hermite functions

    NARCIS (Netherlands)

    Korevaar, C.W.; Oude Alink, M.S.; de Boer, Pieter-Tjerk; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2016-01-01

    The product, convolution, correlation, Wigner distribution function (WDF) and ambiguity function (AF) of two Hermite functions of arbitrary order n and m are derived and expressed as a bounded, weighted sum of n+m Hermite functions. It was already known that these mathematical operations performed

  19. Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they

  20. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    International Nuclear Information System (INIS)

    Nanda, Vikas; Kant, Niti

    2014-01-01

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc

  1. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2014-04-15

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc.

  2. Inseparability inequalities for higher order moments for bipartite systems

    International Nuclear Information System (INIS)

    Agarwal, G S; Biswas, Asoka

    2005-01-01

    There are several examples of bipartite entangled states of continuous variables for which the existing criteria for entanglement using the inequalities involving the second-order moments are insufficient. We derive new inequalities involving higher order correlation, for testing entanglement in non-Gaussian states. In this context, we study an example of a non-Gaussian state, which is a bipartite entangled state of the form Ψ(x a , x b ) ∝ (αx a + βx b ) e -(x a 2 +x b 2 )/2 . Our results open up an avenue to search for new inequalities to test entanglement in non-Gaussian states

  3. On some Hermite series identities and their applications to Gabor analysis

    DEFF Research Database (Denmark)

    Lemvig, Jakob

    2016-01-01

    We prove some infinite series identities for the Hermite functions. From these identities we disprove the Gabor frame set conjecture for Hermite functions of order (Formula presented.) and (Formula presented.) for (Formula presented.). The results hold not only for Hermite functions, but for two ...... large classes of eigenfunctions of the Fourier transform associated with the eigenvalues (Formula presented.) and i, and the results indicate that the Gabor frame set of all such functions must have a rather complicated structure....

  4. Quantum entanglement with a hermite-gaussian pump; poster

    CSIR Research Space (South Africa)

    McLaren, M

    2013-07-01

    Full Text Available Typically, a Gaussian mode is used to pump a non-linear crystal to produce pairs of entangled photons. We demonstrate orbital angular momentum (OAM) entanglement when a non-fundamental mode is used to pump a non-linear crystal. An approximation...

  5. Off-Axis Gaussian Beams with Random Displacement in Atmospheric Turbulence

    Directory of Open Access Journals (Sweden)

    Yahya Baykal

    2006-10-01

    Full Text Available Our recent work in which we study the propagation of the general Hermite-sinusoidal-Gaussian laser beams in wireless broadband access telecommunication systems is elaborated in this paper to cover the special case of an off-axis Gaussian beam. We mainly investigate the propagation characteristics in atmospheric turbulence of an off-axis Gaussian beam possessing Gaussian distributed random displacement parameters. Our interest is to search for different types of laser beams that will improve the performance of a wireless broadband access system when atmospheric turbulence is considered. Our formulation is based on the basic solution of the second order mutual coherence function evaluated at the receiver plane. For fixed turbulence strength, the coherence length calculated at the receiver plane is found to decrease as the variance of the random displacement is increased. It is shown that as the turbulence becomes stronger, coherence lengths due to off-axis Gaussian beams tend to approach the same value, irrespective of the variance of the random displacement. As expected, the beam spreading is found to be pronounced for larger variance of displacement parameter. Average intensity profiles when atmospheric turbulence is present are plotted for different values of the variance of the random displacement parameter of the off-axis Gaussian beam.

  6. Higher-Order Spectrum in Understanding Nonlinearity in EEG Rhythms

    Directory of Open Access Journals (Sweden)

    Cauchy Pradhan

    2012-01-01

    Full Text Available The fundamental nature of the brain's electrical activities recorded as electroencephalogram (EEG remains unknown. Linear stochastic models and spectral estimates are the most common methods for the analysis of EEG because of their robustness, simplicity of interpretation, and apparent association with rhythmic behavioral patterns in nature. In this paper, we extend the use of higher-order spectrum in order to indicate the hidden characteristics of EEG signals that simply do not arise from random processes. The higher-order spectrum is an extension Fourier spectrum that uses higher moments for spectral estimates. This essentially nullifies all Gaussian random effects, therefore, can reveal non-Gaussian and nonlinear characteristics in the complex patterns of EEG time series. The paper demonstrates the distinguishing features of bispectral analysis for chaotic systems, filtered noises, and normal background EEG activity. The bispectrum analysis detects nonlinear interactions; however, it does not quantify the coupling strength. The squared bicoherence in the nonredundant region has been estimated to demonstrate nonlinear coupling. The bicoherence values are minimal for white Gaussian noises (WGNs and filtered noises. Higher bicoherence values in chaotic time series and normal background EEG activities are indicative of nonlinear coupling in these systems. The paper shows utility of bispectral methods as an analytical tool in understanding neural process underlying human EEG patterns.

  7. Hermiticity and gauge invariance

    International Nuclear Information System (INIS)

    Treder, H.J.

    1987-01-01

    In the Theory of Hermitian Relativity (HRT) the postulates of hermiticity and gauge invariance are formulated in different ways, due to a different understanding of the idea of hermiticity. However all hermitian systems of equations have to satisfy Einstein's weak system of equations being equivalent to Einstein-Schroedinger equations. (author)

  8. Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations

    Science.gov (United States)

    Liu, Changying; Iserles, Arieh; Wu, Xinyuan

    2018-03-01

    The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.

  9. Steerability of Hermite Kernel

    Czech Academy of Sciences Publication Activity Database

    Yang, Bo; Flusser, Jan; Suk, Tomáš

    2013-01-01

    Roč. 27, č. 4 (2013), 1354006-1-1354006-25 ISSN 0218-0014 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Hermite polynomials * Hermite kernel * steerability * adaptive filtering Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.558, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/yang-0394387. pdf

  10. Generalized treatment of point reactor kinetics driven by random reactivity fluctuations via the Wiener-Hermite functional method

    International Nuclear Information System (INIS)

    Behringer, K.

    1991-02-01

    In a recent paper by Behringer et al. (1990), the Wiener-Hermite Functional (WHF) method has been applied to point reactor kinetics excited by Gaussian random reactivity noise under stationary conditions, in order to calculate the neutron steady-state value and the neutron power spectral density (PSD) in a second-order (WHF-2) approximation. For simplicity, delayed neutrons and any feedback effects have been disregarded. The present study is a straightforward continuation of the previous one, treating the problem more generally by including any number of delayed neutron groups. For the case of white reactivity noise, the accuracy of the approach is determined by comparison with the exact solution available from the Fokker-Planck method. In the numerical comparisons, the first-oder (WHF-1) approximation of the PSD is also considered. (author) 4 figs., 10 refs

  11. On the Equisummability of Hermite and Fourier Expansions

    Indian Academy of Sciences (India)

    We prove an equisummability result for the Fourier expansions and Hermite expansions as well as special Hermite expansions. We also prove the uniform boundedness of the Bochner-Riesz means associated to the Hermite expansions for polyradial functions.

  12. Application of the Wiener-Hermite functional method to point reactor kinetics driven by random reactivity fluctuations

    International Nuclear Information System (INIS)

    Behringer, K.; Pineyro, J.; Mennig, J.

    1990-06-01

    The Wiener-Hermite functional (WHF) method has been applied to the point reactor kinetic equation excited by Gaussian random reactivity noise under stationary conditions. Delayed neutrons and any feedback effects are disregarded. The neutron steady-state value and the power spectral density (PSD) of the neutron flux have been calculated in a second order (WHF-2) approximation. Two cases are considered: in the first case, the noise source is low-pass white noise. In both cases the WHF-2 approximation of the neutron PSDs leads to relatively simple analytical expressions. The accuracy of the approach is determined by comparison with exact solutions of the problem. The investigations show that the WHF method is a powerful approximative tool for studying the nonlinear effects in the stochastic differential equation. (author) 5 figs., 29 refs

  13. Hermiticity of quantum observables versus commutation relations

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    2002-01-01

    In order to obtain sum rules and spectral representations the Hermiticity property = of observables is used. It is shown that for certain Ψ and Φ the property turn out to be inconsistent with the commutation relations that contain Α. The known Schwinger paradox is explained by this inconsistency

  14. Age related neuromuscular changes in sEMG of m. Tibialis Anterior using higher order statistics (Gaussianity & linearity test).

    Science.gov (United States)

    Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh K

    2016-08-01

    Age-associated changes in the surface electromyogram (sEMG) of Tibialis Anterior (TA) muscle can be attributable to neuromuscular alterations that precede strength loss. We have used our sEMG model of the Tibialis Anterior to interpret the age-related changes and compared with the experimental sEMG. Eighteen young (20-30 years) and 18 older (60-85 years) performed isometric dorsiflexion at 6 different percentage levels of maximum voluntary contractions (MVC), and their sEMG from the TA muscle was recorded. Six different age-related changes in the neuromuscular system were simulated using the sEMG model at the same MVCs as the experiment. The maximal power of the spectrum, Gaussianity and Linearity Test Statistics were computed from the simulated and experimental sEMG. A correlation analysis at α=0.05 was performed between the simulated and experimental age-related change in the sEMG features. The results show the loss in motor units was distinguished by the Gaussianity and Linearity test statistics; while the maximal power of the PSD distinguished between the muscular factors. The simulated condition of 40% loss of motor units with halved the number of fast fibers best correlated with the age-related change observed in the experimental sEMG higher order statistical features. The simulated aging condition found by this study corresponds with the moderate motor unit remodelling and negligible strength loss reported in literature for the cohorts aged 60-70 years.

  15. The chiral Gaussian two-matrix ensemble of real asymmetric matrices

    International Nuclear Information System (INIS)

    Akemann, G; Phillips, M J; Sommers, H-J

    2010-01-01

    We solve a family of Gaussian two-matrix models with rectangular N x (N + ν) matrices, having real asymmetric matrix elements and depending on a non-Hermiticity parameter μ. Our model can be thought of as the chiral extension of the real Ginibre ensemble, relevant for Dirac operators in the same symmetry class. It has the property that its eigenvalues are either real, purely imaginary or come in complex conjugate eigenvalue pairs. The eigenvalue joint probability distribution for our model is explicitly computed, leading to a non-Gaussian distribution including K-Bessel functions. All n-point density correlation functions are expressed for finite N in terms of a Pfaffian form. This contains a kernel involving Laguerre polynomials in the complex plane as a building block which was previously computed by the authors. This kernel can be expressed in terms of the kernel for complex non-Hermitian matrices, generalizing the known relation among ensembles of Hermitian random matrices. Compact expressions are given for the density at finite N as an example, as well as its microscopic large-N limits at the origin for fixed ν at strong and weak non-Hermiticity.

  16. The s-Ordered Fock Space Projectors Gained by the General Ordering Theorem

    International Nuclear Information System (INIS)

    Shähandeh Farid; Bazrafkan Mohammad Reza; Ashrafi Mahmoud

    2012-01-01

    Employing the general ordering theorem (GOT), operational methods and incomplete 2-D Hermite polynomials, we derive the t-ordered expansion of Fock space projectors. Using the result, the general ordered form of the coherent state projectors is obtained. This indeed gives a new integration formula regarding incomplete 2-D Hermite polynomials. In addition, the orthogonality relation of the incomplete 2-D Hermite polynomials is derived to resolve Dattoli's failure

  17. Direct test of the Gaussian auxiliary field ansatz in nonconserved order parameter phase ordering dynamics

    Science.gov (United States)

    Yeung, Chuck

    2018-06-01

    The assumption that the local order parameter is related to an underlying spatially smooth auxiliary field, u (r ⃗,t ) , is a common feature in theoretical approaches to non-conserved order parameter phase separation dynamics. In particular, the ansatz that u (r ⃗,t ) is a Gaussian random field leads to predictions for the decay of the autocorrelation function which are consistent with observations, but distinct from predictions using alternative theoretical approaches. In this paper, the auxiliary field is obtained directly from simulations of the time-dependent Ginzburg-Landau equation in two and three dimensions. The results show that u (r ⃗,t ) is equivalent to the distance to the nearest interface. In two dimensions, the probability distribution, P (u ) , is well approximated as Gaussian except for small values of u /L (t ) , where L (t ) is the characteristic length-scale of the patterns. The behavior of P (u ) in three dimensions is more complicated; the non-Gaussian region for small u /L (t ) is much larger than that in two dimensions but the tails of P (u ) begin to approach a Gaussian form at intermediate times. However, at later times, the tails of the probability distribution appear to decay faster than a Gaussian distribution.

  18. Non-Gaussianity from self-ordering scalar fields

    International Nuclear Information System (INIS)

    Figueroa, Daniel G.; Caldwell, Robert R.; Kamionkowski, Marc

    2010-01-01

    The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and provide a simple approximation that may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have edges k 1 ≅2k 2 ≅2k 3 ) as opposed to the local-model bispectrum, which peaks for squeezed triangles (k 1 ≅k 2 >>k 3 ), and the equilateral bispectrum, which peaks at k 1 ≅k 2 ≅k 3 . We estimate that this non-Gaussianity should be detectable by the Planck satellite if the contribution from self-ordering scalar fields to primordial perturbations is near the current upper limit.

  19. Microscopic universality of complex matrix model correlation functions at weak non-Hermiticity

    International Nuclear Information System (INIS)

    Akemann, G.

    2002-01-01

    The microscopic correlation functions of non-chiral random matrix models with complex eigenvalues are analyzed for a wide class of non-Gaussian measures. In the large-N limit of weak non-Hermiticity, where N is the size of the complex matrices, we can prove that all k-point correlation functions including an arbitrary number of Dirac mass terms are universal close to the origin. To this aim we establish the universality of the asymptotics of orthogonal polynomials in the complex plane. The universality of the correlation functions then follows from that of the kernel of orthogonal polynomials and a mapping of massive to massless correlators

  20. Description of high-power laser radiation in the paraxial approximation

    Energy Technology Data Exchange (ETDEWEB)

    Milant' ev, V P; Karnilovich, S P; Shaar, Ya N [Peoples' Friendship University of Russia, Moscow (Russian Federation)

    2015-11-30

    We consider the feasibility of an adequate description of a laser pulse of arbitrary shape within the framework of the paraxial approximation. In this approximation, using a parabolic equation and an expansion in the small parameter, expressions are obtained for the field of a sufficiently intense laser radiation given in the form of axially symmetric HermiteGaussian beams of arbitrary mode and arbitrary polarisation. It is shown that in the case of sufficiently short pulses, corrections to the transverse components of the laser field are the first-order rather than the secondorder quantities in the expansion in the small parameter. The peculiarities of the description of higher-mode HermiteGaussian beams are outlined. (light wave transformation)

  1. Evolution of king crabs from hermit crab ancestors

    Science.gov (United States)

    Cunningham, C. W.; Blackstone, N. W.; Buss, L. W.

    1992-02-01

    KING crabs (Family Lithodidae) are among the world's largest arthropods, having a crab-like morphology and a strongly calcified exoskeleton1-6. The hermit crabs, by contrast, have depended on gastropod shells for protection for over 150 million years5,7. Shell-living has constrained the morphological evolution of hermit crabs by requiring a decalcified asymmetrical abdomen capable of coiling into gastropod shells and by preventing crabs from growing past the size of the largest available shells1-6. Whereas reduction in shell-living and acquisition of a crab-like morphology (carcinization) has taken place independently in several hermit crab lineages, and most dramatically in king crabs1-6, the rate at which this process has occurred was entirely unknown2,7. We present molecular evidence that king crabs are not only descended from hermit crabs, but are nested within the hermit crab genus Pagurus. We estimate that loss of the shell-living habit and the complete carcinization of king crabs has taken between 13 and 25 million years.

  2. Higher-order stochastic differential equations and the positive Wigner function

    Science.gov (United States)

    Drummond, P. D.

    2017-12-01

    General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.

  3. Adaptive multiresolution Hermite-Binomial filters for image edge and texture analysis

    NARCIS (Netherlands)

    Gu, Y.H.; Katsaggelos, A.K.

    1994-01-01

    A new multiresolution image analysis approach using adaptive Hermite-Binomial filters is presented in this paper. According to the local image structural and textural properties, the analysis filter kernels are made adaptive both in their scales and orders. Applications of such an adaptive filtering

  4. Time-frequency analysis and harmonic Gaussian functions

    International Nuclear Information System (INIS)

    Ranaivoson, R.T.R; Raoelina Andriambololona; Hanitriarivo, R.

    2013-01-01

    A method for time-frequency analysis is given. The approach utilizes properties of Gaussian distribution, properties of Hermite polynomials and Fourier analysis. We begin by the definitions of a set of functions called Harmonic Gaussian Functions. Then these functions are used to define a set of transformations, noted Τ n , which associate to a function ψ, of the time variable t, a set of functions Ψ n which depend on time, frequency and frequency (or time) standard deviation. Some properties of the transformations Τ n and the functions Ψ n are given. It is proved in particular that the square of the modulus of each function Ψ n can be interpreted as a representation of the energy distribution of the signal, represented by the function ψ, in the time-frequency plane for a given value of the frequency (or time) standard deviation. It is also shown that the function ψ can be recovered from the functions Ψ n .

  5. Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods

    Science.gov (United States)

    Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.

    2006-11-01

    The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15kcal/mol error for

  6. Discrete Hermite moments and their application in chemometrics

    Czech Academy of Sciences Publication Activity Database

    Honarvar Shakibaei Asli, Barmak; Flusser, Jan

    2018-01-01

    Roč. 177, č. 1 (2018), s. 83-88 ISSN 0169-7439 Institutional support: RVO:67985556 Keywords : Orthogonal polynomials * Discrete polynomials * Tchebichef moment * Hermite moment * Gauss–Hermite quadrature Subject RIV: IN - Informatics, Computer Science OBOR OECD: Electrical and electronic engineering Impact factor: 2.303, year: 2016 http://library.utia.cas.cz/separaty/2018/ZOI/honarvar-0489186.pdf

  7. Gaussian-2 theory: Use of higher level correlation methods, quadratic configuration interaction geometries, and second-order Moller--Plesset zero-point energies

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Raghavachari, K.; Pople, J.A.

    1995-01-01

    The performance of Gaussian-2 theory is investigated when higher level theoretical methods are included for correlation effects, geometries, and zero-point energies. A higher level of correlation treatment is examined using Brueckner doubles [BD(T)] and coupled cluster [CCSD(T)] methods rather than quadratic configuration interaction [QCISD(T)]. The use of geometries optimized at the QCISD level rather than the second-order Moller--Plesset level (MP2) and the use of scaled MP2 zero-point energies rather than scaled Hartree--Fock (HF) zero-point energies have also been examined. The set of 125 energies used for validation of G2 theory [J. Chem. Phys. 94, 7221 (1991)] is used to test out these variations of G2 theory. Inclusion of higher levels of correlation treatment has little effect except in the cases of multiply-bonded systems. In these cases better agreement is obtained in some cases and poorer agreement in others so that there is no improvement in overall performance. The use of QCISD geometries yields significantly better agreement with experiment for several cases including the ionization potentials of CS and O 2 , electron affinity of CN, and dissociation energies of N 2 , O 2 , CN, and SO 2 . This leads to a slightly better agreement with experiment overall. The MP2 zero-point energies gives no overall improvement. These methods may be useful for specific systems

  8. Statistical nature of non-Gaussianity from cubic order primordial perturbations: CMB map simulations and genus statistic

    International Nuclear Information System (INIS)

    Chingangbam, Pravabati; Park, Changbom

    2009-01-01

    We simulate CMB maps including non-Gaussianity arising from cubic order perturbations of the primordial gravitational potential, characterized by the non-linearity parameter g NL . The maps are used to study the characteristic nature of the resulting non-Gaussian temperature fluctuations. We measure the genus and investigate how it deviates from Gaussian shape as a function of g NL and smoothing scale. We find that the deviation of the non-Gaussian genus curve from the Gaussian one has an antisymmetric, sine function like shape, implying more hot and more cold spots for g NL > 0 and less of both for g NL NL and also exhibits mild increase as the smoothing scale increases. We further study other statistics derived from the genus, namely, the number of hot spots, the number of cold spots, combined number of hot and cold spots and the slope of the genus curve at mean temperature fluctuation. We find that these observables carry signatures of g NL that are clearly distinct from the quadratic order perturbations, encoded in the parameter f NL . Hence they can be very useful tools for distinguishing not only between non-Gaussian temperature fluctuations and Gaussian ones but also between g NL and f NL type non-Gaussianities

  9. Mechanisms causing size differences of the land hermit crab Coenobita rugosus among eco-islands in Southern Taiwan.

    Directory of Open Access Journals (Sweden)

    Chia-Hsuan Hsu

    Full Text Available Numerous environmental factors can influence body size. Comparing populations in different ecological contexts is one potential approach to elucidating the most critical of such factors. In the current study, we found that the body size of the land hermit crab Coenobita rugosus was significantly larger on Dongsha Island in the South China Sea than on other eco-islands around Southern Taiwan. We hypothesized that this could be due to differences in (1 shell resources, (2 parasite impact, (3 competition, (4 predation, and (5 food. We found no supporting evidence for the first three hypotheses; the shells used by the hermit crabs on Dongsha were in poorer condition than were those used elsewhere, extremely few individuals in the region had ectoparasites, and the density of hermit crabs varied considerably among localities within each island. However, significantly higher percentages of C. rugosus reached age 3 years on Dongsha than at Siziwan bay in Taiwan. Two growth rate indices inferred from size structures suggested faster growth on Dongsha than at Siziwan. The condition index (i.e., the body mass/shield length ratio of C. rugosus was also greater on Dongsha than at Siziwan. Therefore, Dongsha hermit crabs seem to have superior diet and growth performance. Seagrass debris accumulation at the shore of Dongsha was considerable, whereas none was observed at Siziwan or on the other islands, where dicot leaves were the dominant food item for the vegetarian hermit crabs. We then experimentally evaluated the possible role of seagrass as food for C. rugosus. The crabs on Dongsha preferred seagrass to dicot leaves, and their growth increment was faster when they fed on seagrass than when they fed on dicot leaves; no such differences were found in the Siziwan hermit crabs. The aforementioned results are compatible with the food hypothesis explaining the size differences among the islands. The predator hypothesis could explain the greater life span but

  10. Optimal order and time-step criterion for Aarseth-type N-body integrators

    International Nuclear Information System (INIS)

    Makino, Junichiro

    1991-01-01

    How the selection of the time-step criterion and the order of the integrator change the efficiency of Aarseth-type N-body integrators is discussed. An alternative to Aarseth's scheme based on the direct calculation of the time derivative of the force using the Hermite interpolation is compared to Aarseth's scheme, which uses the Newton interpolation to construct the predictor and corrector. How the number of particles in the system changes the behavior of integrators is examined. The Hermite scheme allows a time step twice as large as that for the standard Aarseth scheme for the same accuracy. The calculation cost of the Hermite scheme per time step is roughly twice as much as that of the standard Aarseth scheme. The optimal order of the integrators depends on both the particle number and the accuracy required. The time-step criterion of the standard Aarseth scheme is found to be inapplicable to higher-order integrators, and a more uniformly reliable criterion is proposed. 18 refs

  11. Differential operators associated with Hermite polynomials

    International Nuclear Information System (INIS)

    Onyango Otieno, V.P.

    1989-09-01

    This paper considers the boundary value problems for the Hermite differential equation -(e -x2 y'(x))'+e -x2 y(x)=λe -x2 y(x), (x is an element of (-∞, ∞)) in both the so-called right-definite and left-definite cases based partly on a classical approach due to E.C. Titchmarsh. We then link the Titchmarsh approach with operator theoretic results in the spaces L w 2 (-∞, ∞) and H p,q 2 (-∞, ∞). The results in the left-definite case provide an indirect proof of the completeness of the Hermite polynomials in L w 2 (-∞, ∞). (author). 17 refs

  12. The Hermite transform-applications

    NARCIS (Netherlands)

    Martens, J.B.

    It is demonstrated how the Hermite transform can be used for image coding and analysis. Hierarchical coding structures based on increasingly specified basic patterns, i.e. general 2-D patterns, general 1-D patterns, and specific 1-D patterns such as edges and corners, are presented. In the image

  13. Discrete Hermite moments and their application in chemometrics

    Czech Academy of Sciences Publication Activity Database

    Honarvar Shakibaei Asli, Barmak; Flusser, Jan

    2018-01-01

    Roč. 177, č. 1 (2018), s. 83-88 ISSN 0169-7439 R&D Projects: GA ČR GA18-07247S; GA ČR GJ18-26018Y Institutional support: RVO:67985556 Keywords : Orthogonal polynomials * Discrete polynomials * Tchebichef moment * Hermite moment * Gauss–Hermite quadrature Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Automation and control systems Impact factor: 2.303, year: 2016 http://library.utia.cas.cz/separaty/2018/ZOI/honarvar-0489147.pdf

  14. Quantum steering of multimode Gaussian states by Gaussian measurements: monogamy relations and the Peres conjecture

    International Nuclear Information System (INIS)

    Ji, Se-Wan; Nha, Hyunchul; Kim, M S

    2015-01-01

    It is a topic of fundamental and practical importance how a quantum correlated state can be reliably distributed through a noisy channel for quantum information processing. The concept of quantum steering recently defined in a rigorous manner is relevant to study it under certain circumstances and here we address quantum steerability of Gaussian states to this aim. In particular, we attempt to reformulate the criterion for Gaussian steering in terms of local and global purities and show that it is sufficient and necessary for the case of steering a 1-mode system by an N-mode system. It subsequently enables us to reinforce a strong monogamy relation under which only one party can steer a local system of 1-mode. Moreover, we show that only a negative partial-transpose state can manifest quantum steerability by Gaussian measurements in relation to the Peres conjecture. We also discuss our formulation for the case of distributing a two-mode squeezed state via one-way quantum channels making dissipation and amplification effects, respectively. Finally, we extend our approach to include non-Gaussian measurements, more precisely, all orders of higher-order squeezing measurements, and find that this broad set of non-Gaussian measurements is not useful to demonstrate steering for Gaussian states beyond Gaussian measurements. (paper)

  15. Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit

    KAUST Repository

    Parker, Joseph T.

    2015-02-03

    Copyright © Cambridge University Press 2015. We study Landau damping in the 1+1D Vlasov-Poisson system using a Fourier-Hermite spectral representation. We describe the propagation of free energy in Fourier-Hermite phase space using forwards and backwards propagating Hermite modes recently developed for gyrokinetic theory. We derive a free energy equation that relates the change in the electric field to the net Hermite flux out of the zeroth Hermite mode. In linear Landau damping, decay in the electric field corresponds to forward propagating Hermite modes; in nonlinear damping, the initial decay is followed by a growth phase characterized by the generation of backwards propagating Hermite modes by the nonlinear term. The free energy content of the backwards propagating modes increases exponentially until balancing that of the forward propagating modes. Thereafter there is no systematic net Hermite flux, so the electric field cannot decay and the nonlinearity effectively suppresses Landau damping. These simulations are performed using the fully-spectral 5D gyrokinetics code SpectroGK, modified to solve the 1+1D Vlasov-Poisson system. This captures Landau damping via Hou-Li filtering in velocity space. Therefore the code is applicable even in regimes where phase mixing and filamentation are dominant.

  16. Axisymmetric MHD equilibrium solver with bicubic Hermite elements

    International Nuclear Information System (INIS)

    Luetjens, H.; Bondeson, A.; Roy, A.

    1990-05-01

    A numerical code solving axisymmetric magnetohydrodynamic equilibria with rectangular bicubic Hermite elements has been developed. Two test cases are used for checking the convergence rate of the solution. The mapping of the equilibrium quantities into flux coordinates for magnetohydrodynamic stability calculation is performed by a method which preserves the convergence properties of the cubic Hermite elements. Convergence studies show the behaviour of the stability results when the equilibrium mesh is varied. (author) 13 refs., 3 tabs

  17. Ongoing movement of the hermit warbler X Townsend's warbler hybrid zone.

    Directory of Open Access Journals (Sweden)

    Meade Krosby

    Full Text Available BACKGROUND: Movements of hybrid zones - areas of overlap and interbreeding between species - are difficult to document empirically. This is true because moving hybrid zones are expected to be rare, and because movement may proceed too slowly to be measured directly. Townsend's warblers (Dendroica townsendi hybridize with hermit warblers (D. occidentalis where their ranges overlap in Washington and Oregon. Previous morphological, behavioral, and genetic studies of this hybrid zone suggest that it has been steadily moving into the geographical range of hermit warblers, with the more aggressive Townsend's warblers replacing hermit warblers along ∼2000 km of the Pacific coast of Canada and Alaska. Ongoing movement of the zone, however, has yet to be empirically demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: We compared recently sampled hybrid zone specimens to those collected 10-20 years earlier, to test directly the long-standing hypothesis of hybrid zone movement between these species. Newly sampled specimens were more Townsend's-like than historical specimens, consistent with ongoing movement of the zone into the geographical range of hermit warblers. CONCLUSIONS/SIGNIFICANCE: While movement of a hybrid zone may be explained by several possible mechanisms, in this case a wealth of existing evidence suggests that movement is being driven by the competitive displacement of hermit warblers by Townsend's warblers. That no ecological differences have been found between these species, and that replacement of hermit warblers by Townsend's warblers is proceeding downward in latitude and elevation - opposite the directions of range shifts predicted by recent climate change - further support that this movement is not being driven by alternative environmental factors. If the mechanism of competitive displacement is correct, whether this process will ultimately lead to the extinction of hermit warblers will depend on the continued maintenance of the

  18. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    Science.gov (United States)

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  19. On Stable Wall Boundary Conditions for the Hermite Discretization of the Linearised Boltzmann Equation

    Science.gov (United States)

    Sarna, Neeraj; Torrilhon, Manuel

    2018-01-01

    We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.

  20. Cardinal Basis Piecewise Hermite Interpolation on Fuzzy Data

    Directory of Open Access Journals (Sweden)

    H. Vosoughi

    2016-01-01

    Full Text Available A numerical method along with explicit construction to interpolation of fuzzy data through the extension principle results by widely used fuzzy-valued piecewise Hermite polynomial in general case based on the cardinal basis functions, which satisfy a vanishing property on the successive intervals, has been introduced here. We have provided a numerical method in full detail using the linear space notions for calculating the presented method. In order to illustrate the method in computational examples, we take recourse to three prime cases: linear, cubic, and quintic.

  1. Adaptive Mesh Iteration Method for Trajectory Optimization Based on Hermite-Pseudospectral Direct Transcription

    Directory of Open Access Journals (Sweden)

    Humin Lei

    2017-01-01

    Full Text Available An adaptive mesh iteration method based on Hermite-Pseudospectral is described for trajectory optimization. The method uses the Legendre-Gauss-Lobatto points as interpolation points; then the state equations are approximated by Hermite interpolating polynomials. The method allows for changes in both number of mesh points and the number of mesh intervals and produces significantly smaller mesh sizes with a higher accuracy tolerance solution. The derived relative error estimate is then used to trade the number of mesh points with the number of mesh intervals. The adaptive mesh iteration method is applied successfully to the examples of trajectory optimization of Maneuverable Reentry Research Vehicle, and the simulation experiment results show that the adaptive mesh iteration method has many advantages.

  2. On the equisummability of Hermite and Fourier expansions

    Indian Academy of Sciences (India)

    is the Fourier transform on Rn. Let ب ; 2 Nn be the n-dimensional Hermite functions which are eigenfunctions of the Hermite operator H ¼ ہء jxj. 2 with the eigenvalue. ً2j j nق where j j ¼ 1 ءءء n. Let Pk be the orthogonal projection of L 2ًRnق onto the kth eigenspace spanned by ب ; j j ¼ k. More precisely,. Pk fًxق ¼. X j j¼k. Z.

  3. New gaussian points for the solution of first order ordinary ...

    African Journals Online (AJOL)

    Numerical experiments carried out using the new Gaussian points revealed there efficiency on stiff differential equations. The results also reveal that methods using the new Gaussian points are more accurate than those using the standard Gaussian points on non-stiff initial value problems. Keywords: Gaussian points ...

  4. Dual-mode optical fiber-based tweezers for robust trapping and manipulation of absorbing particles in air

    Science.gov (United States)

    Sil, Souvik; Kanti Saha, Tushar; Kumar, Avinash; Bera, Sudipta K.; Banerjee, Ayan

    2017-12-01

    We develop an optical tweezers system using a single dual-mode optical fiber where mesoscopic absorbing particles can be trapped in three dimensions and manipulated employing photophoretic forces. We generate a superposition of fundamental and first order Hermite-Gaussian beam modes by the simple innovation of coupling a laser into a commercial optical fiber designed to be single mode for a wavelength higher than that of the laser. We achieve robust trapping of the absorbing particles for hours using both the pure fundamental and superposition mode beams and attain large manipulation velocities of ˜5 mm s-1 in the axial direction and ˜0.75 mm s-1 in the radial direction. We then demonstrate that the superposition mode is more effective in trapping and manipulation compared to the fundamental mode by around 80%, which may be increased several times by the use of a pure first order Hermite-Gaussian mode. The work has promising implications for trapping and spectroscopy of aerosols in air using simple optical fiber-based traps.

  5. Evaluation of higher order statistics parameters for multi channel sEMG using different force levels.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K

    2011-01-01

    The electromyograpy (EMG) signal provides information about the performance of muscles and nerves. The shape of the muscle signal and motor unit action potential (MUAP) varies due to the movement of the position of the electrode or due to changes in contraction level. This research deals with evaluating the non-Gaussianity in Surface Electromyogram signal (sEMG) using higher order statistics (HOS) parameters. To achieve this, experiments were conducted for four different finger and wrist actions at different levels of Maximum Voluntary Contractions (MVCs). Our experimental analysis shows that at constant force and for non-fatiguing contractions, probability density functions (PDF) of sEMG signals were non-Gaussian. For lesser MVCs (below 30% of MVC) PDF measures tends to be Gaussian process. The above measures were verified by computing the Kurtosis values for different MVCs.

  6. Colored non-gaussian noise driven open systems: generalization of Kramers' theory with a unified approach.

    Science.gov (United States)

    Baura, Alendu; Sen, Monoj Kumar; Goswami, Gurupada; Bag, Bidhan Chandra

    2011-01-28

    In this paper we have calculated escape rate from a meta stable state in the presence of both colored internal thermal and external nonthermal noises. For the internal noise we have considered usual gaussian distribution but the external noise may be gaussian or non-gaussian in characteristic. The calculated rate is valid for low noise strength of non-gaussian noise such that an effective gaussian approximation of non-gaussian noise wherein the higher order even cumulants of order "4" and higher are neglected. The rate expression we derived here reduces to the known results of the literature, as well as for purely external noise driven activated rate process. The latter exhibits how the rate changes if one switches from non-gaussian to gaussian character of the external noise.

  7. Scaling of olfactory antennae of the terrestrial hermit crabs Coenobita rugosus and Coenobita perlatus during ontogeny

    Directory of Open Access Journals (Sweden)

    Lindsay D. Waldrop

    2014-08-01

    Full Text Available Although many lineages of terrestrial crustaceans have poor olfactory capabilities, crabs in the family Coenobitidae, including the terrestrial hermit crabs in the genus Coenobita, are able to locate food and water using olfactory antennae (antennules to capture odors from the surrounding air. Terrestrial hermit crabs begin their lives as small marine larvae and must find a suitable place to undergo metamorphosis into a juvenile form, which initiates their transition to land. Juveniles increase in size by more than an order of magnitude to reach adult size. Since odor capture is a process heavily dependent on the size and speed of the antennules and physical properties of the fluid, both the transition from water to air and the large increase in size during ontogeny could impact odor capture. In this study, we examine two species of terrestrial hermit crabs, Coenobita perlatus H. Milne-Edwards and Coenobita rugosus H. Milne-Edwards, to determine how the antennule morphometrics and kinematics of flicking change in comparison to body size during ontogeny, and how this scaling relationship could impact odor capture by using a simple model of mass transport in flow. Many features of the antennules, including the chemosensory sensilla, scaled allometrically with carapace width and increased slower than expected by isometry, resulting in relatively larger antennules on juvenile animals. Flicking speed scaled as expected with isometry. Our mass-transport model showed that allometric scaling of antennule morphometrics and kinematics leads to thinner boundary layers of attached fluid around the antennule during flicking and higher odorant capture rates as compared to antennules which scaled isometrically. There were no significant differences in morphometric or kinematic measurements between the two species.

  8. Time-Frequency Analysis and Hermite Projection Method Applied to Swallowing Accelerometry Signals

    Directory of Open Access Journals (Sweden)

    Ervin Sejdić

    2010-01-01

    Full Text Available Fast Hermite projections have been often used in image-processing procedures such as image database retrieval, projection filtering, and texture analysis. In this paper, we propose an innovative approach for the analysis of one-dimensional biomedical signals that combines the Hermite projection method with time-frequency analysis. In particular, we propose a two-step approach to characterize vibrations of various origins in swallowing accelerometry signals. First, by using time-frequency analysis we obtain the energy distribution of signal frequency content in time. Second, by using fast Hermite projections we characterize whether the analyzed time-frequency regions are associated with swallowing or other phenomena (vocalization, noise, bursts, etc.. The numerical analysis of the proposed scheme clearly shows that by using a few Hermite functions, vibrations of various origins are distinguishable. These results will be the basis for further analysis of swallowing accelerometry to detect swallowing difficulties.

  9. Gap probabilities for edge intervals in finite Gaussian and Jacobi unitary matrix ensembles

    International Nuclear Information System (INIS)

    Witte, N.S.; Forrester, P.J.

    1999-01-01

    The probabilities for gaps in the eigenvalue spectrum of the finite dimension N x N random matrix Hermite and Jacobi unitary ensembles on some single and disconnected double intervals are found. These are cases where a reflection symmetry exists and the probability factors into two other related probabilities, defined on single intervals. Our investigation uses the system of partial differential equations arising from the Fredholm determinant expression for the gap probability and the differential-recurrence equations satisfied by Hermite and Jacobi orthogonal polynomials. In our study we find second and third order nonlinear ordinary differential equations defining the probabilities in the general N case, specific explicit solutions for N = 1 and N = 2, asymptotic expansions, scaling at the edge of the Hermite spectrum as N →∞ and the Jacobi to Hermite limit both of which make correspondence to other cases reported here or known previously. (authors)

  10. Three-Dimensional Hermite—Bessel—Gaussian Soliton Clusters in Strongly Nonlocal Media

    International Nuclear Information System (INIS)

    Jin Hai-Qin; Yi Lin; Liang Jian-Chu; Cai Ze-Bin; Liu Fei

    2012-01-01

    We analytically and numerically demonstrate the existence of Hermite—Bessel—Gaussian spatial soliton clusters in three-dimensional strongly nonlocal media. It is found that the soliton clusters display the vortex, dipole azimuthon and quadrupole azimuthon in geometry, and the total number of solitons in the necklaces depends on the quantum number n and m of the Hermite functions and generalized Bessel polynomials. The numerical simulation is basically identical to the analytical solution, and white noise does not lead to collapse of the soliton, which confirms the stability of the soliton waves. The theoretical predictions may give new insights into low-energetic spatial soliton transmission with high fidelity

  11. Hermite Polynomials and the Inverse Problem for Collisionless Equilibria

    Science.gov (United States)

    Allanson, O.; Neukirch, T.; Troscheit, S.; Wilson, F.

    2017-12-01

    It is long established that Hermite polynomial expansions in either velocity or momentum space can elegantly encode the non-Maxwellian velocity-space structure of a collisionless plasma distribution function (DF). In particular, Hermite polynomials in the canonical momenta naturally arise in the consideration of the 'inverse problem in collisionless equilibria' (IPCE): "for a given macroscopic/fluid equilibrium, what are the self-consistent Vlasov-Maxwell equilibrium DFs?". This question is of particular interest for the equilibrium and stability properties of a given macroscopic configuration, e.g. a current sheet. It can be relatively straightforward to construct a formal solution to IPCE by a Hermite expansion method, but several important questions remain regarding the use of this method. We present recent work that considers the necessary conditions of non-negativity, convergence, and the existence of all moments of an equilibrium DF solution found for IPCE. We also establish meaningful analogies between the equations that link the microscopic and macrosopic descriptions of the Vlasov-Maxwell equilibrium, and those that solve the initial value problem for the heat equation. In the language of the heat equation, IPCE poses the pressure tensor as the 'present' heat distribution over an infinite domain, and the non-Maxwellian features of the DF as the 'past' distribution. We find sufficient conditions for the convergence of the Hermite series representation of the DF, and prove that the non-negativity of the DF can be dependent on the magnetisation of the plasma. For DFs that decay at least as quickly as exp(-v^2/4), we show non-negativity is guaranteed for at least a finite range of magnetisation values, as parameterised by the ratio of the Larmor radius to the gradient length scale. 1. O. Allanson, T. Neukirch, S. Troscheit & F. Wilson: From one-dimensional fields to Vlasov equilibria: theory and application of Hermite polynomials, Journal of Plasma Physics, 82

  12. Non-gaussian turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K S [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B J [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)

  13. On the propagation and the twist of Gaussian light in first-order optical systems

    NARCIS (Netherlands)

    Bastiaans, M.J.; Nijhawan, O.P.; Gupta, A.K.; Musla, A.K.; Singh, Kehar

    1998-01-01

    A measure for the twist of Gaussian light is expressed in terms of the second-order moments of the Wigner distribution function. The propagation law for these moments through first-order optical systems is used to express the twist in the output plane in terms of moments in the input plane, and vice

  14. On integral and finite Fourier transforms of continuous q-Hermite polynomials

    International Nuclear Information System (INIS)

    Atakishiyeva, M. K.; Atakishiyev, N. M.

    2009-01-01

    We give an overview of the remarkably simple transformation properties of the continuous q-Hermite polynomials H n (x vertical bar q) of Rogers with respect to the classical Fourier integral transform. The behavior of the q-Hermite polynomials under the finite Fourier transform and an explicit form of the q-extended eigenfunctions of the finite Fourier transform, defined in terms of these polynomials, are also discussed.

  15. Interconversion of pure Gaussian states requiring non-Gaussian operations

    Science.gov (United States)

    Jabbour, Michael G.; García-Patrón, Raúl; Cerf, Nicolas J.

    2015-01-01

    We analyze the conditions under which local operations and classical communication enable entanglement transformations between bipartite pure Gaussian states. A set of necessary and sufficient conditions had been found [G. Giedke et al., Quant. Inf. Comput. 3, 211 (2003)] for the interconversion between such states that is restricted to Gaussian local operations and classical communication. Here, we exploit majorization theory in order to derive more general (sufficient) conditions for the interconversion between bipartite pure Gaussian states that goes beyond Gaussian local operations. While our technique is applicable to an arbitrary number of modes for each party, it allows us to exhibit surprisingly simple examples of 2 ×2 Gaussian states that necessarily require non-Gaussian local operations to be transformed into each other.

  16. Shell use and partitioning of two sympatric species of hermit crabs on a tropical mudflat

    Science.gov (United States)

    Teoh, Hong Wooi; Chong, Ving Ching

    2014-02-01

    Shell use and partitioning of two sympatric hermit crab species (Diogenes moosai and Diogenes lopochir), as determined by shell shape, size and availability, were examined from August 2009 to March 2011 in a tropical mudflat (Malaysia). Shells of 14 gastropod species were used but > 85% comprised shells of Cerithidea cingulata, Nassarius cf. olivaceus, Nassarius jacksonianus, and Thais malayensis. Shell partitioning between hermit crab species, sexes, and developmental stages was evident from occupied shells of different species, shapes, and sizes. Extreme bias in shell use pattern by male and female of both species of hermit crabs suggests that shell shape, which depends on shell species, is the major determinant of shell use. The hermit crab must however fit well into the shell so that compatibility between crab size and shell size becomes crucial. Although shell availability possibly influenced shell use and hermit crab distribution, this is not critical in a tropical setting of high gastropod diversity and abundance.

  17. Invasive ants compete with and modify the trophic ecology of hermit crabs on tropical islands.

    Science.gov (United States)

    McNatty, Alice; Abbott, Kirsti L; Lester, Philip J

    2009-05-01

    Invasive species can dramatically alter trophic interactions. Predation is the predominant trophic interaction generally considered to be responsible for ecological change after invasion. In contrast, how frequently competition from invasive species contributes to the decline of native species remains controversial. Here, we demonstrate how the trophic ecology of the remote atoll nation of Tokelau is changing due to competition between invasive ants (Anoplolepis gracilipes) and native terrestrial hermit crabs (Coenobita spp.) for carrion. A significant negative correlation was observed between A. gracilipes and hermit crab abundance. On islands with A. gracilipes, crabs were generally restricted to the periphery of invaded islands. Very few hermit crabs were found in central areas of these islands where A. gracilipes abundances were highest. Ant exclusion experiments demonstrated that changes in the abundance and distribution of hermit crabs on Tokelau are a result of competition. The ants did not kill the hermit crabs. Rather, when highly abundant, A. gracilipes attacked crabs by spraying acid and drove crabs away from carrion resources. Analysis of naturally occurring N and C isotopes suggests that the ants are effectively lowering the trophic level of crabs. According to delta(15) N values, hermit crabs have a relatively high trophic level on islands where A. gracilipes have not invaded. In contrast, where these ants have invaded we observed a significant decrease in delta(15) N for all crab species. This result concurs with our experiment in suggesting long-term exclusion from carrion resources, driving co-occurring crabs towards a more herbivorous diet. Changes in hermit crab abundance or distribution may have major ramifications for the stability of plant communities. Because A. gracilipes have invaded many tropical islands where the predominant scavengers are hermit crabs, we consider that their competitive effects are likely to be more prominent in

  18. Another higher order Langevin algorithm for QCD

    International Nuclear Information System (INIS)

    Kronfeld, A.S.

    1986-01-01

    This note provides an algorithm for integrating the Langevin equation which is second order. It introduces a term into the drift force which is a product of the Gaussian noise and a second derivative of the action. The specific application presented here is for nonabelian gauge theories interacting with fermions, e.g. QCD, for which it requires less memory than the Runge-Kutta algorithm of the same order. The memory and computational requirements of Euler, Runge-Kutta, and the present algorithm are compared. (orig.)

  19. Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit

    KAUST Repository

    Parker, Joseph T.; Dellar, Paul J.

    2015-01-01

    Copyright © Cambridge University Press 2015. We study Landau damping in the 1+1D Vlasov-Poisson system using a Fourier-Hermite spectral representation. We describe the propagation of free energy in Fourier-Hermite phase space using forwards

  20. Gaussian-2 theory using reduced Moller--Plesset orders

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Raghavachari, K.; Pople, J.A.

    1993-01-01

    Two variations of Gaussian-2 (G2) theory are presented. In the first, referred to as G2 (MP2) theory, the basis-set-extension energy corrections are obtained at the 2nd order Moller--Plesset (MP2) level and in the second, referred to as G2(MP3) theory, they are obtained at the MP3 level. The methods are tested out on the set of 125 systems used for validation of G2 theory [J. Chem Phys. 94, 7221 (1991)]. The average absolute deviation of the G2(MP2) and G2(MP3) theories from experiment are 1.58 and 1.52 kcal/mol, respectively, compared to 1.21 kcal/mol for G2 theory. The new methods provide significant savings in computational time and disk storage

  1. Defining Higher-Order Turbulent Moment Closures with an Artificial Neural Network and Random Forest

    Science.gov (United States)

    McGibbon, J.; Bretherton, C. S.

    2017-12-01

    Unresolved turbulent advection and clouds must be parameterized in atmospheric models. Modern higher-order closure schemes depend on analytic moment closure assumptions that diagnose higher-order moments in terms of lower-order ones. These are then tested against Large-Eddy Simulation (LES) higher-order moment relations. However, these relations may not be neatly analytic in nature. Rather than rely on an analytic higher-order moment closure, can we use machine learning on LES data itself to define a higher-order moment closure?We assess the ability of a deep artificial neural network (NN) and random forest (RF) to perform this task using a set of observationally-based LES runs from the MAGIC field campaign. By training on a subset of 12 simulations and testing on remaining simulations, we avoid over-fitting the training data.Performance of the NN and RF will be assessed and compared to the Analytic Double Gaussian 1 (ADG1) closure assumed by Cloudy Layers Unified By Binormals (CLUBB), a higher-order turbulence closure currently used in the Community Atmosphere Model (CAM). We will show that the RF outperforms the NN and the ADG1 closure for the MAGIC cases within this diagnostic framework. Progress and challenges in using a diagnostic machine learning closure within a prognostic cloud and turbulence parameterization will also be discussed.

  2. CFHTLenS: a Gaussian likelihood is a sufficient approximation for a cosmological analysis of third-order cosmic shear statistics

    Science.gov (United States)

    Simon, P.; Semboloni, E.; van Waerbeke, L.; Hoekstra, H.; Erben, T.; Fu, L.; Harnois-Déraps, J.; Heymans, C.; Hildebrandt, H.; Kilbinger, M.; Kitching, T. D.; Miller, L.; Schrabback, T.

    2015-05-01

    We study the correlations of the shear signal between triplets of sources in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) to probe cosmological parameters via the matter bispectrum. In contrast to previous studies, we adopt a non-Gaussian model of the data likelihood which is supported by our simulations of the survey. We find that for state-of-the-art surveys, similar to CFHTLenS, a Gaussian likelihood analysis is a reasonable approximation, albeit small differences in the parameter constraints are already visible. For future surveys we expect that a Gaussian model becomes inaccurate. Our algorithm for a refined non-Gaussian analysis and data compression is then of great utility especially because it is not much more elaborate if simulated data are available. Applying this algorithm to the third-order correlations of shear alone in a blind analysis, we find a good agreement with the standard cosmological model: Σ _8=σ _8(Ω _m/0.27)^{0.64}=0.79^{+0.08}_{-0.11} for a flat Λ cold dark matter cosmology with h = 0.7 ± 0.04 (68 per cent credible interval). Nevertheless our models provide only moderately good fits as indicated by χ2/dof = 2.9, including a 20 per cent rms uncertainty in the predicted signal amplitude. The models cannot explain a signal drop on scales around 15 arcmin, which may be caused by systematics. It is unclear whether the discrepancy can be fully explained by residual point spread function systematics of which we find evidence at least on scales of a few arcmin. Therefore we need a better understanding of higher order correlations of cosmic shear and their systematics to confidently apply them as cosmological probes.

  3. Generation of high order modes

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-07-01

    Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gassian beam and force the laser to operate on a higher order TEMp0 Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...

  4. Intra-cavity generation of high order LGpl modes

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-08-01

    Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gaussian beam and force the laser to operate on a higher order LGpl Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...

  5. Detectability of the effect of Inflationary non-Gaussianity on halo bias

    CERN Document Server

    Verde, Licia

    2009-01-01

    We consider the description of the clustering of halos for physically-motivated types of non-Gaussian initial conditions. In particular we include non-Gaussianity of the type arising from single field slow-roll, multi fields, curvaton (local type), higher-order derivative-type (equilateral), vacuum-state modifications (enfolded-type) and horizon-scale GR corrections type. We show that large-scale halo bias is a very sensitive tool to probe non-Gaussianity, potentially leading, for some planned surveys, to a detection of non-Gaussianity arising from horizon-scale GR corrections.

  6. Expression of ionotropic receptors in terrestrial hermit crab’s olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Katrin Christine Groh-Lunow

    2015-02-01

    Full Text Available Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs.

  7. Evolution of sexual dimorphism in bill size and shape of hermit hummingbirds (Phaethornithinae): a role for ecological causation.

    Science.gov (United States)

    Temeles, Ethan J; Miller, Jill S; Rifkin, Joanna L

    2010-04-12

    Unambiguous examples of ecological causation of sexual dimorphism are rare, and the best evidence involves sexual differences in trophic morphology. We show that moderate female-biased sexual dimorphism in bill curvature is the ancestral condition in hermit hummingbirds (Phaethornithinae), and that it is greatly amplified in species such as Glaucis hirsutus and Phaethornis guy, where bills of females are 60 per cent more curved than bills of males. In contrast, bill curvature dimorphism is lost or reduced in a lineage of short-billed hermit species and in specialist Eutoxeres sicklebill hermits. In the hermits, males tend to be larger than females in the majority of species, although size dimorphism is typically small. Consistent with earlier studies of hummingbird feeding performance, both raw regressions of traits and phylogenetic independent contrasts supported the prediction that dimorphism in bill curvature of hermits is associated with longer bills. Some evidence indicates that differences between sexes of hermit hummingbirds are associated with differences in the use of food plants. We suggest that some hermit hummingbirds provide model organisms for studies of ecological causation of sexual dimorphism because their sexual dimorphism in bill curvature provides a diagnostic clue for the food plants that need to be monitored for studies of sexual differences in resource use.

  8. Teager-Kaiser Energy and Higher-Order Operators in White-Light Interference Microscopy for Surface Shape Measurement

    Directory of Open Access Journals (Sweden)

    Abdel-Ouahab Boudraa

    2005-10-01

    Full Text Available In white-light interference microscopy, measurement of surface shape generally requires peak extraction of the fringe function envelope. In this paper the Teager-Kaiser energy and higher-order energy operators are proposed for efficient extraction of the fringe envelope. These energy operators are compared in terms of precision, robustness to noise, and subsampling. Flexible energy operators, depending on order and lag parameters, can be obtained. Results show that smoothing and interpolation of envelope approximation using spline model performs better than Gaussian-based approach.

  9. Propagation of high power electromagnetic beam in relativistic magnetoplasma: Higher order paraxial ray theory

    Science.gov (United States)

    Gill, Tarsem Singh; Kaur, Ravinder; Mahajan, Ranju

    2010-09-01

    This paper presents an analysis of self-consistent, steady-state, theoretical model, which explains the ring formation in a Gaussian electromagnetic beam propagating in a magnetoplasma, characterized by relativistic nonlinearity. Higher order terms (up to r4) in the expansion of the dielectric function and the eikonal have been taken into account. The condition for the formation of a dark and bright ring derived earlier by Misra and Mishra [J. Plasma Phys. 75, 769 (2009)] has been used to study focusing/defocusing of the beam. It is seen that inclusion of higher order terms does significantly affect the dependence of the beam width on the distance of propagation. Further, the effect of the magnetic field and the nature of nonlinearity on the ring formation and self-focusing of the beam have been explored.

  10. Propagation of high power electromagnetic beam in relativistic magnetoplasma: Higher order paraxial ray theory

    International Nuclear Information System (INIS)

    Gill, Tarsem Singh; Kaur, Ravinder; Mahajan, Ranju

    2010-01-01

    This paper presents an analysis of self-consistent, steady-state, theoretical model, which explains the ring formation in a Gaussian electromagnetic beam propagating in a magnetoplasma, characterized by relativistic nonlinearity. Higher order terms (up to r 4 ) in the expansion of the dielectric function and the eikonal have been taken into account. The condition for the formation of a dark and bright ring derived earlier by Misra and Mishra [J. Plasma Phys. 75, 769 (2009)] has been used to study focusing/defocusing of the beam. It is seen that inclusion of higher order terms does significantly affect the dependence of the beam width on the distance of propagation. Further, the effect of the magnetic field and the nature of nonlinearity on the ring formation and self-focusing of the beam have been explored.

  11. Multivariate Hermite interpolation on scattered point sets using tensor-product expo-rational B-splines

    Science.gov (United States)

    Dechevsky, Lubomir T.; Bang, Børre; Laksa˚, Arne; Zanaty, Peter

    2011-12-01

    At the Seventh International Conference on Mathematical Methods for Curves and Surfaces, To/nsberg, Norway, in 2008, several new constructions for Hermite interpolation on scattered point sets in domains in Rn,n∈N, combined with smooth convex partition of unity for several general types of partitions of these domains were proposed in [1]. All of these constructions were based on a new type of B-splines, proposed by some of the authors several years earlier: expo-rational B-splines (ERBS) [3]. In the present communication we shall provide more details about one of these constructions: the one for the most general class of domain partitions considered. This construction is based on the use of two separate families of basis functions: one which has all the necessary Hermite interpolation properties, and another which has the necessary properties of a smooth convex partition of unity. The constructions of both of these two bases are well-known; the new part of the construction is the combined use of these bases for the derivation of a new basis which enjoys having all above-said interpolation and unity partition properties simultaneously. In [1] the emphasis was put on the use of radial basis functions in the definitions of the two initial bases in the construction; now we shall put the main emphasis on the case when these bases consist of tensor-product B-splines. This selection provides two useful advantages: (A) it is easier to compute higher-order derivatives while working in Cartesian coordinates; (B) it becomes clear that this construction becomes a far-going extension of tensor-product constructions. We shall provide 3-dimensional visualization of the resulting bivariate bases, using tensor-product ERBS. In the main tensor-product variant, we shall consider also replacement of ERBS with simpler generalized ERBS (GERBS) [2], namely, their simplified polynomial modifications: the Euler Beta-function B-splines (BFBS). One advantage of using BFBS instead of ERBS

  12. Critical statistics for non-Hermitian matrices

    International Nuclear Information System (INIS)

    Garcia-Garcia, A.M.; Verbaarschot, J.J.M.; Nishigaki, S.M.

    2002-01-01

    We introduce a generalized ensemble of non-Hermitian matrices interpolating between the Gaussian Unitary Ensemble, the Ginibre ensemble, and the Poisson ensemble. The joint eigenvalue distribution of this model is obtained by means of an extension of the Itzykson-Zuber formula to general complex matrices. Its correlation functions are studied both in the case of weak non-Hermiticity and in the case of strong non-Hermiticity. In the weak non-Hermiticity limit we show that the spectral correlations in the bulk of the spectrum display critical statistics: the asymptotic linear behavior of the number variance is already approached for energy differences of the order of the eigenvalue spacing. To lowest order, its slope does not depend on the degree of non-Hermiticity. Close the edge, the spectral correlations are similar to the Hermitian case. In the strong non-Hermiticity limit the crossover behavior from the Ginibre ensemble to the Poisson ensemble first appears close to the surface of the spectrum. Our model may be relevant for the description of the spectral correlations of an open disordered system close to an Anderson transition

  13. Numerical solution of second-order stochastic differential equations with Gaussian random parameters

    Directory of Open Access Journals (Sweden)

    Rahman Farnoosh

    2014-07-01

    Full Text Available In this paper, we present the numerical solution of ordinary differential equations (or SDEs, from each orderespecially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysisfor second-order equations in specially case of scalar linear second-order equations (damped harmonicoscillators with additive or multiplicative noises. Making stochastic differential equations system from thisequation, it could be approximated or solved numerically by different numerical methods. In the case oflinear stochastic differential equations system by Computing fundamental matrix of this system, it could becalculated based on the exact solution of this system. Finally, this stochastic equation is solved by numericallymethod like E.M. and Milstein. Also its Asymptotic stability and statistical concepts like expectationand variance of solutions are discussed.

  14. Orbital angular momentum of general astigmatic modes

    International Nuclear Information System (INIS)

    Visser, Jorrit; Nienhuis, Gerard

    2004-01-01

    We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere

  15. Five Martyr Brothers. First Polish hermits and their worship

    Directory of Open Access Journals (Sweden)

    Kinga Blaschke

    2016-12-01

    Full Text Available Brothers Benedict and John, students of Romuald, came to Poland at the invitation of Otto III to convert pagans. Soon the Italian hermits were joined by Polish brothers Isaac and Matthew, who helped them in learning the Slavic language. The hermits, as well as Christinus, well killed in 1003 by thugs who wanted to steal money given by Duke Boleslav to an expedition to Rome, which was aimed at obtaining papal consent for conducting missionary work. Although the hermits died as victims of a robbery, killed by fellow Christians, the pope canonized them as martyrs. Their lives are relatively well-documented: the earliest and the most credible story of the five brothers by Bruno of Querfurt was written as early as five years after their death, although remained unknown until 1883. Another early account is the life of St. Romuald by Piotr Damiani of 1041. The martyrs have been also associated with yet another mysterious work – a gravestone unearthed in 1959 at the external wall of the north Roman apse of the Gniezno Cathedral, considered by most researchers the oldest epigraphic item on the Polish soil. However, the identification of the warriors mentioned in the inscription with 11th century martyrs raises many doubts. The article discusses the above matters, as well as the subject of the development of the worship of the martyr brothers.

  16. Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer

    Science.gov (United States)

    Naik, Dinesh N.; Viswanathan, Nirmal K.

    2016-09-01

    We propose a simple free-space optics recipe for the controlled generation of optical vortex beams with a vortex dipole or a single charge vortex, using an inherently stable Sagnac interferometer. We investigate the role played by the amplitude and phase differences in generating higher-order Gaussian beams from the fundamental Gaussian mode. Our simulation results reveal how important the control of both the amplitude and the phase difference between superposing beams is to achieving optical vortex beams. The creation of a vortex dipole from null interference is unveiled through the introduction of a lateral shear and a radial phase difference between two out-of-phase Gaussian beams. A stable and high quality optical vortex beam, equivalent to the first-order Laguerre-Gaussian beam, is synthesized by coupling lateral shear with linear phase difference, introduced orthogonal to the shear between two out-of-phase Gaussian beams.

  17. O(N) symmetries, sum rules for generalized Hermite polynomials and squeezed states

    International Nuclear Information System (INIS)

    Daboul, Jamil; Mizrahi, Salomon S

    2005-01-01

    Quantum optics has been dealing with coherent states, squeezed states and many other non-classical states. The associated mathematical framework makes use of special functions as Hermite polynomials, Laguerre polynomials and others. In this connection we here present some formal results that follow directly from the group O(N) of complex transformations. Motivated by the squeezed states structure, we introduce the generalized Hermite polynomials (GHP), which include as particular cases, the Hermite polynomials as well as the heat polynomials. Using generalized raising operators, we derive new sum rules for the GHP, which are covariant under O(N) transformations. The GHP and the associated sum rules become useful for evaluating Wigner functions in a straightforward manner. As a byproduct, we use one of these sum rules, on the operator level, to obtain raising and lowering operators for the Laguerre polynomials and show that they generate an sl(2, R) ≅ su(1, 1) algebra

  18. Inverse modelling of atmospheric tracers: non-Gaussian methods and second-order sensitivity analysis

    Directory of Open Access Journals (Sweden)

    M. Bocquet

    2008-02-01

    Full Text Available For a start, recent techniques devoted to the reconstruction of sources of an atmospheric tracer at continental scale are introduced. A first method is based on the principle of maximum entropy on the mean and is briefly reviewed here. A second approach, which has not been applied in this field yet, is based on an exact Bayesian approach, through a maximum a posteriori estimator. The methods share common grounds, and both perform equally well in practice. When specific prior hypotheses on the sources are taken into account such as positivity, or boundedness, both methods lead to purposefully devised cost-functions. These cost-functions are not necessarily quadratic because the underlying assumptions are not Gaussian. As a consequence, several mathematical tools developed in data assimilation on the basis of quadratic cost-functions in order to establish a posteriori analysis, need to be extended to this non-Gaussian framework. Concomitantly, the second-order sensitivity analysis needs to be adapted, as well as the computations of the averaging kernels of the source and the errors obtained in the reconstruction. All of these developments are applied to a real case of tracer dispersion: the European Tracer Experiment [ETEX]. Comparisons are made between a least squares cost function (similar to the so-called 4D-Var approach and a cost-function which is not based on Gaussian hypotheses. Besides, the information content of the observations which is used in the reconstruction is computed and studied on the application case. A connection with the degrees of freedom for signal is also established. As a by-product of these methodological developments, conclusions are drawn on the information content of the ETEX dataset as seen from the inverse modelling point of view.

  19. Solution of the neutron transport equation by means of Hermite-Ssub(infinity)-theory

    International Nuclear Information System (INIS)

    Brandt, D.; Haelg, W.; Mennig, J.

    1979-01-01

    A stable numerical approximation Hsub(α)-Ssub(infinity) is obtained through the use of Hermite's method of order α(Hsub(α)) in the spatial integration of the ID neutron transport equation. The theory for α = 1 is applied to a one-group shielding problem. Numerical calculations show the new method to converge much faster than earlier versions of Ssub(infinity)-theory. Comparison of H 1 - Ssub(infinity) with the well-known Ssub(N)-code ANISN indicates a large gain in computing time for the former. (Auth.)

  20. Equivalent non-Gaussian excitation method for response moment calculation of systems under non-Gaussian random excitation

    International Nuclear Information System (INIS)

    Tsuchida, Takahiro; Kimura, Koji

    2015-01-01

    Equivalent non-Gaussian excitation method is proposed to obtain the moments up to the fourth order of the response of systems under non-Gaussian random excitation. The excitation is prescribed by the probability density and power spectrum. Moment equations for the response can be derived from the stochastic differential equations for the excitation and the system. However, the moment equations are not closed due to the nonlinearity of the diffusion coefficient in the equation for the excitation. In the proposed method, the diffusion coefficient is replaced with the equivalent diffusion coefficient approximately to obtain a closed set of the moment equations. The square of the equivalent diffusion coefficient is expressed by the second-order polynomial. In order to demonstrate the validity of the method, a linear system to non-Gaussian excitation with generalized Gaussian distribution is analyzed. The results show the method is applicable to non-Gaussian excitation with the widely different kurtosis and bandwidth. (author)

  1. Linear flow of heat in an infinite region and hermite polynomials

    International Nuclear Information System (INIS)

    Al-Hawaj, A.Y.

    1991-01-01

    The problem of linear flow of heat in an infinite region occupies a prominent place in the field of conduction of heat in solids. A number of solutions to this problem, have been given from time to time by several mathematicians. The object of this paper is to derive the solutions of the problem of linear flow of heat in an infinite region, which lead to Hermite Polynomials. The author further presents three linear combinations of his solutions and their particular cases. The region (- ∞ < x < ∞) of the problem led him to investigate the solutions of the problem in terms of Hermite Polynomials

  2. Higher-order phase transitions on financial markets

    Science.gov (United States)

    Kasprzak, A.; Kutner, R.; Perelló, J.; Masoliver, J.

    2010-08-01

    Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q'). It diverges for any negative scaling powers q' (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q'). This exponent is the nonanalytic (singular) or noninteger power of q', which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent α defining the stretched

  3. Hermit Thrush (Catharus guttatus)

    Science.gov (United States)

    Wood, Petra; Donovan, Therese M.

    2012-01-01

    With spotted breast and reddish tail, the Hermit Thrush lives up to its name. Although celebrated for its ethereal song, it is mostly a quiet and unobtrusive bird that spends much of its time in the lower branches of the undergrowth or on the forest floor, often seen flicking its wings while perched and quickly raising and slowly lowering its tail. A highly variable species in color and size, the Hermit Thrush's morphological characteristics and plumage have been well studied, with 12-13 subspecies now recognized (see Systematics).This thrush is one of the most widely distributed forest-nesting migratory birds in North America and the only forest thrush whose population has increased or remained stable over the past 20 years. Its extensive breeding range includes the northern hardwood forest, as well as most of the boreal and mountainous coniferous forest areas north of Mexico, with relatively recent expansions into New England and the southern Appalachians. In migration, the species moves to lower elevations and southward, spreading out to winter over much of the southern United States, through Mexico to Guatemala and east to Bermuda. It is the only species of Catharus that winters in North America, switching from a breeding diet of mainly arthropods to a wintering diet heavily supplemented with fruits.Much has been learned about this widely distributed species since the original Birds of North America account of 1996. New information pertaining to its song, migratory behavior, winter territoriality, survival, and diet has been added, as well as many new insights into the potential effects of forest management and other human disturbances. Still lacking are detailed nesting studies, studies of juvenile dispersal, of daily activities and time budgets, and of migratory routes.

  4. Polarization coupling of vector Bessel–Gaussian beams

    International Nuclear Information System (INIS)

    Takeuchi, Ryushi; Kozawa, Yuichi; Sato, Shunichi

    2013-01-01

    We report polarization coupling of radial and azimuthal electric field components of a vector light beam as predicted by the fact that the vector Helmholtz equation is expressed as coupled differential equations in cylindrical coordinates. To clearly observe the polarization variation of a beam as it propagates, higher order transverse modes of a vector Bessel–Gaussian beam were generated by a gain distribution modulation technique, which created a narrow ring-shaped gain region in a Nd:YVO 4 crystal. The polarization coupling was confirmed by the observation that the major polarization component of a vector Bessel–Gaussian beam alternates between radial and azimuthal components along with the propagation. (paper)

  5. Modulated Hermite series expansions and the time-bandwidth product

    NARCIS (Netherlands)

    Brinker, den A.C.; Sarroukh, B.E.

    2000-01-01

    The harmonically modulated Hermite series constitute an orthonormal basis in the Hilbert space of square-integrable functions. This basis comprises three free parameters, namely a translation, a modulation, and a scale factor. In practical situations, we are interested in series expansions that are

  6. Higher-order (non-)modularity

    DEFF Research Database (Denmark)

    Appel, Claus; van Oostrom, Vincent; Simonsen, Jakob Grue

    2010-01-01

    We show that, contrary to the situation in first-order term rewriting, almost none of the usual properties of rewriting are modular for higher-order rewriting, irrespective of the higher-order rewriting format. We show that for the particular format of simply typed applicative term rewriting...... systems modularity of confluence, normalization, and termination can be recovered by imposing suitable linearity constraints....

  7. Exploring super-gaussianity towards robust information-theoretical time delay estimation

    DEFF Research Database (Denmark)

    Petsatodis, Theodoros; Talantzis, Fotios; Boukis, Christos

    2013-01-01

    the effect upon TDE when modeling the source signal with different speech-based distributions. An information theoretical TDE method indirectly encapsulating higher order statistics (HOS) formed the basis of this work. The underlying assumption of Gaussian distributed source has been replaced...

  8. Estimators for local non-Gaussianities

    International Nuclear Information System (INIS)

    Creminelli, P.; Senatore, L.; Zaldarriaga, M.

    2006-05-01

    We study the Likelihood function of data given f NL for the so-called local type of non-Gaussianity. In this case the curvature perturbation is a non-linear function, local in real space, of a Gaussian random field. We compute the Cramer-Rao bound for f NL and show that for small values of f NL the 3- point function estimator saturates the bound and is equivalent to calculating the full Likelihood of the data. However, for sufficiently large f NL , the naive 3-point function estimator has a much larger variance than previously thought. In the limit in which the departure from Gaussianity is detected with high confidence, error bars on f NL only decrease as 1/ln N pix rather than N pix -1/2 as the size of the data set increases. We identify the physical origin of this behavior and explain why it only affects the local type of non- Gaussianity, where the contribution of the first multipoles is always relevant. We find a simple improvement to the 3-point function estimator that makes the square root of its variance decrease as N pix -1/2 even for large f NL , asymptotically approaching the Cramer-Rao bound. We show that using the modified estimator is practically equivalent to computing the full Likelihood of f NL given the data. Thus other statistics of the data, such as the 4-point function and Minkowski functionals, contain no additional information on f NL . In particular, we explicitly show that the recent claims about the relevance of the 4-point function are not correct. By direct inspection of the Likelihood, we show that the data do not contain enough information for any statistic to be able to constrain higher order terms in the relation between the Gaussian field and the curvature perturbation, unless these are orders of magnitude larger than the size suggested by the current limits on f NL . (author)

  9. Certified higher-order recursive path ordering

    NARCIS (Netherlands)

    Koprowski, A.; Pfenning, F.

    2006-01-01

    The paper reports on a formalization of a proof of wellfoundedness of the higher-order recursive path ordering (HORPO) in the proof checker Coq. The development is axiom-free and fully constructive. Three substantive parts that could be used also in other developments are the formalizations of the

  10. Hermiticity and CPT in string theory

    International Nuclear Information System (INIS)

    Sonoda, Hidenori

    1989-01-01

    In the application of conformal field theory to string theory S-matrix elements are obtained from correlation functions of vertex operators. By studying the relation between the vertex operators for the incoming states and those for the outgoing states we obtain two results: First we show that hermiticity of the string vertices is equivalent to the CPT invariance of the corresponding conformal field theory. Secondly we prove that the S-matrix elements in any string theory in flat space-time background are invariant under CPT. (orig.)

  11. Pollination and breeding system of Canna paniculata(Cannaceae in a montane Atlantic Rainforest: asymmetric dependence on a hermit hummingbird

    Directory of Open Access Journals (Sweden)

    Pietro Kiyoshi Maruyama

    2015-03-01

    Full Text Available We studied the pollination biology of Canna paniculata (Cannaceae, a plant species common in the Atlantic Rainforest of southeastern Brazil. The species presents specialized ornithophilous flowers, which in our study area are solely pollinated by the hermit hummingbird Phaethornis eurynome. Although C. paniculata is capable of bearing fruit after self-pollination, it requires pollinators for reproduction. We discuss the importance of hermit hummingbirds for the reproduction of specialized ornithophilous plants such as C. paniculata, including their asymmetric dependence on hermit hummingbirds - core pollinators in Neotropical forest ecosystems.

  12. Spectrally Efficient OFDMA Lattice Structure via Toroidal Waveforms on the Time-Frequency Plane

    Directory of Open Access Journals (Sweden)

    Sultan Aldirmaz

    2010-01-01

    Full Text Available We investigate the performance of frequency division multiplexed (FDM signals, where multiple orthogonal Hermite-Gaussian carriers are used to increase the bandwidth efficiency. Multiple Hermite-Gaussian functions are modulated by a data set as a multicarrier modulation scheme in a single time-frequency region constituting toroidal waveform in a rectangular OFDMA system. The proposed work outperforms in the sense of bandwidth efficiency compared to the transmission scheme where only single Gaussian pulses are used as the transmission base. We investigate theoretical and simulation results of the proposed methods.

  13. Hermite-Hadamard type inequalities for GA-s-convex functions

    Directory of Open Access Journals (Sweden)

    İmdat İşcan

    2014-10-01

    Full Text Available In this paper, The author introduces the concepts of the GA-s-convex functions in the first sense and second sense and establishes some integral inequalities of Hermite-Hadamard type related to the GA-s-convex functions. Some applications to special means of real numbers are also given.

  14. How Gaussian can our Universe be?

    Energy Technology Data Exchange (ETDEWEB)

    Cabass, G. [Physics Department and INFN, Università di Roma ' ' La Sapienza' ' , P.le Aldo Moro 2, 00185, Rome (Italy); Pajer, E. [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Schmidt, F., E-mail: giovanni.cabass@roma1.infn.it, E-mail: e.pajer@uu.nl, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-01-01

    Gravity is a non-linear theory, and hence, barring cancellations, the initial super-horizon perturbations produced by inflation must contain some minimum amount of mode coupling, or primordial non-Gaussianity. In single-field slow-roll models, where this lower bound is saturated, non-Gaussianity is controlled by two observables: the tensor-to-scalar ratio, which is uncertain by more than fifty orders of magnitude; and the scalar spectral index, or tilt, which is relatively well measured. It is well known that to leading and next-to-leading order in derivatives, the contributions proportional to the tilt disappear from any local observable, and suspicion has been raised that this might happen to all orders, allowing for an arbitrarily low amount of primordial non-Gaussianity. Employing Conformal Fermi Coordinates, we show explicitly that this is not the case. Instead, a contribution of order the tilt appears in local observables. In summary, the floor of physical primordial non-Gaussianity in our Universe has a squeezed-limit scaling of k {sub ℓ}{sup 2}/ k {sub s} {sup 2}, similar to equilateral and orthogonal shapes, and a dimensionless amplitude of order 0.1 × ( n {sub s}−1).

  15. How Gaussian can our Universe be?

    Science.gov (United States)

    Cabass, G.; Pajer, E.; Schmidt, F.

    2017-01-01

    Gravity is a non-linear theory, and hence, barring cancellations, the initial super-horizon perturbations produced by inflation must contain some minimum amount of mode coupling, or primordial non-Gaussianity. In single-field slow-roll models, where this lower bound is saturated, non-Gaussianity is controlled by two observables: the tensor-to-scalar ratio, which is uncertain by more than fifty orders of magnitude; and the scalar spectral index, or tilt, which is relatively well measured. It is well known that to leading and next-to-leading order in derivatives, the contributions proportional to the tilt disappear from any local observable, and suspicion has been raised that this might happen to all orders, allowing for an arbitrarily low amount of primordial non-Gaussianity. Employing Conformal Fermi Coordinates, we show explicitly that this is not the case. Instead, a contribution of order the tilt appears in local observables. In summary, the floor of physical primordial non-Gaussianity in our Universe has a squeezed-limit scaling of kl2/ks2, similar to equilateral and orthogonal shapes, and a dimensionless amplitude of order 0.1 × (ns-1).

  16. The cubic-quintic-septic complex Ginzburg-Landau equation formulation of optical pulse propagation in 3D doped Kerr media with higher-order dispersions

    Science.gov (United States)

    Djoko, Martin; Kofane, T. C.

    2018-06-01

    We investigate the propagation characteristics and stabilization of generalized-Gaussian pulse in highly nonlinear homogeneous media with higher-order dispersion terms. The optical pulse propagation has been modeled by the higher-order (3+1)-dimensional cubic-quintic-septic complex Ginzburg-Landau [(3+1)D CQS-CGL] equation. We have used the variational method to find a set of differential equations characterizing the variation of the pulse parameters in fiber optic-links. The variational equations we obtained have been integrated numerically by the means of the fourth-order Runge-Kutta (RK4) method, which also allows us to investigate the evolution of the generalized-Gaussian beam and the pulse evolution along an optical doped fiber. Then, we have solved the original nonlinear (3+1)D CQS-CGL equation with the split-step Fourier method (SSFM), and compare the results with those obtained, using the variational approach. A good agreement between analytical and numerical methods is observed. The evolution of the generalized-Gaussian beam has shown oscillatory propagation, and bell-shaped dissipative optical bullets have been obtained under certain parameter values in both anomalous and normal chromatic dispersion regimes. Using the natural control parameter of the solution as it evolves, named the total energy Q, our numerical simulations reveal the existence of 3D stable vortex dissipative light bullets, 3D stable spatiotemporal optical soliton, stationary and pulsating optical bullets, depending on the used initial input condition (symmetric or elliptic).

  17. Improving Boundary-layer Turbulence and Cloud Processes in CAM with a Higher-order Turbulence Closure Scheme and ASR Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kuan-Man [NASA Langley Research Center, Hampton, VA (United States); Cheng, Anning [NASA Langley Research Center, Hampton, VA (United States); Science Systems and Applications, Inc., Hampton, VA (United States)

    2015-11-24

    The intermediately-prognostic higher-order turbulence closure (IPHOC) introduces a joint double-Gaussian distribution of liquid water potential temperature (θl ), total water mixing ratio (qt), and vertical velocity (w) to represent any skewed turbulence circulation. The distribution is inferred from the first-, second-, and third-order moments of the variables given above, and is used to diagnose cloud fraction and gridmean liquid water mixing ratio, as well as the buoyancy term and fourth-order terms in the equations describing the evolution of the second- and third-order moments. Only three third-order moments, i.e., the triple moments of θl, qt, and w, are predicted in IPHOC.

  18. Hermite y la trascendencia de e

    Directory of Open Access Journals (Sweden)

    José Manuel Sánchez Muñoz

    2011-04-01

    Full Text Available Este artículo es en parte una traducción de los trabajos que llevó a cabo el francés Charles Hermite para determinar la trascendencia del número e, considerado éste como base de los logaritmos neperianos. Se han realizado algunas simplificaciones en dicha demostración para hacerlamás asequible al lector. Se presenta además una introducción del número e a través de quien inventó su notación, Leonhard Euler.

  19. EDITORIAL: Non-linear and non-Gaussian cosmological perturbations Non-linear and non-Gaussian cosmological perturbations

    Science.gov (United States)

    Sasaki, Misao; Wands, David

    2010-06-01

    In recent years there has been a resurgence of interest in the study of non-linear perturbations of cosmological models. This has been the result of both theoretical developments and observational advances. New theoretical challenges arise at second and higher order due to mode coupling and the need to develop new gauge-invariant variables beyond first order. In particular, non-linear interactions lead to deviations from a Gaussian distribution of primordial perturbations even if initial vacuum fluctuations are exactly Gaussian. These non-Gaussianities provide an important probe of models for the origin of structure in the very early universe. We now have a detailed picture of the primordial distribution of matter from surveys of the cosmic microwave background, notably NASA's WMAP satellite. The situation will continue to improve with future data from the ESA Planck satellite launched in 2009. To fully exploit these data cosmologists need to extend non-linear cosmological perturbation theory beyond the linear theory that has previously been sufficient on cosmological scales. Another recent development has been the realization that large-scale structure, revealed in high-redshift galaxy surveys, could also be sensitive to non-linearities in the primordial curvature perturbation. This focus section brings together a collection of invited papers which explore several topical issues in this subject. We hope it will be of interest to theoretical physicists and astrophysicists alike interested in understanding and interpreting recent developments in cosmological perturbation theory and models of the early universe. Of course it is only an incomplete snapshot of a rapidly developing field and we hope the reader will be inspired to read further work on the subject and, perhaps, fill in some of the missing pieces. This focus section is dedicated to the memory of Lev Kofman (1957-2009), an enthusiastic pioneer of inflationary cosmology and non-Gaussian perturbations.

  20. Perturbative Gaussianizing transforms for cosmological fields

    Science.gov (United States)

    Hall, Alex; Mead, Alexander

    2018-01-01

    Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.

  1. Effects of dispersion and longitudinal chromatic aberration on the focusing of isodiffracting pulsed Gaussian light beam

    International Nuclear Information System (INIS)

    Deng Dongmei; Guo Hong; Han Dingan; Liu Mingwei; Li Changfu

    2005-01-01

    Taking into account the dispersion and the longitudinal chromatic aberration (LCA) of the material of the lens, focusing of isodiffracting pulsed Gaussian light beam through single lens is analyzed. The smaller the cycle number of the isodiffracting pulsed Gaussian light beam is, the higher the order of the material dispersion should be considered

  2. Temperature and salinity tolerance of adult hermit crabs, Diogenes ...

    African Journals Online (AJOL)

    1987-11-04

    Nov 4, 1987 ... estuary may not limit the distribution of hermit crabs. Because of their broad tolerance they should be able to survive near the head of the estuary. However, this continuous exposure to low salinity may be intolerable during moult and limit normal growth and metamorphosis, so although there may not be a.

  3. Spiral phase plates for the generation of high-order Laguerre-Gaussian beams with non-zero radial index

    Science.gov (United States)

    Ruffato, G.; Carli, M.; Massari, M.; Romanato, F.

    2015-03-01

    The work of design, fabrication and characterization of spiral phase plates for the generation of Laguerre-Gaussian (LG) beams with non-null radial index is presented. Samples were fabricated by electron beam lithography on polymethylmethacrylate layers over glass substrates. The optical response of these phase optical elements was measured and the purity of the experimental beams was investigated in terms of Laguerre-Gaussian modes contributions. The farfield intensity pattern was compared with theoretical models and numerical simulations, while the expected phase features were confirmed by interferometric analyses. The high quality of the output beams confirms the applicability of these phase plates for the generation of high-order Laguerre-Gaussian beams. A novel application consisting in the design of computer-generated holograms encoding information for light beams carrying phase singularities is shown. A numerical code based on iterative Fourier transform algorithm has been developed for the computation of the phase pattern of phase-only diffractive optical element for illumination under LG beams. Numerical analysis and preliminary experimental results confirm the applicability of these devices as high-security optical elements.

  4. Explicit formulae for the generalized Hermite polynomials in superspace

    International Nuclear Information System (INIS)

    Desrosiers, Patrick; Lapointe, Luc; Mathieu, Pierre

    2004-01-01

    We provide explicit formulae for the orthogonal eigenfunctions of the supersymmetric extension of the rational Calogero-Moser-Sutherland model with harmonic confinement, i.e., the generalized Hermite (or Hi-Jack) polynomials in superspace. The construction relies on the triangular action of the Hamiltonian on the supermonomial basis. This translates into determinantal expressions for the Hamiltonian's eigenfunctions

  5. Boundedness of the Segal-Bargmann Transform on Fractional Hermite-Sobolev Spaces

    Directory of Open Access Journals (Sweden)

    Hong Rae Cho

    2017-01-01

    Full Text Available Let s∈R and 2≤p≤∞. We prove that the Segal-Bargmann transform B is a bounded operator from fractional Hermite-Sobolev spaces WHs,pRn to fractional Fock-Sobolev spaces FRs,p.

  6. The Gaussian streaming model and convolution Lagrangian effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Vlah, Zvonimir [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States); Castorina, Emanuele; White, Martin, E-mail: zvlah@stanford.edu, E-mail: ecastorina@berkeley.edu, E-mail: mwhite@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-12-01

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM to a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.

  7. Scale dependence of the halo bias in general local-type non-Gaussian models I: analytical predictions and consistency relations

    International Nuclear Information System (INIS)

    Nishimichi, Takahiro

    2012-01-01

    The large-scale clustering pattern of biased tracers is known to be a powerful probe of the non-Gaussianities in the primordial fluctuations. The so-called scale-dependent bias has been reported in various type of models of primordial non-Gaussianities. We focus on local-type non-Gaussianities, and unify the derivations in the literature of the scale-dependent bias in the presence of multiple Gaussian source fields as well as higher-order coupling to cover the models described by frequently-discussed f NL , g NL and t NL parameterization. We find that the resultant power spectrum is characterized by two parameters responsible for the shape and the amplitude of the scale-dependent bias in addition to the Gaussian bias factor. We show how (a generalized version of) Suyama-Yamaguchi inequality between f NL and t NL can directly be accessible from the observed power spectrum through the dependence on our new parameter which controls the shape of the scale-dependent bias. The other parameter for the amplitude of the scale-dependent bias is shown to be useful to distinguish the simplest quadratic non-Gaussianities (i.e., f NL -type) from higher-order ones (g NL and higher), if one measures it from multiple species of galaxies or clusters of galaxies. We discuss the validity and limitations of our analytic results by comparison with numerical simulations in an accompanying paper

  8. Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models

    Science.gov (United States)

    Wen, Xian-Huan; Gómez-Hernández, J. Jaime

    1998-03-01

    The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than

  9. Higher Order Expectations in Asset Pricing

    OpenAIRE

    Philippe BACCHETTA; Eric VAN WINCOOP

    2004-01-01

    We examine formally Keynes' idea that higher order beliefs can drive a wedge between an asset price and its fundamental value based on expected future payoffs. Higher order expectations add an additional term to a standard asset pricing equation. We call this the higher order wedge, which depends on the difference between higher and first order expectations of future payoffs. We analyze the determinants of this wedge and its impact on the equilibrium price. In the context of a dynamic noisy r...

  10. Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics

    Science.gov (United States)

    Loureiro, Nuno; Dorland, William; Fazendeiro, Luis; Kanekar, Anjor; Mallet, Alfred; Zocco, Alessandro

    2015-11-01

    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model equations [Zocco & Schekochihin, 2011] and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., 2009]. Two main applications of these equations are magnetised (Alfvnénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, with focus on 3D decaying kinetic turbulence. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  11. Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model

    CERN Document Server

    Desrosiers, P; Mathieu, P; Desrosiers, Patrick; Lapointe, Luc; Mathieu, Pierre

    2003-01-01

    We present two constructions of the orthogonal eigenfunctions of the supersymmetric extension of the rational Calogero-Moser-Sutherland model with harmonic confinement. These eigenfunctions are the superspace extension of the generalized Hermite (or Hi-Jack) polynomials. The conserved quantities of the rational supersymmetric model are first related to their trigonometric relatives through a similarity transformation. This leads to a simple expression for the generalized Hermite superpolynomials as a differential operator acting on the corresponding Jack superpolynomials. The second construction relies on the action of the Hamiltonian on the supermonomial basis. This translates into determinantal expressions for the Hamiltonian's eigenfunctions. As an aside, the maximal superintegrability of the supersymmetric rational Calogero-Moser-Sutherland model is demonstrated.

  12. Connection between quantum systems involving the fourth Painlevé transcendent and k-step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial

    Energy Technology Data Exchange (ETDEWEB)

    Marquette, Ian, E-mail: i.marquette@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072 (Australia); Quesne, Christiane, E-mail: cquesne@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels (Belgium)

    2016-05-15

    The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent P{sub IV}, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed X{sub m{sub 1,m{sub 2,…,m{sub k}}}} Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite and Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.

  13. Development and Evaluation of Compact Robot Imitating a Hermit Crab for Inspecting the Outer Surface of Pipes

    Directory of Open Access Journals (Sweden)

    Naoto Imajo

    2015-01-01

    Full Text Available Terrestrial hermit crabs which are a type of hermit crabs live on land, whereas typical hermit crabs inhabit the sea. They have an ability of climbing a tree vertically. Their claws allow them to hang on the tree. In this study, an outer-pipe inspection robot was developed. Its locomotion mechanism was developed in imitation of the terrestrial hermit crab’s claws. It is equipped with two rimless wheels. Each of the spokes is tipped with a neodymium magnet, which allows the robot to remain attached to even a vertical steel pipe. Moreover, the robot has a mechanism for adjusting the camber angle of the right and left wheels, allowing it to tightly grip pipes with different diameters. Experiments were conducted to check the performance of the robot using steel pipes with different diameters, placed horizontally, vertically, or obliquely. The robot attempted to move a certain distance along a pipe, and its success rate was measured. It was found that the robot could successfully travel along pipes with vertical orientations, although it sometimes fell from oblique or horizontal pipes. The most likely reason for this is identified and discussed. Certain results were obtained in laboratory. Further experiments in actual environment are required.

  14. Multipoint propagators for non-Gaussian initial conditions

    International Nuclear Information System (INIS)

    Bernardeau, Francis; Sefusatti, Emiliano; Crocce, Martin

    2010-01-01

    We show here how renormalized perturbation theory calculations applied to the quasilinear growth of the large-scale structure can be carried on in presence of primordial non-Gaussian (PNG) initial conditions. It is explicitly demonstrated that the series reordering scheme proposed in Bernardeau, Crocce, and Scoccimarro [Phys. Rev. D 78, 103521 (2008)] is preserved for non-Gaussian initial conditions. This scheme applies to the power spectrum and higher-order spectra and is based on a reorganization of the contributing terms into the sum of products of multipoint propagators. In case of PNG, new contributing terms appear, the importance of which is discussed in the context of current PNG models. The properties of the building blocks of such resummation schemes, the multipoint propagators, are then investigated. It is first remarked that their expressions are left unchanged at one-loop order irrespective of statistical properties of the initial field. We furthermore show that the high-momentum limit of each of these propagators can be explicitly computed even for arbitrary initial conditions. They are found to be damped by an exponential cutoff whose expression is directly related to the moment generating function of the one-dimensional displacement field. This extends what had been established for multipoint propagators for Gaussian initial conditions. Numerical forms of the cutoff are shown for the so-called local model of PNG.

  15. Temporal self-splitting of optical pulses

    Science.gov (United States)

    Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Pan, Liuzhan

    2018-05-01

    We present mathematical models for temporally and spectrally partially coherent pulse trains with Laguerre-Gaussian and Hermite-Gaussian Schell-model statistics as extensions of the standard Gaussian Schell model for pulse trains. We derive propagation formulas of both classes of pulsed fields in linearly dispersive media and in temporal optical systems. It is found that, in general, both types of fields exhibit time-domain self-splitting upon propagation. The Laguerre-Gaussian model leads to multiply peaked pulses, while the Hermite-Gaussian model leads to doubly peaked pulses, in the temporal far field (in dispersive media) or at the Fourier plane of a temporal system. In both model fields the character of the self-splitting phenomenon depends both on the degree of temporal and spectral coherence and on the power spectrum of the field.

  16. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    International Nuclear Information System (INIS)

    Patino, A; Durand, P-E; Fogret, E; Pellat-Finet, P

    2011-01-01

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  17. Order-sorted Algebraic Specifications with Higher-order Functions

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    1995-01-01

    This paper gives a proposal for how order-sorted algebraic specification languages can be extended with higher-order functions. The approach taken is a generalisation to the order-sorted case of an approach given by Mller, Tarlecki and Wirsing for the many-sorted case. The main idea in the proposal...

  18. Higher-Order Hierarchies

    DEFF Research Database (Denmark)

    Ernst, Erik

    2003-01-01

    This paper introduces the notion of higher-order inheritance hierarchies. They are useful because they provide well-known benefits of object-orientation at the level of entire hierarchies-benefits which are not available with current approaches. Three facets must be adressed: First, it must be po...

  19. Near infrared face recognition using Zernike moments and Hermite kernels

    Czech Academy of Sciences Publication Activity Database

    Farokhi, Sajad; Sheikh, U.U.; Flusser, Jan; Yang, Bo

    2015-01-01

    Roč. 316, č. 1 (2015), s. 234-245 ISSN 0020-0255 R&D Projects: GA ČR(CZ) GA13-29225S Keywords : face recognition * Zernike moments * Hermite kernel * Decision fusion * Near infrared Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.364, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0444205.pdf

  20. Effects of visual and chemical cues on orientation behavior of the Red Sea hermit crab Clibanarius signatus

    Directory of Open Access Journals (Sweden)

    Tarek Gad El-Kareem Ismail

    2012-03-01

    Full Text Available Directional orientation of Clibanarius signatus toward different targets of gastropod shells was studied in a circular arena upon exposure to background seawater, calcium concentrations and predatory odor. Directional orientation was absent when crabs were presented with the white background alone. Each shell was tested in different positions (e.g., anterior, posterior, upside-down, lateral. Adult crabs were tested without their gastropod shells, and orientation varied with concentration and chemical cue. With calcium, orientation increased as concentration increased up to a maximum attraction percentage and then attraction became stable. In the case of predator cues, some individuals swim away from the target toward the opposite direction representing a predator avoidance response. Whenever, the blind hermit crab C. signatus was exposed to a shell target combined with calcium or predator cues, the majority of them stop moving or move in circles around the arena center. The others exhibited uniform orientation distribution. The responsiveness was higher with calcium cues than predator cues. Thus in the absence of vision, individual hermit crabs were able to detect both calcium and predator cues and have different response regarding them.

  1. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  2. HIGHER ORDER THINKING IN TEACHING GRAMMAR

    Directory of Open Access Journals (Sweden)

    Citra Dewi

    2017-04-01

    Full Text Available The aim of this paper discussed about how to enhance students’ higher order thinking that should be done by teacher in teaching grammar. Usually teaching grammar was boring and has the same way to learn like change the pattern of sentence into positive, negative and introgative while the students’ need more various way to develop their thinking. The outcome of students’ competence in grammar sometimes not sufficient enough when the students’ occured some test international standart like Test of English Foreign Language, International English Language Testing. Whereas in TOEFL test it needed higher order thinking answer, so teacher should develop students’ higher order thingking in daily teaching grammar in order to make the students’ enhance their thinking are higher. The method was used in this paper by using field study based on the experience of teaching grammar. It can be shown by students’ toefl score was less in stucture and written expression. The result of this paper was after teacher gave some treatments to enhance students’ higher order thinking in teaching grammar, the students’ toefl scores are sufficient enough as a part of stucture and written expression. It can concluded that it needed some strategies to enhancce students higher order thinking by teaching grammar it can make students’ higher toefl score. Teachers should be creative and inovative to teach the students’ started from giving the students’ question or test in teaching grammar.

  3. Shell occupation by the South Atlantic endemic hermit crab Loxopagurus loxochelis (Moreira, 1901 (Anomura: Diogenidae

    Directory of Open Access Journals (Sweden)

    Israel Fernandes Frameschi

    Full Text Available The evaluation of population characteristics, particularly those of endemic species, aids in population preservation and management. Hermit crabs present an innate behavior of occupying shells, which tends to individual needs and limits their distribution. This study characterized the pattern of occupation of gastropod shells by the hermit Loxopagurus loxochelis in three bays of the southwestern coast of Brazil. Monthly collections were made from January/1998 to December/1999 in the bays Ubatumirim (UBM, Ubatuba (UBA and Mar Virado (MV with a shrimping boat. Overall, ten species of gastropod shells were occupied by L. loxochelis. The shell of Olivancillaria urceus represented 66.8% of those occupied. Morphometric relationships demonstrated a differential occupation of the more abundant shells among demographic groups, where most of the males occupied O. urceus, non-ovigerous females occupied O. urceus and Buccinanops cochlidium, and ovigerous females occupied B. cochlidium and Stramonita haemastoma. Most of the individuals occupied the more abundant shells, considered adequate for the morphology of this hermit crab species. Thus, the studied bays seem to be stable and propitious environments for population perpetuation and the settlement of new individuals.

  4. Gaussian mixture models and semantic gating improve reconstructions from human brain activity

    Directory of Open Access Journals (Sweden)

    Sanne eSchoenmakers

    2015-01-01

    Full Text Available Better acquisition protocols and analysis techniques are making it possible to use fMRI to obtain highly detailed visualizations of brain processes. In particular we focus on the reconstruction of natural images from BOLD responses in visual cortex. We expand our linear Gaussian framework for percept decoding with Gaussian mixture models to better represent the prior distribution of natural images. Reconstruction of such images then boils down to probabilistic inference in a hybrid Bayesian network. In our set-up, different mixture components correspond to different character categories. Our framework can automatically infer higher-order semantic categories from lower-level brain areas. Furthermore the framework can gate semantic information from higher-order brain areas to enforce the correct category during reconstruction. When categorical information is not available, we show that automatically learned clusters in the data give a similar improvement in reconstruction. The hybrid Bayesian network leads to highly accurate reconstructions in both supervised and unsupervised settings.

  5. Non-Gaussianity in island cosmology

    International Nuclear Information System (INIS)

    Piao Yunsong

    2009-01-01

    In this paper we fully calculate the non-Gaussianity of primordial curvature perturbation of the island universe by using the second order perturbation equation. We find that for the spectral index n s ≅0.96, which is favored by current observations, the non-Gaussianity level f NL seen in an island will generally lie between 30 and 60, which may be tested by the coming observations. In the landscape, the island universe is one of anthropically acceptable cosmological histories. Thus the results obtained in some sense mean the coming observations, especially the measurement of non-Gaussianity, will be significant to clarify how our position in the landscape is populated.

  6. The problem of electric sources in Einstein's Hermite-symmetric field theory

    International Nuclear Information System (INIS)

    Kreisel, E.

    1986-01-01

    The possibility is investigated to introduce a geometric source without A-invariance and Hermite-symmetry breaking of Einstein's Hermitian relativity. It would be very meaningful to interpret a source of this kind as electric current. With this extension Einstein's unitary field theory contains Einstein's gravitation, electromagnetism and the gluonic vacuum of chromodynamics. (author)

  7. Recursive regularization step for high-order lattice Boltzmann methods

    Science.gov (United States)

    Coreixas, Christophe; Wissocq, Gauthier; Puigt, Guillaume; Boussuge, Jean-François; Sagaut, Pierre

    2017-09-01

    A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 104 to 106, and where a thorough analysis of the case at Re=3 ×104 is conducted. In the latter, results obtained using both regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.

  8. Model-independent test for scale-dependent non-Gaussianities in the cosmic microwave background.

    Science.gov (United States)

    Räth, C; Morfill, G E; Rossmanith, G; Banday, A J; Górski, K M

    2009-04-03

    We present a model-independent method to test for scale-dependent non-Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate data sets are generated, in which the power spectrum of the original data is preserved, while the higher order correlations are partly randomized by applying a scale-dependent shuffling procedure to the Fourier phases. We apply this method to the Wilkinson Microwave Anisotropy Probe data of the cosmic microwave background and find signatures for non-Gaussianities on large scales. Further tests are required to elucidate the origin of the detected anomalies.

  9. On the ecology of Coenobita clypeatus in Curaçao with reference to reproduction, water economy and osmoregulation in terrestrial hermit crabs

    NARCIS (Netherlands)

    Wilde, de P.A.W.J.

    1973-01-01

    1. This paper deals with various aspects of the life-history, ecology, water management and osmoregulation of the West-Indian land hermit crab Coenobita clypeatus (Herbst) in Curaçao, Netherlands Antilles. 2. Land hermit crabs belonging to the family Coenobitidae may be considered as one of the most

  10. Generation of Quasi-Gaussian Pulses Based on Correlation Techniques

    Directory of Open Access Journals (Sweden)

    POHOATA, S.

    2012-02-01

    Full Text Available The Gaussian pulses have been mostly used within communications, where some applications can be emphasized: mobile telephony (GSM, where GMSK signals are used, as well as the UWB communications, where short-period pulses based on Gaussian waveform are generated. Since the Gaussian function signifies a theoretical concept, which cannot be accomplished from the physical point of view, this should be expressed by using various functions, able to determine physical implementations. New techniques of generating the Gaussian pulse responses of good precision are approached, proposed and researched in this paper. The second and third order derivatives with regard to the Gaussian pulse response are accurately generated. The third order derivates is composed of four individual rectangular pulses of fixed amplitudes, being easily to be generated by standard techniques. In order to generate pulses able to satisfy the spectral mask requirements, an adequate filter is necessary to be applied. This paper emphasizes a comparative analysis based on the relative error and the energy spectra of the proposed pulses.

  11. Nonclassicality by Local Gaussian Unitary Operations for Gaussian States

    Directory of Open Access Journals (Sweden)

    Yangyang Wang

    2018-04-01

    Full Text Available A measure of nonclassicality N in terms of local Gaussian unitary operations for bipartite Gaussian states is introduced. N is a faithful quantum correlation measure for Gaussian states as product states have no such correlation and every non product Gaussian state contains it. For any bipartite Gaussian state ρ A B , we always have 0 ≤ N ( ρ A B < 1 , where the upper bound 1 is sharp. An explicit formula of N for ( 1 + 1 -mode Gaussian states and an estimate of N for ( n + m -mode Gaussian states are presented. A criterion of entanglement is established in terms of this correlation. The quantum correlation N is also compared with entanglement, Gaussian discord and Gaussian geometric discord.

  12. Non-Gaussian signatures arising from warm inflation driven by geometric tachyon

    International Nuclear Information System (INIS)

    Bhattacharjee, Anindita; Deshamukhya, Atri

    2014-01-01

    In a warm inflationary scenario, the initial seeds of density perturbation arise from thermal fluctuations of the inflaton field. These fluctuations in principle have Gaussian distribution. In a Gaussian distribution the density perturbation can be expressed as the two point correlation function. Thus if in an inflationary model the density perturbation is expressed as correlation function of order higher than two, these fluctuations are non-Gaussian in nature. A simple inflationary model containing single scalar field, slow roll, canonical kinetic term and vacuum initial state can produce a tiny amount of non-Gaussianity which are very small to be detected by any experiment. Non-Gaussianity can also arise in inflationary models containing multiple scalar fields. For an inflationary scenario with single scalar field, non-Gaussianity can be expressed in terms of bi-spectrum however for multi field Inflation, it is expressed in terms of trispectrum etc. In this piece of work, the warm inflationary scenario, driven by a D3 brane due to the presence of a stack of k coincident NS 5 branes is considered and the non-Gaussian effects in such an inflationary scenario has been analysed by measuring the bispectrum of the gravitational field fluctuations generated during the warm inflation in strong dissipative regime. The bi-spectrum of the Inflation is expressed in terms of the parameter f NL and it is seen that the value of f NL parameter lies well within the limit observed by WMAP7

  13. Applying inversion to construct planar, rational spirals that satisfy two-point G(2) Hermite data

    CERN Document Server

    Kurnosenko, A

    2010-01-01

    A method of two-point G(2) Hermite interpolation with spirals is proposed. To construct a sought for curve, the inversion is applied to an arc of some other spiral. To illustrate the method, inversions of parabola are considered in detail. The resulting curve is 4th degree rational. The method allows the matching of a wide range of boundary conditions, including those which require an inflection. Although not all G(2) Hermite data can be matched with a spiral generated from a parabolic arc, introducing one intermediate G(2) data solves the problem. Expanding the method by involving other spirals arcs is also discussed. (C) 2009 Elsevier B.V. All rights reserved.

  14. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.

    Science.gov (United States)

    Mall, Susmita; Chakraverty, S

    2016-08-01

    Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.

  15. Zeros of Wronskians of Hermite polynomials and Young diagrams

    Science.gov (United States)

    Felder, G.; Hemery, A. D.; Veselov, A. P.

    2012-12-01

    For a certain class of partitions, a simple qualitative relation is observed between the shape of the Young diagram and the pattern of zeros of the Wronskian of the corresponding Hermite polynomials. In the case of the two-term Wronskian W(Hn,Hn+k), we give an explicit formula for the asymptotic shape of the zero set as n→∞. Some empirical asymptotic formulas are given for the zero sets of three-term and four-term Wronskians.

  16. Higher-Order Program Generation

    DEFF Research Database (Denmark)

    Rhiger, Morten

    for OCaml, a dialect of ML, that provides run-time code generation for OCaml programs. We apply these byte-code combinators in semantics-directed compilation for an imperative language and in run-time specialization using type-directed partial evaluation. Finally, we present an approach to compiling goal......This dissertation addresses the challenges of embedding programming languages, specializing generic programs to specific parameters, and generating specialized instances of programs directly as executable code. Our main tools are higher-order programming techniques and automatic program generation....... It is our thesis that they synergize well in the development of customizable software. Recent research on domain-specific languages propose to embed them into existing general-purpose languages. Typed higher-order languages have proven especially useful as meta languages because they provide a rich...

  17. Frontiers of higher order fuzzy sets

    CERN Document Server

    Tahayori, Hooman

    2015-01-01

    Frontiers of Higher Order Fuzzy Sets, strives to improve the theoretical aspects of general and Interval Type-2 fuzzy sets and provides a unified representation theorem for higher order fuzzy sets. Moreover, the book elaborates on the concept of gradual elements and their integration with the higher order fuzzy sets. This book also introduces new frameworks for information granulation based on general T2FSs, IT2FSs, Gradual elements, Shadowed sets and rough sets. In particular, the properties and characteristics of the new proposed frameworks are studied. Such new frameworks are shown to be more capable to be exploited in real applications. Higher order fuzzy sets that are the result of the integration of general T2FSs, IT2FSs, gradual elements, shadowed sets and rough sets will be shown to be suitable to be applied in the fields of bioinformatics, business, management, ambient intelligence, medicine, cloud computing and smart grids. Presents new variations of fuzzy set frameworks and new areas of applicabili...

  18. Loop corrections to primordial non-Gaussianity

    Science.gov (United States)

    Boran, Sibel; Kahya, E. O.

    2018-02-01

    We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.

  19. Fractional Diffusion in Gaussian Noisy Environment

    Directory of Open Access Journals (Sweden)

    Guannan Hu

    2015-03-01

    Full Text Available We study the fractional diffusion in a Gaussian noisy environment as described by the fractional order stochastic heat equations of the following form: \\(D_t^{(\\alpha} u(t, x=\\textit{B}u+u\\cdot \\dot W^H\\, where \\(D_t^{(\\alpha}\\ is the Caputo fractional derivative of order \\(\\alpha\\in (0,1\\ with respect to the time variable \\(t\\, \\(\\textit{B}\\ is a second order elliptic operator with respect to the space variable \\(x\\in\\mathbb{R}^d\\ and \\(\\dot W^H\\ a time homogeneous fractional Gaussian noise of Hurst parameter \\(H=(H_1, \\cdots, H_d\\. We obtain conditions satisfied by \\(\\alpha\\ and \\(H\\, so that the square integrable solution \\(u\\ exists uniquely.

  20. Model selection for Gaussian kernel PCA denoising

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Winther; Hansen, Lars Kai

    2012-01-01

    We propose kernel Parallel Analysis (kPA) for automatic kernel scale and model order selection in Gaussian kernel PCA. Parallel Analysis [1] is based on a permutation test for covariance and has previously been applied for model order selection in linear PCA, we here augment the procedure to also...... tune the Gaussian kernel scale of radial basis function based kernel PCA.We evaluate kPA for denoising of simulated data and the US Postal data set of handwritten digits. We find that kPA outperforms other heuristics to choose the model order and kernel scale in terms of signal-to-noise ratio (SNR...

  1. Do I stand out or blend in? Conspicuousness awareness and consistent behavioural differences in hermit crabs.

    Science.gov (United States)

    Briffa, Mark; Twyman, Claire

    2011-06-23

    Animals titrate their behaviour against the level of risk and an individual's conspicuousness should influence decisions such as when to flee and for how long to hide. Conspicuousness will vary with variation in substrate colour. Since hermit crabs frequently change the shells they occupy, shell colour will also influence conspicuousness and to be aware of their conspicuousness would require information on both of these factors to be integrated. Reduced boldness in high-contrast shell and substrate combinations compared with situations of low contrast indicates that hermit crabs are aware of current conspicuousness. Differences between individuals remained consistent across conspicuousness levels indicating the presence of animal personalities.

  2. Higher order harmonics of reactor neutron equation

    International Nuclear Information System (INIS)

    Li Fu; Hu Yongming; Luo Zhengpei

    1996-01-01

    The flux mapping method using the higher order harmonics of the neutron equation is proposed. Based on the bi-orthogonality of the higher order harmonics, the process and formulas for higher order harmonics calculation are derived via the source iteration method with source correction. For the first time, not only any order harmonics for up-to-3-dimensional geometry are achieved, but also the preliminary verification to the capability for flux mapping have been carried out

  3. XY model with higher-order exchange.

    Science.gov (United States)

    Žukovič, Milan; Kalagov, Georgii

    2017-08-01

    An XY model, generalized by inclusion of up to an infinite number of higher-order pairwise interactions with an exponentially decreasing strength, is studied by spin-wave theory and Monte Carlo simulations. At low temperatures the model displays a quasi-long-range-order phase characterized by an algebraically decaying correlation function with the exponent η=T/[2πJ(p,α)], nonlinearly dependent on the parameters p and α that control the number of the higher-order terms and the decay rate of their intensity, respectively. At higher temperatures the system shows a crossover from the continuous Berezinskii-Kosterlitz-Thouless to the first-order transition for the parameter values corresponding to a highly nonlinear shape of the potential well. The role of topological excitations (vortices) in changing the nature of the transition is discussed.

  4. Higher-Order Minimal Functional Graphs

    DEFF Research Database (Denmark)

    Jones, Neil D; Rosendahl, Mads

    1994-01-01

    We present a minimal function graph semantics for a higher-order functional language with applicative evaluation order. The semantics captures the intermediate calls performed during the evaluation of a program. This information may be used in abstract interpretation as a basis for proving...

  5. Optimal cloning of mixed Gaussian states

    International Nuclear Information System (INIS)

    Guta, Madalin; Matsumoto, Keiji

    2006-01-01

    We construct the optimal one to two cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states

  6. Higher-Order Generalized Invexity in Control Problems

    Directory of Open Access Journals (Sweden)

    S. K. Padhan

    2011-01-01

    Full Text Available We introduce a higher-order duality (Mangasarian type and Mond-Weir type for the control problem. Under the higher-order generalized invexity assumptions on the functions that compose the primal problems, higher-order duality results (weak duality, strong duality, and converse duality are derived for these pair of problems. Also, we establish few examples in support of our investigation.

  7. Egg production and shell relationship of the land hermit crab Coenobita scaevola (Anomura: Coenobitidae from Wadi El-Gemal, Red Sea, Egypt

    Directory of Open Access Journals (Sweden)

    Wafaa S. Sallam

    2012-03-01

    Full Text Available The aim of the present study is to characterize the fecundity of the land hermit crab Coenobita scaevola as well as the influence of shell type on fecundity using morphometric relationships. Hermit crabs were collected monthly from January to December 2007 from the protected area of Wadi El-Gemal, at Marsa Alam on the Red Sea, and ovigerous females were selected. Hermit crab wet weight and the gastropod shell weight were recorded. The number of eggs carried by females of several sizes (CL, carapace length, stages of development and egg size were determined. Shells of eight gastropod species were occupied by ovigerous females of C. scaevola. Shells of Nerita undata was the most occupied (65.7%, particularly by individuals falling within the size range 5.0–7.0 mm CL. Only 35 berried females were recorded during May, July and September and the mean fecundity was 679.8 ± 140 eggs. Fecundity was found positively correlated with crab size and shell dimensions. The relationship between fecundity and the internal volume of the occupied shell was ranked as the most correlated. The impact of shell utilization on hermit crab fecundity is discussed.

  8. Frequency-domain interferometer simulation with higher-order spatial modes

    International Nuclear Information System (INIS)

    Freise, A; Heinzel, G; Lueck, H; Schilling, R; Willke, B; Danzmann, K

    2004-01-01

    FINESSE is a software simulation allowing one to compute the optical properties of laser interferometers used by interferometric gravitational-wave detectors today. This fast and versatile tool has already proven to be useful in the design and commissioning of gravitational-wave detectors. The basic algorithm of FINESSE numerically computes the light amplitudes inside an interferometer using Hermite-Gauss modes in the frequency domain. In addition, FINESSE provides a number of commands for easily generating and plotting the most common signals including power enhancement, error and control signals, transfer functions and shot-noise-limited sensitivities. Among the various simulation tools available to the gravitational wave community today, FINESSE provides an advanced and versatile optical simulation based on a general analysis of user-defined optical setups and is quick to install and easy to use

  9. Neural classifiers for learning higher-order correlations

    International Nuclear Information System (INIS)

    Gueler, M.

    1999-01-01

    Studies by various authors suggest that higher-order networks can be more powerful and biologically more plausible with respect to the more traditional multilayer networks. These architecture make explicit use of nonlinear interactions between input variables in the form of higher-order units or product units. If it is known a priori that the problem to be implemented possesses a given set of invariances like in the translation, rotation, and scale invariant recognition problems, those invariances can be encoded, thus eliminating all higher-order terms which are incompatible with the invariances. In general, however, it is a serious set-back that the complexity of learning increases exponentially with the size of inputs. This paper reviews higher-order networks and introduces an implicit representation in which learning complexity is mainly decided by the number of higher-order terms to be learned and increases only linearly with the input size

  10. Neural Classifiers for Learning Higher-Order Correlations

    Science.gov (United States)

    Güler, Marifi

    1999-01-01

    Studies by various authors suggest that higher-order networks can be more powerful and are biologically more plausible with respect to the more traditional multilayer networks. These architectures make explicit use of nonlinear interactions between input variables in the form of higher-order units or product units. If it is known a priori that the problem to be implemented possesses a given set of invariances like in the translation, rotation, and scale invariant pattern recognition problems, those invariances can be encoded, thus eliminating all higher-order terms which are incompatible with the invariances. In general, however, it is a serious set-back that the complexity of learning increases exponentially with the size of inputs. This paper reviews higher-order networks and introduces an implicit representation in which learning complexity is mainly decided by the number of higher-order terms to be learned and increases only linearly with the input size.

  11. Response moments of dynamic systems under non-Gaussian random excitation by the equivalent non-Gaussian excitation method

    International Nuclear Information System (INIS)

    Tsuchida, Takahiro; Kimura, Koji

    2016-01-01

    Equivalent non-Gaussian excitation method is proposed to obtain the response moments up to the 4th order of dynamic systems under non-Gaussian random excitation. The non-Gaussian excitation is prescribed by the probability density and the power spectrum, and is described by an Ito stochastic differential equation. Generally, moment equations for the response, which are derived from the governing equations for the excitation and the system, are not closed due to the nonlinearity of the diffusion coefficient in the equation for the excitation even though the system is linear. In the equivalent non-Gaussian excitation method, the diffusion coefficient is replaced with the equivalent diffusion coefficient approximately to obtain a closed set of the moment equations. The square of the equivalent diffusion coefficient is expressed by a quadratic polynomial. In numerical examples, a linear system subjected to nonGaussian excitations with bimodal and Rayleigh distributions is analyzed by using the present method. The results show that the method yields the variance, skewness and kurtosis of the response with high accuracy for non-Gaussian excitation with the widely different probability densities and bandwidth. The statistical moments of the equivalent non-Gaussian excitation are also investigated to describe the feature of the method. (paper)

  12. Higher order antibunching in intermediate states

    International Nuclear Information System (INIS)

    Verma, Amit; Sharma, Navneet K.; Pathak, Anirban

    2008-01-01

    Since the introduction of binomial state as an intermediate state, different intermediate states have been proposed. Different nonclassical effects have also been reported in these intermediate states. But till now higher order antibunching is predicted in only one type of intermediate state, which is known as shadowed negative binomial state. Recently we have shown that the higher order antibunching is not a rare phenomenon [P. Gupta, P. Pandey, A. Pathak, J. Phys. B 39 (2006) 1137]. To establish our earlier claim further, here we have shown that the higher order antibunching can be seen in different intermediate states, such as binomial state, reciprocal binomial state, hypergeometric state, generalized binomial state, negative binomial state and photon added coherent state. We have studied the possibility of observing the higher order subpoissonian photon statistics in different limits of intermediate states. The effects of different control parameters on the depth of non classicality have also been studied in this connection and it has been shown that the depth of nonclassicality can be tuned by controlling various physical parameters

  13. A Higher-Order Colon Translation

    DEFF Research Database (Denmark)

    Danvy, Olivier; Nielsen, Lasse Reichstein

    2001-01-01

    A lambda-encoding such as the CPS transformation gives rise to administrative redexes. In his seminal article ``Call-by-name, call-by-value and the lambda-calculus'', 25 years ago, Plotkin tackled administrative reductions using a so-called ``colon translation.'' 10 years ago, Danvy and Filinski...... integrated administrative reductions in the CPS transformation, making it operate in one pass. The technique applies to other lambda-encodings (e.g., variants of CPS), but we do not see it used in practice--instead, Plotkin's colon translation appears to be favored. Therefore, in an attempt to link both...... techniques, we recast Plotkin's proof of Indifference and Simulation to the higher-order specification of the one-pass CPS transformation. To this end, we extend his colon translation from first order to higher order...

  14. Doppler Radar Vital Signs Detection Method Based on Higher Order Cyclostationary.

    Science.gov (United States)

    Yu, Zhibin; Zhao, Duo; Zhang, Zhiqiang

    2017-12-26

    Due to the non-contact nature, using Doppler radar sensors to detect vital signs such as heart and respiration rates of a human subject is getting more and more attention. However, the related detection-method research meets lots of challenges due to electromagnetic interferences, clutter and random motion interferences. In this paper, a novel third-order cyclic cummulant (TOCC) detection method, which is insensitive to Gaussian interference and non-cyclic signals, is proposed to investigate the heart and respiration rate based on continuous wave Doppler radars. The k -th order cyclostationary properties of the radar signal with hidden periodicities and random motions are analyzed. The third-order cyclostationary detection theory of the heart and respiration rate is studied. Experimental results show that the third-order cyclostationary approach has better estimation accuracy for detecting the vital signs from the received radar signal under low SNR, strong clutter noise and random motion interferences.

  15. Approximation by some combinations of Poisson integrals for Hermite and Laguerre expansions

    Directory of Open Access Journals (Sweden)

    Grażyna Krech

    2013-02-01

    Full Text Available The aim of this paper is the study of a rate of convergence of some combinations of Poisson integrals for Hermite and Laguerre expansions. We are able to achieve faster convergence for our modified operators over the Poisson integrals. We prove also the Voronovskaya type theorem for these new operators.

  16. A Modified AH-FDTD Unconditionally Stable Method Based on High-Order Algorithm

    Directory of Open Access Journals (Sweden)

    Zheng Pan

    2017-01-01

    Full Text Available The unconditionally stable method, Associated-Hermite FDTD, has attracted more and more attentions in computational electromagnetic for its time-frequency compact property. Because of the fewer orders of AH basis needed in signal reconstruction, the computational efficiency can be improved further. In order to further improve the accuracy of the traditional AH-FDTD, a high-order algorithm is introduced. Using this method, the dispersion error induced by the space grid can be reduced, which makes it possible to set coarser grid. The simulation results show that, on the condition of coarse grid, the waveforms obtained from the proposed method are matched well with the analytic result, and the accuracy of the proposed method is higher than the traditional AH-FDTD. And the efficiency of the proposed method is higher than the traditional FDTD method in analysing 2D waveguide problems with fine-structure.

  17. Surface-sediment and hermit-crab contamination by butyltins in southeastern Atlantic estuaries after ban of TBT-based antifouling paints.

    Science.gov (United States)

    Sant'Anna, B S; Santos, D M; Marchi, M R R; Zara, F J; Turra, A

    2014-05-01

    Butyltin (BT) contamination was evaluated in hermit crabs from 25 estuaries and in sediments from 13 of these estuaries along about 2,000 km of the Brazilian coast. BT contamination in hermit crabs ranged from 2.22 to 1,746 ng Sn g(-1) of DBT and 1.32 to 318 ng Sn g(-1) of TBT. In sediment samples, the concentration also varied widely, from 25 to 1,304 ng Sn g(-1) of MBT, from 7 to 158 ng Sn g(-1) of DBT, and from 8 to 565 ng Sn g(-1) of TBT. BTs are still being found in surface sediments and biota of the estuaries after the international and Brazilian bans, showing heterogeneous distribution among and within estuaries. Although hermit crabs were previously tested as an indicator of recent BT contamination, the results indicate the presence of contamination, probably from resuspension of BTs from deeper water of the estuary.

  18. A Paraconsistent Higher Order Logic

    DEFF Research Database (Denmark)

    Villadsen, Jørgen

    2004-01-01

    of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order...... of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens. Many non-classical logics are, at the propositional level, funny toys which work quite good, but when one wants...

  19. Higher-order force gradient symplectic algorithms

    Science.gov (United States)

    Chin, Siu A.; Kidwell, Donald W.

    2000-12-01

    We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.

  20. Galaxy bias and primordial non-Gaussianity

    Energy Technology Data Exchange (ETDEWEB)

    Assassi, Valentin; Baumann, Daniel [DAMTP, Cambridge University, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Schmidt, Fabian, E-mail: assassi@ias.edu, E-mail: D.D.Baumann@uva.nl, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)

    2015-12-01

    We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.

  1. Galaxy bias and primordial non-Gaussianity

    International Nuclear Information System (INIS)

    Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian

    2015-01-01

    We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation

  2. Skinner-Rusk unified formalism for higher-order systems

    Science.gov (United States)

    Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2012-07-01

    The Lagrangian-Hamiltonian unified formalism of R. Skinner and R. Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, first-order and higher-order field theories, and higher-order autonomous systems. In this work we present a generalization of this formalism for higher-order non-autonomous mechanical systems.

  3. Analysis of first and second order binary quantized digital phase-locked loops for ideal and white Gaussian noise inputs

    Science.gov (United States)

    Blasche, P. R.

    1980-01-01

    Specific configurations of first and second order all digital phase locked loops are analyzed for both ideal and additive white gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation is presented along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop are consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application.

  4. Self-assembled structures of Gaussian nematic particles.

    Science.gov (United States)

    Nikoubashman, Arash; Likos, Christos N

    2010-03-17

    We investigate the stable crystalline configurations of a nematic liquid crystal made of soft parallel ellipsoidal particles interacting via a repulsive, anisotropic Gaussian potential. For this purpose, we use genetic algorithms (GA) in order to predict all relevant and possible solid phase candidates into which this fluid can freeze. Subsequently we present and discuss the emerging novel structures and the resulting zero-temperature phase diagram of this system. The latter features a variety of crystalline arrangements, in which the elongated Gaussian particles in general do not align with any one of the high-symmetry crystallographic directions, a compromise arising from the interplay and competition between anisotropic repulsions and crystal ordering. Only at very strong degrees of elongation does a tendency of the Gaussian nematics to align with the longest axis of the elementary unit cell emerge.

  5. A comparison on the propagation characteristics of focused Gaussian beam and fundamental Gaussian beam in vacuum

    International Nuclear Information System (INIS)

    Liu Shixiong; Guo Hong; Liu Mingwei; Wu Guohua

    2004-01-01

    Propagation characteristics of focused Gaussian beam (FoGB) and fundamental Gaussian beam (FuGB) propagating in vacuum are investigated. Based on the Fourier transform and the angular spectral analysis, the transverse component and the second-order approximate longitudinal component of the electric field are obtained in the paraxial approximation. The electric field components, the phase velocity and the group velocity of FoGB are compared with those of FuGB. The spot size of FoGB is also discussed

  6. Super-resolving random-Gaussian apodized photon sieve.

    Science.gov (United States)

    Sabatyan, Arash; Roshaninejad, Parisa

    2012-09-10

    A novel apodized photon sieve is presented in which random dense Gaussian distribution is implemented to modulate the pinhole density in each zone. The random distribution in dense Gaussian distribution causes intrazone discontinuities. Also, the dense Gaussian distribution generates a substantial number of pinholes in order to form a large degree of overlap between the holes in a few innermost zones of the photon sieve; thereby, clear zones are formed. The role of the discontinuities on the focusing properties of the photon sieve is examined as well. Analysis shows that secondary maxima have evidently been suppressed, transmission has increased enormously, and the central maxima width is approximately unchanged in comparison to the dense Gaussian distribution. Theoretical results have been completely verified by experiment.

  7. Non-Gaussianity from inflation: theory and observations

    Science.gov (United States)

    Bartolo, N.; Komatsu, E.; Matarrese, S.; Riotto, A.

    2004-11-01

    This is a review of models of inflation and of their predictions for the primordial non-Gaussianity in the density perturbations which are thought to be at the origin of structures in the Universe. Non-Gaussianity emerges as a key observable to discriminate among competing scenarios for the generation of cosmological perturbations and is one of the primary targets of present and future Cosmic Microwave Background satellite missions. We give a detailed presentation of the state-of-the-art of the subject of non-Gaussianity, both from the theoretical and the observational point of view, and provide all the tools necessary to compute at second order in perturbation theory the level of non-Gaussianity in any model of cosmological perturbations. We discuss the new wave of models of inflation, which are firmly rooted in modern particle physics theory and predict a significant amount of non-Gaussianity. The review is addressed to both astrophysicists and particle physicists and contains useful tables which summarize the theoretical and observational results regarding non-Gaussianity.

  8. Gaussian process regression for geometry optimization

    Science.gov (United States)

    Denzel, Alexander; Kästner, Johannes

    2018-03-01

    We implemented a geometry optimizer based on Gaussian process regression (GPR) to find minimum structures on potential energy surfaces. We tested both a two times differentiable form of the Matérn kernel and the squared exponential kernel. The Matérn kernel performs much better. We give a detailed description of the optimization procedures. These include overshooting the step resulting from GPR in order to obtain a higher degree of interpolation vs. extrapolation. In a benchmark against the Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer of the DL-FIND library on 26 test systems, we found the new optimizer to generally reduce the number of required optimization steps.

  9. Higher-order curvature terms and extended inflation

    International Nuclear Information System (INIS)

    Wang Yun

    1990-01-01

    We consider higher-order curvature terms in context of the Brans-Dicke theory of gravity, and investigate the effects of these terms on extended inflationary theories. We find that the higher-order curvature terms tend to speed up inflation, although the original extended-inflation solutions are stable when these terms are small. Analytical solutions are found for two extreme cases: when the higher-order curvature terms are small, and when they dominate. A conformal transformation is employed in solving the latter case, and some of the subtleties in this technique are discussed. We note that percolation is less likely to occur when the higher-order curvature terms are present. An upper bound on α is expected if we are to avoid excessive and inadequate percolation of true-vacuum bubbles

  10. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  11. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.

    2010-06-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.

  12. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2014-07-17

    Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.

  13. Searching for non-Gaussianity in the WMAP data

    International Nuclear Information System (INIS)

    Bernui, A.; Reboucas, M. J.

    2009-01-01

    Some analyses of recent cosmic microwave background (CMB) data have provided hints that there are deviations from Gaussianity in the WMAP CMB temperature fluctuations. Given the far-reaching consequences of such a non-Gaussianity for our understanding of the physics of the early universe, it is important to employ alternative indicators in order to determine whether the reported non-Gaussianity is of cosmological origin, and/or extract further information that may be helpful for identifying its causes. We propose two new non-Gaussianity indicators, based on skewness and kurtosis of large-angle patches of CMB maps, which provide a measure of departure from Gaussianity on large angular scales. A distinctive feature of these indicators is that they provide sky maps of non-Gaussianity of the CMB temperature data, thus allowing a possible additional window into their origins. Using these indicators, we find no significant deviation from Gaussianity in the three and five-year WMAP Internal Linear Combination (ILC) map with KQ75 mask, while the ILC unmasked map exhibits deviation from Gaussianity, quantifying therefore the WMAP team recommendation to employ the new mask KQ75 for tests of Gaussianity. We also use our indicators to test for Gaussianity the single frequency foreground unremoved WMAP three and five-year maps, and show that the K and Ka maps exhibit a clear indication of deviation from Gaussianity even with the KQ75 mask. We show that our findings are robust with respect to the details of the method.

  14. Conceptualizing and Assessing Higher-Order Thinking in Reading

    Science.gov (United States)

    Afflerbach, Peter; Cho, Byeong-Young; Kim, Jong-Yun

    2015-01-01

    Students engage in higher-order thinking as they read complex texts and perform complex reading-related tasks. However, the most consequential assessments, high-stakes tests, are currently limited in providing information about students' higher-order thinking. In this article, we describe higher-order thinking in relation to reading. We provide a…

  15. Application of Mass Lumped Higher Order Finite Elements

    International Nuclear Information System (INIS)

    J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau

    2005-01-01

    There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied

  16. Stable Lévy motion with inverse Gaussian subordinator

    Science.gov (United States)

    Kumar, A.; Wyłomańska, A.; Gajda, J.

    2017-09-01

    In this paper we study the stable Lévy motion subordinated by the so-called inverse Gaussian process. This process extends the well known normal inverse Gaussian (NIG) process introduced by Barndorff-Nielsen, which arises by subordinating ordinary Brownian motion (with drift) with inverse Gaussian process. The NIG process found many interesting applications, especially in financial data description. We discuss here the main features of the introduced subordinated process, such as distributional properties, existence of fractional order moments and asymptotic tail behavior. We show the connection of the process with continuous time random walk. Further, the governing fractional partial differential equations for the probability density function is also obtained. Moreover, we discuss the asymptotic distribution of sample mean square displacement, the main tool in detection of anomalous diffusion phenomena (Metzler et al., 2014). In order to apply the stable Lévy motion time-changed by inverse Gaussian subordinator we propose a step-by-step procedure of parameters estimation. At the end, we show how the examined process can be useful to model financial time series.

  17. Higher-order techniques in computational electromagnetics

    CERN Document Server

    Graglia, Roberto D

    2016-01-01

    Higher-Order Techniques in Computational Electromagnetics explains 'high-order' techniques that can significantly improve the accuracy, computational cost, and reliability of computational techniques for high-frequency electromagnetics, such as antennas, microwave devices and radar scattering applications.

  18. Operational matrices with respect to Hermite polynomials and their applications in solving linear dierential equations with variable coecients

    Directory of Open Access Journals (Sweden)

    A. Aminataei

    2014-05-01

    Full Text Available In this paper, a new and ecient approach is applied for numerical approximation of the linear dierential equations with variable coecients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansioncoecients for the moments of derivatives of any dierentiable function in terms of the original expansion coecients of the function itself are given in the matrix form. The mainimportance of this scheme is that using this approach reduces solving the linear dierentialequations to solve a system of linear algebraic equations, thus greatly simplifying the problem. In addition, two experiments are given to demonstrate the validity and applicability of the method

  19. Shell occupation by the hermit crab Dardanus insignis (Decapoda, Diogenidae from the north Coast of São Paulo state, Brazil

    Directory of Open Access Journals (Sweden)

    I. F. Frameschi

    Full Text Available Abstract The pattern of shell occupation by the hermit crab Dardanus insignis (Saussure, 1858 from the subtropical region of southeastern coast of Brazil was investigated in the present study. The percentage of shell types that were occupied and the morphometric relationships between hermit crabs and occupied shells were analyzed from monthly collections conducted during two years (from January 1998 to December 1999. Individuals were categorized according to sex and gonadal maturation, weighed and measured with respect to their cephalothoracic shield length (CSL and wet weight (CWW. Shells were measured regarding their aperture width (SAW, dry weight (SDW and internal volume (SIV. A total of 1086 hermit crabs was collected, occupying shells of 11 gastropod species. Olivancillaria urceus (Roding, 1798 was most commonly used by the hermit crab D. insignis, followed by Buccinanops cochlidium (Dillwyn, 1817, and Stramonita haemastoma (Linnaeus, 1767. The highest determination coefficients (r2 > 0.50, p < 0.01 were recorded particularly in the morphometric relationships between CSL vs. CWW and SAW vs. SIV, which are important indication that in this D. insignis population the great majority the animals occupied adequate shells during the two years analysed. The high number of used shell species and relative plasticity in pattern of shell utilization by smaller individuals of D. insignis indicated that occupation is influenced by the shell availability, while larger individuals demonstrated more specialized occupation in Tonna galea (Linnaeus, 1758 shell.

  20. Application of higher order spectral features and support vector machines for bearing faults classification.

    Science.gov (United States)

    Saidi, Lotfi; Ben Ali, Jaouher; Fnaiech, Farhat

    2015-01-01

    Condition monitoring and fault diagnosis of rolling element bearings timely and accurately are very important to ensure the reliability of rotating machinery. This paper presents a novel pattern classification approach for bearings diagnostics, which combines the higher order spectra analysis features and support vector machine classifier. The use of non-linear features motivated by the higher order spectra has been reported to be a promising approach to analyze the non-linear and non-Gaussian characteristics of the mechanical vibration signals. The vibration bi-spectrum (third order spectrum) patterns are extracted as the feature vectors presenting different bearing faults. The extracted bi-spectrum features are subjected to principal component analysis for dimensionality reduction. These principal components were fed to support vector machine to distinguish four kinds of bearing faults covering different levels of severity for each fault type, which were measured in the experimental test bench running under different working conditions. In order to find the optimal parameters for the multi-class support vector machine model, a grid-search method in combination with 10-fold cross-validation has been used. Based on the correct classification of bearing patterns in the test set, in each fold the performance measures are computed. The average of these performance measures is computed to report the overall performance of the support vector machine classifier. In addition, in fault detection problems, the performance of a detection algorithm usually depends on the trade-off between robustness and sensitivity. The sensitivity and robustness of the proposed method are explored by running a series of experiments. A receiver operating characteristic (ROC) curve made the results more convincing. The results indicated that the proposed method can reliably identify different fault patterns of rolling element bearings based on vibration signals. Copyright © 2014 ISA

  1. Cosmological information in Gaussianized weak lensing signals

    Science.gov (United States)

    Joachimi, B.; Taylor, A. N.; Kiessling, A.

    2011-11-01

    Gaussianizing the one-point distribution of the weak gravitational lensing convergence has recently been shown to increase the signal-to-noise ratio contained in two-point statistics. We investigate the information on cosmology that can be extracted from the transformed convergence fields. Employing Box-Cox transformations to determine optimal transformations to Gaussianity, we develop analytical models for the transformed power spectrum, including effects of noise and smoothing. We find that optimized Box-Cox transformations perform substantially better than an offset logarithmic transformation in Gaussianizing the convergence, but both yield very similar results for the signal-to-noise ratio. None of the transformations is capable of eliminating correlations of the power spectra between different angular frequencies, which we demonstrate to have a significant impact on the errors in cosmology. Analytic models of the Gaussianized power spectrum yield good fits to the simulations and produce unbiased parameter estimates in the majority of cases, where the exceptions can be traced back to the limitations in modelling the higher order correlations of the original convergence. In the ideal case, without galaxy shape noise, we find an increase in the cumulative signal-to-noise ratio by a factor of 2.6 for angular frequencies up to ℓ= 1500, and a decrease in the area of the confidence region in the Ωm-σ8 plane, measured in terms of q-values, by a factor of 4.4 for the best performing transformation. When adding a realistic level of shape noise, all transformations perform poorly with little decorrelation of angular frequencies, a maximum increase in signal-to-noise ratio of 34 per cent, and even slightly degraded errors on cosmological parameters. We argue that to find Gaussianizing transformations of practical use, it will be necessary to go beyond transformations of the one-point distribution of the convergence, extend the analysis deeper into the non

  2. Higher order Lie-Baecklund symmetries of evolution equations

    International Nuclear Information System (INIS)

    Roy Chowdhury, A.; Roy Chowdhury, K.; Paul, S.

    1983-10-01

    We have considered in detail the analysis of higher order Lie-Baecklund symmetries for some representative nonlinear evolution equations. Until now all such symmetry analyses have been restricted only to the first order of the infinitesimal parameter. But the existence of Baecklund transformation (which can be shown to be an overall sum of higher order Lie-Baecklund symmetries) makes it necessary to search for such higher order Lie-Baecklund symmetries directly without taking recourse to the Baecklund transformation or inverse scattering technique. (author)

  3. Core temperature in super-Gaussian pumped air-clad photonic ...

    Indian Academy of Sciences (India)

    In this paper we investigate the core temperature of air-clad photonic crystal fiber (PCF) lasers pumped by a super-Gaussian (SG) source of order four. The results are compared with conventional double-clad fiber (DCF) lasers pumped by the same super-Gaussian and by top-hat pump profiles.

  4. Parallel iterative solution of the Hermite Collocation equations on GPUs II

    International Nuclear Information System (INIS)

    Vilanakis, N; Mathioudakis, E

    2014-01-01

    Hermite Collocation is a high order finite element method for Boundary Value Problems modelling applications in several fields of science and engineering. Application of this integration free numerical solver for the solution of linear BVPs results in a large and sparse general system of algebraic equations, suggesting the usage of an efficient iterative solver especially for realistic simulations. In part I of this work an efficient parallel algorithm of the Schur complement method coupled with Bi-Conjugate Gradient Stabilized (BiCGSTAB) iterative solver has been designed for multicore computing architectures with a Graphics Processing Unit (GPU). In the present work the proposed algorithm has been extended for high performance computing environments consisting of multiprocessor machines with multiple GPUs. Since this is a distributed GPU and shared CPU memory parallel architecture, a hybrid memory treatment is needed for the development of the parallel algorithm. The realization of the algorithm took place on a multiprocessor machine HP SL390 with Tesla M2070 GPUs using the OpenMP and OpenACC standards. Execution time measurements reveal the efficiency of the parallel implementation

  5. Analogy, higher order thinking, and education.

    Science.gov (United States)

    Richland, Lindsey Engle; Simms, Nina

    2015-01-01

    Analogical reasoning, the ability to understand phenomena as systems of structured relationships that can be aligned, compared, and mapped together, plays a fundamental role in the technology rich, increasingly globalized educational climate of the 21st century. Flexible, conceptual thinking is prioritized in this view of education, and schools are emphasizing 'higher order thinking', rather than memorization of a cannon of key topics. The lack of a cognitively grounded definition for higher order thinking, however, has led to a field of research and practice with little coherence across domains or connection to the large body of cognitive science research on thinking. We review literature on analogy and disciplinary higher order thinking to propose that relational reasoning can be productively considered the cognitive underpinning of higher order thinking. We highlight the utility of this framework for developing insights into practice through a review of mathematics, science, and history educational contexts. In these disciplines, analogy is essential to developing expert-like disciplinary knowledge in which concepts are understood to be systems of relationships that can be connected and flexibly manipulated. At the same time, analogies in education require explicit support to ensure that learners notice the relevance of relational thinking, have adequate processing resources available to mentally hold and manipulate relations, and are able to recognize both the similarities and differences when drawing analogies between systems of relationships. © 2015 John Wiley & Sons, Ltd.

  6. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction

    International Nuclear Information System (INIS)

    Yu, Jie; Chen, Kuilin; Mori, Junichi; Rashid, Mudassir M.

    2013-01-01

    Optimizing wind power generation and controlling the operation of wind turbines to efficiently harness the renewable wind energy is a challenging task due to the intermittency and unpredictable nature of wind speed, which has significant influence on wind power production. A new approach for long-term wind speed forecasting is developed in this study by integrating GMCM (Gaussian mixture copula model) and localized GPR (Gaussian process regression). The time series of wind speed is first classified into multiple non-Gaussian components through the Gaussian mixture copula model and then Bayesian inference strategy is employed to incorporate the various non-Gaussian components using the posterior probabilities. Further, the localized Gaussian process regression models corresponding to different non-Gaussian components are built to characterize the stochastic uncertainty and non-stationary seasonality of the wind speed data. The various localized GPR models are integrated through the posterior probabilities as the weightings so that a global predictive model is developed for the prediction of wind speed. The proposed GMCM–GPR approach is demonstrated using wind speed data from various wind farm locations and compared against the GMCM-based ARIMA (auto-regressive integrated moving average) and SVR (support vector regression) methods. In contrast to GMCM–ARIMA and GMCM–SVR methods, the proposed GMCM–GPR model is able to well characterize the multi-seasonality and uncertainty of wind speed series for accurate long-term prediction. - Highlights: • A novel predictive modeling method is proposed for long-term wind speed forecasting. • Gaussian mixture copula model is estimated to characterize the multi-seasonality. • Localized Gaussian process regression models can deal with the random uncertainty. • Multiple GPR models are integrated through Bayesian inference strategy. • The proposed approach shows higher prediction accuracy and reliability

  7. Gaussian vs non-Gaussian turbulence: impact on wind turbine loads

    DEFF Research Database (Denmark)

    Berg, Jacob; Natarajan, Anand; Mann, Jakob

    2016-01-01

    taking into account the safety factor for extreme moments. Other extreme load moments as well as the fatigue loads are not affected because of the use of non-Gaussian turbulent inflow. It is suggested that the turbine thus acts like a low-pass filter that averages out the non-Gaussian behaviour, which......From large-eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non-Gaussian counterpart. Time series from the two...

  8. Generation of Laguerre-Gaussian Beams Using a Diode Pumped Solid-State Digital Laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2015-10-01

    Full Text Available The solid state digital laser was used in generation of Laguerre-Gaussian modes, LGpl, of different orders. This work demonstrates that we can generate high-order Laguerre-Gaussian modes with high purity using a digital laser....

  9. Productive interactions: heavy particles and non-Gaussianity

    International Nuclear Information System (INIS)

    Flauger, Raphael; Mirbabayi, Mehrdad; Senatore, Leonardo; Silverstein, Eva

    2017-01-01

    We analyze the shape and amplitude of oscillatory features in the primordial power spectrum and non-Gaussianity induced by periodic production of heavy degrees of freedom coupled to the inflaton φ. We find that non-adiabatic production of particles can contribute effects which are detectable or constrainable using cosmological data even if their time-dependent masses are always heavier than the scale φ̇ 1/2 , much larger than the Hubble scale. This provides a new role for UV completion, consistent with the criteria from effective field theory for when heavy fields cannot be integrated out. This analysis is motivated in part by the structure of axion monodromy, and leads to an additional oscillatory signature in a subset of its parameter space. At the level of a quantum field theory model that we analyze in detail, the effect arises consistently with radiative stability for an interesting window of couplings up to of order ∼< 1. The amplitude of the bispectrum and higher-point functions can be larger than that for Resonant Non-Gaussianity, and its signal/noise may be comparable to that of the corresponding oscillations in the power spectrum (and even somewhat larger within a controlled regime of parameters). Its shape is distinct from previously analyzed templates, but was partly motivated by the oscillatory equilateral searches performed recently by the Planck collaboration. We also make some general comments about the challenges involved in making a systematic study of primordial non-Gaussianity.

  10. Productive interactions: heavy particles and non-Gaussianity

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael [Department of Physics, The University of Texas at Austin, Austin, TX, 78712 (United States); Mirbabayi, Mehrdad [Institute for Advanced Study, Princeton, NJ 08540 (United States); Senatore, Leonardo; Silverstein, Eva, E-mail: flauger@physics.ucsd.edu, E-mail: mehrdadm@ias.edu, E-mail: senatore@stanford.edu, E-mail: evas@slac.stanford.edu [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States)

    2017-10-01

    We analyze the shape and amplitude of oscillatory features in the primordial power spectrum and non-Gaussianity induced by periodic production of heavy degrees of freedom coupled to the inflaton φ. We find that non-adiabatic production of particles can contribute effects which are detectable or constrainable using cosmological data even if their time-dependent masses are always heavier than the scale φ̇{sup 1/2}, much larger than the Hubble scale. This provides a new role for UV completion, consistent with the criteria from effective field theory for when heavy fields cannot be integrated out. This analysis is motivated in part by the structure of axion monodromy, and leads to an additional oscillatory signature in a subset of its parameter space. At the level of a quantum field theory model that we analyze in detail, the effect arises consistently with radiative stability for an interesting window of couplings up to of order ∼< 1. The amplitude of the bispectrum and higher-point functions can be larger than that for Resonant Non-Gaussianity, and its signal/noise may be comparable to that of the corresponding oscillations in the power spectrum (and even somewhat larger within a controlled regime of parameters). Its shape is distinct from previously analyzed templates, but was partly motivated by the oscillatory equilateral searches performed recently by the Planck collaboration. We also make some general comments about the challenges involved in making a systematic study of primordial non-Gaussianity.

  11. Electromagnetic cloaking in higher order spherical cloaks

    Science.gov (United States)

    Sidhwa, H. H.; Aiyar, R. P. R. C.; Kulkarni, S. V.

    2017-06-01

    The inception of transformation optics has led to the realisation of the invisibility devices for various applications, one of which is spherical cloaking. In this paper, a formulation for a higher-order spherical cloak has been proposed to reduce its physical thickness significantly by introducing a nonlinear relation between the original and transformed coordinate systems and it has been verified using the ray tracing approach. Analysis has been carried out to observe the anomalies in the variation of refractive index for higher order cloaks indicating the presence of poles in the relevant equations. Furthermore, a higher-order spherical cloak with predefined values of the material characteristics on its inner and outer surfaces has been designed for practical application.

  12. Approximate Analytical Solution for the 2nd Order Moments of a SDOF Hysteretic Oscillator with Low Yield Levels Excited by Stationary Gaussian White Noise

    DEFF Research Database (Denmark)

    Micaletti, R. C.; Cakmak, A. S.; Nielsen, Søren R. K.

    Differential equations are derived which exactly govern the evolution of the second-order response moments of a single-degree-of-freedom (SDOF) bilinear hysteretic oscillator subject to stationary Gaussian white noise excitation. Then, considering cases for which response stationarity...

  13. Higher-order Jordan Osserman pseudo-Riemannian manifolds

    International Nuclear Information System (INIS)

    Gilkey, Peter B; Ivanova, Raina; Zhang Tan

    2002-01-01

    We study the higher-order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r, s) for certain values of (r, s). These pseudo-Riemannian manifolds are new and non-trivial examples of higher-order Osserman manifolds

  14. Higher-order Jordan Osserman pseudo-Riemannian manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Gilkey, Peter B [Mathematics Department, University of Oregon, Eugene, OR 97403 (United States); Ivanova, Raina [Mathematics Department, University of Hawaii - Hilo, 200 W Kawili St, Hilo, HI 96720 (United States); Zhang Tan [Department of Mathematics and Statistics, Murray State University, Murray, KY 42071 (United States)

    2002-09-07

    We study the higher-order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r, s) for certain values of (r, s). These pseudo-Riemannian manifolds are new and non-trivial examples of higher-order Osserman manifolds.

  15. A fast Gaussian filtering algorithm for three-dimensional surface roughness measurements

    International Nuclear Information System (INIS)

    Yuan, Y B; Piao, W Y; Xu, J B

    2007-01-01

    The two-dimensional (2-D) Gaussian filter can be separated into two one-dimensional (1-D) Gaussian filters. The 1-D Gaussian filter can be implemented approximately by the cascaded Butterworth filters. The approximation accuracy will be improved with the increase of the number of the cascaded filters. A recursive algorithm for Gaussian filtering requires a relatively small number of simple mathematical operations such as addition, subtraction, multiplication, or division, so that it has considerable computational efficiency and it is very useful for three-dimensional (3-D) surface roughness measurements. The zero-phase-filtering technique is used in this algorithm, so there is no phase distortion in the Gaussian filtered mean surface. High-order approximation Gaussian filters are proposed for practical use to assure high accuracy of Gaussian filtering of 3-D surface roughness measurements

  16. A fast Gaussian filtering algorithm for three-dimensional surface roughness measurements

    Science.gov (United States)

    Yuan, Y. B.; Piao, W. Y.; Xu, J. B.

    2007-07-01

    The two-dimensional (2-D) Gaussian filter can be separated into two one-dimensional (1-D) Gaussian filters. The 1-D Gaussian filter can be implemented approximately by the cascaded Butterworth filters. The approximation accuracy will be improved with the increase of the number of the cascaded filters. A recursive algorithm for Gaussian filtering requires a relatively small number of simple mathematical operations such as addition, subtraction, multiplication, or division, so that it has considerable computational efficiency and it is very useful for three-dimensional (3-D) surface roughness measurements. The zero-phase-filtering technique is used in this algorithm, so there is no phase distortion in the Gaussian filtered mean surface. High-order approximation Gaussian filters are proposed for practical use to assure high accuracy of Gaussian filtering of 3-D surface roughness measurements.

  17. Photonic generation of FCC-compliant UWB pulses based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion

    Science.gov (United States)

    Mu, Hongqian; Wang, Muguang; Tang, Yu; Zhang, Jing; Jian, Shuisheng

    2018-03-01

    A novel scheme for the generation of FCC-compliant UWB pulse is proposed based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion. The modified Gaussian quadruplet is synthesized based on linear sum of a broad Gaussian pulse and two narrow Gaussian pulses with the same pulse-width and amplitude peak. Within specific parameter range, FCC-compliant UWB with spectral power efficiency of higher than 39.9% can be achieved. In order to realize the designed waveform, a UWB generator based on spectral shaping and incoherent wavelength-to-time mapping is proposed. The spectral shaper is composed of a Gaussian filter and a programmable filter. Single-mode fiber functions as both dispersion device and transmission medium. Balanced photodetection is employed to combine linearly the broad Gaussian pulse and two narrow Gaussian pulses, and at same time to suppress pulse pedestals that result in low-frequency components. The proposed UWB generator can be reconfigured for UWB doublet by operating the programmable filter as a single-band Gaussian filter. The feasibility of proposed UWB generator is demonstrated experimentally. Measured UWB pulses match well with simulation results. FCC-compliant quadruplet with 10-dB bandwidth of 6.88-GHz, fractional bandwidth of 106.8% and power efficiency of 51% is achieved.

  18. Scale-dependent bias from the reconstruction of non-Gaussian distributions

    International Nuclear Information System (INIS)

    Chongchitnan, Sirichai; Silk, Joseph

    2011-01-01

    Primordial non-Gaussianity introduces a scale-dependent variation in the clustering of density peaks corresponding to rare objects. This variation, parametrized by the bias, is investigated on scales where a linear perturbation theory is sufficiently accurate. The bias is obtained directly in real space by comparing the one- and two-point probability distributions of density fluctuations. We show that these distributions can be reconstructed using a bivariate Edgeworth series, presented here up to an arbitrarily high order. The Edgeworth formalism is shown to be well-suited for ''local'' cubic-order non-Gaussianity parametrized by g NL . We show that a strong scale dependence in the bias can be produced by g NL of order 10 5 , consistent with cosmic microwave background constraints. On a separation length of ∼100 Mpc, current constraints on g NL still allow the bias for the most massive clusters to be enhanced by 20-30% of the Gaussian value. We further examine the bias as a function of mass scale, and also explore the relationship between the clustering and the abundance of massive clusters in the presence of g NL . We explain why the Edgeworth formalism, though technically challenging, is a very powerful technique for constraining high-order non-Gaussianity with large-scale structures.

  19. Current inversion induced by colored non-Gaussian noise

    International Nuclear Information System (INIS)

    Bag, Bidhan Chandra; Hu, Chin-Kung

    2009-01-01

    We study a stochastic process driven by colored non-Gaussian noises. For the flashing ratchet model we find that there is a current inversion in the variation of the current with the half-cycle period which accounts for the potential on–off operation. The current inversion almost disappears if one switches from non-Gaussian (NG) to Gaussian (G) noise. We also find that at low value of the asymmetry parameter of the potential the mobility controlled current is more negative for NG noise as compared to G noise. But at large magnitude of the parameter the diffusion controlled positive current is higher for the former than for the latter. On increasing the noise correlation time (τ), keeping the noise strength fixed, the mean velocity of a particle first increases and then decreases after passing through a maximum if the noise is non-Gaussian. For Gaussian noise, the current monotonically decreases. The current increases with the noise parameter p, 0< p<5/3, which is 1 for Gaussian noise

  20. Holographic non-Gaussianities in general single-field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Isono, Hiroshi [Department of Physics, Faculty of Science,Chulalongkorn University, Bangkok 10330 (Thailand); Noumi, Toshifumi [Department of Physics and Jockey Club Institute for Advanced Study,Hong Kong University of Science and Technology (Hong Kong); Department of Physics,Kobe University, Kobe 657-8501 (Japan); Shiu, Gary [Department of Physics and Jockey Club Institute for Advanced Study,Hong Kong University of Science and Technology (Hong Kong); Department of Physics, University of Wisconsin-Madison,Madison, WI 53706 (United States); Wong, Sam S.C.; Zhou, Siyi [Department of Physics and Jockey Club Institute for Advanced Study,Hong Kong University of Science and Technology (Hong Kong)

    2016-12-07

    We use holographic techniques to compute inflationary non-Gaussianities for general single-field inflation, including models with a non-trivial sound speed. In this holographic approach, the inflationary dynamics is captured by a relevant deformation of the dual conformal field theory (CFT) in the UV, while the inflationary correlators are computed by conformal perturbation theory. In this paper, we discuss the effects of higher derivative operators, such as (∂{sub μ}ϕ∂{sup μ}ϕ){sup m}, which are known to induce a non-trivial sound speed and source potentially large non-Gaussianities. We compute the full inflationary bispectra from the deformed CFT correlators. We also discuss the squeezed limit of the bispectra from the viewpoint of operator product expansions. As is generic in the holographic description of inflation, our power spectrum is blue tilted in the UV region. We extend our bispectrum computation to the IR region by resumming the conformal perturbations to all orders. We provide a self-consistent setup which reproduces a red tilted power spectrum, as well as all possible bispectrum shapes in the slow-roll regime.

  1. Difference equations in massive higher order calculations

    International Nuclear Information System (INIS)

    Bierenbaum, I.; Bluemlein, J.; Klein, S.; Schneider, C.

    2007-07-01

    The calculation of massive 2-loop operator matrix elements, required for the higher order Wilson coefficients for heavy flavor production in deeply inelastic scattering, leads to new types of multiple infinite sums over harmonic sums and related functions, which depend on the Mellin parameter N. We report on the solution of these sums through higher order difference equations using the summation package Sigma. (orig.)

  2. Discrete linear canonical transforms based on dilated Hermite functions.

    Science.gov (United States)

    Pei, Soo-Chang; Lai, Yun-Chiu

    2011-08-01

    Linear canonical transform (LCT) is very useful and powerful in signal processing and optics. In this paper, discrete LCT (DLCT) is proposed to approximate LCT by utilizing the discrete dilated Hermite functions. The Wigner distribution function is also used to investigate DLCT performances in the time-frequency domain. Compared with the existing digital computation of LCT, our proposed DLCT possess additivity and reversibility properties with no oversampling involved. In addition, the length of input/output signals will not be changed before and after the DLCT transformations, which is consistent with the time-frequency area-preserving nature of LCT; meanwhile, the proposed DLCT has very good approximation of continuous LCT.

  3. Higher-order harmonics of general limited diffraction Bessel beams

    International Nuclear Information System (INIS)

    Ding De-Sheng; Huang Jin-Huang

    2016-01-01

    In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m -th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. (special topic)

  4. Bootstrapping realized volatility and realized beta under a local Gaussianity assumption

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    The main contribution of this paper is to propose a new bootstrap method for statistics based on high frequency returns. The new method exploits the local Gaussianity and the local constancy of volatility of high frequency returns, two assumptions that can simplify inference in the high frequency...... context, as recently explained by Mykland and Zhang (2009). Our main contributions are as follows. First, we show that the local Gaussian bootstrap is firstorder consistent when used to estimate the distributions of realized volatility and ealized betas. Second, we show that the local Gaussian bootstrap...... matches accurately the first four cumulants of realized volatility, implying that this method provides third-order refinements. This is in contrast with the wild bootstrap of Gonçalves and Meddahi (2009), which is only second-order correct. Third, we show that the local Gaussian bootstrap is able...

  5. Gaussian entanglement revisited

    Science.gov (United States)

    Lami, Ludovico; Serafini, Alessio; Adesso, Gerardo

    2018-02-01

    We present a novel approach to the separability problem for Gaussian quantum states of bosonic continuous variable systems. We derive a simplified necessary and sufficient separability criterion for arbitrary Gaussian states of m versus n modes, which relies on convex optimisation over marginal covariance matrices on one subsystem only. We further revisit the currently known results stating the equivalence between separability and positive partial transposition (PPT) for specific classes of Gaussian states. Using techniques based on matrix analysis, such as Schur complements and matrix means, we then provide a unified treatment and compact proofs of all these results. In particular, we recover the PPT-separability equivalence for: (i) Gaussian states of 1 versus n modes; and (ii) isotropic Gaussian states. In passing, we also retrieve (iii) the recently established equivalence between separability of a Gaussian state and and its complete Gaussian extendability. Our techniques are then applied to progress beyond the state of the art. We prove that: (iv) Gaussian states that are invariant under partial transposition are necessarily separable; (v) the PPT criterion is necessary and sufficient for separability for Gaussian states of m versus n modes that are symmetric under the exchange of any two modes belonging to one of the parties; and (vi) Gaussian states which remain PPT under passive optical operations can not be entangled by them either. This is not a foregone conclusion per se (since Gaussian bound entangled states do exist) and settles a question that had been left unanswered in the existing literature on the subject. This paper, enjoyable by both the quantum optics and the matrix analysis communities, overall delivers technical and conceptual advances which are likely to be useful for further applications in continuous variable quantum information theory, beyond the separability problem.

  6. Topological recursion for Gaussian means and cohomological field theories

    Science.gov (United States)

    Andersen, J. E.; Chekhov, L. O.; Norbury, P.; Penner, R. C.

    2015-12-01

    We introduce explicit relations between genus-filtrated s-loop means of the Gaussian matrix model and terms of the genus expansion of the Kontsevich-Penner matrix model (KPMM), which is the generating function for volumes of discretized (open) moduli spaces M g,s disc (discrete volumes). Using these relations, we express Gaussian means in all orders of the genus expansion as polynomials in special times weighted by ancestor invariants of an underlying cohomological field theory. We translate the topological recursion of the Gaussian model into recurrence relations for the coefficients of this expansion, which allows proving that they are integers and positive. We find the coefficients in the first subleading order for M g,1 for all g in three ways: using the refined Harer-Zagier recursion, using the Givental-type decomposition of the KPMM, and counting diagrams explicitly.

  7. Estimation of Seismic Wavelets Based on the Multivariate Scale Mixture of Gaussians Model

    Directory of Open Access Journals (Sweden)

    Jing-Huai Gao

    2009-12-01

    Full Text Available This paper proposes a new method for estimating seismic wavelets. Suppose a seismic wavelet can be modeled by a formula with three free parameters (scale, frequency and phase. We can transform the estimation of the wavelet into determining these three parameters. The phase of the wavelet is estimated by constant-phase rotation to the seismic signal, while the other two parameters are obtained by the Higher-order Statistics (HOS (fourth-order cumulant matching method. In order to derive the estimator of the Higher-order Statistics (HOS, the multivariate scale mixture of Gaussians (MSMG model is applied to formulating the multivariate joint probability density function (PDF of the seismic signal. By this way, we can represent HOS as a polynomial function of second-order statistics to improve the anti-noise performance and accuracy. In addition, the proposed method can work well for short time series.

  8. Quantifying the non-Gaussianity in the EoR 21-cm signal through bispectrum

    Science.gov (United States)

    Majumdar, Suman; Pritchard, Jonathan R.; Mondal, Rajesh; Watkinson, Catherine A.; Bharadwaj, Somnath; Mellema, Garrelt

    2018-05-01

    The epoch of reionization (EoR) 21-cm signal is expected to be highly non-Gaussian in nature and this non-Gaussianity is also expected to evolve with the progressing state of reionization. Therefore the signal will be correlated between different Fourier modes (k). The power spectrum will not be able capture this correlation in the signal. We use a higher order estimator - the bispectrum - to quantify this evolving non-Gaussianity. We study the bispectrum using an ensemble of simulated 21-cm signal and with a large variety of k triangles. We observe two competing sources driving the non-Gaussianity in the signal: fluctuations in the neutral fraction (x_{H I}) field and fluctuations in the matter density field. We find that the non-Gaussian contribution from these two sources varies, depending on the stage of reionization and on which k modes are being studied. We show that the sign of the bispectrum works as a unique marker to identify which among these two components is driving the non-Gaussianity. We propose that the sign change in the bispectrum, when plotted as a function of triangle configuration cos θ and at a certain stage of the EoR can be used as a confirmative test for the detection of the 21-cm signal. We also propose a new consolidated way to visualize the signal evolution (with evolving \\bar{x}_{H I} or redshift), through the trajectories of the signal in a power spectrum and equilateral bispectrum i.e. P(k) - B(k, k, k) space.

  9. Higher-order harmonics of general limited diffraction Bessel beams

    Science.gov (United States)

    Ding, De-Sheng; Huang, Jin-Huang

    2016-12-01

    In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074038 and 11374051).

  10. Propagation of truncated modified Laguerre-Gaussian beams

    Science.gov (United States)

    Deng, D.; Li, J.; Guo, Q.

    2010-01-01

    By expanding the circ function into a finite sum of complex Gaussian functions and applying the Collins formula, the propagation of hard-edge diffracted modified Laguerre-Gaussian beams (MLGBs) through a paraxial ABCD system is studied, and the approximate closed-form propagation expression of hard-edge diffracted MLGBs is obtained. The transverse intensity distribution of the MLGB carrying finite power can be characterized by a single bright and symmetric ring during propagation when the aperture radius is very large. Starting from the definition of the generalized truncated second-order moments, the beam quality factor of MLGBs through a hard-edged circular aperture is investigated in a cylindrical coordinate system, which turns out to be dependent on the truncated radius and the beam orders.

  11. Effect of higher order nonlinearity, directionality and finite water depth on wave statistics: Comparison of field data and numerical simulations

    Science.gov (United States)

    Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro

    2014-05-01

    This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if khthe aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.

  12. Prediction of Geological Subsurfaces Based on Gaussian Random Field Models

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Petter

    1997-12-31

    During the sixties, random functions became practical tools for predicting ore reserves with associated precision measures in the mining industry. This was the start of the geostatistical methods called kriging. These methods are used, for example, in petroleum exploration. This thesis reviews the possibilities for using Gaussian random functions in modelling of geological subsurfaces. It develops methods for including many sources of information and observations for precise prediction of the depth of geological subsurfaces. The simple properties of Gaussian distributions make it possible to calculate optimal predictors in the mean square sense. This is done in a discussion of kriging predictors. These predictors are then extended to deal with several subsurfaces simultaneously. It is shown how additional velocity observations can be used to improve predictions. The use of gradient data and even higher order derivatives are also considered and gradient data are used in an example. 130 refs., 44 figs., 12 tabs.

  13. Higher order QCD corrections in small x physics

    International Nuclear Information System (INIS)

    Chachamis, G.

    2006-11-01

    We study higher order QCD corrections in small x Physics. The numerical implementation of the full NLO photon impact factor is the remaining necessary piece for the testing of the NLO BFKL resummation against data from physical processes, such as γ * γ * collisions. We perform the numerical integration over phase space for the virtual corrections to the NLO photon impact factor. This, along with the previously calculated real corrections, makes feasible in the near future first estimates for the γ*γ* total cross section, since the convolution of the full impact factor with the NLO BFKL gluon Green's function is now straightforward. The NLO corrections for the photon impact factor are sizeable and negative. In the second part of this thesis, we estimate higher order correction to the BK equation. We are mainly interested in whether partonic saturation delays or not in rapidity when going beyond the leading order. In our investigation, we use the so called 'rapidity veto' which forbid two emissions to be very close in rapidity, to 'switch on' higher order corrections to the BK equation. From analytic and numerical analysis, we conclude that indeed saturation does delay in rapidity when higher order corrections are taken into account. In the last part, we investigate higher order QCD corrections as additional corrections to the Electroweak (EW) sector. The question of whether BFKL corrections are of any importance in the Regge limit for the EW sector seems natural; although they arise in higher loop level, the accumulation of logarithms in energy s at high energies, cannot be dismissed without an investigation. We focus on the process γγ→ZZ. We calculate the pQCD corrections in the forward region at leading logarithmic (LL) BFKL accuracy, which are of the order of few percent at the TeV energy scale. (orig.)

  14. Higher order QCD corrections in small x physics

    Energy Technology Data Exchange (ETDEWEB)

    Chachamis, G.

    2006-11-15

    We study higher order QCD corrections in small x Physics. The numerical implementation of the full NLO photon impact factor is the remaining necessary piece for the testing of the NLO BFKL resummation against data from physical processes, such as {gamma}{sup *}{gamma}{sup *} collisions. We perform the numerical integration over phase space for the virtual corrections to the NLO photon impact factor. This, along with the previously calculated real corrections, makes feasible in the near future first estimates for the {gamma}*{gamma}* total cross section, since the convolution of the full impact factor with the NLO BFKL gluon Green's function is now straightforward. The NLO corrections for the photon impact factor are sizeable and negative. In the second part of this thesis, we estimate higher order correction to the BK equation. We are mainly interested in whether partonic saturation delays or not in rapidity when going beyond the leading order. In our investigation, we use the so called 'rapidity veto' which forbid two emissions to be very close in rapidity, to 'switch on' higher order corrections to the BK equation. From analytic and numerical analysis, we conclude that indeed saturation does delay in rapidity when higher order corrections are taken into account. In the last part, we investigate higher order QCD corrections as additional corrections to the Electroweak (EW) sector. The question of whether BFKL corrections are of any importance in the Regge limit for the EW sector seems natural; although they arise in higher loop level, the accumulation of logarithms in energy s at high energies, cannot be dismissed without an investigation. We focus on the process {gamma}{gamma}{yields}ZZ. We calculate the pQCD corrections in the forward region at leading logarithmic (LL) BFKL accuracy, which are of the order of few percent at the TeV energy scale. (orig.)

  15. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.; Schö nlieb, Carola-Bibiane

    2010-01-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove

  16. Unambiguous formalism for higher order Lagrangian field theories

    International Nuclear Information System (INIS)

    Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn; Vankerschaver, Joris

    2009-01-01

    The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.

  17. Squeezed states and Hermite polynomials in a complex variable

    International Nuclear Information System (INIS)

    Ali, S. Twareque; Górska, K.; Horzela, A.; Szafraniec, F. H.

    2014-01-01

    Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavor of the classical approach of V. Bargmann [Commun. Pure Appl. Math. 14, 187 (1961)

  18. Beam shape coefficients of the most general focused Gaussian laser beam for light scattering applications

    International Nuclear Information System (INIS)

    Lock, James A.

    2013-01-01

    The vector wave equation for electromagnetic waves, when subject to a number of constraints corresponding to propagation of a monochromatic beam, reduces to a pair of inhomogeneous differential equations describing the transverse electric and transverse magnetic polarized beam components. These differential equations are solved analytically to obtain the most general focused Gaussian beam to order s 4 , where s is the beam confinement parameter, and various properties of the most general Gaussian beam are then discussed. The radial fields of the most general Gaussian beam are integrated to obtain the on-axis beam shape coefficients of the generalized Lorenz–Mie theory formalism of light scattering. The beam shape coefficients are then compared with those of the localized Gaussian beam model and the Davis–Barton fifth-order symmetrized beam. -- Highlights: ► Derive the differential equation for the most general Gaussian beam. ► Solve the differential equation for the most general Gaussian beam. ► Determine the properties of the most general Gaussian beam. ► Determine the beam shape coefficients of the most general Gaussian beam

  19. Coherence of the vortex Bessel-Gaussian beam in turbulent atmosphere

    Science.gov (United States)

    Lukin, Igor P.

    2017-11-01

    In this paper the theoretical research of coherent properties of the vortex Bessel-Gaussian optical beams propagating in turbulent atmosphere are developed. The approach to the analysis of this problem is based on the analytical solution of the equation for the transverse second-order mutual coherence function of a field of optical radiation. The behavior of integral scale of coherence degree of vortex Bessel-Gaussian optical beams depending on parameters of an optical beam and characteristics of turbulent atmosphere is particularly considered. It is shown that the integral scale of coherence degree of a vortex Bessel-Gaussian optical beam essentially depends on value of a topological charge of a vortex optical beam. With increase in a topological charge of a vortex Bessel-Gaussian optical beam the value of integral scale of coherence degree of a vortex Bessel-Gaussian optical beam are decreased.

  20. Hermite-Pade approximation approach to hydromagnetic flows in convergent-divergent channels

    International Nuclear Information System (INIS)

    Makinde, O.D.

    2005-10-01

    The problem of two-dimensional, steady, nonlinear flow of an incompressible conducting viscous fluid in convergent-divergent channels under the influence of an externally applied homogeneous magnetic field is studied using a special type of Hermite-Pade approximation approach. This semi-numerical scheme offers some advantages over solutions obtained by using traditional methods such as finite differences, spectral method, shooting method, etc. It reveals the analytical structure of the solution function and the important properties of overall flow structure including velocity field, flow reversal control and bifurcations are discussed. (author)

  1. Mode entanglement of Gaussian fermionic states

    Science.gov (United States)

    Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.

    2018-04-01

    We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.

  2. Time-Discrete Higher-Order ALE Formulations: Stability

    KAUST Repository

    Bonito, Andrea; Kyza, Irene; Nochetto, Ricardo H.

    2013-01-01

    on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time

  3. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.

    2015-01-01

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate

  4. Probing primordial non-Gaussianity via iSW measurements with SKA continuum surveys

    Energy Technology Data Exchange (ETDEWEB)

    Raccanelli, Alvise; Doré, Olivier, E-mail: alvise@jhu.edu, E-mail: olivier.dore@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Bacon, David J.; Maartens, Roy, E-mail: David.Bacon@port.ac.uk, E-mail: roy.maartens@gmail.com [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth P01 3FX (United Kingdom); and others

    2015-01-01

    The Planck CMB experiment has delivered the best constraints so far on primordial non-Gaussianity, ruling out early-Universe models of inflation that generate large non-Gaussianity. Although small improvements in the CMB constraints are expected, the next frontier of precision will come from future large-scale surveys of the galaxy distribution. The advantage of such surveys is that they can measure many more modes than the CMB—in particular, forthcoming radio surveys with the Square Kilometre Array will cover huge volumes. Radio continuum surveys deliver the largest volumes, but with the disadvantage of no redshift information. In order to mitigate this, we use two additional observables. First, the integrated Sachs-Wolfe effect—the cross-correlation of the radio number counts with the CMB temperature anisotropies—helps to reduce systematics on the large scales that are sensitive to non-Gaussianity. Second, optical data allows for cross-identification in order to gain some redshift information. We show that, while the single redshift bin case can provide a σ(f{sub NL}) ∼ 20, and is therefore not competitive with current and future constraints on non-Gaussianity, a tomographic analysis could improve the constraints by an order of magnitude, even with only two redshift bins. A huge improvement is provided by the addition of high-redshift sources, so having cross-ID for high-z galaxies and an even higher-z radio tail is key to enabling very precise measurements of f{sub NL}. We use Fisher matrix forecasts to predict the constraining power in the case of no redshift information and the case where cross-ID allows a tomographic analysis, and we show that the constraints do not improve much with 3 or more bins. Our results show that SKA continuum surveys could provide constraints competitive with CMB and forthcoming optical surveys, potentially allowing a measurement of σ(f{sub NL}) ∼ 1 to be made. Moreover, these measurements would act as a useful check

  5. The Meaning of Higher-Order Factors in Reflective-Measurement Models

    Science.gov (United States)

    Eid, Michael; Koch, Tobias

    2014-01-01

    Higher-order factor analysis is a widely used approach for analyzing the structure of a multidimensional test. Whenever first-order factors are correlated researchers are tempted to apply a higher-order factor model. But is this reasonable? What do the higher-order factors measure? What is their meaning? Willoughby, Holochwost, Blanton, and Blair…

  6. Nil Bohr-sets and almost automorphy of higher order

    CERN Document Server

    Huang, Wen; Ye, Xiangdong

    2016-01-01

    Two closely related topics, higher order Bohr sets and higher order almost automorphy, are investigated in this paper. Both of them are related to nilsystems. In the first part, the problem which can be viewed as the higher order version of an old question concerning Bohr sets is studied: for any d\\in \\mathbb{N} does the collection of \\{n\\in \\mathbb{Z}: S\\cap (S-n)\\cap\\ldots\\cap (S-dn)\

  7. Adaptive Laguerre-Gaussian variant of the Gaussian beam expansion method.

    Science.gov (United States)

    Cagniot, Emmanuel; Fromager, Michael; Ait-Ameur, Kamel

    2009-11-01

    A variant of the Gaussian beam expansion method consists in expanding the Bessel function J0 appearing in the Fresnel-Kirchhoff integral into a finite sum of complex Gaussian functions to derive an analytical expression for a Laguerre-Gaussian beam diffracted through a hard-edge aperture. However, the validity range of the approximation depends on the number of expansion coefficients that are obtained by optimization-computation directly. We propose another solution consisting in expanding J0 onto a set of collimated Laguerre-Gaussian functions whose waist depends on their number and then, depending on its argument, predicting the suitable number of expansion functions to calculate the integral recursively.

  8. Runge-Kutta and Hermite Collocation for a biological invasion problem modeled by a generalized Fisher equation

    International Nuclear Information System (INIS)

    Athanasakis, I E; Papadopoulou, E P; Saridakis, Y G

    2014-01-01

    Fisher's equation has been widely used to model the biological invasion of single-species communities in homogeneous one dimensional habitats. In this study we develop high order numerical methods to accurately capture the spatiotemporal dynamics of the generalized Fisher equation, a nonlinear reaction-diffusion equation characterized by density dependent non-linear diffusion. Working towards this direction we consider strong stability preserving Runge-Kutta (RK) temporal discretization schemes coupled with the Hermite cubic Collocation (HC) spatial discretization method. We investigate their convergence and stability properties to reveal efficient HC-RK pairs for the numerical treatment of the generalized Fisher equation. The Hadamard product is used to characterize the collocation discretized non linear equation terms as a first step for the treatment of generalized systems of relevant equations. Numerical experimentation is included to demonstrate the performance of the methods

  9. Higher order cumulants in colorless partonic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, S. [Sciences and Technologies Department, University of Ghardaia, Ghardaia, Algiers (Algeria); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria); Ahmed, M. A. A. [Department of Physics, College of Science, Taibah University Al-Madinah Al-Mounawwarah KSA (Saudi Arabia); Department of Physics, Taiz University in Turba, Taiz (Yemen); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria); Ladrem, M., E-mail: mladrem@yahoo.fr [Department of Physics, College of Science, Taibah University Al-Madinah Al-Mounawwarah KSA (Saudi Arabia); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria)

    2016-06-10

    Any physical system considered to study the QCD deconfinement phase transition certainly has a finite volume, so the finite size effects are inevitably present. This renders the location of the phase transition and the determination of its order as an extremely difficult task, even in the simplest known cases. In order to identify and locate the colorless QCD deconfinement transition point in finite volume T{sub 0}(V), a new approach based on the finite-size cumulant expansion of the order parameter and the ℒ{sub m,n}-Method is used. We have shown that both cumulants of higher order and their ratios, associated to the thermodynamical fluctuations of the order parameter, in QCD deconfinement phase transition behave in a particular enough way revealing pronounced oscillations in the transition region. The sign structure and the oscillatory behavior of these in the vicinity of the deconfinement phase transition point might be a sensitive probe and may allow one to elucidate their relation to the QCD phase transition point. In the context of our model, we have shown that the finite volume transition point is always associated to the appearance of a particular point in whole higher order cumulants under consideration.

  10. Non-Gaussianity from tachyonic preheating in hybrid inflation

    International Nuclear Information System (INIS)

    Barnaby, Neil; Cline, James M.

    2007-01-01

    In a previous work we showed that large non-Gaussianities and nonscale-invariant distortions in the cosmic microwave background power spectrum can be generated in hybrid inflation models, due to the contributions of the tachyon (waterfall) field to the second order curvature perturbation. Here we clarify, correct, and extend those results. We show that large non-Gaussianity occurs only when the tachyon remains light throughout inflation, whereas n=4 contamination to the spectrum is the dominant effect when the tachyon is heavy. We find constraints on the parameters of warped-throat brane-antibrane inflation from non-Gaussianity. For F-term and D-term inflation models from supergravity, we obtain nontrivial constraints from the spectral distortion effect. We also establish that our analysis applies to complex tachyon fields

  11. Chimera states in Gaussian coupled map lattices

    Science.gov (United States)

    Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian

    2018-04-01

    We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.

  12. On the expressiveness and decidability of higher-order process calculi

    NARCIS (Netherlands)

    Lanese, Ivan; Perez, Jorge A.; Sangiorgi, Davide; Schmitt, Alan

    In higher-order process calculi, the values exchanged in communications may contain processes. A core calculus of higher-order concurrency is studied; it has only the operators necessary to express higher-order communications: input prefix, process output, and parallel composition. By exhibiting a

  13. Multilevel Fast Multipole Method for Higher Order Discretizations

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik

    2014-01-01

    The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower...... order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined....

  14. Effect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET

    Directory of Open Access Journals (Sweden)

    Hyeon Sik Kim

    2014-10-01

    Full Text Available Objective(s: In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF measurement by dynamic N-13 ammonia positron emission tomography (PET, we compared various reconstruction and filtering methods with image characteristics. Methods: Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; age: 57, 53, and 76 years were reconstructed, using filtered back projection (FBP and ordered subset expectation maximization (OSEM methods. OSEM reconstruction consisted of OSEM_2I, OSEM_4I, and OSEM_6I with 2, 4, and 6 iterations, respectively. The images, reconstructed and filtered by Gaussian filters of 5, 10, and 15 mm, were obtained, as well as non-filtered images. Visual analysis of image quality (IQ was performed using a 3-grade scoring system by 2 independent readers, blinded to the reconstruction and filtering methods of stress images. Then, signal-to-noise ratio (SNR was calculated by noise and contrast recovery (CR. Stress and rest MBF and coronary flow reserve (CFR were obtained for each method. IQ scores, stress and rest MBF, and CFR were compared between the methods, using Chi-square and Kruskal-Wallis tests. Results: In the visual analysis, IQ was significantly higher by 10 mm Gaussian filtering, compared to other sizes of filter (PP=0.923 and 0.855 for readers 1 and 2, respectively. SNR was significantly higher in 10 mm Gaussian filter. There was a significant difference in stress and rest MBF between several vascular territories. However CFR was not significantly different according to various filtering methods. Conclusion: Post-reconstruction Gaussian filtering with a filter size of 10 mm significantly enhances the IQ of N-13 ammonia PET-CT, without changing the results of CFR calculation. .

  15. Effect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET

    International Nuclear Information System (INIS)

    Kim, Hyeon Sik; Cho, Sang-Geon; Kim, Ju Han; Kwon, Seong Young; Lee, Byeong-il; Bom, Hee-Seung

    2014-01-01

    In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF) measurement by dynamic N-13 ammonia positron emission tomography (PET), we compared various reconstruction and filtering methods with image characteristics. Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; age: 57, 53, and 76 years) were reconstructed, using filtered back projection (FBP) and ordered subset expectation maximization (OSEM) methods. OSEM reconstruction consisted of OSEM-2I, OSEM-4I, and OSEM-6I with 2, 4, and 6 iterations, respectively. The images, reconstructed and filtered by Gaussian filters of 5, 10, and 15 mm, were obtained, as well as non-filtered images. Visual analysis of image quality (IQ) was performed using a 3-grade scoring system by 2 independent readers, blinded to the reconstruction and filtering methods of stress images. Then, signal-to-noise ratio (SNR) was calculated by noise and contrast recovery (CR). Stress and rest MBF and coronary flow reserve (CFR) were obtained for each method. IQ scores, stress and rest MBF, and CFR were compared between the methods, using Chi-square and Kruskal-Wallis tests. In the visual analysis, IQ was significantly higher by 10 mm Gaussian filtering, compared to other sizes of filter (P<0.001 for both readers). However, no significant difference of IQ was found between FBP and various numbers of iteration in OSEM (P=0.923 and 0.855 for readers 1 and 2, respectively). SNR was significantly higher in 10 mm Gaussian filter. There was a significant difference in stress and rest MBF between several vascular territories. However CFR was not significantly different according to various filtering methods. Post-reconstruction Gaussian filtering with a filter size of 10 mm significantly enhances the IQ of N-13 ammonia PET-CT, without changing the results of CFR calculation

  16. Higher-order modulation instability in nonlinear fiber optics.

    Science.gov (United States)

    Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry

    2011-12-16

    We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society

  17. Gaussian vector fields on triangulated surfaces

    DEFF Research Database (Denmark)

    Ipsen, John H

    2016-01-01

    proven to be very useful to resolve the complex interplay between in-plane ordering of membranes and membrane conformations. In the present work we have developed a procedure for realistic representations of Gaussian models with in-plane vector degrees of freedoms on a triangulated surface. The method...

  18. Intra-cavity generation of superpositions of Laguerre-Gaussian beams

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2012-01-01

    Full Text Available In this paper we demonstrate experimentally the intra-cavity generation of a coherent superposition of Laguerre–Gaussian modes of zero radial order but opposite azimuthal order. The superposition is created with a simple intra-cavity stop...

  19. Higher-order rewriting and partial evaluation

    DEFF Research Database (Denmark)

    Danvy, Olivier; Rose, Kristoffer H.

    1998-01-01

    We demonstrate the usefulness of higher-order rewriting techniques for specializing programs, i.e., for partial evaluation. More precisely, we demonstrate how casting program specializers as combinatory reduction systems (CRSs) makes it possible to formalize the corresponding program...

  20. Higher-Order Separation Logic in Isabelle/HOLCF

    DEFF Research Database (Denmark)

    Varming, Carsten; Birkedal, Lars

    2008-01-01

    We formalize higher-order separation logic for a first-order imperative language with procedures and local variables in Isabelle/HOLCF. The assertion language is modeled in such a way that one may use any theory defined in Isabelle/HOLCF to construct assertions, e.g., primitive recursion, least o...

  1. Meta-Logical Reasoning in Higher-Order Logic

    DEFF Research Database (Denmark)

    Villadsen, Jørgen; Schlichtkrull, Anders; Hess, Andreas Viktor

    The semantics of first-order logic (FOL) can be described in the meta-language of higher-order logic (HOL). Using HOL one can prove key properties of FOL such as soundness and completeness. Furthermore, one can prove sentences in FOL valid using the formalized FOL semantics. To aid...

  2. Resource theory of non-Gaussian operations

    Science.gov (United States)

    Zhuang, Quntao; Shor, Peter W.; Shapiro, Jeffrey H.

    2018-05-01

    Non-Gaussian states and operations are crucial for various continuous-variable quantum information processing tasks. To quantitatively understand non-Gaussianity beyond states, we establish a resource theory for non-Gaussian operations. In our framework, we consider Gaussian operations as free operations, and non-Gaussian operations as resources. We define entanglement-assisted non-Gaussianity generating power and show that it is a monotone that is nonincreasing under the set of free superoperations, i.e., concatenation and tensoring with Gaussian channels. For conditional unitary maps, this monotone can be analytically calculated. As examples, we show that the non-Gaussianity of ideal photon-number subtraction and photon-number addition equal the non-Gaussianity of the single-photon Fock state. Based on our non-Gaussianity monotone, we divide non-Gaussian operations into two classes: (i) the finite non-Gaussianity class, e.g., photon-number subtraction, photon-number addition, and all Gaussian-dilatable non-Gaussian channels; and (ii) the diverging non-Gaussianity class, e.g., the binary phase-shift channel and the Kerr nonlinearity. This classification also implies that not all non-Gaussian channels are exactly Gaussian dilatable. Our resource theory enables a quantitative characterization and a first classification of non-Gaussian operations, paving the way towards the full understanding of non-Gaussianity.

  3. Hermite interpolant multiscaling functions for numerical solution of the convection diffusion equations

    Directory of Open Access Journals (Sweden)

    Elmira Ashpazzadeh

    2018-04-01

    Full Text Available A numerical technique based on the Hermite interpolant multiscaling functions is presented for the solution of Convection-diusion equations. The operational matrices of derivative, integration and product are presented for multiscaling functions and are utilized to reduce the solution of linear Convection-diusion equation to the solution of algebraic equations. Because of sparsity of these matrices, this method is computationally very attractive and reduces the CPU time and computer memory. Illustrative examples are included to demonstrate the validity and applicability of the new technique.

  4. Non-Gaussian elliptic-flow fluctuations in PbPb collisions at $\\sqrt{\\smash[b]{s_{_\\text{NN}}}} = 5.02$ TeV

    Energy Technology Data Exchange (ETDEWEB)

    Sirunyan, Albert M; et al.

    2017-11-15

    Event-by-event fluctuations in the elliptic-flow coefficient $v_2$ are studied in PbPb collisions at $\\sqrt{s_{_\\text{NN}}} = 5.02$ TeV using the CMS detector at the CERN LHC. Elliptic-flow probability distributions ${p}(v_2)$ for charged particles with transverse momentum 0.3$< p_\\mathrm{T} <$3.0 GeV and pseudorapidity $| \\eta | <$ 1.0 are determined for different collision centrality classes. The moments of the ${p}(v_2)$ distributions are used to calculate the $v_{2}$ coefficients based on cumulant orders 2, 4, 6, and 8. A rank ordering of the higher-order cumulant results and nonzero standardized skewness values obtained for the ${p}(v_2)$ distributions indicate non-Gaussian initial-state fluctuation behavior. Bessel-Gaussian and elliptic power fits to the flow distributions are studied to characterize the initial-state spatial anisotropy.

  5. Non-Gaussian elliptic-flow fluctuations in PbPb collisions at $\\sqrt{\\smash[b]{s_{_\\text{NN}}}} = $ 5.02 TeV

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Grossmann, Johannes; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Pree, Elias; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Lenzi, Thomas; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Seva, Tomislav; Starling, Elizabeth; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Salva Diblen, Sinem; Tytgat, Michael; Verbeke, Willem; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; Caudron, Adrien; David, Pieter; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhang, Sijing; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Jing; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; Mohammed, Yasser; Salama, Elsayed; Dewanjee, Ram Krishna; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Leloup, Clément; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Charlot, Claude; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Zhukov, Valery; Albert, Andreas; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Teyssier, Daniel; Thüer, Sebastian; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Shevchenko, Rostyslav; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Hoffmann, Malte; Karavdina, Anastasia; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Lapsien, Tobias; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Faltermann, Nils; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Kousouris, Konstantinos; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Csanad, Mate; Filipovic, Nicolas; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Veszpremi, Viktor; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Dhingra, Nitish; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Shah, Aashaq; Bhardwaj, Ashutosh; Chauhan, Sushil; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Bhardwaj, Rishika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Errico, Filippo; Fiore, Luigi; Iaselli, Giuseppe; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pauwels, Kristof; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Gulmini, Michele; Lacaprara, Stefano; Lujan, Paul; Margoni, Martino; Meneguzzo, Anna Teresa; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Torassa, Ezio; Ventura, Sandro; Zanetti, Marco; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Reyes-Almanza, Rogelio; Ramirez-Sanchez, Gabriel; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Baginyan, Andrey; Golunov, Alexey; Golutvin, Igor; Karjavin, Vladimir; Korenkov, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Mitsyn, Valeri Valentinovitch; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Yuldashev, Bekhzod S; Zarubin, Anatoli; Zhiltsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chistov, Ruslan; Danilov, Mikhail; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Tarkovskii, Evgenii; Zhemchugov, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Miagkov, Igor; Nazarova, Elizaveta; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Bachiller, Irene; Barrio Luna, Mar; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Álvarez Fernández, Adrian; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Curras, Esteban; Duarte Campderros, Jordi; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Gulhan, Doga; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Ngadiuba, Jennifer; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Stoye, Markus; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Verweij, Marta; Zeuner, Wolfram Dietrich; Bertl, Willi; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Klijnsma, Thomas; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Reichmann, Michael; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Candelise, Vieri; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Tsai, Jui-fa; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Bakirci, Mustafa Numan; Bat, Ayse; Boran, Fatma; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Polatoz, Ayse; Tok, Ufuk Guney; Topakli, Huseyin; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Karapinar, Guler; Ocalan, Kadir; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Nazlim Agaras, Merve; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Köseoglu, Ilknur; Grynyov, Boris; Levchuk, Leonid; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Auzinger, Georg; Bainbridge, Robert; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Elwood, Adam; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Matsushita, Takashi; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Golf, Frank; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Joshi, Yagya Raj; Linn, Stephan; Markowitz, Pete; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Santra, Arka; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Trauger, Hallie; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Royon, Christophe; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Hiltbrand, Joshua; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Parashar, Neeti; Stupak, John; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Guilbaud, Maxime; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Ciesielski, Robert; Goulianos, Konstantin; Mesropian, Christina; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-01-01

    Event-by-event fluctuations in the elliptic-flow coefficient $v_2$ are studied in PbPb collisions at $\\sqrt{\\smash[b]{s_{_\\text{NN}}}} = $ 5.02 TeV using the CMS detector at the CERN LHC. Elliptic-flow probability distributions ${p}(v_2)$ for charged particles with transverse momentum 0.3 $ < {p_{\\mathrm{T}}} < $ 3.0 GeV/$c$ and pseudorapidity $ | \\eta | < $ 1.0 are determined for different collision centrality classes. The moments of the ${p}(v_2)$ distributions are used to calculate the $v_{2}$ coefficients based on cumulant orders 2, 4, 6, and 8. A rank ordering of the higher-order cumulant results and nonzero standardized skewness values obtained for the ${p}(v_2)$ distributions indicate non-Gaussian initial-state fluctuation behavior. Bessel-Gaussian and elliptic power fits to the flow distributions are studied to characterize the initial-state spatial anisotropy.

  6. Spatial distribution and shell utilization in three sympatric hermit crabs at non-consolidated sublittoral of estuarine-bay complex in São Vicente, São Paulo, Brazil

    OpenAIRE

    Sant'Anna, Bruno S. [UNESP; Zangrande, Cilene M. [UNESP; Reigada, Álvaro L.D. [UNESP; Severino-Rodrigues, Evandro

    2006-01-01

    The objective of the present study was to characterize the spatial distribution and shell utilization of three hermit crab species in the estuarine-bay complex of São Vicente, São Paulo State, Brazil. Monthly samples were done throughout two years, in the non-consolidated sub-littoral at the estuarine-bay complex. The environmental factors, such as temperature, salinity and depth, were measured every month. The three hermit crab species, Clibanarius vittatus, Loxopagurus loxochelis and Isoche...

  7. Higher-Order and Symbolic Computation

    DEFF Research Database (Denmark)

    Danvy, Olivier; Mason, Ian

    2008-01-01

    a series of implementaions that properly account for multiple invocations of the derivative-taking opeatro. In "Adapting Functional Programs to Higher-Order Logic," Scott Owens and Konrad Slind present a variety of examples of terminiation proofs of functional programs written in HOL proof systems. Since......-calculus programs, historically. The anaylsis determines the possible locations of ambients and mirrors the temporla sequencing of actions in the structure of types....

  8. All-fiber Raman Probe using Higher Order Modes

    DEFF Research Database (Denmark)

    Larsen, Stine Højer Møller; Rishøj, Lars Søgaard; Rottwitt, Karsten

    2013-01-01

    We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes.......We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes....

  9. Asymptotic Expansions for Higher-Order Scalar Difference Equations

    Directory of Open Access Journals (Sweden)

    Pituk Mihály

    2007-01-01

    Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.

  10. A new class of generalized polynomials associated with Hermite and Bernoulli polynomials

    Directory of Open Access Journals (Sweden)

    M. A. Pathan

    2015-05-01

    Full Text Available In this paper, we introduce a new class of generalized  polynomials associated with  the modified Milne-Thomson's polynomials Φ_{n}^{(α}(x,ν of degree n and order α introduced by  Derre and Simsek.The concepts of Bernoulli numbers B_n, Bernoulli polynomials  B_n(x, generalized Bernoulli numbers B_n(a,b, generalized Bernoulli polynomials  B_n(x;a,b,c of Luo et al, Hermite-Bernoulli polynomials  {_HB}_n(x,y of Dattoli et al and {_HB}_n^{(α} (x,y of Pathan  are generalized to the one   {_HB}_n^{(α}(x,y,a,b,c which is called  the generalized  polynomial depending on three positive real parameters. Numerous properties of these polynomials and some relationships between B_n, B_n(x, B_n(a,b, B_n(x;a,b,c and {}_HB_n^{(α}(x,y;a,b,c  are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Bernoulli numbers and polynomials

  11. Reliability-based design optimization via high order response surface method

    International Nuclear Information System (INIS)

    Li, Hong Shuang

    2013-01-01

    To reduce the computational effort of reliability-based design optimization (RBDO), the response surface method (RSM) has been widely used to evaluate reliability constraints. We propose an efficient methodology for solving RBDO problems based on an improved high order response surface method (HORSM) that takes advantage of an efficient sampling method, Hermite polynomials and uncertainty contribution concept to construct a high order response surface function with cross terms for reliability analysis. The sampling method generates supporting points from Gauss-Hermite quadrature points, which can be used to approximate response surface function without cross terms, to identify the highest order of each random variable and to determine the significant variables connected with point estimate method. The cross terms between two significant random variables are added to the response surface function to improve the approximation accuracy. Integrating the nested strategy, the improved HORSM is explored in solving RBDO problems. Additionally, a sampling based reliability sensitivity analysis method is employed to reduce the computational effort further when design variables are distributional parameters of input random variables. The proposed methodology is applied on two test problems to validate its accuracy and efficiency. The proposed methodology is more efficient than first order reliability method based RBDO and Monte Carlo simulation based RBDO, and enables the use of RBDO as a practical design tool.

  12. On the origin of higher braces and higher-order derivations

    Czech Academy of Sciences Publication Activity Database

    Markl, Martin

    2015-01-01

    Roč. 10, č. 3 (2015), s. 637-667 ISSN 2193-8407 Institutional support: RVO:67985840 Keywords : Koszul braces * Börjeseon braces * higher-order derivation Subject RIV: BA - General Mathematics Impact factor: 0.600, year: 2015 http://link.springer.com/article/10.1007/s40062-014-0079-2

  13. Higher order correlations in computed particle distributions

    International Nuclear Information System (INIS)

    Hanerfeld, H.; Herrmannsfeldt, W.; Miller, R.H.

    1989-03-01

    The rms emittances calculated for beam distributions using computer simulations are frequently dominated by higher order aberrations. Thus there are substantial open areas in the phase space plots. It has long been observed that the rms emittance is not an invariant to beam manipulations. The usual emittance calculation removes the correlation between transverse displacement and transverse momentum. In this paper, we explore the possibility of defining higher order correlations that can be removed from the distribution to result in a lower limit to the realizable emittance. The intent is that by inserting the correct combinations of linear lenses at the proper position, the beam may recombine in a way that cancels the effects of some higher order forces. An example might be the non-linear transverse space charge forces which cause a beam to spread. If the beam is then refocused so that the same non-linear forces reverse the inward velocities, the resulting phase space distribution may reasonably approximate the original distribution. The approach to finding the location and strength of the proper lens to optimize the transported beam is based on work by Bruce Carlsten of Los Alamos National Laboratory. 11 refs., 4 figs

  14. Perturbative theory of higher-order collision-enhanced wave mixing

    International Nuclear Information System (INIS)

    Trebino, R.; Rahn, L.A.

    1989-01-01

    This paper reports on collision-enhanced resonances which represent an interesting class of nonlinear- optical processes. They occur because collisional dephasing can rephase quantum-mechanical amplitudes that ordinarily cancel out exactly, thereby allowing otherwise unobservable wave-mixing resonances to be seen. This is an especially interesting phenomenon because these resonances are coherent effects that are induced by an incoherent process (collisional dephasing). First predicted in the late 1970s and eventually observed in 1981, these novel effects have now been seen in a wide variety of four-wave-mixing experiments, ranging from self-focusing to coherent anti-Stokes Raman spectroscopy. Recently, the authors have extended these observations to higher order, where the authors have shown both experimentally and theoretically the higher-order, collision-enhanced effects exist in nonlinear optics, appearing as subharmonics of two-photon resonances. Indeed, the authors have found that collision-enhanced processes are ideal systems for studying higher-order, nonlinear-optical effects because very high orders can be made to contribute with little or no saturation braodening. Experiments on sodium in a flame using six- and eight-wave-mixing geometries have revealed still higher-order effects (at least as high- order as χ (13) )

  15. Classical higher-order processes

    DEFF Research Database (Denmark)

    Montesi, Fabrizio

    2017-01-01

    Classical Processes (CP) is a calculus where the proof theory of classical linear logic types processes à la Π-calculus, building on a Curry-Howard correspondence between session types and linear propositions. We contribute to this research line by extending CP with process mobility, inspired...... by the Higher-Order Π-calculus. The key to our calculus is that sequents are asymmetric: one side types sessions as in CP and the other types process variables, which can be instantiated with process values. The controlled interaction between the two sides ensures that process variables can be used at will......, but always respecting the linear usage of sessions expected by the environment....

  16. Effect of Asymmetric Potential and Gaussian Colored Noise on Stochastic Resonance

    International Nuclear Information System (INIS)

    Han Yinxia; Li Jinghui; Chen Shigang

    2005-01-01

    The phenomenon of stochastic resonance (SR) in a bistable nonlinear system is studied when the system is driven by the asymmetric potential and additive Gaussian colored noise. Using the unified colored noise approximation method, the additive Gaussian colored noise can be simplified to additive Gaussian white noise. The signal-to-noise ratio (SNR) is calculated according to the generalized two-state theory (shown in [H.S. Wio and S. Bouzat, Brazilian J. Phys. 29 (1999) 136]). We find that the SNR increases with the proximity of a to zero. In addition, the correlation time τ between the additive Gaussian colored noise is also an ingredient to improve SR. The shorter the correlation time τ between the Gaussian additive colored noise is, the higher of the peak value of SNR.

  17. Non-Gaussian initial conditions in ΛCDM: Newtonian, relativistic, and primordial contributions

    International Nuclear Information System (INIS)

    Bruni, Marco; Hidalgo, Juan Carlos; Meures, Nikolai; Wands, David

    2014-01-01

    The goal of the present paper is to set initial conditions for structure formation at nonlinear order, consistent with general relativity, while also allowing for primordial non-Gaussianity. We use the nonlinear continuity and Raychaudhuri equations, which together with the nonlinear energy constraint, determine the evolution of the matter density fluctuation in general relativity. We solve this equations at first and second order in a perturbative expansion, recovering and extending previous results derived in the matter-dominated limit and in the Newtonian regime. We present a second-order solution for the comoving density contrast in a ΛCDM universe, identifying nonlinear contributions coming from the Newtonian growing mode, primordial non-Gaussianity and intrinsic non-Gaussianity, due to the essential nonlinearity of the relativistic constraint equations. We discuss the application of these results to initial conditions in N-body simulations, showing that relativistic corrections mimic a non-zero nonlinear parameter f NL

  18. Asymptotic Expansions for Higher-Order Scalar Difference Equations

    Directory of Open Access Journals (Sweden)

    Ravi P. Agarwal

    2007-04-01

    Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.

  19. Propagation of Gaussian Beams through Active GRIN Materials

    International Nuclear Information System (INIS)

    Gomez-Varela, A I; Flores-Arias, M T; Bao-Varela, C; Gomez-Reino, C; De la Fuente, X

    2011-01-01

    We discussed light propagation through an active GRIN material that exhibits loss or gain. Effects of gain or loss in GRIN materials can be phenomenologically taken into account by using a complex refractive index in the wave equation. This work examines the implication of using a complex refractive index on light propagation in an active GRIN material illuminated by a non-uniform monochromatic wave described by a Gaussian beam. We analyze how a Gaussian beam is propagated through the active material in order to characterize it by the beam parameters and the transverse irradiance distribution.

  20. Higher-Order Cyclostationarity Detection for Spectrum Sensing

    Directory of Open Access Journals (Sweden)

    Julien Renard

    2010-01-01

    Full Text Available Recent years have shown a growing interest in the concept of Cognitive Radios (CRs, able to access portions of the electromagnetic spectrum in an opportunistic operating way. Such systems require efficient detectors able to work in low Signal-to-Noise Ratio (SNR environments, with little or no information about the signals they are trying to detect. Energy detectors are widely used to perform such blind detection tasks, but quickly reach the so-called SNR wall below which detection becomes impossible Tandra (2005. Cyclostationarity detectors are an interesting alternative to energy detectors, as they exploit hidden periodicities present in man-made signals, but absent in noise. Such detectors use quadratic transformations of the signals to extract the hidden sine-waves. While most of the literature focuses on the second-order transformations of the signals, we investigate the potential of higher-order transformations of the signals. Using the theory of Higher-Order Cyclostationarity (HOCS, we derive a fourth-order detector that performs similarly to the second-order ones to detect linearly modulated signals, at SNR around 0 dB, which may be used if the signals of interest do not exhibit second-order cyclostationarity. More generally this paper reviews the relevant aspects of the cyclostationary and HOCS theory, and shows their potential for spectrum sensing.

  1. Non-gaussianity from the trispectrum and vector field perturbations

    International Nuclear Information System (INIS)

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon

    2010-01-01

    We use the δN formalism to study the trispectrum T ζ of the primordial curvature perturbation ζ when the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions. The order of magnitude of the level of non-gaussianity in the trispectrum, τ NL , is calculated in this scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, f NL , and the level of statistical anisotropy in the power spectrum, g ζ . Such consistency relations will put under test this scenario against future observations. Comparison with the expected observational bound on τ NL from WMAP, for generic inflationary models, is done.

  2. Higher-order tensors in diffusion imaging

    NARCIS (Netherlands)

    Schultz, T.; Fuster, A.; Ghosh, A.; Deriche, R.; Florack, L.M.J.; Lim, L.H.; Westin, C.-F.; Vilanova, A.; Burgeth, B.

    2014-01-01

    Diffusion imaging is a noninvasive tool for probing the microstructure of fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathematical language to model and analyze the large and complex data that is generated by its modern variants such as High Angular Resolution Diffusion

  3. Observation of transverse patterns in an isotropic microchip laser

    International Nuclear Information System (INIS)

    Chen, Y.F.; Lan, Y.P.

    2003-01-01

    An isotropic microchip laser is used to study the characteristics of high-order wave functions in a two-dimensional (2D) quantum harmonic oscillator based on the identical functional forms. With a doughnut pump profile, the spontaneous transverse modes are found to, generally, be elliptic and hyperbolic transverse modes. Theoretical analyses reveal that the elliptic transverse modes are analogous to the coherent states of a 2D harmonic oscillator; the formation of hyperbolic transverse modes is a spontaneous mode locking between two identical Hermite-Gaussian modes

  4. Theorem Proving In Higher Order Logics

    Science.gov (United States)

    Carreno, Victor A. (Editor); Munoz, Cesar A.; Tahar, Sofiene

    2002-01-01

    The TPHOLs International Conference serves as a venue for the presentation of work in theorem proving in higher-order logics and related areas in deduction, formal specification, software and hardware verification, and other applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume. Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in theorem proving systems with those needing such libraries for their applications. Many of the major higher order theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support. This work is of interest in a number of application areas, such as formal methods development for hardware and software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by their authors at the workshop venue, and one invited talk.

  5. A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families

    KAUST Repository

    Dutta, Subhajit

    2014-07-28

    Several fascinating examples of non-Gaussian bivariate distributions which have marginal distribution functions to be Gaussian have been proposed in the literature. These examples often clarify several properties associated with the normal distribution. In this paper, we generalize this result in the sense that we construct a pp-dimensional distribution for which any proper subset of its components has the Gaussian distribution. However, the jointpp-dimensional distribution is inconsistent with the distribution of these subsets because it is not Gaussian. We study the probabilistic properties of this non-Gaussian multivariate distribution in detail. Interestingly, several popular tests of multivariate normality fail to identify this pp-dimensional distribution as non-Gaussian. We further extend our construction to a class of elliptically contoured distributions as well as skewed distributions arising from selections, for instance the multivariate skew-normal distribution.

  6. A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families

    KAUST Repository

    Dutta, Subhajit; Genton, Marc G.

    2014-01-01

    Several fascinating examples of non-Gaussian bivariate distributions which have marginal distribution functions to be Gaussian have been proposed in the literature. These examples often clarify several properties associated with the normal distribution. In this paper, we generalize this result in the sense that we construct a pp-dimensional distribution for which any proper subset of its components has the Gaussian distribution. However, the jointpp-dimensional distribution is inconsistent with the distribution of these subsets because it is not Gaussian. We study the probabilistic properties of this non-Gaussian multivariate distribution in detail. Interestingly, several popular tests of multivariate normality fail to identify this pp-dimensional distribution as non-Gaussian. We further extend our construction to a class of elliptically contoured distributions as well as skewed distributions arising from selections, for instance the multivariate skew-normal distribution.

  7. Niche construction drives social dependence in hermit crabs.

    Science.gov (United States)

    Laidre, Mark E

    2012-10-23

    Organisms can receive not only a genetic inheritance from their ancestors but also an ecological inheritance, involving modifications their ancestors made to the environment through niche construction. Ecological inheritances may persist as a legacy, potentially generating selection pressures that favor sociality. Yet, most proposed cases of sociality being impacted by an ecological inheritance come from organisms that live among close kin and were highly social before their niche construction began. Here, I show that in terrestrial hermit crabs (Coenobita compressus)--organisms that do not live with kin and reside alone, each in its own shell--niche-construction drives social dependence, such that individuals can only survive in remodeled shells handed down from conspecifics. These results suggest that niche construction can be an important initiator of evolutionary pressures to socialize, even among unrelated and otherwise asocial organisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Complex and real Hermite polynomials and related quantizations

    International Nuclear Information System (INIS)

    Cotfas, Nicolae; Gazeau, Jean Pierre; Gorska, Katarzyna

    2010-01-01

    It is known that the anti-Wick (or standard coherent state) quantization of the complex plane produces both canonical commutation rule and quantum spectrum of the harmonic oscillator (up to the addition of a constant). In this work, we show that these two issues are not necessarily coupled: there exists a family of separable Hilbert spaces, including the usual Fock-Bargmann space, and in each element in this family there exists an overcomplete set of unit-norm states resolving the unity. With the exception of the Fock-Bargmann case, they all produce non-canonical commutation relation whereas the quantum spectrum of the harmonic oscillator remains the same up to the addition of a constant. The statistical aspects of these non-equivalent coherent state quantizations are investigated. We also explore the localization aspects in the real line yielded by similar quantizations based on real Hermite polynomials.

  9. Mean intensity of the fundamental Bessel-Gaussian beam in turbulent atmosphere

    Science.gov (United States)

    Lukin, Igor P.

    2017-11-01

    In the given article mean intensity of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is studied. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian beam of optical radiation. Distributions of mean intensity of a fundamental Bessel- Gaussian beam optical beam in longitudinal and transverse to a direction of propagation of optical radiation are investigated in detail. Influence of atmospheric turbulence on change of radius of the central part of a Bessel optical beam is estimated. Values of parameters at which it is possible to generate in turbulent atmosphere a nondiffracting pseudo-Bessel optical beam by means of a fundamental Bessel-Gaussian optical beam are established.

  10. Partial summations of stationary sequences of non-Gaussian random variables

    DEFF Research Database (Denmark)

    Mohr, Gunnar; Ditlevsen, Ove Dalager

    1996-01-01

    The distribution of the sum of a finite number of identically distributed random variables is in many cases easily determined given that the variables are independent. The moments of any order of the sum can always be expressed by the moments of the single term without computational problems...... of convergence of the distribution of a sum (or an integral) of mutually dependent random variables to the Gaussian distribution. The paper is closely related to the work in Ditlevsen el al. [Ditlevsen, O., Mohr, G. & Hoffmeyer, P. Integration of non-Gaussian fields. Prob. Engng Mech 11 (1996) 15-23](2)....... lognormal variables or polynomials of standard Gaussian variables. The dependency structure is induced by specifying the autocorrelation structure of the sequence of standard Gaussian variables. Particularly useful polynomials are the Winterstein approximations that distributionally fit with non...

  11. Exact solutions to two higher order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Liping; Zhang Jinliang

    2007-01-01

    Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)

  12. Self-similarity of higher-order moving averages

    Science.gov (United States)

    Arianos, Sergio; Carbone, Anna; Türk, Christian

    2011-10-01

    In this work, higher-order moving average polynomials are defined by straightforward generalization of the standard moving average. The self-similarity of the polynomials is analyzed for fractional Brownian series and quantified in terms of the Hurst exponent H by using the detrending moving average method. We prove that the exponent H of the fractional Brownian series and of the detrending moving average variance asymptotically agree for the first-order polynomial. Such asymptotic values are compared with the results obtained by the simulations. The higher-order polynomials correspond to trend estimates at shorter time scales as the degree of the polynomial increases. Importantly, the increase of polynomial degree does not require to change the moving average window. Thus trends at different time scales can be obtained on data sets with the same size. These polynomials could be interesting for those applications relying on trend estimates over different time horizons (financial markets) or on filtering at different frequencies (image analysis).

  13. Compiler-Directed Transformation for Higher-Order Stencils

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Protonu [Univ. of Utah, Salt Lake City, UT (United States); Hall, Mary [Univ. of Utah, Salt Lake City, UT (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-20

    As the cost of data movement increasingly dominates performance, developers of finite-volume and finite-difference solutions for partial differential equations (PDEs) are exploring novel higher-order stencils that increase numerical accuracy and computational intensity. This paper describes a new compiler reordering transformation applied to stencil operators that performs partial sums in buffers, and reuses the partial sums in computing multiple results. This optimization has multiple effect son improving stencil performance that are particularly important to higher-order stencils: exploits data reuse, reduces floating-point operations, and exposes efficient SIMD parallelism to backend compilers. We study the benefit of this optimization in the context of Geometric Multigrid (GMG), a widely used method to solvePDEs, using four different Jacobi smoothers built from 7-, 13-, 27-and 125-point stencils. We quantify performance, speedup, andnumerical accuracy, and use the Roofline model to qualify our results. Ultimately, we obtain over 4× speedup on the smoothers themselves and up to a 3× speedup on the multigrid solver. Finally, we demonstrate that high-order multigrid solvers have the potential of reducing total data movement and energy by several orders of magnitude.

  14. Higher-Order Components for Grid Programming

    CERN Document Server

    Dünnweber, Jan

    2009-01-01

    Higher-Order Components were developed within the CoreGRID European Network of Excellence and have become an optional extension of the popular Globus middleware. This book provides the reader with hands-on experience, describing a collection of example applications from various fields of science and engineering, including biology and physics.

  15. Higher order aberrations of the eye: Part one

    Directory of Open Access Journals (Sweden)

    Marsha Oberholzer

    2016-06-01

    Full Text Available This article is the first in a series of two articles that provide a comprehensive literature review of higher order aberrations (HOAs of the eye. The present article mainly explains the general principles of such HOAs as well as HOAs of importance, and the measuring apparatus used to measure HOAs of the eye. The second article in the series discusses factors contributing to variable results in measurements of HOAs of the eye. Keywords: Higher order aberrations; wavefront aberrations; aberrometer

  16. Quantum information with Gaussian states

    International Nuclear Information System (INIS)

    Wang Xiangbin; Hiroshima, Tohya; Tomita, Akihisa; Hayashi, Masahito

    2007-01-01

    Quantum optical Gaussian states are a type of important robust quantum states which are manipulatable by the existing technologies. So far, most of the important quantum information experiments are done with such states, including bright Gaussian light and weak Gaussian light. Extending the existing results of quantum information with discrete quantum states to the case of continuous variable quantum states is an interesting theoretical job. The quantum Gaussian states play a central role in such a case. We review the properties and applications of Gaussian states in quantum information with emphasis on the fundamental concepts, the calculation techniques and the effects of imperfections of the real-life experimental setups. Topics here include the elementary properties of Gaussian states and relevant quantum information device, entanglement-based quantum tasks such as quantum teleportation, quantum cryptography with weak and strong Gaussian states and the quantum channel capacity, mathematical theory of quantum entanglement and state estimation for Gaussian states

  17. Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems

    International Nuclear Information System (INIS)

    Prieto-Martinez, Pedro Daniel; Roman-Roy, Narciso

    2011-01-01

    The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view. (paper)

  18. Higher Order Lagrange Finite Elements In M3D

    International Nuclear Information System (INIS)

    Chen, J.; Strauss, H.R.; Jardin, S.C.; Park, W.; Sugiyama, L.E.; Fu, G.; Breslau, J.

    2004-01-01

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles

  19. An Algorithm for Higher Order Hopf Normal Forms

    Directory of Open Access Journals (Sweden)

    A.Y.T. Leung

    1995-01-01

    Full Text Available Normal form theory is important for studying the qualitative behavior of nonlinear oscillators. In some cases, higher order normal forms are required to understand the dynamic behavior near an equilibrium or a periodic orbit. However, the computation of high-order normal forms is usually quite complicated. This article provides an explicit formula for the normalization of nonlinear differential equations. The higher order normal form is given explicitly. Illustrative examples include a cubic system, a quadratic system and a Duffing–Van der Pol system. We use exact arithmetic and find that the undamped Duffing equation can be represented by an exact polynomial differential amplitude equation in a finite number of terms.

  20. The halo bispectrum in N-body simulations with non-Gaussian initial conditions

    Science.gov (United States)

    Sefusatti, E.; Crocce, M.; Desjacques, V.

    2012-10-01

    We present measurements of the bispectrum of dark matter haloes in numerical simulations with non-Gaussian initial conditions of local type. We show, in the first place, that the overall effect of primordial non-Gaussianity on the halo bispectrum is larger than on the halo power spectrum when all measurable configurations are taken into account. We then compare our measurements with a tree-level perturbative prediction, finding good agreement at large scales when the constant Gaussian bias parameter, both linear and quadratic, and their constant non-Gaussian corrections are fitted for. The best-fitting values of the Gaussian bias factors and their non-Gaussian, scale-independent corrections are in qualitative agreement with the peak-background split expectations. In particular, we show that the effect of non-Gaussian initial conditions on squeezed configurations is fairly large (up to 30 per cent for fNL = 100 at redshift z = 0.5) and results from contributions of similar amplitude induced by the initial matter bispectrum, scale-dependent bias corrections as well as from non-linear matter bispectrum corrections. We show, in addition, that effects at second order in fNL are irrelevant for the range of values allowed by cosmic microwave background and galaxy power spectrum measurements, at least on the scales probed by our simulations (k > 0.01 h Mpc-1). Finally, we present a Fisher matrix analysis to assess the possibility of constraining primordial non-Gaussianity with future measurements of the galaxy bispectrum. We find that a survey with a volume of about 10 h-3 Gpc3 at mean redshift z ≃ 1 could provide an error on fNL of the order of a few. This shows the relevance of a joint analysis of galaxy power spectrum and bispectrum in future redshift surveys.

  1. When non-Gaussian states are Gaussian: Generalization of nonseparability criterion for continuous variables

    International Nuclear Information System (INIS)

    McHugh, Derek; Buzek, Vladimir; Ziman, Mario

    2006-01-01

    We present a class of non-Gaussian two-mode continuous-variable states for which the separability criterion for Gaussian states can be employed to detect whether they are separable or not. These states reduce to the two-mode Gaussian states as a special case

  2. Structure formation from non-Gaussian initial conditions: Multivariate biasing, statistics, and comparison with N-body simulations

    International Nuclear Information System (INIS)

    Giannantonio, Tommaso; Porciani, Cristiano

    2010-01-01

    We study structure formation in the presence of primordial non-Gaussianity of the local type with parameters f NL and g NL . We show that the distribution of dark-matter halos is naturally described by a multivariate bias scheme where the halo overdensity depends not only on the underlying matter density fluctuation δ but also on the Gaussian part of the primordial gravitational potential φ. This corresponds to a non-local bias scheme in terms of δ only. We derive the coefficients of the bias expansion as a function of the halo mass by applying the peak-background split to common parametrizations for the halo mass function in the non-Gaussian scenario. We then compute the halo power spectrum and halo-matter cross spectrum in the framework of Eulerian perturbation theory up to third order. Comparing our results against N-body simulations, we find that our model accurately describes the numerical data for wave numbers k≤0.1-0.3h Mpc -1 depending on redshift and halo mass. In our multivariate approach, perturbations in the halo counts trace φ on large scales, and this explains why the halo and matter power spectra show different asymptotic trends for k→0. This strongly scale-dependent bias originates from terms at leading order in our expansion. This is different from what happens using the standard univariate local bias where the scale-dependent terms come from badly behaved higher-order corrections. On the other hand, our biasing scheme reduces to the usual local bias on smaller scales, where |φ| is typically much smaller than the density perturbations. We finally discuss the halo bispectrum in the context of multivariate biasing and show that, due to its strong scale and shape dependence, it is a powerful tool for the detection of primordial non-Gaussianity from future galaxy surveys.

  3. Coherence degree of the fundamental Bessel-Gaussian beam in turbulent atmosphere

    Science.gov (United States)

    Lukin, Igor P.

    2017-11-01

    In this article the coherence of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is analyzed. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian optical beam of optical radiation. The behavior of a coherence degree of a fundamental Bessel-Gaussian optical beam depending on parameters of an optical beam and characteristics of turbulent atmosphere is examined. It was revealed that at low levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam has the characteristic oscillating appearance. At high levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam is described by an one-scale decreasing curve which in process of increase of level of fluctuations on a line of formation of a laser beam becomes closer to the same characteristic of a spherical optical wave.

  4. Improving the gaussian effective potential: quantum mechanics

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Thomaz, M.T.; Lemos, N.A.

    1990-08-01

    In order to gain intuition for variational problems in field theory, we analyze variationally the quantum-mechanical anharmonic oscillator [(V(x)sup(k) - sub(2) x sup(2) + sup(λ) - sub(4) λ sup(4)]. Special attention is paid to improvements to the Gaussian effective potential. (author)

  5. Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables

    KAUST Repository

    Jardak, Seifallah

    2012-11-01

    The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.

  6. Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2012-01-01

    The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.

  7. Non-gaussianity from the trispectrum and vector field perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela-Toledo, Cesar A., E-mail: cavalto@ciencias.uis.edu.c [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia); Rodriguez, Yeinzon, E-mail: yeinzon.rodriguez@uan.edu.c [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia); Centro de Investigaciones, Universidad Antonio Narino, Cra 3 Este 47A-15, Bogota D.C. (Colombia)

    2010-03-01

    We use the deltaN formalism to study the trispectrum T{sub z}eta of the primordial curvature perturbation zeta when the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions. The order of magnitude of the level of non-gaussianity in the trispectrum, tau{sub NL}, is calculated in this scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, f{sub NL}, and the level of statistical anisotropy in the power spectrum, g{sub z}eta. Such consistency relations will put under test this scenario against future observations. Comparison with the expected observational bound on tau{sub NL} from WMAP, for generic inflationary models, is done.

  8. Operator ordering in quantum mechanics and quantum gravity

    International Nuclear Information System (INIS)

    Christodoulakis, T.; Zanelli, J.

    1984-05-01

    A non-perturbative approach to the quantization of the canonical algebra of pure gravity is presented. The problem of factor ordering of operators in the constraints H-caretsub(μ)psi=0 is resolved invoking hermiticity under the invariant inner product in hyperspace - the space of all three-dimensional metrics gsub(ij)(x) - and covariance under coordinate transformations. The resulting operators H-caretsub(μ) receive corrections of order h and h 2 only, and the algebra closes up to a conformal anomaly term. It is argued that, by a convenient choice of gauge, the anomalous term can be removed. (author)

  9. Additivity properties of a Gaussian channel

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth

    2004-01-01

    The Amosov-Holevo-Werner conjecture implies the additivity of the minimum Renyi entropies at the output of a channel. The conjecture is proven true for all Renyi entropies of integer order greater than two in a class of Gaussian bosonic channel where the input signal is randomly displaced or where it is coupled linearly to an external environment

  10. SyntEyes KTC: higher order statistical eye model for developing keratoconus.

    Science.gov (United States)

    Rozema, Jos J; Rodriguez, Pablo; Ruiz Hidalgo, Irene; Navarro, Rafael; Tassignon, Marie-José; Koppen, Carina

    2017-05-01

    To present and validate a stochastic eye model for developing keratoconus to e.g. improve optical corrective strategies. This could be particularly useful for researchers that do not have access to original keratoconic data. The Scheimpflug tomography, ocular biometry and wavefront of 145 keratoconic right eyes were collected. These data were processed using principal component analysis for parameter reduction, followed by a multivariate Gaussian fit that produces a stochastic model for keratoconus (SyntEyes KTC). The output of this model is filtered to remove the occasional incorrect topography patterns by either an automatic or manual procedure. Finally, the output of this keratoconus model is matched to that of the original model for normal eyes using the non-corneal biometry to obtain a description of keratoconus development. The synthetic data generated by the model were found to be significantly equal to the original data (non-parametric Mann-Whitney equivalence test; 145/154 passed). The variability of the synthetic data, however, was often significantly less than that of the original data, especially for the higher order Zernike terms of corneal elevation (non-parametric Levene test; p eyes with incorrect topographies. Interpolation between matched pairs of normal and keratoconic SyntEyes appears to provide an adequate model for keratoconus progression. The synthetic data provided by the proposed keratoconus model closely resembles actual clinical data and may be used for a range of research applications when (sufficient) real data is not available. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  11. Relativistic effects and primordial non-Gaussianity in the galaxy bias

    International Nuclear Information System (INIS)

    Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio

    2011-01-01

    When dealing with observables, one needs to generalize the bias relation between the observed galaxy fluctuation field to the underlying matter distribution in a gauge-invariant way. We provide such relation at second-order in perturbation theory adopting the local Eulerian bias model and starting from the observationally motivated uniform-redshift gauge. Our computation includes the presence of primordial non-Gaussianity. We show that large scale-dependent relativistic effects in the Eulerian bias arise independently from the presence of some primordial non-Gaussianity. Furthermore, the Eulerian bias inherits from the primordial non-Gaussianity not only a scale-dependence, but also a modulation with the angle of observation when sources with different biases are correlated

  12. Generating higher-order Lie algebras by expanding Maurer-Cartan forms

    International Nuclear Information System (INIS)

    Caroca, R.; Merino, N.; Salgado, P.; Perez, A.

    2009-01-01

    By means of a generalization of the Maurer-Cartan expansion method, we construct a procedure to obtain expanded higher-order Lie algebras. The expanded higher-order Maurer-Cartan equations for the case G=V 0 +V 1 are found. A dual formulation for the S-expansion multialgebra procedure is also considered. The expanded higher-order Maurer-Cartan equations are recovered from S-expansion formalism by choosing a special semigroup. This dual method could be useful in finding a generalization to the case of a generalized free differential algebra, which may be relevant for physical applications in, e.g., higher-spin gauge theories.

  13. Modular specification and verification for higher-order languages with state

    DEFF Research Database (Denmark)

    Svendsen, Kasper

    The overall topic of this thesis is modular reasoning for higher-order languages with state. The thesis consists of four mostly independent chapters that each deal with a different aspect of reasoning about higher-order languages with state. The unifying theme throughout all four chapters is higher....... The third chapter of the thesis is a case study of the C# joins library. What makes this library interesting as a case study is that it combines a lot of advanced features (higher-order code with effects, concurrency, recursion through the store, shared mutable state, and fine-grained synchronization...

  14. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.

    Science.gov (United States)

    Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2016-06-27

    We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.

  15. Finding Higher Order Differentials of MISTY1

    Science.gov (United States)

    Tsunoo, Yukiyasu; Saito, Teruo; Kawabata, Takeshi; Nakagawa, Hirokatsu

    MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it is recommended for Japanese e-Government ciphers by the CRYPTREC project. In this paper, we report on 12th order differentials in 3-round MISTY1 with FL functions and 44th order differentials in 4-round MISTY1 with FL functions both previously unknown. We also report that both data complexity and computational complexity of higher order differential attacks on 6-round MISTY1 with FL functions and 7-round MISTY1 with FL functions using the 46th order differential can be reduced to as much as 1/22 of the previous values by using multiple 44th order differentials simultaneously.

  16. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification

    Science.gov (United States)

    Kim, Tae Won; Barry, James P.

    2016-09-01

    Despite rapidly growing interest in the effects of ocean acidification on marine animals, the ability of deep-sea animals to acclimate or adapt to reduced pH conditions has received little attention. Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species because they inhabit relatively stable conditions for nearly all environmental parameters. To explore whether deep-sea hermit crabs ( Pagurus tanneri) can acclimate to ocean acidification over several weeks, we compared behavioral "boldness," measured as time taken to re-emerge from shells after a simulated predatory attack by a toy octopus, under ambient (pH ˜7.6) and expected future (pH ˜7.1) conditions. The boldness measure for crab behavioral responses did not differ between different pH treatments, suggesting that future deep-sea acidification would not influence anti-predatory behavior. However, we did not examine the effects of olfactory cues released by predators that may affect hermit crab behavior and could be influenced by changes in the ocean carbonate system driven by increasing CO2 levels.

  17. Practical implementation of a higher order transverse leakage approximation

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomašević

    2011-01-01

    Transverse integrated nodal diffusion methods currently represent the standard in full core neutronic simulation. The primary shortcoming in this approach, be it via the Analytic Nodal Method or Nodal Expansion Method, is the utilization of the quadratic transverse leakage approximation. This approach, although proven to work well for typical LWR problems, is not consistent with the formulation of nodal methods and can cause accuracy and convergence problems. In this work an improved, consistent quadratic leakage approximation is formulated, which derives from the class of higher order nodal methods developed some years ago. In this new approach, only information relevant to describing the transverse leak- age terms in the zero-order nodal equations are obtained from the higher order formalism. The method yields accuracy comparable to full higher order methods, but does not suffer from the same computational burden which these methods typically incur. (author)

  18. Higher class groups of Eichler orders

    International Nuclear Information System (INIS)

    Guo Xuejun; Kuku, Aderemi

    2003-11-01

    In this paper, we prove that if A is a quaternion algebra and Λ an Eichler order in A, then the only p-torsion possible in even dimensional higher class groups Cl 2n (Λ) (n ≥ 1) are for those rational primes p which lie under prime ideals of O F at which Λ are not maximal. (author)

  19. Higher-Order Integral Equation Methods in Computational Electromagnetics

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Meincke, Peter

    Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...

  20. Theoretical analysis of non-Gaussian heterogeneity effects on subsurface flow and transport

    Science.gov (United States)

    Riva, Monica; Guadagnini, Alberto; Neuman, Shlomo P.

    2017-04-01

    Much of the stochastic groundwater literature is devoted to the analysis of flow and transport in Gaussian or multi-Gaussian log hydraulic conductivity (or transmissivity) fields, Y(x)=ln\\func K(x) (x being a position vector), characterized by one or (less frequently) a multiplicity of spatial correlation scales. Yet Y and many other variables and their (spatial or temporal) increments, ΔY, are known to be generally non-Gaussian. One common manifestation of non-Gaussianity is that whereas frequency distributions of Y often exhibit mild peaks and light tails, those of increments ΔY are generally symmetric with peaks that grow sharper, and tails that become heavier, as separation scale or lag between pairs of Y values decreases. A statistical model that captures these disparate, scale-dependent distributions of Y and ΔY in a unified and consistent manner has been recently proposed by us. This new "generalized sub-Gaussian (GSG)" model has the form Y(x)=U(x)G(x) where G(x) is (generally, but not necessarily) a multiscale Gaussian random field and U(x) is a nonnegative subordinator independent of G. The purpose of this paper is to explore analytically, in an elementary manner, lead-order effects that non-Gaussian heterogeneity described by the GSG model have on the stochastic description of flow and transport. Recognizing that perturbation expansion of hydraulic conductivity K=eY diverges when Y is sub-Gaussian, we render the expansion convergent by truncating Y's domain of definition. We then demonstrate theoretically and illustrate by way of numerical examples that, as the domain of truncation expands, (a) the variance of truncated Y (denoted by Yt) approaches that of Y and (b) the pdf (and thereby moments) of Yt increments approach those of Y increments and, as a consequence, the variogram of Yt approaches that of Y. This in turn guarantees that perturbing Kt=etY to second order in σYt (the standard deviation of Yt) yields results which approach those we obtain

  1. Time-Discrete Higher-Order ALE Formulations: Stability

    KAUST Repository

    Bonito, Andrea

    2013-01-01

    Arbitrary Lagrangian Eulerian (ALE) formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. This arbitrary extension has no effect on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time-dependent advection-diffusion-model problem in moving domains, and study their stability properties. The analysis hinges on the validity of the Reynold\\'s identity for dG. Exploiting the variational structure and assuming exact integration, we prove that our conservative and nonconservative dG schemes are equivalent and unconditionally stable. The same results remain true for piecewise polynomial ALE maps of any degree and suitable quadrature that guarantees the validity of the Reynold\\'s identity. This approach generalizes the so-called geometric conservation law to higher-order methods. We also prove that simpler Runge-Kutta-Radau methods of any order are conditionally stable, that is, subject to a mild ALE constraint on the time steps. Numerical experiments corroborate and complement our theoretical results. © 2013 Society for Industrial and Applied Mathematics.

  2. Efficient modeling of photonic crystals with local Hermite polynomials

    International Nuclear Information System (INIS)

    Boucher, C. R.; Li, Zehao; Albrecht, J. D.; Ram-Mohan, L. R.

    2014-01-01

    Developing compact algorithms for accurate electrodynamic calculations with minimal computational cost is an active area of research given the increasing complexity in the design of electromagnetic composite structures such as photonic crystals, metamaterials, optical interconnects, and on-chip routing. We show that electric and magnetic (EM) fields can be calculated using scalar Hermite interpolation polynomials as the numerical basis functions without having to invoke edge-based vector finite elements to suppress spurious solutions or to satisfy boundary conditions. This approach offers several fundamental advantages as evidenced through band structure solutions for periodic systems and through waveguide analysis. Compared with reciprocal space (plane wave expansion) methods for periodic systems, advantages are shown in computational costs, the ability to capture spatial complexity in the dielectric distributions, the demonstration of numerical convergence with scaling, and variational eigenfunctions free of numerical artifacts that arise from mixed-order real space basis sets or the inherent aberrations from transforming reciprocal space solutions of finite expansions. The photonic band structure of a simple crystal is used as a benchmark comparison and the ability to capture the effects of spatially complex dielectric distributions is treated using a complex pattern with highly irregular features that would stress spatial transform limits. This general method is applicable to a broad class of physical systems, e.g., to semiconducting lasers which require simultaneous modeling of transitions in quantum wells or dots together with EM cavity calculations, to modeling plasmonic structures in the presence of EM field emissions, and to on-chip propagation within monolithic integrated circuits

  3. The Higher Order Structure of Environmental Attitudes: A Cross-Cultural Examination

    Directory of Open Access Journals (Sweden)

    Taciano L. Milfont

    2010-01-01

    Full Text Available Past research has suggested that Preservation and Utilization are the two higher order dimensions forming the hierarchical structure of environmental attitudes. This means that these two higher order dimensions could group all kinds of perceptions or beliefs regarding the natural environment people have. A crosscultural study was conducted in Brazil, New Zealand, and South Africa to test this hierarchical structure of environmental attitudes. Results from single- and multi-group confirmatory factor analyses demonstrated that environmental attitudes are a multidimensional construct, and that their first-order factors associate to each other to form a vertical structure. However, the question whether the vertical structure comprise a single higher order factor or two higher order factors still remains unanswered. These results are discussed and directions for future research trying to demonstrate that Preservation and Utilization, taken as distinct second-order environmental attitudes factors, are more empirically meaningful than a single and generalised environmental attitudes higher order factor are presented.

  4. Modified Hermite Pulse-Based Wideband Communication for High-Speed Data Transfer in Wireless Sensor Applications

    Directory of Open Access Journals (Sweden)

    Kushal P. Pradhan

    2017-12-01

    Full Text Available With technological advances in the field of communication, the need for reliable high-speed data transfer is increasing. The deployment of large number of wireless sensors for remote monitoring and control and streaming of high definition video, voice and image data, etc. are imposing a challenge to the existing network bandwidth allocation for reliable communication. Two novel schemes for ultra-wide band (UWB communication technology have been proposed in this paper with the key objective of intensifying the data rate by taking advantage of the orthogonal properties of the modified Hermite pulse (MHP. In the first scheme, a composite pulse is transmitted and in the second scheme, a sequence of multi-order orthogonal pulses is transmitted in the place of a single UWB pulse. The MHP pulses exhibit a mutually orthogonal property between different ordered pulses and due to this property, simultaneous transmission is achieved without collision in the UWB system, resulting in an increase in transmission capacity or improved bit error rate. The proposed schemes for enhanced data rate will offer high volume data monitoring, assessment, and control of wireless devices without overburdening the network bandwidth and pave the way for new platforms for future high-speed wireless sensor applications.

  5. Paint stripping with high power flattened Gaussian beams

    CSIR Research Space (South Africa)

    Forbes, A

    2009-08-01

    Full Text Available In this paper the researchers present results on improved paint stripping performance with an intra-cavity generated Flattened Gaussian Beam (FGB). A resonator with suitable diffractive optical elements was designed in order to produce a single mode...

  6. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Troisi, Antonio [Universita degli Studi di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Salerno (Italy)

    2017-03-15

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f(R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R) = f{sub 0}R{sup n} the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions. (orig.)

  7. Higher-order chaotic oscillator using active bessel filter

    DEFF Research Database (Denmark)

    Lindberg, Erik; Mykolaitis, Gytis; Bumelien, Skaidra

    2010-01-01

    A higher-order oscillator, including a nonlinear unit and an 8th-order low-pass active Bessel filter is described. The Bessel unit plays the role of "three-in-one": a delay line, an amplifier and a filter. Results of hardware experiments and numerical simulation are presented. Depending...

  8. Higher order multipoles and splines in plasma simulations

    International Nuclear Information System (INIS)

    Okuda, H.; Cheng, C.Z.

    1978-01-01

    The reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and the spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular the spline method may be useful in three-dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length. (Auth.)

  9. Higher-order multipoles and splines in plasma simulations

    International Nuclear Information System (INIS)

    Okuda, H.; Cheng, C.Z.

    1977-12-01

    Reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular, spline method may be useful in three dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length

  10. An integrative approach-using field and laboratory data to characterize shell utilization and selection pattern by the hermit crab Pagurus criniticornis (Paguridae from Anchieta Island, Brazil

    Directory of Open Access Journals (Sweden)

    Fernando L. Mantelatto

    Full Text Available Abstract The aim of this study was to characterize the pattern of gastropod shell occupation in the field and selection of shell size and type under laboratory conditions by the hermit crab Pagurus criniticornis (Dana, 1852, inhabiting the infralittoral area of Anchieta Island, São Paulo, Brazil. Hermit crabs were obtained monthly during 1999 by SCUBA diving. For experiments under laboratory conditions, samplings were performed in 2002. The hermit crabs occupied 16 species of gastropods shells. Cerithium atratum (Born, 1778 was the most occupied shell (89.31%, followed by Morula nodulosa (4.73% (Adams, 1845. No difference was observed in the pattern of occupation between males and females. The equations that best demonstrated the relationship between hermit crabs and their shells were those that involved Shell Wet Weight (SWW and Shell Internal Volume (SIV. The laboratory experiments were in accordance to the pattern of occupation observed in the field; the mean value of SAI (Shell Adequacy Index recorded to the population studied was 1.13 with a trend to increase this value in the last size classes. The results obtained corroborate with the hypothesis of the occupation process of shells governed not only by availability of shells, but also by its architecture. In addition, the shell stock in the area is one another important condition related to the exhibited pattern of shell occupation by P. criniticornis, and allows the stable coexistence among the island assemblage. The pattern of occupation observed promotes a high reproductive profile for the population studied, maximizing the populational growth.

  11. A Bernoulli Gaussian Watermark for Detecting Integrity Attacks in Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Weerakkody, Sean [Carnegie Mellon Univ., Pittsburgh, PA (United States); Ozel, Omur [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sinopoli, Bruno [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-11-02

    We examine the merit of Bernoulli packet drops in actively detecting integrity attacks on control systems. The aim is to detect an adversary who delivers fake sensor measurements to a system operator in order to conceal their effect on the plant. Physical watermarks, or noisy additive Gaussian inputs, have been previously used to detect several classes of integrity attacks in control systems. In this paper, we consider the analysis and design of Gaussian physical watermarks in the presence of packet drops at the control input. On one hand, this enables analysis in a more general network setting. On the other hand, we observe that in certain cases, Bernoulli packet drops can improve detection performance relative to a purely Gaussian watermark. This motivates the joint design of a Bernoulli-Gaussian watermark which incorporates both an additive Gaussian input and a Bernoulli drop process. We characterize the effect of such a watermark on system performance as well as attack detectability in two separate design scenarios. Here, we consider a correlation detector for attack recognition. We then propose efficiently solvable optimization problems to intelligently select parameters of the Gaussian input and the Bernoulli drop process while addressing security and performance trade-offs. Finally, we provide numerical results which illustrate that a watermark with packet drops can indeed outperform a Gaussian watermark.

  12. The properties of the dark matter halo distribution in non-Gaussian scenarios

    International Nuclear Information System (INIS)

    Carbone, C.; Branchini, E.; Dolag, K.; Grossi, M.; Iannuzzi, F.; Matarrese, S.; Moscardini, L.; Verde, L.

    2009-01-01

    The description of halo abundance and clustering for non-Gaussian initial conditions has recently received renewed interest, motivated by the forthcoming large galaxy and cluster surveys, which can potentially detect primordial non-Gaussianity of the local form with a non-Gaussianity parameter |f NL | of order unity. This is particularly exciting because, while the simplest single-field slow-roll models of inflation predict a primordial |f NL | NL of large-scale structures that are expected to be above the predicted detection threshold [C. Carbone, L. Verde, and S. Matarrese, ApJL 684 (2008) L1]. We present tests on N-body simulations of analytical formulae describing the halo abundance and clustering for non-Gaussian initial conditions. In particular, when we calibrate the analytic non-Gaussian mass function of [S. Matarrese, L. Verde, L. and R. Jimenez, ApJL 541 (2000) 10] and [M. LoVerde, A. Miller, S. Shandera and L. Verde, JCAP 04 (2008) 014] and the analytic description of halo clustering for non-Gaussian initial conditions on N-body simulations, we find excellent agreement between the simulations and the analytic predictions if we make the substitutions δ c →δ c x√(q) and δ c →δ c xq where q≅0.75, in the density threshold for gravitational collapse and in the non-Gaussian fractional correction to the halo bias, respectively. We discuss the implications of these corrections on present and forecasted primordial non-Gaussianity constraints. We confirm that the non-Gaussian halo bias offers a robust and highly competitive test of primordial non-Gaussianity.

  13. All-optical temporal integration of ultrafast pulse waveforms.

    Science.gov (United States)

    Park, Yongwoo; Ahn, Tae-Jung; Dai, Yitang; Yao, Jianping; Azaña, José

    2008-10-27

    An ultrafast all-optical temporal integrator is experimentally demonstrated. The demonstrated integrator is based on a very simple and practical solution only requiring the use of a widely available all-fiber passive component, namely a reflection uniform fiber Bragg grating (FBG). This design allows overcoming the severe speed (bandwidth) limitations of the previously demonstrated photonic integrator designs. We demonstrate temporal integration of a variety of ultrafast optical waveforms, including Gaussian, odd-symmetry Hermite Gaussian, and (odd-)symmetry double pulses, with temporal features as fast as ~6-ps, which is about one order of magnitude faster than in previous photonic integration demonstrations. The developed device is potentially interesting for a multitude of applications in all-optical computing and information processing, ultrahigh-speed optical communications, ultrafast pulse (de-)coding, shaping and metrology.

  14. Higher-order dynamical effects in Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.

    1994-06-01

    We study the effect of higher-order processes in Coulomb dissociation of 11 Li by numerically solving the three-dimensional time-dependent Schroedinger equation for the relative motion of a di-neutron and the 9 Li core. Comparisons are made to first-order perturbation theory and to measurements. The calculated Coulomb reacceleration effects improve the agreement with experiment, but some discrepancy remains. The effects are much smaller in the dissociation of 11 Be, and they decrease with increasing beam energy. (orig.)

  15. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...

  16. Structured Laguerre-Gaussian beams for mitigation of spherical aberration in tightly focused regimes

    Science.gov (United States)

    Haddadi, S.; Bouzid, O.; Fromager, M.; Hasnaoui, A.; Harfouche, A.; Cagniot, E.; Forbes, A.; Aït-Ameur, K.

    2018-04-01

    Many laser applications utilise a focused laser beam having a single-lobed intensity profile in the focal plane, ideally with the highest possible on-axis intensity. Conventionally, this is achieved with the lowest-order Laguerre-Gaussian mode (LG00), the Gaussian beam, in a tight focusing configuration. However, tight focusing often involves significant spherical aberration due to the high numerical aperture of the systems involved, thus degrading the focal quality. Here, we demonstrate that a high-order radial LG p0 mode can be tailored to meet and in some instances exceed the performance of the Gaussian. We achieve this by phase rectification of the mode using a simple binary diffractive optic. By way of example, we show that the focusing of a rectified LG50 beam is almost insensitive to a spherical aberration coefficient of over three wavelengths, in contrast with the usual Gaussian beam for which the intensity of the focal spot is reduced by a factor of two. This work paves the way towards enhanced focal spots using structured light.

  17. Interactions, strings and isotopies in higher order anisotropic superspaces

    CERN Document Server

    Vacaru, Sergiu Ion

    2001-01-01

    The monograph summarizes the author's results on the geometry of anholonomic and locally anisotropic interactions, published in J. Math. Phys., Nucl. Phys. B, Ann. Phys. (NY), JHEP, Rep. Math. Phys., Int. J. Theor. Phys. and in some former Soviet Union and Romanian scientific journals. The main subjects are in the theory of field interactions, strings and diffusion processes on spaces, superspaces and isospaces with higher order anisotropy and inhomogeneity. The approach proceeds by developing the concept of higher order anisotropic (super)space which unifies the logical and manthematical aspects of modern Kaluza--Klein theories and generalized Lagrange and Finsler geometry and leads to modeling of physical processes on higher order fiber (super)bundles provided with nonlinear and distinguished connections and metric structures. This book can be also considered as a pedagogical survey on the mentioned subjects.

  18. The differential geometry of higher order jets and tangent bundles

    International Nuclear Information System (INIS)

    De Leon, M.; Rodrigues, P.R.

    1985-01-01

    This chapter is devoted to the study of basic geometrical notions required for the development of the main object of the text. Some facts about Jet theory are reviewed. A particular case of Jet manifolds is considered: the tangent bundle of higher order. It is shown that this jet bundle possesses in a canonical way a certain kind of geometric structure, the so called almost tangent structure of higher order, and which is a generalization of the almost tangent geometry of the tangent bundle. Another important fact examined is the extension of the notion of 'spray' to higher order tangent bundles. (Auth.)

  19. Linear matrix differential equations of higher-order and applications

    Directory of Open Access Journals (Sweden)

    Mustapha Rachidi

    2008-07-01

    Full Text Available In this article, we study linear differential equations of higher-order whose coefficients are square matrices. The combinatorial method for computing the matrix powers and exponential is adopted. New formulas representing auxiliary results are obtained. This allows us to prove properties of a large class of linear matrix differential equations of higher-order, in particular results of Apostol and Kolodner are recovered. Also illustrative examples and applications are presented.

  20. Higher order corrections in quantum electrodynamics

    International Nuclear Information System (INIS)

    Rafael, E.

    1977-01-01

    Theoretical contributions to high-order corrections in purely leptonic systems, such as electrons and muons, muonium (μ + e - ) and positronium (e + e - ), are reviewed to establish the validity of quantum electrodynamics (QED). Two types of QED contributions to the anomalous magnetic moments are considered, from diagrams with one fermion type lines and those witn two fermion type lines. The contributions up to eighth order are compared to the data available with a different accuracy. Good agreement is stated within the experimental errors. The experimental accuracy of the muonium hyperfine structure and of the radiative corrections to the decay of positronium are compared to the one attainable in theoretical calculations. The need for a higher precision in both experimental data and theoretical calculations is stated

  1. Errors of first-order probe correction for higher-order probes in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Nielsen, Jeppe Majlund; Pivnenko, Sergiy

    2004-01-01

    An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe.......An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe....

  2. Simple form for the Gaussian equations in curved space

    International Nuclear Information System (INIS)

    Mazzitelli, F.D.; Paz, J.P.

    1988-01-01

    We show that the variational Gaussian equations for λphi 4 theory in an arbitrary background gravitational field admit a simple form, which allows the use of a Schwinger-DeWitt-type expansion in order to renormalize them

  3. MIMO processing based on higher-order Poincaré spheres

    Science.gov (United States)

    Fernandes, Gil M.; Muga, Nelson J.; Pinto, Armando N.

    2017-08-01

    A multi-input multi-output (MIMO) algorithm based on higher-order Poincaré spheres is demonstrated for space-division multiplexing (SDM) systems. The MIMO algorithm is modulation format agnostic, robust to frequency offset and does not require training sequences. In this approach, the space-multiplexed signal is decomposed in sets of two tributary signals, with each set represented in a higher-order Poincaré sphere. For any arbitrary complex modulation format, the samples of two tributaries can be represented in a given higher-order Poincaré sphere with a symmetry plane. The crosstalk along propagation changes the spatial orientation of this plane and, therefore, it can be compensated by computing and realigning the best fit plane. We show how the transmitted signal can be successfully recovered using this procedure for all possible combinations of tributaries. Moreover, we analyze the convergence speed for the MIMO technique considering several optical-to-noise ratios.

  4. Morphology and histochemistry of the aesthetasc-associated epidermal glands in terrestrial hermit crabs of the genus Coenobita (Decapoda: Paguroidea.

    Directory of Open Access Journals (Sweden)

    Oksana Tuchina

    Full Text Available Crustaceans have successfully adapted to a variety of environments including fresh- and saltwater as well as land. Transition from an aquatic to a terrestrial lifestyle required adaptations of the sensory equipment of an animal, particularly in olfaction, where the stimulus itself changes from hydrophilic to mainly hydrophobic, air-borne molecules. Hermit crabs Coenobita spp. (Anomura, Coenobitidae have adapted to a fully terrestrial lifestyle as adults and have been shown to rely on olfaction in order to detect distant food items. We observed that the specialized olfactory sensilla in Coenobita, named aesthetascs, are immersed in a layer of mucous-like substance. We hypothesized that the mucous is produced by antennal glands and affects functioning of the aesthetascs. Using various microscopic and histochemical techniques we proved that the mucous is produced by aesthetasc-associated epidermal glands, which we consider to be modified rosette-type aesthetasc tegumental glands known from aquatic decapods. These epidermal glands in Coenobita are multicellular exocrine organs of the recto-canal type with tubulo-acinar arrangement of the secretory cells. Two distinct populations of secretory cells were clearly distinguishable with light and electron microscopy. At least part of the secretory cells contains specific enzymes, CUB-serine proteases, which are likely to be secreted on the surface of the aesthetasc pad and take part in antimicrobial defense. Proteomic analysis of the glandular tissue corroborates the idea that the secretions of the aesthetasc-associated epidermal glands are involved in immune responses. We propose that the mucous covering the aesthetascs in Coenobita takes part in antimicrobial defense and at the same time provides the moisture essential for odor perception in terrestrial hermit crabs. We conclude that the morphological modifications of the aesthetasc-associated epidermal glands as well as the functional characteristics

  5. Vortices in Gaussian beams

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available , t0)} = P(du, dv) {FR{g(u, v, t0)}} Replacement: u→ du = t− t0 i2 ∂ ∂u′ v → dv = t− t0 i2 ∂ ∂v′ CSIR National Laser Centre – p.13/30 Differentiation i.s.o integration Evaluate the integral over the Gaussian beam (once and for all). Then, instead... . Gaussian beams with vortex dipoles CSIR National Laser Centre – p.2/30 Gaussian beam notation Gaussian beam in normalised coordinates: g(u, v, t) = exp ( −u 2 + v2 1− it ) u = xω0 v = yω0 t = zρ ρ = piω20 λ ω0 — 1/e2 beam waist radius; ρ— Rayleigh range ω ω...

  6. Ward identities of higher order Virasoro algebra

    International Nuclear Information System (INIS)

    Zha Chaozeng; Dolate, S.

    1994-11-01

    The general formulations of primary fields versus quasi-primary ones in the context of high order Virasoro algebra (HOVA) and the corresponding Ward identity are explored. The primary fields of conformal spins up to 8 are given in terms of quasi-primary fields, and the general features of the higher order expressions are also discussed. It is observed that the local fields, either primary of quasi-primary, carry the same numbers of central charges, and not all the primary fields contribute to the anomalies in the Ward identities. (author). 6 refs

  7. Higher order perturbation theory - An example for discussion

    International Nuclear Information System (INIS)

    Lewins, J.D.; Parks, G.; Babb, A.L.

    1986-01-01

    Higher order perturbation theory is developed in the form of a Taylor series expansion to third order to calculate the thermal utilization of a nonuniform cell. The development takes advantage of the self-adjoint property of the diffusion operator to provide a simple development of this illustration of generalized perturbation theory employing scalar perturbation parameters. The results show how a designer might employ a second-order theory to quantify proposed design improvements, together with the limitations of second- and third-order theory. The chosen example has an exact optimization solution and thus provides a clear understanding of the role of perturbation theory at its various orders. Convergence and the computational advantages and disadvantages of the method are discussed

  8. Application of Higher-Order Cumulant in Fault Diagnosis of Rolling Bearing

    International Nuclear Information System (INIS)

    Shen, Yongjun; Yang, Shaopu; Wang, Junfeng

    2013-01-01

    In this paper a new method of pattern recognition based on higher-order cumulant and envelope analysis is presented. The core of this new method is to construct analytical signals from the given signals and obtain the envelope signals firstly, then compute and compare the higher-order cumulants of the envelope signals. The higher-order cumulants could be used as a characteristic quantity to distinguish these given signals. As an example, this method is applied in fault diagnosis for 197726 rolling bearing of freight locomotive. The comparisons of the second-order, third-order and fourth-order cumulants of the envelope signals from different vibration signals of rolling bearing show this new method could discriminate the normal and two fault signals distinctly

  9. Distribución de cangrejos ermitaños (Anomura: Paguroidea en el mar Caribe colombiano Hermit crabs (Anomura: Paguroidea distribution patterns in the Colombian Caribbean Sea

    Directory of Open Access Journals (Sweden)

    Bibian Martínez Campos

    2012-03-01

    Full Text Available Los cangrejos ermitaños son un grupo representativo de la fauna marina del Caribe colombiano, además, son importantes en el mantenimiento del equilibrio dinámico, en los ecosistemas por sus interacciones ecológicas y también por el impacto en la estabilidad de las redes tróficas. Sus patrones de distribución se identificaron mediante análisis multivariados de clasificación y ordenación espacial, se usaron registros históricos desde 1916 hasta el 2006. Los resultados indican diferencias por profundidad entre la fauna costera y la del talud continental y diferencias en la distribución latitudinal, en donde se encontraron tres grupos: Noreste, Centro y Suroeste, sustentados por diferencias en la composición faunística. Con base en los mapas de ecosistemas marinos de Colombia, se determinó que los principales factores que afectan su distribución son la influencia del talud Caribaná (profundidad, la temperatura de las masas de agua, las praderas de pastos marinos de la Guajira y las condiciones particulares de las ecorregiones Archipiélagos coralinos y Darién. Se identificó la distribución mundial de las especies colombianas y su afinidad geográfica, y se encontró mayor afinidad con el Atlántico norte y las Antillas que con el Atlántico sur y el Golfo de México, asimismo, las subprovincias geográficas que incluyen a Colombia son zonas de transición dentro de la subprovincias septentrionales y australes del Gran CaribeHermit crabs (Anomura: Paguroidea distribution patterns in the Colombian Caribbean Sea. Hermit crabs represent the marine life in the Colombian Caribbean, and are important for the dynamic equilibrium maintenance in ecosystems, the ecological interactions and their impact on food web stability. Generally, in order to come up with some conservation strategies, strong bio-geographical information is needed for policies definition. With this aim, this study analyzed the distribution patterns of hermit crabs in

  10. Operation of a quasi-optical gyrotron with a gaussian output coupler

    Energy Technology Data Exchange (ETDEWEB)

    Hogge, J.P.; Tran, T.M.; Paris, P.J.; Tran, M.Q. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-03-01

    The operation of a 92 GHz quasi-optical gyrotron (QOG) having a resonator formed by a spherical mirror and a diffraction grating placed in -1 order Littrow mount is presented. A power of 150 kW with a gaussian output pattern was measured. The gaussian content in the output was 98% with less than 1% of depolarization. By optimizing the magnetic field at fixed frequency, a maximum efficiency of 15% was reached. (author) 12 figs., 2 tabs., 22 refs.

  11. Triangular Numbers, Gaussian Integers, and KenKen

    Science.gov (United States)

    Watkins, John J.

    2012-01-01

    Latin squares form the basis for the recreational puzzles sudoku and KenKen. In this article we show how useful several ideas from number theory are in solving a KenKen puzzle. For example, the simple notion of triangular number is surprisingly effective. We also introduce a variation of KenKen that uses the Gaussian integers in order to…

  12. Higher-order risk preferences in social settings.

    Science.gov (United States)

    Heinrich, Timo; Mayrhofer, Thomas

    2018-01-01

    We study prudence and temperance (next to risk aversion) in social settings. Previous experimental studies have shown that these higher-order risk preferences affect the choices of individuals deciding privately on lotteries that only affect their own payoff. Yet, many risky and financially relevant decisions are made in the social settings of households or organizations. We elicit higher-order risk preferences of individuals and systematically vary how an individual's decision is made (alone or while communicating with a partner) and who is affected by the decision (only the individual or the partner as well). In doing so, we can isolate the effects of other-regarding concerns and communication on choices. Our results reveal that the majority of choices are risk averse, prudent, and temperate across social settings. We also observe that individuals are influenced significantly by the preferences of a partner when they are able to communicate and choices are payoff-relevant for both of them.

  13. Mathematics Teachers’ Interpretation of Higher-Order Thinking in Bloom’s Taxonomy

    OpenAIRE

    Tony Thompson

    2008-01-01

    This study investigated mathematics teachers’ interpretation of higher-order thinking in Bloom’s Taxonomy. Thirty-two high school mathematics teachers from the southeast U.S. were asked to (a) define lower- and higher-order thinking, (b) identify which thinking skills in Bloom’s Taxonomy represented lower- and higher-order thinking, and (c) create an Algebra I final exam item representative of each thinking skill. Results indicate that mathematics teachers have difficulty interpreting the thi...

  14. AUTONOMOUS GAUSSIAN DECOMPOSITION

    International Nuclear Information System (INIS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-01-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes

  15. AUTONOMOUS GAUSSIAN DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Heiles, Carl [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Hennebelle, Patrick [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp-CNRS-Université Paris Diderot, F-91191 Gif-sur Yvette Cedex (France); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Dickey, John, E-mail: rlindner@astro.wisc.edu [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  16. Gaussian likelihood inference on data from trans-Gaussian random fields with Matérn covariance function

    KAUST Repository

    Yan, Yuan; Genton, Marc G.

    2017-01-01

    Gaussian likelihood inference has been studied and used extensively in both statistical theory and applications due to its simplicity. However, in practice, the assumption of Gaussianity is rarely met in the analysis of spatial data. In this paper, we study the effect of non-Gaussianity on Gaussian likelihood inference for the parameters of the Matérn covariance model. By using Monte Carlo simulations, we generate spatial data from a Tukey g-and-h random field, a flexible trans-Gaussian random field, with the Matérn covariance function, where g controls skewness and h controls tail heaviness. We use maximum likelihood based on the multivariate Gaussian distribution to estimate the parameters of the Matérn covariance function. We illustrate the effects of non-Gaussianity of the data on the estimated covariance function by means of functional boxplots. Thanks to our tailored simulation design, a comparison of the maximum likelihood estimator under both the increasing and fixed domain asymptotics for spatial data is performed. We find that the maximum likelihood estimator based on Gaussian likelihood is overall satisfying and preferable than the non-distribution-based weighted least squares estimator for data from the Tukey g-and-h random field. We also present the result for Gaussian kriging based on Matérn covariance estimates with data from the Tukey g-and-h random field and observe an overall satisfactory performance.

  17. Gaussian likelihood inference on data from trans-Gaussian random fields with Matérn covariance function

    KAUST Repository

    Yan, Yuan

    2017-07-13

    Gaussian likelihood inference has been studied and used extensively in both statistical theory and applications due to its simplicity. However, in practice, the assumption of Gaussianity is rarely met in the analysis of spatial data. In this paper, we study the effect of non-Gaussianity on Gaussian likelihood inference for the parameters of the Matérn covariance model. By using Monte Carlo simulations, we generate spatial data from a Tukey g-and-h random field, a flexible trans-Gaussian random field, with the Matérn covariance function, where g controls skewness and h controls tail heaviness. We use maximum likelihood based on the multivariate Gaussian distribution to estimate the parameters of the Matérn covariance function. We illustrate the effects of non-Gaussianity of the data on the estimated covariance function by means of functional boxplots. Thanks to our tailored simulation design, a comparison of the maximum likelihood estimator under both the increasing and fixed domain asymptotics for spatial data is performed. We find that the maximum likelihood estimator based on Gaussian likelihood is overall satisfying and preferable than the non-distribution-based weighted least squares estimator for data from the Tukey g-and-h random field. We also present the result for Gaussian kriging based on Matérn covariance estimates with data from the Tukey g-and-h random field and observe an overall satisfactory performance.

  18. Higher-Order Finite Element Solutions of Option Prices

    DEFF Research Database (Denmark)

    Raahauge, Peter

    2004-01-01

    Kinks and jumps in the payoff function of option contracts prevent an effectiveimplementation of higher-order numerical approximation methods. Moreover, thederivatives (the greeks) are not easily determined around such singularities, even withstandard lower-order methods. This paper suggests...... for prices as well as for first and second order derivatives(delta and gamma). Unlike similar studies, numerical approximation errors aremeasured both as weighted averages and in the supnorm over a state space includingtime-to-maturities down to a split second.KEYWORDS: Numerical option pricing, Transformed...

  19. On the velocity space discretization for the Vlasov-Poisson system: comparison between implicit Hermite spectral and Particle-in-Cell methods

    NARCIS (Netherlands)

    E. Camporeale (Enrico); G.L. Delzanno; B.K. Bergen; J.D. Moulton

    2016-01-01

    htmlabstractWe describe a spectral method for the numerical solution of the Vlasov–Poisson system where the velocity space is decomposed by means of an Hermite basis, and the configuration space is discretized via a Fourier decomposition. The novelty of our approach is an implicit time

  20. The Cauchy problem for higher order abstract differential equations

    CERN Document Server

    Xiao, Ti-Jun

    1998-01-01

    This monograph is the first systematic exposition of the theory of the Cauchy problem for higher order abstract linear differential equations, which covers all the main aspects of the developed theory. The main results are complete with detailed proofs and established recently, containing the corresponding theorems for first and incomplete second order cases and therefore for operator semigroups and cosine functions. They will find applications in many fields. The special power of treating the higher order problems directly is demonstrated, as well as that of the vector-valued Laplace transforms in dealing with operator differential equations and operator families. The reader is expected to have a knowledge of complex and functional analysis.

  1. Comparing higher order models for the EORTC QLQ-C30

    DEFF Research Database (Denmark)

    Gundy, Chad M; Fayers, Peter M; Grønvold, Mogens

    2012-01-01

    To investigate the statistical fit of alternative higher order models for summarizing the health-related quality of life profile generated by the EORTC QLQ-C30 questionnaire.......To investigate the statistical fit of alternative higher order models for summarizing the health-related quality of life profile generated by the EORTC QLQ-C30 questionnaire....

  2. Detecting the presence of a magnetic field under Gaussian and non-Gaussian noise by adaptive measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Mei; Li, Jun-Gang, E-mail: jungl@bit.edu.cn; Zou, Jian

    2017-06-15

    Highlights: • Adaptive measurement strategy is used to detect the presence of a magnetic field. • Gaussian Ornstein–Uhlenbeck noise and non-Gaussian noise have been considered. • Weaker magnetic fields may be more easily detected than some stronger ones. - Abstract: By using the adaptive measurement method we study how to detect whether a weak magnetic field is actually present or not under Gaussian noise and non-Gaussian noise. We find that the adaptive measurement method can effectively improve the detection accuracy. For the case of Gaussian noise, we find the stronger the magnetic field strength, the easier for us to detect the magnetic field. Counterintuitively, for non-Gaussian noise, some weaker magnetic fields are more likely to be detected rather than some stronger ones. Finally, we give a reasonable physical interpretation.

  3. Hybrid algorithm of ensemble transform and importance sampling for assimilation of non-Gaussian observations

    Directory of Open Access Journals (Sweden)

    Shin'ya Nakano

    2014-05-01

    Full Text Available A hybrid algorithm that combines the ensemble transform Kalman filter (ETKF and the importance sampling approach is proposed. Since the ETKF assumes a linear Gaussian observation model, the estimate obtained by the ETKF can be biased in cases with nonlinear or non-Gaussian observations. The particle filter (PF is based on the importance sampling technique, and is applicable to problems with nonlinear or non-Gaussian observations. However, the PF usually requires an unrealistically large sample size in order to achieve a good estimation, and thus it is computationally prohibitive. In the proposed hybrid algorithm, we obtain a proposal distribution similar to the posterior distribution by using the ETKF. A large number of samples are then drawn from the proposal distribution, and these samples are weighted to approximate the posterior distribution according to the importance sampling principle. Since the importance sampling provides an estimate of the probability density function (PDF without assuming linearity or Gaussianity, we can resolve the bias due to the nonlinear or non-Gaussian observations. Finally, in the next forecast step, we reduce the sample size to achieve computational efficiency based on the Gaussian assumption, while we use a relatively large number of samples in the importance sampling in order to consider the non-Gaussian features of the posterior PDF. The use of the ETKF is also beneficial in terms of the computational simplicity of generating a number of random samples from the proposal distribution and in weighting each of the samples. The proposed algorithm is not necessarily effective in case that the ensemble is located distant from the true state. However, monitoring the effective sample size and tuning the factor for covariance inflation could resolve this problem. In this paper, the proposed hybrid algorithm is introduced and its performance is evaluated through experiments with non-Gaussian observations.

  4. An R Package for a General Class of Inverse Gaussian Distributions

    Directory of Open Access Journals (Sweden)

    Victor Leiva

    2007-03-01

    Full Text Available The inverse Gaussian distribution is a positively skewed probability model that has received great attention in the last 20 years. Recently, a family that generalizes this model called inverse Gaussian type distributions has been developed. The new R package named ig has been designed to analyze data from inverse Gaussian type distributions. This package contains basic probabilistic functions, lifetime indicators and a random number generator from this model. Also, parameter estimates and diagnostics analysis can be obtained using likelihood methods by means of this package. In addition, goodness-of-fit methods are implemented in order to detect the suitability of the model to the data. The capabilities and features of the ig package are illustrated using simulated and real data sets. Furthermore, some new results related to the inverse Gaussian type distribution are also obtained. Moreover, a simulation study is conducted for evaluating the estimation method implemented in the ig package.

  5. Scalar brane backgrounds in higher order curvature gravity

    International Nuclear Information System (INIS)

    Charmousis, Christos; Davis, Stephen C.; Dufaux, Jean-Francois

    2003-01-01

    We investigate maximally symmetric brane world solutions with a scalar field. Five-dimensional bulk gravity is described by a general lagrangian which yields field equations containing no higher than second order derivatives. This includes the Gauss-Bonnet combination for the graviton. Stability and gravitational properties of such solutions are considered, and we particularly emphasise the modifications induced by the higher order terms. In particular it is shown that higher curvature corrections to Einstein theory can give rise to instabilities in brane world solutions. A method for analytically obtaining the general solution for such actions is outlined. Generically, the requirement of a finite volume element together with the absence of a naked singularity in the bulk imposes fine-tuning of the brane tension. A model with a moduli scalar field is analysed in detail and we address questions of instability and non-singular self-tuning solutions. In particular, we discuss a case with a normalisable zero mode but infinite volume element. (author)

  6. Higher-order RANS turbulence models for separated flows

    Data.gov (United States)

    National Aeronautics and Space Administration — Higher-order Reynolds-averaged Navier-Stokes (RANS) models are developed to overcome the shortcomings of second-moment RANS models in predicting separated flows....

  7. Higher order mode damping of a higher harmonic superconducting cavity for SSRF

    International Nuclear Information System (INIS)

    Yu Haibo; Liu Jianfei; Hou Hongtao; Ma Zhenyu; Feng Xiqiang; Mao Dongqing

    2012-01-01

    Adopting a higher harmonic cavity on a synchrotron radiation facility can increase the beam lifetime and suppress the beam instability. In this paper, we report the simulation and preliminary design on higher order modes (HOMs) damping of the designed and fabricated higher harmonic superconducting cavity for Shanghai Synchrotron Radiation Facility (SSRF). The requirements for the HOM damping are analyzed, and the length and location of the HOM damper are optimized by using the SEAFISH code. The results show that the design can provide heavy damping for harmful HOMs with decreased impedance, and the beam instability requirement of SSRF can be satisfied. By using the ABCI code, the loss factor is obtained and the HOM power is estimated. (authors)

  8. The power of non-determinism in higher-order implicit complexity

    DEFF Research Database (Denmark)

    Kop, Cynthia Louisa Martina; Simonsen, Jakob Grue

    2017-01-01

    We investigate the power of non-determinism in purely functional programming languages with higher-order types. Specifically, we consider cons-free programs of varying data orders, equipped with explicit non-deterministic choice. Cons-freeness roughly means that data constructors cannot occur...... in function bodies and all manipulation of storage space thus has to happen indirectly using the call stack. While cons-free programs have previously been used by several authors to characterise complexity classes, the work on non-deterministic programs has almost exclusively considered programs of data order...... 0. Previous work has shown that adding explicit non-determinism to consfree programs taking data of order 0 does not increase expressivity; we prove that this—dramatically—is not the case for higher data orders: adding non-determinism to programs with data order at least 1 allows...

  9. Geometry of Gaussian quantum states

    International Nuclear Information System (INIS)

    Link, Valentin; Strunz, Walter T

    2015-01-01

    We study the Hilbert–Schmidt measure on the manifold of mixed Gaussian states in multi-mode continuous variable quantum systems. An analytical expression for the Hilbert–Schmidt volume element is derived. Its corresponding probability measure can be used to study typical properties of Gaussian states. It turns out that although the manifold of Gaussian states is unbounded, an ensemble of Gaussian states distributed according to this measure still has a normalizable distribution of symplectic eigenvalues, from which unitarily invariant properties can be obtained. By contrast, we find that for an ensemble of one-mode Gaussian states based on the Bures measure the corresponding distribution cannot be normalized. As important applications, we determine the distribution and the mean value of von Neumann entropy and purity for the Hilbert–Schmidt measure. (paper)

  10. PRE-SERVICE MATHEMATICS TEACHERS’ CONCEPTION OF HIGHER-ORDER THINKING LEVEL IN BLOOM'S TAXONOMY

    OpenAIRE

    Damianus D Samo

    2017-01-01

    The purpose of this study is to explore pre-service mathematics teachers' conception of higher-order thinking in Bloom's Taxonomy, to explore pre-service mathematics teachers' ability in categorizing six cognitive levels of Bloom's Taxonomy as lower-order thinking and higher-order thinking, and pre-service mathematics teachers' ability in identifying some questionable items as lower-order and higher-order thinking. The higher-order thinking is the type of non-algorithm thinking which include ...

  11. Wigner higher-order spectra: definition, properties, computation and application to transient signal analysis

    OpenAIRE

    Rodríguez Fonollosa, Javier; Nikias, Chrysostomos L.

    1993-01-01

    The Wigner higher order moment spectra (WHOS) are defined as extensions of the Wigner-Ville distribution (WD) to higher order moment spectra domains. A general class of time-frequency higher order moment spectra is also defined in terms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to the properties...

  12. A Novel Bearing Fault Diagnosis Method Based on Gaussian Restricted Boltzmann Machine

    Directory of Open Access Journals (Sweden)

    Xiao-hui He

    2016-01-01

    Full Text Available To realize the fault diagnosis of bearing effectively, this paper presents a novel bearing fault diagnosis method based on Gaussian restricted Boltzmann machine (Gaussian RBM. Vibration signals are firstly resampled to the same equivalent speed. Subsequently, the envelope spectrums of the resampled data are used directly as the feature vectors to represent the fault types of bearing. Finally, in order to deal with the high-dimensional feature vectors based on envelope spectrum, a classifier model based on Gaussian RBM is applied. Gaussian RBM has the ability to provide a closed-form representation of the distribution underlying the training data, and it is very convenient for modeling high-dimensional real-valued data. Experiments on 10 different data sets verify the performance of the proposed method. The superiority of Gaussian RBM classifier is also confirmed by comparing with other classifiers, such as extreme learning machine, support vector machine, and deep belief network. The robustness of the proposed method is also studied in this paper. It can be concluded that the proposed method can realize the bearing fault diagnosis accurately and effectively.

  13. Biasing and the search for primordial non-Gaussianity beyond the local type

    Energy Technology Data Exchange (ETDEWEB)

    Gleyzes, Jérôme; De Putter, Roland; Doré, Olivier [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Green, Daniel, E-mail: jerome.l.gleyzes@jpl.nasa.gov, E-mail: rdputter@caltech.edu, E-mail: drgreen@cita.utoronto.ca, E-mail: olivier.p.dore@jpl.nasa.gov [Department of Physics, University of California, 366 LeConte hall, Berkeley, CA 94720 (United States)

    2017-04-01

    Primordial non-Gaussianity encodes valuable information about the physics of inflation, including the spectrum of particles and interactions. Significant improvements in our understanding of non-Gaussanity beyond Planck require information from large-scale structure. The most promising approach to utilize this information comes from the scale-dependent bias of halos. For local non-Gaussanity, the improvements available are well studied but the potential for non-Gaussianity beyond the local type, including equilateral and quasi-single field inflation, is much less well understood. In this paper, we forecast the capabilities of large-scale structure surveys to detect general non-Gaussianity through galaxy/halo power spectra. We study how non-Gaussanity can be distinguished from a general biasing model and where the information is encoded. For quasi-single field inflation, significant improvements over Planck are possible in some regions of parameter space. We also show that the multi-tracer technique can significantly improve the sensitivity for all non-Gaussianity types, providing up to an order of magnitude improvement for equilateral non-Gaussianity over the single-tracer measurement.

  14. Higher-order Skyrme hair of black holes

    Science.gov (United States)

    Gudnason, Sven Bjarke; Nitta, Muneto

    2018-05-01

    Higher-order derivative terms are considered as replacement for the Skyrme term in an Einstein-Skyrme-like model in order to pinpoint which properties are necessary for a black hole to possess stable static scalar hair. We find two new models able to support stable black hole hair in the limit of the Skyrme term being turned off. They contain 8 and 12 derivatives, respectively, and are roughly the Skyrme-term squared and the so-called BPS-Skyrme-term squared. In the twelfth-order model we find that the lower branches, which are normally unstable, become stable in the limit where the Skyrme term is turned off. We check this claim with a linear stability analysis. Finally, we find for a certain range of the gravitational coupling and horizon radius, that the twelfth-order model contains 4 solutions as opposed to 2. More surprisingly, the lowest part of the would-be unstable branch turns out to be the stable one of the 4 solutions.

  15. Influence of time delay on fractional-order PI-controlled system for a second-order oscillatory plant model with time delay

    Directory of Open Access Journals (Sweden)

    Sadalla Talar

    2017-12-01

    Full Text Available The paper aims at presenting the influence of an open-loop time delay on the stability and tracking performance of a second-order open-loop system and continuoustime fractional-order PI controller. The tuning method of this controller is based on Hermite- Biehler and Pontryagin theorems, and the tracking performance is evaluated on the basis of two integral performance indices, namely IAE and ISE. The paper extends the results and methodology presented in previous work of the authors to analysis of the influence of time delay on the closed-loop system taking its destabilizing properties into account, as well as concerning possible application of the presented results and used models.

  16. The CFS-PML for 2D Auxiliary Differential Equation FDTD Method Using Associated Hermite Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    Feng Jiang

    2017-01-01

    Full Text Available The complex frequency shifted (CFS perfectly matched layer (PML is proposed for the two-dimensional auxiliary differential equation (ADE finite-difference time-domain (FDTD method combined with Associated Hermite (AH orthogonal functions. According to the property of constitutive parameters of CFS-PML (CPML absorbing boundary conditions (ABCs, the auxiliary differential variables are introduced. And one relationship between field components and auxiliary differential variables is derived. Substituting auxiliary differential variables into CPML ABCs, the other relationship between field components and auxiliary differential variables is derived. Then the matrix equations are obtained, which can be unified with Berenger’s PML (BPML and free space. The electric field expansion coefficients can thus be obtained, respectively. In order to validate the efficiency of the proposed method, one example of wave propagation in two-dimensional free space is calculated using BPML, UPML, and CPML. Moreover, the absorbing effectiveness of the BPML, UPML, and CPML is discussed in a two-dimensional (2D case, and the numerical simulations verify the accuracy and efficiency of the proposed method.

  17. Higher order mode damping in Kaon factory RF cavities

    International Nuclear Information System (INIS)

    Enegren, T.; Poirier, R.; Griffin, J.; Walling, L.; Thiessen, H.A.; Smythe, W.R.

    1989-05-01

    Proposed designs for Kaon factory accelerators require that the rf cavities support beam currents on the order of several amperes. The beam current has Fourier components at all multiples of the rf frequency. Empty rf buckets produce additional components at all multiples of the revolution frequency. If a Fourier component of the beam coincides with the resonant frequency of a higher order mode of the cavity, which is inevitable if the cavity has a large frequency swing, significant excitation of this mode can occur. The induced voltage may then excite coupled bunch mode instabilities. Effective means are required to damp higher order modes without significantly affecting the fundamental mode. A mode damping scheme based on coupled transmission lines has been investigated and is report

  18. Fast and Analytical EAP Approximation from a 4th-Order Tensor.

    Science.gov (United States)

    Ghosh, Aurobrata; Deriche, Rachid

    2012-01-01

    Generalized diffusion tensor imaging (GDTI) was developed to model complex apparent diffusivity coefficient (ADC) using higher-order tensors (HOTs) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP). Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.

  19. Higher Order, Hybrid BEM/FEM Methods Applied to Antenna Modeling

    Science.gov (United States)

    Fink, P. W.; Wilton, D. R.; Dobbins, J. A.

    2002-01-01

    In this presentation, the authors address topics relevant to higher order modeling using hybrid BEM/FEM formulations. The first of these is the limitation on convergence rates imposed by geometric modeling errors in the analysis of scattering by a dielectric sphere. The second topic is the application of an Incomplete LU Threshold (ILUT) preconditioner to solve the linear system resulting from the BEM/FEM formulation. The final tOpic is the application of the higher order BEM/FEM formulation to antenna modeling problems. The authors have previously presented work on the benefits of higher order modeling. To achieve these benefits, special attention is required in the integration of singular and near-singular terms arising in the surface integral equation. Several methods for handling these terms have been presented. It is also well known that achieving he high rates of convergence afforded by higher order bases may als'o require the employment of higher order geometry models. A number of publications have described the use of quadratic elements to model curved surfaces. The authors have shown in an EFIE formulation, applied to scattering by a PEC .sphere, that quadratic order elements may be insufficient to prevent the domination of modeling errors. In fact, on a PEC sphere with radius r = 0.58 Lambda(sub 0), a quartic order geometry representation was required to obtain a convergence benefi.t from quadratic bases when compared to the convergence rate achieved with linear bases. Initial trials indicate that, for a dielectric sphere of the same radius, - requirements on the geometry model are not as severe as for the PEC sphere. The authors will present convergence results for higher order bases as a function of the geometry model order in the hybrid BEM/FEM formulation applied to dielectric spheres. It is well known that the system matrix resulting from the hybrid BEM/FEM formulation is ill -conditioned. For many real applications, a good preconditioner is required

  20. Higher Order Thinking Skills among Secondary School Students in Science Learning

    Science.gov (United States)

    Saido, Gulistan Mohammed; Siraj, Saedah; Bin Nordin, Abu Bakar; Al Amedy, Omed Saadallah

    2015-01-01

    A central goal of science education is to help students to develop their higher order thinking skills to enable them to face the challenges of daily life. Enhancing students' higher order thinking skills is the main goal of the Kurdish Science Curriculum in the Iraqi-Kurdistan region. This study aimed at assessing 7th grade students' higher order…

  1. Student's Perceived Level and Teachers' Teaching Strategies of Higher Order Thinking Skills: A Study on Higher Educational Institutions in Thailand

    Science.gov (United States)

    Shukla, Divya; Dungsungnoen, Aj Pattaradanai

    2016-01-01

    Higher order thinking skills (HOTS) has portrayed immense industry demand and the major goal of educational institution in imparting education is to inculcate higher order thinking skills. This compiles and mandate the institutions and instructor to develop the higher order thinking skills among students in order to prepare them for effective…

  2. Treatment of non-Gaussian tails of multiple Coulomb scattering in track fitting with a Gaussian-sum filter

    International Nuclear Information System (INIS)

    Strandlie, A.; Wroldsen, J.

    2006-01-01

    If any of the probability densities involved in track fitting deviate from the Gaussian assumption, it is plausible that a non-linear estimator which better takes the actual shape of the distribution into account can do better. One such non-linear estimator is the Gaussian-sum filter, which is adequate if the distributions under consideration can be approximated by Gaussian mixtures. The main purpose of this paper is to present a Gaussian-sum filter for track fitting, based on a two-component approximation of the distribution of angular deflections due to multiple scattering. In a simulation study within a linear track model the Gaussian-sum filter is shown to be a competitive alternative to the Kalman filter. Scenarios at various momenta and with various maximum number of components in the Gaussian-sum filter are considered. Particularly at low momenta the Gaussian-sum filter yields a better estimate of the uncertainties than the Kalman filter, and it is also slightly more precise than the latter

  3. Palm distributions for log Gaussian Cox processes

    DEFF Research Database (Denmark)

    Coeurjolly, Jean-Francois; Møller, Jesper; Waagepetersen, Rasmus Plenge

    2017-01-01

    This paper establishes a remarkable result regarding Palm distributions for a log Gaussian Cox process: the reduced Palm distribution for a log Gaussian Cox process is itself a log Gaussian Cox process that only differs from the original log Gaussian Cox process in the intensity function. This new...... result is used to study functional summaries for log Gaussian Cox processes....

  4. A quantitative determination of air-water heat fluxes in Hermit Lake, New Hampshire under varying meteorological conditions, time of day, and time of year

    Science.gov (United States)

    Kyper, Nicholas D.

    An extensive heat flux study is performed at Hermit Lake, New Hampshire from May 26, 2010 till November 7, 2010 to determine the effects of the five individual heat fluxes on Hermit Lake and the surrounding amphibian community. Hermit Lake was chosen due to the relatively long meteorological observations record within the White Mountains of New Hampshire, a new lakeside meteorological station, and ongoing phenology studies of the surrounding eco-system. Utilizing meteorological data from the lakeside weather station and moored water temperature sensors, the incident (Qi), blackbody ( Qbnet ), latent (Qe), sensible (Q s), and net (Qn) heat fluxes are calculated. The incident heat flux is the dominate term in the net flux, accounting for 93% of the variance found in Qn and producing a heat gain of ˜ 19x108 J m-2 throughout the period of study. This large gain produces a net gain of heat in the lake until October 1, 2010, where gains by Qi are offset by the large combined losses of Qbnet , Qs, and Qe thereby producing a gradual decline of heat within the lake. The latent and blackbody heat fluxes produce the largest losses of heat in the net heat flux with a total losses of ˜ -8x108 J m-2 and ˜ -7x108 J m-2, respectively. The sensible heat flux is negligible, producing a total minimal loss of ˜ -1x108 J m-2. Overall the net heat produces a net gain of heat of 2x108 J m-2 throughout the study period. Frog calls indicative of breeding are recorded from May 26, 2010 until August 16, 2010. The spring peeper, American toad, and green frog each produced enough actively calling days to be compared to air temperature, surface water temperature, and wind speed data, as well as data from the five heat fluxes. Linear regression analysis reveals that certain water temperature thresholds affect the calling activities of the spring peeper and green frog, while higher wind speeds have a dramatic effect on the calling activities of both the green frog and American toad. All three

  5. Verifying object-oriented programs with higher-order separation logic in Coq

    DEFF Research Database (Denmark)

    Bengtson, Jesper; Jensen, Jonas Braband; Sieczkowski, Filip

    2011-01-01

    We present a shallow Coq embedding of a higher-order separation logic with nested triples for an object-oriented programming language. Moreover, we develop novel specification and proof patterns for reasoning in higher-order separation logic with nested triples about programs that use interfaces...... and interface inheritance. In particular, we show how to use the higher-order features of the Coq formalisation to specify and reason modularly about programs that (1) depend on some unknown code satisfying a specification or that (2) return objects conforming to a certain specification. All of our results have...

  6. Higher-order structure of Saccharomyces cerevisiae chromatin

    International Nuclear Information System (INIS)

    Lowary, P.T.; Widom, J.

    1989-01-01

    We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure

  7. Signed zeros of Gaussian vector fields - density, correlation functions and curvature

    CERN Document Server

    Foltin, G

    2003-01-01

    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.

  8. Higher-order force moments of active particles

    Science.gov (United States)

    Nasouri, Babak; Elfring, Gwynn J.

    2018-04-01

    Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.

  9. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules.

    Science.gov (United States)

    Waldrop, Lindsay D; Koehl, M A R

    2016-01-01

    Capture of odorant molecules by olfactory organs from the surrounding fluid is the first step of smelling. Sniffing intermittently moves fluid across sensory surfaces, increasing delivery rates of molecules to chemosensory receptors and providing discrete odour samples. Aquatic malacostracan crustaceans sniff by flicking olfactory antennules bearing arrays of chemosensory hairs (aesthetascs), capturing water in the arrays during downstroke and holding the sample during return stroke. Terrestrial malacostracans also flick antennules, but how their flicking affects odour capture from air is not understood. The terrestrial hermit crab, Coenobita rugosus, uses antennules bearing shingle-shaped aesthetascs to capture odours. We used particle image velocimetry to measure fine-scale fluid flow relative to a dynamically scaled physical model of a flicking antennule, and computational simulations to calculate diffusion to aesthetascs by odorant molecules carried in that flow. Air does not flow into the aesthetasc array during flick downstrokes or recovery strokes. Odorants are captured from air flowing around the outside of the array during flick downstrokes, when aesthetascs face upstream and molecule capture rates are 21% higher than for stationary antennules. Bursts of flicking followed by pauses deliver discrete odour samples to olfactory sensors, causing intermittency in odour capture by a different mechanism than aquatic crustaceans use. © 2016 The Author(s).

  10. Analysis and Improvement of the Generic Higher-Order Masking Scheme of FSE 2012

    OpenAIRE

    Roy, Arnab; Venkatesh, Srinivas Vivek

    2013-01-01

    Masking is a well-known technique used to prevent block cipher implementations from side-channel attacks. Higher-order side channel attacks (e.g. higher-order DPA attack) on widely used block cipher like AES have motivated the design of efficient higher-order masking schemes. Indeed, it is known that as the masking order increases, the difficulty of side-channel attack increases exponentially. However, the main problem in higher-order masking is to design an efficient and secure technique for...

  11. Recurrent activity in higher order, modality non-specific brain regions

    DEFF Research Database (Denmark)

    Lou, Hans Olav Christensen; Joensson, Morten; Biermann-Ruben, Katja

    2011-01-01

    It has been proposed that the workings of the brain are mainly intrinsically generated recurrent neuronal activity, with sensory inputs as modifiers of such activity in both sensory and higher order modality non-specific regions. This is supported by the demonstration of recurrent neuronal activity...... in the visual system as a response to visual stimulation. In contrast recurrent activity has never been demonstrated before in higher order modality non-specific regions. Using magneto-encephalography and Granger causality analysis, we tested in a paralimbic network the hypothesis that stimulation may enhance...... causal recurrent interaction between higher-order, modality non-specific regions. The network includes anterior cingulate/medial prefrontal and posterior cingulate/medial parietal cortices together with pulvinar thalami, a network known to be effective in autobiographic memory retrieval and self...

  12. Non-Gaussian Autoregressive Processes with Tukey g-and-h Transformations

    KAUST Repository

    Yan, Yuan

    2017-11-20

    When performing a time series analysis of continuous data, for example from climate or environmental problems, the assumption that the process is Gaussian is often violated. Therefore, we introduce two non-Gaussian autoregressive time series models that are able to fit skewed and heavy-tailed time series data. Our two models are based on the Tukey g-and-h transformation. We discuss parameter estimation, order selection, and forecasting procedures for our models and examine their performances in a simulation study. We demonstrate the usefulness of our models by applying them to two sets of wind speed data.

  13. Non-Gaussian Autoregressive Processes with Tukey g-and-h Transformations

    KAUST Repository

    Yan, Yuan; Genton, Marc G.

    2017-01-01

    When performing a time series analysis of continuous data, for example from climate or environmental problems, the assumption that the process is Gaussian is often violated. Therefore, we introduce two non-Gaussian autoregressive time series models that are able to fit skewed and heavy-tailed time series data. Our two models are based on the Tukey g-and-h transformation. We discuss parameter estimation, order selection, and forecasting procedures for our models and examine their performances in a simulation study. We demonstrate the usefulness of our models by applying them to two sets of wind speed data.

  14. Visualization and processing of higher order descriptors for multi-valued data

    CERN Document Server

    Schultz, Thomas

    2015-01-01

    Modern imaging techniques and computational simulations yield complex multi-valued data that require higher-order mathematical descriptors. This book addresses topics of importance when dealing with such data, including frameworks for image processing, visualization, and statistical analysis of higher-order descriptors. It also provides examples of the successful use of higher-order descriptors in specific applications and a glimpse of the next generation of diffusion MRI. To do so, it combines contributions on new developments, current challenges in this area, and state-of-the-art surveys.   Compared to the increasing importance of higher-order descriptors in a range of applications, tools for analysis and processing are still relatively hard to come by. Even though application areas such as medical imaging, fluid dynamics, and structural mechanics are very different in nature they face many shared challenges. This book provides an interdisciplinary perspective on this topic with contributions from key rese...

  15. Breaking Gaussian incompatibility on continuous variable quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Kiukas, Jukka, E-mail: jukka.kiukas@aber.ac.uk [Department of Mathematics, Aberystwyth University, Penglais, Aberystwyth, SY23 3BZ (United Kingdom); Schultz, Jussi, E-mail: jussi.schultz@gmail.com [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2015-08-15

    We characterise Gaussian quantum channels that are Gaussian incompatibility breaking, that is, transform every set of Gaussian measurements into a set obtainable from a joint Gaussian observable via Gaussian postprocessing. Such channels represent local noise which renders measurements useless for Gaussian EPR-steering, providing the appropriate generalisation of entanglement breaking channels for this scenario. Understanding the structure of Gaussian incompatibility breaking channels contributes to the resource theory of noisy continuous variable quantum information protocols.

  16. Analysis of warping deformation modes using higher order ANCF beam element

    Science.gov (United States)

    Orzechowski, Grzegorz; Shabana, Ahmed A.

    2016-02-01

    Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.

  17. Stochastic Parameter Estimation of Non-Linear Systems Using Only Higher Order Spectra of the Measured Response

    Science.gov (United States)

    Vasta, M.; Roberts, J. B.

    1998-06-01

    Methods for using fourth order spectral quantities to estimate the unknown parameters in non-linear, randomly excited dynamic systems are developed. Attention is focused on the case where only the response is measurable and the excitation is unmeasurable and known only in terms of a stochastic process model. The approach is illustrated through application to a non-linear oscillator with both non-linear damping and stiffness and with excitation modelled as a stationary Gaussian white noise process. The methods have applications in studies of the response of structures to random environmental loads, such as wind and ocean wave forces.

  18. Improved Expectation Maximization Algorithm for Gaussian Mixed Model Using the Kernel Method

    Directory of Open Access Journals (Sweden)

    Mohd Izhan Mohd Yusoff

    2013-01-01

    Full Text Available Fraud activities have contributed to heavy losses suffered by telecommunication companies. In this paper, we attempt to use Gaussian mixed model, which is a probabilistic model normally used in speech recognition to identify fraud calls in the telecommunication industry. We look at several issues encountered when calculating the maximum likelihood estimates of the Gaussian mixed model using an Expectation Maximization algorithm. Firstly, we look at a mechanism for the determination of the initial number of Gaussian components and the choice of the initial values of the algorithm using the kernel method. We show via simulation that the technique improves the performance of the algorithm. Secondly, we developed a procedure for determining the order of the Gaussian mixed model using the log-likelihood function and the Akaike information criteria. Finally, for illustration, we apply the improved algorithm to real telecommunication data. The modified method will pave the way to introduce a comprehensive method for detecting fraud calls in future work.

  19. Analysis of multi-species point patterns using multivariate log Gaussian Cox processes

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Guan, Yongtao; Jalilian, Abdollah

    Multivariate log Gaussian Cox processes are flexible models for multivariate point patterns. However, they have so far only been applied in bivariate cases. In this paper we move beyond the bivariate case in order to model multi-species point patterns of tree locations. In particular we address t...... of the data. The selected number of common latent fields provides an index of complexity of the multivariate covariance structure. Hierarchical clustering is used to identify groups of species with similar patterns of dependence on the common latent fields.......Multivariate log Gaussian Cox processes are flexible models for multivariate point patterns. However, they have so far only been applied in bivariate cases. In this paper we move beyond the bivariate case in order to model multi-species point patterns of tree locations. In particular we address...... the problems of identifying parsimonious models and of extracting biologically relevant information from the fitted models. The latent multivariate Gaussian field is decomposed into components given in terms of random fields common to all species and components which are species specific. This allows...

  20. The geometry of higher-order Lagrange spaces applications to mechanics and physics

    CERN Document Server

    Miron, Radu

    1997-01-01

    This monograph is devoted to the problem of the geometrizing of Lagrangians which depend on higher-order accelerations It presents a construction of the geometry of the total space of the bundle of the accelerations of order k>=1 A geometrical study of the notion of the higher-order Lagrange space is conducted, and the old problem of prolongation of Riemannian spaces to k-osculator manifolds is solved Also, the geometrical ground for variational calculus on the integral of actions involving higher-order Lagrangians is dealt with Applications to higher-order analytical mechanics and theoretical physics are included as well Audience This volume will be of interest to scientists whose work involves differential geometry, mechanics of particles and systems, calculus of variation and optimal control, optimization, optics, electromagnetic theory, and biology

  1. Learning non-Gaussian Time Series using the Box-Cox Gaussian Process

    OpenAIRE

    Rios, Gonzalo; Tobar, Felipe

    2018-01-01

    Gaussian processes (GPs) are Bayesian nonparametric generative models that provide interpretability of hyperparameters, admit closed-form expressions for training and inference, and are able to accurately represent uncertainty. To model general non-Gaussian data with complex correlation structure, GPs can be paired with an expressive covariance kernel and then fed into a nonlinear transformation (or warping). However, overparametrising the kernel and the warping is known to, respectively, hin...

  2. Higher-order neural network software for distortion invariant object recognition

    Science.gov (United States)

    Reid, Max B.; Spirkovska, Lilly

    1991-01-01

    The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.

  3. Non-Gaussian halo assembly bias

    International Nuclear Information System (INIS)

    Reid, Beth A.; Verde, Licia; Dolag, Klaus; Matarrese, Sabino; Moscardini, Lauro

    2010-01-01

    The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f NL , offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ∼ 23% and ∼ 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively

  4. Manipulating quantum states with aspheric lenses

    International Nuclear Information System (INIS)

    Wang Zhiwei; Ren Xifeng; Huang Yunfeng; Zhang Yongsheng; Guo Guangcan

    2005-01-01

    We present an experimental demonstration to manipulate the width and position of the down-converted beam waist. Our results can be used to engineer the two-photon orbital angular momentum (OAM) entangled states (such as concentrating OAM entangled states) and generate Hermite-Gaussian (HG) modes entangled states

  5. Inconsistency of Minkowski higher-derivative theories

    Energy Technology Data Exchange (ETDEWEB)

    Aglietti, Ugo G. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); Anselmi, Damiano [Universita di Pisa, Dipartimento di Fisica ' ' Enrico Fermi' ' , Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy)

    2017-02-15

    We show that Minkowski higher-derivative quantum field theories are generically inconsistent, because they generate nonlocal, non-hermitian ultraviolet divergences, which cannot be removed by means of standard renormalization procedures. By ''Minkowski theories'' we mean theories that are defined directly in Minkowski spacetime. The problems occur when the propagators have complex poles, so that the correlation functions cannot be obtained as the analytic continuations of their Euclidean versions. The usual power counting rules fail and are replaced by much weaker ones. Self-energies generate complex divergences proportional to inverse powers of D'Alembertians. Three-point functions give more involved nonlocal divergences, which couple to infrared effects. We illustrate the violations of the locality and hermiticity of counterterms in scalar models and higher-derivative gravity. (orig.)

  6. Covariant quantization of infinite spin particle models, and higher order gauge theories

    International Nuclear Information System (INIS)

    Edgren, Ludde; Marnelius, Robert

    2006-01-01

    Further properties of a recently proposed higher order infinite spin particle model are derived. Infinitely many classically equivalent but different Hamiltonian formulations are shown to exist. This leads to a condition of uniqueness in the quantization process. A consistent covariant quantization is shown to exist. Also a recently proposed supersymmetric version for half-odd integer spins is quantized. A general algorithm to derive gauge invariances of higher order Lagrangians is given and applied to the infinite spin particle model, and to a new higher order model for a spinning particle which is proposed here, as well as to a previously given higher order rigid particle model. The latter two models are also covariantly quantized

  7. THOR: A New Higher-Order Closure Assumed PDF Subgrid-Scale Parameterization; Evaluation and Application to Low Cloud Feedbacks

    Science.gov (United States)

    Firl, G. J.; Randall, D. A.

    2013-12-01

    The so-called "assumed probability density function (PDF)" approach to subgrid-scale (SGS) parameterization has shown to be a promising method for more accurately representing boundary layer cloudiness under a wide range of conditions. A new parameterization has been developed, named the Two-and-a-Half ORder closure (THOR), that combines this approach with a higher-order turbulence closure. THOR predicts the time evolution of the turbulence kinetic energy components, the variance of ice-liquid water potential temperature (θil) and total non-precipitating water mixing ratio (qt) and the covariance between the two, and the vertical fluxes of horizontal momentum, θil, and qt. Ten corresponding third-order moments in addition to the skewnesses of θil and qt are calculated using diagnostic functions assuming negligible time tendencies. The statistical moments are used to define a trivariate double Gaussian PDF among vertical velocity, θil, and qt. The first three statistical moments of each variable are used to estimate the two Gaussian plume means, variances, and weights. Unlike previous similar models, plume variances are not assumed to be equal or zero. Instead, they are parameterized using the idea that the less dominant Gaussian plume (typically representing the updraft-containing portion of a grid cell) has greater variance than the dominant plume (typically representing the "environmental" or slowly subsiding portion of a grid cell). Correlations among the three variables are calculated using the appropriate covariance moments, and both plume correlations are assumed to be equal. The diagnosed PDF in each grid cell is used to calculate SGS condensation, SGS fluxes of cloud water species, SGS buoyancy terms, and to inform other physical parameterizations about SGS variability. SGS condensation is extended from previous similar models to include condensation over both liquid and ice substrates, dependent on the grid cell temperature. Implementations have been

  8. How do anthropogenic contaminants (ACs) affect behaviour? Multi-level analysis of the effects of copper on boldness in hermit crabs.

    Science.gov (United States)

    White, Stephen J; Briffa, Mark

    2017-02-01

    Natural animal populations are increasingly exposed to human impacts on the environment, which could have consequences for their behaviour. Among these impacts is exposure to anthropogenic contaminants. Any environmental variable that influences internal state could impact behaviour across a number of levels: at the sample mean, at the level of among-individual differences in behaviour ('animal personality') and at the level of within-individual variation in behaviour (intra-individual variation, 'IIV'). Here we examined the effect of exposure to seawater-borne copper on the startle response behaviour of European hermit crabs, Pagurus bernhardus across these levels. Copper exposure rapidly led to longer startle responses on average, but did not lead to any change in repeatability indicating that individual differences were present and equally consistent in the presence and absence of copper. There was no strong evidence that copper exposure led to changes in IIV. Our data show that exposure to copper for 1 week produces sample mean level changes in the behaviour of hermit crabs. However, there is no evidence that this exposure led to changes in repeatability through feedback loops.

  9. An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs

    Directory of Open Access Journals (Sweden)

    Eman S. Alaidarous

    2013-01-01

    Full Text Available In this research paper, we present higher-order quasilinearization methods for the boundary value problems as well as coupled boundary value problems. The construction of higher-order convergent methods depends on a decomposition method which is different from Adomain decomposition method (Motsa and Sibanda, 2013. The reported method is very general and can be extended to desired order of convergence for highly nonlinear differential equations and also computationally superior to proposed iterative method based on Adomain decomposition because our proposed iterative scheme avoids the calculations of Adomain polynomials and achieves the same computational order of convergence as authors have claimed in Motsa and Sibanda, 2013. In order to check the validity and computational performance, the constructed iterative schemes are also successfully applied to bifurcation problems to calculate the values of critical parameters. The numerical performance is also tested for one-dimension Bratu and Frank-Kamenetzkii equations.

  10. Area of isodensity contours in Gaussian and non-Gaussian fields

    International Nuclear Information System (INIS)

    Ryden, B.S.

    1988-01-01

    The area of isodensity contours in a smoothed density field can be measured by the contour-crossing statistic N1, the number of times per unit length that a line drawn through the density field pierces an isodensity contour. The contour-crossing statistic distinguishes between Gaussian and non-Gaussian fields and provides a measure of the effective slope of the power spectrum. The statistic is easy to apply and can be used on pencil beams and slices as well as on a three-dimensional field. 10 references

  11. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  12. Higher-order-mode damper as beam-position monitors; Higher-Order-Mode Daempfer als Stahllagemonitore

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, C.

    2006-03-15

    In the framework of this thesis a beam-position monitor was developed, which can only because of the signals from the HOM dampers of a linear-accelerator structure determine the beam position with high accuracy. For the unique determination of the beam position in the plane a procedure was developed, which uses the amplitudes and the start-phase difference between a dipole mode and a higher monopole mode. In order tocheck the suitability of the present SBLC-HOM damper as beam position monitor three-dimensional numerical field calculations in the frequency and time range and measurements on the damper cell were performed. For the measurements without beam a beam simulator was constructed, which allows computer-driven measurements with variable depositions of the simulated beam with a resolution of 1.23 {mu}m. Because the complete 6 m long, 180-cell accelerator structure was not available for measurements and could also with the available computers not be three-dimensionally simulated simulated, a one-dimensional equivalent-circuit based model of the multi-cell was studied. The equivalent circuits with 879 concentrated components regards the detuning from cell to cell, the cell losses, the damper losses, and the beam excitation in dependence on the deposition. the measurements and simulations let a resolution of the ready beam-position monitor on the 180-cell in the order of magnitude of 1-10 {mu}m and a relative accuracy smaller 6.2% be expected.

  13. Pythagorean hodograph spline spirals that match G3 Hermite data from circles

    KAUST Repository

    Li, Zhong; Ait-Haddou, Rachid; Biard, Luc

    2015-01-01

    A construction is given for a G3 piecewise rational Pythagorean hodograph convex spiral which interpolates two G3 Hermite data associated with two non-concentric circles, one being inside the other. The spiral solution is of degree 7 and is the involute of a G2 convex curve, referred to as the evolute solution, with prescribed length, and composed of two PH quartic curves. Conditions for G3 continuous contact with circles are then studied and it turns out that an ordinary cusp at each end of the evolute solution is required. Thus, geometric properties of a family of PH polynomial quartics, allowing to generate such an ordinary cusp at one end, are studied. Finally, a constructive algorithm is described with illustrative examples.

  14. Pythagorean hodograph spline spirals that match G3 Hermite data from circles

    KAUST Repository

    Li, Zhong

    2015-04-01

    A construction is given for a G3 piecewise rational Pythagorean hodograph convex spiral which interpolates two G3 Hermite data associated with two non-concentric circles, one being inside the other. The spiral solution is of degree 7 and is the involute of a G2 convex curve, referred to as the evolute solution, with prescribed length, and composed of two PH quartic curves. Conditions for G3 continuous contact with circles are then studied and it turns out that an ordinary cusp at each end of the evolute solution is required. Thus, geometric properties of a family of PH polynomial quartics, allowing to generate such an ordinary cusp at one end, are studied. Finally, a constructive algorithm is described with illustrative examples.

  15. Higher-Order Hierarchical Legendre Basis Functions in Applications

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

    2007-01-01

    The higher-order hierarchical Legendre basis functions have been developed for effective solution of integral equations with the method of moments. They are derived from orthogonal Legendre polynomials modified to enforce normal continuity between neighboring mesh elements, while preserving a high...

  16. An approximate fractional Gaussian noise model with computational cost

    KAUST Repository

    Sørbye, Sigrunn H.

    2017-09-18

    Fractional Gaussian noise (fGn) is a stationary time series model with long memory properties applied in various fields like econometrics, hydrology and climatology. The computational cost in fitting an fGn model of length $n$ using a likelihood-based approach is ${\\\\mathcal O}(n^{2})$, exploiting the Toeplitz structure of the covariance matrix. In most realistic cases, we do not observe the fGn process directly but only through indirect Gaussian observations, so the Toeplitz structure is easily lost and the computational cost increases to ${\\\\mathcal O}(n^{3})$. This paper presents an approximate fGn model of ${\\\\mathcal O}(n)$ computational cost, both with direct or indirect Gaussian observations, with or without conditioning. This is achieved by approximating fGn with a weighted sum of independent first-order autoregressive processes, fitting the parameters of the approximation to match the autocorrelation function of the fGn model. The resulting approximation is stationary despite being Markov and gives a remarkably accurate fit using only four components. The performance of the approximate fGn model is demonstrated in simulations and two real data examples.

  17. Gaussian variable neighborhood search for the file transfer scheduling problem

    Directory of Open Access Journals (Sweden)

    Dražić Zorica

    2016-01-01

    Full Text Available This paper presents new modifications of Variable Neighborhood Search approach for solving the file transfer scheduling problem. To obtain better solutions in a small neighborhood of a current solution, we implement two new local search procedures. As Gaussian Variable Neighborhood Search showed promising results when solving continuous optimization problems, its implementation in solving the discrete file transfer scheduling problem is also presented. In order to apply this continuous optimization method to solve the discrete problem, mapping of uncountable set of feasible solutions into a finite set is performed. Both local search modifications gave better results for the large size instances, as well as better average performance for medium and large size instances. One local search modification achieved significant acceleration of the algorithm. The numerical experiments showed that the results obtained by Gaussian modifications are comparable with the results obtained by standard VNS based algorithms, developed for combinatorial optimization. In some cases Gaussian modifications gave even better results. [Projekat Ministarstava nauke Republike Srbije, br. 174010

  18. Higher order BLG supersymmetry transformations from 10-dimensional super Yang Mills

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John [Alumnus of Physics Department, Imperial College,South Kensington, London, SW7 2AZ (United Kingdom); Low, Andrew [Physics Department, Wimbledon High School,Mansel Road, London, SW19 4AB (United Kingdom)

    2014-06-26

    We study a Simple Route for constructing the higher order Bagger-Lambert-Gustavsson theory - both supersymmetry transformations and Lagrangian - starting from knowledge of only the 10-dimensional Super Yang Mills Fermion Supersymmetry transformation. We are able to uniquely determine the four-derivative order corrected supersymmetry transformations, to lowest non-trivial order in Fermions, for the most general three-algebra theory. For the special case of Euclidean three-algbera, we reproduce the result presented in arXiv:1207.1208, with significantly less labour. In addition, we apply our method to calculate the quadratic fermion terms in the higher order BLG fermion supersymmetry transformation.

  19. Hamiltonian formulation of theory with higher order derivatives

    International Nuclear Information System (INIS)

    Gitman, D.M.; Lyakhovich, S.L.; Tyutin, I.V.

    1983-01-01

    A method of ''hamiltonization'' of a special theory with higher order derivatives is described. In a nonspecial case the result coincides with the known Ostrogradsky formulation. It is shown that in the nonspecial theory the lagrange equations of motion are reduced to the normal form

  20. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    International Nuclear Information System (INIS)

    Liu Yingchuan; Kuang Leman

    2011-01-01

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

  1. From plane waves to local Gaussians for the simulation of correlated periodic systems

    International Nuclear Information System (INIS)

    Booth, George H.; Tsatsoulis, Theodoros; Grüneis, Andreas; Chan, Garnet Kin-Lic

    2016-01-01

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.

  2. From plane waves to local Gaussians for the simulation of correlated periodic systems

    Energy Technology Data Exchange (ETDEWEB)

    Booth, George H., E-mail: george.booth@kcl.ac.uk [Department of Physics, King’s College London, Strand, London WC2R 2LS (United Kingdom); Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Chan, Garnet Kin-Lic [Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-08-28

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.

  3. ENSO's non-stationary and non-Gaussian character: the role of climate shifts

    Science.gov (United States)

    Boucharel, J.; Dewitte, B.; Garel, B.; Du Penhoat, Y.

    2009-07-01

    models between ENSO asymmetry (as measured by skewness or nonlinear advection) and changes in mean state, they exhibit a variety of behaviour with regard to α-stability. This suggests that the dynamics associated with climate shifts and the occurrence of extreme events involve higher-order statistical moments that cannot be accounted for solely by nonlinear advection.

  4. Post-Gaussian Effective Potential of Double sine-Gordon Field

    International Nuclear Information System (INIS)

    Cai Weiran; Lou Senyue

    2005-01-01

    In the framework of the functional integral formalism, we calculate the effective potential of the double sine-Gordon (DsG) model up to the second order with an optimized expansion and the Coleman's normal-ordering prescription. Within the range of convergence, we make a comparison among the classical and the effective potential of the first and second order. The numerical analysis shows that the DsG post-Gaussian EP possesses some fine global properties and makes a substantial and a concordant quantum correction to the features of the classical potential.

  5. Higher order polynomial expansion nodal method for hexagonal core neutronics analysis

    International Nuclear Information System (INIS)

    Jin, Young Cho; Chang, Hyo Kim

    1998-01-01

    A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy

  6. Coaxial higher-order mode damper employing a high-pass filter

    International Nuclear Information System (INIS)

    Kang, Y.W.; Jiang, X.

    1997-01-01

    Two different types of coaxial higher-order mode (HOM) dampers have been investigated for the Advanced Photon Source (APS) storage ring cavities: e-probe dampers and h-loop dampers. Realization of the h-loop dampers has been difficult because the loop antenna couples not only to the HOMs but also to the accelerating mode and results in loss of Q at the fundamental frequency. Previously, a first-order fundamental rejection filter was tested with unsatisfactory rejection characteristics. This problem can be overcome by using a higher-order high-pass filter between the loop and the matched load. Prototype dampers have been fabricated and tested in a storage ring single-cell cavity and the damping characteristic was analyzed

  7. Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions

    Energy Technology Data Exchange (ETDEWEB)

    Tellarini, Matteo; Ross, Ashley J.; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Tasinato, Gianmassimo, E-mail: matteo.tellarini@port.ac.uk, E-mail: ross.1333@osu.edu, E-mail: g.tasinato@swansea.ac.uk, E-mail: david.wands@port.ac.uk [Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2016-06-01

    Measurements of the non-Gaussianity of the primordial density field have the power to considerably improve our understanding of the physics of inflation. Indeed, if we can increase the precision of current measurements by an order of magnitude, a null-detection would rule out many classes of scenarios for generating primordial fluctuations. Large-scale galaxy redshift surveys represent experiments that hold the promise to realise this goal. Thus, we model the galaxy bispectrum and forecast the accuracy with which it will probe the parameter f {sub NL}, which represents the degree of primordial local-type non Gaussianity. Specifically, we address the problem of modelling redshift space distortions (RSD) in the tree-level galaxy bispectrum including f {sub NL}. We find novel contributions associated with RSD, with the characteristic large scale amplification induced by local-type non-Gaussianity. These RSD effects must be properly accounted for in order to obtain un-biased measurements of f {sub NL} from the galaxy bispectrum. We propose an analytic template for the monopole which can be used to fit against data on large scales, extending models used in the recent measurements. Finally, we perform idealised forecasts on σ {sub f} {sub N{sub L}}—the accuracy of the determination of local non-linear parameter f {sub NL}—from measurements of the galaxy bispectrum. Our findings suggest that current surveys can in principle provide f {sub NL} constraints competitive with Planck , and future surveys could improve them further.

  8. Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions

    International Nuclear Information System (INIS)

    Tellarini, Matteo; Ross, Ashley J.; Wands, David; Tasinato, Gianmassimo

    2016-01-01

    Measurements of the non-Gaussianity of the primordial density field have the power to considerably improve our understanding of the physics of inflation. Indeed, if we can increase the precision of current measurements by an order of magnitude, a null-detection would rule out many classes of scenarios for generating primordial fluctuations. Large-scale galaxy redshift surveys represent experiments that hold the promise to realise this goal. Thus, we model the galaxy bispectrum and forecast the accuracy with which it will probe the parameter f NL , which represents the degree of primordial local-type non Gaussianity. Specifically, we address the problem of modelling redshift space distortions (RSD) in the tree-level galaxy bispectrum including f NL . We find novel contributions associated with RSD, with the characteristic large scale amplification induced by local-type non-Gaussianity. These RSD effects must be properly accounted for in order to obtain un-biased measurements of f NL from the galaxy bispectrum. We propose an analytic template for the monopole which can be used to fit against data on large scales, extending models used in the recent measurements. Finally, we perform idealised forecasts on σ f NL —the accuracy of the determination of local non-linear parameter f NL —from measurements of the galaxy bispectrum. Our findings suggest that current surveys can in principle provide f NL constraints competitive with Planck , and future surveys could improve them further.

  9. First and second derivatives of two electron integrals over Cartesian Gaussians using Rys polynomials

    International Nuclear Information System (INIS)

    Schlegel, H.B.; Binkley, J.S.; Pople, J.A.

    1984-01-01

    Formulas are developed for the first and second derivatives of two electron integrals over Cartesian Gaussians. Integrals and integral derivatives are evaluated by the Rys polynomial method. Higher angular momentum functions are not used to calculate the integral derivatives; instead the integral formulas are differentiated directly to produce compact and efficient expressions for the integral derivatives. The use of this algorithm in the ab initio molecular orbital programs gaussIan 80 and gaussIan 82 is discussed. Representative timings for some small molecules with several basis sets are presented. This method is compared with previously published algorithms and its computational merits are discussed

  10. A finite deformation theory of higher-order gradient crystal plasticity

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2008-01-01

    crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution......For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation...

  11. Propagation of arbitrary initial wave packets in a quantum parametric oscillator: Instability zones for higher order moments

    Science.gov (United States)

    Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.

    2018-05-01

    We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.

  12. Analytic matrix elements with shifted correlated Gaussians

    DEFF Research Database (Denmark)

    Fedorov, D. V.

    2017-01-01

    Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.......Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....

  13. Implementation and application of the gaussian decomposition software for NaI gamma-ray spectrometry data

    International Nuclear Information System (INIS)

    Zeng Lihui; Wang Nanping; Tian Gui

    2012-01-01

    In order to extract the information of peaks in different energy from the data of overlapping peaks in environmental gamma spectrometer, a spectrum data Gaussian decomposition software was designed based on least-square Gaussian fitting method. The interface of this software is friendly, it can complete the decomposition of overlapping peaks in gamma spectrometer quickly by the way of man-machines interactive. The result of field measured data decomposed by this software indicates that the Gaussian decomposition software can efficiently extract 137 Cs spectra from over lapping peaks, which has significance to estimate the human nuclide contamination in the environment. (authors)

  14. Implementation and application of the gaussian decomposition software for NaI gamma-ray spectrometry data

    International Nuclear Information System (INIS)

    Zeng Lihui; Wang Nanping Tian Gui

    2011-01-01

    In order to extract the information of peaks in different energy from the data of overlapping peaks in environmental gamma spectrometer, a spectrum data Gaussian decomposition soft is designed based on least- square Gaussian fitting method. The interface of this software is friendly, it can complete the decomposition of overlapping peaks in gamma spectrometer quickly by the way of man-machines interactive. The result that applied gamma spectrometry to data analysis in the field measurement indicates that the Gaussian decomposition soft can efficiently extract 137 Cs from overlapping peaks which has significance to assess the human nuclide contamination of environment. (authors)

  15. Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data

    DEFF Research Database (Denmark)

    Bennedsen, Mikkel

    Using theory on (conditionally) Gaussian processes with stationary increments developed in Barndorff-Nielsen et al. (2009, 2011), this paper presents a general semiparametric approach to conducting inference on the fractal index, α, of a time series. Our setup encompasses a large class of Gaussian...

  16. Ultra-compact Higher-Order-Mode Pass Filter in a Silicon Waveguide

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Frandsen, Lars Hagedorn; Ding, Yunhong

    2015-01-01

    An 3.7 μm long higher-order-mode pass filter with an extinction ratio larger than 20 dB is demonstrated in a 1D corrugated silicon multimode waveguide......An 3.7 μm long higher-order-mode pass filter with an extinction ratio larger than 20 dB is demonstrated in a 1D corrugated silicon multimode waveguide...

  17. Analysis of Scattering by Inhomogeneous Dielectric Objects Using Higher-Order Hierarchical MoM

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

    2003-01-01

    An efficient technique for the analysis of electromagnetic scattering by arbitrary shaped inhomogeneous dielectric objects is presented. The technique is based on a higher-order method of moments (MoM) solution of the volume integral equation. This higher-order MoM solution comprises recently...... that the condition number of the resulting MoM matrix is reduced by several orders of magnitude in comparison to existing higher-order hierarchical basis functions and, consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement...

  18. Entanglement in Gaussian matrix-product states

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Ericsson, Marie

    2006-01-01

    Gaussian matrix-product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of a harmonic chain. Replacing the projections by associated Gaussian states, the building blocks, we show that the entanglement range in translationally invariant Gaussian matrix-product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix-product states can possess unlimited, long-range entanglement even with minimum number of ancillary bonds (M=1). Finally we discuss how these states can be experimentally engineered from N copies of a three-mode building block and N two-mode finitely squeezed states

  19. Probabilistic wind power forecasting with online model selection and warped gaussian process

    International Nuclear Information System (INIS)

    Kou, Peng; Liang, Deliang; Gao, Feng; Gao, Lin

    2014-01-01

    Highlights: • A new online ensemble model for the probabilistic wind power forecasting. • Quantifying the non-Gaussian uncertainties in wind power. • Online model selection that tracks the time-varying characteristic of wind generation. • Dynamically altering the input features. • Recursive update of base models. - Abstract: Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms

  20. [Biology and ecology of the terrestrial hermit crab coenobita scaevola forskål of the Red Sea].

    Science.gov (United States)

    Niggemann, Renate

    1968-06-01

    The terrestrial hermit crab Coenobita scaevola is very common on the coast of the Red Sea. The species depends on the sea for its source of food (wrack-fauna), source of drinking-water and water for moistening gills and abdomen. Only in the supra-litoral zone they find gastropod shells to protect their abdomen against insolation, desiccation and mechanical damage. Coenobita scaevola stays in one place for a long time if good living conditions are available. The time of activity of the juveniles differs from one place to another. Some are diurnal, others are nocturnal. There is no evident relation to the ecological factors. Most of the adults are nocturnal. No Coenobita could be collected in Barber traps. The avoidance of such traps by arthropodes has never been observed before. Coenobita scaevola can live for quite a long time under water of sufficient temperature and salinity. The osmotic regulation of the land-hermit crab differs from that of other shore animals. Coenobita can tolerate a wide range of blood concentrations (25-70‰). It controls the concentration of its blood by selecting water of the appropriate salinity.The static problems of Coenobita are solved by regular movement of the legs and special articulation of the legs.As Coenobita scaevola is a phylogenetically young land animal it carries many inhabitants of marine and terrestrial origin.

  1. Phase-based motion magnification video for monitoring of vital signals using the Hermite transform

    Science.gov (United States)

    Brieva, Jorge; Moya-Albor, Ernesto

    2017-11-01

    In this paper we present a new Eulerian phase-based motion magnification technique using the Hermite Transform (HT) decomposition that is inspired in the Human Vision System (HVS). We test our method in one sequence of the breathing of a newborn baby and on a video sequence that shows the heartbeat on the wrist. We detect and magnify the heart pulse applying our technique. Our motion magnification approach is compared to the Laplacian phase based approach by means of quantitative metrics (based on the RMS error and the Fourier transform) to measure the quality of both reconstruction and magnification. In addition a noise robustness analysis is performed for the two methods.

  2. Exact collisional moments for plasma fluid theories

    Science.gov (United States)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  3. A simplified parsimonious higher order multivariate Markov chain model

    Science.gov (United States)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.

  4. Interweave Cognitive Radio with Improper Gaussian Signaling

    KAUST Repository

    Hedhly, Wafa

    2018-01-15

    Improper Gaussian signaling (IGS) has proven its ability in improving the performance of underlay and overlay cognitive radio paradigms. In this paper, the interweave cognitive radio paradigm is studied when the cognitive user employs IGS. The instantaneous achievable rate performance of both the primary and secondary users are analyzed for specific secondary user sensing and detection capabilities. Next, the IGS scheme is optimized to maximize the achievable rate secondary user while satisfying a target minimum rate requirement for the primary user. Proper Gaussian signaling (PGS) scheme design is also derived to be used as benchmark of the IGS scheme design. Finally, different numerical results are introduced to show the gain reaped from adopting IGS over PGS under different system parameters. The main advantage of employing IGS is observed at low sensing and detection capabilities of the SU, lower PU direct link and higher SU interference on the PU side.

  5. Primordial non-Gaussianities of gravitational waves in the most general single-field inflation model with second-order field equations.

    Science.gov (United States)

    Gao, Xian; Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi

    2011-11-18

    We completely clarify the feature of primordial non-Gaussianities of tensor perturbations in the most general single-field inflation model with second-order field equations. It is shown that the most general cubic action for the tensor perturbation h(ij) is composed only of two contributions, one with two spacial derivatives and the other with one time derivative on each h(ij). The former is essentially identical to the cubic term that appears in Einstein gravity and predicts a squeezed shape, while the latter newly appears in the presence of the kinetic coupling to the Einstein tensor and predicts an equilateral shape. Thus, only two shapes appear in the graviton bispectrum of the most general single-field inflation model, which could open a new clue to the identification of inflationary gravitational waves in observations of cosmic microwave background anisotropies as well as direct detection experiments.

  6. Higher Order Differential Attack on 6-Round MISTY1

    Science.gov (United States)

    Tsunoo, Yukiyasu; Saito, Teruo; Nakashima, Hiroki; Shigeri, Maki

    MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it has been recommended for Japanese e-Government ciphers by the CRYPTREC project. This paper reports a previously unknown higher order differential characteristic of 4-round MISTY1 with the FL functions. It also shows that a higher order differential attack that utilizes this newly discovered characteristic is successful against 6-round MISTY1 with the FL functions. This attack can recover a partial subkey with a data complexity of 253.7 and a computational complexity of 264.4, which is better than any previous cryptanalysis of MISTY1.

  7. Higher-order automatic differentiation of mathematical functions

    Science.gov (United States)

    Charpentier, Isabelle; Dal Cappello, Claude

    2015-04-01

    Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.

  8. Rao-Blackwellization for Adaptive Gaussian Sum Nonlinear Model Propagation

    Science.gov (United States)

    Semper, Sean R.; Crassidis, John L.; George, Jemin; Mukherjee, Siddharth; Singla, Puneet

    2015-01-01

    When dealing with imperfect data and general models of dynamic systems, the best estimate is always sought in the presence of uncertainty or unknown parameters. In many cases, as the first attempt, the Extended Kalman filter (EKF) provides sufficient solutions to handling issues arising from nonlinear and non-Gaussian estimation problems. But these issues may lead unacceptable performance and even divergence. In order to accurately capture the nonlinearities of most real-world dynamic systems, advanced filtering methods have been created to reduce filter divergence while enhancing performance. Approaches, such as Gaussian sum filtering, grid based Bayesian methods and particle filters are well-known examples of advanced methods used to represent and recursively reproduce an approximation to the state probability density function (pdf). Some of these filtering methods were conceptually developed years before their widespread uses were realized. Advanced nonlinear filtering methods currently benefit from the computing advancements in computational speeds, memory, and parallel processing. Grid based methods, multiple-model approaches and Gaussian sum filtering are numerical solutions that take advantage of different state coordinates or multiple-model methods that reduced the amount of approximations used. Choosing an efficient grid is very difficult for multi-dimensional state spaces, and oftentimes expensive computations must be done at each point. For the original Gaussian sum filter, a weighted sum of Gaussian density functions approximates the pdf but suffers at the update step for the individual component weight selections. In order to improve upon the original Gaussian sum filter, Ref. [2] introduces a weight update approach at the filter propagation stage instead of the measurement update stage. This weight update is performed by minimizing the integral square difference between the true forecast pdf and its Gaussian sum approximation. By adaptively updating

  9. Computer-Mediated Assessment of Higher-Order Thinking Development

    Science.gov (United States)

    Tilchin, Oleg; Raiyn, Jamal

    2015-01-01

    Solving complicated problems in a contemporary knowledge-based society requires higher-order thinking (HOT). The most productive way to encourage development of HOT in students is through use of the Problem-based Learning (PBL) model. This model organizes learning by solving corresponding problems relative to study courses. Students are directed…

  10. Validity of the assumption of Gaussian turbulence; Gyldighed af antagelsen om Gaussisk turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Hansen, K.S.; Juul Pedersen, B.

    2000-07-01

    Wind turbines are designed to withstand the impact of turbulent winds, which fluctuations usually are assumed of Gaussian probability distribution. Based on a large number of measurements from many sites, this seems a reasonable assumption in flat homogeneous terrain whereas it may fail in complex terrain. At these sites the wind speed often has a skew distribution with more frequent lulls than gusts. In order to simulate aerodynamic loads, a numerical turbulence simulation method was developed and implemented. This method may simulate multiple time series of variable not necessarily Gaussian distribution without distortion of the spectral distribution or spatial coherence. The simulated time series were used as input to the dynamic-response simulation program Vestas Turbine Simulator (VTS). In this way we simulated the dynamic response of systems exposed to turbulence of either Gaussian or extreme, yet realistic, non-Gaussian probability distribution. Certain loads on turbines with active pitch regulation were enhanced by up to 15% compared to pure Gaussian turbulence. It should, however, be said that the undesired effect depends on the dynamic system, and it might be mitigated by optimisation of the wind turbine regulation system after local turbulence characteristics. (au)

  11. Non-Gaussianity from isocurvature perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu; Suyama, Teruaki [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Takahashi, Fuminobu, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: nakayama@icrr.u-tokyo.ac.jp, E-mail: sekiguti@icrr.u-tokyo.ac.jp, E-mail: suyama@icrr.u-tokyo.ac.jp, E-mail: fuminobu.takahashi@ipmu.jp [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan)

    2008-11-15

    We develop a formalism for studying non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the cosmic microwave background temperature fluctuations, which may be confirmed in future experiments, or possibly even in the currently available observational data. As an explicit example, we consider the quantum chromodynamics axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H{sub inf} = O(10{sup 9}-10{sup 11}) GeV.

  12. Handbook of Gaussian basis sets

    International Nuclear Information System (INIS)

    Poirier, R.; Kari, R.; Csizmadia, I.G.

    1985-01-01

    A collection of a large body of information is presented useful for chemists involved in molecular Gaussian computations. Every effort has been made by the authors to collect all available data for cartesian Gaussian as found in the literature up to July of 1984. The data in this text includes a large collection of polarization function exponents but in this case the collection is not complete. Exponents for Slater type orbitals (STO) were included for completeness. This text offers a collection of Gaussian exponents primarily without criticism. (Auth.)

  13. Neurodevelopmental outcomes of triplets or higher-order extremely low birth weight infants.

    Science.gov (United States)

    Wadhawan, Rajan; Oh, William; Vohr, Betty R; Wrage, Lisa; Das, Abhik; Bell, Edward F; Laptook, Abbot R; Shankaran, Seetha; Stoll, Barbara J; Walsh, Michele C; Higgins, Rosemary D

    2011-03-01

    Extremely low birth weight twins have a higher rate of death or neurodevelopmental impairment than singletons. Higher-order extremely low birth weight multiple births may have an even higher rate of death or neurodevelopmental impairment. Extremely low birth weight (birth weight 401-1000 g) multiple births born in participating centers of the Neonatal Research Network between 1996 and 2005 were assessed for death or neurodevelopmental impairment at 18 to 22 months' corrected age. Neurodevelopmental impairment was defined by the presence of 1 or more of the following: moderate to severe cerebral palsy; mental developmental index score or psychomotor developmental index score less than 70; severe bilateral deafness; or blindness. Infants who died within 12 hours of birth were excluded. Maternal and infant demographic and clinical variables were compared among singleton, twin, and triplet or higher-order infants. Logistic regression analysis was performed to establish the association between singletons, twins, and triplet or higher-order multiples and death or neurodevelopmental impairment, controlling for confounding variables that may affect death or neurodevelopmental impairment. Our cohort consisted of 8296 singleton, 2164 twin, and 521 triplet or higher-order infants. The risk of death or neurodevelopmental impairment was increased in triplets or higher-order multiples when compared with singletons (adjusted odds ratio: 1.7 [95% confidence interval: 1.29-2.24]), and there was a trend toward an increased risk when compared with twins (adjusted odds ratio: 1.27 [95% confidence: 0.95-1.71]). Triplet or higher-order births are associated with an increased risk of death or neurodevelopmental impairment at 18 to 22 months' corrected age when compared with extremely low birth weight singleton infants, and there was a trend toward an increased risk when compared with twins.

  14. Analysis of Buried Dielectric Objects Using Higher-Order MoM for Volume Integral Equations

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2004-01-01

    A higher-order method of moments (MoM) is applied to solve a volume integral equation for dielectric objects in layered media. In comparison to low-order methods, the higher-order MoM, which is based on higher-order hierarchical Legendre vector basis functions and curvilinear hexahedral elements,...

  15. Implementation of Associated Hermite FDTD Method in Handling INBCs for Shielding Analysis

    Directory of Open Access Journals (Sweden)

    Lihua Shi

    2016-01-01

    Full Text Available For modeling of electrically thin conductive shields, the unconditionally stable Associated Hermite (AH FDTD scheme is combined with the impedance network boundary conditions (INBCs in this paper. The two-port network equations of INBCs in frequency domain are transformed into AH domain to represent the relationship of tangential components of the electric and magnetic fields at faces of the shield. The established AH-INBCs shielding boundaries are incorporated into a set of implicit equations to calculate the expansion coefficients vectors of electromagnetic fields in the computational domain. The method is free of CFL condition and no convolution integral operation for solving the conventional INBCs-FDTD is involved. Numerical example shows that, compared with analytical solutions and conventional FDTD method, the proposed algorithm is efficient and accurate.

  16. Fast and Analytical EAP Approximation from a 4th-Order Tensor

    Directory of Open Access Journals (Sweden)

    Aurobrata Ghosh

    2012-01-01

    Full Text Available Generalized diffusion tensor imaging (GDTI was developed to model complex apparent diffusivity coefficient (ADC using higher-order tensors (HOTs and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP. Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF, since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.

  17. A tridiagonal parsimonious higher order multivariate Markov chain model

    Science.gov (United States)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.

  18. Deconvolution of the thermoluminescent emission curve. Second order kinetics

    International Nuclear Information System (INIS)

    Moreno y M, A.; Moreno B, A.

    1999-01-01

    In this work it is described the Randall and Wilkins second order kinetics in Microsoft Excel language, which allows its expression as the sum of Gaussian and the correction factors corresponding. These factors are obtained of the differences between the real thermoluminescent curve and the Gaussian proposed. The results obtained justify the Gaussian expression added to the correction factor. (Author)

  19. How Difficult is it to Reduce Low-Level Cloud Biases With the Higher-Order Turbulence Closure Approach in Climate Models?

    Science.gov (United States)

    Xu, Kuan-Man

    2015-01-01

    Low-level clouds cover nearly half of the Earth and play a critical role in regulating the energy and hydrological cycle. Despite the fact that a great effort has been put to advance the modeling and observational capability in recent years, low-level clouds remains one of the largest uncertainties in the projection of future climate change. Low-level cloud feedbacks dominate the uncertainty in the total cloud feedback in climate sensitivity and projection studies. These clouds are notoriously difficult to simulate in climate models due to its complicated interactions with aerosols, cloud microphysics, boundary-layer turbulence and cloud dynamics. The biases in both low cloud coverage/water content and cloud radiative effects (CREs) remain large. A simultaneous reduction in both cloud and CRE biases remains elusive. This presentation first reviews the effort of implementing the higher-order turbulence closure (HOC) approach to representing subgrid-scale turbulence and low-level cloud processes in climate models. There are two HOCs that have been implemented in climate models. They differ in how many three-order moments are used. The CLUBB are implemented in both CAM5 and GDFL models, which are compared with IPHOC that is implemented in CAM5 by our group. IPHOC uses three third-order moments while CLUBB only uses one third-order moment while both use a joint double-Gaussian distribution to represent the subgrid-scale variability. Despite that HOC is more physically consistent and produces more realistic low-cloud geographic distributions and transitions between cumulus and stratocumulus regimes, GCMs with traditional cloud parameterizations outperform in CREs because tuning of this type of models is more extensively performed than those with HOCs. We perform several tuning experiments with CAM5 implemented with IPHOC in an attempt to produce the nearly balanced global radiative budgets without deteriorating the low-cloud simulation. One of the issues in CAM5-IPHOC

  20. Lagrangian procedures for higher order field equations

    International Nuclear Information System (INIS)

    Bollini, C.G.

    1987-01-01

    A Lagrangian procedure for a pedagogical way is presented for the treatment of higher order field equations. The energy-momentum tensor and the conserved density current are built. In particular the case in which the derivatives appear only in the invariant D'Alembertian operator is discussed. Some examples are discussed. The fields are quantized and the corresponding Hamilonian which is shown not to be positive defructed. Rules are given to write the causal propagators. (author) [pt

  1. Lagrangian procedures for higher order field equations

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1986-01-01

    We present in a pedagogical way a Lagrangian procedure for the treatment of higher order field equations. We build the energy-momentum tensor and the conserved density current. In particular we discuss the case in which the derivatives appear only in the invariant D'Alembertian operator. We discuss some examples. We quantize the fields and construct the corresponding Hamiltonian which is shown not to be positive definite. We give the rules for the causal propagators. (Author) [pt

  2. Enhancing Higher Order Thinking Skills through Clinical Simulation

    Science.gov (United States)

    Varutharaju, Elengovan; Ratnavadivel, Nagendralingan

    2014-01-01

    Purpose: The study aimed to explore, describe and analyse the design and implementation of clinical simulation as a pedagogical tool in bridging the deficiency of higher order thinking skills among para-medical students, and to make recommendations on incorporating clinical simulation as a pedagogical tool to enhance thinking skills and align the…

  3. SHARP: A Spatially Higher-order, Relativistic Particle-in-cell Code

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Mohamad; Broderick, Avery E. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Pfrommer, Christoph [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Lamberts, Astrid [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Puchwein, Ewald, E-mail: mshalaby@live.ca [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-05-20

    Numerical heating in particle-in-cell (PIC) codes currently precludes the accurate simulation of cold, relativistic plasma over long periods, severely limiting their applications in astrophysical environments. We present a spatially higher-order accurate relativistic PIC algorithm in one spatial dimension, which conserves charge and momentum exactly. We utilize the smoothness implied by the usage of higher-order interpolation functions to achieve a spatially higher-order accurate algorithm (up to the fifth order). We validate our algorithm against several test problems—thermal stability of stationary plasma, stability of linear plasma waves, and two-stream instability in the relativistic and non-relativistic regimes. Comparing our simulations to exact solutions of the dispersion relations, we demonstrate that SHARP can quantitatively reproduce important kinetic features of the linear regime. Our simulations have a superior ability to control energy non-conservation and avoid numerical heating in comparison to common second-order schemes. We provide a natural definition for convergence of a general PIC algorithm: the complement of physical modes captured by the simulation, i.e., those that lie above the Poisson noise, must grow commensurately with the resolution. This implies that it is necessary to simultaneously increase the number of particles per cell and decrease the cell size. We demonstrate that traditional ways for testing for convergence fail, leading to plateauing of the energy error. This new PIC code enables us to faithfully study the long-term evolution of plasma problems that require absolute control of the energy and momentum conservation.

  4. Gaussian capacity of the quantum bosonic memory channel with additive correlated Gaussian noise

    International Nuclear Information System (INIS)

    Schaefer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.

    2011-01-01

    We present an algorithm for calculation of the Gaussian classical capacity of a quantum bosonic memory channel with additive Gaussian noise. The algorithm, restricted to Gaussian input states, is applicable to all channels with noise correlations obeying certain conditions and works in the full input energy domain, beyond previous treatments of this problem. As an illustration, we study the optimal input states and capacity of a quantum memory channel with Gauss-Markov noise [J. Schaefer, Phys. Rev. A 80, 062313 (2009)]. We evaluate the enhancement of the transmission rate when using these optimal entangled input states by comparison with a product coherent-state encoding and find out that such a simple coherent-state encoding achieves not less than 90% of the capacity.

  5. Non-Gaussian path integration in self-interacting scalar field theories

    International Nuclear Information System (INIS)

    Kaya, Ali

    2004-01-01

    In self-interacting scalar field theories kinetic expansion is an alternative way of calculating the generating functional for Green's functions where the zeroth order non-Gaussian path integral becomes diagonal in x-space and reduces to the product of an ordinary integral at each point which can be evaluated exactly. We discuss how to deal with such functional integrals and propose a new perturbative expansion scheme which combines the elements of the kinetic expansion with the usual perturbation theory techniques. It is then shown that, when the cutoff dependences of the bare parameters in the potential are chosen to have a well defined non-Gaussian path integral without the kinetic term, the theory becomes trivial in the continuum limit

  6. Higher order aberrations in amblyopic children and their role in refractory amblyopia

    Directory of Open Access Journals (Sweden)

    Arnaldo Dias-Santos

    2014-12-01

    Full Text Available Objective: Some studies have hypothesized that an unfavourable higher order aberrometric profile could act as an amblyogenic mechanism and may be responsible for some amblyopic cases that are refractory to conventional treatment or cases of “idiopathic” amblyopia. This study compared the aberrometric profile in amblyopic children to that of children with normal visual development and compared the aberrometric profile in corrected amblyopic eyes and refractory amblyopic eyes with that of healthy eyes. Methods: Cross-sectional study with three groups of children – the CA group (22 eyes of 11 children with unilateral corrected amblyopia, the RA group (24 eyes of 13 children with unilateral refractory amblyopia and the C group (28 eyes of 14 children with normal visual development. Higher order aberrations were evaluated using an OPD-Scan III (NIDEK. Comparisons of the aberrometric profile were made between these groups as well as between the amblyopic and healthy eyes within the CA and RA groups. Results: Higher order aberrations with greater impact in visual quality were not significantly higher in the CA and RA groups when compared with the C group. Moreover, there were no statistically significant differences in the higher order aberrometric profile between the amblyopic and healthy eyes within the CA and RA groups. Conclusions: Contrary to lower order aberrations (e.g., myopia, hyperopia, primary astigmatism, higher order aberrations do not seem to be involved in the etiopathogenesis of amblyopia. Therefore, these are likely not the cause of most cases of refractory amblyopia.

  7. Near integrability of kink lattice with higher order interactions

    Science.gov (United States)

    Jiang, Yun-Guo; Liu, Jia-Zhen; He, Song

    2017-11-01

    We make use of Manton’s analytical method to investigate the force between kinks and anti-kinks at large distances in 1+1 dimensional field theory. The related potential has infinite order corrections of exponential pattern, and the coefficients for each order are determined. These coefficients can also be obtained by solving the equation of the fluctuations around the vacuum. At the lowest order, the kink lattice represents the Toda lattice. With higher order correction terms, the kink lattice can represent one kind of generic Toda lattice. With only two sites, the kink lattice is classically integrable. If the number of sites of the lattice is larger than two, the kink lattice is not integrable but is a near integrable system. We make use of Flaschka’s variables to study the Lax pair of the kink lattice. These Flaschka’s variables have interesting algebraic relations and non-integrability can be manifested. We also discuss the higher Hamiltonians for the deformed open Toda lattice, which has a similar result to the ordinary deformed Toda. Supported by Shandong Provincial Natural Science Foundation (ZR2014AQ007), National Natural Science Foundation of China (11403015, U1531105), S. He is supported by Max-Planck fellowship in Germany and National Natural Science Foundation of China (11305235)

  8. Multi-brid inflation and non-gaussianity

    International Nuclear Information System (INIS)

    Sasaki, Misao

    2008-01-01

    We consider a class of multi-component hybrid inflation models whose evolution may be analytically solved under the slow-roll approximation. We call it multi-brid inflation (or n-brid inflation where n stands for the number of inflaton fields). As an explicit example, we consider a two-brid inflation model, in which the inflaton potentials are of exponential type and a waterfall field that terminates inflation has the standard quartic potential with two minima. Using the δN formalism, we derive an expression for the curvature perturbation valid to full nonlinear order. Then we give an explicit expression for the curvature perturbation to second order in the inflaton perturbation. We find that the final from of the curvature perturbation depends crucially on how the inflation ends. Using this expression, we present closed analytical expressions for the spectrum of the curvature perturbation Ps(k), the spectral index n s , the tensor to scalar ratio r, and the non-Gaussian parameter f NL local , in terms of the model parameters. We find that a wide range of the parameter space (n s , r, f NL local ) can be covered by varying the model parameters within a physically reasonable range. In particular, for plausible values of the model parameters, we may have a large non-Gaussianity f NL local ∼10-100. This is in sharp contrast to the case of single-field hybrid inflation in which these parameters are tightly constrained. (author)

  9. Developing Higher-Order Thinking Skills through WebQuests

    Science.gov (United States)

    Polly, Drew; Ausband, Leigh

    2009-01-01

    In this study, 32 teachers participated in a year-long professional development project related to technology integration in which they designed and implemented a WebQuest. This paper describes the extent to which higher-order thinking skills (HOTS) and levels of technology implementation (LoTI) occur in the WebQuests that participants designed.…

  10. A Robust Non-Gaussian Data Assimilation Method for Highly Non-Linear Models

    Directory of Open Access Journals (Sweden)

    Elias D. Nino-Ruiz

    2018-03-01

    Full Text Available In this paper, we propose an efficient EnKF implementation for non-Gaussian data assimilation based on Gaussian Mixture Models and Markov-Chain-Monte-Carlo (MCMC methods. The proposed method works as follows: based on an ensemble of model realizations, prior errors are estimated via a Gaussian Mixture density whose parameters are approximated by means of an Expectation Maximization method. Then, by using an iterative method, observation operators are linearized about current solutions and posterior modes are estimated via a MCMC implementation. The acceptance/rejection criterion is similar to that of the Metropolis-Hastings rule. Experimental tests are performed on the Lorenz 96 model. The results show that the proposed method can decrease prior errors by several order of magnitudes in a root-mean-square-error sense for nearly sparse or dense observational networks.

  11. Reproducing kernel Hilbert spaces of Gaussian priors

    NARCIS (Netherlands)

    Vaart, van der A.W.; Zanten, van J.H.; Clarke, B.; Ghosal, S.

    2008-01-01

    We review definitions and properties of reproducing kernel Hilbert spaces attached to Gaussian variables and processes, with a view to applications in nonparametric Bayesian statistics using Gaussian priors. The rate of contraction of posterior distributions based on Gaussian priors can be described

  12. Higher-order geodesic deviations applied to the Kerr metric

    CERN Document Server

    Colistete, R J; Kerner, R

    2002-01-01

    Starting with an exact and simple geodesic, we generate approximate geodesics by summing up higher-order geodesic deviations within a general relativistic setting, without using Newtonian and post-Newtonian approximations. We apply this method to the problem of closed orbital motion of test particles in the Kerr metric spacetime. With a simple circular orbit in the equatorial plane taken as the initial geodesic, we obtain finite eccentricity orbits in the form of Taylor series with the eccentricity playing the role of a small parameter. The explicit expressions of these higher-order geodesic deviations are derived using successive systems of linear equations with constant coefficients, whose solutions are of harmonic oscillator type. This scheme gives best results when applied to orbits with low eccentricities, but with arbitrary possible values of (GM/Rc sup 2).

  13. Gaussian process regression analysis for functional data

    CERN Document Server

    Shi, Jian Qing

    2011-01-01

    Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime

  14. Comparison of Gaussian and non-Gaussian Atmospheric Profile Retrievals from Satellite Microwave Data

    Science.gov (United States)

    Kliewer, A.; Forsythe, J. M.; Fletcher, S. J.; Jones, A. S.

    2017-12-01

    The Cooperative Institute for Research in the Atmosphere at Colorado State University has recently developed two different versions of a mixed-distribution (lognormal combined with a Gaussian) based microwave temperature and mixing ratio retrieval system as well as the original Gaussian-based approach. These retrieval systems are based upon 1DVAR theory but have been adapted to use different descriptive statistics of the lognormal distribution to minimize the background errors. The input radiance data is from the AMSU-A and MHS instruments on the NOAA series of spacecraft. To help illustrate how the three retrievals are affected by the change in the distribution we are in the process of creating a new website to show the output from the different retrievals. Here we present initial results from different dynamical situations to show how the tool could be used by forecasters as well as for educators. However, as the new retrieved values are from a non-Gaussian based 1DVAR then they will display non-Gaussian behaviors that need to pass a quality control measure that is consistent with this distribution, and these new measures are presented here along with initial results for checking the retrievals.

  15. Analysis of higher order harmonics with holographic reflection gratings

    Science.gov (United States)

    Mas-Abellan, P.; Madrigal, R.; Fimia, A.

    2017-05-01

    Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.

  16. Higher-order thinking in foreign language learning

    OpenAIRE

    Bastos, Ascensão; Ramos, Altina

    2017-01-01

    A project is being conducted in English as a foreign language (EFL), involving eleventh graders in formal and non-formal learning contexts, in a Portuguese high school. The goal of this study is to examine the impact of cognitive tools and higher-order thinking processes on the learning of EFL and achievement of larger processes oriented to action, involving problem solving, decision-making and creation of new products. YouTube videos emerge as cognitive tools in the process. Final results sh...

  17. Higher-order conditioning is impaired by hippocampal lesions.

    Science.gov (United States)

    Gilboa, Asaf; Sekeres, Melanie; Moscovitch, Morris; Winocur, Gordon

    2014-09-22

    Behavior in the real world is rarely motivated by primary conditioned stimuli that have been directly associated with potent unconditioned reinforcers. Instead, motivation and choice behavior are driven by complex chains of higher-order associations that are only indirectly linked to intrinsic reward and often exert their influence outside awareness. Second-order conditioning (SOC) [1] is a basic associative-learning mechanism whereby stimuli acquire motivational salience by proxy, in the absence of primary incentives [2, 3]. Memory-systems theories consider first-order conditioning (FOC) and SOC to be prime examples of hippocampal-independent nondeclarative memory [4, 5]. Accordingly, neurobiological models of SOC focus almost exclusively on nondeclarative neural systems that support motivational salience and reward value. Transfer of value from a conditioned stimulus to a neutral stimulus is thought to require the basolateral amygdala [6, 7] and the ventral striatum [2, 3], but not the hippocampus. We developed a new paradigm to measure appetitive SOC of tones in rats. Hippocampal lesions severely impaired both acquisition and expression of SOC despite normal FOC. Unlike controls, rats with hippocampal lesions could not discriminate between positive and negative secondary conditioned tones, although they exhibited general familiarity with previously presented tones compared with new tones. Importantly, normal rats' behavior, in contrast to that of hippocampal groups, also revealed different confidence levels as indexed by effort, a central characteristic of hippocampal relational memory. The results indicate, contrary to current systems models, that representations of intrinsic relationships between reward value, stimulus identity, and motivation require hippocampal mediation when these relationships are of a higher order. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Global sensitivity analysis using a Gaussian Radial Basis Function metamodel

    International Nuclear Information System (INIS)

    Wu, Zeping; Wang, Donghui; Okolo N, Patrick; Hu, Fan; Zhang, Weihua

    2016-01-01

    Sensitivity analysis plays an important role in exploring the actual impact of adjustable parameters on response variables. Amongst the wide range of documented studies on sensitivity measures and analysis, Sobol' indices have received greater portion of attention due to the fact that they can provide accurate information for most models. In this paper, a novel analytical expression to compute the Sobol' indices is derived by introducing a method which uses the Gaussian Radial Basis Function to build metamodels of computationally expensive computer codes. Performance of the proposed method is validated against various analytical functions and also a structural simulation scenario. Results demonstrate that the proposed method is an efficient approach, requiring a computational cost of one to two orders of magnitude less when compared to the traditional Quasi Monte Carlo-based evaluation of Sobol' indices. - Highlights: • RBF based sensitivity analysis method is proposed. • Sobol' decomposition of Gaussian RBF metamodel is obtained. • Sobol' indices of Gaussian RBF metamodel are derived based on the decomposition. • The efficiency of proposed method is validated by some numerical examples.

  19. Gaussian operations and privacy

    International Nuclear Information System (INIS)

    Navascues, Miguel; Acin, Antonio

    2005-01-01

    We consider the possibilities offered by Gaussian states and operations for two honest parties, Alice and Bob, to obtain privacy against a third eavesdropping party, Eve. We first extend the security analysis of the protocol proposed in [Navascues et al. Phys. Rev. Lett. 94, 010502 (2005)]. Then, we prove that a generalized version of this protocol does not allow one to distill a secret key out of bound entangled Gaussian states

  20. Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

    2004-01-01

    An efficient higher-order method of moments (MoM) solution of volume integral equations is presented. The higher-order MoM solution is based on higher-order hierarchical Legendre basis functions and higher-order geometry modeling. An unstructured mesh composed of 8-node trilinear and/or curved 27...... of magnitude in comparison to existing higher-order hierarchical basis functions. Consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement with the analytical Mie series solution for a dielectric sphere as well as with results obtained...