WorldWideScience

Sample records for higher alcohols methanol

  1. Thermodynamic models to predict gas-liquid solubilities in the methanol synthesis, the methanol-higher alcohol synthesis, and the Fischer-Tropsch synthesis via gas-slurry processes

    NARCIS (Netherlands)

    Breman, B.B; Beenackers, A.A C M

    1996-01-01

    Various thermodynamic models were tested concerning their applicability to predict gas-liquid solubilities, relevant for synthesis gas conversion to methanol, higher alcohols, and hydrocarbons via gas-slurry processes. Without any parameter optimization the group contribution equation of state

  2. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca

    2013-01-01

    Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over...... carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide...... alcohols is obtained at a K/Mo molar ratio of 0.21 over the active carbon supported Mo2C (20wt%)....

  3. Application of metal triflate catalysts for the trans-esterification of Jatropha curcas L. oil with methanol and higher alcohols

    NARCIS (Netherlands)

    Daniel, Louis; Rasrendra, Carolus B.; Kloekhorst, Arjan; Broekhuis, Antonius A.; Manurung, Robert; Heeres, Hero J.

    This paper describes an experimental study on the application of metal triflate salts for the (trans-) esterification of fatty esters (triolein, methyl oleate, methyl linoleate), fatty acid (oleic acid), as well as Jatropha curcas L. oil with methanol and higher alcohols (ethanol, n-propanol,

  4. A Survey on the Methanol Content of Home Distilled Alcoholic Beverages in Transylvania (Romania

    Directory of Open Access Journals (Sweden)

    Md Croitoru

    2013-08-01

    Full Text Available Objective: Methanol appears in relatively high concentrations in alcoholic beverages obtained from fermented fruits distillates. These products are traditionally home made in many regions in Romania and other EU countries. The chronic use of products with high methanol concentration can be considered a health risk. The purpose of this work was to measure methanol concentration in a Romanian region where brandy-type alcoholic products are made from different fruits (plum, apple, pear, grapes, and to observe if there is a type of product that contains more methanol than the others. Methods: The content of methanol in the tested alcoholic beverages was determined using a gas chromatographic method. Results: Only 18% of the tested 56 samples met UE regulation regarding methanol content of alcoholic beverages (0.4% in alcoholic drinks containing 40% ethanol. The highest concentration of 2.39% was found in a plum brandy. Plum brandies contained significantly higher amounts of methanol than brandies made from other fruits (0.91 vs 0.52%, p = 0.01. Conclusions: Home distilled alcoholic beverages obtained from fruits are a health threat due to their high methanol content. Strict regulations and tests should be introduced for such products

  5. Analysis of methanol and its derivatives in illegally produced alcoholic beverages.

    Science.gov (United States)

    Arslan, M Mustafa; Zeren, Cem; Aydin, Zeki; Akcan, Ramazan; Dokuyucu, Recep; Keten, Alper; Cekin, Necmi

    2015-07-01

    Illegal alcohol production remains as a common issue worldwide. Methanol poisoning mostly occurs because of the methanol used in production of counterfeit alcohol instead of ethyl alcohol due to its low price or by drinking the liquids containing methyl alcohol. Pectolytic enzymes results in an increase of methanol levels in many fermentation products such as ciders or wines. Methanol poisonings are infrequently encountered in forensic medicine practice. However, sporadic cases due to methanol intoxication as well as epidemic cases have been reported. In this study, we aimed to identify existence of methanol and its metabolites in illegally produced alcoholic beverages used in Antakya region. Twelve legally produced alcohol samples and Fifty-six different illegally produced alcohol samples were collected from the markets and local producers. Existence of methanol, formic acid, methyl amine, methyl formate and trioxan were determined using GC-MS method in these samples. Fifty-six different illegal alcohol samples were analyzed in this study and methanol was detected in 39 (75%) of samples. Formic acid was detected in 3, formamide in 1, methyl amine in 6, methyl formate in 10 and trioxan in 2 samples. Overwhelming majority of illegal alcoholic beverages was detected to contain methanol. Interestingly this study also revealed the presence of trioxane, which has not previously reported among toxic agents in illegal alcohol samples. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  6. Performance of direct alcohol fuel cells fed with mixed methanol/ethanol solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wongyao, N. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand); Therdthianwong, A., E-mail: apichai.the@kmutt.ac.t [Fuel Cell and Hydrogen Research and Engineering Center, Clean Energy System Group, PDTI, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand); Therdthianwong, S. [Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand)

    2011-07-15

    Research highlights: {yields} We examined the performance of direct alcohol fuel cells fed with mixed alcohol. {yields} PtRu-PtSn/C and PtRu/C as catalysts for mixed alcohol electrooxidation reaction. {yields} Misplace adsorption of ethanol on PtRu/C caused the cell performance drop. {yields} PtRu/C showed higher performance than PtRu-PtSn/C for mixed alcohol fuel. -- Abstract: In combining the advantages of both methanol and ethanol, direct alcohol fuel cells fed with mixed alcohol solutions (1 M methanol and 1 M ethanol in varying volume ratios) were tested for performance. Employing a PtRu-PtSn/C catalyst as anode, cell performance was found to diminish rapidly even at 2.5% by volume ethanol mixture. Further increase of ethanol exceeded 10%, the cell performance gradually decreased and finally approached that of direct ethanol fuel cells. The causes of the decrease in the cell performance were the slow electro-oxidation of ethanol and the misplaced adsorption of ethanol on PtRu/C. By comparing the PtRu-PtSn/C cell with the PtRu/C cell operated with mixed alcohol solutions, the cell using PtRu/C as an anode catalyst provided higher power density since more PtRu/C surface was available for methanol oxidation reaction and less ohmic resistance of PtRu/C than that of PtRu-PtSn/C. In order to reach optimization of DAFC performance fed with mixed alcohol, the electrocatalyst used for the anode must selectively adsorb an alcohol, especially ethanol.

  7. Performance of direct alcohol fuel cells fed with mixed methanol/ethanol solutions

    International Nuclear Information System (INIS)

    Wongyao, N.; Therdthianwong, A.; Therdthianwong, S.

    2011-01-01

    Research highlights: → We examined the performance of direct alcohol fuel cells fed with mixed alcohol. → PtRu-PtSn/C and PtRu/C as catalysts for mixed alcohol electrooxidation reaction. → Misplace adsorption of ethanol on PtRu/C caused the cell performance drop. → PtRu/C showed higher performance than PtRu-PtSn/C for mixed alcohol fuel. -- Abstract: In combining the advantages of both methanol and ethanol, direct alcohol fuel cells fed with mixed alcohol solutions (1 M methanol and 1 M ethanol in varying volume ratios) were tested for performance. Employing a PtRu-PtSn/C catalyst as anode, cell performance was found to diminish rapidly even at 2.5% by volume ethanol mixture. Further increase of ethanol exceeded 10%, the cell performance gradually decreased and finally approached that of direct ethanol fuel cells. The causes of the decrease in the cell performance were the slow electro-oxidation of ethanol and the misplaced adsorption of ethanol on PtRu/C. By comparing the PtRu-PtSn/C cell with the PtRu/C cell operated with mixed alcohol solutions, the cell using PtRu/C as an anode catalyst provided higher power density since more PtRu/C surface was available for methanol oxidation reaction and less ohmic resistance of PtRu/C than that of PtRu-PtSn/C. In order to reach optimization of DAFC performance fed with mixed alcohol, the electrocatalyst used for the anode must selectively adsorb an alcohol, especially ethanol.

  8. Mixtures of methanol and 2-propanol as a potential fuel for direct alcohol fuel cells

    Directory of Open Access Journals (Sweden)

    S. LJ. GOJKOVIC

    2007-12-01

    Full Text Available The electrochemical oxidation of methanol, 2-propanol, and their mixtures was investigated on a Pt/C thin film electrode in acid solution. It was confirmed that the oxidation of 2-propanol commences at less positive potentials than that of methanol and exhibits significantly higher oxidation current densities at low potentials. When both methanol and 2-propanol were present in the solution, the onset of the oxidation current was the same as for the oxidation of pure 2-propanol. Although both alcohols inhibit the oxidation reaction of each other to a certain extent, steady-state polarization measurements showed that their mixture provides higher current densities than single alcohols over the entire potential region from the hydrogen region to oxide formation on the Pt surface. This implies that the addition of 2-propanol into the fuel may extend the operational range of direct methanol fuel cells.

  9. Surrogate alcohol containing methanol, social deprivation and public health in Novosibirsk, Russia.

    Science.gov (United States)

    Neufeld, Maria; Lachenmeier, Dirk; Hausler, Thomas; Rehm, Jürgen

    2016-11-01

    Surrogate alcohol, i.e. alcohol not intended or not officially intended for human consumption, continues to play an important role in alcohol consumption in Russia, especially for people with alcohol dependence. Among the different types of surrogate alcohol, there are windshield washer antifreeze liquids; these products are the cheapest kinds of non-beverage alcohol available and thus likely to be used by the most deprived and marginalised groups such as homeless people with alcohol dependence. Although it is well known, that non-beverage alcohol is used for consumption by various groups in Russia, and although there are laws to prohibit the use of methanol as part of windshield washer antifreeze liquids for the very reason that such products could be used as surrogate alcohol, we detected products in retail sale which were a mix of water and methanol only. Methanol poses serious health threats including blindness and death, and there had been repeated methanol deaths from surrogate alcohol in Russia over the last years. If law-enforcement does not change for surrogate products, we can expect more methanol-resulting deaths in the most deprived and marginalized groups of people with alcohol dependence in Russia. In addition, ingredients with questionable safety profiles such as formic acid should also be prohibited in non-beverage alcohol products that are likely to be consumed as surrogate alcohol. Copyright © 2016. Published by Elsevier B.V.

  10. Methanol and ethanol from lignocellulosic Swedish wood fuels. Appendices. Comparison of the costs of alcohols from biomass

    International Nuclear Information System (INIS)

    Elam, N.; Ekstroem, C.; Oestman, A.; Rensfelt, E.

    1994-01-01

    Swedish wood fuel has a considerable volume and, apart from the utilization today, its use in year 2010 is estimated to amount to 75 TWh/year. Wood fuel can be converted to the alcohols methanol or ethanol and, as such, can be utilized as fuels or components capable of replacing petrol or diesel. This comparison of costs in producing methanol or ethanol from 250 000 tonnes DM of wood fuel using technology available today, or similar levels of technology, shows that methanol can be produced for about 2 SEK/1 (about 450 SEK/MWh) and ethanol for about 4,85 SEK/1 (825 SEK/MWh). The world market price today is around 1 SEK/1 for methanol and 2.60-2.80 SEK/1 for ethanol. Investment and production costs for the two types of production plants do not differ to any particular extent. The investment cost in the methanol plant is about 20 per cent higher, whereas production and maintenance costs are more than 20 per cent higher for ethanol. The explanation of considerable difference in production costs is, instead, primarily the difference in alcohol yield and secondarily the difference in the total efficiency. The valuation of secondary products, particularly lignin fuel from the ethanol process, is also important. The alcohols can be used as propellant fuels in several different ways as admixture components or as pure fuels. It is concluded that there are quality differences between the alcohols that can influence the driving capacity, emissions and which also affect the value of the alcohols. Among the uncertainties that particularly require more penetrating studies are questions dealing with health aspects related to the higher emissions of formaldehyde when used as an engine fuel, total environmental and health influence of ethanol emission, and the contents of polluting substances in lignin fuel that affect its range of use and its value

  11. Oxidation of aromatic alcohols by purified methanol dehydrogenase from Methylosinus trichosporium.

    OpenAIRE

    Mountfort, D O

    1990-01-01

    Methanol dehydrogenase was found to be present in subcellular preparations of methanol-grown Methylosinus trichosporium and occurred almost wholly in the soluble fraction of the cell. The enzyme, purified by DEAE-Sephadex and Sephadex G-100 chromatography, showed broad specificity toward different substrates and oxidized the aromatic alcohols benzyl, vanillyl, and veratryl alcohols in addition to a range of aliphatic primary alcohols. No enzyme activity was found toward the corresponding alde...

  12. 高级醇和烃类化合物含量对甲醇水混溶性的影响%Impact of the Contents of Higher Alcohols and Hydrocarbon Compounds of Methanol upon the Methanol-Water Compatibility

    Institute of Scientific and Technical Information of China (English)

    牟艳春

    2012-01-01

    基于工业甲醇中高级醇、烃类化合物与水以一定比例混合后澄清度的差异,在规定的条件下,利用气相色谱法,分析了高级醇、烃类化合物含量的高低对甲醇水混溶性的影响.试验结果表明:高级醇含量增加,甲醇的水混溶性变差;烃类物质含量越高,甲醇的水混溶性越差.%Methanol is an important and widely used raw material in basic organic chemistry. A gas chromatography test was done under specified conditions to show the impact of the amount of higher alcohol and hydrocarbon compounds upon the water compatibility of methanol. The result showed that the existence of higher alcohol and hydrocarbon compounds in methanol makes it not clear, which great affected the quality of the product, besides, it affected the adjustment of the process parameters.

  13. Long Term Performance Study of a Direct Methanol Fuel Cell Fed with Alcohol Blends

    Directory of Open Access Journals (Sweden)

    Eleuterio Mora

    2013-01-01

    Full Text Available The use of alcohol blends in direct alcohol fuel cells may be a more environmentally friendly and less toxic alternative to the use of methanol alone in direct methanol fuel cells. This paper assesses the behaviour of a direct methanol fuel cell fed with aqueous methanol, aqueous ethanol and aqueous methanol/ethanol blends in a long term experimental study followed by modelling of polarization curves. Fuel cell performance is seen to decrease as the ethanol content rises, and subsequent operation with aqueous methanol only partly reverts this loss of performance. It seems that the difference in the oxidation rate of these alcohols may not be the only factor affecting fuel cell performance.

  14. Emissions characteristics of higher alcohol/gasoline blends

    International Nuclear Information System (INIS)

    Gautam, M.; Martin, D.W.; Carder, D.

    2000-01-01

    An experimental investigation was conducted to determine the emissions characteristics of higher alcohols and gasoline (UTG96) blends. While lower alcohols (methanol and ethanol) have been used in blends with gasoline, very little work has been done or reported on higher alcohols (propanol, butanol and pentanol). Comparisons of emissions and fuel characteristics between higher alcohol/gasoline blends and neat gasoline were made to determine the advantages and disadvantages of blending higher alcohols with gasoline. All tests were conducted on a single-cylinder Waukesha Cooperative Fuel Research engine operating at steady state conditions and stoichiometric air-fuel (A/F) ratio. Emissions test were conducted at the optimum spark timing-knock limiting compression ratio combination for the particular blend being tested. The cycle emission [mass per unit time (g/h)] of CO, CO 2 and organic matter hydrocarbon equivalent (OMHCE) from the higher alcohol/gasoline blends were very similar to those from neat gasoline. Cycle emissions of NO x from the blends were higher than those from neat gasoline. However, for all the emissions species considered, the brake specific emissions (g/kW h) were significantly lower for the higher alcohol/gasoline blends than for neat gasoline. This was because the blends had greater resistance to knock and allowed higher compression ratios, which increased engine power output. The contribution of alcohols and aldehydes to the overall OMHCE emissions was found to be minimal. Cycle fuel consumption (g/h) of higher alcohol/gasoline blends was slightly higher than with neat gasoline due to the lower stoichiometric A/F ratios required by the blends. However, the brake specific fuel consumption (g/kW h) for the blends was significantly lower than that for neat gasoline. (Author)

  15. Long Term Performance Study of a Direct Methanol Fuel Cell Fed with Alcohol Blends

    OpenAIRE

    Teresa J. Leo; Miguel A. Raso; Emilio Navarro; Eleuterio Mora

    2013-01-01

    The use of alcohol blends in direct alcohol fuel cells may be a more environmentally friendly and less toxic alternative to the use of methanol alone in direct methanol fuel cells. This paper assesses the behaviour of a direct methanol fuel cell fed with aqueous methanol, aqueous ethanol and aqueous methanol/ethanol blends in a long term experimental study followed by modelling of polarization curves. Fuel cell performance is seen to decrease as the ethanol content rises, and subsequent opera...

  16. Proceedings of the international symposium on alcohol fuel technology: methanol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The papers presented dealt with the following topics: international situation and economic and political aspects, use of alcohol fuels as automotive fuels, production of methanol and methyl fuels, production of ethanol, methanol application and modeling, alcohol fuel optimization, and environmental considerations. Each paper was prepared for introduction into the EDB data base. (JSR)

  17. Methanol and ethanol from lignocellulosic Swedish wood fuels - Main report. Comparison of the costs of alcohols from biomass

    International Nuclear Information System (INIS)

    Elam, N.; Ekstroem, C.; Oestman, A.; Rensfelt, E.

    1994-06-01

    Swedish wood fuel has a considerable volume and, apart from the utilization today, its use in year 2010 is estimated to amount to 75 TWh/year. Wood fuel can be converted to the alcohols methanol or ethanol and, as such, can be utilized as fuels or components capable of replacing petrol or diesel. This comparison of costs in producing methanol or ethanol from 250 000 tonnes DM of wood fuel using technology available today, or similar levels of technology, shows that methanol can be produced for about 2 SEK/1 (about 450 SEK/MWh) and ethanol for about 4,85 SEK/1 (825 SEK/MWh). The world market price today is around 1 SEK/1 for methanol and 2.60-2.80 SEK/1 for ethanol. Investment and production costs for the two types of production plants do not differ to any particular extent. The investment cost in the methanol plant is about 20 per cent higher, whereas production and maintenance costs are more than 20 per cent higher for ethanol. The explanation of considerable difference in production costs is, instead, primarily the difference in alcohol yield and secondarily the difference in the total efficiency. The valuation of secondary products, particularly lignin fuel from the ethanol process, is also important. The alcohols can be used as propellant fuels in several different ways as admixture components or as pure fuels. It is concluded that there are quality differences between the alcohols that can influence the driving capacity, emissions and which also affect the value of the alcohols. Among the uncertainties that particularly require more penetrating studies are questions dealing with health aspects related to the higher emissions of formaldehyde when used as an engine fuel, total environmental and health influence of ethanol emission, and the contents of polluting substances in lignin fuel that affect its range of use and its value. 25 figs, 29 tabs

  18. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar, E-mail: gude@cee.msstate.edu

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  19. Specific bioanalytical optical and photoelectrochemical assays for detection of methanol in alcoholic beverages.

    Science.gov (United States)

    Barroso, Javier; Díez-Buitrago, Beatriz; Saa, Laura; Möller, Marco; Briz, Nerea; Pavlov, Valeri

    2018-03-15

    Methanol is a poison which is frequently discovered in alcoholic beverages. Innovative methods to detect methanol in alcoholic beverages are being constantly developed. We report for the first time a new strategy for the detection of methanol using fluorescence spectroscopy and photoelectrochemical (PEC) analysis. The analytical system is based on the oxidation of cysteine (CSH) with hydrogen peroxide (H 2 O 2 ) enzymatically generated by alcohol oxidase (AOx). H 2 O 2 oxidizes capping agent CSH, modulating the growth of CSH-stabilized cadmium sulphide quantum dots (CdS QDs). Disposable screen-printed carbon electrodes (SPCEs) modified with a conductive osmium polymer (Os-PVP) complex were employed to quantify resulting CdS QDs. This polymer facilitates the "wiring" of in situ enzymatically generated CdS QDs, which photocatalyze oxidation of 1-thioglycerol (TG), generating photocurrent as the readout signal. Likewise, we proved that our systems did not suffer from interference by ethanol. The PEC assays showed better sensitivity than conventional methods, covering a wide range of potential applications for methanol quantification. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Status and prospects in higher alcohols synthesis from syngas.

    Science.gov (United States)

    Luk, Ho Ting; Mondelli, Cecilia; Ferré, Daniel Curulla; Stewart, Joseph A; Pérez-Ramírez, Javier

    2017-03-06

    Higher alcohols are important compounds with widespread applications in the chemical, pharmaceutical and energy sectors. Currently, they are mainly produced by sugar fermentation (ethanol and isobutanol) or hydration of petroleum-derived alkenes (heavier alcohols), but their direct synthesis from syngas (CO + H 2 ) would comprise a more environmentally-friendly, versatile and economical alternative. Research efforts in this reaction, initiated in the 1930s, have fluctuated along with the oil price and have considerably increased in the last decade due to the interest to exploit shale gas and renewable resources to obtain the gaseous feedstock. Nevertheless, no catalytic system reported to date has performed sufficiently well to justify an industrial implementation. Since the design of an efficient catalyst would strongly benefit from the establishment of synthesis-structure-function relationships and a deeper understanding of the reaction mechanism, this review comprehensively overviews syngas-based higher alcohols synthesis in three main sections, highlighting the advances recently made and the challenges that remain open and stimulate upcoming research activities. The first part critically summarises the formulations and methods applied in the preparation of the four main classes of materials, i.e., Rh-based, Mo-based, modified Fischer-Tropsch and modified methanol synthesis catalysts. The second overviews the molecular-level insights derived from microkinetic and theoretical studies, drawing links to the mechanisms of Fischer-Tropsch and methanol syntheses. Finally, concepts proposed to improve the efficiency of reactors and separation units as well as to utilise CO 2 and recycle side-products in the process are described in the third section.

  1. Effective visualization assay for alcohol content sensing and methanol differentiation with solvent stimuli-responsive supramolecular ionic materials.

    Science.gov (United States)

    Zhang, Li; Qi, Hetong; Wang, Yuexiang; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2014-08-05

    This study demonstrates a rapid visualization assay for on-spot sensing of alcohol content as well as for discriminating methanol-containing beverages with solvent stimuli-responsive supramolecular ionic material (SIM). The SIM is synthesized by ionic self-assembling of imidazolium-based dication C10(mim)2 and dianionic 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in water and shows water stability, a solvent stimuli-responsive property, and adaptive encapsulation capability. The rationale for the visualization assay demonstrated here is based on the combined utilization of the unique properties of SIM, including its water stability, ethanol stimuli-responsive feature, and adaptive encapsulation capability toward optically active rhodamine 6G (Rh6G); the addition of ethanol into a stable aqueous dispersion of Rh6G-encapsulated SIM (Rh6G-SIM) destructs the Rh6G-SIM structure, resulting in the release of Rh6G from SIM into the solvent. Alcohol content can thus be visualized with the naked eyes through the color change of the dispersion caused by the addition of ethanol. Alcohol content can also be quantified by measuring the fluorescence line of Rh6G released from Rh6G-SIM on a thin-layer chromatography (TLC) plate in response to alcoholic beverages. By fixing the diffusion distance of the mobile phase, the fluorescence line of Rh6G shows a linear relationship with alcohol content (vol %) within a concentration range from 15% to 40%. We utilized this visualization assay for on-spot visualizing of the alcohol contents of three Chinese commercial spirits and discriminating methanol-containing counterfeit beverages. We found that addition of a trace amount of methanol leads to a large increase of the length of Rh6G on TLC plates, which provides a method to identify methanol adulterated beverages with labeled ethanol content. This study provides a simple yet effective assay for alcohol content sensing and methanol differentiation.

  2. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-08-17

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines. Utilizing higher-molecular-weight alcohols as fuels requires careful analysis of their fuel properties. ASTM standards provide fuel property requirements for spark-ignition (SI) and compression-ignition (CI) engines such as the stability, lubricity, viscosity, and cold filter plugging point (CFPP) properties of blends of higher alcohols. Important combustion properties that are studied include laminar and turbulent flame speeds, flame blowout/extinction limits, ignition delay under various mixing conditions, and gas-phase and particulate emissions. The chapter focuses on the combustion of higher alcohols in reciprocating SI and CI engines and discusses higher alcohol performance in SI and CI engines. Finally, the chapter identifies the sources, production pathways, and technologies currently being pursued for production of some fuels, including n-butanol, iso-butanol, and n-octanol.

  3. Assessment of ether and alcohol fuels from coal. Volume 2. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

  4. Quantitative NMR spectroscopy of binary liquid mixtures (aldehyde + alcohol) Part I: Acetaldehyde + (methanol or ethanol or 1-propanol)

    International Nuclear Information System (INIS)

    Jaubert, Silke; Maurer, Gerd

    2014-01-01

    Highlights: • Formation of hemiacetal/poly(oxymethylene) hemiacetals in liquid binary mixtures. • Acetaldehyde and a low molecular alcohol (methanol or ethanol or 1-propanol). • Quantitative 13 C NMR spectroscopy at temperatures between (255 and 295) K. • Hemiacetals are the predominant species. • (Acetaldehyde + methanol (50 + 50)) at 255 K: hemiacetal (polymers) >80% (≈10%). -- Abstract: Aldehydes react with alcohols to hemiacetals and poly(oxymethylene) hemiacetals. The chemical reaction equilibria of such reactions, in particular in the liquid state, can have an essential influence on the thermodynamic properties and related phenomena like, for example, on the vapour + liquid phase equilibrium. Therefore, thermodynamic models that aim to describe quantitatively such phase equilibria have to consider the chemical reaction equilibrium in the coexisting phases. This is well known in the literature for systems such as, for example, formaldehyde and methanol. However, experimental information on the chemical reaction equilibria in mixtures with other aldehydes (than formaldehyde) and alcohols is extremely scarce. Therefore, quantitative NMR spectroscopy was used to investigate the chemical reaction equilibria in binary mixtures of acetaldehyde and a single alcohol (here either methanol, ethanol or 1-propanol) at temperatures between (255 and 295) K. The results reveal that the majority of the constituents of the mixture is present as hemiacetal and the first two poly(oxymethylene) hemiacetals: in an equimolar mixture of (acetaldehyde + methanol or ethanol or 1-propanol), between about 90% at T = 255 K and about 75% at 295 K. The mole-fraction based chemical reaction equilibrium constants for the formation of those species were determined and some derived properties are reported

  5. The synthesis of higher alcohols from CO2 hydrogenation with Co, Cu, Fe-based catalysts

    International Nuclear Information System (INIS)

    Ji, Qinqin

    2017-01-01

    CO 2 is a clean carbon source for the chemical reactions, many researchers have studied the utilization of CO 2 . Higher alcohols are clean fuel additives. The synthesis of higher alcohols from CO hydrogenation has also been studied by many researchers, but there are few literatures about the synthesis of higher alcohols from CO 2 hydrogenation, which is a complex and difficult reaction. The catalysts that used for higher alcohols synthesis need at least two active phases and good cooperation. In our study, we tested the Co. Cu. Fe spinel-based catalysts and the effect of supports (CNTs and TUD-1) and promoters (K, Na, Cs) to the HAS reaction. We found that catalyst CuFe-precursor-800 is beneficial for the synthesis of C2+ hydrocarbons and higher alcohols. In the CO 2 hydrogenation, Co acts as a methanation catalyst rather than acting as a FT catalyst, because of the different reaction mechanism between CO hydrogenation and CO 2 hydrogenation. In order to inhibit the formation of huge amount of hydrocarbons, it is better to choose catalysts without Co in the CO 2 hydrogenation reaction. Compared the functions of CNTs and TUD-1, we found that CNTs is a perfect support for the synthesis of long-chain products (higher alcohols and C2+ hydrocarbons). The TUD-1 support are more suitable for synthesis of single-carbon products (methane and methanol).The addition of alkalis as promoters does not only lead to increase the conversion of CO 2 and H 2 , but also sharply increased the selectivity to the desired products, higher alcohols. The catalyst 0.5K30CuFeCNTs owns the highest productivities (370.7 g.kg -1 .h -1 ) of higher alcohols at 350 C and 50 bar. (author) [fr

  6. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-01-01

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines

  7. Self-Healing Proton-Exchange Membranes Composed of Nafion-Poly(vinyl alcohol) Complexes for Durable Direct Methanol Fuel Cells.

    Science.gov (United States)

    Li, Yixuan; Liang, Liang; Liu, Changpeng; Li, Yang; Xing, Wei; Sun, Junqi

    2018-04-30

    Proton-exchange membranes (PEMs) that can heal mechanical damage to restore original functions are important for the fabrication of durable and reliable direct methanol fuel cells (DMFCs). The fabrication of healable PEMs that exhibit satisfactory mechanical stability, enhanced proton conductivity, and suppressed methanol permeability via hydrogen-bonding complexation between Nafion and poly(vinyl alcohol) (PVA) followed by postmodification with 4-carboxybenzaldehyde (CBA) molecules is presented. Compared with pure Nafion, the CBA/Nafion-PVA membranes exhibit enhanced mechanical properties with an ultimate tensile strength of ≈20.3 MPa and strain of ≈380%. The CBA/Nafion-PVA membrane shows a proton conductivity of 0.11 S cm -1 at 80 °C, which is 1.2-fold higher than that of a Nafion membrane. The incorporated PVA gives the CBA/Nafion-PVA membranes excellent proton conductivity and methanol resistance. The resulting CBA/Nafion-PVA membranes are capable of healing mechanical damage of several tens of micrometers in size and restoring their original proton conductivity and methanol resistance under the working conditions of DMFCs. The healing property originates from the reversibility of hydrogen-bonding interactions between Nafion and CBA-modified PVA and the high chain mobility of Nafion and CBA-modified PVA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Under the influence of alcohol: The effect of ethanol and methanol on lipid bilayers

    NARCIS (Netherlands)

    Patra, M.; Salonen, E.; Terama, E.; Vattulainen, I.; Faller, R.; Lee, B.W.; Holopainen, J.M.; Karttunen, M.E.J.

    2006-01-01

    Extensive microscopic molecular dynamics simulations have been performed to study the effects of short-chain alcohols, methanol and ethanol, on two different fully hydrated lipid bilayer systems (POPC and DPPC) in the fluid phase at 323 K. It is found that ethanol has a stronger effect on the

  9. Isolation and Characterization of a Catabolite Repression-Insensitive Mutant of a Methanol Yeast, Candida boidinii A5, Producing Alcohol Oxidase in Glucose-Containing Medium

    OpenAIRE

    Sakai, Yasuyoshi; Sawai, Tohru; Tani, Yoshiki

    1987-01-01

    Mutants exhibiting alcohol oxidase (EC 1.1.3.13) activity when grown on glucose in the presence of methanol were found among 2-deoxyglucose-resistant mutants derived from a methanol yeast, Candida boidinii A5. One of these mutants, strain ADU-15, showed the highest alcohol oxidase activity in glucose-containing medium. The growth characteristics and also the induction and degradation of alcohol oxidase were compared with the parent strain and mutant strain ADU-15. In the parent strain, initia...

  10. Novel proton exchange membrane based on crosslinked poly(vinyl alcohol) for direct methanol fuel cells

    Science.gov (United States)

    Liu, Chien-Pan; Dai, Chi-An; Chao, Chi-Yang; Chang, Shoou-Jinn

    2014-03-01

    In this study, we report the synthesis and the characterization of poly (vinyl alcohol) based proton conducting membranes. In particular, we describe a novel physically and chemically PVA/HFA (poly (vinyl alcohol)/hexafluoroglutaric acid) blending membranes with BASANa (Benzenesulfonic acid sodium salt) and GA (Glutaraldehyde) as binary reaction agents. The key PEM parameters such as ion exchange capacity (IEC), water uptake, proton conductivity, and methanol permeability were controlled by adjusting the chemical composition of the membranes. The IEC value of the membrane is found to be an important parameter in affecting water uptake, conductivity as well as the permeability of the resulting membrane. Plots of the water uptake, conductivity, and methanol permeability vs. IEC of the membranes show a distinct change in the slope of their curves at roughly the same IEC value which suggests a transition of structural changes in the network. The proton conductivities and the methanol permeability of all the membranes are in the range of 10-3-10-2 S cm-1 and 10-8-10-7 cm2 s-1, respectively, depending on its binary crosslinking density, and it shows great selectivity compared with those of Nafion®-117. The membranes display good mechanical properties which suggest a good lifetime usage of the membranes applied in DMFCs.

  11. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, Yonghong; Rong, Jianhua; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-08-15

    In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm{sup -2}. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells. (author)

  12. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  13. Transesterification of rapeseed and palm oils in supercritical methanol and ethanol

    International Nuclear Information System (INIS)

    Biktashev, Sh.A.; Usmanov, R.A.; Gabitov, R.R.; Gazizov, R.A.; Gumerov, F.M.; Gabitov, F.R.; Abdulagatov, I.M.; Yarullin, R.S.; Yakushev, I.A.

    2011-01-01

    The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. The studies were performed using the experimental setups which are working in batch and continuous regimes. The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. Also the effect of preliminary ultrasonic treatment (ultrasonic irradiation, emulsification of immiscible oil and alcohol mixture) of the initial reagents (emulsion preparation) on the stage before transesterification reaction conduction on the conversion yield was studied. We found that the preliminary ultrasonic treatment of the initial reagents increases considerably the conversion yield. Optimal technological conditions were determined to be as follows: pressure within 20-30 MPa, temperature within 573-623 K. The optimal values of the oil to alcohol ratio strongly depend on preliminary treatment of the reaction mixture. The study showed that the conversion yield at the same temperature with 96 wt.% of ethanol is higher than with 100 wt.% of methanol. -- Highlights: → The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. → The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. → Transesterification of vegetable oil with supercritical alcohols. → Effect of temperature and pressure on conversion yield. → Preliminary ultrasonic treatment of the vegetable oil+methanol mixture.

  14. Alcohol fuels program technical review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-07-01

    The last issue of the Alcohol Fuels Process R/D Newsletter contained a work breakdown structure (WBS) of the SERI Alcohol Fuels Program that stressed the subcontracted portion of the program and discussed the SERI biotechnology in-house program. This issue shows the WBS for the in-house programs and contains highlights for the remaining in-house tasks, that is, methanol production research, alcohol utilization research, and membrane research. The methanol production research activity consists of two elements: development of a pressurized oxygen gasifier and synthesis of catalytic materials to more efficiently convert synthesis gas to methanol and higher alcohols. A report is included (Finegold et al. 1981) that details the experimental apparatus and recent results obtained from the gasifier. The catalysis research is principally directed toward producing novel organometallic compounds for use as a homogeneous catalyst. The utilization research is directed toward the development of novel engine systems that use pure alcohol for fuel. Reforming methanol and ethanol catalytically to produce H/sub 2/ and CO gas for use as a fuel offers performance and efficiency advantages over burning alcohol directly as fuel in an engine. An application of this approach is also detailed at the end of this section. Another area of utilization is the use of fuel cells in transportation. In-house researchers investigating alternate electrolyte systems are exploring the direct and indirect use of alcohols in fuel cells. A workshop is being organized to explore potential applications of fuel cells in the transportation sector. The membrane research group is equipping to evaluate alcohol/water separation membranes and is also establishing cost estimation and energy utilization figures for use in alcohol plant design.

  15. Fabrication and Characterization of Chitosan Nanoparticle-Incorporated Quaternized Poly(Vinyl Alcohol) Composite Membranes as Solid Electrolytes for Direct Methanol Alkaline Fuel Cells

    International Nuclear Information System (INIS)

    Li, Pin-Chieh; Liao, Guan–Ming; Kumar, S. Rajesh; Shih, Chao-Ming; Yang, Chun-Chen; Wang, Da-Ming; Lue, Shingjiang Jessie

    2016-01-01

    Highlights: • Preparation of chitosan nanoparticles from bulk to enhance the degree of deacetylation. • The incorporation of chitosan nanoparticles into a QPVA matrix to form a nanocomposite membrane. • The nanocomposite constructed into thin-film membranes using the solution casting method. • To improve permeability, glutaraldehyde was cross-linked with the nanocomposite membranes. • A direct methanol alkaline fuel cell was studied at different temperatures. - Abstract: In this study, we designed a method for the preparation of chitosan nanoparticles incorporated into a quaternized poly(vinyl alcohol) (QPVA) matrix for direct methanol alkaline fuel cells (DMAFCs). The structural and morphological properties of the prepared nanocomposites were studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM) and dynamic laser-light scattering (DLS). The crystallinity of the nanocomposite solid electrolytes containing 0 and 10% chitosan nanoparticles were investigated using differential scanning calorimetry (DSC). The electrochemical measurement of resulting nanocomposite membranes were analyzed according to the following parameters: methanol permeability, liquid uptakes, ionic conductivity and cell performances. The composite membranes with 10% chitosan nanoparticles in a QPVA matrix (CQPVA) show suppressed methanol permeability and higher ionic conductivity than pristine QPVA. In addition, the glutaraldehyde cross-linked nanocomposite film exhibited improvement on the methanol barrier property at 80 °C. The peak power density of the DMAFCs reached 67 mW cm −2 when fed into 1 M of methanol in 6 M of KOH.

  16. Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells

    Science.gov (United States)

    Jiang, Zhongyi; Zheng, Xiaohong; Wu, Hong; Pan, Fusheng

    A novel type of DMFC membrane was developed via incorporation of organophosphorus acids (OPAs) into alcohol barrier materials (polyvinyl alcohol/chitosan, PVA/CS) to simultaneously acquire high proton conductivity and low methanol permeability. Three kinds of OPAs including amino trimethylene phosphonic acid (ATMP), ethylene diamine tetra(methylene phosphonic acid) (EDTMP) and hexamethylene diamine tetra(methylene phosphonic acid) (HDTMP), with different molecular structure and phosphonic acid groups content were added into PVA/CS blends and served the dual functions as proton conductor as well as crosslinker. The as-prepared OPA-doped PVA/CS membranes exhibited remarkably enhanced proton conducting ability, 2-4 times higher than that of the pristine PVA/CS membrane, comparable with that for Nafion ®117 membrane (5.04 × 10 -2 S cm -1). The highest proton conductivities 3.58 × 10 -2, 3.51 × 10 -2 and 2.61 × 10 -2 S cm -1 for ATMP-, EDTMP- and HDTMP-doped membranes, respectively were all achieved at highest initial OPA doping content (23.1 wt.%) at room temperature. The EDTMP-doped PVA/CS membrane with an acid content of 13.9 wt.% showed the lowest methanol permeability of 2.32 × 10 -7 cm 2 s -1 which was 16 times lower than that of Nafion ®117 membrane. In addition, the thermal stability and oxidative durability were both significantly improved by the incorporation of OPAs in comparison with pristine PVA/CS membranes.

  17. Towards a methanol economy: Zeolite catalyzed production of synthetic fuels

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie

    The main focus of this thesis is zeolite catalyzed conversion of oxygenates to hydrocarbon fuels and chemicals. Furthermore, conversion of ethane to higher hydrocarbons has also been studied. After a brief introduction to the concept of “the methanol economy” in the first chapter, the second...... a commercial H-ZSM-5 zeolite impregnated with gallium and/or molybdenum is described. The object was to investigate if the presence of methanol in the feed could enhance the conversion of ethane, but in all cases the opposite is observed; the presence of methanol actually suppresses the conversion of ethane...... various zeolite catalysts is studied in Chapter 4. When 2-propanol or 1-butanol is converted over H-ZSM-5, the total conversion capacities of the catalyst are more than 25 times higher than for conversion of methanol and ethanol. Furthermore, for conversion of C3+ alcohols, the selectivity shifts during...

  18. The study of catalysts for synthesis of higher alcohols from CO + H/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Niu Yugin; Chen Zhenghua; Liu Xiulan; Li Yu; Bo Luhong

    1988-03-01

    Catalysts for synthesis of higher alcohols from CO+H/sub 2/ were developed, and the effects of preparing methods, Zn/Cr atomic ratio and K/sub 2/0 content on catalyst activity were investigated. The effects of the technological parameters were studied. An 1000 h long term test was carried out in order to investigate the catalyst life. Experimental results show that the catalyst has high activity and selectivity, as well as good stability. In the long term test under reaction conditions of 400-405 degrees C, 14-15 MPa, 5000h/sup -1/ (with respect to exit gas), the alcohol product composition is methanol 73-75%; ethanol 1.5-2.2%; propanol 2.2-2.5%; isobutanol 15-17; isopentanol 1-1.5%, while the activity and selectivity are 0.3-0.32 ml/ml cat.h and more than 90% respectively. 5 refs., 4 figs., 2 tabs.

  19. Parameters affecting methanol utilization by yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Foda, M.S.; El-Masry, H.G.

    1981-01-01

    Screening of 28 yeast cultures, representing 22 species of various yeasts, with respect to their capabilities to assimilate methanol, has shown that this property was mostly found in certain species of the two genera Hansenula and Candida. When methanol was used as a sole carbon source for a methanol-adapted strain of Hansenula polymorpha, a linear yield response could be obtained with increasing alcohol up to 2% concentration. The amount of inoculum proved to be the decisive factor in determining a priori the ability of the organism to grow at 6% methanol as final concentration. The optimum pH values for growth ranged between 4.5-5.5 with no growth at pH 6.5 or higher. A marked growth stimulation was obtained when the medium was supplied with phosphate up to 0.08 M as final concentration. Within the nitrogen sources tested, corn steep liquor concentrate gave the highest yield of cells. The significance of the obtained results are discussed with reference to feasibilities of application.

  20. Plant design aspects of catalytic biosyngas conversion to higher alcohols

    International Nuclear Information System (INIS)

    Atsonios, K.; Christodoulou, Ch.; Koytsoumpa, E.-I.; Panopoulos, K.D.; Kakaras, Em.

    2013-01-01

    Although biomethanol production has attracted most of the attention in the past years, there is a current trend for the synthesis of higher alcohols (i.e. ethanol, plus C 3 –C 4 ) from biomass gasification. These compounds could be used directly as fuel or fuel additives for octane or cetane number enhancement. These also serve as important intermediates for the chemical industry. In this paper a comparison is performed between the different process configurations a higher alcohols production plant from biomass gasification can take. These options are modelled in Aspenplus™; all steps and important unit operations are presented with the aim to correctly evaluate the peripheral energy requirements and conclude with the overall thermodynamic limitations of the processes. The differentiation between black liquor and solid biomass gasification, the type of catalyst employed, and the effect of the recycling scheme adopted for the reutilization of unreacted syngas are evaluated. The design has to cope with the limited yields and poor selectivity of catalysts developed so far. The gas cleaning is different depending on the different requirements of the catalysts as far as H 2 S purity. The process modelling results reveal that the hydrogenation of CO to higher alcohols is favoured by high pressure, temperature around 325 °C and high reactor residence times. A biorefinery using modified Fisher–Tropsch (FT) catalysts (MoS 2 ) prevail over modified MeOH catalyst (Cu–Zn based) for HA production. The efficiency of HA production in HHV terms can reach up to 25%. -- Graphical abstract: Process flow diagrams of different biorefinery systems derived from a) woody biomass and b) black liquor. Highlights: ► An integrated gasification/gas-cleaning/synthesis system was modelled in Aspenplus. ► HA production from wood and black liquor gasification is compared. ► Modified FT catalysts prevail over modified methanol catalyst for HA production. ► HA productivity is

  1. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    Science.gov (United States)

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  2. Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhongyi; Zheng, Xiaohong; Wu, Hong; Pan, Fusheng [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2008-10-15

    A novel type of DMFC membrane was developed via incorporation of organophosphorus acids (OPAs) into alcohol barrier materials (polyvinyl alcohol/chitosan, PVA/CS) to simultaneously acquire high proton conductivity and low methanol permeability. Three kinds of OPAs including amino trimethylene phosphonic acid (ATMP), ethylene diamine tetra(methylene phosphonic acid) (EDTMP) and hexamethylene diamine tetra(methylene phosphonic acid) (HDTMP), with different molecular structure and phosphonic acid groups content were added into PVA/CS blends and served the dual functions as proton conductor as well as crosslinker. The as-prepared OPA-doped PVA/CS membranes exhibited remarkably enhanced proton conducting ability, 2-4 times higher than that of the pristine PVA/CS membrane, comparable with that for Nafion {sup registered} 117 membrane (5.04 x 10{sup -2} S cm{sup -1}). The highest proton conductivities 3.58 x 10{sup -2}, 3.51 x 10{sup -2} and 2.61 x 10{sup -2} S cm{sup -1} for ATMP-, EDTMP- and HDTMP-doped membranes, respectively were all achieved at highest initial OPA doping content (23.1 wt.%) at room temperature. The EDTMP-doped PVA/CS membrane with an acid content of 13.9 wt.% showed the lowest methanol permeability of 2.32 x 10{sup -7} cm{sup 2} s{sup -1} which was 16 times lower than that of Nafion {sup registered} 117 membrane. In addition, the thermal stability and oxidative durability were both significantly improved by the incorporation of OPAs in comparison with pristine PVA/CS membranes. (author)

  3. NMR studies on graphite-methanol system

    International Nuclear Information System (INIS)

    El-Akkad, T.M.

    1977-01-01

    The nuclear magnetic relaxation times for protons of methanol on graphite have been studied. The perpendicular and the transversal magnetization as a function of temperature were measured. The results show that the presence of graphite slowed down the methanol movement compared with that in the pure alcohol, and that the methanol molecules are attached to the graphite surface via methyl groups. (author)

  4. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris*

    Science.gov (United States)

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-01-01

    The alcohol oxidase 1 (AOX1) promoter (PAOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of PAOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated PAOX1 in response to methanol, were bound to PAOX1 at different sites and did not interact with each other. However, these factors cooperatively activated PAOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (PMIT1), thus increasingly expressing Mit1 and subsequently activating PAOX1. PMID:26828066

  5. Endogenous Methanol Regulates Mammalian Gene Activity

    Science.gov (United States)

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  6. Endogenous methanol regulates mammalian gene activity.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.

  7. Biodiesel from sunflower oil in supercritical methanol with calcium oxide

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2007-01-01

    In this study, sunflower seed oil was subjected to the transesterification reaction with calcium oxide (CaO) in supercritical methanol for obtaining biodiesel. Methanol is used most frequently as the alcohol in the transesterification process. Calcium oxide (CaO) can considerably improve the transesterification reaction of sunflower seed oil in supercritical methanol. The variables affecting the methyl ester yield during the transesterification reaction, such as the catalyst content, reaction temperature and the molar ratio of soybean oil to alcohol, were investigated and compared with those of non-catalyst runs. The catalytic transesterification ability of CaO is quite weak under ambient temperature. At a temperature of 335 K, the yield of methyl ester is only about 5% in 3 h. When CaO was added from 1.0% to 3.0%, the transesterification speed increased evidently, while when the catalyst content was further enhanced to 5%, the yield of methyl ester slowly reached to a plateau. It was observed that increasing the reaction temperature had a favorable influence on the methyl ester yield. In addition, for molar ratios ranging from 1 to 41, as the higher molar ratios of methanol to oil were charged, the greater transesterification speed was obtained. When the temperature was increased to 525 K, the transesterification reaction was essentially completed within 6 min with 3 wt% CaO and 41:1 methanol/oil molar ratio

  8. The use of methanol as a fuel for transportation

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, K E [Luleaa Univ. of Technology (Sweden); Walsh, M P [Arlington, VA (United States); Westerholm, R [Stockholm Univ. (Sweden)

    1997-06-01

    The aim of the project was to collect and report international experiences concerning the use of methanol as an automotive fuel. The method has been to study the literature which covers the subject and most of the information has been collected that way. The project started with a participation in a conference and a visit to people who have been involved in activities concerning the use of automotive alcohols. Car manufacturers, environmental authorities and users of alcohol fuels i.e. representatives of bus companies, were interviewed. The different applications for the use of methanol as an automotive fuel has been described in the report as well as the production of methanol. Some results, mostly in form of emission data and other experiences derived from the use of alcohol fuels, have also been presented. The use of ethanol and methanol has been compared and based on information from engine manufacturers and users of alcohol fueled vehicles there seems to be a preference for the use of ethanol. However, the question `methanol or ethanol` has not been answered as the decision which of the two is to be used seems to depend more on economic factors, such as cost of the production of the fuel etc., than on other factors. 165 refs, 15 figs, 14 tabs

  9. Biobutanol as fuel for direct alcohol fuel cells - Investigation of Sn-modified Pt catalyst for butanol electro-oxidation

    OpenAIRE

    Puthiyapura, Vinod Kumar; Dan J. L. Brett,; Andrea E. Russell,; Wen-Feng Lin,; Hardacre, Chris

    2016-01-01

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies ...

  10. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.

    Science.gov (United States)

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-03-18

    The alcohol oxidase 1 (AOX1) promoter (P AOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of P AOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated P AOX1 in response to methanol, were bound to P AOX1 at different sites and did not interact with each other. However, these factors cooperatively activated P AOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (P MIT1), thus increasingly expressing Mit1 and subsequently activating P AOX1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Catalytic synthesis of alcoholic fuels for transportation from syngas

    OpenAIRE

    Wu, Qiongxiao; Jensen, Anker Degn; Grunwaldt, Jan-Dierk; Temel, Burcin; Christensen, Jakob Munkholt

    2013-01-01

    This work has investigated the catalytic conversion of syngas into methanol and higher alcohols. Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different composition have been identified as potential candidates for methanol synthesis. These Cu-Ni alloy catalysts have been synthesized and tested in a fixed-bed continuous-flow reactor for CO hydrogenatio...

  12. The effect of thermodynamic properties of solvent mixtures explains the difference between methanol and ethanol in C.antarctica lipase B catalyzed alcoholysis.

    Science.gov (United States)

    Sasso, Francesco; Kulschewski, Tobias; Secundo, Francesco; Lotti, Marina; Pleiss, Jürgen

    2015-11-20

    Kinetic modelling, molecular modelling, and experimental determination of the initial reaction velocity of lipase-catalyzed alcoholysis were combined to study the effect of the alcohol substrate to catalytic activity. The model system consisted of methanol or ethanol at varying concentrations, vinyl acetate as ester substrate 15.2% (v/v), toluene as organic solvent, water at a controlled thermodynamic activity of 0.09, and C. antarctica lipase B as enzyme. For both alcohol substrates, the initial reaction velocity increased sharply at low concentrations and reached a maximum at 0.7% (v/v) for methanol and 2% (v/v) for ethanol. For higher concentrations, the reaction rate decreased to a level of 74% and 60% of the peak value, respectively, due to substrate inhibition. The concentration dependency was described by a kinetic model, including a ping-pong bi-bi mechanism and competitive inhibition by the alcohol, and confirmed previous observations that methanol is more efficiently inhibiting the enzyme than ethanol. However, if the initial reaction velocity was expressed in terms of thermodynamic activity of the two alcohol substrates, the maximum of initial reaction velocity was similar for methanol (a MeOH(max)=0.19) and ethanol (a EtOH(max)=0.21). This was confirmed by molecular modelling which resulted in similar KM (0.22 and 0.19) and Ki values (0.44 and 0.49) for methanol and ethanol, respectively, if expressed in thermodynamic activities. Thus, the experimentally observed difference between methanol and ethanol is not due to differences in interaction with the enzyme but is a consequence of the thermodynamics of the substrate-solvent mixture. For low concentrations in toluene, the activity coefficient of methanol is 40% higher than the activity coefficient of ethanol (γ MeOH=8.5, γ EtOH=6.1). Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Alcohol Fuels Program technical review, Spring 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The alcohol fuels program consists of in-house and subcontracted research for the conversion of lignocellulosic biomass into fuel alcohols via thermoconversion and bioconversion technologies. In the thermoconversion area, the SERI gasifier has been operated on a one-ton per day scale and produces a clean, medium-Btu gas that can be used to manufacture methanol with a relatively small gas-water shift reaction requirement. Recent research has produced catalysts that make methanol and a mixture of higher alcohols from the biomass-derived synthetic gas. Three hydrolysis processes have emerged as candidates for more focused research. They are: a high-temperature, dilute-acid, plug-flow approach based on the Dartmouth reactor; steam explosion pretreatment followed by hydrolysis using the RUT-C30 fungal organism; and direct microbial conversion of the cellulose to ethanol using bacteria in a single or mixed culture. Modeling studies, including parametric and sensitivity analyses, have recently been completed. The results of these studies will lead to a better definition of the present state-of-the-art for these processes and provide a framework for establishing the research and process engineering issues that still need resolution. In addition to these modeling studies, economic feasibility studies are being carried out by commercial engineering firms. Their results will supplement and add commercial validity to the program results. The feasibility contractors will provide input at two levels: Technical and economic assessment of the current state-of-the-art in alcohol production from lignocellulosic biomass via thermoconversion to produce methanol and higher alcohol mixtures and bioconversion to produce ethanol; and identification of research areas having the potential to significantly reduce the cost of production of alcohols.

  14. Cyclic voltammetric analysis of C 1-C 4 alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes

    Science.gov (United States)

    Lee, Choong-Gon; Umeda, Minoru; Uchida, Isamu

    The effect of temperature on methanol, ethanol, 2-propanol, and 2-butanol electrooxidation is investigated with Pt/C and Pt-Ru/C microporous electrodes. Cyclic voltammetry is employed in temperatures ranging from 25 to 80 °C to provide quantitative and qualitative information on the kinetics of alcohol oxidation. Methanol displays the greatest activity atom alcohols. The addition of ruthenium reduces the poisoning effect, although it is ineffective with secondary alcohols. Secondary alcohols undergo a different oxidation mechanism at higher temperatures. Microporous electrodes provide detailed information on alcohol oxidation.

  15. Direct synthesis of 2-methyl-1-propanol/methanol fuels and feedstocks: Quarterly technical progress report for the period June--August 1985

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R. G.; Simmons, G. W.; Nunan, J.; Himelfarb, P. B.

    1985-09-01

    During the present quarter, and intensive series of aluminum- supported catalysts, both Cs promoted and unpromoted, have been prepared by a special preparation technique and tested to determine alcohol synthesis activity, selectivities, and stability. Preparation of a single-phase hydrotalcite-like ((Cu/sub x/Zn/sub 1 -x/)/sub 6/Al/sub 2/CO/sub 3/(OH)/sub 16//center dot/4H/sub 2/O) catalyst precursor has been successfully accomplished. Some of these catalysts have been tested to determine their activities in producing methanol and higher alcohols. It has been observed that catalysts obtained by calcination and reduction of the hydrotalcite-like precursor are very active methanol synthesis catalysts. Doping these catalysts with cesium in an aqueous solution leads to initial deactivation, which is partially recovered by doping at higher cesium levels. Results give us guidelines for altering the promoter doping procedure so that a more active and selective aluminum-supported higher alcohol synthesis catalyst will be obtained. 4 refs., 13 figs., 13 tabs.

  16. Asymmetric Brønsted Acid Catalyzed Substitution of Diaryl Methanols with Thiols and Alcohols for the Synthesis of Chiral Thioethers and Ethers

    KAUST Repository

    Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Mader, Steffen; Sako, Makoto; Sasai, Hiroaki; Atodiresei, Iuliana; Rueping, Magnus

    2016-01-01

    An enantioselective addition of thiols and alcohols to aza-ortho-quinone methides, starting from diaryl methanols, was developed. The asymmetric additions occur under mild reaction conditions in the presence of chiral phosphoric acids and furnish the corresponding adducts with excellent yields and enantioselectivities.

  17. Asymmetric Brønsted Acid Catalyzed Substitution of Diaryl Methanols with Thiols and Alcohols for the Synthesis of Chiral Thioethers and Ethers

    KAUST Repository

    Chatupheeraphat, Adisak

    2016-03-08

    An enantioselective addition of thiols and alcohols to aza-ortho-quinone methides, starting from diaryl methanols, was developed. The asymmetric additions occur under mild reaction conditions in the presence of chiral phosphoric acids and furnish the corresponding adducts with excellent yields and enantioselectivities.

  18. Surrogate alcohol: what do we know and where do we go?

    Science.gov (United States)

    Lachenmeier, Dirk W; Rehm, Jürgen; Gmel, Gerhard

    2007-10-01

    Consumption of surrogate alcohols (i.e., nonbeverage alcohols and illegally produced alcohols) was shown to impact on different causes of death, not only poisoning or liver disease, and appears to be a major public health problem in Russia and elsewhere. A computer-assisted literature review on chemical composition and health consequences of "surrogate alcohol" was conducted and more than 70 references were identified. A wider definition of the term "surrogate alcohol" was derived, including both nonbeverage alcohols and illegally produced alcohols that contain nonbeverage alcohols. Surrogate alcohol may contain substances that cause severe health consequences including death. Known toxic constituents include lead, which may lead to chronic toxicity, and methanol, which leads to acute poisoning. On the other hand, the role of higher alcohols (e.g., propanol, isobutanol, and isoamyl alcohol) in the etiology of surrogate-associated diseases is currently unclear. Whether other constituents of surrogates have contributed to the high all-cause mortality over and above the effect of ethanol in recent studies also remains unclear. Given the high public health importance associated with the consumption of surrogate alcohols, further knowledge on its chemical composition is required as well as research on its links to various disease endpoints should be undertaken with priority. Some interventions to reduce the harm resulting from surrogate alcohol could be undertaken already at this point. For example, the use of methanol or methanol-containing wood alcohol should be abolished in denatured alcohol. Other possible surrogates (e.g., automobile products) should be treated with bittering agents to avoid consumption.

  19. Cyclic voltammetric analysis of C{sub 1}-C{sub 4} alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong-Gon [Department of Chemical Engineering, Hanbat National University, San 16-1 Dukmyung-dong, Yusong-gu, Daejon (Korea); Umeda, Minoru [Department of Chemistry, Nagaoka University of Technology, Kamitomioka, Nagaoka (Japan); Uchida, Isamu [Department of Applied Chemistry, Tohoku University, Aramaki-aoba, Aoba-ku, Sendai (Japan)

    2006-09-29

    The effect of temperature on methanol, ethanol, 2-propanol, and 2-butanol electrooxidation is investigated with Pt/C and Pt-Ru/C microporous electrodes. Cyclic voltammetry is employed in temperatures ranging from 25 to 80{sup o}C to provide quantitative and qualitative information on the kinetics of alcohol oxidation. Methanol displays the greatest activity atom alcohols. The addition of ruthenium reduces the poisoning effect, although it is ineffective with secondary alcohols. Secondary alcohols undergo a different oxidation mechanism at higher temperatures. Microporous electrodes provide detailed information on alcohol oxidation. (author)

  20. A rare presentation of methanol toxicity

    Directory of Open Access Journals (Sweden)

    Nikhil Gupta

    2013-01-01

    Full Text Available Methanol is a highly toxic alcohol resembling ethanol in smell and taste. Methanol poisoning is a lethal form of poisoning that can cause severe metabolic acidosis, visual disturbances, and neurological deficit. Brain lesions typically described in methanol toxicity are in the form of hemorrhagic and non-hemorrhagic necrosis of the basal ganglia and sub-cortical white matter. To our knowledge, lesions in the parietal, temporal, or frontal areas of cerebrum and cerebellar hemispheres have been rarely reported so far. We herewith report this rare presentation.

  1. Characterization a low pressure of plasma of methanol (CH4O) alcohol

    International Nuclear Information System (INIS)

    Villa, M; Torres, C; Reyes, P G; Osorio, D; Castillo, F; Martínez, H

    2014-01-01

    The aim of this work is to explore the emission spectroscopy of Methanol alcohol plasma in some regions, also is determine the result elements of the glow discharge, the spectrums were observed in a range of 200 at 1100 nm in the different zones inside of the tube at different distances of 20 and 30 cm. The elements are: in anode region: C 7 H 7 (451.06 nm), C 6 H 5 (483.02 nm), CHO (519.56 nm), H 2 (560.46 nm), C (607.02 nm), H 2 (661.46 nm); cathode region: O 2 (391.04 nm), CHOCHO (428.00 nm), H 2 (656.52 nm); to 20 and 30 cm region: O 2 + (297.00 nm), CO 2 + (315.52 nm), O + (357.48 nm), C + (388.00 nm).

  2. Reduction of methanol in brewed wine by the use of atmospheric and room-temperature plasma method and the combination optimization of malt with different adjuncts.

    Science.gov (United States)

    Liang, Ming-Hua; Liang, Ying-Jie; Chai, Jiang-Yan; Zhou, Shi-Shui; Jiang, Jian-Guo

    2014-11-01

    Methanol, often generated in brewed wine, is highly toxic for human health. To decrease the methanol content of the brewed wine, atmospheric and room-temperature plasma (ARTP) was used as a new mutagenesis tool to generate a mutant of Saccharomyces cerevisiae with lower methanol content. Headspace gas chromatography was used to determine the identity and concentration of methanol with butyl acetate as internal standard in brewed wine. With 47.4% higher and 26.3% positive mutation rates were obtained, the ARTP jet exhibited a strong effect on mutation breeding of S. cerevisiae. The mutant S. cerevisiae S12 exhibited the lowest methanol content, which was decreased by 72.54% compared with that of the wild-type strain. Subsequently, the mutant S. cerevisiae S12 was used to ferment different combinations of malt and adjuncts for lower methanol content and higher alcoholic content. It was shown that the culture 6#, which was 60% malt, 20% wheat, and 20% corn, was the best combinations of malt and adjuncts, with the lowest methanol content (104.8 mg/L), and a relatively higher alcoholic content (15.3%, v/v). The optimal malt-adjunct culture 6#, treated with the glucoamylase dose of 0.04 U/mg of grain released the highest reducing sugars (201.6 mg/mL). It was indicated that the variation in reducing sugars among the combinations of malt and different adjuncts could be due to the dose of exogenous enzymes. © 2014 Institute of Food Technologists®

  3. Identification and dosage by HRGC of minor alcohol and esters in Brazilian sugar-cane spirit

    Energy Technology Data Exchange (ETDEWEB)

    Boscolo, Mauricio; Bezerra, Cicero W.B.; Cardoso, Daniel R.; Lima Neto, Benedito S.; Franco, Douglas W. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica

    2000-02-01

    The presence of 51 volatile compounds, among alcohols and esters in Brazilian sugar-cane spirit (cachaca), were investigated by high-resolution gas chromatography (HRGC). The following alcohols and esters were identified and quantified: methanol, 1,4-butanodiol, 2-phenylethyl alcohol, amyl alcohol, cetyl alcohol, cynamic alcohol, n-decanol, geraniol, isoamyl alcohol, isobutanol, menthol, n-butanol, n-dodecanol, n-propanol, n-tetradecanol, amyl propionate, ethyl acetate, ethyl benzoate, ethyl heptanoate, isoamyl valerate, methyl propionate, propyl butyrate. The average higher alcohols content (262 mg/100 mL in anhydrous alcohol a.a) and total esters content (24 mg/100 mL a.a) in cachacas, are smaller than in other spirits. The average methanol content in cachacas (6 mg/100 mL a.a) is the same as in rum, but smaller than in wine spirit. No qualitative differences of chemical profile among cachacas have been observed. (author)

  4. Identification and dosage by HRGC of minor alcohol and esters in Brazilian sugar-cane spirit

    International Nuclear Information System (INIS)

    Boscolo, Mauricio; Bezerra, Cicero W.B.; Cardoso, Daniel R.; Lima Neto, Benedito S.; Franco, Douglas W.

    2000-01-01

    The presence of 51 volatile compounds, among alcohols and esters in Brazilian sugar-cane spirit (cachaca), were investigated by high-resolution gas chromatography (HRGC). The following alcohols and esters were identified and quantified: methanol, 1,4-butanodiol, 2-phenylethyl alcohol, amyl alcohol, cetyl alcohol, cynamic alcohol, n-decanol, geraniol, isoamyl alcohol, isobutanol, menthol, n-butanol, n-dodecanol, n-propanol, n-tetradecanol, amyl propionate, ethyl acetate, ethyl benzoate, ethyl heptanoate, isoamyl valerate, methyl propionate, propyl butyrate. The average higher alcohols content (262 mg/100 mL in anhydrous alcohol a.a) and total esters content (24 mg/100 mL a.a) in cachacas, are smaller than in other spirits. The average methanol content in cachacas (6 mg/100 mL a.a) is the same as in rum, but smaller than in wine spirit. No qualitative differences of chemical profile among cachacas have been observed. (author)

  5. Aminobutyric acid and formation of higher alcohols by Saccharomyces carlsbergenesis

    Energy Technology Data Exchange (ETDEWEB)

    Babaeva, S A; Veselov, I Ya; Gracheva, I M

    1966-01-01

    Aminobutyric acid (1) added before the start of fermentation increased the formation of propyl-, isobutyl-, and isoamyl alcohols. With addition of I after 24, 28, or 72 hours of fermentation, the formation of the alcohols gradually decreased. Addition of I after 3 days of fermentation did not affect formation of the higher alcohols. I was not the source of formation of the higher alcohols, but affected the metabolism of carbohydrates and N in the cells. Formation of hexyl alcohols and high amounts of aldehydes was observed only during aerobic fermentation.

  6. Catalytic synthesis of alcoholic fuels for transportation from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Qiongxiao Wu

    2012-12-15

    consequently on the catalytic activity. (3) Addition of 3 mol % CO{sub 2} to the H2/CO feed stream leads to a significant loss of activity for the Cu-Ni/SiO2 catalyst contrary to the case for the Cu/ZnO/Al2O3 catalyst. DFT calculations show in accordance with previous surface science studies that oxygen on the surface could lead to an enrichment of the Ni-content in the surface. (4) Silica supported bimetallic Cu-Ni catalysts with different ratios of Cu to Ni have been prepared by impregnation. In situ reduction of Cu-Ni alloys with combined synchrotron XRD and XAS reveal a strong interaction between Cu and Ni, resulting in improved reducibility of Ni as compared to monometallic Ni. At high nickel concentrations silica supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower nickel contents, copper and nickel are separately aggregated and form metallic Cu and Cu-Ni alloy phases. At the same reduction conditions, the particle sizes of reduced Cu-Ni alloys decrease with increasing in Ni content. A maximum methanol productivity of 0.66 kg kgcat-1 h-1 with methanol selectivity up to 99.2 mol % has been achieved for a Cu-Ni/SiO2 catalyst prepared by the deposition-co-precipitation method. There is no apparent catalyst deactivation observed during the tested time on stream (40-100 h), contrary to the observation for the industrial Cu/ZnO/Al2O3 catalyst. For higher alcohol synthesis, the main work has been performed on CO hydrogenation over supported Mo2C. Mo2C supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over supported Mo2C are significantly higher compared to bulk Mo2C. The CO conversion reaches a maximum, when about 20 wt % Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active

  7. Chain reaction on de-halogenation of 1,2-dibromotetrafluoroethane and 1,1,2-trichlorotrifluoroethane induced by irradiation in alcohols

    International Nuclear Information System (INIS)

    Nakagawa, Seiko

    2015-01-01

    Methanol and 2-propanol solutions of 1,2-dibromotetrafluoroethane and 1,1,2-trichlorotrifluoroethane were irradiated with γ-rays after perfect de-oxygenation. The product, formed by the substitution of one of the bromine or chlorine atoms with a hydrogen atom, was observed by radiation-induced degradation and the product was also de-halogenated. The G-value of de-halogenation was more than a thousand times higher than G(e solv − ) and increased with the decreasing dose rate, meaning that a chain reaction is involved in the process. The efficiency of the degradation in 2-propanol was several times higher than that in methanol. It is concluded that the charge transfer from an alcohol radical will be the trigger of the chain reaction the same as in the degradation of hexachloroethane in alcohol solutions (Sawai et al., 1978). - Highlights: • Halone2402 and Furon113 were de-halogenated by radiation-induced chain reaction in pure alcohol. • The efficiency of the degradation in 2-propanol was several times higher than that in methanol. • The charge transfer from an alcohol radical will be the trigger of the chain reaction

  8. Future of alcohol fuels programs in Brasil

    Science.gov (United States)

    Carvalho, A. V., Jr.; Rechtschaffen, E.; Goldstein, L., Jr.

    An updating is given of the Brazilian National Alcohol Program's production and utilization achievements to date in the substitution of ethanol and methanol for imported oil products. A series of Eucalyptus forestry and processing-industry projections are made for fuel output and jobs creation that may be expected by the year 2000. With few exceptions, methanol produced from wood grown on poorer soils than can now be used for sugarcane substitute for oil products and result in jobs creation several orders of magnitude higher than petroleum fuels.

  9. On the effects of higher alcohols on red wine aroma.

    Science.gov (United States)

    de-la-Fuente-Blanco, Arancha; Sáenz-Navajas, María-Pilar; Ferreira, Vicente

    2016-11-01

    This work aims to assess the aromatic sensory contribution of the four most relevant wine higher alcohols (isobutanol, isoamyl alcohol, methionol and β-phenylethanol) on red wine aroma. The four alcohols were added at two levels of concentration, within the natural range of occurrence, to eight different wine models (WM), close reconstitutions of red wines differing in levels of fruity (F), woody (W), animal (A) or humidity (H) notes. Samples were submitted to discriminant and descriptive sensory analysis. Results showed that the contribution of methionol and β-phenylethanol to wine aroma was negligible and confirmed the sensory importance of the pair isobutanol-isoamyl alcohol. Sensory effects were only evident in WM containing intense aromas, demonstrating a strong dependence on the aromatic context. Higher alcohols significantly suppress strawberry/lactic/red fruity, coconut/wood/vanilla and humidity/TCA notes, but not the leather/animal/ink note. The spirit/alcoholic/solvent character generated by higher alcohols has been shown to be wine dependent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Identification and dosage by HRGC of minor alcohols and esters in Brazilian sugar-cane spirit

    Directory of Open Access Journals (Sweden)

    Boscolo Maurício

    2000-01-01

    Full Text Available The presence of 51 volatile compounds, among alcohols and esters in Brazilian sugar-cane spirit (cachaça, were investigated by high-resolution gas chromatography (HRGC. The following alcohols and esters were identified and quantified: methanol, 1,4-butanodiol, 2-phenylethyl alcohol, amyl alcohol, cetyl alcohol, cynamic alcohol, n-decanol, geraniol, isoamyl alcohol, isobutanol, menthol, n-butanol, n-dodecanol, n-propanol, n-tetradecanol, amyl propionate, ethyl acetate, ethyl benzoate, ethyl heptanoate, isoamyl valerate, methyl propionate, propyl butyrate. The average higher alcohols content (262 mg/100 mL in anhydrous alcohol a.a. and total esters content (24 mg/100 mL a.a. in cachaças, are smaller than in other spirits. The average methanol content in cachaças (6 mg/100 mL a.a. is the same as in rum, but smaller than in wine spirit. No qualitative differences of chemical profile among cachaças have been observed.

  11. France prefers methanol for long term use as gasoline substitute

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-02

    The French carburol programme, which plans to reduce its consumption of gasoline from imported crude oil, based on methanol and butanol-acetone mixtures was detailed recently at the ECMRA in Cannes. The programme envisages the production of methanol from synthesis gas generated by the gasification of materials such as wood, coal, lignite and heavy oil residues. Also planned is the production of mixtures of butanol and acetone from such biomass sources as straw, Jerusalem artichoke, sugar cane and beet and alfalfa by hydrolysis followed by fermentation. In the first phase of the programme, up to 1985, methanol and butanol-acetone may be added to all premium gasoline sold in France up to 10% so that engine modification is not required. A higher alcohol content mixture, 25-50% is planned for the second phase to run in modified cars. The substitution of 50% of French gasoline could be achieved by 1995 by the production of 8m. ton/year oil equivalent of carburol.

  12. Engineering strategy of yeast metabolism for higher alcohol production

    Directory of Open Access Journals (Sweden)

    Shimizu Hiroshi

    2011-09-01

    Full Text Available Abstract Background While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S. cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of the metabolic models of S. cerevisiae. Results The metabolic simulations confirmed that the high production of butanols and propanols by the metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols. In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central metabolism in which gene deletions severely reduced cell growth. Conclusions The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by the introduction of E. coli genes to compensate the structural difference. This suggested that gene supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of higher alcohols.

  13. Recommendations for the role of extracorporeal treatments in the management of acute methanol poisoning

    DEFF Research Database (Denmark)

    Roberts, Darren M; Yates, Christopher; Megarbane, Bruno

    2015-01-01

    in Poisoning workgroup aimed to develop evidence-based consensus recommendations for extracorporeal treatment in methanol poisoning. DESIGN AND METHODS: Utilizing predetermined methods, we conducted a systematic review of the literature. Two hundred seventy-two relevant publications were identified...... to methanol: coma, seizures, new vision deficits, metabolic acidosis with blood pH ≤7.15, persistent metabolic acidosis despite adequate supportive measures and antidotes, serum anion gap higher than 24 mmol/L; or, serum methanol concentration 1) greater than 700 mg/L (21.8 mmol/L) in the context...... of fomepizole therapy, 2) greater than 600 mg/L or 18.7 mmol/L in the context of ethanol treatment, 3) greater than 500 mg/L or 15.6 mmol/L in the absence of an alcohol dehydrogenase blocker; in the absence of a methanol concentration, the osmolal/osmolar gap may be informative; or, in the context of impaired...

  14. Ethylene glycol or methanol intoxication : Which antidote should be used, fomepizole or ethanol?

    NARCIS (Netherlands)

    Rietjens, S. J.; de Lange, D. W.; Meulenbelt, J.

    2014-01-01

    Ethylene glycol (EG) and methanol poisoning can cause life-threatening complications. Toxicity of EG and methanol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), which can lead to metabolic acidosis, renal failure (in EG poisoning), blindness (in methanol

  15. Formaldehyde, methanol and hydrocarbon emissions from methanol-fueled cars

    International Nuclear Information System (INIS)

    Williams, R.L.; Lipari, F.; Potter, R.A.

    1990-01-01

    Exhaust and evaporative emissions tests were conducted on several methanol- and gasoline-fueled vehicles. Separate samples for chromatographic analysis of formaldehyde, methanol, and individual hydrocarbons were collected in each of the three phases of the driving cycle and in each of the two portions of the evaporative emissions test. One vehicle, equipped with an experimental variable-fuel engine, was tested using methanol/gasoline fuel mixtures of 100, 85, 50, 15, and 0 percent methanol. Combustion-generated hydrocarbons were lowest using methanol fuel, and increased several-fold as the gasoline fraction was increased. Gasoline components in the exhaust increased from zero as the gasoline fraction of the fuel was increased. On the other hand, formaldehyde emissions were several times higher using methanol fuel than they were using gasoline. A dedicated methanol car and the variable-fuel car gave similar emissions patterns when they both were tested using methanol fuel. The organic-carbon composition of the exhaust was 85-90 percent methanol, 5-7 percent formaldehyde, and 3-9 percent hydrocarbons. Several cars that were tested using gasoline emitted similar distributions of hydrocarbons, even through the vehicles represented a broad range of current and developmental engine families and emissions control systems

  16. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Science.gov (United States)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.

  17. Erythropoietin in Treatment of Methanol Optic Neuropathy.

    Science.gov (United States)

    Pakdel, Farzad; Sanjari, Mostafa S; Naderi, Asieh; Pirmarzdashti, Niloofar; Haghighi, Anousheh; Kashkouli, Mohsen B

    2018-06-01

    Methanol poisoning can cause an optic neuropathy that is usually severe and irreversible and often occurs after ingestion of illicit or homemade alcoholic beverages. In this study, we evaluated the potential neuroprotective effect of erythropoietin (EPO) on visual acuity (VA) in patients with methanol optic neuropathy. In a prospective, noncomparative interventional case series, consecutive patients with methanol optic neuropathy after alcoholic beverage ingestion were included. All patients initially received systemic therapy including metabolic stabilization and detoxification. Treatment with intravenous recombinant human EPO consisted of 20,000 units/day for 3 successive days. Depending on clinical response, some patients received a second course of EPO. VA, funduscopy, and spectral domain optical coherence tomography were assessed during the study. Main outcome measure was VA. Thirty-two eyes of 16 patients with methanol optic neuropathy were included. Mean age was 34.2 years (±13.3 years). The mean time interval between methanol ingestion and treatment with intravenous EPO was 9.1 days (±5.56 days). Mean follow-up after treatment was 7.5 months (±5.88 months). Median VA in the better eye of each patient before treatment was light perception (range: 3.90-0.60 logMAR). Median last acuity after treatment in the best eye was 1.00 logMAR (range: 3.90-0.00 logMAR). VA significantly increased in the last follow-up examination (P optic neuropathy and may represent a promising treatment for this disorder.

  18. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-900 Sao Paulo, SP (Brazil)

    2007-03-30

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature. (author)

  19. Vapor-Liquid Equilibrium of Methane with Water and Methanol. Measurements and Modeling

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; Karakatsani, Eirini; von Solms, Nicolas

    2014-01-01

    that rely on phase equilibrium data for optimization. The objective of this work is to provide experimental data for hydrocarbon systems with polar chemicals such as alcohols, glycols, and water. New vapor-liquid equilibrium data are reported for methane + water, methane + methanol, and methane + methanol...

  20. Quantification of methanol in the presence of ethanol by selected ion flow tube mass spectrometry.

    Science.gov (United States)

    Chambers-Bédard, Catherine; Ross, Brian M

    The quantification of trace compounds in alcoholic beverages is a useful means to both investigate the chemical basis of beverage flavor and to facilitate quality control during the production process. One compound of interest is methanol which, due to it being toxic, must not exceed regulatory limits. The analysis of headspace gases is a desirable means to do this since it does not require direct sampling of the liquid material. One established means to conduct headspace analysis is selected ion flow tube mass spectrometry (SIFT-MS). The high concentration of ethanol present in the headspace of alcoholic drinks complicates the analysis, however, via reacting with the precursor ions central to this technique. We therefore investigated whether methanol could be quantified in the presence of a large excess of ethanol using SIFT-MS. We found that methanol reacted with ionized ethanol to generate product ions that could be used to quantify methanol concentrations and used this technique to quantify methanol in beverages containing different quantities of ethanol. We conclude that SIFT-MS can be used to quantify trace compounds in alcoholic beverages by determining the relevant reaction chemistry.

  1. Experimental analysis of methanol cross-over in a direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, Andrea [Dipartimento di Energetica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)]. E-mail: andrea.casalegno@polimi.it; Grassini, Paolo [Dipartimento di Energetica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)]. E-mail: PGrassini@seal.it; Marchesi, Renzo [Dipartimento di Energetica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)]. E-mail: renzo.marchesi@polimi.it

    2007-03-15

    Methanol cross-over through the polymeric membrane is one of the main causes limiting direct methanol fuel cell performances. It causes fuel wasting and enhances cathode overpotential. A repeatable and reproducible measurement system, that assures the traceability of the measurement to international reference standards, is necessary to compare different fuel cell construction materials. In this work a method to evaluate methanol cross-over rate and operating condition influence is presented and qualified in term of measurement uncertainty. In the investigated range, the methanol cross-over rate results mainly due to diffusion through the membrane, in fact it is strongly affected by temperature. Moreover the cross-over influence on fuel utilization and fuel cell efficiency is investigated. The methanol cross-over rate appears linearly proportional to electrochemical fuel utilization and values, obtained by measurements at different anode flow rate but constant electrochemical fuel utilization, are roughly equal; methanol wasting, due to cross-over, is considerable and can still be higher than electrochemical utilization. The fuel recirculation effect on energy efficiency has been investigated and it was found that fuel recirculation gives more advantage at low temperature, but fuel cell energy efficiency results are in any event higher at high temperature.

  2. Experimental analysis of methanol cross-over in a direct methanol fuel cell

    International Nuclear Information System (INIS)

    Casalegno, Andrea; Grassini, Paolo; Marchesi, Renzo

    2007-01-01

    Methanol cross-over through the polymeric membrane is one of the main causes limiting direct methanol fuel cell performances. It causes fuel wasting and enhances cathode overpotential. A repeatable and reproducible measurement system, that assures the traceability of the measurement to international reference standards, is necessary to compare different fuel cell construction materials. In this work a method to evaluate methanol cross-over rate and operating condition influence is presented and qualified in term of measurement uncertainty. In the investigated range, the methanol cross-over rate results mainly due to diffusion through the membrane, in fact it is strongly affected by temperature. Moreover the cross-over influence on fuel utilization and fuel cell efficiency is investigated. The methanol cross-over rate appears linearly proportional to electrochemical fuel utilization and values, obtained by measurements at different anode flow rate but constant electrochemical fuel utilization, are roughly equal; methanol wasting, due to cross-over, is considerable and can still be higher than electrochemical utilization. The fuel recirculation effect on energy efficiency has been investigated and it was found that fuel recirculation gives more advantage at low temperature, but fuel cell energy efficiency results are in any event higher at high temperature

  3. Injector spray characterization of methanol in reciprocating engines

    Science.gov (United States)

    Dodge, L.; Naegeli, D.

    1994-06-01

    This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

  4. Response of a direct methanol fuel cell to fuel change

    Energy Technology Data Exchange (ETDEWEB)

    Leo, T.J. [Dpto de Sistemas Oceanicos y Navales- ETSI Navales, Univ. Politecnica de Madrid, Avda Arco de la Victoria s/n, 28040 Madrid (Spain); Raso, M.A.; de la Blanca, E. Sanchez [Dpto de Quimica Fisica I- Fac. CC. Quimicas, Univ. Complutense de Madrid, Avda Complutense s/n, 28040 Madrid (Spain); Navarro, E.; Villanueva, M. [Dpto de Motopropulsion y Termofluidodinamica, ETSI Aeronauticos, Univ. Politecnica de Madrid, Pza Cardenal Cisneros 3, 28040 Madrid (Spain); Moreno, B. [Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Cientificas, C/Kelsen 5, Campus de la UAM, 28049 Cantoblanco, Madrid (Spain)

    2010-10-15

    Methanol and ethanol have recently received much attention as liquid fuels particularly as alternative 'energy-vectors' for the future. In this sense, to find a direct alcohol fuel cell that able to interchange the fuel without losing performances in an appreciable way would represent an evident advantage in the field of portable applications. In this work, the response of a in-house direct methanol fuel cell (DMFC) to the change of fuel from methanol to ethanol and its behaviour at different ambient temperature values have been investigated. A corrosion study on materials suitable to fabricate the bipolar plates has been carried out and either 316- or 2205-duplex stainless steels have proved to be adequate for using in direct alcohol fuel cells. Polarization curves have been measured at different ambient temperature values, controlled by an experimental setup devised for this purpose. Data have been fitted to a model taking into account the temperature effect. For both fuels, methanol and ethanol, a linear dependence of adjustable parameters with temperature is obtained. Fuel cell performance comparison in terms of open circuit voltage, kinetic and resistance is established. (author)

  5. Preparation of esters of gallic acid with higher primary alcohols

    NARCIS (Netherlands)

    Kerk, G.J.M. van der; Verbeek, J.H.; Cleton, J.C.F.

    1951-01-01

    The esters of gallic acid and higher primary alcohols, especially fatty alcohols, have recently gained considerable interest as possible antioxidants for fats. Two independent methods for the preparation of these esters are described. In the first method the hitherto unknown compound galloyl

  6. Catalytic synthesis of alcoholic fuels for transportation from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao

    This work has investigated the catalytic conversion of syngas into methanol and higher alcohols. Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different...... composition have been identified as potential candidates for methanol synthesis. These Cu-Ni alloy catalysts have been synthesized and tested in a fixed-bed continuous-flow reactor for CO hydrogenation. The metal area based activity for a Cu-Ni/SiO2 catalyst is at the same level as a Cu/ZnO/Al2O3 model...... catalyst. The high activity and selectivity of silica supported Cu-Ni alloy catalysts agrees with the fact that the DFT calculations identified Cu-Ni alloys as highly active and selective catalysts for the hydrogenation of CO to form methanol. This work has also provided a systematic study of Cu...

  7. Analysis of transesterification comparing processes with methanol and ethanol for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Zorzeto, Thais Queiroz; Park, Kil Jin [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@feagri.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    The increasing demand for energy on the industrialized world stimulates researches in a renewable fuel. Biodiesel appears like an alternative and utilizes a vegetable oil or animal fat as raw material. The most common method for conversion of the raw material in fuel that can be utilized in Diesel engines is called transesterification. Brazil has a big agricultural potential to produce grains and oils. One of them is the peanut oil that is predominantly cultivated in the southeast of Brazil. There is a prevision that the peanut production reaches 232 thousand tons this year. In this work was evaluated the methanol transesterification and ethanol transesterification of peanut oil using a basic catalyst. The comparison between reactions with the two alcohols showed that methyl esters yield was greater than ethyl esters, with maximum yield of 88.04% for methanol and 84.64% for ethanol. Besides the higher yield, reactions with methanol are easily conducted than with ethanol, the biodiesel purification treatment of final product is quickly and the separation between esters and glycerol is instantaneous. (author)

  8. Molecular Dynamics Investigation of the Effects of Concentration on Hydrogen Bonding in Aqueous Solutions of Methanol, Ethylene Glycol and Glycerol

    International Nuclear Information System (INIS)

    Zhang, Ning; Li, Weizhong; Chen, Cong; Zuo, Jianguo; Weng, Lindong

    2013-01-01

    Hydrogen bonding interaction between alcohols and water molecules is an important characteristic in the aqueous solutions of alcohols. In this paper, a series of molecular dynamics simulations have been performed to investigate the aqueous solutions of low molecular weight alcohols (methanol, ethylene glycol and glycerol) at the concentrations covering a broad range from 1 to 90 mol %. The work focuses on studying the effect of the alcohols molecules on the hydrogen bonding of water molecules in binary mixtures. By analyzing the hydrogen bonding ability of the hydroxyl (-OH) groups for the three alcohols, it is found that the hydroxyl group of methanol prefers to form more hydrogen bonds than that of ethylene glycol and glycerol due to the intra-and intermolecular effects. It is also shown that concentration has significant effect on the ability of alcohol molecule to hydrogen bond water molecules. Understanding the hydrogen bonding characteristics of the aqueous solutions is helpful to reveal the cryoprotective mechanisms of methanol, ethylene glycol and glycerol in aqueous solutions

  9. Heterogeneous catalytic process for alcohol fuels from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Minahan, D.M.; Nagaki, D.A.

    1995-12-31

    This project is focused on the discovery and evaluation of novel heterogeneous catalyst for the production of oxygenated fuel enhancers from synthesis gas. Catalysts have been studied and optimized for the production of methanol and isobutanol mixtures which may be used for the downstream synthesis of MTBE or related oxygenates. Higher alcohols synthesis (HAS) from syngas was studied; the alcohols that are produced in this process may be used for the downstream synthesis of MTBE or related oxygenates. This work has resulted in the discovery of a catalyst system that is highly selective for isobutanol compared with the prior art. The catalysts operate at high temperature (400{degrees}C), and consist of a spinel oxide support (general formula AB{sub 2}O{sub 4}, where A=M{sup 2+} and B = M{sup 3+}), promoted with various other elements. These catalysts operate by what is believed to be an aldol condensation mechanism, giving a product mix of mainly methanol and isobutanol. In this study, the effect of product feed/recycle (methanol, ethanol. n-propanol, isopropanol, carbon dioxide and water) on the performance of 10-DAN-55 (spinel oxide based catalyst) at 400{degrees}C, 1000 psi, GHSV = 12,000 and syngas (H{sub 2}/CO) ratio = 1:2 (alcohol addition) and 1:1 (carbon dioxide and water addition) was studied. The effect of operation at high temperatures and pressures on the performance of an improved catalyst formulation was also examined.

  10. Can duration of hemodialysis be estimated based on the on-arrival laboratory tests and clinical manifestations in methanol-poisoned patients?

    Science.gov (United States)

    Pajoumand, Abdolkarim; Zamani, Nasim; Hassanian-Moghaddam, Hossein; Shadnia, Shahin

    2017-06-01

    We aimed to evaluate the efficacy of Lachance formula and more readily available clinical or laboratory factors (other than serum methanol level) in prediction of the needed time for hemodialysis in methanol-poisoned patients. In a retrospective study, all methanol-poisoned patients referred to us between March 2008 and March 2016 were enrolled. The patients' demographic characteristics, on-arrival vital signs, signs/symptoms, and laboratory tests were evaluated for factors that could prognosticate the dialysis duration. Of 72 patients enrolled, 54 underwent hemodialysis once (group 1) and 18 needed more than one session of hemodialysis (group 2). All were treated by ethanol, bicarbonate, and leucovorin. Lachance formula overestimated the patients in higher methanol levels and underestimated them in lower methanol levels. It properly predicted the needed time for hemodialysis when the methanol level was between 15 and 25 mg/dL. Groups 1 and 2 were different in terms of their ingested alcohol dose (P = 0.001), creatinine (P = 0.02), dyspnea on presentation (P = 0.002), and the place they had been dialyzed (P = 0.013). Dialysis duration significantly correlated with dyspnea on presentation (P = 0.028) and ingested alcohol dose (P = 0.02). After performance of logistic regression analysis, only creatinine was statistically significantly different between the two groups (P = 0.02). Median creatinine levels were 1.3 [1, 6] (0.8-2.7) and 1.4 [1.35, 2.1] (0.8-6.5) in the patients who were dialyzed once and twice, respectively. As a conclusion, creatinine is possibly a readily available test that can predict the appropriate time needed for hemodialysis in methanol-poisoned patients.

  11. Field test of motor cars running on methanol-petrol mixtures. Field test methanol/benzine variabele mengsels in 15 auto's

    Energy Technology Data Exchange (ETDEWEB)

    Hollemans, B; Van der Weide, J

    1985-01-01

    As part of the Dutch National Program Plan on Energy Research the Research Institute for Road Vehicles of the Netherlands Organization for Applied Scientific Research TNO carried out a field test of motor cars using as motor fuel methanol-petrol mixtures ranging from 0% to 100% methanol. This has been made possible by using a sensor developed for alcohol-petrol mixtures coupled with a control system. The fleet, 15 Volvo 340 cars, was tested in the period July 1982-April 1985. They covered together 1,118,558 km; 'average mixture': 65% methanol; 'average fuel consumption': 14.4 liter per 100 km. Detailed information is given on: fuel consumption, performance, troubles, maintenance, etc. A special and separate appendix gives information on complaints and troubles in general and for each car individually.

  12. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  13. Gas Phase Sensing of Alcohols by Metal Organic Framework–Polymer Composite Materials

    Science.gov (United States)

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in a Matrimid polymer matrix with different weight ratios (0–100 wt %) and drop-casted on planar capacitive transducer devices. These coated devices were electrically analyzed using impedance spectroscopy and investigated for their sensing properties toward the detection of a series of alcohols and water in the gas phase. The measurements indicated a reversible and reproducible response in all devices. Sensor devices containing 40 wt % NH2-MIL-53(Al) in Matrimid showed a maximum response for methanol and water. The sensor response time slowed down with increasing MOF concentration until 40 wt %. The half time of saturation response (τ0.5) increased by ∼1.75 times for the 40 wt % composition compared to devices coated with Matrimid only. This is attributed to polymer rigidification near the MOF/polymer interface. Higher MOF loadings (≥50 wt %) resulted in brittle coatings with a response similar to the 100 wt % MOF coating. Cross-sensitivity studies showed the ability to kinetically distinguish between the different alcohols with a faster response for methanol and water compared to ethanol and 2-propanol. The observed higher affinity of the pure Matrimid polymer toward methanol compared to water allows also for a higher uptake of methanol in the composite matrices. Also, as indicated by the sensing studies with a mixture of water and methanol, the methanol uptake is independent of the presence of water up to 6000 ppm of water. The NH2-MIL-53(Al) MOFs dispersed in the Matrimid matrix show a sensitive and reversible capacitive response, even in the presence of water. By tuning the precise compositions, the affinity kinetics and overall affinity can be tuned, showing

  14. Methanol sensing characteristics of conducting polypyrrole-silver nanocomposites

    Science.gov (United States)

    Kabir, L.; Mandal, S. K.

    2012-05-01

    Methanol sensing characteristics of conducting polypyrrole-silver nanocomposites are reported here. The nanocomposites are synthesized by wet chemical technique with different amount of silver loadings (5-15 mol%). The sensitivity of the nanocomposites upon exposure to gas molecules is critically dependent on the silver loadings and the concentration of the exposed gas. This is possibly instigated by the modified metal-polymer interface and the polar nature of the constituent metal and the exposed gas. Interaction of the alcohol gas with the polypyrrole chains in the presence of silver effectively determines the change in resistance and hence the sensitivity of the nanocomposites upon exposure to methanol. The adsorption of methanol molecules within the nanocomposites and the subsequent chemical reactions are studied by Fourier transform infrared (FTIR) spectroscopy.

  15. The Quality of Alcohol Products in Vietnam and Its Implications for Public Health

    Directory of Open Access Journals (Sweden)

    Jürgen Rehm

    2009-07-01

    Full Text Available Four homemade (artisanally manufactured and unrecorded and seven commercial (industrially manufactured and taxed alcohol products from Vietnam were collected and chemically analyzed for toxicologically relevant substances. The majority of both types had alcohol contents between 30 and 40% vol. Two homemade samples contained significantly higher concentrations of 45 and 50% vol. In one of these homemade samples the labeled alcoholic strength was exceeded by nearly 20% vol. All other analyzed constituents of the samples (e.g., methanol, acetaldehyde, higher alcohols, esters, metals, anions were found in concentrations that did not pose a threat to public health. A peculiarity was a homemade sample of alcohol with pickled snakes and scorpions that contained 77% vol of alcohol, allegedly used as traditional Chinese medicine. Based on this small sample, there is insufficient evidence to conclude that alcohol quality, beyond the effects of ethanol, has an influence on health in Vietnam. However, future research with larger samples is needed.

  16. The quality of alcohol products in Vietnam and its implications for public health.

    Science.gov (United States)

    Lachenmeier, Dirk W; Anh, Pham Thi Hoang; Popova, Svetlana; Rehm, Jürgen

    2009-08-01

    Four homemade (artisanally manufactured and unrecorded) and seven commercial (industrially manufactured and taxed) alcohol products from Vietnam were collected and chemically analyzed for toxicologically relevant substances. The majority of both types had alcohol contents between 30 and 40% vol. Two homemade samples contained significantly higher concentrations of 45 and 50% vol. In one of these homemade samples the labeled alcoholic strength was exceeded by nearly 20% vol. All other analyzed constituents of the samples (e.g., methanol, acetaldehyde, higher alcohols, esters, metals, anions) were found in concentrations that did not pose a threat to public health. A peculiarity was a homemade sample of alcohol with pickled snakes and scorpions that contained 77% vol of alcohol, allegedly used as traditional Chinese medicine. Based on this small sample, there is insufficient evidence to conclude that alcohol quality, beyond the effects of ethanol, has an influence on health in Vietnam. However, future research with larger samples is needed.

  17. Crystal structure of di-μ-chlorido-bis[dichloridobis(methanol-κOiridium(III] dihydrate: a surprisingly simple chloridoiridium(III dinuclear complex with methanol ligands

    Directory of Open Access Journals (Sweden)

    Joseph S. Merola

    2015-05-01

    Full Text Available The reaction between IrCl3·xH2O in methanol led to the formation of small amounts of the title compound, [Ir2Cl6(CH3OH4]·2H2O, which consists of two IrCl4O2 octahedra sharing an edge via chloride bridges. The molecule lies across an inversion center. Each octahedron can be envisioned as being comprised of four chloride ligands in the equatorial plane with methanol ligands in the axial positions. A lattice water molecule is strongly hydrogen-bonded to the coordinating methanol ligands and weak interactions with coordinating chloride ligands lead to the formation of a three-dimensional network. This is a surprising structure given that, while many reactions of iridium chloride hydrate are carried out in alcoholic solvents, especially methanol and ethanol, this is the first structure of a chloridoiridium compound with only methanol ligands.

  18. Atmospheric alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Nguyen, Ha Thi-Hoang; Takenaka, Norimichi; Bandow, Hiroshi; Maeda, Yasuaki; Oliva, S.T. de; Botelho, M.M.; Tavares, T.M.

    2001-01-01

    The use of alcohol fuel has received much attention since the 1980s. In Brazil, ethanol-fuelled vehicles have been currently used on a large scale. This paper reports the atmospheric methanol and isoproponal concentrations which were measured from May to December 1997, in Osaka, Japan, where alcohol fuel was not used and from 3 to 9 February 1998 in Sao Paulo, Brazil, where ethanol was used. The alcohols were determined by the alkyl nitrite formation reaction using gas chromatography (GC-ECD) analysis. The concentration of atmospheric alcohols, especially ethanol, measured in Sao Paulo were significantly higher than those in Osaka. In Osaka, the average concentrations of atmospheric methanol, ethanol, and isopropanol were 5.8 ± 3.8, 8.2 ± 4.6, and 7.2 ± 5.9ppbv, respectively. The average ambient levels of methanol, ethanol, and isopropanol measured in Sao Paulo were 34.1± 9.2, 176.3 ± 38.1, and 44.2 ± 13.7ppbv, respectively. The ambient levels of aldehydes, which were expected to be high due to the use of alcohol fuel, were also measured at these sampling sites. The atmospheric formaldehyde average measured in Osaka was 1.9± 0.9ppbv, and the average acetaldehyde concentration was 1.5 ± 0.8ppbv. The atmospheric formaldehyde and acetaldehyde average concentrations measured in Sao Paulo were 5.0 ± 2.8 and 5.4 ± 2.8ppbv, respectively. The C 2 H 5 OH/CH 3 OH and CH 3 CHO/HCHO were compared between the two measurement sites and elsewhere in the world, which have already been reported in the literature. Due to the use of ethanol-fuelled vehicles, these ratios, especially C-2H 5 OH/CH 3 OH, are much higher in Brazil than those measured elsewhere in the world. (Author)

  19. Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution.

    Science.gov (United States)

    Cameleyre, Margaux; Lytra, Georgia; Tempere, Sophie; Barbe, Jean-Christophe

    2015-11-11

    This study focused on the impact of five higher alcohols on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of 13 ethyl esters and acetates and 5 higher alcohols, all at the average concentrations found in red wine. These aromatic reconstitutions were prepared in several matrices. Sensory analysis revealed the interesting behavior of certain compounds among the five higher alcohols following their individual addition or omission. The "olfactory threshold" of the fruity pool was evaluated in several matrices: dilute alcohol solution, dilute alcohol solution containing 3-methylbutan-1-ol or butan-1-ol individually, and dilute alcohol solution containing the mixture of five higher alcohols, blended together at various concentrations. The presence of 3-methylbutan-1-ol or butan-1-ol alone led to a significant decrease in the "olfactory threshold" of the fruity reconstitution, whereas the mixture of alcohols raised the olfactory threshold. Sensory profiles highlighted changes in the perception of fruity nuances in the presence of the mixture of higher alcohols, with specific perceptive interactions, including a relevant masking effect on fresh- and jammy-fruit notes of the fruity mixture in both dilute alcohol solution and dearomatized red wine matrices. When either 3-methylbutan-1-ol or butan-1-ol was added to the fruity reconstitution in dilute alcohol solution, an enhancement of butyric notes was reported with 3-methylbutan-1-ol and fresh- and jammy-fruit with butan-1-ol. This study, the first to focus on the impact of higher alcohols on fruity aromatic expression, revealed that these compounds participate, both quantitatively and qualitatively, in masking fruity aroma perception in a model fruity wine mixture.

  20. Methanol May Function as a Cross-Kingdom Signal

    Science.gov (United States)

    Dorokhov, Yuri L.; Komarova, Tatiana V.; Petrunia, Igor V.; Kosorukov, Vyacheslav S.; Zinovkin, Roman A.; Shindyapina, Anastasia V.; Frolova, Olga Y.; Gleba, Yuri Y.

    2012-01-01

    Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in

  1. Fumed Silica Nanoparticles Incorporated in Quaternized Poly(Vinyl Alcohol Nanocomposite Membrane for Enhanced Power Densities in Direct Alcohol Alkaline Fuel Cells

    Directory of Open Access Journals (Sweden)

    Selvaraj Rajesh Kumar

    2015-12-01

    Full Text Available A nanocomposite polymer membrane based on quaternized poly(vinyl alcohol/fumed silica (QPVA/FS was prepared via a quaternization process and solution casting method. The physico-chemical properties of the QPVA/FS membrane were investigated. Its high ionic conductivity was found to depend greatly on the concentration of fumed silica in the QPVA matrix. A maximum conductivity of 3.50 × 10−2 S/cm was obtained for QPVA/5%FS at 60 °C when it was doped with 6 M KOH. The permeabilities of methanol and ethanol were reduced with increasing fumed silica content. Cell voltage and peak power density were analyzed as functions of fumed silica concentration, temperature, methanol and ethanol concentrations. A maximum power density of 96.8 mW/cm2 was achieved with QPVA/5%FS electrolyte using 2 M methanol + 6 M KOH as fuel at 80 °C. A peak power density of 79 mW/cm2 was obtained using the QPVA/5%FS electrolyte with 3 M ethanol + 5 M KOH as fuel. The resulting peak power densities are higher than the majority of published reports. The results confirm that QPVA/FS exhibits promise as a future polymeric electrolyte for use in direct alkaline alcoholic fuel cells.

  2. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.

    Science.gov (United States)

    Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet

    2015-11-01

    Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity.

  3. Degradation Characteristics of Wood Using Supercritical Alcohols

    Directory of Open Access Journals (Sweden)

    Jeeban Poudel

    2012-11-01

    Full Text Available In this work, the characteristics of wood degradation using supercritical alcohols have been studied. Supercritical ethanol and supercritical methanol were used as solvents. The kinetics of wood degradation were analyzed using the nonisothermal weight loss technique with heating rates of 3.1, 9.8, and 14.5 °C/min for ethanol and 5.2, 11.3, and 16.3 °C/min for methanol. Three different kinetic analysis methods were implemented to obtain the apparent activation energy and the overall reaction order for wood degradation using supercritical alcohols. These were used to compare with previous data for supercritical methanol. From this work, the activation energies of wood degradation in supercritical ethanol were obtained as 78.0–86.0, 40.1–48.1, and 114 kJ/mol for the different kinetic analysis methods used in this work. The activation energies of wood degradation in supercritical ethanol were obtained as 78.0–86.0, 40.1–48.1, and 114 kJ/mol. This paper also includes the analysis of the liquid products obtained from this work. The characteristic analysis of liquid products on increasing reaction temperature and time has been performed by GC-MS. The liquid products were categorized according to carbon numbers and aromatic/aliphatic components. It was found that higher conversion in supercritical ethanol occurs at a lower temperature than that of supercritical methanol. The product analysis shows that the majority of products fall in the 2 to 15 carbon number range.

  4. Nicotinoprotein methanol dehydrogenase enzymes in Gram-positive methylotrophic bacteria

    NARCIS (Netherlands)

    Hektor, Harm J.; Kloosterman, Harm; Dijkhuizen, Lubbert

    2000-01-01

    A novel type of alcohol dehydrogenase enzyme has been characterized from Gram-positive methylotrophic (Bacillus methanolicus, the actinomycetes Amycolatopsis methanolica and Mycobacterium gastri) and non-methylotrophic bacteria (Rhodococcus strains). Its in vivo role is in oxidation of methanol and

  5. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures...

  6. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    Science.gov (United States)

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. METHANOL REMOVAL FROM METHANOL-WATER MIXTURE USING ACTIVATED SLUDGE, AIR STRIPPING AND ADSORPTION PROCESS: COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    SALAM K. AL-DAWERY

    2015-12-01

    Full Text Available An experimental research has been carried out in order to examine the removal of methanol from methanol-water mixtures using three different methods; activated sludge; activated carbon and air stripping. The results showed that the methanol was totally consumed by the bacteria as quickly as the feed entered the activated sludge vessel. Air stripping process has a limited ability for removing of methanol due to strong intermolecular forces between methanol and water; however, the results showed that the percentage of methanol removed using air pressure at 0.5 bar was higher than that of using air pressure of 0.25 bar. Removal of methanol from the mixture with a methanol content of 5% using activated carbon was not successful due to the limited capacity of the of the activated carbon. Thus, the activated sludge process can be considered as the most suitable process for the treatment of methanol-water mixtures.

  8. Metabolic Engineering of Microorganisms for the Production of Higher Alcohols

    Science.gov (United States)

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin

    2014-01-01

    ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. PMID:25182323

  9. Unrecorded alcohol consumption in Russia: toxic denaturants and disinfectants pose additional risks.

    Science.gov (United States)

    Solodun, Yuriy V; Monakhova, Yulia B; Kuballa, Thomas; Samokhvalov, Andriy V; Rehm, Jürgen; Lachenmeier, Dirk W

    2011-12-01

    In 2005, 30% of all alcohol consumption in Russia was unrecorded. This paper describes the chemical composition of unrecorded and low cost alcohol, including a toxicological evaluation. Alcohol products (n=22) from both recorded and unrecorded sources were obtained from three Russian cities (Saratov, Lipetsk and Irkutsk) and were chemically analyzed. Unrecorded alcohols included homemade samogons, medicinal alcohols and surrogate alcohols. Analysis included alcoholic strength, levels of volatile compounds (methanol, acetaldehyde, higher alcohols), ethyl carbamate, diethyl phthalate (DEP) and polyhexamethyleneguanidine hydrochloride (PHMG). Single samples showed contamination with DEP (275-1269 mg/l) and PHMG (515 mg/l) above levels of toxicological concern. Our detailed chemical analysis of Russian alcohols showed that the composition of vodka, samogon and medicinal alcohols generally did not raise major public health concerns other than for ethanol. It was shown, however, that concentration levels of DEP and PHMG in some surrogate alcohols make these samples unfit for human consumption as even moderate drinking would exceed acceptable daily intakes.

  10. Methanol, Ethanol and Propanol in EHD liquid bridging

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Wexler, Adam D; Agostinho, Luewton L F; Ramek, Michael; Woisetschläger, Jakob

    2011-01-01

    When a high-voltage direct-current is applied to two beakers filled with water or polar liquid dielectrica, a horizontal bridge forms between the two beakers. In this work such bridges made of methanol, ethanol, 1-propanol and 2-propanol are investigated with polarimetry and thermography. Whereas methanol, ethanol and 1-propanol bridges become warm like a water bridge, a 2-propanol bridge cools down relative to the surroundings. It is shown how the different stability of the primary and secondary alcoholate ions and the resulting small difference in conductivity between 1-propanol and 2-propanol is responsible for this novel effect.

  11. Enzymes extracted from apple peels have activity in reducing higher alcohols in Chinese liquors.

    Science.gov (United States)

    Han, Qi'an; Shi, Junling; Zhu, Jing; Lv, Hongliang; Du, Shuangkui

    2014-10-01

    As the unavoidable byproducts of alcoholic fermentation, higher alcohols are unhealthy compounds widespread in alcoholic drinks. To investigate the activity of apple crude enzymes toward higher alcohols in liquors, five kinds of apple peels, namely, Fuji, Gala, Golden Delicious, Red Star, and Jonagold, were chosen to prepare enzymes, and three kinds of Chinese liquors, namely, Xifeng (containing 45% ethanol), Taibai (containing 50% ethanol), and Erguotou (containing 56% ethanol), were tested. Enzymes were prepared in the forms of liquid solution, powder, and immobilized enzymes using sodium alginate (SA) and chitosan. The treatment was carried out at 37 °C for 1 h. The relative amounts of different alcohols (including ethanol, 1-propanol, isobutanol, 1-butanol, isoamylol, and 1-hexanol) were measured using gas chromatography (GC). Conditions for preparing SA-immobilized Fuji enzymes (SA-IEP) were optimized, and the obtained SA-IEP (containing 0.3 g of enzyme) was continuously used to treat Xifeng liquor eight times, 20 mL per time. Significant degradation rates (DRs) of higher alcohols were observed at different degrees, and it also showed enzyme specificity according to the apple varieties and enzyme preparations. After five repeated treatments, the DRs of the optimized Fuji SA-IEP remained 70% for 1-hexanol and >15% for other higher alcohols.

  12. Catalytic Conversion of Syngas into Higher Alcohols over Carbide Catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Duchstein, Linus Daniel Leonhard; Wagner, Jakob Birkedal

    2012-01-01

    This work investigates the use of the bulk carbides Mo2C, WC, and NbC as catalysts for the conversion of syngas into higher alcohols. K2CO3/WC produces mainly CH3OH and CH4 with a low activity. NbC has a very low activity in CO hydrogenation. K2CO3/Mo2C produces mixed alcohols with a reasonable...

  13. Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells

    Science.gov (United States)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Chien, Wen-Chen; Chiu, Sheng-Shin

    The quaternized poly(vinyl alcohol)/alumina (designated as QPVA/Al 2O 3) nanocomposite polymer membrane was prepared by a solution casting method. The characteristic properties of the QPVA/Al 2O 3 nanocomposite polymer membranes were investigated using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), micro-Raman spectroscopy, and AC impedance method. Alkaline direct methanol fuel cell (ADMFC) comprised of the QPVA/Al 2O 3 nanocomposite polymer membrane were assembled and examined. Experimental results indicate that the DMFC employing a cheap non-perfluorinated (QPVA/Al 2O 3) nanocomposite polymer membrane shows excellent electrochemical performances. The peak power densities of the DMFC with 4 M KOH + 1 M CH 3OH, 2 M CH 3OH, and 4 M CH 3OH solutions are 28.33, 32.40, and 36.15 mW cm -2, respectively, at room temperature and in ambient air. The QPVA/Al 2O 3 nanocomposite polymer membranes constitute a viable candidate for applications on alkaline DMFC.

  14. Upgrading low-boiling-fraction fast pyrolysis bio-oil using supercritical alcohol: Understanding alcohol participation, chemical composition, and energy efficiency

    International Nuclear Information System (INIS)

    Jo, Heuntae; Prajitno, Hermawan; Zeb, Hassan; Kim, Jaehoon

    2017-01-01

    Highlights: • Non-catalytic and non-hydrogen based bio-oil upgrading was conducted using scMeOH. • 16–40 wt% alcohols were consumed during the upgrading. • High bio-oil yield of 78.4 wt% and low TAN of 4.0 mg KOH/g were achieved. • Effect of supercritical alcohols, reaction times, temperature and bio-oil concentration was conducted. • scMeOH upgrading has good energy recovery (ER) and energy efficiency (EE) compared with scEtOH and scIPA. - Abstract: Herein, a supercritical methanol (scMeOH) route for efficient upgrading of the low-boiling fraction of fast pyrolysis bio-oil containing a large amount of low-molecular-weight acids and water was investigated. The effects of various reaction parameters, including the temperature, concentration, and time, were explored. The yield of bio-oil and the energy efficiency of the scMeOH upgrading process were determined based on the amount of methanol that participated in the reaction during upgrading and fractionation of the upgraded heavy-fraction bio-oils (UHBOs) and upgraded light-fraction bio-oils (ULBOs). Upgrading at 400 °C with 9.1 wt% bio-oil for 30 min generated a high bio-oil yield of 78.4 wt% with a low total acid number (TAN) of 4.0 mg-KOH/g-oil and a higher heating value of 29.9 MJ kg −1 . The energy recovery (ER) was 94–131% and the energy efficiency (EE) was in the range of 79–109% depending on the calorific values of the ULBOs. Compared with upgrading in supercritical ethanol and supercritical isopropanol, less alcohol participation, a lower TAN, and higher ER and EE were achieved with scMeOH upgrading. Plausible pathways for bio-oil upgrading in supercritical alcohols based on detailed compositional analysis of the UHBO, ULBO, and gaseous products were discussed.

  15. Unrecorded consumption, quality of alcohol and health consequences.

    Science.gov (United States)

    Rehm, Jürgen; Kanteres, Fotis; Lachenmeier, Dirk W

    2010-07-01

    This contribution aims to examine systematically the evidence on the impact of the quality of unrecorded alcohol products on health consequences. Systematic computer assisted review of the literature. There are a number of pathways related to alcohol quality that may lead to acute or chronic health problems. The following constituents and contaminants of alcoholic beverages were identified as likely contributors to these problems: (i) toxic metals (e.g. lead) from contaminated water sources or unsuitable distillation equipment; (ii) volatile constituents, such as acetaldehyde or higher alcohols, which may be produced in significant amounts due to faults in production technology or microbiological spoilage; (iii) ethyl carbamate (urethane), a carcinogenic contaminant with major occurrence in certain fruit and sugarcane spirits; (iv) biologically active flavour compounds (e.g. coumarin in cosmetics used as non-beverage alcohol); (v) toxic compounds used to denature alcohol (e.g. methanol or diethyl phthalate). In addition, the often higher ethanol content may have detrimental health effects. These pathways should not be assumed as present for all subcategories of unrecorded alcohol, but are more relevant to certain types and geographic regions. A health impact of unrecorded alcohol over and above the effect of ethanol cannot be excluded. More research is urgently needed, especially with respect to liver disease and alcohol poisoning as endpoints. A feasible approach for new research on the effects of unrecorded alcohol could be based on a representative sample from low socioeconomic regions with high prevalence of unrecorded consumption.

  16. A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination.

    Science.gov (United States)

    Hnaien, M; Lagarde, F; Jaffrezic-Renault, N

    2010-04-15

    A new conductometric biosensor has been developed for the determination of short chain primary aliphatic alcohols. The biosensor assembly was prepared through immobilization of alcohol oxidase from Hansenula sp. and bovine liver catalase in a photoreticulated poly(vinyl alcohol) membrane at the surface of interdigitated microelectrodes. The local conductivity increased rapidly after alcohol addition, reaching steady-state within 10 min. The sensitivity was maximal for methanol (0.394+/-0.004 microS microM(-1), n=5) and decreased by increasing the alcohol chain length. The response was linear up to 75 microM for methanol, 70 microM for ethanol and 65 microM for 1-propanol and limits of detection were 0.5 microM, 1 microM and 3 microM, respectively (S/N=3). No significant loss of the enzyme activities was observed after 3 months of storage at 4 degrees C in a 20mM phosphate buffer solution pH 7.2 (two or three measurements per week). After 4 months, 95% of the initial signal still remained. The biosensor response to ethanol was not significantly affected by acetic, lactic, ascorbic, malic, oxalic, citric, tartaric acids or glucose. The bi-enzymatic sensor was successfully applied to the determination of ethanol in different alcoholic beverages. (c) 2009 Elsevier B.V. All rights reserved.

  17. A new amperometric enzyme electrode for alcohol determination.

    Science.gov (United States)

    Gülce, H; Gülce, A; Kavanoz, M; Coşkun, H; Yildiz, A

    2002-06-01

    A new enzyme electrode for the determination of alcohols was developed by immobilizing alcohol oxidase in polvinylferrocenium matrix coated on a Pt electrode surface. The amperometric response due to the electrooxidation of enzymatically generated H(2)O(2) was measured at a constant potential of +0.70 V versus SCE. The effects of substrate, buffer and enzyme concentrations, pH and temperature on the response of the electrode were investigated. The optimum pH was found to be pH 8.0 at 30 degrees C. The steady-state current of this enzyme electrode was reproducible within +/-5.0% of the relative error. The sensitivity of the enzyme electrode decreased in the following order: methanol>ethanol>n-butanol>benzyl alcohol. The linear response was observed up to 3.7 mM for methanol, 3.0 mM for ethanol, 6.2 mM for n-butanol, and 5.2 mM for benzyl alcohol. The apparent Michaelis-Menten constant (K(Mapp)) value and the activation energy, E(a), of this immobilized enzyme system were found to be 5.78 mM and 38.07 kJ/mol for methanol, respectively.

  18. Methanol-Induced Blindness:A Case Report. | Nwosu | Nigerian ...

    African Journals Online (AJOL)

    A case of irreversible blindness in a young adult following methanol ingestion is reported. Forty-eight hours after drinking an unspecified quantity of alcoholic beverage the 21 year old male student experienced sudden visual loss.When seen in our hospital 2 days later each eye of the patient had visual acuity if No Light ...

  19. Diffusion of Oxygen in Alginate Gels Related to the Kinetics of Methanol Oxidation by Immobilized Hansenula polymorpha Cells

    NARCIS (Netherlands)

    Hiemstra, Harry; Dijkhuizen, Lubbert; Harder, Willem

    1983-01-01

    In the yeast Hansenula polymorpha an oxygen-requiring enzyme, alcohol oxidase, catalyzes the conversion of methanol into formaldehyde. After growth on methanol cells of the organism were harvested and entrapped in barium-alginate gels. The diffusion of oxygen towards these cells is seriously

  20. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report Number 8, 1 July, 1993--30 September, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    Task 1, the preparation of catalyst materials, is proceeding actively. At WVU, catalysts based on Mo are being prepared using a variety of approaches to alter the oxidation state and environment of the Mo. At UCC and P, copper-based zinc chromite spinel catalysts will be prepared and tested. The modeling of the alcohol-synthesis reaction in a membrane reactor is proceeding actively. Under standard conditions, pressure drop in the membrane reactor has been shown to be negligible. In Task 2, base case designs had previously been completed with a Texaco gasifier. Now, similar designs have been completed using the Shell gasifier. A comparison of the payback periods or production cost of these plants shows significant differences among the base cases. However, a natural gas only design, prepared for comparison purposes, gives a lower payback period or production cost. Since the alcohol synthesis portion of the above processes is the same, the best way to make coal-derived higher alcohols more attractive economically than natural gas-derived higher alcohols is by making coal-derived syngas less expensive than natural gas-derived syngas. The maximum economically feasible capacity for a higher alcohol plant from coal-derived syngas appears to be 32 MM bbl/yr. This is based on consideration of regional coal supply in the eastern US, coal transportation, and regional product demand. The benefits of economics of scale are illustrated for the base case designs. A value for higher alcohol blends has been determined by appropriate combination of RVP, octane number, and oxygen content, using MTBE as a reference. This analysis suggests that the high RVP of methanol in combination with its higher water solubility make higher alcohols more valuable than methanol.

  1. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol.

    Science.gov (United States)

    Celik, Eda; Calik, Pinar; Oliver, Stephen G

    2009-09-01

    Batch-wise sorbitol addition as a co-substrate at the induction phase of methanol fed-batch fermentation by Pichia pastoris (Mut(+)) was proposed as a beneficial recombinant protein production strategy and the metabolic responses to methanol feeding rate in the presence of sorbitol was systematically investigated. Adding sorbitol batch-wise to the medium provided the following advantages over growth on methanol alone: (a) eliminating the long lag-phase for the cells and reaching 'high cell density production' at t = 24 h of the process (C(X) = 70 g CDW/l); (b) achieving 1.8-fold higher recombinant human erythropoietin (rHuEPO) (at t = 18 h); (c) reducing specific protease production 1.2-fold; (d) eliminating the lactic acid build-up period; (e) lowering the oxygen uptake rate two-fold; and (f) obtaining 1.4-fold higher overall yield coefficients. The maximum specific alcohol oxidase activity was not affected in the presence of sorbitol, and it was observed that sorbitol and methanol were utilized simultaneously. Thus, in the presence of sorbitol, 130 mg/l rHuEPO was produced at t = 24 h, compared to 80 mg/l rHuEPO (t = 24 h) on methanol alone. This work demonstrates not only the ease and efficiency of incorporating sorbitol to fermentations by Mut(+) strains of P. pastoris for the production of any bio-product, but also provides new insights into the metabolism of the methylotrophic yeast P. pastoris.

  2. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site.

    Science.gov (United States)

    Abanda-Nkpwatt, Daniel; Müsch, Martina; Tschiersch, Jochen; Boettner, Mewes; Schwab, Wilfried

    2006-01-01

    Four Methylobacterium extorquens strains were isolated from strawberry (Fragaria x ananassa cv. Elsanta) leaves, and one strain, called ME4, was tested for its ability to promote the growth of various plant seedlings. Seedling weight and shoot length of Nicotiana tabacum, Lycopersicon esculentum, Sinapis alba, and Fragaria vesca increased significantly in the presence of the pink-pigmented facultative methylotroph (PPFM), but the germination behaviour of seeds from six other plants was not affected. The cell-free supernatant of the bacterial culture stimulated germination, suggesting the production of a growth-promoting agent by the methylotroph. Methanol emitted from N. tabacum seedlings, as determined by proton-transfer-reaction mass spectrometry (PTR-MS), ranged from 0.4 to 0.7 ppbv (parts per billion by volume), while significantly lower levels (0.005 to 0.01 ppbv) of the volatile alcohol were measured when the seedlings were co-cultivated with M. extorquens ME4, demonstrating the consumption of the gaseous methanol by the bacteria. Additionally, by using cells of the methylotrophic yeast Pichia pastoris transformed with the pPICHS/GFP vector harbouring a methanol-sensitive promoter in combination with the green fluorescence protein (GFP) reporter gene, stomata were identified as the main source of the methanol emission on tobacco cotyledons. Methylobacterium extorquens strains can nourish themselves using the methanol released by the stomata and release an agent promoting the growth of the seedlings of some crop plants.

  3. Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Wu, Qiongxiao; Christensen, Jakob Munkholt

    2011-01-01

    The development of transportation fuels from sustainable resources requires new and better production paths. One approach involves the use of biogas to synthesize alcohols, such as methanol or higher alcohols for fuel. For the production of methanol a reduction of processing temperature and press......The development of transportation fuels from sustainable resources requires new and better production paths. One approach involves the use of biogas to synthesize alcohols, such as methanol or higher alcohols for fuel. For the production of methanol a reduction of processing temperature...... and pressure to lower the process cost and make the product more competitive is desired. Higher alcohols are in general favourable over methanol due to their high energy density and ease of use in current internal combustion engines. However, the yield of higher alcohols in present production routes is poor...

  4. Dietary methanol and autism.

    Science.gov (United States)

    Walton, Ralph G; Monte, Woodrow C

    2015-10-01

    The authors sought to establish whether maternal dietary methanol during pregnancy was a factor in the etiology of autism spectrum disorders. A seven item questionnaire was given to women who had given birth to at least one child after 1984. The subjects were solicited from a large primary care practice and several internet sites and separated into two groups - mothers who had given birth to a child with autism and those who had not. Average weekly methanol consumption was calculated based on questionnaire responses. 550 questionnaires were completed by women who gave birth to a non-autistic child. On average these women consumed 66.71mg. of methanol weekly. 161 questionnaires were completed by women who had given birth to an autistic child. The average estimated weekly methanol consumption for this group was 142.31mg. Based on the results of the Wilcoxon rank sum-test, we see a significant difference between the reported methanol consumption rates of the two groups. This study suggests that women who have given birth to an autistic child are likely to have had higher intake of dietary sources of methanol than women who have not. Further investigation of a possible link of dietary methanol to autism is clearly warranted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Visual evoked potentials in patients after methanol poisoning.

    Science.gov (United States)

    Urban, Pavel; Zakharov, Sergey; Diblík, Pavel; Pelclová, Daniela; Ridzoň, Petr

    2016-01-01

    We report the results of the visual evoked potentials (VEP) examination in patients after severe poisoning by methanol. The group of 47 patients (38 males and 9 females) was assembled out of persons who survived an outbreak of poisoning by the methanol adulterated alcohol beverages, which happened in the Czech Republic in 2012-2013. The visual evoked potentials examination was performed using monocular checkerboard pattern-reversal stimulation. Two criteria of abnormality were chosen: missing evoked response, and wave P1 latency > 117 ms. Non-parametric statistical methods (median, range, and the median test) were used to analyze factors influencing the VEP abnormality. The visual evoked potential was abnormal in 20 patients (43%), 5 of them had normal visual acuity on the Snellen chart. The VEP abnormality did not correlate significantly with initial serum concentrations of methanol, formic acid or lactate; however, it showed statistically significant inverse relation to the initial serum pH: the subgroup with the abnormal VEP had significantly lower median pH in comparison with the subgroup with the normal VEP (7.16 vs. 7.34, p = 0.04). The abnormality was not related to chronic alcohol abuse. The visual evoked potentials examination appeared sensitive enough to detected even subclinical impairment of the optic system. Metabolic acidosis is likely to be the key factor related to the development of visual damage induced by methanol. The examination performed with a delay of 1-9 months after the poisoning documented the situation relatively early after the event. It is considered as a baseline for the planned long-term follow-up of the patients, which will make it possible to assess the dynamics of the observed changes, their reversibility, and the occurrence of potential late sequelae. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  6. Methanol Metabolism in Yeasts : Regulation of the Synthesis of Catabolic Enzymes

    NARCIS (Netherlands)

    Egli, Th.; Dijken, J.P. van; Veenhuis, M.; Harder, W.; Fiechter, A.

    1980-01-01

    The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of

  7. Location of catalase in crystalline peroxisomes of methanol-grown Hansenula polymorpha

    NARCIS (Netherlands)

    Keizer, Ineke; Roggenkamp, Rainer; Harder, Willem; Veenhuis, Marten

    1992-01-01

    We have studied the intraperoxisomal location of catalase in peroxisomes of methanol-grown Hansenula polymorpha by (immuno)cytochemical means. In completely crystalline peroxisomes, in which the crystalline matrix is composed of octameric alcohol oxidase (AO) molecules, most of the catalase protein

  8. Thermodynamic study of quercetin and rutin mixtures with alcohols

    Science.gov (United States)

    Szymczyk, Katarzyna; Taraba, Anna

    2018-04-01

    The paper presents interactions between quercetin (3,3‧,4‧,5,7-pentahydroxyflavone) and its glycoside, rutin with short chain alcohols, methanol, ethanol and 1-propanol studied by the surface tension measurements. An attempt was made to investigate the effect of flavonoid and alcohol concentrations as well as temperature on the thermodynamic parameters of alcohols adsorption at the water-air interface that is the standard free enthalpy, enthalpy and entropy of adsorption as well as the infinite dilution activity coefficient. The obtained results show that the mixtures of quercetin with methanol and rutin with ethanol are characterized by the best adsorption properties but all studied systems become less structured after adsorption.

  9. Inexpensive on-line alcohol sensor for fermentation monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Birch, S W; Turner, A P.F.; Ashby, R E

    1987-01-01

    An inorganic electrochemical fuel cell sensor was interfaced to a microcomputer and used to measure on-line the alcohol concentration in the off-gas of a fermentor. A calibration curve was obtained for methanol (linear range 0-9 g/l) and ethanol (linear range 0-6 g/l) to relate the alcohol concentration in the fermentor liquid with that in the off-gas. The consumption of methanol in a batch fermentation of the methylotroph Ps.BB1 was monitored (sampling frequency of 5 minutes) and compared with samples taken for off-line analysis by GLC. On-line control of the methanol concentration in a fed-batch fermentation was achieved by proportional and integral control. 24 references.

  10. Effect of acid catalysts and accelerated aging on the reaction of methanol with hydroxy-acetaldehyde in bio-oil

    Directory of Open Access Journals (Sweden)

    Bhattacharya, P.

    2010-05-01

    Full Text Available Bio-oil is a promising alternative source of energy produced from fast pyrolysis of biomass. Increasing the viscosity of bio-oil during storage is a major problem that can be controlled by the addition of methanol or other alcohols. This paper reports the results of our investigation of the reactions of short chain alcohols with aldehydes and acids in bio-oil. The reaction of methanol with hydroxyacetaldehyde (HA to form the acetal was catalyzed by the addition of 7 x 10-4 M strong acids such as sulfuric, hydrochloric, p-toluene sulfonic acid, and methanesulfonic acid. HA formed 2,2-dimethoxyethanol (DME, and at 60 oC the equilibrium was reached in less than one hour. Smaller amounts of DME were formed in the absence of strong acid. HA, acetaldehyde, and propanal formed their corresponding acetals when reacted with methanol, ethanol, 1-propanol or 1-butanol. Esters of acetic acid and hydroxyacetic acid were observed from reactions with these same four alcohols. Other acetals and esters were observed by GC/MS analysis of the reaction products. The results from accelerated aging experiments at 90 oC suggest that the presence of methanol slows polymerization by formation of acetals and esters from low molecular weight aldehydes and organic acids.

  11. Information draft on the development of air standards for methanol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    Methanol is a clear, colourless. very mobile liquid with a slightly alcoholic odour in pure form, but a repulsive pungent odour in crude form. Methanol is the raw material in the production of many gasoline additives, is used as a solvent or antifreeze in paint strippers, aerosol spray paints, wall paints, carburetor cleaners, and car windshield washer compounds. Methanol is one of the top pollutants by release quantities in Ontario, the highest release being generated by the pulp and paper industry. Other large emissions come from the plastics and synthetic resin industry. Total release to the air in Canada was 3,668 tonnes in 1996 and the top ten methanol emitting facilities were in Ontario. Methanol is readily absorbed through inhalation, ingestion and skin exposures. Once absorbed, it is oxidized to formaldehyde and then to formic acid. Common symptoms of exposure are visual disturbances, dizziness, nausea, vertigo, pain in the extremities, and headaches. No information was found as to the carcinogenicity of methanol to humans or animals. Current Ontario half-hour POI standard for methanol is 84,000 microgram/cubic meter and the 24-hour AAQC is 28,000 microgram/cubic meter. Both values were established more than 20 years ago. Review of relevant literature, summarized in this report, indicates that five US states have promulgated air quality guidelines or reference exposure levels for methanol, based on occupational exposure limits. The US Environmental Protection Agency is currently reviewing its reference concentration value for methanol. The World Health Organization and the Canadian federal government have not set air quality guidelines for methanol. 37 refs., 1 tab., appendix.

  12. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process

    Directory of Open Access Journals (Sweden)

    Idris Atadashi Musa

    2016-03-01

    Full Text Available The nature of alcohol and alcohol to oil molar ratio plays an important role on the method of biodiesel production. As a result, this paper examined different alcohols commonly used for the production of biodiesel fuel with more emphasis on methanol and ethanol. Further the different alcohol to oil molar ratios used for the production of biodiesel have been extensively discussed and reported. Also the effects of alcohol to molar ratios on biodiesel refining process and its physicochemical properties were investigated.

  13. Methanol Synthesis: Optimal Solution for a Better Efficiency of the Process

    Directory of Open Access Journals (Sweden)

    Grazia Leonzio

    2018-02-01

    Full Text Available In this research, an ANOVA analysis and a response surface methodology are applied to analyze the equilibrium of methanol reaction from pure carbon dioxide and hydrogen. In the ANOVA analysis, carbon monoxide composition in the feed, reaction temperature, recycle and water removal through a zeolite membrane are the analyzed factors. Carbon conversion, methanol yield, methanol productivity and methanol selectivity are the analyzed responses. Results show that main factors have the same effect on responses and a common significant interaction is not present. Carbon monoxide composition and water removal have a positive effect, while temperature and recycle have a negative effect on the system. From central composite design, an optimal solution is found in order to overcome thermodynamic limit: the reactor works with a membrane at lower temperature with carbon monoxide composition in the feed equal to 10 mol % and without recycle. In these conditions, carbon conversion, methanol yield, methanol selectivity, and methanol production are, respectively, higher than 60%, higher than 60%, between 90% and 95% and higher than 0.15 mol/h when considering a feed flow rate of 1 mol/h. A comparison with a traditional reactor is also developed: the membrane reactor ensures to have a carbon conversion higher of the 29% and a methanol yield higher of the 34%. Future researches should evaluate an economic analysis about the optimal solution.

  14. Electrooxidation of methanol and ethylene glycol mixture on platinum and palladium in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.Y.; Liang, Y.J.; Shan, X.D.; Lin, M.L.; Xu, C.W. [School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou (China); Jiang, S.P. [Department of Chemical Engineering, Faculty of Science and Engineering, Curtin University, Perth, WA (Australia)

    2012-08-15

    The performance of mixture of methanol and ethylene glycol (EG) oxidation has been studied on both Pt and Pd electrodes in alkaline medium. The activity of EG oxidation is better than that of methanol oxidation and the stability of EG oxidation is better than that of methanol and ethanol oxidation on the Pd electrode. The onset potential for ethanol oxidation is more negative 200 mV than that of EG, however the stability of EG oxidation on the Pd electrode is better than that of ethanol oxidation. The performance of methanol oxidation improves pronouncedly by adding a small amount of EG on both Pt and Pd electrodes. The onset potential and peak potential of mixture of methanol and EG oxidation are close to or more negative than that of sole methanol and EG oxidation on the Pd electrode. The mixture of methanol and EG is more easily to be electrochemically oxidized and gives a better performance than sole methanol and EG on the Pd electrode. The results show that the mixture of methanol and EG is a promising candidate as fuel in direct alcohol fuel cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Cascade catalysis in membranes with enzyme immobilization for multienzymatic conversion of CO2 to methanol

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Mateiu, Ramona Valentina

    2015-01-01

    .e. by directing membrane fouling formation), without any addition of organic solvent. Such coimmobilization and sequential immobilization systems were examined for the production of methanol from CO2 with formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH) and alcohol dehydrogenase (ADH). Enzyme...... for multi-enzymatic cascade systems, but also reveals the reaction bottleneck and provides possible solutions for the bioconversion of CO2 to methanol....

  16. Alcohol and water adsorption in zeolitic imidazolate frameworks

    KAUST Repository

    Zhang, Ke; Lively, Ryan P.; Dose, Michelle E.; Brown, Andrew J.; Zhang, Chen; Chung, Jaeyub; Nair, Sankar; Koros, William J.; Chance, Ronald R.

    2013-01-01

    Alcohol (methanol, ethanol, 1-propanol, 2-propanol and 1-butanol) and water vapor adsorption in zeolitic imidazolate frameworks (ZIF-8, ZIF-71 and ZIF-90) with similar crystal sizes was systematically studied. The feasibility of applying these ZIF materials to the recovery of bio-alcohols is evaluated by estimating the vapor-phase alcohol-water sorption selectivity. © 2013 The Royal Society of Chemistry.

  17. Metabolic Engineering of Corynebacterium glutamicum for Methanol Metabolism

    Science.gov (United States)

    Witthoff, Sabrina; Schmitz, Katja; Niedenführ, Sebastian; Nöh, Katharina; Noack, Stephan

    2015-01-01

    Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the utilization of methanol as an auxiliary carbon source in a sugar-based medium. Initial oxidation of methanol to formaldehyde was achieved by heterologous expression of a methanol dehydrogenase from Bacillus methanolicus, whereas assimilation of formaldehyde was realized by implementing the two key enzymes of the ribulose monophosphate pathway of Bacillus subtilis: 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. The recombinant C. glutamicum strain showed an average methanol consumption rate of 1.7 ± 0.3 mM/h (mean ± standard deviation) in a glucose-methanol medium, and the culture grew to a higher cell density than in medium without methanol. In addition, [13C]methanol-labeling experiments revealed labeling fractions of 3 to 10% in the m + 1 mass isotopomers of various intracellular metabolites. In the background of a C. glutamicum Δald ΔadhE mutant being strongly impaired in its ability to oxidize formaldehyde to CO2, the m + 1 labeling of these intermediates was increased (8 to 25%), pointing toward higher formaldehyde assimilation capabilities of this strain. The engineered C. glutamicum strains represent a promising starting point for the development of sugar-based biotechnological production processes using methanol as an auxiliary substrate. PMID:25595770

  18. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    Science.gov (United States)

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Prediction and validation of hemodialysis duration in acute methanol poisoning.

    Science.gov (United States)

    Lachance, Philippe; Mac-Way, Fabrice; Desmeules, Simon; De Serres, Sacha A; Julien, Anne-Sophie; Douville, Pierre; Ghannoum, Marc; Agharazii, Mohsen

    2015-11-01

    The duration of hemodialysis (HD) in methanol poisoning (MP) is dependent on the methanol concentration, the operational parameters used during HD, and the presence and severity of metabolic acidosis. However, methanol assays are not easily available, potentially leading to undue extension or premature termination of treatment. Here we provide a prediction model for the duration of high-efficiency HD in MP. In a retrospective cohort study, we identified 71 episodes of MP in 55 individuals who were treated with alcohol dehydrogenase inhibition and HD. Four patients had residual visual abnormality at discharge and only one patient died. In 46 unique episodes of MP with high-efficiency HD the mean methanol elimination half-life (T1/2) during HD was 108 min in women, significantly different from the 129 min in men. In a training set of 28 patients with MP, using the 90th percentile of gender-specific elimination T1/2 (147 min in men and 141 min in women) and a target methanol concentration of 4 mmol/l allowed all cases to reach a safe methanol of under 6 mmol/l. The prediction model was confirmed in a validation set of 18 patients with MP. High-efficiency HD time in hours can be estimated using 3.390 × (Ln (MCi/4)) for women and 3.534 × (Ln (MCi/4)) for men, where MCi is the initial methanol concentration in mmol/l, provided that metabolic acidosis is corrected.

  20. Methanol as an energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, P.; Grube, T.; Hoehlein, B. (eds.)

    2006-07-01

    For the future, a strongly growing energy demand is expected in the transport sector worldwide. Economically efficient oil production will run through a maximum in the next decade. Higher fuel prices and an environmentally desirable reduction of emissions will increase the pressure for reducing fuel consumption and emissions in road traffic. These criteria show the urgent necessity of structural changes in the fuel market. Due to its advantages concerning industrial-scale production, storage and global availability, methanol has the short- to medium-term potential for gaining increased significance as a substitution product in the energy market. Methanol can be produced both from fossil energy sources and from biomass or waste materials through the process steps of synthesis gas generation with subsequent methanol synthesis. Methanol has the potential to be used in an environmentally friendly manner in gasoline/methanol mixtures for flexible fuel vehicles with internal combustion engines and in diesel engines with pure methanol. Furthermore, it can be used in fuel cell vehicles with on-board hydrogen production in direct methanol fuel cell drives, and in stationary systems for electricity and heat generation as well as for hydrogen production. Finally, in portable applications it serves as an energy carrier for electric power generation. In this book, the processes for the production and use of methanol are presented and evaluated, markets and future options are discussed and issues of safety and environmental impacts are addressed by a team of well-known authors. (orig.)

  1. Effect of Hydroxyl Concentration on Chemical Sensitivity of Polyvinyl Alcohol/Carbon-Black Composite Chemiresistors

    International Nuclear Information System (INIS)

    Hughes, Robert C.; Patel, Sanjay V.; Yelton, W. Graham

    1999-01-01

    The sensitivity and selectivity of polyvinyl alcohol (PVA) / carbon black composite films have been found to vary depending upon the hydroxylation percentage (''-OH'') of the polymer. These chemiresistors made from PVA films whose polymer backbone is 88% hydroxylated (PVA88) have a high sensitivity to water, while chemiresistors made from PVA75 have a higher sensitivity to methanol. The minor differences in polymer composition result in films with different Hildebrand volubility parameters. The relative responses of several different PVA-based chemiresistors to solvents with different volubility parameters are presented. In addition, polyvinyl acetate (PVAC) films with PVA88 are used in an array to distinguish the responses to methanol-water mixtures

  2. Inhibition of MMPs by alcohols

    Science.gov (United States)

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Hoshika, Tomohiro; Uchiyama, Toshikazu; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; Thompson, Jeremy M.; McCracken, Courtney E.; Looney, Stephen W.; Tay, Franklin R.; Pashley, David H.

    2011-01-01

    Objectives While screening the activity of potential inhibitors of matrix metalloproteinases (MMPs), due to the limited water solubility of some of the compounds, they had to be solubilized in ethanol. When ethanol solvent controls were run, they were found to partially inhibit MMPs. Thus, the purpose of this study was to compare the MMP-inhibitory activity of a series of alcohols. Methods The possible inhibitory activity of a series of alcohols was measured against soluble rhMMP-9 and insoluble matrix-bound endogenous MMPs of dentin in completely demineralized dentin. Increasing concentrations (0.17, 0.86, 1.71 and 4.28 moles/L) of a homologous series of alcohols (i.e. methanol, ethanol, propanols, butanols, pentanols, hexanols, the ethanol ester of methacrylic acid, heptanols and octanol) were compared to ethanediol, and propanediol by regression analysis to calculate the molar concentration required to inhibit MMPs by 50% (i.e. the IC50). Results Using two different MMP models, alcohols were shown to inhibit rhMMP-9 and the endogenous proteases of dentin matrix in a dose-dependent manner. The degree of MMP inhibition by alcohols increased with chain length up to 4 methylene groups. Based on the molar concentration required to inhibit rhMMP-9 fifty percent, 2-hydroxyethylmethacrylate (HEMA), 3-hexanol, 3-heptanol and 1-octanol gave the strongest inhibition. Significance The results indicate that alcohols with 4 methylene groups inhibit MMPs more effectively than methanol or ethanol. MMP inhibition was inversely related to the Hoy's solubility parameter for hydrogen bonding forces of the alcohols (i.e. to their hydrophilicity). PMID:21676453

  3. Comparison of the SRK and CPA equations of state for physical properties of water and methanol

    DEFF Research Database (Denmark)

    Lundstrøm, Carsten; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2006-01-01

    produced together with water, properties of water and additives like methanol and glycol is another target area. Being more polar than hydrocarbons, water, alcohols and glycols may require more advanced models for example an association model like CPA (CubicPlus-Association). This type of model has...... previously been found to be well suited for phase equilibrium calculations on mixtures of hydrocarbons and polar compounds. In this work, SRK (with and without Peneloux volume correction) and CPA are compared for pure water, pure methanol and water-methanol binary mixtures with the purpose of evaluating...

  4. [Experimental research on alcohols, aldehydes, aromatic hydrocarbons and olefins emissions from alcohols fuelled vehicles].

    Science.gov (United States)

    Zhang, Fan; Wang, Jian-Hai; Wang, Xiao-Cheng; Wang, Jian-Xin

    2013-07-01

    Using two vehicles fuelled with pure gasoline, M15, M30 and pure gasoline, E10, E20 separately, 25 degrees C normal temperature type I emission test, -7 degrees C low temperature type VI emission test and type IV evaporation emission test were carried out. FTIR, HPLC and GC-MS methods were utilized to measure alcohols, aldehydes, aromatic hydrocarbons and olefins emissions. The test results indicate that at the low as well as normal ambient temperature, as the alcohols proportion increasing in the fuel, unburned methanol, formaldehyde, acetaldehyde increase proportionally, benzene, toluene, ethylene, propylene, 1,3-butadiene and isobutene decrease slightly. The unregulated emissions at the low ambient temperature are significantly higher than those at the normal ambient temperature. The difference of HC emissions in the entire process of evaporative emission tests of E10, gasoline and M15 fuels is slight. There is a small difference of unregulated emissions in the diurnal test of three fuels.

  5. Development of methanol evaporation plate to reduce methanol crossover in a direct methanol fuel cell

    Science.gov (United States)

    Zhang, Ruiming

    This research focuses on methanol crossover reduction in direct methanol fuel cells (DMFC) through separating the methanol vapor from its liquid phase and feeding the vapor passively at low temperature range. Membrane electrode assemblies (MEAs) were fabricated by using commercial available membrane with different thickness at different anode catalyst loading levels, and tested under the operating conditions below 100°C in cell temperature and cathode exit open to ambient pressure. Liquid methanol transport from the anode through the membrane into cathode ("methanol crossover") is identified as one of the major efficiency losses in a DMFC. It is known that the methanol crossover rate in the vapor phase is much lower than in liquid phase. Vapor feed can be achieved by heating the liquid methanol to elevated temperatures (>100°C), but other issues limit the performance of the cell when operating above 100°C. High temperature membranes and much more active cathode catalyst structures are required, and a complex temperature control system must be employed. However, methanol vapor feed can also occur at a lower temperature range (evaporation through a porous body. The methanol crossover with this vapor feed mode is lower compared with the direct liquid methanol feed. A new method of using a methanol evaporation plate (MEP) to separate the vapor from its liquid phase to reduce the liquid methanol crossover at low temperature range is developed. A MEP plays the roles of liquid/vapor methanol phase separation and evaporation in a DMFC. The goal of this study is to develop a MEP with the proper properties to achieve high methanol phase separation efficiency and fast methanol evaporation rate over a wide range of temperature, i.e., from room temperature up to near boiling temperature (100°C). MEP materials were selected and characterized. MEPs made from three different types were tested extensively with different MEA and porous back layer configurations. The benefits of

  6. Biodiesel production through transesterification of triolein with various alcohols in an ultrasonic field

    Energy Technology Data Exchange (ETDEWEB)

    Hanh, Hoang Duc; Okitsu, Kenji; Nishimura, Rokuro; Maeda, Yasuaki [Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan); Dong, Nguyen The [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2009-03-15

    The biodiesel production through transesterification of triolein with various alcohols such as methanol, ethanol, propanol, butanol, hexanol, octanol and decanol was investigated at molar ratio 6:1 (alcohol:triolein) and 25 C in the presence of base catalysts (NaOH and KOH) under ultrasonic irradiation (40 kHz) and mechanical stirring (1800 rot/min) conditions. It was found that the rate of the alkyl ester formation under the ultrasonic irradiation condition was higher than that under the stirring condition. In addition, it was confirmed that the rate depended upon the kind of alcohols; as the number of carbon in alcohol increased, the rate of the ester formation tended to decrease. On the other hand, the secondary alcohols such as 2-propanol, 2-butanol, 2-hexanol, and 2-octanol showed little ester conversion, suggesting that the steric hindrance strongly affected the transesterification of triolein. (author)

  7. Optical coherence tomography findings in methanol toxicity.

    Science.gov (United States)

    Klein, Kendra A; Warren, Alexis K; Baumal, Caroline R; Hedges, Thomas R

    2017-01-01

    Methanol toxicity poses a significant public health problem in developing countries, and in Southeast Asia, where the most common source of poisoning is via adulterated liquor in local drinks. Methanol toxicity can have devastating visual consequences and retinal specialists should be aware of the features of this toxic optic neuropathy. The authors report a case of severe systemic methanol toxicity and relatively mild optic neuropathy demonstrating unique retinal changes on optical coherence tomography (OCT). A previously healthy student developed ataxia, difficulty breathing and loss of consciousness hours after drinking homemade alcohol while traveling in Indonesia. She was found to have a serum pH of 6.79 and elevated methanol levels. She was treated with intravenous ethanol, methylprednisolone and sodium bicarbonate. When she awoke she had bilateral central scotomas. At presentation, she had central depression on visual field testing. OCT of the retinal nerve fiber layer (RNFL) was normal but ganglion cell layer analysis (GCL) showed highly selective loss of the nasal fibers in both eyes. Further, OCT of the macula demonstrated inner nuclear layer (INL) microcysts in the corresponding area of selective GCL loss in both eyes. The selective involvement of the papillomacular bundle fibers is common in toxic optic neuropathies and represents damage to the small caliber axons rich in mitochondria. Despite severe systemic toxicity, the relative sparing of the optic nerve in this case enabled characterization of the evolution of methanol toxicity with segmental GCL involvement and preservation of the RNFL, corresponding to the papillomacular bundle. This is the first reported case of INL microcysts in methanol optic neuropathy and supports that they are a non-specific finding, and may represent preferential damage to the papillomacular bundle.

  8. Viewpoint: methanol poisoning outbreak in Libya: a need for policy reforms.

    Science.gov (United States)

    Taleb, Ziyad Ben; Bahelah, Raed

    2014-11-01

    We address the controversies surrounding a 2013 outbreak of methanol poisoning in Tripoli, Libya. We critically examine and systematically analyze the outbreak to highlight the lessons learned from this disaster and how to act properly to prevent similar outbreaks in future. Many health problems have been directly attributed to drinking alcohol; the type and quality of alcohol determines the detrimental effects. An unregulated and flourishing black market in alcohol is among the factors behind the Libyan tragedy, where approximately 90 deaths and about 1000 hospital admissions were reported. We reviewed gaps in local and regional alcohol policy, and highlighted the issue of illegally produced and home-made alcohol. Collaboration between countries in the region plus critical health and policy reforms in Libya, with emphasis on public health preparedness, can dramatically decrease morbidity and mortality associated with such outbreaks.

  9. Composition of Unrecorded Distilled Alcohol (bai jiu) Produced in Small Rural Factories in Central China.

    Science.gov (United States)

    Newman, Ian; Qian, Ling; Tamrakar, Niran; Feng, Yonghua; Xu, Ganrong

    2017-01-01

    Unrecorded traditional distilled spirits (bai jiu, ) are made and used throughout rural China for everyday use and special occasions. Nearly every town or village has a distiller to supply the demand. In rural China, distilling bai jiu is legal and regulated lightly or not at all. The World Health Organization estimates that as much as 25% of all alcohol consumed in China is unrecorded alcohol, of which an unknown portion is unrecorded bai jiu. Little is known about the composition of unrecorded Chinese spirits from rural parts of the country. This study focused on white spirits because the high ethanol (EtOH) concentration makes them more likely to contribute to health risks compared to other types of lower alcohol by volume (ABV) Chinese unrecorded alcohol. Researchers purchased samples of Chinese white spirits from small-factory distillers in central China. An independent laboratory conducted the analysis. Alcohol strength (ABV) was determined by hydrometer. Gas chromatography was used to determine the concentration of volatile organic compounds: EtOH, methanol, acetaldehyde, ethyl acetate, and higher alcohols. Samples were tested for 3 heavy metals-arsenic, cadmium, and lead. We used the guidelines developed by the Alcohol Measures for Public Health Research Alliance (AMPHORA) of the European Commission to assess risk. ABV ranged from 35.7 to 61.4%, and 58 of the 61 samples exceeded 40% ABV. The concentration of methanol, ethyl acetate, lead, arsenic, and cadmium was below AMPHORA guideline. The sum of higher alcohols exceeded the AMPHORA maximum in just 1 sample. Forty of the 61 samples had acetaldehyde levels beyond the AMPHORA guideline. The unrecorded Chinese alcohols we analyzed had a high EtOH concentration-a public health concern that is also presented by recorded alcohols. The high percentage of samples (65.5%) that had elevated acetaldehyde suggests the need to investigate the causes for this result and the need for steps to reduce acetaldehyde levels

  10. Solvent consumption in non-catalytic alcohol solvolysis of biorefinery lignin

    DEFF Research Database (Denmark)

    Nielsen, J. B.; Jensen, A.; Schandel, Christian Bækhøj

    2017-01-01

    Lignin solvolysis in supercritical alcohols provides a method for producing a deoxygenated liquid bio-oil. Solvent consumption is however inevitable and due to the high cost of alcohols, relative to a bio-oil product, it can hinder commercial viability. In order to investigate the reactions...... of solvent consumption we studied solvolysis of biorefinery lignin in several primary alcohols. Lignin solvolysis in methanol, ethanol, 1-propanol and 1-butanol performed similarly with respect to bio-oil composition; however, methanol gave much lower bio-oil yield. Solvent consumption increases...... with reaction temperature for all alcohols and from 10 wt% at 300 °C to 35 wt% at 400 °C when using ethanol. The mechanism for solvent consumption was found mainly to take place through three different reactions: direct decomposition to gas through decarbonylation, formation of light condensation products...

  11. Prerequisites for Amplicon Pyrosequencing of Microbial Methanol Utilizers in the Environment

    Directory of Open Access Journals (Sweden)

    Steffen eKolb

    2013-09-01

    Full Text Available The commercial availability of next generation sequencing (NGS technologies facilitated the assessment of functional groups of microorganisms in the environment with high coverage, resolution, and reproducibility. Soil methylotrophs were among the first microorganisms in the environment that were assessed with molecular tools, and nowadays, as well with NGS technologies. Studies in the past years re-attracted notice to the pivotal role of methylotrophs in global conversions of methanol, which mainly originates from plants, and is involved in oxidative reactions and ozone formation in the atmosphere. Aerobic methanol utilizers belong to Bacteria, yeasts, Ascomycota, and molds. Numerous bacterial methylotrophs are facultatively aerobic, and also contribute to anaerobic methanol oxidation in the environment, whereas strict anaerobic methanol utilizers belong to methanogens and acetogens. The diversity of enzymes catalyzing the initial oxidation of methanol is considerable, and comprises at least five different enzyme types in aerobes, and one in strict anaerobes. Only the gene of the large subunit of PQQ-dependent methanol dehydrogenase (mxaF has been analyzed by environmental pyrosequencing. To enable a comprehensive assessment of methanol utilizers in the environment, new primers targeting genes of the PQQ MDH in Methylibium (mdh2, of the NAD-dependent MDH (mdh, of the methanol oxidoreductase of Actinobacteria (mdo, of the fungal FAD-dependent alcohol oxidase (mod1, mod2, and homologues, and of the gene of the large subunit of the methanol:corrinoid methyltransferases (mtaC in methanogens and acetogens need to be developed. Combined stable isotope probing of nucleic acids or proteins with amplicon-based NGS are straightforward approaches to reveal insights into functions of certain methylotrophic taxa in the global methanol cycle.

  12. Radioisotope tracer study of co-reactions of methanol with ethanol using 11C-labelled methanol over alumina and H-ZSM-5

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Salmi, T.; Murzin, D.Yu

    2005-01-01

    ether at higher temperature. In co-reaction over H-modified ZSM-5, while the ethanol was transformed to an olefin (ethene) at lower temperature, methanol reacted to hydrocarbons at higher temperature. Above 553 K, dimethyl ether and lower amounts of methyl ethyl ether were formed compared to these products over alumina, while higher yields of C 3 -C 6 hydrocar- bons were obtained in comparison with single methanol conversion. This result proves the influence of ethanol (reacting immediately to ethene) in the co-reaction to produce higher yields of C 3 -C 5 olefins. It can be concluded that the single methanol transformation was modified by ethanol reactant producing new derivates i.e. mixed ether over alumina and also C 3 -C 5 hydrocarbon co-products over H-ZSM-5. (author)

  13. A Nafion-Ceria Composite Membrane Electrolyte for Reduced Methanol Crossover in Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Parthiban Velayutham

    2017-02-01

    Full Text Available An alternative Nafion composite membrane was prepared by incorporating various loadings of CeO2 nanoparticles into the Nafion matrix and evaluated its potential application in direct methanol fuel cells (DMFCs. The effects of CeO2 in the Nafion matrix were systematically studied in terms of surface morphology, thermal and mechanical stability, proton conductivity and methanol permeability. The composite membrane with optimum filler content (1 wt. % CeO2 exhibits a proton conductivity of 176 mS·cm−1 at 70 °C, which is about 30% higher than that of the unmodified membrane. Moreover, all the composite membranes possess a much lower methanol crossover compared to pristine Nafion membrane. In a single cell DMFC test, MEA fabricated with the optimized composite membrane delivered a peak power density of 120 mW·cm−2 at 70 °C, which is about two times higher in comparison with the pristine Nafion membrane under identical operating conditions.

  14. Hemodialysis for methyl alcohol poisoning: A single-center experience

    Directory of Open Access Journals (Sweden)

    Vivek B Kute

    2012-01-01

    Full Text Available Methanol is a cheap and potent adulterant of illicit liquors. Hemodialysis (HD is the best method to rapidly remove both toxic acid metabolites and parent alcohols, and it plays a fundamental role in treating severely poisoned patients. This retrospective study was carried out on 91 patients with detectable serum methanol levels who underwent HD. Because toxic alcohol levels were not immediately available, the initial diagnosis and treatment was based on clinical history with evidence of toxic alcohol intake, presence of high anion metabolic acidosis and/or end organ damage. Patients received bicarbonate, ethanol, according to clinical features and blood gases. Patients underwent HD in the setting of known methanol ingestion with high anion gap metabolic acidosis, or evidence of end-organ damage, regardless of methanol level. HD prescription included large surface area dialyzer (≥1.5 m2, blood flow rate of 250-350 mL/min and dialysate flow rate of 500 mL/min for 4-6 h. Between 9 and 11 July 2009, 91 males with mean age 40 ± 8.5 years underwent HD, and 13 patients required a second HD session. Patients consumed 100-500 mL illicit liquors, and symptoms appeared six and 60 h later. Clinical features were gastro-intestinal symptoms (83.5%, visual disturbances (60.4%, central nervous system symptoms (59.3% and dyspnea (43.9%. Before HD, mean pH was 7.11 ± 0.04 (range 6.70- 7.33 and mean bicarbonate levels were 8.5 ± 4.9 mmol/L (range 2-18. Three patients died due to methanol intoxication. Mortality was associated with severe metabolic acidosis (pH ≤ 6.90, ventilator requirement and coma/seizure on admission (P < 0.001. Timely HD, bicarbonate, ethanol and supportive therapy can be life-saving in methanol intoxication.

  15. Electro-autotrophic synthesis of higher alcohols

    Science.gov (United States)

    Liao, James C.; Cho, Kwang Myung

    2016-11-01

    The disclosure provides a process that converts CO.sub.2 to higher alcohols (e.g. isobutanol) using electricity as the energy source. This process stores electricity (e.g. from solar energy, nuclear energy, and the like) in liquid fuels that can be used as high octane number gasoline substitutes. Instead of deriving reducing power from photosynthesis, this process derives reducing power from electrically generated mediators, either H.sub.2 or formate. H.sub.2 can be derived from electrolysis of water. Formate can be generated by electrochemical reduction of CO.sub.2. After delivering the reducing power in the cell, formate becomes CO.sub.2 and recycles back. Therefore, the biological CO.sub.2 fixation process can occur in the dark.

  16. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames

    Energy Technology Data Exchange (ETDEWEB)

    Veloo, Peter S.; Wang, Yang L.; Egolfopoulos, Fokion N. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453 (United States); Westbrook, Charles K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2010-10-15

    Laminar flame speeds and extinction strain rates of premixed methanol, ethanol, and n-butanol flames were determined experimentally in the counterflow configuration at atmospheric pressure and elevated unburned mixture temperatures. Additional measurements were conducted also to determine the laminar flame speeds of their n-alkane/air counterparts, namely methane, ethane, and n-butane in order to compare the effect of alkane and alcohol molecular structures on high-temperature flame kinetics. For both propagation and extinction experiments the flow velocities were determined using the digital particle image velocimetry method. Laminar flame speeds were derived through a non-linear extrapolation approach based on direct numerical simulations of the experiments. Two recently developed detailed kinetics models of n-butanol oxidation were used to simulate the experiments. The experimental results revealed that laminar flame speeds of ethanol/air and n-butanol/air flames are similar to those of their n-alkane/air counterparts, and that methane/air flames have consistently lower laminar flame speeds than methanol/air flames. The laminar flame speeds of methanol/air flames are considerably higher compared to both ethanol/air and n-butanol/air flames under fuel-rich conditions. Numerical simulations of n-butanol/air freely propagating flames, revealed discrepancies between the two kinetic models regarding the consumption pathways of n-butanol and its intermediates. (author)

  17. Study on the reforming of alcohols in a surface wave discharge (SWD) at atmospheric pressure

    International Nuclear Information System (INIS)

    Jimenez, M; Yubero, C; Calzada, M D

    2008-01-01

    Surface wave plasma at atmospheric pressure has been used to produce the decomposition of the alcohol molecules introduced into it, in order to obtain hydrogen. Four alcohols, methanol, ethanol, propanol and butanol, have been used for this purpose. Optical emission spectroscopy was the tool used to analyse the radiation emitted by the plasma. Hydrogen atoms and other species such as C 2 and CH in alcohols have been detected but no CO molecular bands. Also, a mass spectrometer has been used in order to detect molecular hydrogen production in methanol decomposition

  18. Process for obtaining methanol. Verfahren zur Gewinnung von Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Link, H; Watson, A

    1983-12-08

    Synthetic gas is generated and converted to methanol in a reactor. After the separation of the crude methanol, there is a multi-stage methanol distillation. Condensate occurring during distillation is at least partly fed back before the methanol synthesis.

  19. Qualitative Analysis of Transesterification of Waste Pig Fat in Supercritical Alcohols

    Directory of Open Access Journals (Sweden)

    Jeeban Poudel

    2017-02-01

    Full Text Available In this work, the characteristics of waste pig fat degradation using supercritical alcohols have been studied. Comparative analysis of the influence of supercritical methanol and supercritical ethanol as solvents on the transesterification was the primary focus of this research. The experiments were carried out with waste pig fat to alcohol weight ratios of 1:1.5 (molar ratio: 1:40.5 for methanol and 1:28 for ethanol, 1:2.0 (molar ratio: 1:54 for methanol and 1:37.5 for ethanol and 1:2.5 (molar ratio: 1:67.5 for methanol and 1:47 for ethanol at transesterification temperatures 250, 270 and 290 °C for holding time 0, 15, 30, 45 and 60 min. Increase in the transesterification and holding time increased the conversion while increase in alcohol amount from 1:1.5 to 1:2.0 and 1:2.5 had minimal effect on the conversion. Further, majority of the ester composition in using SCM as solvent falls in the carbon range of C17:0, C19:1 and C19:2 while that for SCE falls in the carbon range of C18:0, C20:1 and C20:2. Glycerol was only present while using SCM as solvent.

  20. Study of SI engine fueled with methanol vapor and dissociation gas based on exhaust heat dissociating methanol

    International Nuclear Information System (INIS)

    Fu, Jianqin; Deng, Banglin; Liu, Jingping; Wang, Linjun; Xu, Zhengxin; Yang, Jing; Shu, Gequn

    2014-01-01

    Highlights: • The full load power decreases successively from gasoline engine, methanol vapor engine to dissociated methanol engine. • Both power and thermal efficiency of dissociated methanol engine can be improved by boosting pressure. • The conversion efficiency of recovered exhaust gas energy is largely influenced by the BMEP. • At the same BMEP, dissociated methanol engine has higher thermal efficiency than methanol vapor engine and gasoline engine. - Abstract: To improve the fuel efficiency of internal combustion (IC) engine and also achieve the goal of direct usage of methanol fuel on IC engine, an approach of exhaust heat dissociating methanol was investigated, which is a kind of method for IC engine exhaust heat recovery (EHR). A bottom cycle system is coupled with the IC engine exhaust system, which uses the exhaust heat to evaporate and dissociate methanol in its catalytic cracker. The methanol dissociation gas (including methanol vapor) is used as the fuel for IC engine. This approach was applied to both naturally aspirated (NA) engine and turbocharged engine, and the engine performance parameters were predicted by the software GT-power under various kinds of operating conditions. The improvement to IC engine performance and the conversion efficiency of recovered exhaust gas energy can be evaluated by comparing the performances of IC engine fueled with various kinds of fuels (or their compositions). Results show that, from gasoline engine, methanol vapor engine to dissociated methanol engine, the full load power decreases successively in the entire speed area due to the declining of volumetric efficiency, while it is contrary in the thermal efficiency at the same brake mean effective pressure (BMEP) level because of the improving of fuel heating value. With the increase of BMEP, the conversion efficiency of recovered exhaust gas energy is promoted. All those results indicate that the approach of exhaust heat dissociating methanol has large

  1. Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol

    Energy Technology Data Exchange (ETDEWEB)

    González-Salgado, D.; Zemánková, K. [Departamento de Física Aplicada, Universidad de Vigo, Campus del Agua, Edificio Manuel Martínez-Risco, E-32004 Ourense (Spain); Noya, E. G.; Lomba, E. [Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid (Spain)

    2016-05-14

    In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion by the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.

  2. Oxidation stability of biodiesel fuel as prepared by supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Jiayu Xin; Hiroaki Imahara; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science, Graduate School of Energy Science

    2008-08-15

    A non-catalytic supercritical methanol method is an attractive process to convert various oils/fats efficiently into biodiesel. To evaluate oxidation stability of biodiesel, biodiesel produced by alkali-catalyzed method was exposed to supercritical methanol at several temperatures for 30 min. As a result, it was found that the tocopherol in biodiesel is not stable at a temperature higher than 300{sup o}C. After the supercritical methanol treatment, hydroperoxides were greatly reduced for biodiesel with initially high in peroxide value, while the tocopherol slightly decreased in its content. As a result, the biodiesel prepared by the supercritical methanol method was enhanced for oxidation stability when compared with that prepared by alkali-catalyzed method from waste oil. Therefore, supercritical methanol method is useful especially for oils/fats having higher peroxide values. 32 refs., 8 figs., 3 tabs.

  3. Adsorption studies of alcohol molecules on monolayer MoS_2 nanosheet—A first-principles insights

    International Nuclear Information System (INIS)

    Nagarajan, V.; Chandiramouli, R.

    2017-01-01

    Highlights: • The adsorption of methanol, ethanol & 1-propanol on MoS_2 nanosheet are studied. • The PDOS & band structure confirms adsorption of alcohol vapors on MoS_2 nanosheet. • The adsorption of 1-propanol vapor on MoS_2 nanosheet is more favorable. • The alcohol molecules adsorption on MoS_2 nanosheet is explored in atomistic level. - Abstract: The electronic and adsorption properties of three different alcohol molecules namely methanol, ethanol and 1-propanol vapors on MoS_2 nanosheet is investigated using DFT method. The structural stability of MoS_2 nanosheet is ascertained with formation energy. The adsorption properties of alcohol molecules on MoS_2 base material is discussed in terms of average energy gap variation, Mulliken charge transfer, energy band gap and adsorption energy. The prominent adsorption sites of methanol, ethanol and 1-propanol vapors on MoS_2 nanosheet are studied in atomistic level. The projected density of states (PDOS) spectrum gives the clear insights on the electronic properties of MoS_2 nanosheet. The PDOS and energy band structure confirmed the adsorption of alcohol vapors on MoS_2 nanosheet. The variation in the band structure and PDOS is noticed upon adsorption of methanol, ethanol and 1-propanol molecules on MoS_2 nanosheet. The PDOS spectrum also reveals the variation in peak maxima owing to transfer of electron between alcohol molecules and MoS_2 base material. The adsorption of 1-propanol vapor on MoS_2 nanosheet is observed to be more favorable than other alcohol molecules. The findings confirm that monolayer MoS_2 nanosheet can be used to detect the presence of alcohol vapors in the environment.

  4. Chemical Components of Noncommercial Alcohol Beverage Samples: A Study With the Viewpoint of Toxic Components in Mashhad, Iran.

    Science.gov (United States)

    Dadpour, Bita; Hedjazi, Arya; Ghorbani, Hamideh; Khosrojerdi, Hamid; Vaziri, Seyed Mohsen; Malek Zadeh, Haleh; Habibi Tamijani, Amir

    2016-06-01

    Iran has one of the lowest alcoholic beverage use rates in comparison with other countries, because it is legally forbidden and because of religious beliefs. Even so, unrecorded and noncommercial alcohol remains a considerable concern, which needs special attention. In the current research, we have studied the general composition of noncommercial alcohol samples to identify potentially toxic components in the context of the city of Mashhad in IR Iran. Using a descriptive study, chemical composition records of alcohol samples obtained from Mashhad and its suburbs (from March 2013 to March 2014) were evaluated in terms of ethanol percentage and methanol percentage using gas chromatography. Likewise, the pH of the alcohol and the location of the sample were also considered. Some substances, such as inorganic elements, were not included because there was no information about these substances in the records. Of 877 reports of alcohol samples, more than 50% were obtained from Mashhad and the rest were from the suburbs. Of the reports, 57.5% were in the spring and summer, followed by 42.5% in the fall and winter. The mean (min-max) of ethanol percentage was 30.04% (0 - 98.4). In four cases, methanol was detected. The mean (min-max) of methanol percentage was 23% (4 - 95).The majority of the samples had an acidic pH. The composition of unrecorded samples did not raise major toxicological concern beyond ethanol in alcohol products. However, concentration levels of methanol in some unrecorded alcohol samples made these samples detrimental for human consumption.

  5. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell

    Science.gov (United States)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Lin, Che-Tseng; Huang, Ching-An

    The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO 2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO 2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO 2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO 2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO 2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH 3OH, 2 M C 2H 5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm -2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO 2 composite polymer membrane with the permeability values in the order of 10 -7 to 10 -8 cm 2 s -1 is a potential candidate for use on alkaline DAFCs.

  6. Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel.

    Science.gov (United States)

    Lotti, Marina; Pleiss, Jürgen; Valero, Francisco; Ferrer, Pau

    2015-01-01

    The biotechnological production of biodiesel is based on transesterification/esterification reactions between a source of fatty acids and a short-chain alcohol, usually methanol, catalysed by enzymes belonging to the class known as lipases. Several lipases used in industrial processes, although stable in the presence of other organic solvents, are inactivated by methanol at or below the concentration optimal for biodiesel production, making it necessary to use stepwise methanol feeding or pre-treatment of the enzyme. In this review article we focus on what is currently know about methanol inactivation of lipases, a phenomenon which is not common to all lipase enzymes, with the goal of improving the biocatalytic process. We suggest that different mechanisms can lead to inactivation of different lipases, in particular substrate inhibition and protein unfolding. Attempts to improve the performances of methanol sensitive lipases by mutagenesis as well as process engineering approaches are also summarized. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Pulse radiolysis of malachite green leucocyanide in alcoholic solvents, the influence of oxygen

    International Nuclear Information System (INIS)

    Grodkowski, J.; Stuglik, Z.; Wieczorek, G.

    1992-01-01

    The solutions of malachite green leucocyanide (MGCN) in methanol, n-propanol and 2-propanol were investigated using pulse radiolysis. In the presence of oxygen, MG + -carbonium ions were radiolytically formed in two different time steps. The yield of MG + in the slower process was dependent on oxygen concentration and was proportional to the yield of intermediate MG radicals. The yield of MG was about ten times higher in 2-propanol than in methanol and n-propanol solutions. The reactants responsible for MG oxidation to MG + were RO 2 , hydroxyalkylperoxyl radicals derived from alcohols. The rate constant for MG reaction with RO 2 were estimated as (6.5±1) x 10 8 M -1 s -1 . The molar extinction coefficient of MG was calculated. (author)

  8. Quality of illegally and informally produced alcohol in Europe: Results from the AMPHORA project.

    Science.gov (United States)

    Lachenmeier, Dirk W; Leitz, Jenny; Schoeberl, Kerstin; Kuballa, Thomas; Straub, Irene; Rehm, Jürgen

    2011-01-01

    In the WHO region Europe, the average unrecorded adult per capita alcohol consumption was 2.67 L pure ethanol in 2005, which is 22% of the total consumption of 12.20 L. Despite concerns about potential health harms from the chemical composition of unrecorded alcohol, there are surprisingly few data on the problem in the European Region. This study reports the results from the Alcohol Measures for Public Health Research Alliance (AMPHORA) project, which assessed the quality of unrecorded alcohol in a Europe-wide study. Samples of unrecorded alcohol were collected in 16 European countries and chemically analyzed for potentially health-relevant parameters. Thresholds for parameters were defined based on potential health hazards of daily drinking. The average alcoholic strength of unrecorded wine products was 14.9% vol, and 47.8% vol in unrecorded spirits. One half of the samples (n=57) showed acceptable alcohol quality. The other half (n=58) showed one or several deficits with the most prevalent problem being ethyl carbamate contamination (n=29). Other problems included copper (n=20), manganese (n=16) and acetaldehyde (n=12). All other parameters (including methanol, higher alcohols, phthalates) were only seldom problematic (limit exceedance in less than 10 samples). The price of unrecorded alcohol was approximately 45% of the price of recorded alcohol. The major problem regarding unrecorded alcohol appears to be ethanol itself, as it is often higher in strength and its lower price may further contribute to higher drinking amounts. Compared to the health effects of ethanol, the contamination problems detected may be of minor importance as exposure will only in worst-case scenarios reach tolerable daily intakes of these substances.

  9. Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols.

    Science.gov (United States)

    Li, Meng; Liu, Ping; Adzic, Radoslav R

    2012-12-06

    The slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of Pt has hampered the practical application of direct alcohol fuel cells. We describe the electrocatalysts consisting of one Pt monolayer (one atom thick layer) placed on extended or nanoparticle surfaces having the activity and selectivity for the oxidation of alcohol molecules that can be controlled with platinum-support interaction. The suitably expanded Pt monolayer (i.e., Pt/Au(111)) exhibits a factor of 7 activity increase in catalyzing methanol electrooxidation relative to Pt(111). Sizable enhancement is also observed for ethanol electrooxidation. Furthermore, a correlation between substrate-induced lateral strain in a Pt monolayer and its activity/selectivity is established and rationalized by experimental and theoretical studies. The knowledge we gained with single-crystal model catalysts was successfully applied in designing real nanocatalysts. These findings for alcohols are likely to be applicable for the oxidation of other classes of organic molecules.

  10. Effect of water content on the stress corrosion cracking susceptibility of Zircaloy-4 in iodine-alcoholic solutions

    International Nuclear Information System (INIS)

    Gomez Sanchez, Andrea; Farina, Silvia B.; Duffo, Gustavo S.

    2005-01-01

    The stress corrosion cracking (SCC) susceptibility of Zircaloy-4 (UNS R60804) was studied in 10 g/L iodine dissolved in various alcohols: methanol, ethanol, 1 propanol, 1-butanol, 1-pentanol and 1-octanol. SCC was observed in all the systems studied and it was found that the higher the size of alcohol molecule, the lower the SCC susceptibility. The existence of intergranular attack -controlled by the diffusion of the active species- is a condition for the SCC process to occur. In the present work the inhibiting effect of water on the SCC susceptibility of Zircaloy-4 in iodine-alcoholic solutions was also investigated and the results showed that the minimum water content to inhibit the SCC process depends on the type of alcohol used as a solvent. (author) [es

  11. Improved Catalysis of Green-Synthesized Pd-Ag Alloy-Nanoparticles for Anodic Oxidation of Methanol in Alkali

    International Nuclear Information System (INIS)

    Roy Chowdhury, Sreya; Ghosh, Srabanti; Bhattachrya, Swapan Kumar

    2017-01-01

    Highlights: • Pd and Pd x Ag y nanoalloys are synthesised by simple green synthetic method without using any capping agent. • Increased electrochemical surface area and roughness factor in case of Pd x Ag y alloy generates enhanced catalytically active sites which help methanol oxidation reaction. • By analysing the products of MOR reaction by CV, FTIR and HPLC plausible mechanism of the reaction is proposed. • Among different compositions Pd 4 Ag and Pd are the best electrodes for oxidation of methanol and formate respectively in alkali. - Abstract: Monometallic Pd, Ag and bimetallic Pd x Ag y alloy nanoparticles were synthesized in a single pot using a green synthetic protocol in absence of any capping agent. X-ray, electron diffraction, microscopic and spectroscopic studies of synthesized material demonstrate the formation of nanoballs with radius of 10–20 nm of face centred cubic metals and alloys. The electrochemical studies of as-synthesized materials loaded on carbon support reveal that the Pd 4 Ag nanoparticles exhibit the best and synergistic electro-catalytic activity in reference to oxidation of methanol in alkali. The most active Pd 4 Ag nanoparticles show higher peak current (201 mA mg −1 ) in comparison to that (133 mA mg −1 ) of Pd in cyclic voltammetric study. The electrode shows the highest exchange current density (1.95 × 10 −2 mA mg −1 of Pd) for methanol oxidation reaction (MOR) and higher catalytic activity for oxidation of possible intermediates like formaldehyde and sodium formate of MOR. Ex-situ infrared spectrometry and chromatographic studies of reaction products reveal that Ag accelerates the formation of formate rather than carbonate elucidating the plausible mechanism of the reaction. These findings have important implications for further fine-tuning of the Pd nano alloys toward highly active and selective catalysts for alcohol fuel cells.

  12. Adsorption studies of alcohol molecules on monolayer MoS{sub 2} nanosheet—A first-principles insights

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, V.; Chandiramouli, R., E-mail: rcmoulii@gmail.com

    2017-08-15

    Highlights: • The adsorption of methanol, ethanol & 1-propanol on MoS{sub 2} nanosheet are studied. • The PDOS & band structure confirms adsorption of alcohol vapors on MoS{sub 2} nanosheet. • The adsorption of 1-propanol vapor on MoS{sub 2} nanosheet is more favorable. • The alcohol molecules adsorption on MoS{sub 2} nanosheet is explored in atomistic level. - Abstract: The electronic and adsorption properties of three different alcohol molecules namely methanol, ethanol and 1-propanol vapors on MoS{sub 2} nanosheet is investigated using DFT method. The structural stability of MoS{sub 2} nanosheet is ascertained with formation energy. The adsorption properties of alcohol molecules on MoS{sub 2} base material is discussed in terms of average energy gap variation, Mulliken charge transfer, energy band gap and adsorption energy. The prominent adsorption sites of methanol, ethanol and 1-propanol vapors on MoS{sub 2} nanosheet are studied in atomistic level. The projected density of states (PDOS) spectrum gives the clear insights on the electronic properties of MoS{sub 2} nanosheet. The PDOS and energy band structure confirmed the adsorption of alcohol vapors on MoS{sub 2} nanosheet. The variation in the band structure and PDOS is noticed upon adsorption of methanol, ethanol and 1-propanol molecules on MoS{sub 2} nanosheet. The PDOS spectrum also reveals the variation in peak maxima owing to transfer of electron between alcohol molecules and MoS{sub 2} base material. The adsorption of 1-propanol vapor on MoS{sub 2} nanosheet is observed to be more favorable than other alcohol molecules. The findings confirm that monolayer MoS{sub 2} nanosheet can be used to detect the presence of alcohol vapors in the environment.

  13. Measurement and correlation of the solubility of (1-benzyl-1H-1,2,3-triazole-4-yl)methanol in water and alcohols at temperatures from 292.15 K to 310.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shuqin [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China); Li, Huiying [China Certification & Inspection (Group) Henan Co., Ltd., Zhengzhou, Henan 450000 (China); Shen, Le; Li, Huanxin; Mao, Zhendong [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China); Li, Huiping, E-mail: huipingli@zzu.edu.cn [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China)

    2016-04-20

    Highlights: • The (1-benzyl-1H-1,2,3-triazole-4-yl) methanol was successfully synthesized and characterized by IR and NMR. • The solubilities of (1-benzyl-1H-1,2,3-triazole-4-yl) methanol in water and alcohols were measured. • The experimental solubility data were correlated with the Van’t Hoff equation, modified Apelblat equation and λh equation model. • The dissolution enthalpy of (1-benzyl-1H-1,2,3-triazole-4-yl) methanol was calculated by using the modified Apelblat equation. • The solubility data, correlation models, and the thermodynamic parameters were discussed in detail. - Abstract: The solubilities of (1-benzyl-1H-1,2,3-triazole-4-yl)methanol (BTZM) in water, methanol, ethanol, n-propanol, isopropanol, and n-butanol were measured at temperatures ranging from 292.15 K to 310.15 K by a dynamic method under normal atmospheric pressure. The results showed that it increased with the increasing temperature and the order of solvents was: order: methanol > ethanol > n-propanol > n-butanol > isopropanol > water except three points. The solubility data were correlated with the Van’t Hoff equation, modified Apelblat equation, and λh equation. The average relative deviations (ARD) were 1.87%, 1.53%, and 1.71%, and the root-mean-square-deviations (RMSD) were 2.37 × 10{sup −2}, 1.51 × 10{sup −2}, and 2.12 × 10{sup −2}, respectively. It was found that the modified Apelblat equation gave the best correlation results. Furthermore, the dissolution enthalpy of BTZM was calculated by the modified Apelblat equation.

  14. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum.

    Science.gov (United States)

    Yang, Zehui; Nakashima, Naotoshi

    2015-07-20

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2'-(2,6-pyridine)-5,5'-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance.

  15. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  16. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion

    International Nuclear Information System (INIS)

    Masurier, J.-B.; Foucher, F.; Dayma, G.; Dagaut, P.

    2015-01-01

    Highlights: • Ozone was useful to control combustion phasing of alcohol fuels in HCCI engine. • Ozone helps to improve the combustion and advance its phasing. • Butanol is more impacted by ozone than methanol and ethanol. • HCCI combustion parameters may be controlled by managing ozone concentration. • Kinetics demonstrates that alcohol fuels are initially oxidized by O-atoms. - Abstract: The present investigation examines the impact of seeding the intake of an HCCI engine with ozone, one of the most oxidizing chemical species, on the combustion of three alcohol fuels: methanol, ethanol and n-butanol. The research was performed through engine experiments and constant volume computations. The results showed that increasing the ozone concentration led to an improvement in combustion coupled with a combustion advance. It was also observed, by comparing the results for each fuel selected, that n-butanol is the most impacted by ozone seeding and methanol the least. Further analyses of the experimental results showed that the alcohol fuel combustion can be controlled with ozone, which presents an interesting potential. Finally, computation results confirmed the experimental results observed. They also showed that in presence of ozone, alcohol fuels are not initially oxidized by molecular oxygen but by O-atoms coming from the ozone decomposition.

  17. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    Science.gov (United States)

    Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.

    2018-05-01

    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.

  18. Experimental and theoretical IR study of methanol and ethanol converson over H-SAPO-34

    NARCIS (Netherlands)

    Hemelsoet, K.L.J.; Ghysels, A.; Mores, D.; De Wispelaere, K.; Van Speybroeck, V.; Weckhuysen, B.M.; Waroquier, M.

    2011-01-01

    Theoretical and experimental IR data are combined to gain insight into the methanol and ethanol conversion over an acidic H-SAPO-34 catalyst. The theoretical simulations use a large finite cluster and the initial physisorption energy of both alcohols is calculated. Dispersive contributions turn out

  19. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Bogdan [Nuvant Systems Inc., Crown Point, IN (United States)

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  20. Crystallinity and properties of C60 nanotubes improved by annealing and alcohol-soaking

    Science.gov (United States)

    Naito, K.; Matsuishi, K.

    2009-04-01

    Well-uniformed C60 nanotubes were grown at -20 °C with irradiation of red light using C60-saturated pyridine solution and isopropyl alcohol by a liquid-liquid interfacial precipitation method without ultrasonic pulverization. We attempted to improve their crystallinity by two post-treatments; thermal annealing and alcohol-soaking. The crystallinity of as-grown and dried C60 nanotubes, which was poor due to the evaporation of solvent molecules from crystals in the drying process, was improved by annealing around 220 °C for 5 hours in vacuum. Dramatic improvement of crystallinity of as-grown samples was achieved by soaking into methanol and then drying in air. Raman, infrared and X-ray diffraction results suggest that the methanol-soaked samples exhibit a solvated tetragonal structure. The crystallinity improved by methanol-soaking did not degrade after removal of methanol molecules from samples by thermal annealing. Photo-polymerization of the structurally-improved C60 nanotubes was examined to investigate an effect of crystallinity on the polymerization kinetics.

  1. Crystallinity and properties of C60 nanotubes improved by annealing and alcohol-soaking

    International Nuclear Information System (INIS)

    Naito, K; Matsuishi, K

    2009-01-01

    Well-uniformed C 60 nanotubes were grown at -20 deg. C with irradiation of red light using C 60 -saturated pyridine solution and isopropyl alcohol by a liquid-liquid interfacial precipitation method without ultrasonic pulverization. We attempted to improve their crystallinity by two post-treatments; thermal annealing and alcohol-soaking. The crystallinity of as-grown and dried C 60 nanotubes, which was poor due to the evaporation of solvent molecules from crystals in the drying process, was improved by annealing around 220 deg. C for 5 hours in vacuum. Dramatic improvement of crystallinity of as-grown samples was achieved by soaking into methanol and then drying in air. Raman, infrared and X-ray diffraction results suggest that the methanol-soaked samples exhibit a solvated tetragonal structure. The crystallinity improved by methanol-soaking did not degrade after removal of methanol molecules from samples by thermal annealing. Photo-polymerization of the structurally-improved C 60 nanotubes was examined to investigate an effect of crystallinity on the polymerization kinetics.

  2. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    Science.gov (United States)

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  3. One step hydrogenation–esterification of model compounds and bio-oil to alcohols and esters over Raney Ni catalysts

    International Nuclear Information System (INIS)

    Xu, Ying; Zhang, Limin; Chang, Jiamin; Zhang, Xinghua; Ma, Longlong; Wang, Tiejun; Zhang, Qi

    2016-01-01

    Highlights: • Fe–RN and Mo–RN showed excellent inhibition of alkylation and hydrogenation activity of phenol respectively. • The esterification activity of alcohols with acetic acid was followed as methanol > THFA > ethanediol. • After OHE of bio-oil, the total content of alcohols and esters reached to 87.27% in the product. - Abstract: Acids, aldehydes, ketones and phenols, which are the main components of bio-oil, have negative effects on the properties. In this paper, the mixture of acetic acid, furfural, hydroxyacetone, ethanediol, phenol and water were chosen as hybrid model compounds of bio-oil (MCB). To convert these compounds into stable and combustible oxygenated organics (alcohols and esters), one step hydrogenation–esterification (OHE) was carried out over Raney Ni catalyst (RN) and Mo, Sn, Fe, Cu modified Raney Ni catalysts (RNs) in the presence of methanol. 100% conversions of furfural and hydroxyacetone were achieved over RNs with high selectivity to desired products. The acetic acid conversion was only 35.1% with no methanol addition, while within 6 g/8 g methanol/MCB addition, the conversion of acetic acid increased to 81.1%. The esterification activity of alcohols was followed by methanol > tetrahydrofurfuryl alcohol (THFA), the hydrogenation product of furfural > ethanediol. Among the RNs, the addition of Fe catalyst restrained the aqueous-phase reforming of methanol and promoted the esterification of methanol and acetic acid. The Mo–RN showed the most favorable performance in the hydrogenation of phenol among the RNs. But the RN modified by both Fe and Mo did not give a good performance. After the OHE of light fraction of raw bio-oil over Mo–RN, there was no ketone & aldehyde detected and the contents of acids and phenols decreased from 49.04% and 7.35% to 8.21% and 3.84%. The conversion of acids could reach to 85.01% which was nearly to the conversion of acetic acid in MCB. The contents of alcohols and esters increased from 5

  4. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst

    DEFF Research Database (Denmark)

    Nielsen, Inger Staunstrup; Taarning, Esben; Egeblad, Kresten

    2007-01-01

    Methyl esters can be produced in high yield by oxidising methanolic solutions of primary alcohols with dioxygen over a heterogeneous gold catalyst. The versatility of this new methodology is demonstrated by the fact that alkylic, benzylic and allylic alcohols, as well as alcohols containing...

  5. Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation.

    Science.gov (United States)

    Li, Wei; Wang, Jian-Hui; Zhang, Cui-Ying; Ma, Hong-Xia; Xiao, Dong-Guang

    2017-06-01

    Acetate esters and higher alcohols greatly influence the quality and flavor profiles of Chinese Baijiu (Chinese liquor). Various mutants have been constructed to investigate the interactions of ATF1 overexpression, IAH1 deletion, and BAT2 deletion on the production of acetate esters and higher alcohols. The results showed that the overexpression of ATF1 under the control of the PGK1 promoter with BAT2 and IAH1 double-gene deletion led to a higher production of acetate esters and a lower production of higher alcohols than the overexpression of ATF1 with IAH1 deletion or overexpression of ATF1 with BAT2 deletion. Moreover, deletion of IAH1 in ATF1 overexpression strains effectively increased the production of isobutyl acetate and isoamyl acetate by reducing the hydrolysis of acetate esters. The decline in the production of higher alcohol by the ATF1 overexpression strains with BAT2 deletion is due to the interaction of ATF1 overexpression and BAT2 deletion. Mutants with varying abilities of producing acetate esters and higher alcohols were developed by genetic engineering. These strains have great potential for industrial application.

  6. Simplified preparation of coniferyl and sinapyl alcohols.

    Science.gov (United States)

    Kim, Hoon; Ralph, John

    2005-05-04

    Coniferyl and sinapyl alcohols were prepared from commercially available coniferaldehyde and sinapaldehyde using borohydride exchange resin in methanol. This reduction is highly regioselective and exceptionally simple, making these valuable monolignols readily available to researchers lacking synthetic chemistry expertise.

  7. Unwell after drinking homemade alcohol – A case of ethylene glycol poisoning

    Directory of Open Access Journals (Sweden)

    A.E. Laher

    2013-06-01

    Discussion: The clinical presentation of ethylene glycol and methanol poisoning is non-specific and can be difficult to differentiate from ethanol intoxication. Homemade alcohol preparations are commonly adulterated with ethylene glycol and methanol to improve their taste and sting. Toxic alcohol analysis is not routinely carried out by most laboratory services in South Africa, and when carried out, results are only made available a few days later. A high index of suspicion coupled with early blood gas analysis and a need for prompt and effective treatment whilst awaiting toxicology analysis may limit the associated high morbidity and mortality.

  8. Elution behavior of poly(ethylene glycol) through poly(vinyl alcohol) gel column using several solvents as eluents

    International Nuclear Information System (INIS)

    Hirayama, Chuichi; Motozato, Yoshiaki; Matsumoto, Kazuaki.

    1983-01-01

    γ-Irradiated poly(vinyl alcohol) beads, which were sufficiently allowed to swell in water, were washed with methanol, and then were packed into column. Gel chromatography was performed using methanol, benzene, esters and ketones as eluents and poly(ethylene glycol) as a sample. When the elution was carried out using methanol and benzene as eluents, elution behavior of samples was ordinary. When ethyl formate, methyl acetate and ethyl propionate were used as eluents, samples were slightly adsorbed and the elution was delayed. In the case the elution was carried out using ethyl acetate, propyl acetate, butyl acetate and ethyl methyl ketone as eluents, samples were adsorbed strongly on the bed material, and the adsorption curve was analogous to the calibration curve using methanol as an eluent. Dried poly(vinyl alcohol) gel as a packing material, showed ordinary elution behaviors for the samples. The adsorption of poly(ethylene glycol) on the present bed material was attributed to the existence of hydrated water on poly(vinyl alcohol) gel matrix. (author)

  9. Development of a BMW flexible fuel vehicle. Entwicklung eines BMW-Fahrzeuges fuer flexiblen Benzin-Methanol-Mischbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Muhl, W; Petra, H

    1992-02-01

    A standard BMW 6-cylinder engine with 4 valves was converted for methanol flexible fuel operation. New performance characteristics of air/fuel mixture and ignition timing were determined for different methanol concentrations (M20, M50, M85). The recognition of the methanol concentration was made by means of a capacitive alcohol sensor and the adaptive Lambda Control. Without any modification of the catalyst the HC emission was reduced about 40% in US-test cycle. The efficiency of M85 was upgraded about 8% under vehicle operation conditions. Under any method concentration the driveability of the car was as well as operated with pure gasoline. Operating with M85 the engine increased torque and power by 11%. (orig.).

  10. Pulse radiolysis of malachite green leucocyanide in alcoholic solvents, the influence of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Grodkowski, J; Stuglik, Z; Wieczorek, G [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1992-04-01

    The solutions of malachite green leucocyanide (MGCN) in methanol, n-propanol and 2-propanol were investigated using pulse radiolysis. In the presence of oxygen, MG{sup +}-carbonium ions were radiolytically formed in two different time steps. The yield of MG{sup +} in the slower process was dependent on oxygen concentration and was proportional to the yield of intermediate MG radicals. The yield of MG was about ten times higher in 2-propanol than in methanol and n-propanol solutions. The reactants responsible for MG oxidation to MG{sup +} were RO{sub 2}, hydroxyalkylperoxyl radicals derived from alcohols. The rate constant for MG reaction with RO{sub 2} were estimated as (6.5{+-}1) x 10{sup 8}M{sup -1}s{sup -1}. The molar extinction coefficient of MG was calculated. (author).

  11. Evaporation Kinetics in Short-Chain Alcohols by Optical Interference

    Science.gov (United States)

    Rosbrugh, Ian M.; Nishimura, S. Y.; Nishimura, A. M.

    2000-08-01

    The evaporation rates of volatile organic liquids may be determined through the observation of optical interference of spatially coincident light that is reflected from the top (air-liquid) and bottom (liquid-surface) of a liquid drop on a glass surface. As an example of what is possible with this technique, the evaporation for a series of short-chain alcohols and acetone was investigated. For 1-propanol, 2-propanol, 2-methyl-1-propanol, and acetone, the kinetics of evaporation was determined to be zero order. For methanol and ethanol, the process was significantly higher than zero order.

  12. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells.

    Science.gov (United States)

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-08-15

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  13. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jiyoung Kim

    2016-08-01

    Full Text Available Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC. The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR activities and the electrochemical double layer compared with common carbon black (CB. To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  14. Why does society accept a higher risk for alcohol than for other voluntary or involuntary risks?

    Science.gov (United States)

    Rehm, Jürgen; Lachenmeier, Dirk W; Room, Robin

    2014-10-21

    Societies tend to accept much higher risks for voluntary behaviours, those based on individual decisions (for example, to smoke, to consume alcohol, or to ski), than for involuntary exposure such as exposure to risks in soil, drinking water or air. In high-income societies, an acceptable risk to those voluntarily engaging in a risky behaviour seems to be about one death in 1,000 on a lifetime basis. However, drinking more than 20 g pure alcohol per day over an adult lifetime exceeds a threshold of one in 100 deaths, based on a calculation from World Health Organization data of the odds in six European countries of dying from alcohol-attributable causes at different levels of drinking. The voluntary mortality risk of alcohol consumption exceeds the risks of other lifestyle risk factors. In addition, evidence shows that the involuntary risks resulting from customary alcohol consumption far exceed the acceptable threshold for other involuntary risks (such as those established by the World Health Organization or national environmental agencies), and would be judged as not acceptable. Alcohol's exceptional status reflects vagaries of history, which have so far resulted in alcohol being exempted from key food legislation (no labelling of ingredients and nutritional information) and from international conventions governing all other psychoactive substances (both legal and illegal). This is along with special treatment of alcohol in the public health field, in part reflecting overestimation of its beneficial effect on ischaemic disease when consumed in moderation. A much higher mortality risk from alcohol than from other risk factors is currently accepted by high income countries.

  15. Decreased production of higher alcohols by Saccharomyces cerevisiae for Chinese rice wine fermentation by deletion of Bat aminotransferases.

    Science.gov (United States)

    Zhang, Cui-Ying; Qi, Ya-Nan; Ma, Hong-Xia; Li, Wei; Dai, Long-Hai; Xiao, Dong-Guang

    2015-04-01

    An appropriate level of higher alcohols produced by yeast during the fermentation is one of the most important factors influencing Chinese rice wine quality. In this study, BAT1 and BAT2 single- and double-gene-deletion mutant strains were constructed from an industrial yeast strain RY1 to decrease higher alcohols during Chinese rice wine fermentation. The results showed that the BAT2 single-gene-deletion mutant strain produced best improvement in the production of higher alcohols while remaining showed normal growth and fermentation characteristics. Furthermore, a BAT2 single-gene-deletion diploid engineered strain RY1-Δbat2 was constructed and produced low levels of isobutanol and isoamylol (isoamyl alcohol and active amyl alcohol) in simulated fermentation of Chinese rice wine, 92.40 and 303.31 mg/L, respectively, which were 33.00 and 14.20 % lower than those of the parental strain RY1. The differences in fermentation performance between RY1-Δbat2 and RY1 were minor. Therefore, construction of this yeast strain is important in future development in Chinese wine industry and provides insights on generating yeast strains for other fermented alcoholic beverages.

  16. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size.

    Science.gov (United States)

    Sonmez, Melda; Ince, Huseyin Yavuz; Yalcin, Ozlem; Ajdžanović, Vladimir; Spasojević, Ivan; Meiselman, Herbert J; Baskurt, Oguz K

    2013-01-01

    The role of membrane fluidity in determining red blood cell (RBC) deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol) using ektacytometry and electron paramagnetic resonance (EPR) spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease) and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; palcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology) was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.

  17. TiO2/C composite as a support for Pd-nanoparticles toward the electrocatalytic oxidation of methanol in alkaline media

    International Nuclear Information System (INIS)

    Estudillo-Wong, L.A.; Vargas-Gómez, A.M.; Arce-Estrada, E.M.; Manzo-Robledo, A.

    2013-01-01

    The electro-oxidation of methanol was studied in alkaline solution on Pd nanoparticles supported on carbon black (XC-72R, C) and TiO 2 /C composite. The materials were prepared via organic colloid route at 170 °C with 5 wt% of Pd. X-ray diffraction (XRD), PdO monolayer reduction (PdO red ) and CO-stripping was employed to characterize both structure and electrochemical properties. According to this, the lattice parameter decreases from 0.3991 to 0.3905 nm due to a possible formation of Pd–Ti alloy. This modification is linked with the electrochemical active surface area (ECSA) decreasing from 22 to 18 m 2 g −1 . On the other hand, studies as a function of temperature and alcohol concentration indicated that the current for methanol electro-oxidation is higher and more stable at Pd/TiO 2 –C, with E a = 44.042 kJ mol −1 . Then, it is highly possible that at Pd/TiO 2 –C, the OH − /OH ads couple is adsorbed at the TiO 2 sites, increasing the kinetic of methanol oxidation reaction at the catalyst surface

  18. LET effect on irradiation of hydroxyphthal imide in alcohol solutions

    International Nuclear Information System (INIS)

    Nakagawa, S.; Murakami, T.

    2005-01-01

    Hydroxyphthalimide(C 6 H 4 (CO) 2 -NOH) was irradiated with C ion (290MeV/u) in isopropyl alcohol, methanol, ethanol, and acetonitrile. LET was 13.2 and 26.5 keV/m. Dose was 5 and 10 kGy. A little amount of phthalimide was produced. The G value of the production of phthalimide by ion irradiation was less than that by -irradiation except for in methanol. In methanol solution, the production rate of phthalimide increased with increasing the value of LET. The amount of the substitution for C 6 H 4 (CO) 2 -NOD in methanol-d decreased by ion irradiation. These results suggest that the reaction mechanism in ion irradiation is different from -irradiation. (author)

  19. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size.

    Directory of Open Access Journals (Sweden)

    Melda Sonmez

    Full Text Available The role of membrane fluidity in determining red blood cell (RBC deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol using ektacytometry and electron paramagnetic resonance (EPR spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01. The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.

  20. Metamorphosis of the mixed phase PtRu anode catalyst for direct methanol fuel cells after exposure of methanol: In situ and ex situ characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Debasish [Center for Individual Nanoparticle Functionality (CINF), Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Aerosol Laboratory, Nano.DTU, Department of Chemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Chorkendorff, Ib [Center for Individual Nanoparticle Functionality (CINF), Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Johannessen, Tue [Aerosol Laboratory, Nano.DTU, Department of Chemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2007-11-08

    The change in the mixed phase heavily oxidized PtRu anode with the exposure of methanol in a direct methanol fuel cell (DMFC) has been investigated by electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD). The investigation had two major objectives: (i) to explore the original state of the active catalyst and (ii) to understand if alloying of Pt and Ru is a requirement for higher methanol oxidation activity. It was found that the methanol oxidation activity gradually improved for {proportional_to}2 h of exposure. The impedance spectra were taken at different times within this time of improvement of activity. The impedance spectra were deconvoluted in different contributions like membrane resistance (R{sub m}), charge transfer resistance (R{sub Ct}), adsorption resistance (R{sub ad}), and oxidation resistance (R{sub ox}). The improvement of the activity was explained in terms of the effect of the pretreatment on different contributions. XRD was done on the virgin and methanol exposed sample as a possible mean to identify the difference. It was postulated that the reduction of the as prepared PtRu after exposure was responsible for the activity improvement. Also, it was shown that bulk alloy formation is not a necessary condition for higher methanol activity of PtRu catalysts. (author)

  1. Diagnosis of toxic alcohols: limitations of present methods.

    Science.gov (United States)

    Kraut, Jeffrey A

    2015-01-01

    Methanol, ethylene glycol, diethylene glycol, and propylene glycol intoxications are associated with cellular dysfunction and an increased risk of death. Adverse effects can develop quickly; thus, there is a need for methods for rapidly detecting their presence. To examine the value and limitations of present methods to diagnose patients with possible toxic alcohol exposure. I searched MEDLINE for articles published between 1969 and 2014 using the terms: toxic alcohols, serum osmolality, serum osmol gap, serum anion gap, metabolic acidosis, methanol, ethylene glycol, diethylene glycol, propylene glycol, and fomepizole. Each article was reviewed for additional references. The diagnosis of toxic alcohol exposure is often made on the basis of this history and physical findings along with an increase in the serum osmol and anion gaps. However, an increase in the osmol and/or anion gaps is not always present. Definitive detection in blood requires gas or liquid chromatography, laborious and expensive procedures which are not always available. Newer methods including a qualitative colorimetric test for detection of all alcohols or enzymatic tests for a specific alcohol might allow for more rapid diagnosis. Exposure to toxic alcohols is associated with cellular dysfunction and increased risk of death. Treatment, if initiated early, can markedly improve outcome, but present methods of diagnosis including changes in serum osmol and anion gap, and use of gas or liquid chromatography have important limitations. Development of more rapid and effective tests for detection of these intoxications is essential for optimal care of patients.

  2. Theoretical investigation of the weak interaction between graphene and alcohol solvents

    Science.gov (United States)

    Wang, Haining; Chen, Sian; Lu, Shanfu; Xiang, Yan

    2017-05-01

    The dispersion of graphene in five different alcohol solvents was investigated by evaluating the binding energy between graphene and alcohol molecules using DFT-D method. The calculation showed the most stable binding energy appeared at the distance of ∼3.5 Å between graphene and alcohol molecules and increased linearly as changing the alcohol from methanol to 1-pentanol. The weak interaction was further graphically illustrated using the reduced density gradient method. The theoretical study revealed alcohols with more carbon atoms could be a good starting point for screening suitable solvents for graphene dispersion.

  3. Amplification of hofmeister effect by alcohols.

    Science.gov (United States)

    Xu, Yun; Liu, Guangming

    2014-07-03

    We have demonstrated that Hofmeister effect can be amplified by adding alcohols to aqueous solutions. The lower critical solution temperature behavior of poly(N-isopropylacrylamide) has been employed as the model system to study the amplification of Hofmeister effect. The alcohols can more effectively amplify the Hofmeister effect following the series methanol alcohols and following the series d-sorbitol ≈ xylitol ≈ meso-erythritol alcohols. Our study reveals that the relative extent of amplification of Hofmeister effect is determined by the stability of the water/alcohol complex, which is strongly dependent on the chemical structure of alcohols. The more stable solvent complex formed via stronger hydrogen bonds can more effectively differentiate the anions through the anion-solvent complex interactions, resulting in a stronger amplification of Hofmeister effect. This study provides an alternative method to tune the relative strength of Hofmeister effect besides salt concentration.

  4. The composition of alcohol products from markets in Lithuania and Hungary, and potential health consequences: a pilot study.

    Science.gov (United States)

    Lachenmeier, Dirk W; Sarsh, Bart; Rehm, Jürgen

    2009-01-01

    The rates of alcohol-attributable mortality in Lithuania and Hungary have been shown to be higher than those in most other European countries. Quality of alcohol products is investigated as a possible explanation. In a descriptive pilot study, a convenience sample of alcohol products was collected from local city markets in both countries (Lithuania n = 10, Hungary n = 15) and chemical analyses, including some that have not been done in prior studies, were conducted. The parameters studied were alcoholic strength, volatiles (methanol, acetaldehyde, higher alcohols), ethyl carbamate, anions (including nitrate) and inorganic elements (including lead). Additionally, a multi-target screening analysis for toxicologically relevant substances was conducted. The majority of samples (64%) had an alcohol content between 35% vol. and 40% vol., being in accordance with the typical strength of legal spirits in Europe. Three samples containing significantly higher concentrations of alcohol above 60% vol. were found to be unrecorded alcohol products, defined as any alcohol that is outside of legal and taxed production. Screening analysis showed that those samples contained various flavourings, including the hepatotoxic substance coumarin, at concentrations above the legal limit for foods. All other substance classes under study were found to be at levels of no toxicological concern. Although some problems with the quality of the alcohol samples were found, there is insufficient evidence from this pilot study to conclude that alcohol quality has an influence on health as reflected in alcohol-attributable mortality rates. Given the extent of alcohol-attributable disease burden in central and eastern European countries, future research should focus on collection of large, representative samples, particularly of unrecorded sources, which was the most problematic product group in our study.

  5. Development of PdM (M = Ni, Cu, Ag) electrocatalysts for oxygen reduction reaction in alkaline medium in the absence and presence of alcohol

    International Nuclear Information System (INIS)

    Isidoro, Roberta Alvarenga

    2015-01-01

    Pd/C, Pd Cu/C, Pd Ni/C and Pd Ag/C electrocatalysts were produced by microwave method to be used as cathode in alkaline fuel cell in the absence and presence of alcohol. This method showed to be effective for the materials production, the particles exhibited good dispersion in carbon support and it produced electrocatalysts with a particle size of about 3.5 nm, according to XRD and TEM analysis. In cyclic voltammetry is observed that Pd Cu/C and Pd Ni/C electrocatalysts has higher active area with higher amount of Cu and Ni, respectively. Rotating ring disk analysis in the electrocatalysts showed that the amount of peroxide produced was at most 4%. This data is similar to Koutecky-Levich analysis, once for both the ORR occurs via 4 electrons. Materials stability analysis showed that they kept or improve performance in ORR, comparing the data before and after 1000 voltammetric cycles. Tolerance tests in methanol and ethanol were performed in a half cell in all electrocatalysts compositions. In presence of methanol and ethanol the compositions 50:50, to all materials studied, showed less influence in the presence of alcohol in ORR linear scan. In alkaline fuel cell Pd Ag/C 70:30 showed better performance for ORR in presence of methanol and Pd Ni/C 70:30 showed better performance for ORR in ethanol presence. (author)

  6. Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes

    Science.gov (United States)

    2017-01-01

    The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential. Analogous data on anatase TiO2 photoanodes indicate similar second-order kinetics for methanol oxidation with a second-order rate constant 2 orders of magnitude higher than that on α-Fe2O3. Kinetic isotope effect studies determine that the rate constant for methanol oxidation on α-Fe2O3 is retarded ∼20-fold by H/D substitution. Employing these data, we propose a mechanism for methanol oxidation under 1 sun irradiation on these metal oxide surfaces and discuss the implications for the efficient PEC methanol oxidation to formaldehyde and concomitant hydrogen evolution. PMID:28735533

  7. Synthesis of Higher Alcohols via Syngas on Cu/Zn/Si Catalysts. Effect of Polyethylene Glycol Content

    Science.gov (United States)

    Cui, Rong-Ji; Yan, Xing; Fan, Jin-Chuan; Huang, Wei

    2018-05-01

    Cu/Zn/Si catalysts with different polyethylene glycol (PEG) content were prepared by a complete liquid-phase method, and characterized by XRD, H2-TPR, N2-adsorption, and XPS. The influence of PEG content on the higher alcohols synthesis from syngas was investigated. The results showed that addition of PEG can influence the texture and surface properties of the catalysts, and therefore affect their activity and product distribution. With an increase in PEG content, BET surface area, Cu crystallite size and surface active ingredient content of the catalysts first increased and then decreased, the CO conversion had similar variation tendency. However, the pore volume and pore diameter of the catalyst increased, and the binding energy of the active component and the content of Cu2O decreased, which resulted in higher catalyst selectivity towards higher alcohols. The highest C2+OH selectivity in total alcohols was 60.6 wt %.

  8. Modeling and simulation of an isothermal reactor for methanol steam reforming

    Directory of Open Access Journals (Sweden)

    Raphael Menechini Neto

    2014-04-01

    Full Text Available Due to growing electricity demand, cheap renewable energy sources are needed. Fuel cells are an interesting alternative for generating electricity since they use hydrogen as their main fuel and release only water and heat to the environment. Although fuel cells show great flexibility in size and operating temperature (some models even operate at low temperatures, the technology has the drawback for hydrogen transportation and storage. However, hydrogen may be produced from methanol steam reforming obtained from renewable sources such as biomass. The use of methanol as raw material in hydrogen production process by steam reforming is highly interesting owing to the fact that alcohol has the best hydrogen carbon-1 ratio (4:1 and may be processed at low temperatures and atmospheric pressures. They are features which are desirable for its use in autonomous fuel cells. Current research develops a mathematical model of an isothermal methanol steam reforming reactor and validates it against experimental data from the literature. The mathematical model was solved numerically by MATLAB® and the comparison of its predictions for different experimental conditions indicated that the developed model and the methodology for its numerical solution were adequate. Further, a preliminary analysis was undertaken on methanol steam reforming reactor project for autonomous fuel cell.

  9. 1995 world methanol conference

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The 20 papers contained in this volume deal with the global markets for methanol, the production of MTBE, integrating methanol production into a coal-to-SNG complex, production of methanol from natural gas, catalysts for methanol production from various synthesis gases, combined cycle power plants using methanol as fuel, and economics of the methanol industry. All papers have been processed for inclusion on the data base

  10. Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Eileen Hao Yu

    2010-08-01

    Full Text Available Direct alkaline alcohol fuel cells (DAAFCs have attracted increasing interest over the past decade because of their favourable reaction kinetics in alkaline media, higher energy densities achievable and the easy handling of the liquid fuels. In this review, principles and mechanisms of DAAFCs in alcohol oxidation and oxygen reduction are discussed. Despite the high energy densities available during the oxidation of polycarbon alcohols they are difficult to oxidise. Apart from methanol, the complete oxidation of other polycarbon alcohols to CO2 has not been achieved with current catalysts. Different types of catalysts, from conventional precious metal catalyst of Pt and Pt alloys to other lower cost Pd, Au and Ag metal catalysts are compared. Non precious metal catalysts, and lanthanum, strontium oxides and perovskite-type oxides are also discussed. Membranes like the ones used as polymer electrolytes and developed for DAAFCs are reviewed. Unlike conventional proton exchange membrane fuel cells, anion exchange membranes are used in present DAAFCs. Fuel cell performance with DAAFCs using different alcohols, catalysts and membranes, as well as operating parameters are summarised. In order to improve the power output of the DAAFCs, further developments in catalysts, membrane materials and fuel cell systems are essential.

  11. Bioelectrochemical fuel cell and sensor based on quinoprotein alcohol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G; Hill, H A.O.; Aston, W J; Higgins, I J; Turner, A P.F.

    1983-09-01

    A biofuel cell, yielding a stable and continuous low-power output, based on the enzymatic oxidation of methanol to formic acid has been designed and investigated. The homogeneous kinetics of the electrochemically-coupled enzymatic oxidation reaction were investigated and optimized. The biofuel cell also functioned as a sensitive method for the detection of primary alcohols. A method for medium-scale preparation of the enzyme alcohol dehydrogenase (alcohol: (acceptor) oxidoreductase, EC 1.1.99.8) is described. (Refs. 14).

  12. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast.

    Science.gov (United States)

    Pires, Eduardo J; Teixeira, José A; Brányik, Tomás; Vicente, António A

    2014-03-01

    Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.

  13. An Investigation of Chitosan-Grafted-Poly(vinyl alcohol) as an Electrolyte Membrane

    OpenAIRE

    Panu Danwanichakul; Pongchayont Sirikhajornnam

    2013-01-01

    The membrane of chitosan-grafted-poly(vinyl alcohol)/poly(vinyl alcohol) (CS-g-PVA/PVA) was investigated along with chitosan (CS), PVA, CS/PVA, and Nafion 117 membranes for transport properties of water and methanol, mechanical properties, and ionic conductivity. The ionic conductivity, σ, of the crosslinked CS-g-PVA/PVA membrane was about 4.37 mS cm−1 and the methanol permeability, PS, was 1.8×10−7 cm2s−1. These gave the selectivity, σ/PS, of 23.95 mS·s·cm−3 compared with 16.35 mS·s·cm−3 of ...

  14. Renewable hydrogen utilisation for the production of methanol

    International Nuclear Information System (INIS)

    Galindo Cifre, P.; Badr, O.

    2007-01-01

    Electrolytic hydrogen production is an efficient way of storing renewable energy generated electricity and securing the contribution of renewables in the future electricity supply. The use of this hydrogen for the production of methanol results in a liquid fuel that can be utilised directly with minor changes in the existing infrastructure. To utilise the renewable generated hydrogen for production of renewable methanol, a sustainable carbon source is needed. This carbon can be provided by biomass or CO 2 in the flue gases of fossil fuel-fired power stations, cement factories, fermentation processes and water purification plants. Methanol production pathways via biomass gasification and CO 2 recovery from the flue gasses of a fossil fuel-fired power station have been reviewed in this study. The cost of methanol production from biomass was found to lie in the range of 300-400 EUR/tonne of methanol, and the production cost of CO 2 based methanol was between 500 and 600 EUR/tonne. Despite the higher production costs compared with methanol produced by conventional natural gas reforming (i.e. 100-200 EUR/tonne, aided by the low current price of natural gas), these new processes incorporate environmentally beneficial aspects that have to be taken into account. (author)

  15. Effects of Concentration of Organically Modified Nanoclay on Properties of Sulfonated Poly(vinyl alcohol Nanocomposite Membranes

    Directory of Open Access Journals (Sweden)

    Apiradee Sanglimsuwan

    2011-01-01

    Full Text Available Electrolyte nanocomposite membranes for proton exchange membrane fuel cells and direct methanol fuel cells were prepared by carrying out a sulfonation of poly(vinyl alcohol with sulfosuccinic acid and adding a type of organically modified montmorillonite (layered silicate nanoclay commercially known as Cloisite 93A. The effects of the different concentrations (0, 2, 4, 6, 8 wt. % of the organoclay in the membranes on water uptake, ion exchange capacity (IEC, proton conductivity, and methanol permeability were measured, respectively, via gravimetry, titration, impedance analysis, and gas chromatography techniques. The IEC values remained constant for all concentrations. Water uptakes and proton conductivities of the nanocomposite membranes changed with the clay content in a nonlinear fashion. While all the nanocomposite membranes had lower methanol permeability than Nafion115, the 6% concentration of Cloisite 93A in sulfonated poly(vinyl alcohol membrane displayed the greatest proton conductivity to methanol permeability ratio.

  16. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.

  17. Probing the evaporation of ternary ethanol-methanol-water droplets by cavity enhanced Raman scattering.

    Science.gov (United States)

    Howle, Chris R; Homer, Chris J; Hopkins, Rebecca J; Reid, Jonathan P

    2007-10-21

    Cavity enhanced Raman scattering is used to characterise the evolving composition of ternary aerosol droplets containing methanol, ethanol and water during evaporation into a dry nitrogen atmosphere. Measurements made using non-linear stimulated Raman scattering from these ternary alcohol-water droplets allow the in situ determination of the concentration of the two alcohol components with high accuracy. The overlapping spontaneous Raman bands of the two alcohol components, arising from C-H stretching vibrational modes, are spectrally-resolved in stimulated Raman scattering measurements. We also demonstrate that the evaporation measurements are consistent with a quasi-steady state evaporation model, which can be used to interpret the evaporation dynamics occurring at a range of pressures at a particular evaporation time.

  18. The composition of unrecorded alcohol from eastern Ukraine: is there a toxicological concern beyond ethanol alone?

    Science.gov (United States)

    Lachenmeier, Dirk W; Samokhvalov, Andriy V; Leitz, Jenny; Schoeberl, Kerstin; Kuballa, Thomas; Linskiy, Igor V; Minko, Oleksandr I; Rehm, Jürgen

    2010-10-01

    In 2005, approximately half of all alcohol consumption in Ukraine was unrecorded. This paper investigates the chemical composition of unrecorded and low-cost alcohol, including a toxicological evaluation. A sample of alcohol products (n=78) from both recorded and unrecorded sources was obtained mainly from eastern Ukraine, and chemically analyzed. Analysis entailed alcoholic strength, levels of volatile compounds (methanol, acetaldehyde, higher alcohols), ethyl carbamate, anions, and inorganic elements. The majority of unrecorded alcohol was homemade samohon with alcoholic strength averaging close to 40% vol. A limited number of samples, advertised for medicinal purposes, were identified with high alcoholic strengths (above 60% vol.). Single samples showed contamination with acetaldehyde and ethyl carbamate above the levels of toxicological concern. Metal contamination was frequent, with copper levels above 2mg/l in 33 samples, and zinc above 5mg/l in 10 samples. Overall, however, the composition of unrecorded samples did not raise major public health concerns other those for ethanol. The priority of alcohol policy in Ukraine should be the general reduction of alcohol consumption with a specific focus on that from small-scale home production. Further research is needed on potential mitigative measures and the origin of the metal contamination in particular alcoholic beverages. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Recent advances on Zeolite modification for direct alcohol fuel cells (DAFCs)

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-03-01

    The increase of energy demand and global warming issues has driven studies of alternative energy sources. The polymer electrolyte membrane fuel cell (PEMFC) can be an alternative energy source by (partially) replacing the use of fossil fuel which is in line with the green technology concept. However, the usage of hydrogen as a fuel has several disadvantages mainly transportation and storage related to its safety aspects. Recently, alcohol has gained attention as an energy source for fuel cell application, namely direct alcohol fuel cell (DAFC). Among alcohols, high-mass energy density methanol and ethanol are widely used as direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC), respectively. Currently, the performance of DMFC is still rudimentary. Furthermore, the use of ethanol gives some additional privileges such as non-toxic property, renewable, ease of production in great quantity by the fermentation of sugar-containing raw materials. Direct alcohol fuel cell (DAFC) still has weakness in the low proton conductivity and high alcohol crossover. Therefore, to increase the performance of DAFC, modification using zeolite has been performed to improve proton conductivity and decrease alcohol crossover. Zeolite also has high thermal resistance properties, thereby increasing DAFC performance. This paper will discuss briefly about modification of catalyst and membrane for DAFC using zeolite. Zeolite modification effect on fuel cell performance especially proton conductivity and alcohol crossover will be presented in detail.

  20. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol

    DEFF Research Database (Denmark)

    Alberico, E.; Nielsen, Martin

    2015-01-01

    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous...

  1. Esterification of Fatty Acids with Short-Chain Alcohols over Commercial Acid Clays in a Semi-Continuous Reactor

    Directory of Open Access Journals (Sweden)

    Mohamed H. Frikha

    2009-11-01

    Full Text Available Production of fatty acid esters from stearic, oleic, and palmitic acids and short-chain alcohols (methanol, ethanol, propanol, and butanol for the production of biodiesel was investigated in this work. A series of montmorillonite-based clays catalysts (KSF, KSF/0, KP10, and K10 were used as acidic catalysts. The influence of the specific surface area and the acidity of the catalysts on the esterification rate were investigated. The best catalytic activities were obtained with KSF/0 catalyst. The esterification reaction has been carried out efficiently in a semi-continuous reactor at 150°C temperature higher than the boiling points of water and alcohol. The reactor used enabled the continuous removal of water and esterification with hydrated alcohol (ethanol 95% without affecting the original activity of the clay.

  2. Toxicity of methanol to fish, crustacean, oligochaete worm, and aquatic ecosystem.

    Science.gov (United States)

    Kaviraj, A; Bhunia, F; Saha, N C

    2004-01-01

    Static renewal bioassays were conducted in the laboratory and in outdoor artificial enclosures to evaluate toxic effects of methanol to one teleost fish and two aquatic invertebrates and to limnological variables of aquatic ecosystem. Ninety-six-hour acute toxicity tests revealed cladoceran crustacea Moina micrura as the most sensitive to methanol (LC50, 4.82 g/L), followed by freshwater teleost Oreochromis mossambicus (LC50, 15.32 g/L) and oligochaete worm Branchiura sowerbyi (LC50, 54.89 g/L). The fish, when exposed to lethal concentrations of methanol, showed difficulties in respiration and swimming. The oligochaete body wrinkled and fragmented under lethal exposure of methanol. Effects of five sublethal concentrations of methanol (0, 23.75, 47.49, 736.10, and 1527.60 mg/L) on the feeding rate of the fish and on its growth and reproduction were evaluated by separate bioassays. Ninety-six-hour bioassays in the laboratory showed significant reduction in the appetite of fish when exposed to 736.10 mg/L or higher concentrations of methanol. Chronic toxicity bioassays (90 days) in outdoor enclosures showed a reduction in growth, maturity index and fecundity of fish at 47.49 mg/L or higher concentrations of methanol. Primary productivity, phytoplankton population, and alkalinity of water were also reduced at these concentrations. Chronic exposure to 1527.60 mg/L methanol resulted in damages of the epithelium of primary and secondary gill lamellae of the fish. The results revealed 23.75 mg/L as the no-observed-effect concentration (NOEC) of methanol to freshwater aquatic ecosystem.

  3. Lipase catalyzed transesterification of castor oil by straight chain higher alcohols.

    Science.gov (United States)

    Malhotra, Deepika; Mukherjee, Joyeeta; Gupta, Munishwar N

    2015-03-01

    Biolubricants from Castor oil were produced enzymatically by transesterification with higher alcohols using a lipase mixture of immobilized Mucor miehei (RMIM) and immobilized Candida antarctica lipase B (Novozym 435) under low water conditions. The conversions were in the range of 80-95% under the optimized conditions. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998; FINAL

    International Nuclear Information System (INIS)

    1999-01-01

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C(sub 2) to C(sub 5+)) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline

  5. Synthesis and Activation of Catalysts for Biofuel Synthesis in an Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Wu, Qiongxiao; Elkjær, Christian Fink

    The synthesis of transportation fuels from sustainable resources requires new and better production paths. Our approach is to use biogas to synthesize alcohols, such as methanol or higher alcohols for fuel and other chemical products. For the production of methanol a reduction of processing...... temperature and pressure to lower the process cost and make the product more competitive is desired. Higher alcohols are in general favorable over methanol due to their high energy density and ease of use in current internal combustion engines. However, better catalysts for this reaction are needed...

  6. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  7. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    International Nuclear Information System (INIS)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-01-01

    In this work we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations

  8. Solvation effect on decomposition rate of 10-methyl-10-phenylphenoxarsonium iodide in some alcohols and ketones

    International Nuclear Information System (INIS)

    Gavrilov, V.I.; Gumerov, N.S.; Rakhmatullin, R.R.

    1989-01-01

    By the method of conductometry decomposition kinetics of 10-methyl-10phenylphenoxarsonium iodide in methanol, ethanol, 2-propanol, 1-butanol, 1-pentanol and methyl ethyl ketone at initial concentration of the salt 0.00024-0.003 mol/l, is studied. It is shown that at the temperatures up to 80-95 deg C practically no decomposition of arsonium salt in methanol and ethanol is observed. With an increase in the length of alcohol alkyl radical the decomposition rate increases. The values of activation enrgy both for alcohols and ketone are approximately the same. At the same time, decomposition rate in alcohol proved much slower than in ketone, which is related to iodide-ion solvation in protic solvents

  9. Solvation effect on decomposition rate of 10-methyl-10-phenylphenoxarsonium iodide in some alcohols and ketones

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V I; Gumerov, N S; Rakhmatullin, R R [Kazanskij Khimiko-Tekhnologicheskij Inst., Kazan (USSR)

    1989-03-01

    By the method of conductometry decomposition kinetics of 10-methyl-10phenylphenoxarsonium iodide in methanol, ethanol, 2-propanol, 1-butanol, 1-pentanol and methyl ethyl ketone at initial concentration of the salt 0.00024-0.003 mol/l, is studied. It is shown that at the temperatures up to 80-95 deg C practically no decomposition of arsonium salt in methanol and ethanol is observed. With an increase in the length of alcohol alkyl radical the decomposition rate increases. The values of activation enrgy both for alcohols and ketone are approximately the same. At the same time, decomposition rate in alcohol proved much slower than in ketone, which is related to iodide-ion solvation in protic solvents.

  10. Influence of reaction conditions and type of alcohol on biodiesel yields and process economics of supercritical transesterification

    International Nuclear Information System (INIS)

    Micic, Radoslav D.; Tomić, Milan D.; Kiss, Ferenc E.; Nikolić-Djorić, Emilija B.; Simikić, Mirko Ð.

    2014-01-01

    Highlights: • Transesterification in supercritical methanol, ethanol and 1-propanol investigated. • Effect of alcohol, reaction temperature, pressure and time on yields analyzed. • Temperature has the highest impact on yield, followed by time and pressure. • Direct material and energy costs for each of the production alternatives estimated. • Lowest costs are achieved at highest yields even at very low oil prices. - Abstract: Experiments with transesterification of rapeseed oil in supercritical alcohols (methanol, ethanol and 1-propanol) were carried out in a batch reactor at various reaction temperatures (250–350 °C), working pressure (8–12 MPa), reaction time, and constant 42:1 alcohol to oil molar ratio. Influence of different alcohols and reaction conditions on biodiesel yield was investigated using linear multiple regression models. Temperature had the highest impact on yields, followed by reaction time and pressure. With increased molecular weight of alcohols, relative importance of temperature for explanation of yields decreased and relative importance of time and pressure increased. Economic assessment has revealed that transesterification in supercritical methanol has the lowest direct material and energy costs. Yield has crucial impact on process economics. Direct costs decrease with increase in biodiesel yields. Even at very low prices of oil feedstock the lowest cost is achieved at the highest yield

  11. Elaboration of modified poly(NiII-DHS films as electrodes by the electropolymerization of Ni(II-[5,5′-dihydroxysalen] onto indium tin oxide surface and study of their electrocatalytic behavior toward aliphatic alcohols

    Directory of Open Access Journals (Sweden)

    Ali Ourari

    2017-11-01

    Full Text Available Nickel(II-DHS complex was obtained from N,N′-bis(2,5-dihydroxybenzylidene-1,2-diaminoethane (H2DHS ligand and nickel acetate tetrahydrated in ethanolic solution with stirring under reflux. This complex, dissolved in an alkaline solution, was oxidized to form electroactive films strongly adhered on the ITO (indium tin oxide electrode surface. In this alkaline solution, the poly-[NiII-DHS]/ITO films showed the typical voltammetric response of (Ni2+/Ni3+ redox couple centers which are immobilized in the polymer-film. The modified electrodes (MEs obtained were also characterized by several techniques such as scanning electronic microscopy, atomic force microscopy and electrochemical methods. The electrocatalytic behavior of these MEs toward the oxidation reaction of some aliphatic alcohols such as methanol, ethanol, 2-Methyl-1-propanol and isopropanol was investigated. The voltammograms recorded with these alcohols showed good electrocatalytic efficiency. The electrocatalytic currents were at least 80 times higher than those obtained for the oxidation of methanol on electrodes modified with nickel hydroxide films in alkaline solutions. We noticed that these electrocatalytic currents are proportional to the concentration of methanol (0.050–0.30 μM. In contrast, those recorded for the oxidation of other aliphatic short chain alcohols such as ethanol, 2-methyl-1-propanol and isopropanol are rather moderately weaker. In all cases the electrocatalytic currents presented a linear dependence with the concentration of alcohol. These modified electrodes could be applied as alcohol sensors.

  12. SOLVENT-FREE TETRAHYDROPYRANYLATION (THP) OF ALCOHOLS AND PHENOLS AND THEIR REGENERATION BY CATALYTIC ALUMINUM CHLORIDE HEXAHYDRATE

    Science.gov (United States)

    Catalytic amount of aluminum chloride hexahydrate enables solvent-free tetrahydropyranylation (THP) of alcohols and phenols at moderate temperatures. A simple addition of methanol helps to regenerate the corresponding alcohols and phenols thus rendering these protection and depro...

  13. An Investigation of Chitosan-Grafted-Poly(vinyl alcohol as an Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Panu Danwanichakul

    2013-01-01

    Full Text Available The membrane of chitosan-grafted-poly(vinyl alcohol/poly(vinyl alcohol (CS-g-PVA/PVA was investigated along with chitosan (CS, PVA, CS/PVA, and Nafion 117 membranes for transport properties of water and methanol, mechanical properties, and ionic conductivity. The ionic conductivity, σ, of the crosslinked CS-g-PVA/PVA membrane was about 4.37 mS cm−1 and the methanol permeability, PS, was 1.8×10−7 cm2s−1. These gave the selectivity, σ/PS, of 23.95 mS·s·cm−3 compared with 16.35 mS·s·cm−3 of Nafion 117 membrane. The conductivity of the crosslinked CS-g-PVA/PVA membrane was greater than others including Nafion 117 when the membranes were saturated with methanol solution of which concentration was greater than 20%. This fact and that the mechanical properties of the wet crosslinked CS-g-PVA/PVA membrane were comparable to those of other membranes made it a promising material to be used as an electrolyte membrane in a direct methanol fuel cell.

  14. The (p, ρ, T) of (methanol + benzene) and (methanol + ethylbenzene)

    International Nuclear Information System (INIS)

    Naziev, Yashar M.; Shahverdiyev, Astan N.; Hasanov, Vaqif H.

    2005-01-01

    The (p, ρ, T) of methanol, ethylbenzene and (methanol + benzene) and (methanol + ethylbenzene) at temperatures between (290 and 500) K and pressures in the range (0.1 to 60) MPa have been measured with a magnetic suspension densimeter with an uncertainty of ±0.1%. Our measurements with methanol deviate from the literature values by less than 0.2%. The (p, ρ, T) measurements were fitted with experimental uncertainties by an empirical equation. The temperature and mole fraction dependence of the coefficients of the equation of state are presented

  15. Intermittent hemodialysis is superior to continuous veno-venous hemodialysis/hemodiafiltration to eliminate methanol and formate during treatment for methanol poisoning

    Science.gov (United States)

    Zakharov, Sergey; Pelclova, Daniela; Navratil, Tomas; Belacek, Jaromir; Kurcova, Ivana; Komzak, Ondrej; Salek, Tomas; Latta, Jiri; Turek, Radovan; Bocek, Robert; Kucera, Cyril; Hubacek, Jaroslav A; Fenclova, Zdenka; Petrik, Vit; Cermak, Martin; Hovda, Knut Erik

    2014-01-01

    During an outbreak of methanol poisonings in the Czech Republic in 2012, we were able to study methanol and formate elimination half-lives during intermittent hemodialysis (IHD) and continuous veno-venous hemodialysis/hemodiafiltration (CVVHD/HDF) and the relative impact of dialysate and blood flow rates on elimination. Data were obtained from 11 IHD and 13 CVVHD/HDF patients. Serum methanol and formate concentrations were measured by gas chromatography and an enzymatic method. The groups were relatively comparable, but the CVVHD/HDF group was significantly more acidotic (mean pH 6.9 vs. 7.1 IHD). The mean elimination half-life of methanol was 3.7 and formate 1.6 h with IHD, versus 8.1 and 3.6 h, respectively, with CVVHD/HDF (both significant). The 54% greater reduction in methanol and 56% reduction in formate elimination half-life during IHD resulted from the higher blood and dialysate flow rates. Increased blood and dialysate flow on the CVVHD/HDF also increased elimination significantly. Thus, IHD is superior to CVVHD/HDF for more rapid methanol and formate elimination, and if CVVHD/HDF is the only treatment available then elimination is greater with greater blood and dialysate flow rates. PMID:24621917

  16. Methanol from biomass by partial oxidation

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The advantages of methanol should grow when petroleum again becomes scarce and expensive. An active program should be continued to develop technology and resolve outstanding questions. Some of the elements of this program included in this paper are: Make design studies and more accurate cost estimates for the largest plant. The increased size of this plant over the small plant studied by S and W should result in improved methanol yield and better energy efficiency. Continue development of the SERI biomass gasifier for a better understanding of design and operating parameters, for design of larger units, for higher operating pressures, and for gasification of Hawaiian woods and agricultural wastes. An earlier gasifier test bed in Hawaii is very desirable. Develop a plan to build successfully larger methanol plants in Hawaii to provide the basis for a large plant. Develop a plan for large-scale production of biomass in the islands. Elements of the plan might include technical (types of trees, maximizing wood per acre, and harvesting processes), economic (price to be paid for the biomass), social, cultural, and political factors. Develop a plan to convert liquid fuel users to methanol and begin implementing the plan as the initial small plants supply methanol. Develop an overall plant to integrate the various parts of the program covered above

  17. Application of Alcohols to Dual - Fuel Feeding the Spark-Ignition and Self-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2014-10-01

    Full Text Available This paper concerns analysis of possible use of alcohols for the feeding of self - ignition and spark-ignition engines operating in a dual- fuel mode, i.e. simultaneously combusting alcohol and diesel oil or alcohol and petrol. Issues associated with the requirements for application of bio-fuels were presented with taking into account National Index Targets, bio-ethanol production methods and dynamics of its production worldwide and in Poland. Te considerations are illustrated by results of the tests on spark- ignition and self- ignition engines fed with two fuels: petrol and methanol or diesel oil and methanol, respectively. Te tests were carried out on a 1100 MPI Fiat four- cylinder engine with multi-point injection and a prototype collector fitted with additional injectors in each cylinder. Te other tested engine was a SW 680 six- cylinder direct- injection diesel engine. Influence of a methanol addition on basic operational parameters of the engines and exhaust gas toxicity were analyzed. Te tests showed a favourable influence of methanol on combustion process of traditional fuels and on some operational parameters of engines. An addition of methanol resulted in a distinct rise of total efficiency of both types of engines at maintained output parameters (maximum power and torque. In the same time a radical drop in content of hydrocarbons and nitrogen oxides in exhaust gas was observed at high shares of methanol in feeding dose of ZI (petrol engine, and 2-3 fold lower smokiness in case of ZS (diesel engine. Among unfavourable phenomena, a rather insignificant rise of CO and NOx content for ZI engine, and THC and NOx - for ZS engine, should be numbered. It requires to carry out further research on optimum control parameters of the engines. Conclusions drawn from this work may be used for implementation of bio-fuels to feeding the combustion engines.

  18. New functionalized IRMOF-10 with strong affinity for methanol: A simulation study

    Science.gov (United States)

    Liu, Zewei; Zhang, Kai; Wu, Ying; Xi, Hongxia

    2018-05-01

    Grand Canonical Monte Carlo (GCMC) method simulation combined with density functional theory (DFT) calculation were used to investigate the methanol adsorption in IRMOF-10, with nitrogen and metal-doping functionalizations in order to understand the underlying performance of MOFs in methanol adsorption. New doped IRMOF-10s (M-2N-IRMOF-10, M = Be, Mg, Ca, Sr, Ba) were theoretically constructed by binding nitrogen atoms of organic linkers in N-doping IRMOF-10 (2N-IRMOF-10) with various metal atoms. 2N-IRMOF-10 shows only a little higher methanol capacity in the measured pressure range. However, M-2N-IRMOF-10s (especially Be-2N-IRMOF-10) demonstrate much higher methanol capacity due to the stronger interaction between the induced Be atoms and methanol molecules. Furthermore, the obtained results can be attributed to the new adsorption sites created by metal-doping, as revealed by the more exothermic binding energies (BEs) on Be-sites (-160.8 kJ/mol) than Zn-sites (-19.4 kJ/mol). According to the simulation results, it can be concluded that functionalized IRMOF-10 are capable of enhancing the adsorption capacity of methanol at pressure from 0 to 12 kPa at 298 K. This study provides a new functionalized method to effectively enhance methanol adsorption capacity of MOFs, which might extend the application of MOFs on methanol adsorption in the near future.

  19. Kinetics of Oxidation of Aliphatic Alcohols by Potassium Dichromate ...

    African Journals Online (AJOL)

    NICO

    2011-10-10

    Oct 10, 2011 ... 1Department of Chemistry, Faculty of Science, Ibb University, Ibb 7027, Yemen. 2Department of Chemistry ... The presence of TX-100 enhanced the rate of the ... oxidation of alcohols, namely, methanol, ethanol, 1-propanol.

  20. Carbon dioxide/methanol conversion cycle based on cascade enzymatic reactions supported on superparamagnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    CATERINA G.C. MARQUES NETTO

    2017-10-01

    Full Text Available ABSTRACT The conversion of carbon dioxide into important industrial feedstock is a subject of growing interest in modern society. A possible way to achieve this goal is by carrying out the CO2/methanol cascade reaction, allowing the recycle of CO2 using either chemical catalysts or enzymes. Efficient and selective reactions can be performed by enzymes; however, due to their low stability, immobilization protocols are required to improve their performance. The cascade reaction to reduce carbon dioxide into methanol has been explored by the authors, using, sequentially, alcohol dehydrogenase (ADH, formaldehyde dehydrogenase (FalDH, and formate dehydrogenase (FDH, powered by NAD+/NADH and glutamate dehydrogenase (GDH as the co-enzyme regenerating system. All the enzymes have been immobilized on functionalized magnetite nanoparticles, and their reactions investigated separately in order to establish the best performance conditions. Although the stepwise scheme led to only 2.3% yield of methanol per NADH; in a batch system under CO2 pressure, the combination of the four immobilized enzymes increased the methanol yield by 64 fold. The studies indicated a successful regeneration of NADH in situ, envisaging a real possibility of using immobilized enzymes to perform the cascade CO2-methanol reaction.

  1. Combinatorial investigation of Pt-Ru-Sn alloys as an anode electrocatalysts for direct alcohol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Young Hwan [Department of New Energy.Resource Engineering, College of Science and Engineering, Sangji University, 124, Sangjidae-gil, Wonju-si, Gangwon-Do 220-702 (Korea); Shul, Yong Gun [Department of Chemical and Biomolecular Engineering, Yonsei University, 134, Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea)

    2010-10-15

    Low-temperature direct alcohol fuel cells fed with different kinds of alcohol (methanol, ethanol and 2-propanol) have been investigated by employing ternary electrocatalysts (Pt-Ru-Sn) as anode catalysts. Combinatorial chemistry has been applied to screen the 66-PtRuSn-anode arrays at the same time to reduce cost, time, and effort when we select the optimum composition of electrocatalysts for DAFCs (Direct Alcohol Fuel Cells). PtRuSn (80:20:0) showed the lowest onset potential for methanol electro-oxidation, PtRuSn (50:0:50) for ethanol, and PtRuSn (20:70:10) for 2-propanol in CV results respectively, and single cell performance test indicated that Ru is more suitable for direct methanol fuel cell system, Sn for direct ethanol fuel cell system, and 2-propanol could be applied as fuel with low platinum composition anode electrocatalyst. The single cell performance results and electrochemical results (CV) were well matched with the combinatorial electrochemical results. As a result, we could verify the availability of combinatorial chemistry by comparing the results of each extreme electrocatalysts compositions as follows: PtRuSn (80:20:0) for methanol, PtRuSn (50:0:50) for ethanol and PtRuSn (20:70:10) for 2-propanol. (author)

  2. Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks

    NARCIS (Netherlands)

    Chang, C.; Bastiaansen, C.W.M.; Broer, D.J.; Kuo, H.-L.

    2012-01-01

    Hydrogen-bridged, cholesteric liquid-crystal (CLC) polymer networks are adopted as an optical sensor material to distinguish between ethanol and methanol. Fast uptake of the alcohols is facilitated by an incorporated porosity created by breaking the hydrogen bridges and by a previously removed

  3. Excellent performance of Pt-C/TiO2 for methanol oxidation: Contribution of mesopores and partially coated carbon

    Science.gov (United States)

    Wu, Xinbing; Zhuang, Wei; Lu, Linghong; Li, Licheng; Zhu, Jiahua; Mu, Liwen; Li, Wei; Zhu, Yudan; Lu, Xiaohua

    2017-12-01

    Partial deposition of carbon onto mesoporous TiO2 (C/TiO2) were prepared as supporting substrate for Pt catalyst development. Carbon deposition is achieved by in-situ carbonization of furfuryl alcohol. The hybrid catalysts were characterized by XRD, Raman, SEM and TEM and exhibited outstanding catalytic activity and stability in methanol oxidation reaction. The heterogeneous carbon coated on mesoporous TiO2 fibers provided excellent electrical conductivity and strong interfacial interaction between TiO2 support and Pt metal nanoparticles. Methanol oxidation reaction results showed that the activity of Pt-C/TiO2 is 3.0 and 1.5 times higher than that of Pt-TiO2 and Pt-C, respectively. In addition, the Pt-C/TiO2 exhibited a 6.7 times enhanced stability compared with Pt-C after 2000 cycles. The synergistic effect of C/TiO2 is responsible for the enhanced activity of Pt-C/TiO2, and its excellent durability could be ascribed to the strong interfacial interaction between Pt nanoparticles and C/TiO2 support.

  4. Electron spin resonance of the solvation of radiation-produced silver atoms in alcohol-water mixtures

    International Nuclear Information System (INIS)

    Li, A.S.W.; Kevan, L.

    1982-01-01

    Frozen solutions of silver salts exposed to 60 Co γ-irradiation form silver atoms by reaction of radiation-produced electrons with the silver ion. At 4 K the silver atoms are initially produced in a nonequilibrium or presolvated state and upon brief thermal excitation to 77 K the first solvation shell geometry changes towards an equilibrium or solvated silver atom. This is most pronounced in water but also occurs in methanol, ethanol and n-propanol matrices. The changes in the electron spin resonance magnetic parameters upon silver atom solvation have been determined. In alcohol-water mixtures Ag 0 is preferentially solvated by polycrystalline water at low alcohol concentration. Above a particular alcohol mole percent Ag 0 suddenly changes its environment to a glassy alcohol one. This sudden change occurs at 17, 13 and 6 mol % methanol, ethanol and n-propanol, respectively. These mole percents correlate with the minimum of the excess enthalpy of mixing and with the hydrogen atom trapping ability of these alcohol-water mixtures. The results also suggest that the local environmental disorder around Ag 0 increases with alcohol chain length in alcohol-water frozen solutions. (author)

  5. Effect of TiO_2 Loading on Pt-Ru Catalysts During Alcohol Electrooxidation

    International Nuclear Information System (INIS)

    Hasa, Bjorn; Kalamaras, Evangelos; Papaioannou, Evangelos I.; Vakros, John; Sygellou, Labrini; Katsaounis, Alexandros

    2015-01-01

    Highlights: • TiO_2 can be used to modify Pt-Ru based electrodes for alcohol oxidation. • TiO_2 modified electrodes with lower amount of metals had higher active surface area than pure Pt-Ru electrodes. • TiO_2 modified electrodes showed comparable performance with pure Pt-Ru electrode both in a single cell and in a PEM fuel cell under alcohol fuelling. - Abstract: In this study, Pt-Ru based electrodes modified by TiO_2 were prepared by means of thermal decomposition of chloride and isopropoxide precursors on Ti substrates, characterised by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), electrochemical techniques and CO stripping and used as anodes for alcohol oxidation. The minimization of the metal loading without electrocatalytic activity losses was also explored. TiO_2 was chosen due to its chemical stability, low cost and excellent properties as substrate for metal dispersion. It was found that TiO_2 loading up to 50% results in a 3-fold increase of the Electrochemically Active Surface (EAS). This conclusion has been confirmed by CO stripping experiments. All samples have been evaluated during the electrochemical oxidation of methanol, ethanol and glycerol. In all cases, the Pt_2_5-Ru_2_5-(TiO_2)_5_0 electrode had better electrocatalytic activity than the pure Pt_5_0-Ru_5_0 anode. The best modified electrode, (Pt_2_5-Ru_2_5-(TiO_2)_5_0), was also evaluated as anode in a PEM fuel cell under methanol fuelling conditions. The observed higher performance of the TiO_2 modified electrodes was attributed to the enhanced Pt-Ru dispersion as well as the formation of smaller Pt and Ru particles.

  6. Methanol Fuel Cell

    Science.gov (United States)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  7. Polyol Synthesis of Cobalt–Copper Alloy Catalysts for Higher Alcohol Synthesis from Syngas

    DEFF Research Database (Denmark)

    Mendes, Laiza V.P.; Snider, Jonathan L.; Fleischman, Samuel D.

    2017-01-01

    Novel catalysts for the selective production of higher alcohols from syngas could offer improved pathways towards synthetic fuels and chemicals. Cobalt–copper alloy catalysts have shown promising results for this reaction. To improve control over particle properties, a liquid phase nanoparticle s...

  8. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    Science.gov (United States)

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  9. C1 Metabolism in Corynebacterium glutamicum: an Endogenous Pathway for Oxidation of Methanol to Carbon Dioxide

    Science.gov (United States)

    Witthoff, Sabrina; Mühlroth, Alice

    2013-01-01

    Methanol is considered an interesting carbon source in “bio-based” microbial production processes. Since Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies of the response of this organism to methanol. The C. glutamicum wild type was able to convert 13C-labeled methanol to 13CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be upregulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The Δald ΔadhE and Δald ΔmshC deletion mutants were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF, recently identified by us. Similar to the case with ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogenous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway. PMID:24014532

  10. Effect of operating conditions on energy efficiency for a small passive direct methanol fuel cell

    International Nuclear Information System (INIS)

    Chu Deryn; Jiang Rongzhong

    2006-01-01

    Energy conversion efficiency was studied in a direct methanol fuel cell (DMFC) with an air-breathing cathode using Nafion 117 as electrolyte membrane. The effect of operating conditions, such as methanol concentration, discharge voltage and temperature, on Faradic and energy conversion efficiencies was analyzed under constant voltage discharge with quantitative amount of fuel. Both of Faradic and energy conversion efficiencies decrease significantly with increasing methanol concentration and environmental temperature. The Faradic conversion efficiency can be as high as 94.8%, and the energy conversion efficiency can be as high as 23.9% if the environmental temperature is low enough (10 deg. C) under constant voltage discharge at 0.6 V with 3 M methanol for a DMFC bi-cell. Although higher temperature and higher methanol concentration can achieve higher discharge power, it will result in considerable losses of Faradic and energy conversion efficiencies for using Nafion electrolyte membrane. Development of alternative highly conductive membranes with significantly lower methanol crossover is necessary to avoid loss of Faradic conversion efficiency with temperature and with fuel concentration

  11. Biodiesel from Jojoba oil-wax: Transesterification with methanol and properties as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Canoira, Laureano; Alcantara, Ramon; Garcia-Martinez, Jesus; Carrasco, Jesus [Department of Chemical Engineering and Fuels, School of Mines, Polytechnic University of Madrid, Rios Rosas 21, 28003-Madrid (Spain)

    2006-01-15

    The Jojoba oil-wax is extracted from the seeds of the Jojoba (Simmondsia chinensis Link Schneider), a perennial shrub that grows in semi desert areas in some parts of the world. The main uses of Jojoba oil-wax are in the cosmetics and pharmaceutical industry, but new uses could arise related to the search of new energetic crops. This paper summarizes a process to convert the Jojoba oil-wax to biodiesel by transesterification with methanol, catalysed with sodium methoxide (1wt% of the oil). The transesterification reaction has been carried out in an autoclave at 60 deg C, with a molar ratio methanol/oil 7.5:1, and vigorous stirring (600rpm), reaching a quantitative conversion of the oil after 4h. The separation of the fatty acid methyl esters (the fraction rich in FAME, 79% FAME mixture; 21% fatty alcohols; 51% of methyl cis-11-eicosenoate) from the fatty alcohols rich fraction (72% fatty alcohols; 28% FAME mixture; 26% of cis-11-eicosen-1-ol, 36% of cis-13-docosen-1-ol) has been accomplished in a single crystallization step at low temperature (-18 deg C) from low boiling point petroleum ether. The fraction rich in FAME has a density (at 15 deg C), a kinematic viscosity (at 40 deg C), a cold filter plugging point and a high calorific value in the range of the European standard for biodiesel (EN 14214)

  12. Mössbauer study of iron carbide nanoparticles produced by laser ablation in alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Amagasa, S., E-mail: B115608@ed.tus.ac.jp; Nishida, N. [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Y. [The University of Electro-Communications, Graduate School of Informatics and Engineering (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan)

    2016-12-15

    Iron carbide nanoparticles were synthesized by laser ablation of iron in alcohols (methanol and ethanol). A new cell, designed to allow the ablation to be conducted in a flowing solvent, enabled separation and collection of the nanoparticles immediately after production, thus preventing further photochemical reactions of the colloids. The nanoparticles were investigated using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. In methanol, they consisted of α-iron, γ-iron, iron carbide, and amorphous paramagnetic iron carbides, whereas in ethanol they consisted of iron carbides and amorphous paramagnetic iron carbides. The difference in products depending on the alcohol was attributed to the different carbon supplies for methanol and ethanol. For both solvents, the average particle size was found to be 16 nm, and the nanoparticles were dispersed in amorphous carbon. We also examined the effect of further laser irradiation of the colloids using stagnant solvent, and the particle size was found to increase and a very small amount of carbonization was observed.

  13. Feedback controlled fuel injection system can accommodate any alcohol-gasoline blend

    Energy Technology Data Exchange (ETDEWEB)

    Pefley, R K; Pullman, J B; Suga, T P; Espinola, S

    1980-01-01

    A fuel metering system has been adapted and permits operation on all blends of alcohols and gasoline ranging from pure gasoline to pure ethanol and methanol. It is a closed loop electronic feedback controlled fuel injection system (EFI) with exhaust oxygen sensor. The system is used by Toyota Motor Company in their Supra and Cressida models in conjunction with a 3-way catalytic exhaust system. These models meet California exhaust and evaporative emission standards. An unmodified model has been tested on alcohol gasoline blends from pure gasoline to 50% ethanol-50% gasoline and 30% methanol-70% gasoline and found to meet all exhaust and evaporative emissions standards. A Cressida with modified EFI system is currently being tested. It is capable of operating on pure gasoline, pure methanol or ethanol and all intermediate blends. The testing to date shows that the vehicle meets all exhaust emissions standards while operating over the blend range from pure gasoline to pure ethanol while maintaining driveability and energy based fuel economy. The paper will present the total test evidence for all gasoline-alcohol blends. This will include exhaust and evaporative emissions, fuel economy and driveability as determined in accordance with United States Federal Test Procedures. Additionally, the paper will report experiences accumulated from road operation of the vehicle over a six-month period.

  14. Methanol fuel update

    International Nuclear Information System (INIS)

    Colledge, R.; Spacek, J.

    1992-01-01

    An overview is presented of methanol fuel developments, with particular reference to infrastructure, supply and marketing. Methanol offers reduced emissions, easy handling, is cost effective, can be produced from natural gas, coal, wood, or municipal waste, is a high performance fuel, is safer than gasoline, and contributes to energy security. Methanol supply, environmental benefits, safety/health issues, economics, passenger car economics, status of passenger car technology, buses, methanol and the prosperity initiative, challenges to implementation, and the role of government and original equipment manufacturers are discussed. Governments must assist in the provision of methanol refuelling infrastructure, and in providing an encouraging regulatory atmosphere. Discriminatory and inequitable taxing methods must be addressed, and an air quality agenda must be defined to allow the alternative fuel industry to respond in a timely manner

  15. Integrated anode structure for passive direct methanol fuel cells with neat methanol operation

    Science.gov (United States)

    Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui

    2014-02-01

    A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.

  16. Integrated methanol synthesis

    International Nuclear Information System (INIS)

    Jaeger, W.

    1982-01-01

    This invention concerns a plant for methanol manufacture from gasified coal, particularly using nuclear power. In order to reduce the cost of the hydrogen circuits, the methanol synthesis is integrated in the coal gasification plant. The coal used is gasified with hydration by means of hydrogen and the crude gas emerging, after cooling and separating the carbon dioxide and hydrogen sulphide, is mixed with the synthetic gas leaving the methane cracking furnace. This mixture is taken to the methanol synthesis and more than 90% is converted into methanol in one pass. The gas mixture remaning after condensation and separation of methanol is decomposed into three fractions in low temperature gas decomposition with a high proportion of unconverted carbon monoxide. The flow of methane is taken to the cracking furnace with steam, the flow of hydrogen is taken to the hydrating coal gasifier, and the flow of carbon monoxide is taken to the methanol synthesis. The heat required for cracking the methane can either be provided by a nuclear reactor or by the coke left after hydrating gasification. (orig./RB) [de

  17. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations.

    Science.gov (United States)

    Dack, Rachael E; Black, Gary W; Koutsidis, Georgios; Usher, St John

    2017-10-01

    The effect of Maillard reaction products (MRPs), formed during the production of dark malts, on the synthesis of higher alcohols and esters in beer fermentations was investigated by headspace solid-phase microextraction GC-MS. Higher alcohol levels were significantly (p<0.05) higher in dark malt fermentations, while the synthesis of esters was inhibited, due to possible suppression of enzyme activity and/or gene expression linked to ester synthesis. Yeast strain also affected flavour synthesis with Saccharomyces cerevisiae strain A01 producing considerably lower levels of higher alcohols and esters than S288c and L04. S288c produced approximately double the higher alcohol levels and around twenty times more esters compared to L04. Further investigations into malt type-yeast strain interactions in relation to flavour development are required to gain better understanding of flavour synthesis that could assist in the development of new products and reduce R&D costs for the industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2013-12-15

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.

  19. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2013-01-01

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment

  20. Utilization of Microalgal Biofractions for Bioethanol, Higher Alcohols, and Biodiesel Production: A Review

    Directory of Open Access Journals (Sweden)

    Marwa M. El-Dalatony

    2017-12-01

    Full Text Available Biomass is a crucial energy resource used for the generation of electricity and transportation fuels. Microalgae exhibit a high content of biocomponents which makes them a potential feedstock for the generation of ecofriendly biofuels. Biofuels derived from microalgae are suitable carbon-neutral replacements for petroleum. Fermentation is the major process for metabolic conversion of microalgal biocompounds into biofuels such as bioethanol and higher alcohols. In this review, we explored the use of all three major biocomponents of microalgal biomass including carbohydrates, proteins, and lipids for maximum biofuel generation. Application of several pretreatment methods for enhancement the bioavailability of substrates (simple sugar, amino acid, and fatty acid was discussed. This review goes one step further to discuss how to direct these biocomponents for the generation of various biofuels (bioethanol, higher alcohol, and biodiesel through fermentation and transesterification processes. Such an approach would result in the maximum utilization of biomasses for economically feasible biofuel production.

  1. Efficiency of Methanolic Extract of Gamma Irradiated Parsley as Antioxidant and Antimicrobial

    International Nuclear Information System (INIS)

    Abdeldaiem, M.H.; Ali, H.G.M.; Mohamed, E.A.

    2011-01-01

    Antioxidant and antimicrobial activities of methanolic extract of gamma irradiated parsley (Petroselinum crispum) at dose levels of 3, 6 and 9 kGy were determined, and the composition of methanolic extracts of non-irradiated and irradiated parsley were identified by GC-MS. The results showed that the methanolic extracts of non-irradiated and irradiated parsley had higher contents of total phenolic compounds and exhibited antioxidant of DPPH radical scavenging activity. Based on these results, the methanolic extracts of irradiated parsley at 6 kGy were selected for their higher activity as antioxidant as compared to other samples owing to their high content of total phenolic compounds and scavenging effect on DPPH radical. The analysis by GC-MS led to the identification of 23 and 24 components for non-irradiated and irradiated samples at 6 kGy, respectively. The main compound of the methanolic extract of non-irradiated parsley was acetic acid ethyl ester (28.5%). Meanwhile, the main compound of irradiated parsley at 6 kGy methanolic extract was phenol,2-methoxy-3(27.3 %). The antibacterial effect of methanolic extract of non-irradiated and irradiated parsley and the minimum inhibitory concentration (MIC) values were assayed. The methanolic extract of irradiated parsley (6 kGy) was generally more effective against tested bacterial strains than the extract of non-irradiated parsley. The study exhibited that gram- negative bacteria under study were more sensitive than gram-positive one. The MIC values of tested bacteria of the methanolic extract of irradiated parsley (6 kGy) were in the range 4 to 20 μg/ml. It could be concluded that the methanolic extract of parsley can be used in food industry as natural food additive and in particular that extract from irradiated parsley at 6 kGy

  2. Comparison between two methods of methanol production from carbon dioxide

    International Nuclear Information System (INIS)

    Anicic, B.; Trop, P.; Goricanec, D.

    2014-01-01

    Over recent years there has been a significant increase in the amount of technology contributing to lower emissions of carbon dioxide. The aim of this paper is to provide a comparison between two technologies for methanol production, both of which use carbon dioxide and hydrogen as initial raw materials. The first methanol production technology includes direct synthesis of methanol from CO 2 , and the second has two steps. During the first step CO 2 is converted into CO via RWGS (reverse water gas shift) reaction, and methanol is produced during the second step. A comparison between these two methods was achieved in terms of economical and energy-efficiency bases. The price of electricity had the greatest impact from the economical point of view as hydrogen is produced via the electrolysis of water. Furthermore, both the cost of CO 2 capture and the amounts of carbon taxes were taken into consideration. Energy-efficiency comparison is based on cold gas efficiency, while economic feasibility is compared using net present value. Even though the mentioned processes are similar, it was shown that direct methanol synthesis has higher energy and economic efficiency. - Highlights: • We compared two methods for methanol production. • Process schemes for both, direct synthesis and two-step synthesis, are described. • Direct synthesis has higher economical and energy efficiency

  3. Feasibility of Trace Alcohol Congener Detection and Identification Using Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Zhang Jialiang; Wang Shangmin; Zhao Lixian; Liu Liying; Wang Dezhen

    2014-01-01

    In this paper, a feasible scheme is reported for the detection and identification of trace alcohol congeners that have identical elemental composition using laser-induced breakdown spectroscopy (LIBS). In the scheme, an intensive pulsed laser is used to break down trace alcohol samples and the optical emission spectra of the induced plasma are collected for the detection and identification of alcohol molecules. In order to prepare trace alcohol samples, pure ethanol or methanol is bubbled by argon carrier gas and then mixed into matrix gases. The key issue for the scheme is to constitute indices from the LIBS data of the alcohol samples. Two indices are found to be suitable for alcohol detection and identification. One is the emission intensity ratio (denoted as H/C) of the hydrogen line (653.3 nm) to the carbon line (247.9 nm) for identification and the other is the ratio of the carbon line (as C/Ar) or the hydrogen line (as H/Ar) to the argon lines (866.7 nm) for quantitative detection. The calibration experiment result shows that the index H/C is specific for alcohol congeners while almost being independent of alcohol concentration. In detail, the H/C keeps a specific constant of 34 and 23 respectively for ethanol and methanol. In the meanwhile, the C/Ar and H/Ar indices respond almost linearly to the alcohol concentration below 1300 ppm, and are therefore competent for concentration measurement. With the indices, trace alcohol concentration measurement achieves a limit of 140 ppm using a laser pulse energy of 300 mJ. (plasma technology)

  4. Polymerization of allyl alcohol by radiation to obtain microencapsulated structure

    International Nuclear Information System (INIS)

    Usanmaz, A.; Saricilar, S.

    1989-01-01

    Allyl alcohol was polymerized by radiation under various conditions. The limiting conversions were about 30 % in bulk, 35 % when containing 0.03 mole fraction AlCl 3 and 50 % when water was contained at 27 % (v/v). Irradiation was done with Co-60 gamma rays at room temperature and under vacuum. The presence of oxygen did not cause any change in the reaction rate. Molecular weights were determined by viscosity and cryoscopic methods. K and α values were found to be 3.57 x 10 -4 and 0.62 for solutions in methanol at 25degC. The polymers up to about 10 % conversion were viscous liquids having microcapsular structures: at high conversions, they became hard and glassy. The microencapsulated structures were also retained in solutions in methanol, acetone, and isopropyl alcohol. The samples were insoluble in water, benzene, and toluence. (author)

  5. Alcohol under the radar: do we have policy options regarding unrecorded alcohol?

    Science.gov (United States)

    Lachenmeier, Dirk W; Taylor, Benjamin J; Rehm, Jürgen

    2011-03-01

    According to the World Health Organization, the public health impact of illicit alcohol and informally produced alcohol should be reduced. This paper summarizes and evaluates the evidence base about policy and intervention options regarding unrecorded alcohol consumption. A systematic review of the literature using electronic databases. The literature on unrecorded consumption was sparse with less than 30 articles about policy options, mostly based on observational studies. The most simplistic option to reduce unrecorded consumption would be to lower recorded alcohol prices to remove the economic incentive of buying unrecorded alcohol. However, this may increase the net total alcohol consumption, making it an unappealing public health policy option. Other policy options largely depend on the specific sub-group of unrecorded alcohol. The prohibition of toxic compounds used to denature alcohol (e.g. methanol) can improve health outcomes associated with surrogate alcohol consumption. Cross-border shopping can be reduced by either narrowing the tax differences, or stricter control. Actions limiting illegal trade and counterfeiting include introduction of tax stamps and electronic surveillance systems of alcohol trade. Education campaigns might increase the awareness about the risks associated with illegal alcohol. The most problematic category appears to be the home and small-scale artisanal production, for which the most promising option is to offer financial incentives to the producers for registration and quality control. Even though there are suggestions and theories on how to reduce unrecorded alcohol consumption, there is currently no clear evidence base on the effectiveness or cost effectiveness of available policy options. In addition, the differences in consumption levels, types of unrecorded alcohol, culture and tradition point to different measures in different parts of the world. Thus, the recommendation of a framework for moving forward in decision making

  6. Bacterial Membrane Depolarization-Linked Fuel Cell Potential Burst as Signal for Selective Detection of Alcohol.

    Science.gov (United States)

    Kaushik, Sharbani; Goswami, Pranab

    2018-06-06

    The biosensing application of microbial fuel cell (MFC) is hampered by its long response time, poor selectivity, and technical difficulty in developing portable devices. Herein, a novel signal form for rapid detection of ethanol was generated in a photosynthetic MFC (PMFC). First, a dual chambered (100 mL each) PMFC was fabricated by using cyanobacteria-based anode and abiotic cathode, and its performance was examined for detection of alcohols. A graphene-based nanobiocomposite matrix was layered over graphite anode to support cyanobacterial biofilm growth and to facilitate electron transfer. Injection of alcohols into the anodic chamber caused a transient potential burst of the PMFC within 60 s (load 1000 Ω), and the magnitude of potential could be correlated to the ethanol concentrations in the range 0.001-20% with a limit of detection (LOD) of 0.13% ( R 2 = 0.96). The device exhibited higher selectivity toward ethanol than methanol as discerned from the corresponding cell-alcohol interaction constant ( K i ) of 780 and 1250 mM. The concept was then translated to a paper-based PMFC (p-PMFC) (size ∼20 cm 2 ) wherein, the cells were merely immobilized over the anode. The device with a shelf life of ∼3 months detected ethanol within 10 s with a dynamic range of 0.005-10% and LOD of 0.02% ( R 2 = 0.99). The fast response time was attributed to the higher wettability of ethanol on the immobilized cell surface as validated by the contact angle data. Alcohols degraded the cell membrane on the order of ethanol > methanol, enhanced the redox current of the membrane-bound electron carrier proteins, and pushed the anodic band gap toward more negative value. The consequence was the potential burst, the magnitude of which was correlated to the ethanol concentrations. This novel approach has a great application potential for selective, sensitive, rapid, and portable detection of ethanol.

  7. Performance analysis of humid air turbine cycle with solar energy for methanol decomposition

    International Nuclear Information System (INIS)

    Zhao, Hongbin; Yue, Pengxiu

    2011-01-01

    According to the physical and chemical energy cascade utilization and concept of synthesis integration of variety cycle systems, a new humid air turbine (HAT) cycle with solar energy for methanol decomposition has been proposed in this paper. The solar energy is utilized for methanol decomposing as a heat source in the HAT cycle. The low energy level of solar energy is supposed to convert the high energy level of chemical energy through methanol absorption, realizing the combination of clean energy and normal chemical fuels as compared to the normal chemical recuperative cycle. As a result, the performance of normal chemical fuel thermal cycle can be improved to some extent. Though the energy level of decomposed syngas from methanol is decreased, the cascade utilization of methanol is upgraded. The energy level and exergy losses in the system are graphically displayed with the energy utilization diagrams (EUD). The results show that the cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points under the same operating conditions. In addition, the cycle's thermal efficiency, exergy efficiency and solar thermal efficiency respond to an optimal methanol conversion. -- Highlights: → This paper proposed and studied the humid air turbine (HAT) cycle with methanol through decomposition with solar energy. → The cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points. → It is estimated that the solar heat-work conversion efficiency is about 39%, higher than usual. → There is an optimal methanol conversation for the cycle's thermal efficiency and exergy efficiency at given π and TIT. → Using EUD, the exergy loss is decreased by 8 percentage points compared with the conventional HAT cycle.

  8. Experimental study on methanol recovery through flashing vaporation in continuous production of biodiesel via supercritical methanol

    International Nuclear Information System (INIS)

    Wang Cunwen; Chen Wen; Wang Weiguo; Wu Yuanxin; Chi Ruan; Tang Zhengjiao

    2011-01-01

    To improve the oil conversion, high methanol/oil molar ratio is required in the continuous production of biodiesel via supercritical methanol transesterification in tubular reactor. And thus the subsequent excess methanol recovery needs high energy consumption. Based on the feature of high temperature and high pressure in supercritical methanol transesterification, excess methanol recovery in reaction system by flashing vaporation is conducted and the effect of reaction temperature, reaction pressure and flashing pressure on methanol recovery and methanol concentration in gas phase is discussed in detail in this article. Results show that at the reaction pressure of 9-15 MPa and the reaction temperature of 240-300 o C, flashing pressure has significant influence on methanol recovery and methanol content in gas phase, which can be effectively improved by reducing flashing pressure. At the same time, reaction temperature and reaction pressure also have an important effect on methanol recovery and methanol content in gas phase. At volume flow of biodiesel and methanol 1:2, tubular reactor pressure 15 MPa, tubular reactor temperature 300 o C and the flashing pressure 0.4 MPa, methanol recovery is more than 85% and methanol concentration of gas phase (mass fraction) is close to 99% after adiabatic braising; therefore, the condensate liquid of gas phase can be injected directly into methanol feedstock tank to be recycled. Research abstracts: Biodiesel is an important alternative energy, and supercritical methanol transesterification is a new and green technology to prepare biodiesel with some obvious advantages. But it also exists some problems: high reaction temperature, high reaction pressure and large molar ratio of methanol/oil will cause large energy consumption which restricts supercritical methanol for the industrial application of biodiesel. So a set of tubular reactor-coupled flashing apparatus is established for continuous preparing biodiesel in supercritical

  9. Short-term inhalation toxicity of methanol, gasoline, and methanol/gasoline in the rat.

    Science.gov (United States)

    Poon, R; Chu, I; Bjarnason, S; Vincent, R; Potvin, M; Miller, R B; Valli, V E

    1995-01-01

    Four- to five-week-old male and female Sprague Dawley rats were exposed to vapors of methanol (2500 ppm), gasoline (3200 ppm), and methanol/gasoline (2500/3200 ppm, 570/3200 ppm) six hours per day, five days per week for four weeks. Control animals were exposed to filtered room air only. Depression in body weight gain and reduced food consumption were observed in male rats, and increased relative liver weight was detected in rats of both sexes exposed to gasoline or methanol/gasoline mixtures. Rats of both sexes exposed to methanol/gasoline mixtures had increased relative kidney weight and females exposed to gasoline and methanol/gasoline mixtures had increased kidney weight. Decreased serum glucose and cholesterol were detected in male rats exposed to gasoline and methanol/gasoline mixtures. Decreased hemoglobin was observed in females inhaling vapors of gasoline and methanol/gasoline at 570/3200 ppm. Urine from rats inhaling gasoline or methanol/gasoline mixtures had up to a fourfold increase in hippuric acid, a biomarker of exposure to the toluene constituent of gasoline, and up to a sixfold elevation in ascorbic acid, a noninvasive biomarker of hepatic response. Hepatic mixed-function oxidase (aniline hydroxylase, aminopyrine N-demethylase and ethoxyresorufin O-deethylase) activities and UDP-glucuronosyltransferase activity were elevated in rats exposed to gasoline and methanol/gasoline mixtures. Histopathological changes were confined to very mild changes in the nasal passages and in the uterus, where decreased incidence or absence of mucosal and myometrial eosinophilia was observed in females inhaling gasoline and methanol/gasoline at 570/3200 ppm. It was concluded that gasoline was largely responsible for the adverse effects, the most significant of which included depression in weight gain in the males, increased liver weight and hepatic microsomal enzyme activities in both sexes, and suppression of uterine eosinophilia. No apparent interactive effects

  10. Automatic synthesis of [11C]NKY-722 with high specific activity, using anhydrous [11C] methanol as a precursor

    International Nuclear Information System (INIS)

    Suzuki, Kazutoshi; Inoue, Osamu; Itoh, Takashi; Nemoto, Kazuyoshi; Oosumi, Seimei; Miwa, Soichi.

    1992-01-01

    3-(4-allyl-1-piperazinyl)-2,2-dimethylpropyl methyl 1,4-dihydro-2,6-dimethyl- 4-(3-nitrophenyl)-3,5-pyridine dicarboxylate (NKY-722) was labeled with carbon-11 using anhydrous [ 11 C] methanol. Using a computer controlled equipment, a few GBq of [ 11 C] NKY-722 with the specific activity of 120 - 180 GBq/μmol could by synthesized at the radiochemical purity of > 99% in 10 ml of physiological saline containing Polysolvate-80 (1.5 vol%) and ethyl alcohol (0.75 vol%). Preliminary PET experiments using rats and a rhesus monkey have bee done, and very low accumulation of the compound into the brain, however comparatively higher accumulation in the heart were observed. (author)

  11. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts

    DEFF Research Database (Denmark)

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie

    2012-01-01

    Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol.......Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol....

  12. Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance

    Science.gov (United States)

    Prapainainar, Paweena; Du, Zehui; Kongkachuichay, Paisan; Holmes, Stuart M.; Prapainainar, Chaiwat

    2017-11-01

    The aim of this work was to improve proton exchange membranes (PEMs) used in direct methanol fuel cells (DMFCs). A membrane with a high proton conductivity and low methanol permeability was required. Zeolite filler in Nafion (NF matrix) composite membranes were prepared using two types of zeolite, mordenite (MOR) and analcime (ANA). Spray method was used to prepare the composite membranes, and properties of the membranes were investigated: mechanical properties, solubility, water and methanol uptake, ion-exchange capacity (IEC), proton conductivity, methanol permeability, and DMFC performance. It was found that MOR filler showed higher performance than ANA. The MOR/Nafion composite membrane gave better properties than ANA/Nafion composite membrane, including a higher proton conductivity and a methanol permeability that was 2-3 times lower. The highest DMFC performance (10.75 mW cm-2) was obtained at 70 °C and with 2 M methanol, with a value 1.5 times higher than that of ANA/Nafion composite membrane and two times higher than that of commercial Nafion 117 (NF 117).

  13. A novel membrane-less direct alcohol fuel cell

    Science.gov (United States)

    Yi, Qingfeng; Chen, Qinghua; Yang, Zheng

    2015-12-01

    Membrane-less fuel cell possesses such advantages as simplified design and lower cost. In this paper, a membrane-less direct alcohol fuel cell is constructed by using multi-walled carbon nanotubes (MWCNT) supported Pd and ternary PdSnNi composites as the anode catalysts and Fe/C-PANI composite, produced by direct pyrolysis of Fe-doped polyaniline precursor, as the oxygen reduction reaction (ORR) catalyst. The alcohols investigated in the present study are methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol and sec-butanol. The cathode catalyst Fe/C-PANI is electrochemically inactive to oxidation of the alcohols. The performance of the cell with various alcohols in 1 mol L-1 NaOH solution on either Pd/MWCNT or PdSnNi/MWCNT catalyst has been evaluated. In any case, the performance of the cell using the anode catalyst PdSnNi/MWCNT is considerably better than Pd/MWCNT. For the PdSnNi/MWCNT, the maximum power densities of the cell using methanol (0.5 mol L-1), ethanol (0.5 mol L-1), n-propanol (0.5 mol L-1), iso-propanol (0.5 mol L-1), n-butanol (0.2 mol L-1), iso-butanol (0.2 mol L-1) and sec-butanol (0.2 mol L-1) are 0.34, 1.03, 1.07, 0.44, 0.50, 0.31 and 0.15 mW cm-2, respectively.

  14. Nuclear magnetic resonance spectroscopic investigation of anode exhaust of direct methanol fuel cells without isotope enrichment

    International Nuclear Information System (INIS)

    Byun, Young Seok; Hwang, Reo Yun; Han, Ochee

    2016-01-01

    Fuel cells are devices that electrochemically convert the chemical energy of fuels such as natural gas, gasoline, and methanol, into electricity. Fuel cells more efficiently use energy than internal combustion engines and do not produce undesirable pollutants, such as NO_x ,SO_x and particulates. Fuel cells can be distinguished from one another by their electrolytes. Among the various direct alcohol fuel cells, direct methanol fuel cells (DMFCs) have been developed most. However, DMFCs have several practical problems such as methanol crossove r from an anode to a cathode and slow methanol oxidation reaction rates. Therefore, understanding the electrochemical reaction mechanisms of DMFCs may provide clues to solve these problems, and various analytical methods have been employed to examine these mechanisms. We demonstrated that "1H and "1"3C NMR spectroscopy can be used for analyzing anode exhausts of DMFCs operated with methanol without any isotope enrichment. However, the low sensitivity of NMR spectroscopy hindered our efforts to detect minor reaction intermediates. Therefore, sensitivity enhancement techniques such as dynamic nuclear polarization (DNP) NMR methods and/or presaturation methods to increase the dynamic range of the proton spectra by pre-saturating large water signals, are expected to be useful to detect low-concentration species

  15. Nuclear magnetic resonance spectroscopic investigation of anode exhaust of direct methanol fuel cells without isotope enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Young Seok; Hwang, Reo Yun; Han, Ochee [Western Seoul Center, Korea Basic Science Institute, Seoul (Korea, Republic of)

    2016-12-15

    Fuel cells are devices that electrochemically convert the chemical energy of fuels such as natural gas, gasoline, and methanol, into electricity. Fuel cells more efficiently use energy than internal combustion engines and do not produce undesirable pollutants, such as NO{sub x} ,SO{sub x} and particulates. Fuel cells can be distinguished from one another by their electrolytes. Among the various direct alcohol fuel cells, direct methanol fuel cells (DMFCs) have been developed most. However, DMFCs have several practical problems such as methanol crossove r from an anode to a cathode and slow methanol oxidation reaction rates. Therefore, understanding the electrochemical reaction mechanisms of DMFCs may provide clues to solve these problems, and various analytical methods have been employed to examine these mechanisms. We demonstrated that {sup 1}H and {sup 13}C NMR spectroscopy can be used for analyzing anode exhausts of DMFCs operated with methanol without any isotope enrichment. However, the low sensitivity of NMR spectroscopy hindered our efforts to detect minor reaction intermediates. Therefore, sensitivity enhancement techniques such as dynamic nuclear polarization (DNP) NMR methods and/or presaturation methods to increase the dynamic range of the proton spectra by pre-saturating large water signals, are expected to be useful to detect low-concentration species.

  16. Is response to price equal for those with higher alcohol consumption?

    Science.gov (United States)

    Byrnes, Joshua; Shakeshaft, Anthony; Petrie, Dennis; Doran, Christopher M

    2016-01-01

    To determine if taxation policies that increase the price of alcohol differentially reduce alcohol consumption for heavy drinkers in Australia. A two-part demand model for alcohol consumption is used to determine the price elasticity of alcohol. Quantile regression is used to determine the price elasticity estimates for various levels of consumption. The study uses Australian data collected by the National Drug Strategy Household Survey for the years 2001, 2004 and 2007. Measures of individual annual alcohol consumption were derived from three waves of the National Drug Strategy Household Survey; alcohol prices were taken from market research reports. For the overall population of drinkers, a 1% increase in the price of alcohol was associated with a 0.96% (95% CI -0.35%, -1.57%) reduction in alcohol consumption. For those in the highest 10% of drinkers by average amount consumed, a 1% increase in the price of alcohol was associated with a 1.26% (95% CI 0.82%, 1.70%) reduction in consumption. Within Australia, policies that increase the price of alcohol are about equally effective in relative terms for reducing alcohol consumption both for the general population and among those who drink heavily.

  17. The enhanced alcohol-sensing response of ultrathin WO3 nanoplates

    International Nuclear Information System (INIS)

    Chen Deliang; Hou Xianxiang; Wen Hejing; Wang Yu; Wang Hailong; Zhang Rui; Lu Hongxia; Xu Hongliang; Guan Shaokang; Li Xinjian; Sun Jing; Gao Lian

    2010-01-01

    Chemical sensors based on semiconducting metal oxide nanocrystals are of academic and practical significance in industrial processing and environment-related applications. Novel alcohol response sensors using two-dimensional WO 3 nanoplates as active elements have been investigated in this paper. Single-crystalline WO 3 nanoplates were synthesized through a topochemical approach on the basis of intercalation chemistry (Chen et al 2008 Small 4 1813). The as-obtained WO 3 nanoplate pastes were coated on the surface of an Al 2 O 3 ceramic microtube with four Pt electrodes to measure their alcohol-sensing properties. The results show that the WO 3 nanoplate sensors are highly sensitive to alcohols (e.g., methanol, ethanol, isopropanol and butanol) at moderate operating temperatures (260-360 deg. C). For butanol, the WO 3 nanoplate sensors have a sensitivity of 31 at 2 ppm and 161 at 100 ppm, operating at 300 deg. C. For other alcohols, WO 3 nanoplate sensors also show high sensitivities: 33 for methanol at 300 ppm, 70 for ethanol at 200 ppm, and 75 for isopropanol at 200 ppm. The response and recovery times of the WO 3 nanoplate sensors are less than 15 s for all the test alcohols. A good linear relationship between the sensitivity and alcohol concentrations has been observed in the range of 2-300 ppm, whereas the WO 3 nanoparticle sensors have not shown such a linear relationship. The sensitivities of the WO 3 nanoplate sensors decrease and their response times become short when the operating temperatures increase. The enhanced alcohol-sensing performance could be attributed to the ultrathin platelike morphology, the high crystallinity and the loosely assembling structure of the WO 3 nanoplates, due to the advantages of the effective adsorption and rapid diffusion of the alcohol molecules.

  18. Study on single step solid state synthesis of WC@C nanocomposite and electrochemical stability of synthesized WC@C & Pt/WC@C for alcohol oxidation (methanol/ethanol)

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Gourav, E-mail: gsinghla@gmail.com; Singh, K., E-mail: kusingh@thapar.edu; Pandey, O.P., E-mail: oppandey@thapar.edu

    2016-04-25

    WC@C nano composite was prepared by a single step solid–state reaction through in situ reduction and carburization of WO{sub 3} in the presence of Mg and activated charcoal. The XRD results and thermodynamics analysis showed that the optimization of reaction temperature facilitates the reduction as well as carburization of tungsten oxide(s) at different reaction temperature. Thermogravimetric analysis of the product was done to assess the thermal stability in air. The Raman spectroscopy was used to find out the nature (amorphous/graphitic) of carbon in the obtained phase. The N{sub 2} adsorption–desorption measurement showed a narrow pore size distribution from 3 to 4 nm with BET surface area of up to 522.5 m{sup 2}/g. TEM/HRTEM images confirmed formation of the WC nano particles with spherical morphology. Electrochemical stability of pure and platinized carbide sample (Pt/WC) has been investigated using cyclic voltammetry in acidic media for alcohol (methanol and ethanol) oxidation. - Highlights: • Tungsten carbide nano powder was synthesized using charcoal as carbon source. • Formation of WC occurs through the formation of lower tungsten oxide. • CO{sub 2}/CO ratio effect the formation of WC. • Mesoporous tungsten carbide with surface areas 522.5 m{sup 2}/g obtained by using charcoal. • Pt modified WC powder showed higher electrochemical stability.

  19. North America markets for alcohol and alcohol-derived motor fuels and need for tax incentives

    International Nuclear Information System (INIS)

    Haigwood, B.

    1991-01-01

    The U.S. fuel alcohol and ether industry has grown from its infancy in 1979 to approximately 2.9 billion gallons of production capacity in 1991. With the emphasis on clean air, the uncertainties in the Middle East, and fluctuating oil prices, IRI believes the demand for alcohol-derived motor fuels is poised to begin a second phase of expansion. Historically, the two primary alcohol-derived motor fuels sold in the U.S. have been methyl tertiary butyl ether (MTBE) and ethanol. There is also a limited but growing use of methanol as 85% blendstock for gasoline. Since 1978, fuel ethanol has provided the U.S. petroleum industry with an additional source of supply, octane, and profit. Its price was based on the price of wholesale gasoline plus available federal and state tax incentives. These incentives allowed ethanol, with production costs of $1.00 to $1.25 per gallon, to compete with gasoline at prices of 40 to 65 per gallon. Without the federal and state tax incentives, it would not be economically feasible to sell or manufacture fuel ethanol. On the other hand, the largest consumption of methanol has been as a feedstock for the production of MTBE, the world's fastest growing chemical over the past seven years. MTBE prices are based on the cost of raising the octane level of gasoline, and this commodity does not receive subsidies. Beginning in 1992, IRI predicts the price relationship between ethanol, MTBE, and gasoline will change as U.S. refiners and marketers are required to include oxygenated fuels (alcohol-derived) in their gasoline. In total, over 60 billion gallons of gasoline will need to be reformulated by the year 2000. The increased demand for oxygen will result in a 2.5-billion gallon deficit of MTBE and 1.2-billion gallon deficit of ethanol by the year 2000. 2 tabs

  20. Biobutanol as Fuel for Direct Alcohol Fuel Cells-Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation.

    Science.gov (United States)

    Puthiyapura, Vinod Kumar; Brett, Dan J L; Russell, Andrea E; Lin, Wen-Feng; Hardacre, Christopher

    2016-05-25

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the

  1. Adsorption of methanol, ethanol and water on well-characterized PtSn surface alloys

    Science.gov (United States)

    Panja, Chameli; Saliba, Najat; Koel, Bruce E.

    1998-01-01

    Adsorption and desorption of methanol (CH 3OH), ethanol (C 2H 5OH) and water on Pt(111) and two, ordered, PtSn alloys has been studied primarily using temperature-programmed desorption (TPD) mass spectroscopy. The two alloys studied were the {p(2 × 2) Sn}/{Pt(111) } and (√3 × √3) R30° {Sn}/{Pt(111) } surface alloys prepared by vapor deposition of Sn on Pt(111), with θSn = 0.25 and 0.33, respectively. All three molecules are weakly bonded and reversibly adsorbed under UHV conditions on all three surfaces, molecularly desorbing during TPD without any decomposition. The two PtSn surface alloys were found to chemisorb both methanol and ethanol slightly more weakly than on the Pt(111) surface. The desorption activation energies measured by TPD, and hence the adsorption energies, of both methanol and ethanol progressively decrease as the surface concentration of Sn increases, compared with Pt(111). The decreased binding energy leads one to expect a lower reactivity for these alcohols on the two alloys. The sticking coefficients and the monolayer coverages of these alcohols on the two alloys were identical to that on Pt(111) at 100 K, independent of the amount of Sn present in the surface layer. Alloying Sn in Pt(111) also slightly weakens the adsorption energy of water. Water clusters are formed even at low coverages on all three surfaces, eventually forming a water bilayer prior to the formation of a condensed ice phase. These results are relevant to a molecular-level explanation for the reactivity of Sn-promoted Pt surfaces that have been used in the electro-oxidation of simple organic molecules.

  2. Methanol from biomass and hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    For Hawaii in the near term, the only liquid fuels indigenous sources will be those that can be made from biomass, and of these, methanol is the most promising. In addition, hydrogen produced by electrolysis can be used to markedly increase the yield of biomass methanol. This paper calculates cost of producing methanol by an integrated system including a geothermal electricity facility plus a plant producing methanol by gasifying biomass and adding hydrogen produced by electrolysis. Other studies cover methanol from biomass without added hydrogen and methanol from biomass by steam and carbon dioxide reforming. Methanol is made in a two-step process: the first is the gasification of biomass by partial oxidation with pure oxygen to produce carbon oxides and hydrogen, and the second is the reaction of gases to form methanol. Geothermal steam is used to generate the electricity used for the electrolysis to produce the added hydrogen

  3. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  4. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  5. Pronounced cluster-size effects: gas-phase reactivity of bare vanadium cluster cations V(n)+ (n = 1-7) toward methanol.

    Science.gov (United States)

    Feyel, Sandra; Schröder, Detlef; Schwarz, Helmut

    2009-05-14

    Mass spectrometric experiments are used to examine the size-dependent interactions of bare vanadium cluster cations V(n)(+) (n = 1-7) with methanol. The reactivity patterns exhibit enormous size effects throughout the range of clusters investigated. For example, dehydrogenation of methanol to produce V(n)OC(+) is only brought about by clusters with n > or = 3. Atomic vanadium cation V(+) also is reactive, but instead of dehydrogenation of the alcohol, expulsions of either methane or a methyl radical take place. In marked contrast, the reaction efficiency of the dinuclear cluster V(2)(+) is extremely low. For the cluster cations V(n)(+) (n = 3-7), complete and efficient dehydrogenation of methanol to produce V(n)OC(+) and two hydrogen molecules prevails. DFT calculations shed light on the mechanism of the dehydrogenation of methanol by the smallest reactive cluster cation V(3)(+) and propose the occurrence of chemisorption concomitant with C-O bond cleavage rather than adsorption of an intact carbon monoxide molecule by the cluster.

  6. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...... degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25...

  7. Development of a Crosslinked Pore-filling Membrane with an Extremely Low Swelling Ratio and Methanol Crossover for Direct Methanol Fuel Cells

    International Nuclear Information System (INIS)

    Li, Yunxi; Hoorfar, Mina; Shen, Kuizhi; Fang, Jiyong; Yue, Xigui; Jiang, Zhenhua

    2017-01-01

    A poly (ether sulphone)-based pore-filling membrane was successfully fabricated and tested against a conventional Nafion-based membrane in direct methanol fuel cells. An amino-containing polymer with a low degree of sulphonation (DS) was synthesized and used as the supporting substrate. The porous substrate was prepared by introducing the porogenic agent (tetrafluoroborate) into the membrane casting solution. The effects of the content of the porogenic agent on the pore morphologies were evaluated using field emission scanning electron microscopy. Then, an epoxy resin was introduced into the porous electrolyte for the first time to minimize the swelling and methanol crossover that resulted from the high degree of sulphonation. In essence, solidification of the amino groups in the substrate results in 3D crosslinking of epoxy resins, which greatly suppresses the swelling and methanol crossover of the composite membranes with enhanced mechanical properties and enhances the thermal and oxidation stability compared to Nafion 117. The resulting composite membrane also shows high proton conductivity that is only slightly lower than that of Nafion 117. However, the selectivity between the proton conductivity and methanol permeability is higher for the composite membranes than that of Nafion 117. The composite membrane also shows a better performance in single cell tests with 10 M methanol.

  8. Co-catalytic effect of Ni in the methanol electro-oxidation on Pt-Ru/C catalyst for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Wang, Z.B.; Yin, G.P.; Zhang, J.; Sun, Y.C.; Shi, P.F.

    2006-01-01

    This research is aimed to improve the utilization and activity of anodic catalysts, thus to lower the contents of noble metals loading in anodes for methanol electro-oxidation. The direct methanol fuel cell anodic catalysts, Pt-Ru-Ni/C and Pt-Ru/C, were prepared by chemical reduction method. Their performances were tested by using a glassy carbon working electrode through cyclic voltammetric curves, chronoamperometric curves and half-cell measurement in a solution of 0.5 mol/L CH 3 OH and 0.5 mol/L H 2 SO 4 . The composition of the Pt-Ru-Ni and Pt-Ru surface particles were determined by EDAX analysis. The particle size and lattice parameter of the catalysts were determined by means of X-ray diffraction (XRD). XRD analysis showed that both of the catalysts exhibited face-centered cubic structures and had smaller lattice parameters than Pt-alone catalyst. Their sizes are small, about 4.5 nm. No significant differences in the methanol electro-oxidation on both electrodes were found by using cyclic voltammetry, especially regarding the onset potential for methanol electro-oxidation. The electrochemically active-specific areas of the Pt-Ru-Ni/C and Pt-Ru/C catalysts are almost the same. But, the catalytic activity of the Pt-Ru-Ni/C catalyst is higher for methanol electro-oxidation than that of the Pt-Ru/C catalyst. Its tolerance performance to CO formed as one of the intermediates of methanol electro-oxidation is better than that of the Pt-Ru/C catalyst

  9. Selectivity of Direct Methanol Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Antonino S. Aricò

    2015-11-01

    Full Text Available Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK, new generation perfluorosulfonic acid (PFSA systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC. The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2. This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115.

  10. Selectivity of Direct Methanol Fuel Cell Membranes.

    Science.gov (United States)

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  11. Why does high pressure destroy co-non-solvency of PNIPAm in aqueous methanol?

    OpenAIRE

    de Oliveira, Tiago E.; Netz, Paulo A.; Mukherji, Debashish; Kremer, Kurt

    2016-01-01

    It is well known that poly(N-isopropylacrylamide) (PNIPAm) exhibits an interesting, yet puzzling, phenomenon of co-non-solvency. Co-non-solvency occurs when two competing good solvents for PNIPAm, such as water and alcohol, are mixed together. As a result, the same PNIPAm collapses within intermediate mixing ratios. This complex conformational transition is driven by preferential binding of methanol with PNIPAm. Interestingly, co-non-solvency can be destroyed when applying high hydrostatic pr...

  12. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    Science.gov (United States)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  13. Young adolescents who combine alcohol and energy drinks have a higher risk of reporting negative behavioural outcomes.

    Science.gov (United States)

    Holubcikova, Jana; Kolarcik, Peter; Madarasova Geckova, Andrea; Joppova, Eva; van Dijk, Jitse P; Reijneveld, Sijmen A

    2017-04-01

    To explore whether young adolescents consuming alcohol and energy drinks combined were more likely to report negative behavioural outcomes than their peers who drink only one type of these beverages or are abstinent. We analysed data on a representative sample of Slovak adolescents 8502 adolescents (mean age 13.21, 49.4 % boys) from the 2014 Health Behaviour in School-aged Children cross-sectional study. We assessed the associations of alcohol and energy drinks consumption with negative outcomes and their potential synergy, as measured by the synergy index (SI). Adolescents consuming both alcohol and energy drinks were at higher risk of negative behavioural outcomes than their peers who drank only alcohol or energy drinks or were non-consumers. Consumers of alcohol and energy drinks were highly prone to be involved in fighting-the joint association of alcohol and energy drinks consumption was greater than sum of its associations separately in relation to fighting (SI 1.49; 95 % confidence interval 1.03-2.16). Preventive strategies should aim at increasing awareness of negative behavioural outcomes-especially aggressive behaviour associated with alcohol and energy drinks consumption among young adolescents.

  14. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  15. Produção de álcoois superiores por linhagens de Saccharomyces durante a fermentação alcoólica Production of higher alcohols by Saccharomyces strains during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    L.E. Gutierrez

    1993-12-01

    Full Text Available A produção de álcoois superiores pelas leveduras Saccharomyces cerevisiae M-300-A, Saccharomyces uvarum IZ-1904 e levedura de panificação (Saccharomyces cerevisiae foi estudada em diversas condições de temperatura, concentração de sacarose, pH, fontes de nitrogênio e com inibidor 2-4 dinitrofenol (DNP. Em todas as condições estudadas, a levedura Saccharomyces uvarum IZ-1904 apresentou a menor formação de álcoois superiores enquanto a levedura de panifícação apresentou os teores mais elevados. Com o aumento de temperatura e da concentração de sacarose ocorreu maior formação de álcool isoamílico pelas leveduras estudadas. Em pH 4,5 ocorreu menor produção de álcoois superiores do que em pH 3,0. Na presença do inibidor DNP ocorreu significativa redução (pThe production of higher alcohols by Saccharomyces cerevisiae M-300-A, Saccharomyces uvarum IZ-1904 and baker's yeast (5. cerevisiae was studied under several temperature conditions, sucrose level, pH, nitrogen sources and with 2-4 dinitrophenol (DNP. The yeast IZ-1904 showed lower production of higher alcohols than other yeasts in all conditions studied. With the increase of temperature and higher level of sucrose an increase of isoamyl alcohol production was observed. A lower formation of higher alcohols was observed at pH 4.5 than at pH 3.0. With the addition of DNP occurred a significant reduction in isoamyl alcohol content. The yeasts did not show the sanie production of higher alcohols in relation to urea and ammonium sulfate.

  16. Nitrogen Doped Ordered Mesoporous Carbon as Support of PtRu Nanoparticles for Methanol Electro-Oxidation

    Directory of Open Access Journals (Sweden)

    David Sebastián

    2018-04-01

    Full Text Available The low oxidation kinetics of alcohols and the need for expensive platinum group metals are still some of the main drawbacks for the commercialization of energy efficient direct alcohol fuel cells. In this work, we investigate the influence of nitrogen doping of ordered mesoporous carbon (CMK as support on the electrochemical activity of PtRu nanoparticles. Nitrogen doping procedures involve the utilization of pyrrole as both nitrogen and carbon precursor by means of a templating method using mesoporous silica. This method allows obtaining carbon supports with up to 14 wt. % nitrogen, with an effective introduction of pyridinic, pyrrolic and quaternary nitrogen. PtRu nanoparticles were deposited by sodium formate reduction method. The presence of nitrogen mainly influences the Pt:Ru atomic ratio at the near surface, passing from 50:50 on the bare (un-doped CMK to 70:30 for the N-doped CMK catalyst. The electroactivity towards the methanol oxidation reaction (MOR was evaluated in acid and alkaline electrolytes. The presence of nitrogen in the support favors a faster oxidation of methanol due to the enrichment of Pt at the near surface together with an increase of the intrinsic activity of PtRu nanoparticles.

  17. Chromosomal damage and apoptosis analysis in exfoliated oral epithelial cells from mouthwash and alcohol users

    Science.gov (United States)

    Rocha, Rodrigo dos Santos; Meireles, José Roberto Cardoso; de Moraes Marcílio Cerqueira, Eneida

    2014-01-01

    Chromosomal damage and apoptosis were analyzed in users of mouthwash and/or alcoholic beverages, using the micronucleus test on exfoliated oral mucosa cells. Samples from four groups of 20 individuals each were analyzed: three exposed groups (EG1, EG2 and EG3) and a control group (CG). EG1 comprised mouthwash users; EG2 comprised drinkers, and EG3 users of both mouthwashes and alcoholic beverages. Cell material was collected by gently scraping the insides of the cheeks. Then the cells were fixed in a methanol/acetic acid (3:1) solution and stained and counterstained, respectively, with Schiff reactive and fast green. Endpoints were computed on 2,000 cells in a blind test. Statistical analysis showed that chromosomal damage and apoptosis were significantly higher in individuals of groups EG1 and EG3 than in controls (p < 0.005 and p < 0.001, respectively). No significant difference in chromosomal damage and apoptosis was observed between the exposed groups. In EG2, only the occurrence of apoptosis was significantly higher than in the controls. These results suggest that mouthwashes alone or in association with alcoholic drinks induce genotoxic effects, manifested as chromosomal damage and apoptosis. They also suggest that alcoholic drinks are effective for stimulating the process of apoptosis. However, these data need to be confirmed in larger samples. PMID:25505845

  18. Reduced Production of Higher Alcohols by Saccharomyces cerevisiae in Red Wine Fermentation by Simultaneously Overexpressing BAT1 and Deleting BAT2.

    Science.gov (United States)

    Ma, Lijuan; Huang, Shiyong; Du, Liping; Tang, Ping; Xiao, Dongguang

    2017-08-16

    In red wine, the contents of higher alcohols and ethyl carbamate (EC) are two significant health concerns. To reduce the production of higher alcohols by wine yeast YZ22 with low production of EC, one BAT2 was replaced by a BAT1 expression cassette first and then another BAT2 was deleted to obtain the mutant SYBB3. Real-time quantitative PCR showed that the relative expression level of BAT1 in SYBB3 improved 28 times compared with that in YZ22. The yields of isobutanol and 3-methyl-1-butanol produced by mutant SYBB3 reduced by 39.41% and 37.18% compared to those by the original strain YZ22, and the total production of higher alcohols decreased from 463.82 mg/L to 292.83 mg/L in must fermentation of Cabernet Sauvignon. Meanwhile, there were no obvious differences on fermentation characteristics of the mutant and parental strain. This research has suggested an effective strategy for decreasing production of higher alcohols in Saccharomyces cerevisiae.

  19. Sulfur Rich Coal Gasification and Low Impact Methanol Production

    Directory of Open Access Journals (Sweden)

    Andrea Bassani

    2018-03-01

    Full Text Available In recent times, the methanol was employed in numerous innovative applications and is a key compound widely used as a building block or intermediate for producing synthetic hydrocarbons, solvents, energy storage medium and fuel. It is a source of clean, sustainable energy that can be produced from traditional and renewable sources: natural gas, coal, biomass, landfill gas and power plant or industrial emissions. An innovative methanol production process from coal gasification is proposed in this work. A suitable comparison between the traditional coal to methanol process and the novel one is provided and deeply discussed. The most important features, with respect to the traditional ones, are the lower carbon dioxide emissions (about 0.3% and the higher methanol production (about 0.5% without any addition of primary sources. Moreover, it is demonstrated that a coal feed/fuel with a high sulfur content allows higher reductions of carbon dioxide emissions. The key idea is to convert hydrogen sulfide and carbon dioxide into syngas (a mixture of hydrogen and carbon monoxide by means of a regenerative thermal reactor. This is the Acid Gas to Syngas technology, a completely new and effective route of processing acid gases. The main concept is to feed an optimal ratio of hydrogen sulphide and carbon monoxide and to preheat the inlet acid gas before the combustion. The reactor is simulated using a detailed kinetic scheme.

  20. Methanol production by Mycobacterium smegmatis

    International Nuclear Information System (INIS)

    Weisman, L.S.; Ballou, C.E.

    1988-01-01

    Mycobacterium smegmatis cells produce [ 3 H]methanol when incubated with [methyl- 3 H]methionine. The methanol is derived from S-adenosylmethionine rather than methyltetrahydrofolate. M. smegmatis cells carboxymethylate several proteins, and some of the methanol probably results from their demethylation, but most of the methanol may come from an unidentified component with a high gel mobility. Although methanol in the medium reached 19 μM, it was not incorporated into the methylated mannose polysaccharide, a lipid carrier in this organism

  1. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-10-15

    Nanoporous palladium (NPPd) with ultrafine ligament size of 3-6 nm was fabricated by dealloying of an Al-Pd alloy in an alkaline solution. Electrochemical measurements indicate that NPPd exhibits significantly high electrochemical active specific surface area (23 m{sup 2} g{sup -1}), and high catalytic activity for electro-oxidation of methanol, ethanol, and formic acid. Mass activities can reach 149, 148, 262 mA mg{sup -1} for the oxidation of methanol, ethanol and formic acid, respectively. Moreover, superior steady-state activities can be observed for all the electro-oxidation processes. NPPd will be a promising candidate for the anode catalyst for direct alcohol or formic acid fuel cells. (author)

  2. Electro-oxidation of methanol diffused through proton exchange membrane on Pt surface: crossover rate of methanol

    International Nuclear Information System (INIS)

    Jung, Inhwa; Kim, Doyeon; Yun, Yongsik; Chung, Suengyoung; Lee, Jaeyoung; Tak, Yongsug

    2004-01-01

    Methanol crossover rate through proton exchange membrane (Nafion 117) was investigated with a newly designed electrochemical stripping cell. Nanosize Pt electrode was prepared by the electroless deposition. Distinct electrocatalytic oxidation behaviors of methanol inside membrane were similar to the methanol oxidation in aqueous electrolyte, except adsorption/desorption of hydrogen. The amount of methanol diffused through membrane was calculated from the charge of methanol oxidation during repetitive cyclic voltammetry (CV) and methanol crossover rate was estimated to be 0.69 nmol/s

  3. Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Belen; Brey, J. Javier; Viera, Inmaculada G. [Hynergreen Technologies, S.A. Avda. de la Buhaira, 2. 41018 Sevilla (Spain); Gonzalez-Elipe, Agustin R.; Cotrino, Jose; Rico, Victor J. [Instituto de Ciencia de los Materiales de Sevilla (CSIC-University Sevilla), Avda. Americo Vespucio, 49, 41092 Sevilla (Spain)

    2007-06-10

    This work reports about the use of plasmas to obtain hydrogen by reforming of hydrocarbons or alcohols in mixtures with CO{sub 2} or H{sub 2}O. The plasma is activated in a dielectric barrier discharge (DBD) reactor working at atmospheric pressure and low temperatures (i.e., about 100 C). The reactor presents a great versatility in operation and a low manufacturing cost. Results are presented for the reforming of methane, methanol and ethanol. Methane transforms up to a 70% into CO and H{sub 2} without formation of any kind of superior hydrocarbon. For the two alcohols 100% conversion into the same products is found for flows much higher than in the case of methane. The work reports a description of the reactor and the operational conditions of the power supply enabling the ignition of the plasma and its steady state operation. (author)

  4. Effect of fuel temperature on the methanol spray and nozzle internal flow

    International Nuclear Information System (INIS)

    Chen, Zhifang; Yao, Anren; Yao, Chunde; Yin, Zenghui; Xu, Han; Geng, Peilin; Dou, Zhancheng; Hu, Jiangtao; Wu, Taoyang; Ma, Ming

    2017-01-01

    Highlights: • Cavitation region increases with the increasing of methanol temperature. • The nozzle exit velocity increases with the increasing of methanol temperature. • The discharge coefficient decreases with the increasing of methanol temperature. • Droplet SMD reduces when methanol temperature increases measured by PDPA system. • Droplet velocity has the maximum value when methanol temperature is 60 °C. - Abstract: The increasing of fuel temperature can reduce the droplet size and have an advantage of improving spray atomization, while investigations of the effect of temperature on the methanol injector internal flow and external spray is rare. Firstly, a detailed three dimensional numerical simulations of nozzle internal flow have been conducted to probe into the cavitation in methanol injector nozzles, and then an experimental study has been carried out to investigate the droplet size and velocity of methanol spray at various temperatures using the Phase Doppler Particle Analyzer (PDPA) detecting system. And results show that the region of cavitations in nozzle orifice enlarges as methanol temperature and injection pressure increases, and the temperature for 'super-cavitation' occurring decreases gradually with the increasing of injection pressure. Moreover, the nozzle exit velocity, discharge coefficient and cavitations number were also analyzed. However, the discharge coefficient reduces nearly equal under various pressure when the methanol temperature is higher than 60 °C. In addition, the Sauter Mean Diameter (SMD) and velocity of methanol droplet were also analyzed, and found that the droplet velocity reaches the maximum value when the methanol temperature is 60 °C.

  5. Esterification of Palmitic Acid with Methanol in the Presence of Macroporous Ion Exchange Resin as Catalyst

    Directory of Open Access Journals (Sweden)

    Amelia Qarina Yaakob and Subhash Bhatia

    2012-10-01

    Full Text Available The esterification of palmitic acid with methanol was studied in a batch reactor using macro porous ion exchange resin Amberlyst 15 as a catalyst. Methyl palmitate was produced from the reaction between palmitic acid and methanol in the presence of catalyst. The effects of processing parameters, molar ratio of alcohol to acid M, (4-10, catalyst loading (0-10 g cat/liter, water inhibition (0-2 mol/liter, agitator speed (200-800 rpm and reaction temperature (343-373K were studied. The experimental kinetic data were correlated using homogenous as well as heterogeneous models (based on single as well as dual site mechanisms. The activation energy of the reaction was 11.552 kJ/mol for forward reaction whilst 5.464 kJ/mol for backward reaction. The experimental data fitted well with the simulated data obtained from the kinetic models. Keywords: Palmitic Acid, Methanol, Esterification, Ion Exchange Resin, Kinetics.

  6. Alcohol cosurfactants in hydrate antiagglomeration.

    Science.gov (United States)

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at

  7. Toxic alcohol ingestion: prompt recognition and management in the emergency department [digest].

    Science.gov (United States)

    Beauchamp, Gillian A; Valento, Matthew; Kim, Jeremy

    2016-09-22

    Identifying patients with potential toxic alcohol exposure and initiating appropriate management is critical to avoid significant patient morbidity. Sources of toxic alcohol exposure include ethylene glycol, methanol, diethylene glycol, propylene glycol, and isopropanol. Treatment considerations include the antidotes fomepizole and ethanol, and hemodialysis for removal of the parent compound and its toxic metabolites. Additional interventions include adjunctive therapies that may improve acidosis and enhance clearance of the toxic alcohol or metabolites. This issue reviews common sources of alcohol exposure, basic mechanisms of toxicity, physical examination and laboratory findings that may guide rapid assessment and management, and indications for treatment. [Points & Pearls is a digest of Emergency Medicine Practice].

  8. Association between quality of cheap and unrecorded alcohol products and public health consequences in Poland.

    Science.gov (United States)

    Lachenmeier, Dirk W; Ganss, Sebastian; Rychlak, Bogumil; Rehm, Jürgen; Sulkowska, Urszula; Skiba, Michał; Zatonski, Witold

    2009-10-01

    The research aimed to study the quality of cheap alcohol products in Poland. These included unrecorded alcohols (i.e., home-produced or illegally imported), estimated to constitute more than 25% of total consumption and fruit wines. A sample of alcohol products (n = 52) was collected from local markets and chemical analyses were conducted. The parameters studied were alcoholic strength, volatiles (methanol, acetaldehyde, and higher alcohols), ethyl carbamate, inorganic elements, and food additives including preservatives, colors, and sweeteners. The compositions of the beverages were then toxicologically evaluated using international standards. With the exception of 1 fortified wine, the unrecorded alcohols were home-produced fruit-derived spirits (moonshine) and spirits imported from other countries. We did not detect any nonbeverage surrogate alcohol. The unrecorded spirits contained, on average, 45% vol of alcohol. However, some products with considerably higher alcoholic strengths were found (up to 85% vol) with no labeling of the content on the bottles. These products may cause more pronounced detrimental health effects (e.g., liver cirrhosis, injuries, some forms of malignant neoplasms, alcohol use disorders, and cardiovascular disease) than will commercial beverages, especially as the consumer may be unaware of the alcohol content consumed. Fruit wines containing between 9.5 and 12.2% vol alcohol showed problems in terms of their additive content and their labeling (e.g., sulfites, sorbic acid, saccharin, and artificial colors) and should be subjected to stricter control. Regarding the other components investigated, the suspected human carcinogens, acetaldehyde and ethyl carbamate, were found at levels relevant to public health concerns. While acetaldehyde is a typical constituent of fermented beverages, ethyl carbamate was found only in home-produced unrecorded alcohols derived from stone fruits with levels significantly above international guidelines. The

  9. Modelling and experimental studies on a direct methanol fuel cell working under low methanol crossover and high methanol concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [Instituto Nacional de Energia e Geologia, Fuel Cells and Hydrogen, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)

    2009-08-15

    A number of issues need to be resolved before DMFC can be commercially viable such as the methanol crossover and water crossover which must be minimised in portable DMFCs. The main gain of this work is to systematically vary commercial MEA materials and check their influence on the cell performance of a direct methanol fuel cell operating at close to room temperature. A detailed experimental study on the performance of an <> developed DMFC with 25 cm{sup 2} of active membrane area, working near the ambient conditions is described. Tailored MEAs (membrane-electrode assemblies), with different structures and combinations of gas diffusion layers (GDLs), were designed and tested in order to select optimal working conditions at high methanol concentration levels without sacrificing performance. The experimental polarization and power density curves were successfully compared with the predictions of a steady state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the DMFC recently developed by the same authors. The influence of the anode gas diffusion layer media, the membrane thickness and the MEA properties on the cell performance are explained under the light of the predicted methanol crossover rate across the membrane. A tailored MEA build-up with the common available commercial materials was proposed to achieve relatively low methanol crossover, operating at high methanol concentrations. The use of adequate materials for the gas diffusion layers (carbon paper at the anode GDL and carbon cloth at the cathode GDL) enables the use of thinner membranes enhancing the water back diffusion which is essential to work at high methanol concentrations. (author)

  10. Electrooxidation of C{sub 1} to C{sub 3} alcohols with Pt and Pt-Ru sputter deposited interdigitated array electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong-Gon [Department of Chemical Engineering, Faculty of Engineering, Hanbat National University, San 16-1, Dukmyeong-dong, Yuseong-gu, Daejeon 305-719 (Korea, Republic of)], E-mail: leecg@hanbat.ac.kr; Ojima, Hiroyuki [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aramaki-Aoba 07, Aoba-ku, Sendai 980-8579 (Japan); Umeda, Minoru [Department of Materials Science and Technology, Faculty of Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188 (Japan)], E-mail: mumeda@vos.nagaokaut.ac.jp

    2008-02-25

    The electrooxidation of methanol, ethanol, and 2-propanol was investigated with interdigitated array electrodes (IDAEs). The IDAE oxidizes alcohol at the generator and reduces the reaction intermediates produced by the oxidation process at the collector. Thus, the reaction intermediates can be estimated with the IDAE. The IDAE in the present work was made of sputter deposited Pt and Pt-Ru. The use of Ru free and added electrodes provides information on the effect of Ru addition on the alcohol oxidation. Cyclic voltammetric analyses revealed that Ru addition enhances the oxidation currents and reduces the E{sub onset} of the alcohols. The detectable reaction intermediate at the methanol and ethanol oxidation was proton, while the intermediate species was acetone in 2-propnaol oxidation.

  11. Sorption phenomena of methanol on heat treated coal; Netsushori wo hodokoshita sekitan no methanol kyuchaku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, H.; Kaiho, M.; Yamada, O.; Soneda, Y.; Kobayashi, M.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Experiments were carried out to learn methanol sorption characteristics of heat-treated coal. When Taiheiyo coal is heat-treated at 125{degree}C, performed with a first methanol adsorption at 25{degree}C, and then desorption at 25{degree}C, a site with strong interaction with methanol and a site with relatively weak interaction are generated in test samples. A small amount of methanol remains in both sites. Then, when the methanol is desorbed at as low temperature as 70{degree}C, the methanol in the site with strong interaction remains as it has existed therein, but the methanol in the site with relatively weak interaction desorbs partially, hence the adsorption amount in a second adsorption at 25{degree}C increases. However, when desorption is performed at as high temperature as 125{degree}C, the methanol in the site with strong interaction also desorbs, resulting in increased adsorption heat in the second adsorption. The adsorption velocity drops, however. Existence of methanol in a site with strong interaction affects the adsorption velocity, but no effect is given by methanol in a site with weak interaction. 3 refs., 4 figs.

  12. Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols

    International Nuclear Information System (INIS)

    Bagheri, Ahmad; Fazli, Mostafa; Bakhshaei, Malihe

    2016-01-01

    Highlights: • Surface tension of DMSO + alcohol (methanol, ethanol and isopropanol) at various temperatures was measured. • The surface tension data of binary mixtures were correlated with four equations. • Intermolecular interaction of DMSO with alcohol was discussed. • The surface mole fraction of alcohol increase with increasing the length of alcohol chain. - Abstract: Surface tension of binary mixtures of methanol, ethanol and isopropanol with DMSO (dimethyl sulfoxide) was measured over the whole range of composition at atmospheric pressure of 82.5 kPa within the temperatures between (298.15 and 328.15) K. The experimental measurements were used to calculate in surface tension deviations (Δσ). The sign of Δσ for all temperatures is negative (except of methanol/DMSO system) because of the factors of hydrogen bonding and dipole–dipole interactions in the DMSO-alcohol systems. Surface tension values of the binary systems were correlated with FLW, MS, RK and LWW models. The mean standard deviation obtained from the comparison of experimental and calculated surface tension values for binary systems with three models (FLW, MS and RK) at various temperatures is less than 0.83. Also, the results of the LWW model were used to account for the interaction energy between alcohols and DMSO in binary mixtures. The temperature dependence of σ (surface tension) at fixed composition of solutions was used to estimate surface enthalpy, H s , and surface entropy, S s . The results obtained show that the values of the thermodynamic parameters for alcohol/DMSO mixtures decrease with increasing alkyl chain length of alcohol. Finally, the results are discussed in terms of surface mole fraction and lyophobicity using the extended Langmuir (EL) isotherm.

  13. Conversion of methanol and isobutanol to MTBE

    CSIR Research Space (South Africa)

    Nicolaides, CP

    1993-09-24

    Full Text Available Over the resin catalyst Amberlyst 15, and under our reaction conditions, the yield of MTBE (methyl tert-butyl ether), from the reaction of methanol and isobutene, is at a maximum in the temperature rang of 40-60-degrees-C. Slightly higher...

  14. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  15. [Isolation of a methanol-utilizing strain and its application for determining methanol].

    Science.gov (United States)

    Guo, Jun; Gao, Wei; Zhang, Qiang; Qu, Fei; Lu, Dongtao; Zheng, Jun; Pang, Jinmei; Yang, Yujing

    2013-08-04

    To isolate and characterize bacteria that can be used todevelop microbial biosensor for methanol (MeOH) determination. We used selective medium and streak plate to isolate bacteria. Morphological, physiological characteristics and 16S rDNA sequence analysis were used to identify the strain. An MeOH biosensor was then developed by immobilizing M211 along with dissolved oxygen (O2) sensor. An MeOH utilizing bacterium was isolated from biogas-producing tank using methanol as the sole carbon source, and identified as Methylobacteriumorganophilium. Decrease of O2 concentration is linearly related to the MeOH concentration in the range from 0.02% to 1%, with the MeOH detection limit of 0.27 mg/L. The response time of the biosensor is within 20 min. Furthermore, the result of interference test and the detection of methanol sample are both satisfactory. Good results are obtained in interference test and the detection of methanol sample. The proposed method seems very attractive in monitoring methanol.

  16. Millimetre wavelength methanol masers survey towards massive star forming regions

    Science.gov (United States)

    Umemoto, T.; Mochizuki, N.; Shibata, K. M.; Roh, D.-G.; Chung, H.-S.

    2007-03-01

    We present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above -25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.

  17. Two applications of the thermogram of the alcohol/water binary system with compositions of cryobiological interests.

    Science.gov (United States)

    Weng, Lindong; Li, Weizhong; Zuo, Jianguo

    2011-06-01

    Quantitative analyses of the bound water content in the alcohol aqueous solution and its osmotic behavior should be cryobiologically significant. This paper has presented two applications of the thermogram of the alcohol/water system recorded by differential scanning calorimeter (DSC). Both applications are: (1) generating the quantitative relationship between the bound water content and the solution composition; (2) calculating the osmotic virial coefficients for alcohols. Five alcohols including methanol, ethanol, ethylene glycol, propylene glycol and glycerol are investigated. In the present study, partial binary phase diagrams of these five alcohol solutions are determined in the first place. The bound water contents in these solutions are quantitatively evaluated by three criteria afterwards. In the end, the osmotic virial coefficients for these alcohols are calculated according to the osmotic virial equation. It is turned out that the bound water fraction out of the total water content increases with a rising molality. The ability of the solute to restrict water molecules can be weakened when the solution becomes more concentrated. The results also indicate that propylene glycol should be the strongest "water-blocker" while methanol the weakest one. These findings can deepen our understanding of the cryoprotective properties of the alcohols from the perspectives of their roles in binding free water and promoting the osmotic efflux of cell water. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Hot new gamble on methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, J.

    1981-10-01

    Methanol from coal, wood, or natural gas is being considered as an extender or an alternative source of gasoline. Firms such as Nova and Celanese are gambling millions on the proposition that methanol is a crucial steppingstone to the fuels and chemicals of the future. With a new process developed by Mobil Oil, methanol from coal could be converted into gasoline. By the 1990s Imperial Oil Ltd. expects there will be at least one methanol plant using Alberta coal. These and other plans by the Alberta and British Columbia governments and by Canadian industry to produce methanol are reported.

  19. Sensing methanol concentration in direct methanol fuel cell with total harmonic distortion: Theory and application

    International Nuclear Information System (INIS)

    Mao Qing; Krewer, Ulrike

    2012-01-01

    The nonlinear frequency response of a direct methanol fuel cell (DMFC) is studied by analyzing the total harmonic distortion (THD) spectra. The dependence of the THD spectra on methanol concentration and methanol oxidation kinetics is investigated by means of both simulation and experiment. Simulation using a continuous stirred tank reactor network model suggests that the methanol concentration profile in the anode has a strong impact on the THD spectra. The experimentally observed nonlinear behavior of the DMFC anode can be qualitatively reproduced with a model containing a three-step methanol oxidation mechanism with Kauranen–Frumkin/Temkin kinetics. Both experiment and simulation results show that THD value has a monotonic correlation with methanol concentration at certain frequencies and its sensitivity to concentration is improved with increased current amplitude. The monotonic relationship enables the THD to sense the methanol concentration level by the DMFC itself, which is of mayor interest for the portable application as an external sensor for the system can be omitted.

  20. Metabolism of methanol in acetogenic bacteria

    International Nuclear Information System (INIS)

    Ivey, D.K.W.

    1987-01-01

    Acetogens can grown on methanol in the presence of a cosubstrate that is more oxidized than methanol. Three mol of acetate is formed from 4 mol methanol and 2 mol CO 2 . One mol of methanol is oxidized to CO 2 . The levels of the tetrahydrofolate enzymes, carbon monoxide dehydrogenase, and corrinoids indicate the presence of the acetyl CoA pathway when growing on methanol. The acetyl-CoA pathway of acetate synthesis as presently understood does not include methanol as a substrate. It is demonstrated that methanol is oxidized to formaldehyde and then to formate by a methanol dehydrogenase. It is also possible that the methyl group of methanol is transferred directly to either a corrinoid-type enzyme, or tetrahydrofolate. When cells of C. thermoautotrophicum are grown on 14 CO 2 , acetate becomes labeled in both carbons with a ratio 14 CH 3 / 14 COOH of 0.7. In addition, methanol gets labeled. When cells are grown on 14 CH 3 OH, label appears in both acetate carbons with a ratio of 3.3, and also appears in CO 2 . Thus methanol is preferentially incorporated into the methyl group of acetate, whereas CO 2 is the preferred source of the carboxyl carbon

  1. The Asian methanol market

    International Nuclear Information System (INIS)

    Nagase, Hideki

    1995-01-01

    For the purpose of this presentation, Asia has been broadly defined as a total of 15 countries, namely Japan, Korea, Taiwan, China, Hong Kong, the Philippines, Thailand, Malaysia, Singapore, Indonesia, Myanmar, India, Vietnam, Australia and New Zealand. In 1994 and the first half of 1995, the methanol industry and its derivative industries experienced hard time, because of extraordinarily high methanol prices. In spite of this circumstance, methanol demand in Asian countries has been growing steadily and remarkably, following Asian high economic growth. Most of this growth in demand has been and will continue to be met by outside supply. However, even with increased import of methanol from outside of Asia, as a result of this growth, Asian trade volume will be much larger in the coming years. Asian countries must turn their collective attention to making logistics and transportation for methanol and its derivatives more efficient in the Asian region to make better use of existing supply resources. The author reviews current economic growth as his main topic, and explains the forecast of the growth of methanol demand and supply in Asian countries in the near future

  2. Adsorption and Reaction of C1-C3 Alcohols over CeOx(111) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    D Mullins; S Senanayake; T Chen

    2011-12-31

    This study reports the interaction of methanol, ethanol, 1-propanol, and 2-propanol with well-ordered CeO{sub 2}(111) thin film surfaces. All of the alcohols adsorb at low temperature by forming alkoxy and hydroxyl species on the surface. On fully oxidized CeO{sub 2}(111), recombination occurs between some of the alkoxys and hydroxyls, resulting in alcohol desorption near 220 K. At the same temperature, some of the surface hydroxyls disproportionate to produce water and the loss of lattice O. The remaining alkoxys react above 550 K. The primary alcohols favor dehydrogenation products (aldehydes). There is a net loss of O from the system, resulting in a reduction of the ceria. The secondary alcohol, 2-propanol, undergoes primarily dehydration, producing propene with no net change in the cerium oxidation state. Reduced CeO{sub x}(111) competes with the gaseous products for available O. Little or no water is produced. The reaction selectivity for the C{sub 2} and C{sub 3} alcohols shifts toward favoring dehydration products. The loss of O from the alcohols leads to oxidation of the reduced ceria. Compared with the oxidized surface, the alkene desorption shifts to lower temperature, whereas the aldehyde desorption shifts to higher temperature. This indicates that, on the reduced surface, it is easier to break the C-O bond but more difficult to break the O-substrate bond.

  3. The Methanol Economy Project

    Energy Technology Data Exchange (ETDEWEB)

    Olah, George [Univ. of Southern California, Los Angeles, CA (United States); Prakash, G. K. [Univ. of Southern California, Los Angeles, CA (United States)

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  4. Water miscible mono alcohols' effect on the proteolytic performance of Bacillus clausii serine alkaline protease.

    Science.gov (United States)

    Duman, Yonca Avci; Kazan, Dilek; Denizci, Aziz Akin; Erarslan, Altan

    2014-01-01

    In this study, our investigations showed that the increasing concentrations of all examined mono alcohols caused a decrease in the Vm, kcat and kcat/Km values of Bacillus clausii GMBE 42 serine alkaline protease for casein hydrolysis. However, the Km value of the enzyme remained almost the same, which was an indicator of non-competitive inhibition. Whereas inhibition by methanol was partial non-competitive, inhibition by the rest of the alcohols tested was simple non-competitive. The inhibition constants (KI) were in the range of 1.32-3.10 M, and the order of the inhibitory effect was 1-propanol>2-propanol>methanol>ethanol. The ΔG(≠) and ΔG(≠)E-T values of the enzyme increased at increasing concentrations of all alcohols examined, but the ΔG(≠)ES value of the enzyme remained almost the same. The constant Km and ΔG(≠)ES values in the presence and absence of mono alcohols indicated the existence of different binding sites for mono alcohols and casein on enzyme the molecule. The kcat of the enzyme decreased linearly by increasing log P and decreasing dielectric constant (D) values, but the ΔG(≠) and ΔG(≠)E-T values of the enzyme increased by increasing log P and decreasing D values of the reaction medium containing mono alcohols.

  5. Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane.

    Science.gov (United States)

    Li, Jing; Cai, Weiwei; Ma, Liying; Zhang, Yunfeng; Chen, Zhangxian; Cheng, Hansong

    2015-04-18

    We report here a novel proton exchange membrane with remarkably high methanol-permeation resistivity and excellent proton conductivity enabled by carefully designed self-assembled ionic conductive channels. A direct methanol fuel cell utilizing the membrane performs well with a 20 M methanol solution, very close to the concentration of neat methanol.

  6. Highly Zeolite-Loaded Polyvinyl Alcohol Composite Membranes for Alkaline Fuel-Cell Electrolytes

    Directory of Open Access Journals (Sweden)

    Po-Ya Hsu

    2018-01-01

    Full Text Available Having a secure and stable energy supply is a top priority for the global community. Fuel-cell technology is recognized as a promising electrical energy generation system for the twenty-first century. Polyvinyl alcohol/zeolitic imidazolate framework-8 (PVA/ZIF-8 composite membranes were successfully prepared in this work from direct ZIF-8 suspension solution (0–45.4 wt % and PVA mixing to prevent filler aggregation for direct methanol alkaline fuel cells (DMAFCs. The ZIF-8 fillers were chosen for the appropriate cavity size as a screening aid to allow water and suppress methanol transport. Increased ionic conductivities and suppressed methanol permeabilities were achieved for the PVA/40.5% ZIF-8 composites, compared to other samples. A high power density of 173.2 mW cm−2 was achieved using a KOH-doped PVA/40.5% ZIF-8 membrane in a DMAFC at 60 °C with 1–2 mg cm−2 catalyst loads. As the filler content was raised beyond 45.4 wt %, adverse effects resulted and the DMAFC performance (144.9 mW cm−2 was not improved further. Therefore, the optimal ZIF-8 content was approximately 40.5 wt % in the polymeric matrix. The specific power output was higher (58 mW mg−1 than most membranes reported in the literature (3–18 mW mg−1.

  7. Formation and dissolution of the anodic oxide film on zirconium in alcoholic aqueous solutions

    International Nuclear Information System (INIS)

    Mogoda, A.S.

    1995-01-01

    The dissolution behavior of the anodic oxide film formed in alcoholic aqueous solutions was studied. Results indicated the dissolution mechanism of the duplex oxide film followed a zero-order rate equation. The increase in methanol concentration in the formation medium (phosphoric acid [H 3 PO 4 ]) resulted in formation of an oxide film that incorporated little phosphate ion and that dissolved at a low rate. The dissolution rate of the oxide film decreased with increasing methanol concentration in the dissolution medium. This was attributed to the increase in the viscosity of the medium, which led to a decrease in the diffusion coefficient of the dissolution product of the zirconium oxide film. Dissolution of the anodic oxide film also was investigated as a function of the chain length of alcohols

  8. Developments in the European methanol market

    International Nuclear Information System (INIS)

    Speed, J.

    1995-01-01

    In the late eighties/early nineties the World Methanol Market was basically divided into three regional markets--America, Asia Pacific and Europe. These markets were interrelated but each had its own specific characteristics and traditional suppliers. Now the situation has changed; in the mid nineties there is a Global Methanol Market with global players and effective global pricing and the European market is governed by events world-wide. Europe is however a specific market with specific characteristics which are different from those of other markets although it is also part of the Global Market. Hence before the author focuses on Europe he looks at the World Market. The paper discusses world methanol production and consumption by region, world methanol consumption by end use, world methanol supply demand balance, the west European market, western European methanol production, methanol imports to W. Europe, the Former Soviet Union supplies, W. European methanol consumption by end use, MTBE in Europe, duties on methanol imports into W. Europe, investment in Europe, the effect of the 1994/95 price spike, and key issues for the future of the industry

  9. 37 GHz METHANOL MASERS : HORSEMEN OF THE APOCALYPSE FOR THE CLASS II METHANOL MASER PHASE?

    International Nuclear Information System (INIS)

    Ellingsen, S. P.; Breen, S. L.; Sobolev, A. M.; Voronkov, M. A.; Caswell, J. L.; Lo, N.

    2011-01-01

    We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  10. Effect of sorbed methanol, current, and temperature on multicomponent transport in nafion-based direct methanol fuel cells.

    Science.gov (United States)

    Rivera, Harry; Lawton, Jamie S; Budil, David E; Smotkin, Eugene S

    2008-07-24

    The CO2 in the cathode exhaust of a liquid feed direct methanol fuel cell (DMFC) has two sources: methanol diffuses through the membrane electrode assembly (MEA) to the cathode where it is catalytically oxidized to CO2; additionally, a portion of the CO2 produced at the anode diffuses through the MEA to the cathode. The potential-dependent CO2 exhaust from the cathode was monitored by online electrochemical mass spectrometry (ECMS) with air and with H2 at the cathode. The precise determination of the crossover rates of methanol and CO2, enabled by the subtractive normalization of the methanol/air to the methanol/H2 ECMS data, shows that methanol decreases the membrane viscosity and thus increases the diffusion coefficients of sorbed membrane components. The crossover of CO2 initially increases linearly with the Faradaic oxidation of methanol, reaches a temperature-dependent maximum, and then decreases. The membrane viscosity progressively increases as methanol is electrochemically depleted from the anode/electrolyte interface. The crossover maximum occurs when the current dependence of the diffusion coefficients and membrane CO2 solubility dominate over the Faradaic production of CO2. The plasticizing effect of methanol is corroborated by measurements of the rotational diffusion of TEMPONE (2,2,6,6-tetramethyl-4-piperidone N-oxide) spin probe by electron spin resonance spectroscopy. A linear inverse relationship between the methanol crossover rate and current density confirms the absence of methanol electro-osmotic drag at concentrations relevant to operating DMFCs. The purely diffusive transport of methanol is explained in terms of current proton solvation and methanol-water incomplete mixing theories.

  11. Study on fuel supplying method and methanol concentration sensor for the high efficient operation of methanol fuel cells. Methanol nenryo denchi no unten ni okeru nenryo kyokyu hoho no kento to methanol nodo sensor no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsukui, Tsutomu; Doi, Ryota; Yasukawa, Saburo; Kuroda, Osamu [Hirachi, Ltd., Tokyo, (Japan)

    1990-01-20

    A fuel supplying method was studied and demonstrated, essential to the high efficient operation of methanol fuel cells. Methanol and water were supplied independently from each tank to an anordic electrolyte tank in a circulating system, detecting a methanol concentration and liquid level of anordic electrolyte by each sensor, respectively. A methanol sensor was also developed to detect accurately the concentration based on electrochemical reaction under a constant voltage. A detection control circuit was insulated from a constant-voltage power supply to prevent external noises. The methanol sensor output was compensated for temperature, and a new level sensing method was adopted to send out a command comparing different responses to electrolyte shortage. As the methanol fuel cell was operated with this fuel supplying system, the stable characteristics of the cell were obtained within the variation of {plus minus} 0.1mol/l from the specified methanol concentration. 6 refs., 17 figs., 1 tab.

  12. Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new algorithm is proposed for the sensor-less control of methanol concentration. • Two different strategies are used depending on the ambient temperatures. • Energy efficiency of the DMFC system has been improved by using the new algorithm. - Abstract: A new version of an algorithm is used to control the methanol concentration in the feed of DMFC systems without using methanol sensors under varying ambient temperatures. The methanol concentration is controlled indirectly by controlling the temperature of the DMFC stack, which correlates well with the methanol concentration. Depending on the ambient temperature relative to a preset reference temperature, two different strategies are used to control the stack temperature: either reducing the cooling rate of the methanol solution passing through an anode-side heat exchanger; or, lowering the pumping rate of the pure methanol to the depleted feed solution. The feasibility of the algorithm is evaluated using a DMFC system that consists of a 200 W stack and the balance of plant (BOP). The DMFC system includes a sensor-less methanol controller that is operated using a LabView system as the central processing unit. The algorithm is experimentally confirmed to precisely control the methanol concentration and the stack temperature at target values under an environment of varying ambient temperatures

  13. Effect of Alcohol on Interaction of Model Biological Membrane with Steroids

    Science.gov (United States)

    Pinna, Marco; Mura, Manuela; Famili, Marjan; Zhou, Yuhua; Zvelindovsky, Andrei

    2014-03-01

    The effect of alcohol in the lipid bilayer changes the gel-phase structure of the lipid bilayer. Interactions between the alcohol molecules and the lipid bilayer were investigated using molecular dynamics. Alcohols such as ethanol and methanol are often used in drug delivery application. Ethanol is used to dissolve hydrophobic steroidal drugs such as Beclamethasone dipropionate, Fluticasone propionate and Prednisone. All the systems considered were equilibrated at 310K and ran for 100ns in the presence of dimyristoylphosphatidylcholine (DMPC) lipid bilayer. In addition the simulations were performed to investigate the behaviour of anti-asthma drugs such as Beclamethasone dipropionate in the water environment and 2.5% of ethanol.

  14. Characterization of Pt-Pd/C Electrocatalyst for Methanol Oxidation in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    S. S. Mahapatra

    2011-01-01

    Full Text Available The Pt-Pd/C electrocatalyst was synthesized on graphite substrate by the electrochemical codeposition technique. The physicochemical characterization of the catalyst was done by SEM, XRD, and EDX. The electrochemical characterization of the Pt-Pd/C catalyst for methanol electro-oxidation was studied over a range of NaOH and methanol concentrations using cyclic voltammetry, quasisteady-state polarization, chronoamperometry, and electrochemical impedance spectroscopy. The activity of methanol oxidation increased with pH due to better OH species coverage on the electrode surface. At methanol concentration (>1.0 M, there is no change in the oxidation peak current density because of excess methanol at the electrode surface and/or depletion of OH− at the electrode surface. The Pt-Pd/C catalyst shows good stability and the low value of Tafel slope and charge transfer resistance. The enhanced electrocatalytic activity of the electrodes is ascribed to the synergistic effect of higher electrochemical surface area, preferred OH− adsorption, and ad-atom contribution on the alloyed surface.

  15. Employee Assistance Programs in Higher Education. Alcohol, Mental Health and Professional Development Programming for Faculty and Staff.

    Science.gov (United States)

    Thoreson, Richard W., Ed.; Hosokawa, Elizabeth P., Ed.

    The promotion of employee assistance programs (EAP) in higher education is considered in 24 chapters, with an emphasis on enhancing resources and the academic environment for faculty and staff. Seven topical areas are addressed: history of EAP; characteristics of higher education; alcoholism and other risks in the academic life-style; EAP models…

  16. Risk factors for mortality in Asian Taiwanese patients with methanol poisoning.

    Science.gov (United States)

    Lee, Chen-Yen; Chang, Eileen Kevyn; Lin, Ja-Liang; Weng, Cheng-Hao; Lee, Shen-Yang; Juan, Kuo-Chang; Yang, Huang-Yu; Lin, Chemin; Lee, Shwu-Hua; Wang, I-Kwan; Yen, Tzung-Hai

    2014-01-01

    Methanol poisoning continues to be a serious public health issue in Taiwan, but very little work has been done to study the outcomes of methanol toxicity in the Asian population. In this study, we examined the value of multiple clinical variables in predicting mortality after methanol exposure. We performed a retrospective observational study on patients with acute poisoning who were admitted to the Chang Gung Memorial Hospital over a period of 9 years (2000-2008). Out of the 6,347 patients, only 32 suffered methanol intoxication. The demographic, clinical, laboratory, and mortality data were obtained for analysis. Most patients were middle aged (46.1±13.8 years), male (87.5%), and habitual alcohol consumers (75.0%). All the poisonings were from an oral exposure (96.9%), except for one case of intentionally injected methanol (3.1%). After a latent period of 9.3±10.1 hours, many patients began to experience hypothermia (50.0%), hypotension (15.6%), renal failure (59.4%), respiratory failure (50.0%), and consciousness disturbance (Glasgow coma scale [GCS] score 10.5±5.4). Notably, the majority of patients were treated with ethanol antidote (59.4%) and hemodialysis (58.1%). The remaining 41.6% of patients did not meet the indications for ethanol therapy. At the end of analysis, there were six (18.8%), 15 (46.9%), and eleven (34.4%) patients alive, alive with chronic complications, and dead, respectively. In a multivariate Cox regression model, it was revealed that the GCS score (odds ratio [OR] 0.816, 95% confidence interval [CI] 0.682-0.976) (P=0.026), hypothermia (OR 168.686, 95% CI 2.685-10,595.977) (P=0.015), and serum creatinine level (OR 4.799, 95% CI 1.321-17.440) (P=0.017) were significant risk factors associated with mortality. The outcomes (mortality rate 34.4%) of the Taiwanese patients subjected to intensive detoxification protocols were comparable with published data from other international poison centers. Furthermore, the analytical results indicate

  17. Effect of ethanol and methanol on growth of ruminal bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens.

    Science.gov (United States)

    Patterson, J A; Ricke, S C

    2015-01-01

    The effect of ethanol and methanol on growth of several ruminal bacterial strains was examined. Ethanol concentrations as low as 0.2% had a significant, but moderate, inhibitory effect on lag time or growth over time and 3.3% ethanol significantly inhibited maximum optical density obtained by both Selenomonas ruminantium and Butyrivibrio fibrisolvens. Little growth of either strain occurred at 10% ethanol concentrations. Methanol concentrations below 0.5% had little effect on either growth or maximum optical density of Selenomonas ruminantium whereas methanol concentrations below 3.3% had little effect on growth or maximum optical density of Butyrivibrio fibrisolvens. Higher methanol concentrations increasingly inhibited growth of both strains and no growth occurred at a 10% methanol concentration. Concentrations of ethanol or methanol used to add hydrophobic compounds to culture media should be kept below 1%.

  18. Use of natural gas, methanol, and ethanol fuel emulsions as environmentally friendly energy carriers for mobile heat power plants

    Science.gov (United States)

    Likhanov, V. A.; Lopatin, O. P.

    2017-12-01

    The need for using environmentally friendly energy carriers for mobile heat power plants (HPPs) is grounded. Ecologically friendly sources of energy, such as natural gas as well as renewable methyl and ethyl alcohols, are investigated. In order to develop, determine, and optimize the composition of environmentally friendly energy carriers for an HPP, the latter has been tested when working on diesel fuel (DF), compressed natural gas (CNG), and methanol and ethanol fuel emulsions (MFE, EFE). It has been experimentally established that, for the application of environmentally friendly energy carriers for a 4Ch 11.0/12.5 diesel engine of a mobile fuel and power plant, it is necessary to maintain the following ratio of components when working on CNG: 80% gas and 20% DF primer portion. When working on an alcohol mixture, emulsions of the following composition were used: 25% alcohol (methanol or ethanol), 0.5% detergent-dispersant additive succinimide C-5A, 7% water, and 67.5% DF. When this diesel passed from oil DF to environmentally friendly energy sources, it allowed for the reduction of the content of exhaust gases (EG) (1) when working on CNG with recirculation of exhaust gases (EGR) (recirculation was used to eliminate the increased amount of nitric oxides by using CNG): carbon black by 5.8 times, carbon dioxide by 45.9%, and carbon monoxide by 23.8%; (2) when working on MFE: carbon black by 6.4 times, nitrogen oxides by 29.6%, carbon dioxide by 10.1%, and carbon oxide by 47.6%; (3) when working on EFE: carbon black by 4.8 times; nitrogen oxides by 40.3%, carbon dioxide by 26.6%, and carbon monoxide by 28.6%. The prospects of use of environmentally friendly energy carriers in diesels of mobile HPPs, such as natural gas, ethanol, and methanol, has been determined.

  19. Generation of gaseous methanol reference standards

    International Nuclear Information System (INIS)

    Geib, R.C.

    1991-01-01

    Methanol has been proposed as an automotive fuel component. Reliable, accurate methanol standards are essential to support widespread monitoring programs. The monitoring programs may include quantification of methanol from tailpipe emissions, evaporative emissions, plus ambient air methanol measurements. This paper will present approaches and results in the author's investigation to develop high accuracy methanol standards. The variables upon which the authors will report results are as follows: (1) stability of methanol gas standards, the studies will focus on preparation requirements and stability results from 10 to 1,000 ppmv; (2) cylinder to instrument delivery system components and purge technique, these studies have dealt with materials in contact with the sample stream plus static versus flow injection; (3) optimization of gas chromatographic analytical system will be discussed; (4) gas chromatography and process analyzer results and utility for methanol analysis will be presented; (5) the accuracy of the methanol standards will be qualified using data from multiple studies including: (a) gravimetric preparation; (b) linearity studies; (c) independent standards sources such as low pressure containers and diffusion tubes. The accuracy will be provided as a propagation of error from multiple sources. The methanol target concentrations will be 10 to 500 ppmv

  20. Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol

    Science.gov (United States)

    Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita

    2017-02-01

    Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.

  1. Aerobic Oxidation of Alcohols over Gold Catalysts: Role of Acid and Base

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; DeLa Riva, Andrew T.; Helveg, Stig

    2008-01-01

    Gold nanoparticles are deposited on potassium titanate nanowires and used as heterogeneous catalysts in the aerobic oxidation of benzyl alcohol in methanol to methyl benzoate at ambient conditions. The presence of a catalytic amount of base promotes the reaction and the formation of free benzoic...

  2. Nontargeted nuclear magnetic resonance (NMR) analysis to detect hazardous substances including methanol in unrecorded alcohol from Novosibirsk, Russia

    OpenAIRE

    Hausler, Thomas; Okaru,  Alex O.; Neufeld, Maria; Rehm, Jürgen; Kuballa, Thomas; Luy, Burkhard; Lachenmeier, Dirk W.

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy was applied to the analysis of alcoholic products in the context of health and safety control. A total of 86 samples of unrecorded alcohol were collected in Novosibirsk and nearby cities in Russia. Sampling was based on interviews with alcohol dependent patients, and unrecorded alcohol thus defined included illegally or informally produced alcoholic products (e.g., counterfeit or home-made alcoholic beverages) or surrogate alcohol in the form of c...

  3. Methanol from biomass: A technoeconomic analysis

    International Nuclear Information System (INIS)

    Stevens, D.J.

    1991-01-01

    Biomass-derived methanol offers significant potential as an alternative transportation fuel. Methanol is cleaner burning and has a lower flame temperature than gasoline. These characteristics can result in lower carbon monoxide and nitrogen oxide emissions when methanol is used as a fuel. Methanol produced from biomass offers potential advantages over that from other sources. When produced from biomass which is subsequently regrown, methanol does not contribute net emissions of carbon dioxide, a greenhouse gas, to the atmosphere. The introduction of alternative fuels will likely be driven by a number of political and economic decisions. The ability of biomass to compete with other resources will be determined in part by the economics of the production systems. In this paper, recent technoeconomic analyses of biomass-methanol systems are presented. The results are compared with methanol production from coal and natural gas

  4. Palladium-catalyzed ring-opening reactions of cyclopropanated 7-oxabenzonorbornadiene with alcohols

    Directory of Open Access Journals (Sweden)

    Katrina Tait

    2016-10-01

    Full Text Available Palladium-catalyzed ring-opening reactions of cyclopropanated 7-oxabenzonorbornadiene derivatives using alcohol nucleophiles were investigated. The optimal conditions were found to be 10 mol % PdCl2(CH3CN2 in methanol, offering yields up to 92%. The reaction was successful using primary, secondary and tertiary alcohol nucleophiles and was compatible with a variety of substituents on cyclopropanated oxabenzonorbornadiene. With unsymmetrical C1-substituted cyclopropanated 7-oxabenzonorbornadienes, the regioselectivity of the reaction was excellent, forming only one regioisomer in all cases.

  5. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Alcinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Shindler, Y.; Tatrtakovsky, L.; Zvirin, Y.

    1998-01-01

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  6. High Yield of Liquid Range Olefins Obtained by Converting i-Propanol over Zeolite H-ZSM-5

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Shunmugavel, Saravanamurugan; Hruby, S.L.

    2009-01-01

    Methanol, ethanol, and i-propanol were converted under methanol-to-gasoline (MTH)-like conditions (400 degrees C, 1-20 bar) over zeolite H-ZSM-5. For methanol and ethanol, the catalyst lifetimes and conversion capacities are comparable, but when i-propanol is used as the reactant, the catalyst...... lifetime is increased dramatically. In fact, the total conversion capacity (calculated as the total amount of alcohol converted before deactivation in g(alcohol)/g(zeolite)) is more than 25 times higher for i-propanol compared to the lower alcohols. Furthermore, when i-propanol is used as the reactant...

  7. Alcohol molecules adsorption on graphane nanosheets - A first-principles investigation

    Science.gov (United States)

    Nagarajan, V.; Chandiramouli, R.

    2018-05-01

    The geometric structure, electronic and adsorption properties of methanol, ethanol and 1-propanol molecules on hydrogenated graphene (graphane) were investigated using first-principles calculations. The stability of graphane base material is confirmed using formation energy and phonon band structures. The adsorption of alcohol molecules on bare graphane and hydrogen vacant graphane nanosheet is found to be prominent and the selectivity of alcohol molecules can be achieved using bare or hydrogen vacant graphane nanosheet. Moreover, the interaction of alcohol molecules on bare and hydrogen vacant graphane nanosheets is studied using the adsorption energy, energy band gap variation, Bader charge transfer and average energy band gap variation. The adsorption energy ranges from -0.149 to -0.383 eV upon alcohol adsorption. The energy gap varies from 4.71 to 2.62 eV for bare graphane and from 4.02 to 3.60 eV for hydrogen vacant graphane nanosheets upon adsorption of alcohol molecules. The adsorption properties of alcohol molecules provide useful information for the possible application of graphane nanosheet as a base material for the detection of alcohol molecules.

  8. A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol

    International Nuclear Information System (INIS)

    Deng, Huichao; Zhang, Yufeng; Zheng, Xue; Li, Yang; Zhang, Xuelin; Liu, Xiaowei

    2015-01-01

    A novel MEA (membrane electrode assembly) structure of passive μ-DMFC (micro-direct methanol fuel cell) controls water management and decreases methanol crossover. The CNT (carbon nanotube) paper replacing CP (carbon paper) as GDL (gas diffusion paper) enhances water back diffusion which passively prevents flooding in the cathode and promotes low methanol crossover. Moreover, the unique structure of CNT paper can also enhance efficiency of oxygen mass transport and catalyst utilization. The passive μ-DMFC with CNT-MEA exhibits significantly higher performance than passive μ-DMFC with CP-MEA and can operate in high methanol concentration, showing the peak power density of 23.2 mW cm −2 . The energy efficiency and fuel utilization efficiency are obviously improved from 11.54% to 22.7% and 36.61%–49.34%, respectively, and the water transport coefficient is 0.47 which is lower than previously reported passive μ-DMFC with CP. - Highlights: • This novel GDL (gas diffusion layer) solves water management and methanol crossover. • This GDL creates a hydraulic pressure in the cathode increasing water back diffusion. • This GDL improves the electrical conductivity and activity of catalyst

  9. Review on utilization of the pervaporation membrane for passive vapor feed direct methanol fuel cell

    International Nuclear Information System (INIS)

    Fauzi, N F I; Hasran, U A; Kamarudin, S K

    2013-01-01

    The Direct Methanol Fuel Cell (DMFC) is a promising portable power source for mobile electronic devices because of its advantages including easy fuel storage, high energy density, low temperature operation and compact structure. In DMFC, methanol is used as a fuel source where it can be fed in liquid or vapor phase. However, the vapor feed DMFC has an advantage over the liquid feed system as it has the potential to have a higher operating temperature to increase the reaction rates and power outputs, to enhance the mass transfers, to reduce methanol crossover, reliable for high methanol concentration and it can increase the fuel cell performance. Methanol vapor can be delivered to the anode by using a pervaporation membrane, heating the liquid methanol or another method that compatible. Therefore, this paper is a review on vapor feed DMFC as a better energy source than liquid feed DMFC, the pervaporation membrane used to vaporize methanol feed from the reservoir and its applications in vapor feed DMFC

  10. BioMeeT. Planning of biomass based methanol energy combine - Trollhaettan region. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brandberg, Aake; Hjortsberg, Hans; Saevbark, Bengt [Ecotraffic R and D AB, Stockholm (Sweden); Ekbom, Tomas; Hjerpe, Carl-Johan; Landaelv, Ingvar [Nykomb Synergetics AB, Stockholm (Sweden)

    2000-04-01

    the region. (7) Bio-alcohols/DME have estimated production costs about 3 times higher than for natural gas-based methanol/DME but below the price of taxed petrol per energy unit on the market in W. Europe today. (8) The taxation of 'green' products or other control means are decisive for the fate of the products on the market and for decisions on biomass-based production projects.

  11. BioMeeT. Planning of biomass based methanol energy combine - Trollhaettan region. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brandberg, Aake; Hjortsberg, Hans; Saevbark, Bengt [Ecotraffic R and D AB, Stockholm (Sweden); Ekbom, Tomas; Hjerpe, Carl-Johan; Landaelv, Ingvar [Nykomb Synergetics AB, Stockholm (Sweden)

    2000-04-01

    region. (7) Bio-alcohols/DME have estimated production costs about 3 times higher than for natural gas-based methanol/DME but below the price of taxed petrol per energy unit on the market in W. Europe today. (8) The taxation of 'green' products or other control means are decisive for the fate of the products on the market and for decisions on biomass-based production projects.

  12. Effects of large volume injection of aliphatic alcohols as sample diluents on the retention of low hydrophobic solutes in reversed-phase liquid chromatography.

    Science.gov (United States)

    David, Victor; Galaon, Toma; Aboul-Enein, Hassan Y

    2014-01-03

    Recent studies showed that injection of large volume of hydrophobic solvents used as sample diluents could be applied in reversed-phase liquid chromatography (RP-LC). This study reports a systematic research focused on the influence of a series of aliphatic alcohols (from methanol to 1-octanol) on the retention process in RP-LC, when large volumes of sample are injected on the column. Several model analytes with low hydrophobic character were studied by RP-LC process, for mobile phases containing methanol or acetonitrile as organic modifiers in different proportions with aqueous component. It was found that starting with 1-butanol, the aliphatic alcohols can be used as sample solvents and they can be injected in high volumes, but they may influence the retention factor and peak shape of the dissolved solutes. The dependence of the retention factor of the studied analytes on the injection volume of these alcohols is linear, with a decrease of its value as the sample volume is increased. The retention process in case of injecting up to 200μL of upper alcohols is dependent also on the content of the organic modifier (methanol or acetonitrile) in mobile phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed.

    Science.gov (United States)

    Patel, Sanjay K S; Singh, Raushan K; Kumar, Ashok; Jeong, Jae-Hoon; Jeong, Seong Hun; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2017-10-01

    Biohythane may be used as an alternative feed for methanol production instead of costly pure methane. In this study, methanol production potential of Methylocella tundrae immobilized through covalent immobilization, adsorption, and encapsulation was evaluated. Cells covalently immobilized on groundnut shells and chitosan showed a relative methanol production potential of 83.9 and 91.6%, respectively, compared to that of free cells. The maximum methanol production by free cells and cells covalently immobilized on groundnut shells and chitosan was 6.73, 6.20, and 7.23mM, respectively, using simulated biohythane as a feed. Under repeated batch conditions of eight cycles, cells covalently immobilized on chitosan and groundnut shells, and cells encapsulated in sodium-alginate resulted in significantly higher cumulative methanol production of 37.76, 31.80, and 25.58mM, respectively, than free cells (18.57mM). This is the first report on immobilization of methanotrophs on groundnut shells and its application in methanol production using biohythane as a feed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Operation characteristic analysis of a direct methanol fuel cell system using the methanol sensor-less control method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y.; Chang, C.L. [Institute of Nuclear Energy Research (INER), Longtan Township, Taoyuan County (China); Sung, C.C. [National Taiwan University (China)

    2012-10-15

    The application of methanol sensor-less control in a direct methanol fuel cell (DMFC) system eliminates most of the problems encountered when using a methanol sensor and is one of the major solutions currently used in commercial DMFCs. This study focuses on analyzing the effect of the operating characteristics of a DMFC system on its performance under the methanol sensor-less control as developed by Institute of Nuclear Energy Research (INER). Notably, the influence of the dispersion of the methanol injected on the behavior of the system is investigated systematically. In addition, the mechanism of the methanol sensor-less control is investigated by varying factors such as the timing of the injection of methanol, the cathode flow rate, and the anode inlet temperature. These results not only provide insight into the mechanism of methanol sensor-less control but can also aid in the improvement and application of DMFC systems in portable and low-power transportation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    Science.gov (United States)

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. Copyright © 2015. Published by Elsevier B.V.

  16. Effect of fumigation methanol and ethanol on the gaseous and particulate emissions of a direct-injection diesel engine

    Science.gov (United States)

    Zhang, Z. H.; Tsang, K. S.; Cheung, C. S.; Chan, T. L.; Yao, C. D.

    2011-02-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with methanol or ethanol injected into the air intake of each cylinder, to compare their effect on the engine performance, gaseous emissions and particulate emissions of the engine under five engine loads at the maximum torque speed of 1800 rev/min. The methanol or ethanol was injected to top up 10% and 20% of the engine loads under different engine operating conditions. The experimental results show that both fumigation methanol and fumigation ethanol decrease the brake thermal efficiency (BTE) at low engine load but improves it at high engine load; however the fumigation methanol has higher influence on the BTE. Compared with Euro V diesel fuel, fumigation methanol or ethanol could lead to reduction of both NOx and particulate mass and number emissions of the diesel engine, with fumigation methanol being more effective than fumigation ethanol in particulate reduction. The NOx and particulate reduction is more effective with increasing level of fumigation. However, in general, fumigation fuels increase the HC, CO and NO 2 emissions, with fumigation methanol leading to higher increase of these pollutants. Compared with ethanol, the fumigation methanol has stronger influence on the in-cylinder gas temperature, the air/fuel ratio, the combustion processes and hence the emissions of the engine.

  17. Why does high pressure destroy co-non-solvency of PNIPAm in aqueous methanol?

    Science.gov (United States)

    de Oliveira, Tiago E; Netz, Paulo A; Mukherji, Debashish; Kremer, Kurt

    2015-11-28

    It is well known that poly(N-isopropylacrylamide) (PNIPAm) exhibits an interesting, yet puzzling, phenomenon of co-non-solvency. Co-non-solvency occurs when two competing good solvents for PNIPAm, such as water and alcohol, are mixed together. As a result, the same PNIPAm collapses within intermediate mixing ratios. This complex conformational transition is driven by preferential binding of methanol with PNIPAm. Interestingly, co-non-solvency can be destroyed when applying high hydrostatic pressures. In this work, using a large scale molecular dynamics simulation employing high pressures, we propose a microscopic picture behind the suppression of the co-non-solvency phenomenon. Based on thermodynamic and structural analysis, our results suggest that the preferential binding of methanol with PNIPAm gets partially lost at high pressures, making the background fluid reasonably homogeneous for the polymer. This is consistent with the hypothesis that the co-non-solvency phenomenon is driven by preferential binding and is not based on depletion effects.

  18. Thermodynamics of R-(+)-2-(4-Hydroxyphenoxy)propanoic Acid Dissolution in Methanol, Ethanol, and Methanol-Ethanol Mixture

    Science.gov (United States)

    Liu, Wei; Ma, Jinju; Yao, Xinding; Fang, Ruina; Cheng, Liang

    2018-05-01

    The solubilities of R-(+)-2-(4-hydroxyphenoxy)propanoic acid (D-HPPA) in methanol, ethanol and various methanol-ethanol mixtures are determined in the temperature range from 273.15 to 323.15 K at atmospheric pressure using a laser detecting system. The solubilities of D-HPPA increase with increasing mole fraction of ethanol in the methanol-ethanol mixtures. Experimental data were correlated with Buchowski-Ksiazczak λ h equation and modified Apelblat equation; the first one gives better approximation for the experimental results. The enthalpy, entropy and Gibbs free energy of D-HPPA dissolution in methanol, ethanol and methanol-ethanol mixtures were also calculated from the solubility data.

  19. Mixed methanol/ethanol on transesterification of waste cooking oil using Mg/Al hydrotalcite catalyst

    International Nuclear Information System (INIS)

    Ma, Yingqun; Wang, Qunhui; Zheng, Lu; Gao, Zhen; Wang, Qiang; Ma, Yuhui

    2016-01-01

    Biodiesel production from waste cooking oil using calcined Mg/Al HT (hydrotalcite) as heterogeneous catalyst was investigated. This study describes the calcined Mg/Al HT prepared under optimal conditions to catalyse waste cooking oil for biodiesel preparation and proposes a plausible catalysis mechanism. The catalysts were characterised by Fourier Transform-Infrared, X-ray diffraction, Thermal Gravity Analysis-Differential thermal gravity and Brunner−Emmet−Teller measurements. Hydrotalcite with Mg/Al ratio of 3:1 showed a uniform mesoporous structure, excellent crystallinity, high surface area (270.5 m 2 /g) and good catalytic activity (at 500 °C calcination). The highest biodiesel yield obtained was 95.2% under optimised conditions of alcohol/oil molar ratio of 6:1, methanol/ethanol molar ratio of 4:2, catalyst content of 1.5%, reaction time of 2.5 h, reaction temperature of 80 °C. Mixed methanol/ethanol showed good synergistic effects as an ester exchange agent, and the catalyst was easily separated and recycled. Therefore, Mg/Al hydrotalcite can effectively catalyse waste cooking oil for biodiesel preparation with mixed methanol/ethanol. - Highlights: • Mg/Al hydrotalcite filtered and stirred with acetone has the better dispersion. • Mg/Al hydrotalcite used as catalyst to prepare biodiesel. • Catalytic mechanism of Mg/Al hydrotalcite was investigated. • Mixed Methanol/Ethanol used as transesterification agent to prepare biodiesel. • Regenerative catalyst was assessed to make catalyst reuse well.

  20. Effects of alcohols on the stability and low-frequency local motions that control the slow changes in structural dynamics of ferrocytochrome c.

    Science.gov (United States)

    Jain, Rishu; Sharma, Deepak; Kumar, Rajesh

    2013-10-01

    To determine the effects of alcohols on the low-frequency local motions that control slow changes in structural dynamics of native-like compact states of proteins, we have studied the effects of alcohols on structural fluctuation of M80-containing Ω-loop by measuring the rate of thermally driven CO dissociation from a natively folded carbonmonoxycytochrome c under varying concentrations of alcohols (methanol, ethanol, 1-propanol, 2-propanol, 3°-butanol, 2,2,2-trifluoroethanol). As alcohol is increased, the rate coefficient of CO dissociation (k(diss)) first decreases in subdenaturing region and then increases on going from subdenaturing to denaturing milieu. This decrease in k(diss) is more for 2,2,2-trifluroethanol and 1-propanol and least for methanol, indicating that the first phase of motional constraint is due to the hydrophobicity of alcohols and intramolecular protein cross-linking effect of alcohols, which results in conformational entropy loss of protein. The thermal denaturation midpoint for ferrocytochrome c decreases with increase in alcohol, indicating that alcohol decrease the global stability of protein. The stabilization free energy (ΔΔG) in alcohols' solution was calculated from the slope of the Wyman-Tanford plot and water activity. The m-values obtained from the slope of ΔΔG versus alcohols plot were found to be more negative for longer and linear chain alcohols, indicating destabilization of proteins by alcohols through disturbance of hydrophobic interactions and hydrogen bonding.

  1. Soil and groundwater remediation guidelines for methanol

    International Nuclear Information System (INIS)

    2010-12-01

    Methanol is used by oil and gas operators to inhibit hydrate formation in the recovery of heavy oils, in natural gas production and transport, as well as in various other production applications. Emissions from methanol primary occur from miscellaneous solvent usage, methanol production, end-product manufacturing, and storage and handling losses. This document provided soil and groundwater remediation guidelines for methanol releases into the environment. The guidelines were consistent with the Alberta Environment tier 1 soil and groundwater framework. The chemical and physical properties of methanol were reviewed. The environmental fate and behavior of methanol releases was discussed, and the behaviour and effects of methanol in terrestrial and aquatic biota were evaluated. The toxicity of methanol and its effects in humans and mammalian species were reviewed. Soil quality and ground water quality guidelines were presented. Surface water and soil guideline calculation methods were provided, and ecological exposure and ground water pathways were discussed. Management limits for methanol concentrations were also provided. 162 refs., 18 tabs., 4 figs.

  2. Facile synthesis of palladium–graphene nanocomposites and their catalysis for electro-oxidation of methanol and ethanol

    International Nuclear Information System (INIS)

    Zhang, Yuting; Shu, Honghui; Chang, Gang; Ji, Kai; Oyama, Munetaka; Liu, Xiong; He, Yunbin

    2013-01-01

    Highlights: • Pd nanoparticles/graphene (PdNPs/graphene) was synthesized within one-step process. • Environment friendly ascorbic acid was chosen as the reductant. • The synthesized PdNPs/graphene shows superior electrocatalytic activity to both methanol and ethanol. • PdNPs/graphene shows superior electrocatalytic stability in methanol and ethanol electro-oxidation. -- Abstract: Well-dispersed Pd nanoparticles (PdNPs) supported on graphene sheets were successfully prepared by a simple one-pot process, in which the reduction of Poly Vingl Pyrrolidone-functionalized graphite oxide and Pd precursor was carried out simultaneously using ascorbic acid as a soft reductant. The Pd nanoparticles decorated graphene composite (PdNPs/PVP-graphene) was characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Morphology and structure characterizations directly showed that Pd nanoparticles with crystallite size of about 8.5 nm were evenly formed on graphene. Catalysis activity as in fuel cells was investigated by further electrochemical experiments including cyclic voltammograms and chronoamperometric measurements. Compared to the commercial Vulcan XC-72 supported Pd nanoparticles, PdNPs/PVP-graphene exhibits superior electrocatalytic activity and stability toward electro-oxidation of alcohols, showing its potential use as new electrode material for direct alcohol fuel cells (DAFCs)

  3. Triboluminescence and associated decomposition of solid methanol

    International Nuclear Information System (INIS)

    Trout, G.J.; Moore, D.E.; Hawke, J.G.

    1975-01-01

    The decomposition is initiated by the cooling of solid methanol through the β → α transiRon at 157.8K, producing the gases hydrogen, carbon monoxide, and methane. The passage through this lambda transition causes the breakup of large crystals of β-methanol into crystallites of α-methanol and is accompanied by light emission as well as decomposition. This triboluminescence is accompanied by, and apparently produced by, electrical discharges through methanol vapor in the vicinity of the solid. The potential differences needed to produce the electrical breakdown of the methanol vapor apparently arise from the disruption of the long hydrogen bonded chains of methanol molecules present in crystalline methanol. Charge separation following crystal deformation is a characteristic of substances which exhibit gas discharge triboluminescence; solid methanol has been found to emit such luminescence when mechanically deformed in the absence of the β → α transition The decomposition products are not produced directly by the breaking up of the solid methanol but from the vapor phase methanol by the electrical discharges. That gas phase decomposition does occur was confirmed by observing that the vapors of C 2 H 5 OH, CH 3 OD, and CD 3 OD decompose on being admitted to a vessel containing methanol undergoing the β → α phase transition. (U.S.)

  4. Is contaminated unrecorded alcohol a health problem in the European Union? A review of existing and methodological outline for future studies.

    Science.gov (United States)

    Lachenmeier, Dirk W; Schoeberl, Kerstin; Kanteres, Fotis; Kuballa, Thomas; Sohnius, Eva-Maria; Rehm, Jürgen

    2011-03-01

    Some European countries with high levels of unrecorded alcohol consumption have anomalously high rates of death attributable to liver cirrhosis. Hepatotoxic compounds in illegally produced spirits may be partly responsible. Based on a review of the evidence on the chemical composition and potential harm from unrecorded alcohol, the Alcohol Measures for Public Health Research Alliance (AMPHORA) project's methodology for identifying, analysing and toxicologically evaluating such alcohols is provided. A computer-assisted literature review concentrated on unrecorded alcohol. Additionally, we refer to our work in the capacity of governmental alcohol control authority and a number of pilot studies. The risk-oriented identification of substances resulted in the following compounds probably posing a public health risk in unrecorded alcohol: ethanol, methanol, acetaldehyde, higher alcohols, heavy metals, ethyl carbamate, biologically active flavourings (e.g. coumarin) and diethyl phthalate. Suggestions on a sampling strategy for identifying unrecorded alcohol that may be most prone to contamination include using probable distribution points such as local farmers and flea markets for selling surrogate alcohol (including denatured alcohol) to focusing on lower socio-economic status or alcohol-dependent individuals, and selecting home-produced fruit spirits prone to ethyl carbamate contamination. Standardized guidelines for the chemical and toxicological evaluation of unrecorded alcohol that will be used in a European-wide sampling and are applicable globally are provided. These toxicological guidelines may also be used by alcohol control laboratories for recorded alcohol products, and form a scientific foundation for establishing legislative limits. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  5. The synthesis of higher alcohols using modified Cu/ZnO/Al@#2@#O@#3@# catalysts

    NARCIS (Netherlands)

    Slaa, J.C.; Slaa, J.C.; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1992-01-01

    This paper gives a review of research work in the synthesis of higher alcohols over catalysts based on Cu/ZnO/Al2O3, emphasizing three main topics: (i) the effect on selectivity of the addition of several compounds to this catalyst, (ii) the effect on selectivity of the reaction conditions used, and

  6. Pt-Si Bifunctional Surfaces for CO and Methanol Electro-Oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia A.; Han, Binghong; Jensen, Jens Oluf

    2015-01-01

    and storage. Here we report on Pt-Si bulk samples prepared by arc-melting, for the first time, with high activities toward the electro-oxidation of CO and methanol. Increasing the Si concentration on the surface was correlated with the shifts of onset oxidation potentials to lower values and higher activities...... for CO and methanol electro-oxidation. It is proposed that the reaction on the Pt-Si catalyst could follow a Langmuir-Hinshelwood type of mechanism, where substantially enhanced catalytic activity is attributed to the fine-tuning of the surface Pt-Si atomic structure....

  7. Characterization and methanol electrooxidation studies of Pt(111)/Os surfaces prepared by spontaneous deposition.

    Science.gov (United States)

    Johnston, Christina M; Strbac, Svetlana; Lewera, Adam; Sibert, Eric; Wieckowski, Andrzej

    2006-09-12

    Catalytic activity of the Pt(111)/Os surface toward methanol electrooxidation was optimized by exploring a wide range of Os coverage. Various methods of surface analyses were used, including electroanalytical, STM, and XPS methods. The Pt(111) surface was decorated with nanosized Os islands by spontaneous deposition, and the Os coverage was controlled by changing the exposure time to the Os-containing electrolyte. The structure of Os deposits on Pt(111) was characterized and quantified by in situ STM and stripping voltammetry. We found that the optimal Os surface coverage of Pt(111) for methanol electrooxidation was 0.7 +/- 0.1 ML, close to 1.0 +/- 0.1 Os packing density. Apparently, the high osmium coverage Pt(111)/Os surface provides more of the necessary oxygen-containing species (e.g., Os-OH) for effective methanol electrooxidation than the Pt(111)/Os surfaces with lower Os coverage (vs e.g., Ru-OH). Supporting evidence for this conjecture comes from the CO electrooxidation data, which show that the onset potential for CO stripping is lowered from 0.53 to 0.45 V when the Os coverage is increased from 0.2 to 0.7 ML. However, the activity of Pt(111)/Os for methanol electrooxidation decreases when the Os coverage is higher than 0.7 +/- 0.1 ML, indicating that Pt sites uncovered by Os are necessary for sustaining significant methanol oxidation rates. Furthermore, osmium is inactive for methanol electrooxidation when the platinum substrate is absent: Os deposits on Au(111), a bulk Os ingot, and thick films of electrodeposited Os on Pt(111), all compare poorly to Pt(111)/Os. We conclude that a bifunctional mechanism applies to the methanol electrooxidation similarly to Pt(111)/Ru, although with fewer available Pt sites. Finally, the potential window for methanol electrooxidation on Pt(111)/Os was observed to shift positively versus Pt(111)/Ru. Because of the difference in the Os and Ru oxophilicity under electrochemical conditions, the Os deposit provides fewer

  8. Methanol-Sensing Property Improvement of Mesostructured Zinc Oxide Prepared by the Nanocasting Strategy

    Directory of Open Access Journals (Sweden)

    Qian Gao

    2013-01-01

    Full Text Available The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, mesostructured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged mesopores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, mesostructured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the nonporous ZnO prepared through conventional coprecipitation approach, mesostructured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice.

  9. Promotion or suppression of glucose isomerization in subcritical aqueous straight- and branched-chain alcohols.

    Science.gov (United States)

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-01-01

    The influence of water-miscible alcohols (methanol, 1-propanol, 2-propanol, and t-butyl alcohol) on the isomerization of glucose to fructose and mannose was investigated under subcritical aqueous conditions (180-200 °C). Primary and secondary alcohols promoted the conversion and isomerization of glucose to afford fructose and mannose with high and low selectivity, respectively. On the other hand, the decomposition (side-reaction) of glucose was suppressed in the presence of the primary and secondary alcohols compared with that in subcritical water. The yield of fructose increased with increasing concentration of the primary and secondary alcohols, and the species of the primary and secondary alcohols tested had little effect on the isomerization behavior of glucose. In contrast, the isomerization of glucose was suppressed in subcritical aqueous t-butyl alcohol. Both the conversion of glucose and the yield of fructose decreased with increasing concentration of t-butyl alcohol. In addition, mannose was not detected in reactions using subcritical aqueous t-butyl alcohol.

  10. Investigation of methanol oxidation on a highly active and stable Pt–Sn electrocatalyst supported on carbon–polyaniline composite for application in a passive direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Mitra [Department of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Kazemeini, Mohammad [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Hamedanian, Mahboobeh [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Pahlavanzadeh, Hassan [Department of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Gharibi, Hussein, E-mail: h.gharibi@utah.edu [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Department of Material Science & Engineering, 122 S Campus Drive, University of Utah, Salt Lake City, UT 84112 (United States)

    2015-08-15

    Highlights: • PtSn/C-PANI performed superior in the MOR compared with a commercial PtRu/C. • Catalytic activity of PtRu/C was highly reduced during the accelerated durability test. • Anode of the PtSn/C-PANI in a passive DMFC lowered methanol crossover by 30%. - Abstract: Polyaniline fiber (PANI) was synthesized and utilized to fabricate a vulcan–polyaniline (C-PANI) composite. Pt/C-PANI and PtSn/C-PANI electro-catalysts with different Pt:Sn atomic ratios were prepared by the impregnation method. These electro-catalysts, along with commercial PtRu/C (Electrochem), were characterized with respect to their structural and electrochemical properties in methanol oxidation reaction (MOR). PtSn(70:30)/C-PANI showed excellent performance in MOR, the obtained maximum current density being about 40% and 50% higher than that for PtRu/C and Pt/C-PANI, respectively. It was also found that the CO tolerance and stability of PtSn(70:30)/C-PANI was considerably higher than that of PtRu/C. Finally, the performance of these two materials was compared in a passive direct methanol fuel cell (DMFC). The DMFC test results demonstrated that the membrane electrode assembly (MEA) prepared using PtSn(70:30)/C-PANI anode catalyst performed more satisfactorily in terms of maximum power density and lower methanol crossover.

  11. Thermochemistry of the solution of β-alanine in (H2O + alcohol) mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Smirnov, Valeriy I.; Badelin, Valentin G.

    2013-01-01

    Highlights: • Enthalpies of β-alanine dissolution have been measured in aqueous solution of MeOH, EtOH, 1-PrOH and 2-PrOH. • Measured data were reported as functions of composition of water + alcohol mixtures. • Enthalpy coefficients of pairwise interactions have been analyzed in terms of McMillan–Mayer theory. - Abstract: The enthalpies of the solution of β-alanine in H 2 O + (methanol, ethanol, 1-propanol and 2-propanol) mixtures with alcohol content up to 0.4 mol fractions, have been determined calorimetrically at T = 298.15 K. The standard enthalpies of the solution and transfer of β-alanine from water to aqueous alcohol have been calculated. The effect of structure properties of a mixed solvent on specified enthalpy characteristics of β-alanine is discussed. The enthalpy coefficients of pairwise interactions between β-alanine and alcohol molecules have been computed. It has been found that these coefficients become increasingly positive in methanol, ethanol, 1-propanol, and 2-propanol sequence. A comparative analysis of thermodynamic characteristics of dissolution of β-alanine and D,L-α-alanine in the mixtures studied has been made

  12. Importance of alcohol-related expectations and emotional expressivity for prediction of motivation to refuse alcohol in alcohol-dependent patients.

    Science.gov (United States)

    Slavinskienė, Justina; Žardeckaitė-Matulaitienė, Kristina

    2014-01-01

    The aim of this study was to evaluate the importance of alcohol-dependent patients' emotional expressivity, alcohol-related expectations and socio-demographic factors for prediction of motivation to refuse alcohol consumption. The study sample consisted of 136 alcohol-dependent patients (100 men and 36 women) undergoing treatment in Kaunas center for addictive disorders. Only higher expression of negative alcohol-related expectations (std. beta=0.192, P=0.023), higher emotional impulse intensity (std. beta=0.229, P=0.021) and higher expression of positive emotional expressiveness (std. beta=0.021, P=0.020) as well as gender (std. beta=0.180, P=0.049), education (std. beta=-0.137, P=0.038) and alcohol dependency treatment conditions (members of support group after rehabilitation program) (std. beta=0.288, P=0.001; std. beta=0.608, P=0.001) were significant factors for predicting the different level of alcohol-dependent patients motivation to refuse alcohol consumption. Negative alcohol-related expectations, emotional impulse intensity and positive emotional expressiveness were significant even though quite weak triggers for alcohol-dependent patients' different level of motivation to refuse alcohol consumption. An assumption could be made that by changing these triggers it is possible to change addictive behavior. Copyright © 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Ahmed, Maaz S.

    Development of aerobic oxidation methods is of critical importance for the advancement of green chemistry, where the only byproduct produced is water. Recent work by our lab has produced an efficient Pd based heterogenous catalyst capable of preforming the aerobic oxidation of a wide spectrum of alcohols to either carboxylic acid or methyl ester. The well-defined catalyst PdBi 0.35Te0.23/C (PBT/C) catalyst has been shown to can perform the aerobic oxidation of alcohols to carboxylic acids in basic conditions. Additionally, we explored this catalyst for a wide range of alcohols and probed the nature of the selectivity of PBT/C for methyl esterification over other side products. Finally, means by which the catalyst operates with respect to oxidation states of the three components, Pd, Bi, and Te, was probed. Carboxylic acids are an important functional group due to their prevalence in various pharmaceutically active agents, agrochemicals, and commodity scale chemicals. The well-defined catalyst PBT/C catalyst was discovered to be effective for the oxidation of a wide spectrum of alcohols to carboxylic acid. The demonstrated substrate scope and functional group tolerance are the widest reported for an aerobic heterogeneous catalyst. Additionally, the catalyst has been implemented in a packed bed reactor with quantitative yield of benzoic acid maintained throughout a two-day run. Biomass derived 5-(hydroxymethyl)furfural (HMF) is also oxidized to 2,5-furandicarboxylic acid (FDCA) in high yield. Exploration of PBT/C for the oxidative methyl esterification was found to exhibit exquisite selectivity for the initial oxidation of primary alcohol instead of methanol, which is the bulk solvent. We explored this selectivity and conclude that it results from various substrate-surface interactions, which are not attainable by methanol. The primary alcohol can outcompete the methanol for binding on the catalyst surface through various interactions between the side chain of the

  14. Biodiesel production from triolein and short chain alcohols through biocatalysis.

    Science.gov (United States)

    Salis, Andrea; Pinna, Marcella; Monduzzi, Maura; Solinas, Vincenzo

    2005-09-29

    Oleic acid alkyl esters (biodiesel) were synthesised by biocatalysis in solvent-free conditions. Different commercial immobilised lipases, namely Candida antarctica B, Rizhomucor miehei, and Pseudomonas cepacia, were tested towards the reaction between triolein and butanol to produce butyl oleate. Pseudomonas cepacia lipase resulted to be the most active enzyme reaching 100% of conversion after 6h. Different operative conditions such as reaction temperature, water activity, and reagent stoichiometric ratio were investigated and optimised. These conditions were then used to investigate the effect of linear and branched short chain alcohols. Methanol and 2-butanol were the worst alcohols: the former, probably, due to its low miscibility with the oil and the latter because secondary alcohols usually are less reactive than primary alcohols. Conversely, linear and branched primary alcohols with short alkyl chains (C(2)--C(4)) showed high reaction rate and conversion. A mixture of linear and branched short chain alcohols that mimics the residual of ethanol distillation (fusel oil) was successfully used for oleic acid ester synthesis. These compounds are important in biodiesel mixtures since they improve low temperature properties.

  15. Determination of Ethyl Glucuronide in Hair for Detection of Alcohol Consumption in Patients After Liver Transplantation.

    Science.gov (United States)

    Andresen-Streichert, Hilke; von Rothkirch, Gregor; Vettorazzi, Eik; Mueller, Alexander; Lohse, Ansgar W; Frederking, Dorothea; Seegers, Barbara; Nashan, Bjoern; Sterneck, Martina

    2015-08-01

    Early detection of alcohol misuse in orthotopic liver transplantation recipients is essential to offer patients support and prevent organ damage. Here, ethyl glucuronide, a metabolite of ethanol found in hair (hEtG), was evaluated for detection of alcohol consumption. In 104 transplant recipients, 31 with underlying alcoholic liver disease (ALD) and 73 with non-ALD, hEtG was determined in addition to the alcohol markers urine EtG, blood ethanol, methanol, and carbohydrate-deficient transferrin. Results were compared with patients' self-reports in a questionnaire and with physicians' assessments. By physicians' assessments, 22% of the patients were suspected of consuming alcohol regularly, although only 6% of the patients acknowledged consumption of a moderate or high amount of alcohol. By testing all markers except for hEtG, alcohol consumption was detected in 7% of the patients. When hEtG testing was added to the assessment, consumption was detected in 17% of the patients. Hair-EtG determination alone revealed chronic alcohol consumption of >10 g/d in 15% of the patients. ALD patients had a positive hEtG result significantly more often than non-ALD patients did (32% versus 8%; P = 0.003). Also, the concentration of hEtG was higher in ALD patients (P = 0.049) and revealed alcohol abuse with consumption of >60 g ethanol per day in 23% of ALD and 3% of non-ALD patients. Patients' self-reports and physicians' assessments had a low sensitivity of 27% and 67%, respectively, for detecting regular alcohol intake as indicated by hEtG. Hair-EtG determination improved the detection of liver transplant patients who used alcohol, and revealed regular alcohol consumption in 32% of ALD and 8% of non-ALD patients.

  16. Pt and PtRu nanoparticles supported on N-doped carbons as electrocatalysts for methanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Viviane Santos; Silva, Julio Cesar Martins; Oliveira Neto, Almir; Spinace, Estevam Vitorio, E-mail: viviane_sp_saopaulo@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Methanol is a liquid transportation fuel that can be produced from fossil or renewable resources. Fuel cells employing methanol directly as fuel (Direct Methanol Fuel Cell - DMFC) are very attractive as power source for portable, mobile and stationary applications [1]. PtRu/C electrocatalyst has been considered the best electrocatalyst for methanol electro-oxidation, however, its performance is strongly dependent on the method of preparation and on the characteristics of the carbon support. N-doped carbons with different N contents (1, 2 and 5 wt%) were prepared by thermal treatment of carbon with urea at 800 deg C. Pt and PtRu nanoparticles were supported on N-doped carbons by coreduction of Pt(IV) and Ru(III) ions using an alcohol-reduction process [2]. The obtained materials were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction, Transmission electron microscopy and Cyclic Voltammetry. Pt and PtRu nanoparticles supported on N-doped carbons showed superior performance for methanol electro-oxidation when compared to the materials supported on non-modified carbon and to Pt/C and PtRu/C commercial electrocatalysts. Pt/C and PtRu/C prepared with the carbon modified with 2.5 wt% of N content showed the best activities. (author) [1] Y. Zhou, K. Neyerlin, T.S. Olson, S. Pylypenko, J. Bult, H.N. Dinh, T. Gennett, Z. Shao and R. O'Hayre, Energy Environ. Sci. 3, 1437 (2010); [2] E.V. Spinace, A.Oliveira Neto, T.R.R. Vasconcellos, M. Linardi, J. Power Sources 137, 17 (2004)

  17. Ultraviolet light assisted extraction of flavonoids and allantoin from aqueous and alcoholic extracts of Symphytum officinale.

    Science.gov (United States)

    Al-Nimer, Marwan S M; Wahbee, Zainab

    2017-01-01

    Symphytum officinale (comfrey) is a medicinal plant commonly used in decoction and to treat ailments. It protects the skin against ultraviolet (UV)-irradiation. UV irradiation may induce variable effects on the constituents of herbal extracts and thereby may limit or improve the advantages of using these extracts as medicinal supplements. This study aimed to assess the effect of UV radiations including UV-A, UV-B, and UV-C on the constituents of S. officinale aqueous and alcoholic extracts. Comfrey extracts (1% w/v) were prepared using distilled water, ethanol, and methanol. They were exposed to wavelengths of UV-A, UV-B, and UV-C for 10 min. The principal peak on the UV-spectroscopy scanning, the flavonoids, reducing power, and the allantoin levels were determined before and after irradiation. UV irradiation reduces the magnitude of the principle peak at 355 nm wavelength of the aqueous infusion and methanol extracts. It improves the levels of flavonoids and reducing power of the aqueous extracts and increases the levels of allanotoin in aqueous and methanol extracts. UV-radiation enhances the yields of active ingredient of comfrey extracted with methanol, whereas improves the flavonoids, reducing power, and allantoin levels of comfrey extracted by the aqueous infusion method. UV-radiation reduces the levels of flavonoids, reducing power and allantoin when the comfrey extracted by alcohols.

  18. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Dongwook; Kim, Sang-Yong; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2016-10-01

    Raw biogas can be an alternative feedstock to pure methane (CH4) for methanol production. In this investigation, we evaluated the methanol production potential of Methylosinus sporium from raw biogas originated from an anaerobic digester. Furthermore, the roles of different gases in methanol production were investigated using synthetic gas mixtures of CH4, carbon dioxide (CO2), and hydrogen (H2). Maximum methanol production was 5.13, 4.35, 6.28, 7.16, 0.38, and 0.36mM from raw biogas, CH4:CO2, CH4:H2, CH4:CO2:H2, CO2, and CO2:H2, respectively. Supplementation of H2 into raw biogas increased methanol production up to 3.5-fold. Additionally, covalent immobilization of M. sporium on chitosan resulted in higher methanol production from raw biogas. This study provides a suitable approach to improve methanol production using low cost raw biogas as a feed containing high concentrations of H2S (0.13%). To our knowledge, this is the first report on methanol production from raw biogas, using immobilized cells of methanotrophs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Khalid Khazzal Hummadi

    2009-06-01

    Full Text Available The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK, 10 atm (1013 kPa, with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a commercial catalyst; maximum selectivity (82.3% was obtained at 573oK when the conversion was 59.7%. Catalysts prepared by reacting iron (III and molybdate by kneading or precipitation followed by evaporation, omitting a filtration stage, were less active and less selective. The selectivity-activity relationships of these catalysts as a function of temperature were discussed in relation to the method of preparation, surface areas and composition. By combing this catalytic data with data from the patent literature we demonstrate a synergy between iron and molybdenum in regard to methanol oxidation to formaldehyde; the optimum composition corresponded to an iron mole fraction 0.2-0.3. The selectivity to formaldehyde was practically constant up to an iron mole fraction 0.3 and then decreased at higher iron concentrations. The iron component can be regarded as the activity promoter. The iron molybdate catalysts can thus be related to other two-component MoO3-based selective oxidation catalysts, e.g. bismuth and cobalt molybdates. The iron oxide functions as a relatively basic oxide abstracting, in the rate-controlling step, a proton from the methyl of a bound methoxy group of chemisorbed methanol. It was proposed that a crucial feature of the sought after iron(III molybdate catalyst is the presence of -O-Mo-O-Fe-O-Mo-O- groups as found in the compound Fe2(MoO43 and for Fe3+ well dispersed in MoO3 generally. At the higher iron(III concentrations the loss of

  20. Could the high level of cirrhosis in central and eastern Europe be due partly to the quality of alcohol consumed? An exploratory investigation.

    Science.gov (United States)

    Szucs, Sándor; Sárváry, Attila; McKee, Martin; Adány, Róza

    2005-04-01

    The burden of alcohol-related diseases differs widely among countries. Since the 1980s, a band of countries in Central and Eastern Europe have experienced a steep rise in deaths from chronic liver diseases and cirrhosis. A possible risk factor is the consumption of illegally produced home-made spirits in these countries containing varying amounts of aliphatic alcohols and which may be hepatotoxic. However, little is known about the composition of such beverages. To compare the concentration of short-chain aliphatic alcohols in spirits from illegal and legal sources in Hungary. Samples taken from commercial retailers and illegal sources were collected and their aliphatic patterns and alcohol concentrations were determined by gas chromatographic/mass spectrometric (GC/MS) analysis. The concentrations of methanol, isobutanol, 1-propanol, 1-butanol, 2-butanol and isoamyl alcohol were significantly higher in home-made spirits than those of from commercial sources. The results suggest that the consumption of home-made spirits is an additional risk factor for the development of alcohol-induced cirrhosis and may have contributed to high level of liver cirrhosis mortality in Central and Eastern Europe. Restrictions on supply and sale of alcohol from illicit sources are needed urgently to reduce significantly the mortality from chronic liver disease.

  1. Pulse radiolysis study on temperature and pressure dependence of the yield of solvated electron in methanol from room temperature to supercritical condition

    International Nuclear Information System (INIS)

    Han, Zhenhui; He, Hui; Lin, Mingzhang; Muroya, Yusa; Katsumura, Yosuke

    2012-09-01

    A new concept of nuclear reactor, supercritical water-cooled reactor (SCWR), has been proposed, which is based on the success of the use of supercritical water (SCW) in fossil fuel power plants for more than three decades. This new concept reactor has advantages of higher thermal conversion efficiency, simplicity in structure, safety, etc, and it has been selected as one of the reactor concepts for the next generation nuclear reactor systems. In these reactors, the same as in boiling water reactors (BWR) and pressurized water reactors (PWR), water is used not only as a coolant but also as a moderator. It is very important to understand the behavior of the radiolysis products of water under the supercritical condition, since the water is exposed to a strong radiation field under very high temperature condition. Usually, in order to predict the concentrations of water decomposition products with carrying out some kinds of computer simulations, knowledge of the temperature and/or pressure dependent G-values (denoting the experimentally measured radiolytic yields) as well as of the rate constants of a set of reactions becomes very important. Therefore, in recent years, two groups from Argonne National Laboratory and The University of Tokyo, simultaneously conducted two projects aimed at obtaining basic data on radiolysis of SCW. However, it is still lack of reliable radiolytic yields of water decomposition products in very high temperature region. As we known, the properties of solvated electrons in polar liquid are very helpful for our understanding how they play a central role in many processes, such as solvation and reducing reactions. The solvated electron can also be used as a probe to determine the dynamic nature of the polar liquid systems. Comparing to water, the primary alcohols have much milder critical points, for example, for water and methanol, the critical temperature and pressure are 374 deg. C and 22.1 MPa and 239.5 deg. C and 8.1 MPa, respectively

  2. Tooth Decay in Alcohol Abusers Compared to Alcohol and Drug Abusers

    Directory of Open Access Journals (Sweden)

    Ananda P. Dasanayake

    2010-01-01

    Full Text Available Alcohol and drug abuse are detrimental to general and oral health. Though we know the effects of these harmful habits on oral mucosa, their independent and combined effect on the dental caries experience is unknown and worthy of investigation. We compared 363 “alcohol only” abusers to 300 “alcohol and drug” abusers to test the hypothesis that various components of their dental caries experience are significantly different due to plausible sociobiological explanations. After controlling for the potential confounders, we observe that the “alcohol and drug” group had a 38% higher risk of having decayed teeth compared to the “alcohol only” group (<.05. As expected, those who belonged to a higher social class (OR=1.98; 95%  CI=1.43–2.75 and drank wine (OR=1.85; 95%  CI=1.16–2.96 had a higher risk of having more filled teeth. We conclude that the risk of tooth decay among “alcohol only” abusers is significantly lower compared to “alcohol and drug” abusers.

  3. Enhanced Methanol Production in Plants Provides Broad Spectrum Insect Resistance

    Science.gov (United States)

    Dixit, Sameer; Upadhyay, Santosh Kumar; Singh, Harpal; Sidhu, Om Prakash; Verma, Praveen Chandra; K, Chandrashekar

    2013-01-01

    Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR) and spectra showed up to 16 fold higher methanol as compared to control wild type (WT) plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid) and Bemisia tabaci (whitefly), respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants. PMID:24223989

  4. Enhanced methanol production in plants provides broad spectrum insect resistance.

    Directory of Open Access Journals (Sweden)

    Sameer Dixit

    Full Text Available Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR and spectra showed up to 16 fold higher methanol as compared to control wild type (WT plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid and Bemisia tabaci (whitefly, respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants.

  5. Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cell (DMFC)

    International Nuclear Information System (INIS)

    Cho, Ki-Yun; Eom, Ji-Yong; Jung, Ho-Young; Choi, Nam-Soon; Lee, Yong Min; Park, Jung-Ki; Choi, Jong-Ho; Park, Kyung-Won; Sung, Yung-Eun

    2004-01-01

    For direct methanol fuel cell, blends of vinylidene fluoride-hexafluoropropylene copolymer (P(VdF-co-HFP)) and Nafion were prepared the different equivalent weight of Nafion. The investigations of the blend morphology were performed by means of permeability test, uptake measurement, differential-scanning calorimetry (DSC), and scanning electron microscopy. In the blend membranes, many pores were created as the content of Nafion in blend increased. Then, the methanol uptake was sharply increased. But the methanol permeability was not sharply increased because the methanol permeation through blend membranes is diffusion-controlled process. The methanol permeability of N10 (low equivalent weight) series was similar to that of N11 series (high equivalent weight). The proton conductivity of N10 series was around one and a half times higher than that of N11 series. The cell performance of the blend was much enhanced when the equivalent weight of Nafion was 1000

  6. Thermal stability of biodiesel in supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hiroaki Imahara; Eiji Minami; Shusaku Hari; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science

    2008-01-15

    Non-catalytic biodiesel production technologies from oils/fats in plants and animals have been developed in our laboratory employing supercritical methanol. Due to conditions in high temperature and high pressure of the supercritical fluid, thermal stability of fatty acid methyl esters and actual biodiesel prepared from various plant oils was studied in supercritical methanol over a range of its condition between 270{sup o}C/17 MPa and 380{sup o}C/56 MPa. In addition, the effect of thermal degradation on cold flow properties was studied. As a result, it was found that all fatty acid methyl esters including poly-unsaturated ones were stable at 270{sup o}C/17 MPa, but at 350{sup o}C/43 MPa, they were partly decomposed to reduce the yield with isomerization from cis-type to trans-type. These behaviors were also observed for actual biodiesel prepared from linseed oil, safflower oil, which are high in poly-unsaturated fatty acids. Cold flow properties of actual biodiesel, however, remained almost unchanged after supercritical methanol exposure at 270{sup o}C/17 MPa and 350{sup o}C/43 MPa. For the latter condition, however, poly-unsaturated fatty acids were sacrificed to be decomposed and reduced in yield. From these results, it was clarified that reaction temperature in supercritical methanol process should be lower than 300{sup o}C, preferably 270{sup o}C with a supercritical pressure higher than 8.09 MPa, in terms of thermal stabilization for high-quality biodiesel production. 9 refs., 3 figs., 4 tabs.

  7. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    Science.gov (United States)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  8. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Science.gov (United States)

    Wang, Rongrong; Qi, Liang; Xie, Xiaofeng; Ding, Qingqing; Li, Chunwen; Ma, ChenChi M.

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system.

  9. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongrong; Li, Chunwen [Department of Automation, Tsinghua University, Beijing 100084 (China); Qi, Liang; Xie, Xiaofeng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Ding, Qingqing [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Ma, ChenChi M. [National Tsing Hua University, Hsinchu 300 (China)

    2008-12-01

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system. (author)

  10. Alcohol-induced changes in the brain as assessed by MRI and CT

    Energy Technology Data Exchange (ETDEWEB)

    Geibprasert, Sasikhan [University of Toronto, Hospital for Sick Children, Division of Neuroradiology, Department of Diagnostic Imaging, Toronto, ON (Canada); Gallucci, Massimo [University Hospital ' ' S. Salvatore' ' , Division of Neuroradiology, Department of Diagnostic Imaging, L' Aquila (Italy); Krings, Timo [University of Toronto, Toronto Western Hospital, Division of Neuroradiology, Department of Medical Imaging, Toronto, ON (Canada)

    2010-06-15

    This review provides an overview of structural magnetic resonance imaging and computed tomography findings of direct and indirect alcohol-related toxic effects on the brain. In addition to ethanol-related changes to the brain, this article will also describe imaging findings in the acute setting of methanol and ethylene glycol poisoning. Alcohol will lead to brain atrophy, osmotic myelinolysis, Marchiafava-Bignami disease and, especially when related to malnutrition, may also cause Wernicke encephalopathy. Brain atrophy can be reversible if alcohol abuse is stopped. If not treated, Wernicke encephalopathy can lead to coma and death and an early diagnosis is important for immediate initiation of thiamine substitution. As clinical symptoms are often unspecific, the radiologist plays an important role in the detection of alcohol abuse and its related clinical conditions. (orig.)

  11. Alcohol-induced changes in the brain as assessed by MRI and CT

    International Nuclear Information System (INIS)

    Geibprasert, Sasikhan; Gallucci, Massimo; Krings, Timo

    2010-01-01

    This review provides an overview of structural magnetic resonance imaging and computed tomography findings of direct and indirect alcohol-related toxic effects on the brain. In addition to ethanol-related changes to the brain, this article will also describe imaging findings in the acute setting of methanol and ethylene glycol poisoning. Alcohol will lead to brain atrophy, osmotic myelinolysis, Marchiafava-Bignami disease and, especially when related to malnutrition, may also cause Wernicke encephalopathy. Brain atrophy can be reversible if alcohol abuse is stopped. If not treated, Wernicke encephalopathy can lead to coma and death and an early diagnosis is important for immediate initiation of thiamine substitution. As clinical symptoms are often unspecific, the radiologist plays an important role in the detection of alcohol abuse and its related clinical conditions. (orig.)

  12. ONLINE SINGLE-COLUMN CAPILLARY GAS-CHROMATOGRAPHIC ANALYSIS OF ALL REACTANTS AND PRODUCTS IN THE SYNTHESIS OF FUEL METHANOL FROM HYDROGEN AND OXIDES OF CARBON

    NARCIS (Netherlands)

    MARSMAN, JH; BREMAN, BB; BEENACKERS, AACM

    The main problems with complete analysis of the components of fuel methanol, or in Fischer-Tropsch studies, are the several classes of compound present in the sample (permanent gases, water, alcohols, hydrocarbons), its wide range of components, its boiling point range, and the wide range of

  13. Intensity of f-f bands of neodymium chloride alcohol solvates

    International Nuclear Information System (INIS)

    Bukietynska, K.; Jezowski-Trzebiatowska, B.; Keller, B.

    1981-01-01

    Recent results revealed that in alcohol solutions of lanthanide chlorides, at least in the case of Eu 3+ and Yb 3+ ions, there exist mixed solvates, i.e. both chloride ions and solvent molecules are present in the Ln 3+ ion first coordination sphere. This conclusion was drawn from an analysis of the charge transfer transitions in the spectra of Eu 3+ and Yb 3+ chlorides in alcohols (methyl, ethyl, n-propyl), where two separate C.T.bands were observed and identified as C.T. transitions from the alcohol molecule and chloride ion to the Ln 3+ ion. In our previous paper we have reported that the energy of the first f-d transition in the Pr 3+ chloride alcohol solvates varied for different alcohols. These data also confirmed our suggestion that alcohol molecules are present in the first coordination sphere of the lanthanide ion. In the work reported here, we have tried to apply the intensity analysis method to the solution spectra of neodymium chloride dissolved in simple aliphatic alcohols like methanol, ethanol and n-propanol. Experimental details are given. Results are presented and discussed. (author)

  14. Methanol Induced Toxic Amblyopia--A Case Report.

    Science.gov (United States)

    Khan, A H; Rahaman, M F; Mollah, R I; Alam, A; Hassan, S N; Chowdhury, M A

    2016-01-01

    A 28-year-old man, smoker having history of occasional alcohol intake--was admitted in the Department of Medicine, Bangabandhu Sheikh Mujib Medical University (BSMMU) with gradual diminution of vision in both eyes 10 days after consumption of homemade alcoholic beverage in a wedding ceremony. His initial acuity of vision was limited to no perception of light in right eye and hand movement in left eye. Fundus examination revealed pale optic discs in both eyes. The patient was treated with Injection Methylprednisolone 1000 mg intravenous slowly over 1 hour for 3 consecutive days. This was followed by oral prednisolone 60 mg daily for 14 days and then gradually tapered over 4 weeks. The patient also received Injection Hydroxycobalamine and Injection Folinic Acid for 2 weeks. On the 3rd day of treatment there was perception of light in the right eye and on the 10th day the visual acuity improved to hand movement. In the left eye, the visual acuity gradually improved to 6/60 on 3rd day and on 10th day improved to 6/24. Four weeks later, the visual acuity had recovered in both eyes to 6/18. Combination of intravenous and oral steroid along with vitamin B1 and folinic acid has been found effective in treating severe methanol induced optic neuropathy.

  15. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    International Nuclear Information System (INIS)

    Fauzi, N F I; Hasran, U A; Kamarudin, S K

    2015-01-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell. (paper)

  16. The removal of dimethyl phthalate (DMP) from contaminated water by advanced oxidation processes in the presence of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Al-Tawabini, B.S. [Research Inst., King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2003-07-01

    A bench-scale laboratory study was conducted to investigate the effect of alcohol (i.e. methanol) presence on the removal efficiency of phthalates from water using Fenton's reagent and UV/H{sub 2}O{sub 2} process. Dimethyl phthalate (DMP) was selected as a target compound. In one batch of experiments, only DMP was spiked into pure water, while in the other batch, DMP was initially dissolved in methanol prior to spiking into water samples. A UV lamp of 100 m Watt emitting at a wavelength of approximately 254 nm was used to provide the radiation. Temperature and pH conditions were kept constant at 25 C and 3, respectively. The results showed that Fenton's reagent was effective in reducing the concentration of DMP in water in the absence of the methanol. More than 90% of DMP was removed within 45 minutes at hydrogen peroxide (H{sub 2}O{sub 2}) and ferrous ion (Fe{sup 2+}) concentrations of 1.0 and 0.4 mM respectively. However, Fenton's reagent failed to do so in the presence of methanol. On the other hand, results showed that UV/H{sub 2}O{sub 2} system was effective in removing DMP from both pure, as well as methanol-spiked water. The results clearly indicated that UV radiation plays a fundamental role in the degradation of the target compound. (orig.)

  17. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well.

  18. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    Directory of Open Access Journals (Sweden)

    Yi-Man Lo

    2011-02-01

    Full Text Available Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM, with the relevant parameters optimized as well.

  19. Children of alcoholics

    Directory of Open Access Journals (Sweden)

    Robert Oravecz

    2002-09-01

    Full Text Available The author briefly interprets the research – results, referring to the phenomenon of children of alcoholics, especially the psychological and psychopathological characteristics of children of alcoholics in adolescence and young adulthood. The author presents a screening study of adolescents. The sample contains 200 high school students at age 18. The aim of the survey was to discover the relationship between alcohol consumption of parents, PTSD - related psychopathological symptoms and reported life quality of their children. The study confirmed the hypothesis about a substantial correlation between high alcohol consumption of parents, higher psychopathological symptom - expression and lower reported life quality score of their children. Higher PTSD-related symptomatology in children of alcoholics is probably resulted by home violence, which is very often present in family of alcoholics. The article also evaluated the results regarding suicide ideation of children of alcoholics, which is definitely more frequent and more intense than in their peers living in non alcohol – dependent families.

  20. Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts

    International Nuclear Information System (INIS)

    Wu, Dengfeng; Cheng, Daojian

    2015-01-01

    A core/shell AgNi/PtAgNi nanoparticle (NP) was synthesized via a new seed-mediated growth method in organic solvent medium. The as-synthesized AgNi/PtAgNiNP exhibits an AgNi core coated with PtAgNi shell, which was confirmed by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The AgNi/PtAgNiNPs/C catalyst possesses higher oxygen reduction reaction (ORR) activity and better durability compared with the commercial Pt/C catalyst. It is found that the ORR polarization curve of the AgNi/PtAgNiNPs/C catalyst shows an onset potential of 0.91 V vs. RHE, which is superior to the commercial Pt/C (0.88 V vs. RHE). In addition, the AgNi/PtAgNiNPs/C catalyst shows much better durability than the commercial Pt/C catalyst. More interestingly, the AgNi/PtAgNiNPs/C catalyst displays much higher methanol tolerance than the commercial Pt/C catalyst in 0.1 M KOH solution in the presence of 0.5 M methanol. Our results show that core/shell AgNi/PtAgNiNPs possess selective activity for ORR even in the presence of methanol, showing potential application as methanol-tolerant cathode catalysts in direct methanol fuel cells.

  1. Coadsorbed species explain the mechanism of methanol temperature-desorption on CeO2(111)

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jonathan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steven H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Beste, Ariana [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-24

    Here, we have used density functional theory calculations to investigate the temperature-programmed desorption (TPD) of methanol from CeO2(111). For the first time, low-temperature water formation and high-temperature methanol desorption are explained by our calculations. High coverages of methanol, which correspond to experimental conditions, are required to properly describe these features of the TPD spectrum. We identify a mechanism for the low-temperature formation of water involving the dissociation of two methanol molecules on the same surface O atom and filling of the resulting surface vacancy with one of the methoxy products. After water desorption, methoxy groups are stabilized on the surface and react at higher temperatures to form methanol and formaldehyde by a disproportionation mechanism. Alternatively, the stabilized methoxy groups undergo sequential C–H scission reactions to produce formaldehyde. Calculated energy requirements and methanol/formaldehyde selectivity agree with the experimental data.

  2. Conversion of methane to methanol in an ac dielectric barrier discharge

    International Nuclear Information System (INIS)

    Aghamir, F M; Matin, N S; Jalili, A H; Esfarayeni, M H; Khodagholi, M A; Ahmadi, R

    2004-01-01

    A dielectric barrier discharge (DBD) has been used to investigate the conversion of methane to methanol and higher hydrocarbons in ac non-equilibrium plasmas. Experiments were carried out at atmospheric pressure and ambient temperature. A non-equilibrium plasma was generated in a DBD reactor by applying a high voltage to the reactor electrodes. Activation of methane molecules led to the production of C 2 hydrocarbons and methanol. The effect of the applied voltage, residence time and feed mixture such as helium and oxygen on the methane conversion and product selectivity was studied. Helium appears to have no effect on the conversion and selectivity at our applied voltages. The methane conversion increases significantly on introduction of oxygen in the feed stream. Inclusion of oxygen leads to the formation of methanol. Our results show that production of methanol is initiated around an applied voltage of 12 kV and the conversion of methane increases with increasing voltage and residence time, while the product selectivity is independent of the applied voltage

  3. Utilization of methanol for polymer electrolyte fuel cells in mobile systems

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, V M [Research Centre Juelich (KFA), Inst. of Energy Process Engineering (Germany); Broeckerhoff, P [Research Centre Juelich (KFA), Inst. of Energy Process Engineering (Germany); Hoehlein, B [Research Centre Juelich (KFA), Inst. of Energy Process Engineering (Germany); Menzer, R [Research Centre Juelich (KFA), Inst. of Energy Process Engineering (Germany); Stimming, U [Research Centre Juelich (KFA), Inst. of Energy Process Engineering (Germany)

    1994-04-01

    The constantly growing volume of road traffic requires the introduction of new vehicle propulsion systems with higher efficiency and drastically reduced emission rates. As part of the fuel cell programme of the Research Centre Juelich a vehicle propulsion system with methanol as secondary energy carrier and a polymer electrolyte membrane fuel cell (PEMFC) as the main component for energy conversion is developed. The fuel gas is produced by a heterogeneously catalyzed steam reforming reaction in which methanol is converted to H[sub 2], CO and CO[sub 2]. The required energy is provided by the catalytic conversion of methanol for both heating up the system and reforming methanol. The high CO content of the fuel gas requires further processing of the gas or the development of new electrocatalysts for the anode. Various Pt-Ru alloys show promising behaviour as CO-tolerant anodes. The entire fuel cell system is discussed in terms of energy and emission balances. The development of important components is described and experimental results are discussed. (orig.)

  4. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    Science.gov (United States)

    Cornelius, Christopher J [Albuquerque, NM

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  5. The reactivity of allyl and propargyl alcohols with solvated electrons: temperature and solvent effects

    International Nuclear Information System (INIS)

    Afanassiev, A.M.; Okazaki, K.; Freeman, G.R.

    1979-01-01

    The rate constants K 1 for the reaction of solvated electrons with allyl alcohol in a number of hydroxylic solvents differ by up to two orders of magnitude and decrease in the order tert-butyl alcohol > 2-propanol > l-propanol approximately ethanol > methanol approximately ethylene glycol > water. In methanol and ethylene glycol the rate constants (7 x 10 7 M -1 s -1 at 298 K) and activation energies (16 kJ/mol) are equal, in spite of a 32-fold difference in solvent viscosity (0.54 and 17.3 cP, respectively) and 3-fold difference in its activation energy (11 and 32 kJ/mol, respectively). The reaction in tert-butyl alcohol is nearly diffusion controlled and has a high activation energy that is characteristic of transport in that liquid (E 1 = 31 kJ/mol, E sub(eta) = 39 kJ/mol). The activation energies in the other alcohols are all 16 kJ/mol, and it is 14 kJ/mol in water. They do not correlate with transport properties. The solvent effect is connected primarily with the entropy of activation. The rate constants correlate with the solvated electron trap depth. When the electron affinity of the scavenger is small, a favorable configuration of solvent molecules about the electron/scavenger encounter pair is required for the electron jump to take place. The behavior of the rate parameters for propargyl alcohol is similar to that for allyl alcohol, but k 1 , A 1 , and E 1 are larger for the former. The ratio k(propargyl)/k(allyl) at 298 K equals 10.5 in water and decreases through the series, reaching 1.3 in tert-butyl alcohol. Rate parameters for several other scavengers are also reported. (author)

  6. Determination of methanol in Iranian herbal distillates.

    Science.gov (United States)

    Shirani, Kobra; Hassani, Faezeh Vahdati; Azar-Khiavi, Kamal Razavi; Moghaddam, Zohreh Samie; Karimi, Gholamreza

    2016-06-01

    Herbal distillates have been used as beverages, for flavoring, or as phytomedicines in many countries for a long time. Recently, the occurrence of blindness after drinking herbal distillates has created concerns in Iran. The aim of this study was to determine the concentrations of methanol in herbal distillates produced in Iran. Eighty-four most commonly used herbal distillates purchased from herbal distillate factories were analyzed for methanol contents by gas chromatography and flame ionization detection, with ethanol as internal standard. In 15 herbal distillates, the methanol concentration was below the limit of quantitation. The methanol concentrations in all samples ranged from 43 to 277 mg/L. Forty-five samples contained methanol in excess of the Iranian standard. The maximum concentration was found in an herbal distillate of Mentha piperita (factory E) (277±12), and the minimum in a distillate of Carum carvi (factory B) (42.6 ± 0.5). Since the 45 Iranian herbal distillates containing methanol levels were beyond the legal limits according to the Iranian standard, it seems necessary to monitor the amount of methanol and give a warning to watch out for the latent risk problem of methanol uptake, and establish a definitive relationship between the degree of intoxication observed and the accumulation of methanol in the blood.

  7. Hydrogen bond dynamics in bulk alcohols.

    Science.gov (United States)

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  8. Synthesis of stabilized phosphorus ylides from electron-poor alcohols and their applications in the preparation of 2,5-dihydrofuran derivatives

    Directory of Open Access Journals (Sweden)

    Yavar Ahmadi

    2012-12-01

    Full Text Available Protonation of the highly reactive 1:1 intermediates, produced in the reaction between triphenylphosphine and dialkyl acetylenedicarboxylates, by alcohols (2-methanol thiophen, 3-methanol thiophen, 1,1,1,3,3,3-hexafluoro-2-propanol and [4-(trifluoromethyl-phenyl]methanol leads to vinyltriphenylphosphonium salts, which undergo Michael addition reaction with conjugate base to produce the corresponding stabilized phosphorus ylides. Wittig reaction of the stabilized phosphorus ylides with ninhydrin leads to the corresponding densely functionalized 2H-indeno[2,1-b]furans in fairly good yields.DOI: http://dx.doi.org/10.4314/bcse.v26i1.18

  9. Direct synthesis of few-layer graphene supported platinum nanocatalyst for methanol oxidation

    Science.gov (United States)

    Tan, Hong; Ma, Xiaohui; Sheng, Leimei; An, Kang; Yu, Liming; Zhao, Hongbin; Xu, Jiaqiang; Ren, Wei; Zhao, Xinluo

    2014-11-01

    High-crystalline few-layer graphene supported Pt nanoparticles have been synthesized by arc discharge evaporation of carbon electrodes containing Pt element. A high-temperature treatment under hydrogen atmosphere has been carried out to obtain a new type of Pt/graphene catalyst for methanol oxidation in direct methanol fuel cell. The morphology and structure characterizations of as-grown few-layer graphene supported Pt nanoparticles and Pt/graphene catalysts have been studied by Raman spectroscopy, scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy. Cyclic voltammograms and chronoamperometric curves show that our present Pt/graphene catalysts have larger current density for methanol oxidation, higher tolerance to carbon monoxide poisoning, and better stability during the operating procedure, compared to commercial Pt/C catalysts.

  10. A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency

    International Nuclear Information System (INIS)

    Wang, Yifei; Leung, Dennis Y.C.; Xuan, Jin; Wang, Huizhi

    2015-01-01

    Highlights: • A microfluidic fuel cell with a vapor feed anode is investigated. • Its advantages include simpler design, direct usage of methanol and better performance. • The prototype achieves a peak power density of 55.4 mW cm −2 under room temperature. • The energy efficiency of 9.4% is much higher than its liquid feed counterpart. - Abstract: In this paper, a prototype of methanol microfluidic fuel cell with vapor feed anode configuration is proposed to improve the fuel and energy efficiency of the conventional liquid feed methanol microfluidic fuel cells. Peak power density of 55.4 mW cm −2 can be achieved with this prototype under room temperature, which is 30% higher than its conventional liquid feed counterpart. Moreover, an energy efficiency of 9.4% is achieved, which is 27.5 times higher than its liquid feed counterpart. This superiority on both cell performance and energy efficiency is directly benefitted from its vapor feed anode configuration, which alleviates the fuel crossover, eliminates the fuel depletion boundary layer, and avoids the bulk anolyte wastage. The tradeoff between cell performance and fuel utilization for conventional liquid feed microfluidic fuel cells is also evaded

  11. Obesity-related eating behaviors are associated with higher food energy density and higher consumption of sugary and alcoholic beverages: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Maritza Muñoz-Pareja

    Full Text Available Obesity-related eating behaviors (OREB are associated with higher energy intake. Total energy intake can be decomposed into the following constituents: food portion size, food energy density, the number of eating occasions, and the energy intake from energy-rich beverages. To our knowledge this is the first study to examine the association between the OREB and these energy components.Data were taken from a cross-sectional study conducted in 2008-2010 among 11,546 individuals representative of the Spanish population aged ≥ 18 years. Information was obtained on the following 8 self-reported OREB: not planning how much to eat before sitting down, eating precooked/canned food or snacks bought at vending machines or at fast-food restaurants, not choosing low-energy foods, not removing visible fat from meat or skin from chicken, and eating while watching TV. Usual diet was assessed with a validated diet history. Analyses were performed with linear regression with adjustment for main confounders.Compared to individuals with ≤ 1 OREB, those with ≥ 5 OREB had a higher food energy density (β 0.10; 95% CI 0.08, 0.12 kcal/g/day; p-trend<0.001 and a higher consumption of sugary drinks (β 7; 95% CI -7, 20 ml/day; p-trend<0.05 and of alcoholic beverages (β 24; 95% CI 10, 38 ml/day; p-trend<0.001. Specifically, a higher number of OREB was associated with higher intake of dairy products and red meat, and with lower consumption of fresh fruit, oily fish and white meat. No association was found between the number of OREB and food portion size or the number of eating occasions.OREB were associated with higher food energy density and higher consumption of sugary and alcoholic beverages. Avoiding OREB may prove difficult because they are firmly socially rooted, but these results may nevertheless serve to palliate the undesirable effects of OREB by reducing the associated energy intake.

  12. Batch extractive distillation for high purity methanol

    International Nuclear Information System (INIS)

    Zhang Weijiang; Ma Sisi

    2006-01-01

    In this paper, the application in chemical industry and microelectronic industry, market status and the present situation of production of high purity methanol at home and abroad were introduced firstly. Purification of industrial methanol for high purity methanol is feasible in china. Batch extractive distillation is the best separation technique for purification of industrial methanol. Dimethyl sulfoxide was better as an extractant. (authors)

  13. Experimental Validation of Methanol Crossover in a Three-dimensional, Two-Fluid Model of a Direct Methanol Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A fully coupled three-dimensional, steady-state, two-fluid, multi-component and non-isothermal DMFC model has been developed in the commercial CFD package CFX 13 (ANSYS inc.). It accounts for the presence of micro porous layers, non-equilibrium phase change, and methanol and water uptake...... in the ionomer phase of the catalytic layer, and detailed membrane transport of methanol and water. In order to verify the models ability to predict methanol crossover, simulation results are compared with experimental measurements under different current densities along with air and methanol stoichiometries....... Methanol crossover is indirectly measured based on the combined anode and cathode exhaust CO2 mole fraction and by accounting for the CO2 production at the anode as a function of current density. This approach is simple and assumes that all crossed over methanol is oxidized. Moreover, it takes CO2...

  14. Recycling of greenhouse gases via methanol

    Energy Technology Data Exchange (ETDEWEB)

    Bill, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Eliasson, B; Kogelschatz, U [ABB Corporate Research Center, Baden-Daettwil (Switzerland)

    1997-06-01

    Greenhouse gas emissions to the atmosphere can be mitigated by using direct control technologies (capture, disposal or chemical recycling). We report on carbon dioxide and methane recycling with other chemicals, especially with hydrogen and oxygen, to methanol. Methanol synthesis from CO{sub 2} is investigated on various catalysts at moderate pressures ({<=}30 bar) and temperatures ({<=}300{sup o}C). The catalysts show good methanol activities and selectivities. The conversion of CO{sub 2} and CH{sub 4} to methanol is also studied in a silent electrical discharge at pressures of 1 to 4 bar and temperatures close to room temperature. Methanol yields are given for mixtures of CO{sub 2}/H{sub 2}, CH{sub 4}/O{sub 2} and also for CH{sub 4} and air mixtures. (author) 2 figs., 5 refs.

  15. Alcohols react with MCM-41 at room temperature and chemically modify mesoporous silica.

    Science.gov (United States)

    Björklund, Sebastian; Kocherbitov, Vitaly

    2017-08-30

    Mesoporous silica has received much attention due to its well-defined structural order, high surface area, and tunable pore diameter. To successfully employ mesoporous silica for nanotechnology applications it is important to consider how it is influenced by solvent molecules due to the fact that most preparation procedures involve treatment in various solvents. In the present work we contribute to this important topic with new results on how MCM-41 is affected by a simple treatment in alcohol at room temperature. The effects of alcohol treatment are characterized by TGA, FTIR, and sorption calorimetry. The results are clear and show that treatment of MCM-41 in methanol, ethanol, propanol, butanol, pentanol, or octanol at room temperature introduces alkoxy groups that are covalently bound to the silica surface. It is shown that alcohol treated MCM-41 becomes more hydrophobic and that this effect is sequentially more prominent going from methanol to octanol. Chemical formation of alkoxy groups onto MCM-41 occurs both for calcined and hydroxylated MCM-41 and the alkoxy groups are hydrolytically unstable and can be replaced by silanol groups after exposure to water. The results are highly relevant for mesoporous silica applications that involve contact or treatment in protic solvents, which is very common.

  16. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor.

    Science.gov (United States)

    Balk, Melike; Weijma, Jan; Goorissen, Heleen P; Ronteltap, Mariska; Hansen, Theo A; Stams, Alfons J M

    2007-01-01

    A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H2/CO2, no apparent inhibition occurred up to a concentration of 500 mg l(-1). When strain WW1 was co-cultured under the same conditions with the methanol-utilizing, non-sulfate-reducing bacteria, Thermotoga lettingae and Moorella mulderi, both originating from the same bioreactor, growth and sulfide formation were observed up to 430 mg l(-1). These results indicated that in the co-cultures, a major part of the electron flow was directed from methanol via H2/CO2 to the reduction of sulfate to sulfide. Besides methanol, acetate, and hydrogen, strain WW1 was also able to use formate, malate, fumarate, propionate, succinate, butyrate, ethanol, propanol, butanol, isobutanol, with concomitant reduction of sulfate to sulfide. In the absence of sulfate, strain WW1 grew only on pyruvate and lactate. On the basis of 16S rRNA analysis, strain WW1 was most closely related to Desulfotomaculum thermocisternum and Desulfotomaculum australicum. However, physiological properties of strain WW1 differed in some aspects from those of the two related bacteria.

  17. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna

    2015-01-01

    , and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results...... to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol...

  18. Decay of peroxy radicals of methanol and isopropanol in the presence of copper ions and superoxide dismutase. Progress report, December 1, 1978--November 30, 1979

    International Nuclear Information System (INIS)

    Ilan, Y.A.; Ilan, Y.; Czapski, G.

    1979-01-01

    The decay of the peroxy radicals produced from methanol and isopropanol was followed in the presence and in the absence of Cu 2+ ions, and the enzyme Superoxide Dismutase. The results indicate that both Cu 2+ and Superoxide do not affect the decay of the alcohol peroxy radicals. They catalyze the decay of O - 2 radicals which are formed from the alcoholic peroxy radicals, and which absorb light at the same wavelengths region as these radicals. This catalysis enables the resolution of the decay of the alcoholic peroxy radicals, without the interference of absorption changes originating in the decay of HO 2 and O - 2 radicals

  19. Cyclic voltammetric study of electro-oxidation of methanol on platinum electrode in acidic and neutral media

    International Nuclear Information System (INIS)

    Khan, A.S.A.; Ahmed, R.; Mirza, M.L.

    2007-01-01

    The electro-oxidation of methanol on electrochemically treated platinum foil was investigated in acidic and neutral media for comparison of cyclic voltammetric characteristics and elucidation of mechanism of electro-oxidation of methanol. The surface area and roughness factor of platinum electrode was calculated. The electro-oxidation of mathanol is an irreversible process giving. anodic peaks in both anodic and cathodic sweep. The characteristic peaks of electrooxidation of methanol appeared at almost the same potential region in both acidic and neutral media. In neutral medium, certain additional cathodic/anodic peaks appeared which were confirmed to arise by the reduction/oxidation of hydrogen ions. The exchange current density and heterogeneous electron transfer rate constant was higher in neutral medium as. compared with acidic medium. The thermodynamic parameters delta H, delta S, and delta G/sub 298/ were calculated. The values of delta H and delta G/sub 298/were positive which indicated that the process of electro-oxidation of methanol is an endothermic and nonspontaneous. The mechanism of electro-oxidation of methanol was same in both acidic and neutral media involving the formation of various adsorbed intermediate species through dissociative adsorption steps leading to the formation of Co adsorbed radicals, which are removed. during interaction with adsorbed hydrous oxides provided by the oxidation of adsorbed water molecules. The higher rate of electro-oxidation of methanol in neutral medium was interpreted in the tight of electrochemical mechanism and was attributed to the presence of comparatively small amount of hydrogen ions only along the surface of working electrode, which are produced during electro-oxidation of methanol. (author)

  20. Poly(malachite green) at nafion doped multi-walled carbon nanotube composite film for simple aliphatic alcohols sensor.

    Science.gov (United States)

    Umasankar, Yogeswaran; Periasamy, Arun Prakash; Chen, Shen-Ming

    2010-01-15

    Conductive composite film which contains nafion (NF) doped multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(malachite green) (PMG) has been synthesized on glassy carbon electrode (GCE), gold and indium tin oxide (ITO) electrodes by potentiostatic methods. The presence of MWCNTs in the composite film (MWCNTs-NF-PMG) enhances surface coverage concentration (Gamma) of PMG to approximately 396%, and increases the electron transfer rate constant (k(s)) to approximately 305%. Similarly, electrochemical quartz crystal microbalance study reveals the enhancement in the deposition of PMG at MWCNTs-NF film. The surface morphology of the composite film deposited on ITO electrode has been studied using scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). These two techniques reveal that the PMG incorporated on MWCNTs-NF film. The MWCNTs-NF-PMG composite film also exhibits promising enhanced electrocatalytic activity towards the simple aliphatic alcohols such as methanol, ethanol and propanol. The electroanalytical responses of analytes at NF-PMG and MWCNTs-NF-PMG films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electroanalytical studies, well defined voltammetric peaks have been obtained at MWCNTs-NF-PMG composite film for methanol, ethanol and propanol at Epa=609, 614 and 602mV respectively. The sensitivity of MWCNTs-NF-PMG composite film towards methanol, ethanol and propanol in CV technique are 0.59, 0.36 and 0.92microAmM(-1)cm(-2) respectively, which are higher than NF-PMG film. Further, the sensitivity values obtained using DPV are higher than the values obtained using CV technique.

  1. Species differences in methanol and formic acid pharmacokinetics in mice, rabbits and primates

    International Nuclear Information System (INIS)

    Sweeting, J. Nicole; Siu, Michelle; McCallum, Gordon P.; Miller, Lutfiya; Wells, Peter G.

    2010-01-01

    Methanol (MeOH) is metabolized primarily by alcohol dehydrogenase in humans, but by catalase in rodents, with species variations in the pharmacokinetics of its formic acid (FA) metabolite. The teratogenic potential of MeOH in humans is unknown, and its teratogenicity in rodents may not accurately reflect human developmental risk due to differential species metabolism, as for some other teratogens. To determine if human MeOH metabolism might be better reflected in rabbits than rodents, the plasma pharmacokinetics of MeOH and FA were compared in male CD-1 mice, New Zealand white rabbits and cynomolgus monkeys over time (24, 48 and 6 h, respectively) following a single intraperitoneal injection of 0.5 or 2 g/kg MeOH or its saline vehicle. Following the high dose, MeOH exhibited saturated elimination kinetics in all 3 species, with similar peak concentrations and a 2.5-fold higher clearance in mice than rabbits. FA accumulation within 6 h in primates was 5-fold and 43-fold higher than in rabbits and mice respectively, with accumulation being 10-fold higher in rabbits than mice. Over 48 h, FA accumulation was nearly 5-fold higher in rabbits than mice. Low-dose MeOH in mice and rabbits resulted in similarly saturated MeOH elimination in both species, but with approximately 2-fold higher clearance rates in mice. FA accumulation was 3.8-fold higher in rabbits than mice. Rabbits more closely than mice reflected primates for in vivo MeOH metabolism, and particularly FA accumulation, suggesting that developmental studies in rabbits may be useful for assessing potential human teratological risk.

  2. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source.

    Science.gov (United States)

    Espinosa Vidal, Esteban; de Morais, Marcos Antonio; François, Jean Marie; de Billerbeck, Gustavo M

    2015-01-01

    Higher alcohol formation by yeast is of great interest in the field of fermented beverages. Among them, medium-chain alcohols impact greatly the final flavour profile of alcoholic beverages, even at low concentrations. It is widely accepted that amino acid metabolism in yeasts directly influences higher alcohol formation, especially the catabolism of aromatic and branched-chain amino acids. However, it is not clear how the availability of oxygen and glucose metabolism influence the final higher alcohol levels in fermented beverages. Here, using an industrial Brazilian cachaça strain of Saccharomyces cerevisiae, we investigated the effect of oxygen limitation and glucose pulse on the accumulation of higher alcohol compounds in batch cultures, with glucose (20 g/l) and leucine (9.8 g/l) as the carbon and nitrogen sources, respectively. Fermentative metabolites and CO2 /O2 balance were analysed in order to correlate the results with physiological data. Our results show that the accumulation of isoamyl alcohol by yeast is independent of oxygen availability in the medium, depending mainly on leucine, α-keto-acids and/or NADH pools. High-availability leucine experiments showed a novel and unexpected accumulation of isobutanol, active amyl alcohol and 2-phenylethanol, which could be attributed to de novo biosynthesis of valine, isoleucine and phenylalanine and subsequent outflow of these pathways. In carbon-exhausted conditions, our results also describe, for the first time, the metabolization of isoamyl alcohol, isobutanol, active amyl alcohol but not of 2-phenylethanol, by yeast strains in stationary phase, suggesting a role for these higher alcohols as carbon source for cell maintenance and/or redox homeostasis during this physiological phase. Copyright © 2014 John Wiley & Sons, Ltd.

  3. The adsorption properties of short chain alcohols and Triton X-100 mixtures at the water-air interface.

    Science.gov (United States)

    Zdziennicka, Anna

    2009-07-15

    The adsorption behaviour at the water-air interface of aqueous solutions of Triton X-100 and methanol (ethanol) mixtures at constant Triton X-100 (TX-100) concentration equal to 10(-7), 10(-6), 10(-5), 10(-4), 6x10(-4) and 10(-3)M, respectively, in a wide range of alcohol concentration was investigated by surface tension measurements of solutions. The obtained values of the surface tension of aqueous solutions of "pure" methanol and ethanol and their mixtures with TX-100, as well as the values of propanol solutions and their mixtures with TX-100 as a function of alcohol concentration taken from the literature were compared with those calculated from the Szyszkowski, Connors and Fainerman and Miller equations. On the basis of this comparison it was stated that these equations can be useful for description of the solution surface tension in the wide range of alcohol concentration, but only at the concentrations of Triton X-100 corresponding to its unsaturated layer in the absence of alcohol. It was also stated that the Connors equation is more adequate for concentrated aqueous organic solutions. The measured values of the surface tension were used in the Gibbs equation to determine the surface excess concentration of Triton X-100 and alcohol. Next, on the basis of Gibbs adsorption isotherms those of Guggenheim and Adam and real adsorption isotherms were established. From the obtained adsorption isotherms it results that alcohol influences the shape of TX-100 isotherms in the whole range of alcohol and TX-100 concentration, but TX-100 influences the alcohol isotherms only at TX-100 concentration at which the saturated monolayer at the solution-air interface is formed in the absence of alcohol. This conclusion was confirmed by analysis of the composition of the surface layer in comparison to the composition of the bulk phase in the equilibrium state.

  4. Amphiphile Meets Amphiphile: Beyond the Polar-Apolar Dualism in Ionic Liquid/Alcohol Mixtures.

    Science.gov (United States)

    Russina, Olga; Sferrazza, Alessio; Caminiti, Ruggero; Triolo, Alessandro

    2014-05-15

    The mesoscopic morphology of binary mixtures of ethylammonium nitrate (EAN), the protic ionic liquid par excellence, and methanol is explored using neutron/X-ray diffraction and computational techniques. Both compounds are amphiphilic and characterized by an extended hydrogen bonding network: surprisingly, though macroscopically homogeneous, these mixtures turn out to be mesoscopically highly heterogeneous. Our study reveals that even in methanol-rich mixtures, a wide distribution of clusters exists where EAN preserves its bulk, sponge-like morphology. Accordingly methanol does not succeed in fully dissociating the ionic liquid that keeps on organizing in a bulk-like fashion. This behavior represents the premises to the more dramatic phenomenology observed with longer alcohols that eventually phase separate from EAN. These results challenge the commonly accepted polar and apolar moieties segregation in ionic liquids/molecular liquids mixtures and the current understanding of technologically relevant solvation processes.

  5. Hydrogen from electrochemical reforming of C1–C3 alcohols using proton conducting membranes

    NARCIS (Netherlands)

    Sapountzi, F. M.; Tsampas, M. N.; Fredriksson, H. O. A.; Gracia, J. M.; Niemantsverdriet, J. W.

    2017-01-01

    This study investigates the production of hydrogen from the electrochemical reforming of short-chain alcohols (methanol, ethanol, iso-propanol) and their mixtures. High surface gas diffusion Pt/C electrodes were interfaced to a Nafion polymeric membrane. The assembly separated the two chambers of an

  6. Effects of dimethyl ether on the performance characteristics of a direct methanol fuel cell

    International Nuclear Information System (INIS)

    Seo, Sang Hern; Lee, Chang Sik

    2013-01-01

    Highlights: • Activation loss is significantly reduced in fuel cell with DME-methanol. • DME crossover through the membrane reduces. • The open circuit voltage of DME-methanol the fuel cell increases. • The overall efficiency of the mixed fuel cell is higher than that of DMFC. - Abstract: The objective of this study was to determine the effects of dimethyl ether (DME) on the performance characteristics of a direct methanol fuel cell. Impedance and crossover experiments were performed in order to investigate the performance losses such as ohmic loss, activation loss and crossover loss accurately. The DME was pressurized to 5 bar to supply with liquid phase was and blended with an aqueous methanol solution. In this experiment, the membrane electrode assembly (MEA) was composed of Nafion 115, anode catalyst loaded Pt–Ru and cathode catalyst loaded Pt-Black. Experimental results showed that fuel cells with DME-methanol enhanced performance when compared to fuel cells with methanol only. Such performance enhancement was due to a decrease in activation losses by DME oxidation reactions. As the DME crossover through the membrane was reduced, the open circuit voltage (OCV) of the fuel cell increased. Other output characteristics are also discussed

  7. An Investigation of Palladium Oxygen Reduction Catalysts for the Direct Methanol Fuel Cell

    Directory of Open Access Journals (Sweden)

    G. F. Álvarez

    2011-01-01

    Full Text Available A comparative study of Pd and Pt was carried out in DMFC using different methanol concentrations and under different operating conditions. Cell performance was compared at methanol concentrations of 1, 3, 5, and 7 M and at temperatures of 20, 40, and 60°C. Homemade Pd nanoparticles were prepared on Vulcan XC-72R using ethylene glycol as the reducing agent at pH 11. The resulting catalyst, Pd/C, with metal nanoparticles of approximately 6 nm diameter, was tested as a cathode catalyst in DMFC. At methanol concentrations of 5 M and higher, the Pd cathode-based cell performed better than that with Pt at 60°C with air.

  8. A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Hwang, Jinyeon; Ha, Heung Yong

    2016-01-01

    This study proposes a novel method for controlling the methanol concentration without using methanol sensors for DMFC (direct methanol fuel cell) systems that have a recycling methanol-feed loop. This method utilizes the amplitudes of output voltage fluctuations of DMFC as a feedback parameter to control the methanol concentration. The relationship between the methanol concentrations and the amplitudes of output voltage fluctuations is correlated under various operating conditions and, based on the experimental correlations, an algorithm to control the methanol concentration with no sensor is established. Feasibility tests of the algorithm have been conducted under various operating conditions including varying ambient temperature with a 200 W-class DMFC system. It is demonstrated that the sensor-less controller is able to control the methanol-feed concentration precisely and to run the DMFC systems more energy-efficiently as compared with other control systems. - Highlights: • A new sensor-less algorithm is proposed to control the methanol concentration without using a sensor. • The algorithm utilizes the voltage fluctuations of DMFC as a feedback parameter to control the methanol feed concentration. • A 200 W DMFC system is operated to evaluate the validity of the sensor-less algorithm. • The algorithm successfully controls the methanol feed concentration within a small error bound.

  9. Performance of direct methanol fuel cell with a palladium–silica nanofibre/Nafion composite membrane

    International Nuclear Information System (INIS)

    Thiam, H.S.; Daud, W.R.W.; Kamarudin, S.K.; Mohamad, A.B.; Kadhum, A.A.H.; Loh, K.S.; Majlan, E.H.

    2013-01-01

    Highlights: • This study introduces Pd–SiO 2 Carbon Nano Fibre as an additive to Nafion membrane. • It investigates the effects of membrane annealing temperature and casting solvent. • Results show that Pd–SiO 2 fibre/Nafion performs lower methanol permeability. • This could effectively reduces methanol crossover in direct methanol fuel cell. - Abstract: Palladium–silica nanofibres (Pd–SiO 2 fibre) were adopted as an additive to Nafion recast membranes in order to reduce methanol crossover and improve the cell performance. The performance of a membrane electrode assembly (MEA) with fabricated composite membrane was evaluated through a passive air-breathing single cell direct methanol fuel cell (DMFC). The limiting crossover current density was measured to determine the methanol permeation in the DMFC. The effects of membrane annealing temperature and casting solvent of composite membrane on the cell performance were investigated and are discussed here. Compared to recast Nafion with the same thickness (150 μm), the Pd–SiO 2 fibre/Nafion composite membrane exhibited higher performance and lower methanol permeability. A maximum power density of 10.4 mW cm −2 was obtained with a 2 M methanol feed, outperforming the much thicker commercial Nafion 117 with a power density of 7.95 mW cm −2 under the same operating conditions. The experimental results showed that the Pd–SiO 2 fibre as inorganic fillers for Nafion could effectively reduce methanol crossover and improve the membrane performance in DMFC applications

  10. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J., E-mail: saykally@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-21

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

  11. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    Science.gov (United States)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J.

    2016-05-01

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

  12. Smelling in chemically complex environments: an optofluidic Bragg fiber array for differentiation of methanol adulterated beverages.

    Science.gov (United States)

    Yildirim, Adem; Ozturk, Fahri Emre; Bayindir, Mehmet

    2013-07-02

    A novel optoelectronic nose for analysis of alcohols (ethanol and methanol) in chemically complex environments is reported. The cross-responsive sensing unit of the optoelectronic nose is an array of three distinct hollow-core infrared transmitting photonic band gap fibers, which transmit a specific band of IR light depending on their Bragg mirror structures. The presence of alcohol molecules in the optofluidic core quenches the fiber transmissions if there is an absorption band of the analyte overlapping with the transmission band of the fiber; otherwise they remain unchanged. The cumulative response data of the fiber array enables rapid, reversible, and accurate discrimination of alcohols in chemically complex backgrounds such as beer and fruit juice. In addition, we observed that humidity of the environment has no effect on the response matrix of the optoelectronic nose, which is rarely achieved in gas-sensing applications. Consequently, it can be reliably used in virtually any environment without precalibration for humidity or drying the analytes. Besides the discussed application in counterfeit alcoholic beverages, with its superior sensor parameters, this novel concept proves to be a promising contender for many other applications including food quality control, environmental monitoring, and breath analysis for disease diagnostics.

  13. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    Science.gov (United States)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus

  14. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  15. Synthesis of dimethyl carbonate from urea and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, M.; Kalevaru, V.N.; Martin, A. [Rostock Univ. (Germany). Leibniz Institute for Catalysis; Mueller, K.; Arlt, W. [Erlangen-Nuernberg Univ. (Germany); Strautmann, J.; Kruse, D. [Evonik Industries AG, Marl (Germany). Creavis Technologies and Innovation

    2012-07-01

    Alcoholation of urea with methanol to produce dimethyl carbonate (DMC) is an interesting approach from both the ecological and economical points of view because the urea synthesis usually occurs by the direct use of carbon dioxide. Literature survey reveals that metal oxide catalysts for instance MgO, ZnO, etc. or polyphosphoric acids are mostly used as catalysts for this reaction. In this contribution, we describe the application of ZnO, MgO, CaO, TiO{sub 2}, ZrO{sub 2} or Al{sub 2}O{sub 3} catalysts for the above mentioned reaction. The catalytic activity of different metal oxides towards DMC synthesis was checked and additionally a comparison of achieved conversions with that of predictions made by thermodynamic calculations was also carried out. The achieved conversions are in good agreement with those of calculated ones. The test results reveal that the reaction pressure and temperature have a strong influence on the formation of DMC. Higher reaction pressure improved the yield of DMC. Among different catalysts investigated, ZnO displayed the best performance. The conversion of urea in most cases is close to 100 % and methyl carbamate MC is the major product of the reaction. A part of MC is subsequently converted to DMC, which however depends upon the reaction conditions applied and nature of catalyst used. From the best case, a DMC yield of ca. 8 % could be successfully achieved over ZnO catalyst. (orig.)

  16. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-07-01

    Full Text Available Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C, were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS, and methanol oxidation activity compared using CV and chronoamperometry (CA. While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells.

  17. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Goorissen, H.P.; Ronteltap, M.; Hansen, T.A.; Stams, A.J.M.

    2007-01-01

    A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H-2/CO2, no

  18. Dependence of enthalpies of dissolution of β-alanyl-β-alanine on the composition of (water + alcohol) mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Smirnov, Valeriy I.; Badelin, Valentin G.

    2011-01-01

    Highlights: · Enthalpies of dissolution of β-alanyl-β-alanine are measured in aqueous methanol, ethanol, 1-propanol and 2-propanol by calorimetry. · Standard values of dissolution and transfer enthalpies of β-alanyl-β-alanine and enthalpy coefficients of pair-wise interactions are calculated. · Dependences of the thermodynamic characteristics of dissolution of β-alanyl-β-alanine on the composition of (water + alcohol) mixtures are determined. - Abstract: The dissolution enthalpies of β-alanyl-β-alanine in aqueous methanol, ethanol, 1-propanol and 2-propanol solutions with an alcohol content up to 0.4 mole fractions have been measured calorimetrically at T = 298.15 K. The standard enthalpies of dissolution, Δ sol H o and transfer, Δ tr H o , of β-alanyl-β-alanine from water into mixed solvents and the enthalpy coefficients of pair-wise interactions, h xy , of β-alanyl-β-alanine with alcohol solvent molecules have been calculated. The results are discussed in terms of solute-solute and solute-solvent interactions.

  19. Antimicrobial activity of the aqueous, methanol and chloroform leaf ...

    African Journals Online (AJOL)

    The minimum inhibitory concentration (MIC) of methanol leaf extract show least activity against Yersinia enterocolitica and Pseudomonas aeruginosa (MIC = 100 mg/ml) and higher activity of MIC at 50 mg/ml against the other bacterial test organisms. The chloroform leaf extract MIC of 100 mg/ml had least activity against ...

  20. Waste-to-methanol: Process and economics assessment.

    Science.gov (United States)

    Iaquaniello, Gaetano; Centi, Gabriele; Salladini, Annarita; Palo, Emma; Perathoner, Siglinda; Spadaccini, Luca

    2017-11-01

    The waste-to-methanol (WtM) process and related economics are assessed to evidence that WtM is a valuable solution both from economic, strategic and environmental perspectives. Bio-methanol from Refuse-derived-fuels (RdF) has an estimated cost of production of about 110€/t for a new WtM 300t/d plant. With respect to waste-to-energy (WtE) approach, this solution allows various advantages. In considering the average market cost of methanol and the premium as biofuel, the WtM approach results in a ROI (Return of Investment) of about 29%, e.g. a payback time of about 4years. In a hybrid scheme of integration with an existing methanol plant from natural gas, the cost of production becomes a profit even without considering the cap for bio-methanol production. The WtM process allows to produce methanol with about 40% and 30-35% reduction in greenhouse gas emissions with respect to methanol production from fossil fuels and bio-resources, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Alcohol expectancies longitudinally predict drinking and the alcohol myopia effects of relief, self-inflation, and excess.

    Science.gov (United States)

    Lac, Andrew; Brack, Nathaniel

    2018-02-01

    Alcohol myopia theory posits that alcohol consumption attenuates information processing capacity, and that expectancy beliefs together with intake level are responsible for experiences in myopic effects (relief, self-inflation, and excess). Adults (N=413) averaging 36.39 (SD=13.02) years of age completed the Comprehensive Effects of Alcohol questionnaire at baseline, followed by alcohol use measures (frequency and quantity) and the Alcohol Myopia Scale one month later. Three structural equation models based on differing construct manifestations of alcohol expectancies served to longitudinally forecast alcohol use and myopia. In Model 1, overall expectancy predicted greater alcohol use and higher levels of all three myopic effects. In Model 2, specifying separate positive and negative expectancy factors, positive but not negative expectancy predicted greater use. Furthermore, positive expectancy and use explained higher myopic relief and higher self-inflation, whereas positive expectancy, negative expectancy, and use explained higher myopic excess. In Model 3, the seven specific expectancy subscales (sociability, tension reduction, liquid courage, sexuality, cognitive and behavioral impairment, risk and aggression, and self-perception) were simultaneously specified as predictors. Tension reduction expectancy, sexuality expectancy, and use contributed to higher myopic relief; sexuality expectancy and use explained higher myopic self-inflation; and risk and aggression expectancy and use accounted for higher myopic excess. Across all three predictive models, the total variance explained ranged from 12 to 19% for alcohol use, 50 to 51% for relief, 29 to 34% for self-inflation, and 32 to 35% for excess. Findings support that the type of alcohol myopia experienced is a concurrent function of self-fulfilling alcohol prophecies and drinking levels. The interpreted measurement manifestation of expectancy yielded different prevention implications. Copyright © 2017 Elsevier

  2. Structure and thermodynamics of core-softened models for alcohols

    International Nuclear Information System (INIS)

    Munaò, Gianmarco; Urbic, Tomaz

    2015-01-01

    The phase behavior and the fluid structure of coarse-grain models for alcohols are studied by means of reference interaction site model (RISM) theory and Monte Carlo simulations. Specifically, we model ethanol and 1-propanol as linear rigid chains constituted by three (trimers) and four (tetramers) partially fused spheres, respectively. Thermodynamic properties of these models are examined in the RISM context, by employing closed formulæ for the calculation of free energy and pressure. Gas-liquid coexistence curves for trimers and tetramers are reported and compared with already existing data for a dimer model of methanol. Critical temperatures slightly increase with the number of CH 2 groups in the chain, while critical pressures and densities decrease. Such a behavior qualitatively reproduces the trend observed in experiments on methanol, ethanol, and 1-propanol and suggests that our coarse-grain models, despite their simplicity, can reproduce the essential features of the phase behavior of such alcohols. The fluid structure of these models is investigated by computing radial distribution function g ij (r) and static structure factor S ij (k); the latter shows the presence of a low−k peak at intermediate-high packing fractions and low temperatures, suggesting the presence of aggregates for both trimers and tetramers

  3. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  4. Investigations into low pressure methanol synthesis

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek

    The central topic of this work has been synthesis, characterization and optimization of novel Ni-Ga based catalysts for hydrogenation of CO2 to methanol. The overall goal was to search for materials that could be used as a low temperature (and low pressure) methanol synthesis catalyst....... This is required for small scale delocalized methanol production sites, where installation of energy demanding compression units should be avoided. The work was triggered by DFT calculations, which showed that certain bimetallic systems are active towards methanol synthesis from CO2 and H2 at ambient pressure...... containing 5:3 molar ratio of Ni:Ga, the intrinsic activity (methanol production rate per active surface area) is comparable to that of highly optimised Cu/ZnO/Al2O3. Formation of the catalyst was investigated with the aid of in-situ XRD and in-situ XAS techniques. The mechanism of alloying was proposed...

  5. LINEAR POLARIZATION OF CLASS I METHANOL MASERS IN MASSIVE STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Kang, Ji-hyun; Byun, Do-Young; Kim, Kee-Tae; Kim, Jongsoo; Lyo, A-Ran; Vlemmings, W. H. T.

    2016-01-01

    Class I methanol masers are found to be good tracers of the interaction between outflows from massive young stellar objects with their surrounding media. Although polarization observations of Class II methanol masers have been able to provide information about magnetic fields close to the central (proto)stars, polarization observations of Class I methanol masers are rare, especially at 44 and 95 GHz. We present the results of linear polarization observations of 39 Class I methanol maser sources at 44 and 95 GHz. These two lines are observed simultaneously with one of the 21 m Korean VLBI Network telescopes in single-dish mode. Approximately 60% of the observed sources have fractional polarizations of a few percent in at least one transition. This is the first reported detection of linear polarization of the 44 GHz methanol maser. The two maser transitions show similar polarization properties, indicating that they trace similar magnetic environments, although the fraction of the linear polarization is slightly higher at 95 GHz. We discuss the association between the directions of polarization angles and outflows. We also discuss some targets having different polarization properties at both lines, including DR21(OH) and G82.58+0.20, which show the 90° polarization angle flip at 44 GHz.

  6. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  7. Methanol-Sensing Property Improvement of Meso structured Zinc Oxide Prepared by the Nano casting Strategy

    International Nuclear Information System (INIS)

    Gao, Q.; Zheng, W.T.; Wei, C.D.; Lin, H.M.

    2013-01-01

    The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, meso structured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged meso pores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, meso structured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the non porous ZnO prepared through conventional coprecipitation approach, meso structured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice

  8. The fate of methanol in anaerobic bioreactors

    NARCIS (Netherlands)

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical

  9. Racial/ethnic differences in the influence of cultural values, alcohol resistance self-efficacy, and alcohol expectancies on risk for alcohol initiation.

    Science.gov (United States)

    Shih, Regina A; Miles, Jeremy N V; Tucker, Joan S; Zhou, Annie J; D'Amico, Elizabeth J

    2012-09-01

    Prior research has reported racial/ethnic differences in the early initiation of alcohol use, suggesting that cultural values that are central to specific racial/ethnic groups may be influencing these differences. This 1-year longitudinal study examines associations between two types of cultural values, parental respect (honor for one's parents) and familism (connectedness with family), both measured at baseline, and subsequent alcohol initiation in a sample of 6,054 (approximately 49% male, 57% Hispanic, 22% Asian, 18% non-Hispanic White, and 4% non-Hispanic Black) middle school students in Southern California. We tested whether the associations of cultural values with alcohol initiation could be explained by baseline measures of alcohol resistance self-efficacy (RSE) and alcohol expectancies. We also explored whether these pathways differed by race/ethnicity. In the full sample, adolescents with higher parental respect were less likely to initiate alcohol use, an association that was partially explained by higher RSE and fewer positive alcohol expectancies. Familism was not significantly related to alcohol initiation. Comparing racial/ethnic groups, higher parental respect was protective against alcohol initiation for Whites and Asians, but not Blacks or Hispanics. There were no racial/ethnic differences in the association between familism and alcohol initiation. Results suggest that cultural values are important factors in the decision to use alcohol and these values appear to operate in part, by influencing alcohol positive expectancies and RSE. Interventions that focus on maintaining strong cultural values and building strong bonds between adolescents and their families may help reduce the risk of alcohol initiation. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  10. Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes

    Directory of Open Access Journals (Sweden)

    Luis M. Rivera Gavidia

    2017-05-01

    Full Text Available Direct methanol fuel cells (DMFCs are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM and X-ray techniques such as photoelectron spectroscopy (XPS, diffraction (XRD and energy dispersive spectroscopy (EDX. The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M and temperatures (60 °C and 90 °C. The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm−2 at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation.

  11. Effect of alcohol vapor treatment on electrical and optical properties of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) films for indium tin oxide-free organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Fallahzadeh, Ali, E-mail: afa.phy@gmail.com; Saghaei, Jaber; Yousefi, Mohammad Hassan

    2014-11-30

    Graphical abstract: - Highlights: • A simple alcohol vapor treatment (AVT) technique was applied to enhance the conductivity of PEDOT:PSS films. • Alcohols with one OH group can improve conductivity of PEDOT:PSS films by this technique. • Mechanism of conductivity enhancement of PEDOT:PSS films by AVT method was explained. • ITO-free OLEDs were fabricated using highly conductive AVT PEDOT:PSS films standalone anode. - Abstract: A simple alcohol vapor treatment (AVT) technique was proposed to improve the conductivity of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films. In this technique, various alcohols, i.e. methanol, ethanol, 2-propanol and ethylene glycol, were applied to treat the surface of the films formed and then they were annealed. The sheet resistance of PEDOT:PSS films was significantly reduced from 130 kΩ/sq to 60 Ω/sq when treated with methanol vapor. The investigation of the vertical resistance of the films showed that the sample treated with methanol vapor displayed the lowest resistance as well. The mechanism of conductivity enhancement of PEDOT:PSS films through AVT method was explained by surface phase images, UV and IR spectra of PEDOT:PSS films. Optical transmittance spectrum of treated films exhibited that AVT has even enhanced the optical transmittance slightly. Improvement in the morphology, electrical and optical properties of PEDOT:PSS films prompted their applications as a transparent anode in the fabrication of ITO-free organic light-emitting diodes (OLEDs). The OLED manufactured based on methanol-treated PEDOT:PSS films demonstrated the highest luminance.

  12. The knock study of methanol fuel based on multi-dimensional simulation analysis

    International Nuclear Information System (INIS)

    Zhen, Xudong; Liu, Daming; Wang, Yang

    2017-01-01

    Methanol is an alternative fuel, and considered to be one of the most favorable fuels for engines. In this study, knocking combustion in a developed ORCEM (optical rapid compression and expansion machine) is studied based on the multi-dimensional simulation analysis. The LES (large-eddy simulation) models coupled with methanol chemical reaction kinetics (contains 21-species and 84-elementary reactions) is adopted to study knocking combustion. The results showed that the end-gas auto-ignition first occurred in the position near the chamber wall because of the higher temperature and pressure. The H_2O_2 species could be a good flame front indicator. OH radicals played the major role, and the HCO radicals almost could be ignored during knocking combustion. The HCO radicals generated little, so its concentration during knocking combustion almost may be ignored. The mean reaction intensity results of CH_2O, OH, H_2O_2, and CO were higher than others during knocking combustion. Finally, this paper put forward some new suggestions on the weakness in the knocking combustion researches of methanol fuel. - Highlights: • Knocking combustion of methanol was studied in a developed ORCEM. • The LES coupled with detailed chemical kinetics was adopted to simulation study. • The end-gas auto-ignition first occurred in the place near the chamber wall. • OH radical was the predominant species during knocking combustion. • The H_2O_2 species could be a good flame front indicator.

  13. Solar photocatalytic conversion of CO{sub 2} to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Ryba, G.; Shelnutt, J.; Prairie, M.R.; Assink, R.A.

    1997-02-01

    This report summarizes the three-year LDRD program directed at developing catalysts based on metalloporphyrins to reduce carbon dioxide. Ultimately it was envisioned that such catalysts could be made part of a solar-driven photoredox cycle by coupling metalloporphyrins with semiconductor systems. Such a system would provide the energy required for CO{sub 2} reduction to methanol, which is an uphill 6-electron reduction. Molecular modeling and design capabilities were used to engineer metalloporphyrin catalysts for converting CO{sub 2} to CO and higher carbon reduction products like formaldehyde, formate, and methanol. Gas-diffusion electrochemical cells were developed to carry out these reactions. A tin-porphyrin/alumina photocatalyst system was partially developed to couple solar energy to this reduction process.

  14. Effect of methanol feeding strategies on production and yield of recombinant mouse endostatin from Pichia pastoris.

    Science.gov (United States)

    Trinh, L B; Phue, J N; Shiloach, Joseph

    2003-05-20

    Pichia pastoris, a methylotrophic yeast, is an efficient producer of recombinant proteins in which the heterologous gene is under the control of the methanol-induced AOX1 promoter. Hence, the accepted production procedure has two phases: In the first phase, the yeast utilizes glycerol and biomass is accumulated; in the second phase, the yeast utilizes methanol which is used both as an inducer for the expression of the recombinant protein and as a carbon source. Since the yeast is sensitive to methanol concentration, the methanol is supplied gradually to the growing culture. Three methanol addition strategies were evaluated for the purpose of optimizing recombinant endostatin production. Two strategies were based on the yeast metabolism; one responding to the methanol consumption using a methanol sensor, and the other responding to the oxygen consumption. In these two strategies, the methanol supply is unlimited. The third strategy was based on a predetermined exponential feeding rate, controling the growth rate at 0.02 h(-1), in this strategy the methanol supply is limited. Throughout the induction phase glycerol, in addition to methanol, was continuously added at a rate of 1 g L h(-1). Total endostatin production was similar in all three strategies, (400 mg was obtained from 3 L initial volume), but the amount of methanol added and the biomass produced were lower in the predetermined rate method. This caused the specific production of endostatin per biomass and per methanol to be 2 times higher in the predetermined rate than in the other two methods, making the growth control strategy not only more efficient but also more convenient for downstream processing. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 438-444, 2003.

  15. Engineering Escherichia coli for methanol conversion.

    Science.gov (United States)

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stéphanie; Quax, Wim J; Wendisch, Volker F; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia A

    2015-03-01

    Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Methods of conditioning direct methanol fuel cells

    Science.gov (United States)

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  17. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer the possibility of using...... methanol is converted to a hydrogen rich gas with CO2 trace amounts of CO, the increased operating temperatures allow the fuel cell to tolerate much higher CO concentrations than Nafion-based membranes. The increased tolerance to CO also enables the use of reformer systems with less hydrogen cleaning steps...... liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydrogen storages, simplifies refueling, and enables the use of existing fuel distribution systems. The liquid...

  18. [EFFECT OF 4-METHYLPYRAZOLE ON IMMUNE RESPONSE, FUNCTION OF Th1 AND Th2 LYMPHOCYTES, AND CYTOKINE CONCENTRATION IN RAT BLOOD AFTER ACUTE METHANOL POISONING].

    Science.gov (United States)

    Zabrodskii, P F; Maslyakov, V V; Gromov, M S

    2016-01-01

    It was established in experiments on noninbred albino rats that the acute intoxication with methanol (1.0 LD50) decreased cellular and humoral immune responses, Th2-lymphocyte activity (to a greater extent as compared to the function of Th1 cells), reduced the blood concentration of immunoregulatory (IFN-g, IL-2, IL-4) and proinflammatory (TNF, IL-1b, IL-6) cytokines on the average by 36.5% (p Methanol antidote 4-methylpyrazole (non-competitive inhibitor of alcohol dehydrogenase) administered upon acute intoxication with methanol at a dose of 1.0 DL50 partially reduces the intoxication-induced suppression of humoral and cellular immune response, activity of T-helper cells, and production of IL-4 and restores blood levels of TNF, IL-1b, IFN-γ, IL-4, IL-2, IL-6 to the control values.

  19. Analyzing Greek Members Alcohol Consumption by Gender and the Impact of Alcohol Education Interventions

    Science.gov (United States)

    Brown-Rice, Kathleen A.; Furr, Susan; Jorgensen, Maribeth

    2015-01-01

    Members of the Greek community have been found to engage in riskier alcohol drinking behaviors and have higher alcohol- related negative consequences. A sample of Greek members were surveyed in Spring of 2013 (n = 372). It was found that The Alcohol Use Disorders Identification Test-Consumption (AUDIT-C) scores were significantly higher for male…

  20. Conversion of Methane into Methanol and Ethanol over Nickel Oxide on Ceria-Zirconia Catalysts in a Single Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Okolie, Chukwuemeka [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA; Belhseine, Yasmeen F. [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA; Lyu, Yimeng [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA; Yung, Matthew M. [National Renewable Energy Laboratory, Golden CO 80401 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Lab, Richland WA 99354 USA; Kovarik, Libor [Environmental Molecular Sciences Laboratory, Pacific Northwest National Lab, Richland WA 99354 USA; Stavitski, Eli [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton NY 11973 USA; Sievers, Carsten [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA

    2017-09-26

    Direct conversion of methane into alcohols is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can selectively oxidize methane to methanol and ethanol in a single, steady-state process at 723 K using O2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to the synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.

  1. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    International Nuclear Information System (INIS)

    Kepenienė, V.; Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J.; Vaitkus, R.; Norkus, E.

    2016-01-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  2. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kepenienė, V., E-mail: virginalisk@gmail.com [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania); Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J. [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania); Vaitkus, R. [Faculty of Chemistry, Vilnius University, Vilnius LT 03225 (Lithuania); Norkus, E. [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania)

    2016-03-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  3. Growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes as affected from formaldehyde and methylformate.

    Science.gov (United States)

    Aggelis, G; Margariti, N; Kralli, C; Flouri, F

    2000-06-23

    Formaldehyde and methylformate affect the growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes. The presence of both intermediates in the feeding medium caused an increase in biomass yield and productivity and a decrease in the specific rate of methanol consumption. In the presence of formaldehyde, the activity of formaldehyde dehydrogenase and formate dehydrogenase was essentially increased, whereas the activity of methanol oxidase was decreased. On the contrary, the presence of methylformate caused an increase of the activity of methanol oxidase and a decrease of the activity of formaldehyde dehydrogenase and formate dehydrogenase. Interpretations concerning the yeast behavior in the presence of intermediate oxidation products were considered and discussed.

  4. The role of hydrogen bonding in the fluorescence quenching of 2,6-bis((E)-2-(benzoxazol-2-yl)vinyl)naphthalene (BBVN) in methanol

    Science.gov (United States)

    Hammam, Essam; Basahi, Jalal; Ismail, Iqbal; Hassan, Ibrahim; Almeelbi, Talal

    2017-02-01

    The excited state hydrogen bonding dynamics of BBVN in hydrogen donating methanol solvent was explored at the TD-BMK/cc-pVDZ level of theory with accounting for the bulk environment effects at the polarizable continuum model (PCM). The heteroatoms of the BBVN laser dye form hydrogen bonds with four methanol molecules. In the formed BBVN-(MeOH)4 complex, the A-type hydrogen bond (N…HO), of an average strength of 25 kJ mol- 1, is twofold stronger than the B-type (O…HO) one. Upon photon absorption, the total HB binding energy increases from 78.5 kJ mol- 1 in the ground state to 82.6 kJ mol- 1 in the first singlet (S1) excited state. In consequence of the hydrogen bonding interaction, the absorption band maximum of the BBVN-(MeOH)4 complex, which was anticipated at 398 nm (exp. 397), is redshifted by 5 nm relative to that of the free dye in methanol. The spectral shift of the stretching vibrational mode for the hydrogen bonded hydroxyl groups (with a maximum shift of 285 cm- 1) from that of the free methanol indicated the elevated strengthening of hydrogen bonds in the excited state. The vibrational modes associated with hydrogen bonding provide effective accepting modes for the dissipation of the excitation energy, thus, decreasing the fluorescence quantum yield of BBVN in alcohols as compared to that in the polar aprotic solvents. Since there is no sign of photochemistry or phosphorescence, it seems reasonable in view of the outcomes of this study to assign the major decay process of the excited singlet (S1) of BBVN in alcohols to vibronically induced internal conversion (IC) facilitated by hydrogen bonding.

  5. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    International Nuclear Information System (INIS)

    Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi

    2015-01-01

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO x /MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO x addition. • Bi-functional mechanism is facilitated in presence of CoO x . - Abstract: The electro-catalytic behavior of Pt-CoO x /MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH 4  as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO x , Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO ads on Pt active sites by the participation of CoO x . Compared to Pt/MWCNTs, Pt-CoO x /MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO x /MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups

  6. Dimethyl ether production from methanol and/or syngas

    Science.gov (United States)

    Dagle, Robert A; Wang, Yong; Baker, Eddie G; Hu, Jianli

    2015-02-17

    Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.

  7. Antidotes for poisoning by alcohols that form toxic metabolites.

    Science.gov (United States)

    McMartin, Kenneth; Jacobsen, Dag; Hovda, Knut Erik

    2016-03-01

    The alcohols, methanol, ethylene glycol and diethylene glycol, have many features in common, the most important of which is the fact that the compounds themselves are relatively non-toxic but are metabolized, initially by alcohol dehydrogenase, to various toxic intermediates. These compounds are readily available worldwide in commercial products as well as in homemade alcoholic beverages, both of which lead to most of the poisoning cases, from either unintentional or intentional ingestion. Although relatively infrequent in overall occurrence, poisonings by metabolically-toxic alcohols do unfortunately occur in outbreaks and can result in severe morbidity and mortality. These poisonings have traditionally been treated with ethanol since it competes for the active site of alcohol dehydrogenase and decreases the formation of toxic metabolites. Although ethanol can be effective in these poisonings, there are substantial practical problems with its use and so fomepizole, a potent competitive inhibitor of alcohol dehydrogenase, was developed for a hopefully better treatment for metabolically-toxic alcohol poisonings. Fomepizole has few side effects and is easy to use in practice and it may obviate the need for haemodialysis in some, but not all, patients. Hence, fomepizole has largely replaced ethanol as the toxic alcohol antidote in many countries. Nevertheless, ethanol remains an important alternative because access to fomepizole can be limited, the cost may appear excessive, or the physician may prefer ethanol due to experience. © 2015 The British Pharmacological Society.

  8. Impact of swelling characteristics on the permselective properties of multi-layer composite membranes for water removal from alcohols.

    Science.gov (United States)

    The removal of water from organic solvents and biofuels, including lower alcohols (i.e., methanol, ethanol, propanol, and butanol), is necessary for the production, blending, and reuse of those organic compounds. Water forms an azeotrope with many hydrophilic solvents, complicati...

  9. Effect of linear alcohol molecular size on the self-assembly of fullerene whiskers

    International Nuclear Information System (INIS)

    Amer, Maher S.; Todd, T. Kyle; Busbee, John D.

    2011-01-01

    Highlights: → The longer the alcohol molecule, the shorter the length of the assembled whisker. → Interaction between alcohol and fullerene solvent is the key factor. → The stronger the alcohol/solvent interaction, the longer the whisker. - Abstract: The recent development of self-assembled fullerene whiskers and wires has created an enormous potential and resolved a serious challenge for utilizing such unique class of carbon material in advanced nano-scale, molecular-based electronic, optical, and thermal devices. In this paper we investigate, the self-assembly of C 60 molecules into one-dimensional whiskers using a series of linear alcohols H(CH 2 ) n OH, with n changing from 1 (methanol) to 3 (isopropyl alcohol), to elucidate the effect of alcohol molecular size on the size distribution of the self-assemble fullerene whiskers. Our results show that the length of the produced fullerene whiskers is affected by the molecular size of the alcohol used in the process. The crucial role played by solvent/alcohol interaction in the assembly process is discussed. In addition, Raman spectroscopy measurements support the notion that the self-assembled whiskers are primarily held by depletion forces and no evidence of fullerene polymerization was observed.

  10. Effect of Alcohol References in Music on Alcohol Consumption in Public Drinking Places

    NARCIS (Netherlands)

    Engels, R.C.M.E.; Slettenhaar, H.G.J.; Bogt, T.F.M. ter; Scholte, R.H.J.

    2011-01-01

    People are exposed to many references to alcohol, which might influence their consumption of alcohol directly. In a field experiment, we tested whether textual references to alcohol in music played in bars lead to higher revenues of alcoholic beverages. We created two databases: one contained songs

  11. Salivary exoglycosidases as markers of alcohol dependence.

    Science.gov (United States)

    Waszkiewicz, Napoleon; Chojnowska, Sylwia; Zalewska, Anna; Zwierz, Krzysztof; Szulc, Agata; Szajda, Sławomir Dariusz

    2014-01-01

    Some salivary markers of alcohol abuse/dependence have been proposed so far: aminotransferases, gamma-glutamyltransferase, ethanol, ethyl glucuronide, ethyl sulfate, sialic acid, β-hexosaminidase A, oral peroxidase, methanol, diethylene/ethylene glycol, α-amylase, clusterin, haptoglobin, heavy/light chains of immunoglobulins and transferrin. To investigate the effect of chronic alcohol drinking and smoking on the activity (pKat/ml) and output (pKat/min) of salivary lysosomal exoglycosidases: α-fucosidase (FUC), α-mannosidase (MAN), β-galactosidase (GAL), and β-glucuronidase (GLU), and their applicability as markers of alcohol dependence. The activity of FUC, MAN, GAL and GLU was measured colorimetrically in the saliva of healthy social drinkers, alcohol-dependent non-smokers and alcohol-dependent smokers. We observed an increased salivary activity of FUC, GAL, GLU and MAN, as well as an increased output of GAL and GLU, in comparison with controls. The highest increase in the activity/output was found in salivary GLU and MAN (GLU, even 7- to 18-fold), and the least in GAL. We found an excellent sensitivity and specificity and a high accuracy (measured by the area under the ROC curve) for salivary FUC, GLU and MAN activities. The salivary GLU activity positively correlated with the number of days of last alcohol intoxication. Salivary activity of FUC, GAL and MAN, but not GLU, positively correlated with the periodontal parameters such as gingival index and papilla bleeding index. Although we found an excellent sensitivity and specificity as well as a high accuracy for the salivary activity of FUC, GLU and MAN, the GLU activity seems to be mostly applicable as a marker of chronic alcohol drinking (alcohol dependence). © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  12. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.

    Science.gov (United States)

    Wongnate, Thanyaporn; Chaiyen, Pimchai

    2013-07-01

    Enzymes in the glucose-methanol-choline (GMC) oxidoreductase superfamily catalyze the oxidation of an alcohol moiety to the corresponding aldehyde. In this review, the current understanding of the sugar oxidation mechanism in the reaction of pyranose 2-oxidase (P2O) is highlighted and compared with that of other enzymes in the GMC family for which structural and mechanistic information is available, including glucose oxidase, choline oxidase, cholesterol oxidase, cellobiose dehydrogenase, aryl-alcohol oxidase, and pyridoxine 4-oxidase. Other enzymes in the family that have been newly discovered or for which less information is available are also discussed. A large primary kinetic isotope effect was observed for the flavin reduction when 2-d-D-glucose was used as a substrate, but no solvent kinetic isotope effect was detected for the flavin reduction step. The reaction of P2O is consistent with a hydride transfer mechanism in which there is stepwise formation of d-glucose alkoxide prior to the hydride transfer. Site-directed mutagenesis of P2O and pH-dependence studies indicated that His548 is a catalytic base that facilitates the deprotonation of C2-OH in D-glucose. This finding agrees with the current mechanistic model for aryl-alcohol oxidase, glucose oxidase, cellobiose dehydrogenase, methanol oxidase, and pyridoxine 4-oxidase, but is different from that of cholesterol oxidase and choline oxidase. Although all of the GMC enzymes share similar structural folding and use the hydride transfer mechanism for flavin reduction, they appear to have subtle differences in the fine-tuned details of how they catalyze substrate oxidation. © 2013 The Authors Journal compilation © 2013 FEBS.

  13. Methanol synthesis beyond chemical equilibrium

    NARCIS (Netherlands)

    van Bennekom, J. G.; Venderbosch, R. H.; Winkelman, J. G. M.; Wilbers, E.; Assink, D.; Lemmens, K. P. J.; Heeres, H. J.

    2013-01-01

    In commercial methanol production from syngas, the conversion is thermodynamically limited to 0.3-0.7 leading to large recycles of non-converted syngas. This problem can be overcome to a significant extent by in situ condensation of methanol during its synthesis which is possible nowadays due to the

  14. Methanol decomposition and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Ludwig, W.; Bakker, J.W.; Gluhoi, A.C.; Nieuwenhuys, B.E.

    2007-01-01

    The adsorption, decompn., and oxidn. of methanol (CH3OH) has been studied on Ir(111) using temp.-programmed desorption and high-energy resoln. fast XPS. Mol. methanol desorption from a methanol-satd. surface at low temp. shows three desorption peaks, around 150 K (alpha ), around 170 K (beta 1), and

  15. Reversible Activation of Halophilic β-lactamase from Methanol-Induced Inactive Form: Contrast to Irreversible Inactivation of Non-Halophilic Counterpart.

    Science.gov (United States)

    Tokunaga, Hiroko; Maeda, Junpei; Arakawa, Tsutomu; Tokunaga, Masao

    2017-06-01

    Effects of a water-miscible organic solvent, methanol, on the structure and activity of halophilic β-lactamase derived from Chromohalobacter sp.560 (HaBla), were investigated by means of circular dichroism (CD) measurement and enzymatic activity determination. Beta-lactamase activity was enhanced about 1.2-fold in the presence of 10-20% methanol. CD measurement of HaBla revealed different structures depending on the methanol concentration: native-like active form (Form I) in 10-20% methanol and methanol-induced inactive form at higher concentration (Form II in 40-60% and Form III in 75-80% methanol). Incubation of HaBla with 40% methanol led to the complete loss of activity within ~80 min accompanied by the formation of Form II, whose activity was recovered promptly up to ~80% of full activity upon dilution of the methanol concentration to 10%. In addition, when the protein concentration was sufficiently high (e.g., 0.7 mg/ml), HaBla activity of Form III in 75% methanol could be recovered in the same way (with slightly slower recovery rate), upon dilution of the methanol concentration. In contrast, non-halophilic β-lactamase from Escherichia coli K12 strain MG1655 (EcBla) was irreversibly denatured in the presence of 40% methanol. HaBla showed remarkable ability to renature from the methanol-induced inactive states.

  16. Structural effect of ferrocenecarboxymethylated polymers on their electrical behavior under the exposure to methanol and acetone vapors

    International Nuclear Information System (INIS)

    Hachawee, Kosin; Lerdwijitjarud, Wanchai; Sittattrakul, Amnard; Sirivat, Anuvat

    2008-01-01

    Functionalized ferrocenecarboxymethylated polymers, i.e. poly(vinylbenzyl ferrocenecarboxymethylate) (PVBFCC), poly(vinylbenzyl ferrocenecarboxymethylate-co-ethoxyethylmethacrylate) with the mole ratio between vinylbenzyl ferrocenecarboxymethylate and ethoxyethylmethacrylate of 75:25 (Co-PVBFCC 75/25) and 50:50 (Co-PVBFCC 50/50), and ferrocenecarboxymethylated polysulfone (BPSFCC) were investigated for their electrical behavior under the vapors of methanol and acetone and nitrogen gas. Electrical conductivity responses of the four ferrocenecarboxymethylated polymers in the presence of lithium perchlorate were measured when they were exposed to nitrogen gas, and methanol and acetone vapors. Main factors that affect the electrical conductivity and sensitivity of these electroactive ferrocene polymers originate from the polymer structure and the type of the passing gas or vapor. Ferrocenecarboxymethylated polymers with higher degrees of substitution of ferrocene units possess good electrical conductivity under the atmosphere of mixed N 2 /methanol vapor, while ferrocenecarboxymethylated polymers with more flexible chain and/or larger free volumes give higher electrical conductivity under the atmosphere of mixed N 2 /acetone vapor. The gas or vapor molecule with higher polarity and smaller size enhances the electrical conductivity of the ferrocene polymers. Our results clearly indicate that the synthesized ferrocenecarboxymethylated polymers have potential to be used as methanol or acetone sensor materials

  17. Methanol in the L1551 Circumbinary Torus

    OpenAIRE

    White, Glenn J.; Fridlund, C. W. M.; Bergman, P.; Beardsmore, A.; Liseau, Rene; Phillips, R. R.

    2006-01-01

    We report observations of gaseous methanol in an edge-on torus surrounding the young stellar object L1551 IRS5. The peaks in the torus are separated by ~ 10,000 AU from L1551 IRS5, and contain ~ 0.03 earth masses of cold methanol. We infer that the methanol abundance increases in the outer part of the torus, probably as a result of methanol evaporation from dust grain surfaces heated by the shock luminosity associated with the shocks associated with the jets of an externally located x-ray sou...

  18. Radiation-grafted membranes based on polyethylene for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sherazi, Tauqir A. [Department of Chemistry, Government College University, Lahore 54000 (Pakistan); Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Guiver, Michael D.; Kingston, David; Xue, Xinzhong [Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Ahmad, Shujaat [PIEAS/PINSTECH, P O Nilore, Islamabad 45650 (Pakistan); Kashmiri, M. Akram [Department of Chemistry, Government College University, Lahore 54000 (Pakistan); Board of Intermediate and Secondary Education, Lahore 54000 (Pakistan)

    2010-01-01

    Styrene was grafted onto ultrahigh molecular weight polyethylene powder (UHMWPE) by gamma irradiation using a {sup 60}Co source. Compression moulded films of selected pre-irradiated styrene-grafted ultrahigh molecular weight polyethylene (UHMWPE-g-PS) were post-sulfonated to the sulfonic acid derivative (UHMWPE-g-PSSA) for use as proton exchange membranes (PEMs). The sulfonation was confirmed by X-ray photoelectron spectroscopy (XPS). The melting and flow properties of UHMWPE and UHMWPE-g-PS are conducive to forming homogeneous pore-free membranes. Both the ion conductivity and methanol permeability coefficient increased with degree of grafting, but the grafted membranes showed comparable or higher ion conductivity and lower methanol permeability than Nafion {sup registered} 117 membrane. One UHMWPE-g-PS membrane was fabricated into a membrane-electrode assembly (MEA) and tested as a single cell direct methanol fuel cell (DMFC). Low membrane cost and acceptable fuel cell performance indicate that UHMWPE-g-PSSA membranes could offer an alternative approach to perfluorosulfonic acid-type membranes for DMFC. (author)

  19. Groundwater issues relating to an Alaskan methanol spill

    International Nuclear Information System (INIS)

    Robertson, S.B.

    1992-01-01

    This paper reports on a Dec. 1989 methanol spill which resulted from sabotage to three railroad tank cars. Samples taken from nearby drinking-water wells and groundwater-monitoring wells were below the analytical detection limit. Monitoring well data demonstrated that groundwater flow was not toward local residential wells. Dilution by snow and subsequent freezing in the soil limited the downward spread of the methanol, an advantage not found in milder, more temperate conditions. Contaminated material was removed and processed to reclaim the methanol. Volatilization and biodegradation should remove any remaining methanol. Cleanup options were limited by the possible hazardous waste classification of the contaminated soil. The regulatory status of spilled methanol waste should be re-evaluated, especially if use of methanol as a motor fuel increases

  20. Artisanal alcohol production in Mayan Guatemala: Chemical safety evaluation with special regard to acetaldehyde contamination

    International Nuclear Information System (INIS)

    Kanteres, Fotis; Rehm, Juergen; Lachenmeier, Dirk W.

    2009-01-01

    There is a lack of knowledge regarding the composition, production, distribution, and consumption of artisanal alcohol, particularly in the developing world. In Nahuala, an indigenous Mayan municipality located in highland Guatemala, heavy alcohol consumption appears to have had a significant negative impact on health, a major role in cases of violence and domestic abuse, and a link to street habitation. Cuxa, an artisanally, as well as commercially produced sugarcane alcohol, is widely consumed by heavy drinkers in this community. Cuxa samples from all distribution points in the community were obtained and chemically analyzed for health-relevant constituents and contaminants including methanol, acetaldehyde, higher alcohols, and metals. From those, only acetaldehyde was confirmed to be present in unusually high levels (up to 126 g/hl of pure alcohol), particularly in samples that were produced clandestinely. Acetaldehyde has been evaluated as 'possibly carcinogenic' and has also been identified as having significant human exposure in a recent risk assessment. This study explores the reasons for the elevated levels of acetaldehyde, through both sampling and analyses of raw and intermediary products of cuxa production, as well as interviews from producers of the clandestine alcohol. For further insight, we experimentally produced this alcohol in our laboratory, based on the directions provided by the producers, as well as materials from the town itself. Based on these data, the origin of the acetaldehyde contamination appears to be due to chemical changes induced during processing, with the major causative factors consisting of poor hygiene, aerobic working conditions, and inadequate yeast strains, compounded by flawed distillation methodology that neglects separation of the first fractions of the distillate. These results indicate a preventable public health concern for consumers, which can be overcome through education about good manufacturing practices, as well

  1. Artisanal alcohol production in Mayan Guatemala: Chemical safety evaluation with special regard to acetaldehyde contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kanteres, Fotis [Centre for Addiction and Mental Health (CAMH), 33 Russell Street, ARF 2035, Toronto, ON, Canada, M5S 2 S1 (Canada); Rehm, Juergen [Centre for Addiction and Mental Health (CAMH), 33 Russell Street, ARF 2035, Toronto, ON, Canada, M5S 2 S1 (Canada); Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, ON, Canada, M5T 3 M7 (Canada); Institute for Clinical Psychology and Psychotherapy, TU Dresden, Chemnitzer Strasse 46, D-01187 Dresden (Germany); Lachenmeier, Dirk W., E-mail: Lachenmeier@web.de [Chemisches und Veterinaeruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe (Germany)

    2009-11-01

    There is a lack of knowledge regarding the composition, production, distribution, and consumption of artisanal alcohol, particularly in the developing world. In Nahuala, an indigenous Mayan municipality located in highland Guatemala, heavy alcohol consumption appears to have had a significant negative impact on health, a major role in cases of violence and domestic abuse, and a link to street habitation. Cuxa, an artisanally, as well as commercially produced sugarcane alcohol, is widely consumed by heavy drinkers in this community. Cuxa samples from all distribution points in the community were obtained and chemically analyzed for health-relevant constituents and contaminants including methanol, acetaldehyde, higher alcohols, and metals. From those, only acetaldehyde was confirmed to be present in unusually high levels (up to 126 g/hl of pure alcohol), particularly in samples that were produced clandestinely. Acetaldehyde has been evaluated as 'possibly carcinogenic' and has also been identified as having significant human exposure in a recent risk assessment. This study explores the reasons for the elevated levels of acetaldehyde, through both sampling and analyses of raw and intermediary products of cuxa production, as well as interviews from producers of the clandestine alcohol. For further insight, we experimentally produced this alcohol in our laboratory, based on the directions provided by the producers, as well as materials from the town itself. Based on these data, the origin of the acetaldehyde contamination appears to be due to chemical changes induced during processing, with the major causative factors consisting of poor hygiene, aerobic working conditions, and inadequate yeast strains, compounded by flawed distillation methodology that neglects separation of the first fractions of the distillate. These results indicate a preventable public health concern for consumers, which can be overcome through education about good manufacturing practices

  2. Sorption of methanol in alkali exchange zeolites

    NARCIS (Netherlands)

    Rep, M.; Rep, M.; Corma, Avelino; Palomares, A.E.; Palomares gimeno, A.E.; van Ommen, J.G.; Lefferts, Leonardus; Lercher, J.A.

    2000-01-01

    Metal cation methanol sorption complexes in MFI (ZSM5), MOR and X have been studied by in situ i.r. spectroscopy in order to understand the nature of interactions of methanol in the molecular sieve pores. The results show that (a) a freely vibrating hydroxy and methyl group of methanol exist on

  3. Higher density of serotonin-1A receptors in the hippocampus and cerebral cortex of alcohol-preferring P rats

    International Nuclear Information System (INIS)

    Wong, D.T.; Threlkeld, P.G.; Lumeng, L.; Li, Ting-Kai

    1990-01-01

    Saturable [ 3 H]-80HDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring (P) rats and of alcohol-nonpreferring (NP) rats has been compared. The B max values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 38 and 44 percent lower in the P rats than in the NP rats. The corresponding K D values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors of 5HT found in these brain areas of P rats as compared with the NP rats

  4. Atmospheric deposition of methanol over the Atlantic Ocean

    Science.gov (United States)

    Yang, Mingxi; Nightingale, Philip D.; Beale, Rachael; Liss, Peter S.; Blomquist, Byron; Fairall, Christopher

    2013-01-01

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air–sea methanol transfer along a ∼10,000-km north–south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air–sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface—an important term for improving air–sea gas exchange models. PMID:24277830

  5. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation

    International Nuclear Information System (INIS)

    Dias, Ricardo Rodrigues

    2009-01-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H 2 PtCl 6 .6H 2 O (Aldrich), SnCl 2 .2H 2 O (Aldrich),and RhCl 2 .XH 2 O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40 0 , 47 0 , 67 0 and 82 0 , which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34 0 and 52 0 that were identified as a SnO 2 phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  6. A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance.

    Science.gov (United States)

    Ayad, Mohamad M; El-Hefnawey, Gad; Torad, Nagy L

    2009-08-30

    Thin films of polyaniline base, emeraldine base (EB), coating on the quartz crystal microbalance (QCM) electrode were used as a sensitive layer for the detection of a number of primary aliphatic alcohols such as ethanol, methanol, 2-propanol and 1-propanol vapours. The frequency shifts (Deltaf) of the QCM were increased due to the vapour adsorption into the EB film. Deltaf were found to be linearly correlated with the concentrations of alcohols vapour in part per million (ppm). The sensitivity of the sensor was found to be governed by the chemical structure of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusions of different alcohols vapour were studied and the diffusion coefficients (D) were calculated. It is concluded that the diffusion of the vapours into the EB film follows Fickian kinetics.

  7. Hydrogen bond dynamics in bulk alcohols

    International Nuclear Information System (INIS)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-01-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups

  8. Alcohol drinking, mean corpuscular volume of erythrocytes, and alcohol metabolic genotypes in drunk drivers.

    Science.gov (United States)

    Pavanello, Sofia; Snenghi, Rossella; Nalesso, Alessandro; Sartore, Daniela; Ferrara, Santo Davide; Montisci, Massimo

    2012-02-01

    Regular and irregular abuse of alcohol are global health priorities associated with diseases at multiple sites, including cancer. Mechanisms of diseases induced by alcohol are closely related to its metabolism. Among conventional markers of alcohol abuse, the mean corpuscular volume (MCV) of erythrocytes is prognostic of alcohol-related cancer and its predictivity increases when combined with functional polymorphisms of alcohol dehydrogenase (ADH1B [rs1229984] and ADH1C [rs698]) and the mitochondrial aldehyde dehydrogenase (ALDH2 [rs671]). Whether these genetic variants can influence abuse in alcohol drinking and MCV has never been examined in drunk-driving traffic offenders. We examined 149 drunk drivers, diagnosed as alcohol abusers according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth edition Text Revision (DSM-IV-TR) and enrolled in a probation program, and 257 social drinkers (controls), all Caucasian males. Alcohol intake was assessed according to self-reported drink-units/d and MCV unadjusted and adjusted for age, smoking, and body mass index. Multivariable models were used to compute MCV adjusted means. Genotype analyses were performed by PCR on DNA from blood. The adjusted MCV mean was higher in drunk-driving abusers than in controls (92 vs. 91fL; Pdrunk-driving abusers (P=.008), reported higher drink-units/d (P=.0126), and had larger MCV (P=.035). The rs698 ADH1C and rs671 ALDH2 polymorphisms were not associated with MCV. ADH1B*1/*1 polymorphism is significantly associated with being a drunk-driving abuser, higher alcohol drinking, and MCV enlargement. This suggests that drunk drivers with augmented MCV modulated by the alcohol metabolic ADH1B*1/*1 genotype may be at higher risk of driving incapability and of alcohol-related cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The kinetics of the radiation-induced chain dechlorination of hexachloroethane in alcohols

    International Nuclear Information System (INIS)

    Sawai, Takeshi; Ohara, Naoki; Shimokawa, Toshinari

    1978-01-01

    The kinetics of the radiation-induced dechlorination of hexachloroethane was investigated in deoxygenated alcohol solutions. The major products were hydrogen chloride, pentachloroethane, 1,1,2,2-tetrachloroethane, tetrachloroethylene, and aldehydes or acetone. No 1,1,1,2-tetrachloroethane was observed. The radiation-chemical yields of these products and the disappearance of hexachloroethane were quite high; these facts indicate that a chain reaction is involved in these processes. After the hexachloroethane had effectively dechlorinated down to tetrachloro compounds, there were no marked changes in the lower chlorinated compound upon continuous irradiation. Tetrachloroethane was formed via pentachloroethane, but tetrachloroethylene was produced by means of C 2 Cl 5 →C 2 Cl 4 + cl reaction and the yield was particularly high in methanol compared with the other alcohols. The chain length of the dechlorination from hexachloroethane to pentachloroethane and from pentachloroethane to tetrachloroethane increased in the order of 2-propanol>ethanol>methanol. The G(-C 2 Cl 6 ) and G(products) were proportional to (dose rate)sup(-1/2), and the ratio of G(C 2 HCl 5 ) to G(C 2 Cl 4 ) was a constant in each alcohol solution, regardless of the dose rate. The α-hydroxy alkyl radical is the chain carrier for the dechlorination reaction of hexachloroethane in alcohol solutions. The relative rates of the dechlorination were found to be 1, 3, and 14 for C*H 2 OH (*: radical), CH 3 C*HOH (*: radical), and (CH 3 ) 2 C*OH (*: radical), respectively. The order in the rate is in agreement with that of the redox potential of these radicals. The effect of the irradiation temperature on the products yields was also examined. (auth.)

  10. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    Science.gov (United States)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  11. High-speed conversion of carbon dioxide into methanol using catalyst. Shokubai ni yoru nisanka tanso no kosoku methanol ka

    Energy Technology Data Exchange (ETDEWEB)

    Inui, T. (Kyoto University, Kyoto (Japan). Faculty of Enineering)

    1993-02-01

    This paper describes high-speed conversion of CO2 into methanol. When a Cu-Zn-Cr-Al oxide-based catalyst (MSCp catalyst) prepared by using a sedimentation process used for synthesizing methanol from CO is applied to converting CO2 into methanol, the methanol yield decreases down to a several fraction of CO to methanol conversion, with a possibility of greater catalytic deactivation. If this catalyst prepared by using a homogeneous gelation process (MSCg catalyst) is used, the yield of methanol from CO2 increases by 240 plus percent over the case of using the MSCp catalyst, and no catalytic deactivation occurs at all during a use for ten and odd hours. Further, when La2O3 is added to the MSCg catalyst at 4% by weight, the methanol yield increases by about two times as much as the case without addition, and the temperature at which the maximum yield is achieved shifts to a lower temperature side by about 20[degree]C. Combining Ag or Pd with the MSCg catalyst provides the same effects. The paper touches on an attempt of high-speed CO2 conversion using this catalyst loaded with ceramic fibers. 15 refs., 5 figs., 2 tabs.

  12. Compact Fuel-Cell System Would Consume Neat Methanol

    Science.gov (United States)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  13. Activation of the oxidative stress regulator PpYap1 through conserved cysteine residues during methanol metabolism in the yeast Pichia pastoris.

    Science.gov (United States)

    Yano, Taisuke; Yurimoto, Hiroya; Sakai, Yasuyoshi

    2009-06-01

    The methylotrophic yeast Pichia pastoris can grow on methanol as sole source of carbon and energy. The first reaction in yeast methanol metabolism, catalyzed by an abundant peroxisomal enzyme, alcohol oxidase, generates high levels of H(2)O(2), but the oxidative stress response during methanol metabolism has not been elucidated. In this study, we isolated the Yap1 homolog of P. pastoris (PpYap1) and analyzed the properties of a PpYAP1-disruption strain. The PpYap1 transcription factor is activated after exposure to various reactive agents, and therefore functions as a regulator of the redox system in P. pastoris. We have also identified PpGPX1, the unique glutathione peroxidase-encoding gene in P. pastoris whose expression is induced by PpYap1. PpGpx1, but not the ScTsa1 or SpTpx1 homolog PpTsa1, functions as a H(2)O(2) sensor and activates PpYap1. This study is the first demonstration of a yeast Yap1 family protein activated during conventional metabolism.

  14. Preparation of PtRu/C anode electrocatalysts using gamma radiation for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Silva, Dionisio Fortunato da

    2006-01-01

    Pt Ru/C (carbon-supported Pt Ru nanoparticles) anode electrocatalysts were prepared using radiolytic process (gamma radiation) and tested for methanol electro-oxidation. In this process, water/2-propanol and water/ethylene glycol solutions containing the metallic ions and the carbon support were submitted to gamma radiation under stirring. The water/alcohol ratio (v/v) and the total dose (kGy) were studied. A nominal Pt Ru atomic ratio of 50:50 were used in all experiments. The electrocatalysts were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry (CV). The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique. The electrocatalysts prepared in water/2-propanol showed crystallite size in the range of 3-5 nm and Pt Ru atomic ratio of 50:50. The electrocatalysts prepared in water/ethylene glycol showed crystallite size (2-3 nm) smaller than the ones obtained in water/2-propanol, however, the Pt Ru atomic ratios obtained were approximately 80:20, showing that only part of ruthenium ions were reduced. For methanol oxidation the electrocatalytic activity depends on the water/2-propanol and water/ethylene glycol ratio used in the reaction medium. The electrocatalysts prepared in water/2-propanol showed inferior performance to the ones prepared in water/ethylene glycol, which showed similar or superior performances (amperes per gram of platinum) to the commercial electrocatalyst from E-TEK. (author)

  15. The cost-effectiveness of methanol for reducing motor vehicle emissions and urban ozone

    International Nuclear Information System (INIS)

    Krupnick, A.J.; Walls, M.A.

    1992-01-01

    This article analyzes the costs and emissions characteristics of methanol vehicles. The cost-effectiveness of methanol - the cost per ton of reactive hydrocarbon emissions reduced - is calculated and compared to the cost-effectiveness of other hydrocarbon reduction strategies. Methanol is found to cost from $33,000 to nearly $60,000 per ton, while several other options are available for under $10,000 per ton. The cost per part-per-million reduction in peak ambient ozone levels is also computed for two cities, Houston and Philadelphia. Despite the greater improvement in ozone in Philadelphia than Houston, methanol is found to be more cost-effective in Houston. This result occurs because Houston's distribution and marketing costs are lower than Philadelphia's. The costs in both cities, however, are far higher than estimates of the benefits from acute health improvements. Finally, the reduction in ozone exposure in Los Angeles is estimated and the costs of the reduction compared with an estimate of acute health benefits. Again, the benefits fall far short of the costs. 51 refs., 5 tabs

  16. A comparative analysis on combustion and emissions of some next generation higher-alcohol/diesel blends in a direct-injection diesel engine

    International Nuclear Information System (INIS)

    Rajesh Kumar, B.; Saravanan, S.; Rana, D.; Nagendran, A.

    2016-01-01

    Highlights: • Four higher-alcohols namely, iso-butanol, n-pentanol, n-hexanol and n-octanol, were used. • Iso-butanol/diesel blend presented longest ignition delay, highest peak pressures and peak heat release rates. • NOx emissions were high for n-pentanol/diesel and n-hexanol/diesel blends at high load conditions. • Smoke opacity is highest for n-octanol/diesel blend and lowest for iso-butanol/diesel blend. • HC emissions are high for iso-butanol/diesel and n-pentanol/diesel blends. - Abstract: Higher alcohols are attractive next generation biofuels that can be extracted from sugary, starchy and ligno-cellulosic biomass feedstocks using sustainable pathways. Their viability for use in diesel engines has greatly improved ever since extended bio-synthetic pathways have achieved substantial yields of these alcohols using engineered micro-organisms. This study sets out to compare and analyze the effects of some higher alcohol/diesel blends on combustion and emission characteristics of a direct-injection diesel engine. Four test fuels containing 30% by vol. of iso-butanol, n-pentanol, n-hexanol and n-octanol (designated as ISB30, PEN30, HEX30 and OCT30 respectively) in ultra-low sulfur diesel (ULSD) were used. Results indicated that ISB30 experienced longest ignition delay and produced highest peaks of pressure and heat release rates (HRR) compared to other higher-alcohol blends. The ignition delay, peak pressure and peak HRR are found to be in the order of (from highest to lowest): ISB30 > PEN30 > HEX30 > OCT30 > ULSD. The combustion duration (CD) for all test fuels is in the sequence (from shortest to longest): ISB30 OCT30 > HEX30 > PEN30 > ISB30. HC emissions are high for ISB30 and PEN30 while it decreased favorably for HEX30 and OCT30. It was of the order (from highest to lowest): ISB30 > PEN30 > ULSD > HEX30 > OCT30. CO emissions of the blends followed the trend of smoke emissions and remained lower than ULSD with the following order (from highest to

  17. Alcohol vapours sensor based on thin polyaniline salt film and quartz crystal microbalance.

    Science.gov (United States)

    Ayad, Mohamad M; Torad, Nagy L

    2009-06-15

    A sensor based on the quartz crystal microbalance (QCM) technique was developed for detection of a number of primary aliphatic alcohols such as ethanol, methanol, 1-propanol, and 2-propanol vapours. Detection was based on a sensitive and a thin film of polyaniline, emeraldine salt (ES), coated the QCM electrode. The frequency shifts (Delta f) of the QCM were increased due to the vapour absorption into the ES film. The values of Delta f were found to be linearly correlated with the concentrations of alcohols vapour in mg L(-1). The changes in frequency are due to the hydrophilic character of the ES and the electrostatic interaction as well as the type of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusion and diffusion coefficient (D) of different alcohols vapour were determined. It was found that the sensor follows Fickian kinetics.

  18. Women and Alcohol

    Science.gov (United States)

    ... turn JavaScript on. Feature: Rethinking Drinking Women and Alcohol Past Issues / Spring 2014 Table of Contents Women react differently than men to alcohol and face higher risks from it. Pound for ...

  19. The synthesis of higher alcohols using modified Cu/ZnO/Al@#2@#O@#3@# catalysts

    OpenAIRE

    Slaa, J.C.; Slaa, J.C.; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1992-01-01

    This paper gives a review of research work in the synthesis of higher alcohols over catalysts based on Cu/ZnO/Al2O3, emphasizing three main topics: (i) the effect on selectivity of the addition of several compounds to this catalyst, (ii) the effect on selectivity of the reaction conditions used, and (iii) the reaction network leading to the different products found. Although the use of alkali compounds has been studied most extensively, other compounds, for example those containing manganese,...

  20. The Effect of PtRuIr Nanoparticle Crystallinity in Electrocatalytic Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-04-01

    Full Text Available Two structural forms of a ternary alloy PtRuIr/C catalyst, one amorphous and one highly crystalline, were synthesized and compared to determine the effect of their respective structures on their activity and stability as anodic catalysts in methanol oxidation. Characterization techniques included TEM, XRD, and EDX. Electrochemical analysis using a glassy carbon disk electrode for cyclic voltammogram and chronoamperometry were tested in a solution of 0.5 mol L−1 CH3OH and 0.5 mol L−1 H2SO4. Amorphous PtRuIr/C catalyst was found to have a larger electrochemical surface area, while the crystalline PtRuIr/C catalyst had both a higher activity in methanol oxidation and increased CO poisoning rate. Crystallinity of the active alloy nanoparticles has a big impact on both methanol oxidation activity and in the CO poisoning rate.