WorldWideScience

Sample records for higher aerosol loading

  1. Satellite observation analysis of aerosols loading effect over Monrovia-Liberia

    International Nuclear Information System (INIS)

    Emetere, M E; Esisio, F; Oladapo, F

    2017-01-01

    The effect of aerosols loading most often results in aerosols retention in the atmosphere. Aside the health hazards of aerosol retention, its effect on climate change are visible. In this research, it was proposed that the effect of aerosol retention also affects rain pattern. The Tropical Rainfall Measuring Mission (TRMM) layer 3 observations and the multi-imaging spectro-reflectometer (MISR) was used for the study. The aerosols loading over were investigated using sixteen years satellite observation in Monrovia-Liberia. Its effect on the rain rate over the region was documented. The results show that aerosol loading over the region is high and may have effect on farming in the nearest future. It was affirmed that the scanty AOD data was as a result of the rain rate that is higher within May and October. (paper)

  2. Satellite observation analysis of aerosols loading effect over Monrovia-Liberia

    Science.gov (United States)

    Emetere, M. E.; Esisio, F.; Oladapo, F.

    2017-05-01

    The effect of aerosols loading most often results in aerosols retention in the atmosphere. Aside the health hazards of aerosol retention, its effect on climate change are visible. In this research, it was proposed that the effect of aerosol retention also affects rain pattern. The Tropical Rainfall Measuring Mission (TRMM) layer 3 observations and the multi-imaging spectro-reflectometer (MISR) was used for the study. The aerosols loading over were investigated using sixteen years satellite observation in Monrovia-Liberia. Its effect on the rain rate over the region was documented. The results show that aerosol loading over the region is high and may have effect on farming in the nearest future. It was affirmed that the scanty AOD data was as a result of the rain rate that is higher within May and October.

  3. Loading capacity of various filters for lithium fire generated aerosols

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Barreca, J.R.

    1980-01-01

    The lithium aerosol loading capacity of a prefilter, HEPA filters and a sand and gravel bed filter was determined. The test aerosol was characterized and was generated by burning lithium in an unlimited air atmosphere. Correlation to sodium aerosol loading capacities were made to relate existing data to lithium aerosol loadings under varying conditions. This work is being conducted in support of the fusion reactor safety program. The lithium aerosol was generated by burning lithium pools, up to 45 kgs, in a 340 m 3 low humidity air atmosphere to supply aerosol to recirculating filter test loops. The aerosol was sampled to determine particle size, mass concentrations and chemical species. The dew point and gas concentrations were monitored throughout the tests. Loop inlet aerosol mass concentrations ranged up to 5 gr/m 3 . Chemical compounds analyzed to be present in the aerosol include Li 2 O, LiOH, and Li 2 CO 3 . HEPA filters with and without separators and a prefilter and HEPA filter in series were loaded with 7.8 to 11.1 kg/m 2 of aerosol at a flow rate of 1.31 m/sec and 5 kPa pressure drop. The HEPA filter loading capacity was determined to be greater at a lower flow rate. The loading capacity increased from 0.4 to 2.8 kg by decreasing the flow rate from 1.31 to 0.26 m/sec for a pressure drop of 0.11 kPa due to aerosol buildup. The prefilter tested in series with a HEPA did not increase the total loading capacity significantly for the same total pressure drop. Separators in the HEPA had only minor effect on loading capacity. The sand and gravel bed filter loaded to 0.50 kg/m 2 at an aerosol flow rate of 0.069 m/sec and final pressure drop of 6.2 kPa. These loading capacities and their dependence on test variables are similar to those reported for sodium aerosols except for the lithium aerosol HEPA loading capacity dependence upon flow rate

  4. Recent increase in aerosol loading over the Australian arid zone

    Science.gov (United States)

    Mitchell, R. M.; Campbell, S. K.; Qin, Y.

    2009-10-01

    Collocated sun photometer and nephelometer measurements at Tinga Tingana in the Australian Outback over the decade 1997-2007 show a significant increase in aerosol loading following the onset of severe drought conditions in 2002. The mean mid-visible scattering coefficient obtained from nephelometer measurements over the period 2003-2007 is approximately double that recorded over the preceding 5 yr, with consistent trends in the column aerosol optical depth derived from the sun photometer. This increase is confined to the season of dust activity, particularly September to March. In contrast, background aerosol levels during May, June and July remained stable. The enhanced aerosol loadings during the latter 5 yr of the study period can be understood as a combination of dune destabilisation through loss of ephemeral vegetation and surface crust, and the changing supply of fluvial sediments to ephemeral lakes and floodplains within the Lake Eyre Basin. Major dust outbreaks are generally highly localised, although significant dust activity was observed at Tinga Tingana on 50% of days when a major event occurred elsewhere in the Lake Eyre Basin, suggesting frequent basin-wide dust mobilisation. Combined analysis of aerosol optical depth and scattering coefficient shows weak correlation between the surface and column aerosol (R2=0.24). The aerosol scale height is broadly distributed with a mode typically between 2-3 km, with clearly defined seasonal variation. Climatological analysis reveals bimodal structure in the annual cycle of aerosol optical depth, with a summer peak related to maximal dust activity, and a spring peak related to lofted fine-mode aerosol. There is evidence for an increase in near-surface aerosol during the period 2003-2007 relative to 1997-2002, consistent with an increase in dust activity. This accords with an independent finding of increasing aerosol loading over the Australian region as a whole, suggesting that rising dust activity over the Lake

  5. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    Science.gov (United States)

    Liu, Bin; Cong, Zhiyuan; Wang, Yuesi; Xin, Jinyuan; Wan, Xin; Pan, Yuepeng; Liu, Zirui; Wang, Yonghong; Zhang, Guoshuai; Wang, Zhongyan; Wang, Yongjie; Kang, Shichang

    2017-01-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at the Ngari, Qomolangma (QOMS), Nam Co, and Southeastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Daily averages of online PM2.5 (particulates with aerodynamic diameters below 2.5 µm) at these sites were sequentially 18.2 ± 8.9, 14.5 ± 7.4, 11.9 ± 4.9 and 11.7 ± 4.7 µg m-3. Correspondingly, the ratios of PM2.5 to total suspended particles (TSP) were 27.4 ± 6.65, 22.3 ± 10.9, 37.3 ± 11.1 and 54.4 ± 6.72 %. Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine-aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Dust aerosol content in PM2.1 samples gave fractions of 26 % at the Ngari station and 29 % at the QOMS station, or ˜ 2-3 times that of reported results at human-influenced sites. Furthermore, observed evidence confirmed the existence of the aerodynamic conditions necessary for the uplift of fine particles from a barren land surface. Combining surface aerosol data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from

  6. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region

    Directory of Open Access Journals (Sweden)

    A. J. Beyersdorf

    2016-01-01

    Full Text Available In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites and mass measurements of aerosol loading (PM2.5 used for air quality monitoring must be understood. This connection varies with many factors including those specific to the aerosol type – such as composition, size, and hygroscopicity – and to the surrounding atmosphere, such as temperature, relative humidity (RH, and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality project, extensive in situ atmospheric profiling in the Baltimore, MD–Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 % and organics (57 %. A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs. The average black carbon concentrations were 240 ng m−3 in the lowest 1 km, decreasing to 35

  7. Aerosol mass loading over the marine environment of Arabian Sea ...

    Indian Academy of Sciences (India)

    The decrease in mass loading from the coast of India towards west is estimated to ... ment of the role of aerosols in radiative forcing ... Oceans are the single largest sources of natural ... While island stations provide informa- ... (Pacific Exploratory Mission), INDOEX (Indian ... very close (150–200km away) to the west Asian.

  8. The Dependence of Cloud Particle Size on Non-Aerosol-Loading Related Variables

    Energy Technology Data Exchange (ETDEWEB)

    Shao, H.; Liu, G.

    2005-03-18

    An enhanced concentration of aerosol may increase the number of cloud drops by providing more cloud condensation nuclei (CCN), which in turn results in a higher cloud albedo at a constant cloud liquid water path. This process is often referred to as the aerosol indirect effect (AIE). Many in situ and remote sensing observations support this hypothesis (Ramanathan et al. 2001). However, satellite observed relations between aerosol concentration and cloud drop size are not always in agreement with the AIE. Based on global analysis of cloud effective radius (r{sub e}) and aerosol number concentration (N{sub a}) derived from satellite data, Sekiguchi et al. (2003) found that the correlations between the two variables can be either negative, or positive, or none, depending on the location of the clouds. They discovered that significantly negative r{sub e} - N{sub a} correlation can only be identified along coastal regions of the continents where abundant continental aerosols inflow from land, whereas Feingold et al. (2001) found that the response of r{sub e} to aerosol loading is the greatest in the region where aerosol optical depth ({tau}{sub a}) is the smallest. The reason for the discrepancy is likely due to the variations in cloud macroscopic properties such as geometrical thickness (Brenguier et al. 2003). Since r{sub e} is modified not only by aerosol but also by cloud geometrical thickness (H), the correlation between re and {tau}{sub a} actually reflects both the aerosol indirect effect and dependence of H. Therefore, discussing AIE based on the r{sub e}-{tau}{sub a} correlation without taking into account variations in cloud geometrical thickness may be misleading. This paper is motivated to extract aerosols' effect from overall effects using the independent measurements of cloud geometrical thickness, {tau}{sub a} and r{sub e}.

  9. Investigating organic aerosol loading in the remote marine environment

    Directory of Open Access Journals (Sweden)

    K. Lapina

    2011-09-01

    Full Text Available Aerosol loading in the marine environment is investigated using aerosol composition measurements from several research ship campaigns (ICEALOT, MAP, RHaMBLe, VOCALS and OOMPH, observations of total AOD column from satellite (MODIS and ship-based instruments (Maritime Aerosol Network, MAN, and a global chemical transport model (GEOS-Chem. This work represents the most comprehensive evaluation of oceanic OM emission inventories to date, by employing aerosol composition measurements obtained from campaigns with wide spatial and temporal coverage. The model underestimates AOD over the remote ocean on average by 0.02 (21 %, compared to satellite observations, but provides an unbiased simulation of ground-based Maritime Aerosol Network (MAN observations. Comparison with cruise data demonstrates that the GEOS-Chem simulation of marine sulfate, with the mean observed values ranging between 0.22 μg m−3 and 1.34 μg m−3, is generally unbiased, however surface organic matter (OM concentrations, with the mean observed concentrations between 0.07 μg m−3 and 0.77 μg m−3, are underestimated by a factor of 2–5 for the standard model run. Addition of a sub-micron marine OM source of approximately 9 TgC yr−1 brings the model into agreement with the ship-based measurements, however this additional OM source does not explain the model underestimate of marine AOD. The model underestimate of marine AOD is therefore likely the result of a combination of satellite retrieval bias and a missing marine aerosol source (which exhibits a different spatial pattern than existing aerosol in the model.

  10. Sensitivity of aerosol loading and properties to cloudiness

    Science.gov (United States)

    Iversen, T.; Seland, O.; Kirkevag, A.; Kristjansson, J. E.

    2005-12-01

    Clouds influence aerosols in various ways. Sulfate is swiftly produced in liquid phase provided there is both sulfur dioxide and oxidants available. Nucleation and Aitken mode aerosol particles efficiently grow in size by collision and coagulation with cloud droplets. When precipitation is formed, aerosol and precursor gases may be quickly removed bay rainout. The dynamics associated with clouds in some cases may swiftly mix aerosols deeply into the troposphere. In some cases Aitken-mode particles may be formed in cloud droplets by splitting agglomerates of particulate matter such as black carbon In this presentation we will discuss how global cloudiness may influence the burden, residence time, and spatial distribution of sulfate, black carbon and particulate organic matter. A similar physico-chemical scheme for there compounds has been implemented in three generations of the NCAR community climate model (CCM3, CAM2 and CAM3). The scheme is documented in the literature and is a part of the Aerocom-intercomparison. There are many differences between these models. With respect to aerosols, a major difference is that CAM3 has a considerably higher global cloud volume and more then twice the amount of cloud water than CAM2 and CCM3. Atmospheric simulations have been made with prescribed ocean temperatures. It is slightly surprising to discover that certain aspects of the aerosols are not particularly sensitive to these differences in cloud availability. This sensitivity will be compared to sensitivities with respect to processing in deep convective clouds.

  11. Statistical examination of the aerosols loading over Kano-Nigeria: the Satellite observation analysis

    Directory of Open Access Journals (Sweden)

    Moses E. Emetere

    2016-07-01

    Full Text Available The problem of underestimating or overestimating the aerosols loading over Kano is readily becoming a global challenge. Recent health outcomes from an extensive effect of aerosols pollution has started manifesting in Kano. The aim of the research is to estimate the aerosols loading and retention over Kano. Thirteen years aerosol optical depth (AOD data was obtained from the Multi-angle imaging spectroradiometer (MISR. Statistical tools, as well as analytically derived model for aerosols loading were used to obtain the aerosols retention and loading over the area. It was discovered that the average aerosols retention over Kano is 4.9%. The atmospheric constants over Kano were documented. Due to the volume of aerosols over Kano, it is necessary to change the ITU model which relates to signal budgeting.

  12. Interference of Heavy Aerosol Loading on the VIIRS Aerosol Optical Depth (AOD Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-04-01

    Full Text Available Aerosol optical depth (AOD has been widely used in climate research, atmospheric environmental observations, and other applications. However, high AOD retrieval remains challenging over heavily polluted regions, such as the North China Plain (NCP. The Visible Infrared Imaging Radiometer Suite (VIIRS, which was designed as a successor to the Moderate Resolution Imaging Spectroradiometer (MODIS, will undertake the aerosol observations mission in the coming years. Using the VIIRS AOD retrieval algorithm as an example, we analyzed the influence of heavy aerosol loading through the 6SV radiative transfer model (RTM with a focus on three aspects: cloud masking, ephemeral water body tests, and data quality estimation. First, certain pixels were mistakenly screened out as clouds and ephemeral water bodies because of heavy aerosols, resulting in the loss of AOD retrievals. Second, the greenness of the surface could not be accurately identified by the top of atmosphere (TOA index, and the quality of the aggregation data may be artificially high. Thus, the AOD retrieval algorithm did not perform satisfactorily, indicated by the low availability of data coverage (at least 37.97% of all data records were missing according to ground-based observations and overestimation of the data quality (high-quality data increased from 63.42% to 80.97% according to radiative simulations. To resolve these problems, the implementation of a spatial variability cloud mask method and surficial index are suggested in order to improve the algorithm.

  13. Sodium fire aerosol loading capacity of several sand and gravel filters

    International Nuclear Information System (INIS)

    Barreca, J.R.; McCormack, J.D.

    1980-04-01

    Improved specific loading capacity for sodium fire aerosols was the objective of a sand and gravel test series. The aerosol capacity and related differential pressure of eight aggregate filters is presented. A maximum specific aerosol capacity, for dry aerosol, of 2.4 kg (Na) m -2 was obtained. This filter was loaded to a final differential pressure of 2.6 kPa. The average superficial face velocity was 0.5 cm/s and the average efficiency was 99.8%. The test results indicate that filter capacity increases with aerosol moisture content and with decreasing superficial velocity

  14. Enhanced water use efficiency in global terrestrial ecosystems under increasing aerosol loadings

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoliang; Chen, Min; Liu, Yaling; Miralles, Diego G.; Wang, Faming

    2017-05-01

    Aerosols play a crucial role in the climate system, affecting incoming radiation and cloud formation. Based on a modelling framework that couples ecosystem processes with the atmospheric transfer of radiation, we analyze the effect of aerosols on surface incoming radiation, gross primary productivity (GPP), water losses from ecosystems through evapotranspiration (ET) and ecosystem water use efficiency (WUE, defined as GPP/ET) for 2003–2010 and validate them at global FLUXNET sites. The total diffuse radiation increases under relatively low or intermediate aerosol loadings, but decreases under more polluted conditions. We find that aerosol-induced changes in GPP depend on leaf area index, aerosol loading and cloudiness. Specifically, low and moderate aerosol loadings cause increases in GPP for all plant types, while heavy aerosol loadings result in enhancement (decrease) in GPP for dense (sparse) vegetation. On the other hand, ET is mainly negatively affected by aerosol loadings due to the reduction in total incoming radiation. Finally, WUE shows a consistent rise in all plant types under increasing aerosol loadings. Overall, the simulated daily WUE compares well with observations at 43 eddy-covariance tower sites (R2=0.84 and RMSE=0.01gC (kg H2O)-1) with better performance at forest sites. In addition to the increasing portions of diffuse light, the rise in WUE is also favored by the reduction in radiation- and heat-stress caused by the aerosols, especially for wet and hot climates.

  15. Statistical examination of the aerosols loading over Mubi-Nigeria: The satellite oobservation analysis

    Directory of Open Access Journals (Sweden)

    Emetere Moses Eterigho

    2016-01-01

    Full Text Available The problem of underestimating or overestimating the aerosols loading over Mubi is inevitable because of the absence of ground stations over the region. Aerosols pollution is a global challenge to life forms as it affects human health, agricultural produce, thermal comfort and weather. The modulation between high and low thermal comforts over Mubi is quite disturbing. The aim of the research is to seek a more reliable approach to estimate the aerosols loading and retention over Mubi. Thirteen years aerosol optical depth (AOD data was obtained from the Multi-angle imaging spectroradiometer (MISR. Mubi is located on latitude 10.27oN and longitude 13.27oE. Statistical tools, as well as analytically derived model for aerosols loading were used to obtain the aerosols retention and loading over the area. It was discovered that the highest aerosols retention over Mubi is 12.7%. The atmospheric constants and tuning constants over Mubi were documented as 0.67 and 0.71 respectively. Due to the volume of aerosols over Mubi, it is necessary to change the International Telecommunication Union (ITU model which relates to signal budgeting.

  16. [Filtering facepieces: effect of oily aerosol load on penetration through the filtering material].

    Science.gov (United States)

    Plebani, Carmela; Listrani, S; Di Luigi, M

    2010-01-01

    Electrostatic filters are widely used in applications requiring high filtration efficiency and low pressure drop. However various studies showed that the penetration through electrostatic filters increases during exposure to an aerosol flow. This study investigates the effects of prolonged exposure to an oily aerosol on the penetration through filtering facepieces available on the market. Some samples of FFP1, FFP2 and FFP3 filtering facepieces were exposed for 8 hours consecutively to a paraffin oil polydisperse aerosol. At the end of the exposure about 830 mg of paraffin oil were deposited in the facepiece. All the examined facepieces showed penetration values that increased with paraffin oil load while pressure drop values were substantially the same before and after exposure. The measured maximum penetration values did not exceed the maximum penetration values allowed by the European technical standards, except in one case. According to the literature, 830 mg of oil load in a facepiece is not feasible in workplaces over an eight- hour shift. However, the trend of the penetration versus exposure mass suggests that if the load increases, the penetration may exceed the maximum allowed values. For comparison a mechanical filter was also studied. This showed an initial pressure drop higher than FFP2 filtering facepieces characterized by comparable penetration values. During exposure the pressure drop virtually doubled while penetration did not change. The increase in penetration with no increase in pressure drop in the analyzed facepieces indicates that it is necessary to comply with the information supplied by the manufacturer that restricts their use to a single shift.

  17. Atmospheric aerosol load morphological classification and retrieved visibility based on lidar backscatter measurements

    CSIR Research Space (South Africa)

    Tesfaye, M

    2010-01-01

    Full Text Available In this paper, the tropospheric aerosol load morphological classification and its impact on temporal variation of visibility are investigated using a continuous 23-hour single channel CSIR-NLC mobile LIDAR backscatter measurement. The trajectory...

  18. Stratifying Tropical Fires by Land Cover: Insights into Amazonian Fires, Aerosol Loading, and Regional Deforestation

    Science.gov (United States)

    TenHoeve, J. E.; Remer, L. A.; Jacobson, M. Z.

    2010-01-01

    This study analyzes changes in the number of fires detected on forest, grass, and transition lands during the 2002-2009 biomass burning seasons using fire detection data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the total number of detected fires correlates well with MODIS mean aerosol optical depth (AOD) from year to year, in accord with other studies. However, we also show that the ratio of forest to savanna fires varies substantially from year to year. Forest fires have trended downward, on average, since the beginning of 2006 despite a modest increase in 2007. Our study suggests that high particulate matter loading detected in 2007 was likely due to a large number of savanna/agricultural fires that year. Finally, we illustrate that the correlation between annual Brazilian deforestation estimates and MODIS fires is considerably higher when fires are stratified by MODIS-derived land cover classifications.

  19. SAGE measurements of the stratospheric aerosol dispersion and loading from the Soufriere Volcano

    Science.gov (United States)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1981-01-01

    Explosions of the Soufriere volcano on the Caribbean Island of St. Vincent reduced two major stratospheric plumes which the stratospheric aerosol and gas experiment (SAGE) satellite tracked to West Africa and the North Atlantic Ocean. The total mass of the stratospheric ejecta measured is less than 0.5% of the global stratospheric aerosol burden. No significant temperature or climate perturbation is expected. It is found that the movement and dispersion of the plumes agree with those deduced from high altitude meteorological data and dispersion theory. The stratospheric aerosol dispersion and loading from the Soufrier volcano was measured.

  20. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 1 g is sufficient to reduce photosynthesis to 10 -3 of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated

  1. Consideration of higher seismic loads at existing plants

    Energy Technology Data Exchange (ETDEWEB)

    Liebig, J.; Pellissetti, M.

    2015-07-01

    Because of advancement of methods in probabilistic seismic hazard analysis, plenty of existing plants face higher seismic loads as an obligation from the national authorities. In case of such obligations safety related structures and equipment have to be reevaluated or requalified for the increased seismic loads. The paper provides solutions for different kinds of structures and equipment inside the plant, avoiding cost intensive hardware exchange. Due to higher seismic loads different kinds of structures and equipment inside a plant have to be reevaluated. For civil structures, primary components, mechanical components, distribution lines and electrical and I&C equipment different innovative concepts will be applied to keep structures and equipment qualified for the higher seismic loads. Detailed analysis, including the modeling of non-linear phenomena, or minor structural upgrades are cost competitive, compared to cost intensive hardware exchanges. Several case studies regarding the re-evaluation and requalification of structures and equipment due to higher seismic loads are presented. It is shown how the creation of coupled finite element models and the consistent propagation of acceleration time histories through the soil, building and primary circuit lead to a significant load reduction Electrical and I&C equipment is reinforced by smart upgrades which increase the natural equipment frequencies. Therefore for all devices inside the cabinets the local acceleration will not increase and the seismic qualification will be maintained. The case studies cover both classical deterministic and probabilistic re-evaluations (fragility analysis). Furthermore, the substantial benefits of non-linear limit load evaluation, such as push-over analysis of buildings and limit load analysis of fuel assemblies, are demonstrated. (Author)

  2. Retrieving near-global aerosol loading over land and ocean from AVHRR

    Science.gov (United States)

    Hsu, N. C.; Lee, J.; Sayer, A. M.; Carletta, N.; Chen, S.-H.; Tucker, C. J.; Holben, B. N.; Tsay, S.-C.

    2017-09-01

    The spaceborne advanced very high resolution radiometer (AVHRR) sensor data record is approaching 40 years, providing a crucial asset for studying long-term trends of aerosol properties regionally and globally. However, due to limitations of its channels' information content, aerosol optical depth (AOD) data from AVHRR over land are still largely lacking. In this paper, we describe a new physics-based algorithm to retrieve aerosol loading over both land and ocean from AVHRR for the first time. The over-land algorithm is an extension of our Sea-viewing Wide Field-of-view Sensor and Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue algorithm, while a simplified version of our Satellite Ocean Aerosol Retrieval algorithm is used over ocean. We compare retrieved AVHRR AOD with that from MODIS on a daily and seasonal basis and find, in general, good agreement between the two. For the satellites with equatorial crossing times within 2 h of solar noon, the spatial coverage of the AVHRR aerosol product is comparable to that of MODIS, except over very bright arid regions (such as the Sahara), where the underlying surface reflectance at 630 nm reaches the critical surface reflectance. Based upon comparisons of the AVHRR AOD against Aerosol Robotic Network data, preliminary results indicate that the expected error confidence interval envelope is around ±(0.03 + 15%) over ocean and ±(0.05 + 25%) over land for this first version of the AVHRR aerosol products. Consequently, these new AVHRR aerosol products can contribute important building blocks for constructing a consistent long-term data record for climate studies.

  3. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    KAUST Repository

    Ornelas-Megiatto, Cá tia; Shah, Parth N.; Wich, Peter R.; Cohen, Jessica L.; Tagaev, Jasur A.; Smolen, Justin A.; Wright, Brian D.; Panzner, Matthew J.; Youngs, Wiley J.; Frechet, Jean; Cannon, Carolyn L.

    2012-01-01

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  4. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes.

    Science.gov (United States)

    Ornelas-Megiatto, Cátia; Shah, Parth N; Wich, Peter R; Cohen, Jessica L; Tagaev, Jasur A; Smolen, Justin A; Wright, Brian D; Panzner, Matthew J; Youngs, Wiley J; Fréchet, Jean M J; Cannon, Carolyn L

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH(2)Cl(2) (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery.

  5. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    KAUST Repository

    Ornelas-Megiatto, Cátia

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  6. Extremely large anthropogenic-aerosol contribution to total aerosol load over the Bay of Bengal during winter season

    Directory of Open Access Journals (Sweden)

    D. G. Kaskaoutis

    2011-07-01

    Full Text Available Ship-borne observations of spectral aerosol optical depth (AOD have been carried out over the entire Bay of Bengal (BoB as part of the W-ICARB cruise campaign during the period 27 December 2008–30 January 2009. The results reveal a pronounced temporal and spatial variability in the optical characteristics of aerosols mainly due to anthropogenic emissions and their dispersion controlled by local meteorology. The highest aerosol amount, with mean AOD500>0.4, being even above 1.0 on specific days, is found close to the coastal regions in the western and northern parts of BoB. In these regions the Ångström exponent is also found to be high (~1.2–1.25 indicating transport of strong anthropogenic emissions from continental regions, while very high AOD500 (0.39±0.07 and α380–870 values (1.27±0.09 are found over the eastern BoB. Except from the large α380–870 values, an indication of strong fine-mode dominance is also observed from the AOD curvature, which is negative in the vast majority of the cases, suggesting dominance of an anthropogenic-pollution aerosol type. On the other hand, clean maritime conditions are rather rare over the region, while the aerosol types are further examined through a classification scheme based on the relationship between α and dα. It was found that even for the same α values the fine-mode dominance is larger for higher AODs showing the strong continental influence over the marine environment of BoB. Furthermore, there is also an evidence of aerosol-size growth under more turbid conditions indicative of coagulation and/or humidification over specific BoB regions. The results obtained using OPAC model show significant fraction of soot aerosols (~6 %–8 % over the eastern and northwestern BoB, while coarse-mode sea salt particles are found to dominate in the southern parts of BoB.

  7. Time-dependent, non-monotonic response of warm convective cloud fields to changes in aerosol loading

    Directory of Open Access Journals (Sweden)

    G. Dagan

    2017-06-01

    Full Text Available Large eddy simulations (LESs with bin microphysics are used here to study cloud fields' sensitivity to changes in aerosol loading and the time evolution of this response. Similarly to the known response of a single cloud, we show that the mean field properties change in a non-monotonic trend, with an optimum aerosol concentration for which the field reaches its maximal water mass or rain yield. This trend is a result of competition between processes that encourage cloud development versus those that suppress it. However, another layer of complexity is added when considering clouds' impact on the field's thermodynamic properties and how this is dependent on aerosol loading. Under polluted conditions, rain is suppressed and the non-precipitating clouds act to increase atmospheric instability. This results in warming of the lower part of the cloudy layer (in which there is net condensation and cooling of the upper part (net evaporation. Evaporation at the upper part of the cloudy layer in the polluted simulations raises humidity at these levels and thus amplifies the development of the next generation of clouds (preconditioning effect. On the other hand, under clean conditions, the precipitating clouds drive net warming of the cloudy layer and net cooling of the sub-cloud layer due to rain evaporation. These two effects act to stabilize the atmospheric boundary layer with time (consumption of the instability. The evolution of the field's thermodynamic properties affects the cloud properties in return, as shown by the migration of the optimal aerosol concentration toward higher values.

  8. Influence of inland aerosol loading on the monsoon over Indian subcontinent

    Science.gov (United States)

    Satyanarayana, M.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Radhakrishnan, S. R.; Raghunath, K.

    2008-12-01

    The monsoon water cycle is the lifeline to over 60% of the world's population. The study on the behavioral change of Indian monsoon due to aerosol loading will help for the better understanding of Indian Monsoon. Aerosol system influences the atmosphere in two ways; it affects directly the radiation budget and indirectly provides condensation nuclei required for the clouds. The precipitation of the clouds in the monsoon season depends on the microphysical properties of the clouds. The effect of aerosol on cirrus clouds is being looked into through this work as an effort to study the role of aerosol on Indian Monsoon. The microphysical properties of high altitude clouds were obtained from the ground based lidar experiments at a low latitude station in the Indian subcontinent. Measurements during the Indian monsoon period from the inland station National Atmospheric Research Laboratory (NARL) Gadanki (13.5_ N, 79.2_ E), Tirupati, India were used for the investigation. The depolarization characteristics of the cirrus clouds were measured and the correlation between the depolarization and the precipitation characteristics were studied. The results obtained over a period of one year from January 1998 to December 1998 were presented.

  9. Upper and Lower Bound Limit Loads for Thin-Walled Pressure Vessels Used for Aerosol Cans

    Directory of Open Access Journals (Sweden)

    Stephen John Hardy

    2009-01-01

    Full Text Available The elastic compensation method proposed by Mackenzie and Boyle is used to estimate the upper and lower bound limit (collapse loads for one-piece aluminium aerosol cans, which are thin-walled pressure vessels subjected to internal pressure loading. Elastic-plastic finite element predictions for yield and collapse pressures are found using axisymmetric models. However, it is shown that predictions for the elastic-plastic buckling of the vessel base require the use of a full three-dimensional model with a small unsymmetrical imperfection introduced. The finite element predictions for the internal pressure to cause complete failure via collapse fall within the upper and lower bounds. Hence the method, which involves only elastic analyses, can be used in place of complex elastic-plastic finite element analyses when upper and lower bound estimates are adequate for design purposes. Similarly, the lower bound value underpredicts the pressure at which first yield occurs.

  10. Local load-sharing fiber bundle model in higher dimensions.

    Science.gov (United States)

    Sinha, Santanu; Kjellstadli, Jonas T; Hansen, Alex

    2015-08-01

    We consider the local load-sharing fiber bundle model in one to five dimensions. Depending on the breaking threshold distribution of the fibers, there is a transition where the fracture process becomes localized. In the localized phase, the model behaves as the invasion percolation model. The difference between the local load-sharing fiber bundle model and the equal load-sharing fiber bundle model vanishes with increasing dimensionality with the characteristics of a power law.

  11. Use of x-ray scattering in absorption corrections for x-ray fluorescence analysis of aerosol loaded filters

    International Nuclear Information System (INIS)

    Nielson, K.K.; Garcia, S.R.

    1976-09-01

    Two methods are described for computing multielement x-ray absorption corrections for aerosol samples collected in IPC-1478 and Whatman 41 filters. The first relies on scatter peak intensities and scattering cross sections to estimate the mass of light elements (Z less than 14) in the sample. This mass is used with the measured heavy element (Z greater than or equal to 14) masses to iteratively compute sample absorption corrections. The second method utilizes a linear function of ln(μ) vs ln(E) determined from the scatter peak ratios and estimates sample mass from the scatter peak intensities. Both methods assume a homogeneous depth distribution of aerosol in a fraction of the front of the filters, and the assumption is evaluated with respect to an exponential aerosol depth distribution. Penetration depths for various real, synthethic and liquid aerosols were measured. Aerosol penetration appeared constant over a 1.1 mg/cm 2 range of sample loading for IPC filters, while absorption corrections for Si and S varied by a factor of two over the same loading range. Corrections computed by the two methods were compared with measured absorption corrections and with atomic absorption analyses of the same samples

  12. Impact of agriculture crop residue burning on atmospheric aerosol loading – a study over Punjab State, India

    Directory of Open Access Journals (Sweden)

    Darshan Singh

    2010-02-01

    Full Text Available The present study deals with the impact of agriculture crop residue burning on aerosol properties during October 2006 and 2007 over Punjab State, India using ground based measurements and multi-satellite data. Spectral aerosol optical depth (AOD and Ångström exponent (α values exhibited larger day to day variation during crop residue burning period. The monthly mean Ångström exponent "α" and turbidity parameter "β" values during October 2007 were 1.31±0.31 and 0.36±0.21, respectively. The higher values of "α" and "β" suggest turbid atmospheric conditions with increase in fine mode aerosols over the region during crop residue burning period. AURA-OMI derived Aerosol Index (AI and Nitrogen dioxide (NO2 showed higher values over the study region during October 2007 compared to October 2006 suggesting enhanced atmospheric pollution associated with agriculture crop residue burning.

  13. LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD.

    Science.gov (United States)

    Koehler, Kirsten; Shapiro, Jeffrey; Sameenoi, Yupaporn; Henry, Charles; Volckens, John

    2014-05-01

    Human exposure to particulate matter (PM) air pollution is associated with human morbidity and mortality. The mechanisms by which PM impacts human health are unresolved, but evidence suggests that PM intake leads to cellular oxidative stress through the generation of reactive oxygen species (ROS). Therefore, reliable tools are needed for estimating the oxidant generating capacity, or oxidative load, of PM at high temporal resolution (minutes to hours). One of the most widely reported methods for assessing PM oxidative load is the dithiothreitol (DTT) assay. The traditional DTT assay utilizes filter-based PM collection in conjunction with chemical analysis to determine the oxidation rate of reduced DTT in solution with PM. However, the traditional DTT assay suffers from poor time resolution, loss of reactive species during sampling, and high limit of detection. Recently, a new DTT assay was developed that couples a Particle-Into-Liquid-Sampler with microfluidic-electrochemical detection. This 'on-line' system allows high temporal resolution monitoring of PM reactivity with improved detection limits. This study reports on a laboratory comparison of the traditional and on-line DTT approaches. An urban dust sample was aerosolized in a laboratory test chamber at three atmospherically-relevant concentrations. The on-line system gave a stronger correlation between DTT consumption rate and PM mass (R 2 = 0.69) than the traditional method (R 2 = 0.40) and increased precision at high temporal resolution, compared to the traditional method.

  14. The ten-year pattern (1978-1987) of stratospheric aerosol loading using ground-based radiometry

    International Nuclear Information System (INIS)

    Michalsky, J.J.; Pearson, E.W.; LeBaron, B.A.

    1988-09-01

    In this paper the procedures used to obtain a stratospheric measurement with ground-based sun radiometry are reviewed briefly. The five-wavelength optical depths are then used to study the evolution of aerosol size during the decade. The time history of loading from the instruments described are compared. Particular emphasis will be placed on the Garmisch-Partenkirchen data because their latitude is very nearly that of the PNL site. The most useful data for this study are those observational records that measure total stratospheric aerosol burden and include the early period and continue throughout the eruption and decay of El Chichon. The lidar data from Langley Research Center and Fraunhofer-Institute for Atmospheric Environmental Research at Garmisch-Partenkirchen, the SAM II satellite data, and the Pacific Northwest Laboratory (PNL) sun radiometry are the published contiguous measurements of the stratosphere aerosol burden during this period. 16 refs., 6 figs

  15. Using MSG to monitor the evolution of severe convective storms over East Mediterranean Sea and Israel, and its response to aerosol loading

    Directory of Open Access Journals (Sweden)

    I. M. Lensky

    2007-08-01

    Full Text Available Convective storms over East Mediterranean sea and Israel were tracked by METEOSAT Second Generation (MSG. The MSG data was used to retrieve time series of the precipitation formation processes in the clouds, the temperature of onset of precipitation, and an indication to aerosol loading over the sea. Strong correlation was found between the aerosol loading and the depth above cloud base required for the initialization of effective precipitation processes (indicated by the effective radius = 15 µm threshold. It seems from the data presented here that the clouds' response to the aerosol loading is very short.

  16. Superparamagnetic iron oxide nanoparticles (SPIONs)-loaded Trojan microparticles for targeted aerosol delivery to the lung.

    Science.gov (United States)

    Tewes, Frederic; Ehrhardt, Carsten; Healy, Anne Marie

    2014-01-01

    Targeted aerosol delivery to specific regions of the lung may improve therapeutic efficiency and minimise unwanted side effects. Targeted delivery could potentially be achieved with porous microparticles loaded with superparamagnetic iron oxide nanoparticles (SPIONs)-in combination with a target-directed magnetic gradient field. The aim of this study was to formulate and evaluate the aerodynamic properties of SPIONs-loaded Trojan microparticles after delivery from a dry powder inhaler. Microparticles made of SPIONs, PEG and hydroxypropyl-β-cyclodextrin (HPβCD) were formulated by spray drying and characterised by various physicochemical methods. Aerodynamic properties were evaluated using a next generation cascade impactor (NGI), with or without a magnet positioned at stage 2. Mixing appropriate proportions of SPIONs, PEG and HPβCD allowed Trojan microparticle to be formulated. These particles had a median geometric diameter of 2.8±0.3μm and were shown to be sensitive to the magnetic field induced by a magnet having a maximum energy product of 413.8kJ/m(3). However, these particles, characterised by a mass median aerodynamic diameter (MMAD) of 10.2±2.0μm, were considered to be not inhalable. The poor aerodynamic properties resulted from aggregation of the particles. The addition of (NH4)2CO3 and magnesium stearate (MgST) to the formulation improved the aerodynamic properties of the Trojan particles and resulted in a MMAD of 2.2±0.8μm. In the presence of a magnetic field on stage 2 of the NGI, the amount of particles deposited at this stage increased 4-fold from 4.8±0.7% to 19.5±3.3%. These Trojan particles appeared highly sensitive to the magnetic field and their deposition on most of the stages of the NGI was changed in the presence compared to the absence of the magnet. If loaded with a pharmaceutical active ingredient, these particles may be useful for treating localised lung disease such as cancer nodules or bacterial infectious foci. Copyright

  17. Evolution of aerosol loading in Santiago de Chile between 1997 and 2014

    Science.gov (United States)

    Pistone, Kristina; Gallardo, Laura

    2015-04-01

    While aerosols produced by major cities are a significant component of anthropogenic climate forcing as well as an important factor in public health, many South American cities have not been a major focus of aerosol studies due in part to relatively few long-term observations in the region. Here we present a synthesis of the available data for the emerging megacity of Santiago, Chile. We report new results from a recent NASA AERONET (AErosol RObotic NETwork) site in the Santiago basin, combining these with previous AERONET observations in Santiago as well as with a new assessment of the 11-station air quality monitoring network currently administered by the Chilean Environment Ministry (MMA, Ministerio del Medio Ambiente) to assess changes in aerosol composition since 1997. While the average surface concentration of pollution components (specifically PM2.5 and PM10) has decreased, no significant change in total aerosol optical depth was observed. However, changes in aerosol size and composition are suggested by the proxy measurements. Previous studies have revealed limitations in purely satellite-based studies over Santiago due to biases from high surface reflection in the region, particularly in summer months (e.g. Escribano et al 2014). To overcome this difficulty and certain limitations in the air quality data, we next incorporate analysis of aerosol products from the Multi-angle Imaging SpectroRadiometer (MISR) instrument along with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, both on NASA's Terra satellite, to better quantify the high bias of MODIS. Thus incorporating these complementary datasets, we characterize the aerosol over Santiago over the period 1997 to 2014, including the evolution of aerosol properties over time and seasonal dependencies in the observed trends. References: Escribano et al (2014), "Satellite Retrievals of Aerosol Optical Depth over a Subtropical Urban Area: The Role of Stratification and Surface

  18. Changes in atmospheric aerosol loading retrieved from space based measurements during the past decade

    Science.gov (United States)

    Yoon, J.; Burrows, J. P.; Vountas, M.; von Hoyningen-Huene, W.; Chang, D. Y.; Richter, A.; Hilboll, A.

    2013-10-01

    Atmospheric aerosol, generated from natural and anthropogenic sources, plays a key role in regulating visibility, air quality, and acid deposition. It is directly linked to and impacts on human health. It also reflects and absorbs incoming solar radiation and thereby influences the climate change. The cooling by aerosols is now recognized to have partly masked the atmospheric warming from fossil fuel combustion emissions. The role and potential management of short-lived climate pollutants such as aerosol are currently a topic of much scientific and public debate. Our limited knowledge of atmospheric aerosol and its influence on the Earth's radiation balance has a significant impact on the accuracy and error of current predictions of the future global climate change. In the past decades, environmental legislation in industrialized countries has begun to limit the release of anthropogenic pollutants. In contrast, in Asia as a result of the recent rapid economic development, emissions from industry and traffic have increased dramatically. In this study, the temporal changes/trends of atmospheric aerosols, derived from the satellite instruments MODIS (on board Terra and Aqua), MISR (Terra), and SeaWiFS (OrbView-2) during the past decade, are investigated. Whilst the aerosol optical thickness, AOT, over Western Europe decreases (i.e. by up to about -40% from 2003 to 2008) and parts of North America, a statistically significant increase (about +34% in the same period) over East China is observed and attributed to both the increase in industrial output and the Asian desert dust.

  19. Comparison of the impact of volcanic eruptions and aircraft emissions on the aerosol mass loading and sulfur budget in the stratosphere

    Science.gov (United States)

    Yue, Glenn K.; Poole, Lamont R.

    1992-01-01

    Data obtained by the Stratospheric Aerosol and Gas Experiment (SAGE) 1 and 2 were used to study the temporal variation of aerosol optical properties and to assess the mass loading of stratospheric aerosols from the eruption of volcanos Ruiz and Kelut. It was found that the yearly global average of optical depth at 1.0 micron for stratospheric background aerosols in 1979 was 1.16 x 10(exp -3) and in 1989 was 1.66 x 10(exp -3). The eruptions of volcanos Ruiz and Kelut ejected at least 5.6 x 10(exp 5) and 1.8 x 10(exp 5) tons of materials into the stratosphere, respectively. The amount of sulfur emitted per year from the projected subsonic and supersonic fleet is comparable to that contained in the background aerosol particles in midlatitudes from 35 deg N to 55 deg N.

  20. Long-term visibility variation in Athens (1931–2013: a proxy for local and regional atmospheric aerosol loads

    Directory of Open Access Journals (Sweden)

    D. Founda

    2016-09-01

    Full Text Available This study explores the interdecadal variability and trends of surface horizontal visibility at the urban area of Athens from 1931 to 2013, using the historical archives of the National Observatory of Athens (NOA. A prominent deterioration of visibility in the city was detected, with the long-term linear trend amounting to −2.8 km decade−1 (p < 0.001, over the entire study period. This was not accompanied by any significant trend in relative humidity or precipitation over the same period. A slight recovery of visibility levels seems to be established in the recent decade (2004–2013. It was found that very good visibility (>  20 km occurred at a frequency of 34 % before the 1950s, while this percentage drops to just 2 % during the decade 2004–2013. The rapid impairment of the visual air quality in Athens around the 1950s points to the increased levels of air pollution on a local and/or regional scale, related to high urbanization rates and/or increased anthropogenic emissions on a global scale at that period. Visibility was found to be negatively/positively correlated with relative humidity/wind speed, the correlation being statistically valid at certain periods. Wind regime and mainly wind direction and corresponding air mass origin were found to highly control visibility levels in Athens. The comparison of visibility variation in Athens and at a non-urban reference site on Crete island revealed similar negative trends over the common period of observations. This suggests that apart local sources, visibility in Athens is highly determined by aerosol load of regional origin. AVHRR and MODIS satellite-derived aerosol optical depth (AOD retrievals over Athens and surface measurements of PM10 confirmed the relation of visibility to aerosol load.

  1. Reduction of photosynthetically active radiation under extreme stratospheric-aerosol loads

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1981-01-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 16 g is sufficient to reduce photosynthesis to 10 3 of normal. We also infer from this result that the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al., is thus shown to be a possible extinction mechanism, even with smaller size asteroids or comets than previously estimated

  2. Aerosol filtration

    International Nuclear Information System (INIS)

    Klein, M.; Goossens, W.R.A.; De Smet, M.; Trine, J.; Hertschap, M.

    1984-01-01

    This report summarizes the work on the development of fibre metallic prefilters to be placed upstream of HEPA filters for the exhaust gases of nuclear process plants. Investigations at ambient and high temperature were carried out. Measurements of the filtration performance of Bekipor porous webs and sintered mats were performed in the AFLT (aerosol filtration at low temperature) unit with a throughput of 15 m 3 /h. A parametric study on the influence of particle size, fibre diameter, number of layers and superficial velocity led to the optimum choice of the working parameters. Three selected filter types were then tested with polydisperse aerosols using a candle-type filter configuration or a flat-type filter configuration. The small-diameter candle type is not well suited for a spraying nozzles regeneration system so that only the flat-type filter was retained for high-temperature tests. A high-temperature test unit (AFHT) with a throughput of 8 to 10 m 3 /h at 400 0 C was used to test the three filter types with an aerosol generated by high-temperature calcination of a simulated nitric acid waste solution traced with 134 Cs. The regeneration of the filter by spray washing and the effect of the regeneration on the filter performance was studied for the three filter types. The porous mats have a higher dust loading capacity than the sintered web which means that their regeneration frequency can be kept lower

  3. Testing Re-entrained Aerosol Kinetic Emissions from Roads : a new approach to infer silt loading on roadways

    Science.gov (United States)

    Kuhns, H.; Etyemezian, V.; Landwehr, D.; MacDougall, C.; Pitchford, M.; Green, M.

    PM 10 and PM 2.5 emissions from roadways are currently estimated using the silt loading on the road surface as a surrogate for the emissions potential of road dust. While the United States Environmental Protection Agency prescribes this method in AP-42, there is considerable cost associated with silt loading measurements; it is feasible to sample only a small portion of a roadway network. A new approach for measuring the concentration of suspendable PM 10 above road surfaces has been developed to obtain a more spatially representative estimate of a road's potential to emit dust. The Testing Re-entrained Aerosols Kinetic Emissions from Roads (TRAKER) system uses real-time aerosol sensors mounted on a vehicle to measure the concentration of dust suspended from the road while the vehicle is in motion. When coupled with a Global Positioning System (GPS) instrument, TRAKER can be used to efficiently survey the changes in suspendable particles due to varying road conditions over a large spatial domain. In a recent study on paved roads in Las Vegas, the TRAKER system was compared with collocated silt loading measurements. The TRAKER system was also used to survey the relative amounts of suspendable road dust on approximately 300 miles of paved roads. The system provides a unique perspective on road dust sources and their spatial distribution. Results of this study indicated that the difference of the PM 10 concentrations measured behind the tire and on the hood is exponentially related to vehicle speed. This was an interesting finding because current AP-42 road dust emissions estimation methods do not include vehicle speed as a factor in the emissions calculations. The experiment also demonstrated that the distribution of suspendable material on roadways is highly variable and that a large number of samples are needed to represent road dust emissions potential on an urban scale for a variety of road and activity conditions.

  4. Experimental study on the potential of higher octane number fuels for low load partially premixed combustion

    NARCIS (Netherlands)

    Wang, S.; van der Waart, K.; Somers, B.; de Goey, P.

    2017-01-01

    The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30

  5. Higher harmonic imaging of tensile plastic deformation in loading and reloading processes by local resonance method

    International Nuclear Information System (INIS)

    Kawashima, Koichiro; Yasui, Hajime

    2015-01-01

    We have imaged plastically deformed region in a 5052 aluminum plate under tensile loading, unloading and reloading processes by using an immersion local resonance method. By transmitting large-amplitude burst wave of which frequency is a through-thickness resonant frequency of the plate, dislocation loops in plastic zone are forced to vibrate. The higher harmonic amplitude excited by the dislocation movement is mapped for the transducer position. The extension of plastic zone under monotonically increased loading, decrease in harmonic amplitude under unloading process and marked extension of plastic zone in reloading up to 0.4% plastic strain are clearly imaged. (author)

  6. EFFECT OF FLIPPED LEARNING ON COGNITIVE LOAD: A HIGHER EDUCATION RESEARCH

    Directory of Open Access Journals (Sweden)

    Celal Karaca

    2017-01-01

    Full Text Available The purpose of this study is to determine the effect of the flipped learning method on the cognitive load of the students. The study was conducted with a sample of 160 people who were trained in Department of Mechanical Engineering for algorithms and programming courses at a higher education level. The study, which lasted for 8 weeks, has a semi-experimental design. A 9-point scale developed by Paas and Van Merrienboer (1993 was used for cognitive load measurements. At the end of the weekly courses, the scale was filled by the experimental and control groups. Independent sample t test was applied through SPSS 24 program to the obtained data. In both instances, the cognitive load in the experimental group in which the flipped learning method was applied was found to be lower than the cognitive load in the control group in which traditional face-to-face training was applied. As a result, it can be said that flipped learning, if well structured, is a method reducing cognitive load.

  7. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    Science.gov (United States)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  8. RIP INPUT TABLES FROM WAPDEG FOR LA DESIGN SELECTION: HIGHER THERMAL LOADING

    International Nuclear Information System (INIS)

    K. Mon

    1999-01-01

    The purpose of this calculation is to document (1) the Waste Package Degradation (WAPDEG) version 3.09 (CRWMS M and O 1998b. Software Routine Report for WAPDEG (Version 3.09)) simulations used to analyze waste package degradation and failure under the repository exposure conditions characterized by the higher thermal loading repository design feature and, (2) post-processing of these results into tables of waste package degradation time histories suitable for use as input into the Integrated Probabilistic Simulator for Environmental Systems version 5.19.01 (RIP) computer program (Golder Associates 1998). Specifically, the WAPDEG simulations discussed in this calculation correspond to waste package emplacement conditions (repository environment and design) defined in the Total System Performance Assessment-Viability Assessment (TSPA-VA), with the exception that the higher thermal loading Design Feature (Design Feature 26) of the License Application Design Selection (LADS) analysis was analyzed. Higher thermal loading would keep the drift temperature above the boiling point of water for a longer period of time, thereby minimizing moisture around the waste packages during a longer post-closure period. The higher thermal loading would also affect the surrounding rock, which may have adverse effects. The only failure mechanism of this feature would be if the effects on the surrounding rock were determined to be unacceptable. As a result of the change in waste package placement relative to the TSPA-VA base-case design, different temperature and relative humidity time histories at the waste package surface are calculated (input to the WAPDEG simulations), and consequently different waste package failure histories (as calculated by WAPDEG) result

  9. An analysis of high fine aerosol loading episodes in north-central Spain in the summer 2013 - Impact of Canadian biomass burning episode and local emissions

    Science.gov (United States)

    Burgos, M. A.; Mateos, D.; Cachorro, V. E.; Toledano, C.; de Frutos, A. M.; Calle, A.; Herguedas, A.; Marcos, J. L.

    2018-07-01

    This work presents an evaluation of a surprising and unusual high turbidity summer period in 2013 recorded in the north-central Iberian Peninsula (IP). The study is made up of three main pollution episodes characterized by very high aerosol optical depth (AOD) values with the presence of fine aerosol particles: the strongest long-range transport Canadian Biomass Burning (BB) event recorded, one of the longest-lasting European Anthropogenic (A) episodes and an extremely strong regional BB. The Canadian BB episode was unusually strong with maximum values of AOD(440 nm) ∼ 0.8, giving rise to the highest value recorded by photometer data in the IP with a clearly established Canadian origin. The anthropogenic pollution episode originated in Europe is mainly a consequence of the strong impact of Canadian BB events over north-central Europe. As regards the local episode, a forest fire in the nature reserve near the Duero River (north-central IP) impacted on the population over 200 km away from its source. These three episodes exhibited fingerprints in different aerosol columnar properties retrieved by sun-photometers of the AErosol RObotic NETwork (AERONET) as well as in particle mass surface concentrations, PMx, measured by the European Monitoring and Evaluation Programme (EMEP). Main statistics, time series and scatterplots relate aerosol loads (aerosol optical depth, AOD and particulate matter, PM) with aerosol size quantities (Ångström Exponent and PM ratio). More detailed microphysical/optical properties retrieved by AERONET inversion products are analysed in depth to describe these events: contribution of fine and coarse particles to AOD and its ratio (the fine mode fraction), volume particle size distribution, fine volume fraction, effective radius, sphericity fraction, single scattering albedo and absorption optical depth. Due to its relevance in climate studies, the aerosol radiative effect has been quantified for the top and bottom of the atmosphere

  10. Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings

    Directory of Open Access Journals (Sweden)

    S. M. King

    2009-05-01

    Full Text Available The effect of organic particle mass loading from 1 to ≥100 μg m−3 on the cloud condensation nuclei (CCN properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of α-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate Köhler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 μg m−3 and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 μg m−3 and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. A sensitivity analysis suggests that a drop in surface tension must be invoked to explain quantitatively the CCN observations at low SOA particle mass loadings. Other factors, such as decreased molecular weight, increased density, or increased van't Hoff factor, can contribute to the explanation but are quantitatively insufficient as the full explanation.

  11. Quantifying Sulphur Emissions and Atmospheric Aerosol Loading From the 1730-36 Lanzarote Eruption

    Science.gov (United States)

    Sharma, K.; Blake, S.; Self, S.

    2005-12-01

    The AD 1730-36 eruption of Lanzarote (Canary Islands) is the third largest basaltic fissure eruption known to have occurred in the last 1000 years, after the Icelandic events of Laki (AD 1783-84) and Eldgja (AD 934). Our new volume estimates suggest that the Lanzarote eruption produced ~6 km3 of alkali basalt magma along a 15-km long, E-W trending fissure. Eruptive activity occurred in five distinct phases. Each phase began with Strombolian fire fountain activity, building large spatter and scoria cones. This was accompanied and followed by effusive aa and pahoehoe lava flow emplacement. As studies in Iceland have shown, this type of sustained fissure eruption can release large amounts of SO2 to the upper atmosphere, leading to the formation of sulphate aerosol clouds and causing widespread environmental damage and human suffering. Matrix glasses in scoria and surface lava samples have 80-300 ppm S (EMPA) and 300-600 ppm H2O (FTIR), whereas glass inclusions in olivine have 420-2650 ppm S and 1000-5000 ppm H2O. Low sulphur inclusions are believed to be partially degassed, representing melt that was trapped during degassing-induced crystallization that occurred as a result of shallow decompression. The inclusions with the highest sulphur contents trap the original un-degassed melt, as indicated by their consistent S/K2O ratio (0.22). The high sulphur contents are also consistent with our finding, from olivine-spinel equilibria, that the magma was relatively oxidized (log fO2 -4.8) therefore favouring the formation of sulphate species and preventing sulphide saturation. Our glass analyses indicate that 40 Mt of SO2 was injected into the upper troposphere - lower stratosphere via 12-16-km-high eruption plumes and that over half this amount was released during the first year of activity. This figure correlates with published Greenland ice-core (GISP-2) data that shows an acidity spike in 1731, suggesting stratospheric transport of sulphate aerosol to the North during

  12. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  13. High aerosol load over the Pearl River Delta, China, observed with Raman lidar and Sun photometer

    Science.gov (United States)

    Ansmann, Albert; Engelmann, Ronny; Althausen, Dietrich; Wandinger, Ulla; Hu, Min; Zhang, Yuanghang; He, Qianshan

    2005-07-01

    Height-resolved data of the particle optical properties, the vertical extend of the haze layer, aerosol stratification, and the diurnal cycle of vertical mixing over the Pearl River Delta in southern China are presented. The observations were performed with Raman lidar and Sun photometer at Xinken (22.6°N, 113.6°E) near the south coast of China throughout October 2004. The lidar run almost full time on 21 days. Sun photometer data were taken on 23 days, from about 0800 to 1700 local time. The particle optical depth (at about 533-nm wavelength) ranged from 0.3-1.7 and was, on average, 0.92. Ångström exponents varied from 0.65-1.35 (for wavelengths 380 to 502 nm) and from 0.75-1.6 (for 502 to 1044 nm), mean values were 0.97 and 1.22. The haze-layer mean extinction-to-backscatter ratio ranged from 35-59 sr, and was, on average, 46.7 sr. The top of the haze layer reached to heights of 1.5-3 km in most cases.

  14. Influence of marine aerosols and aerotechnogenic load on chemical composition of rainwaters on small islands (ludas) of the White Sea

    Science.gov (United States)

    Gorbacheva, Tamara; Mazukhina, Svetlana; Isaeva, Ludmila; Shumilov, Oleg

    2013-04-01

    In June 2001 intensive monitoring plots were established on the island part of Kandalaksha Bay of the White Sea (the island Tonnaya Luda; 67o06'60"N; 32o24'12"E) with the installation of stationary rainwater collectors. The purpose was studying the chemical composition of rain waters in the zone of cumulative influence of marine aerosols and aerotechnogenic load. Water sampling was carried out monthly during the vegetative season of 2001 and 2002. pH of rain water was determined by potentiometric method without preliminary filtration. The samples were passed through the paper filter with the pore diameter of 1-2.5 microns, the analysis of filtrate carried out by methods of atomic emission spectrometry (K, Na) and atomic absorption spectrometry (Ca, Mg, Zn, Mn, Cu, Ni, Al, Fe), total P and P of phosphates, Si and NH4+ - by photocolorimetry, total carbon - by bichromate method, NO3-, SO42-, Cl--by ion exchange chromatography method. Balance method was chosen as a research basis to determine the interrelation of rain water organic matter and dynamics of its redistribution under the influence of natural and technogenic factors. The difference between the cations sum (including NH4+and H+) and mineral acids anions sum (SO42-, Cl-, NO3-) was identified as organic acids anions concentration (μeq l-1). The level of Na, Cl-, K, Ca, Mg, SO42-, Sr in rainwaters on the island and the remote areas is indicative of the possible influence of marine aerosols on the island part of the White Sea. The increase of Al, Cu, Ni, Cd, Co concentrations in rainwaters up to one order against the background values points to the cumulative influence of the emissions of industrial enterprises located in the region. The relative stability of pH values of rain waters during all seasons indicates to the buffer action of weak organic acids anions. The correlation analysis of ionic structure in normal concentrations has allowed us to estimate the distribution of the cationic part from the

  15. Dry Eye Disease Patients with Xerostomia Report Higher Symptom Load and Have Poorer Meibum Expressibility.

    Science.gov (United States)

    Fostad, Ida G; Eidet, Jon R; Utheim, Tor P; Ræder, Sten; Lagali, Neil S; Messelt, Edvard B; Dartt, Darlene A

    2016-01-01

    The purpose of the study was to investigate if xerostomia (dry mouth) is associated with symptoms and signs of dry eye disease (DED). At the Norwegian Dry Eye Clinic, patients with symptomatic DED with different etiologies were consecutively included in the study. The patients underwent a comprehensive ophthalmological work-up and completed self-questionnaires on symptoms of ocular dryness (Ocular Surface Disease Index [OSDI] and McMonnies Dry Eye Questionnaire) and the Sjögren's syndrome (SS) questionnaire (SSQ). Three hundred and eighteen patients (52% women and 48% men) with DED were included. Patient demographics were: 0 to 19 years (1%), 20 to 39 (25%), 40 to 59 (34%), 60 to 79 (35%) and 80 to 99 (5%). Xerostomia, defined as "daily symptoms of dry mouth the last three months" (as presented in SSQ) was reported by 23% of the patients. Female sex was more common among patients with xerostomia (81%) than among non-xerostomia patients (44%; Pxerostomia (60 ± 15 years) were older than those without xerostomia (51 ± 17; Pxerostomia patients (65%) than among non-xerostomia patients (35%; Pxerostomia had a higher OSDI score (19.0 ± 10.0) than those without xerostomia (12.9 ± 8.0; Pxerostomia patients had more pathological meibum expressibility (0.9 ± 0.7) than those without xerostomia (0.7 ± 0.8; P = 0.046). Comparisons of OSDI and ocular signs were performed after controlling for the effects of sex, age and the number of systemic prescription drugs used. In conclusion, xerostomia patients demonstrated a higher DED symptom load and had poorer meibum expressibility than non-xerostomia patients.

  16. Household crowding is associated with higher allostatic load among the Inuit.

    Science.gov (United States)

    Riva, Mylene; Plusquellec, Pierrich; Juster, Robert-Paul; Laouan-Sidi, Elhadji A; Abdous, Belkacem; Lucas, Michel; Dery, Serge; Dewailly, Eric

    2014-04-01

    Household crowding is an important problem in some aboriginal communities that is reaching particularly high levels among the circumpolar Inuit. Living in overcrowded conditions may endanger health via stress pathophysiology. This study examines whether higher household crowding is associated with stress-related physiological dysregulations among the Inuit. Cross-sectional data on 822 Inuit adults were taken from the 2004 Qanuippitaa? How are we? Nunavik Inuit Health Survey. Chronic stress was measured using the concept of allostatic load (AL) representing the multisystemic biological 'wear and tear' of chronic stress. A summary index of AL was constructed using 14 physiological indicators compiled into a traditional count-based index and a binary variable that contrasted people at risk on at least seven physiological indicators. Household crowding was measured using indicators of household size (total number of people and number of children per house) and overcrowding defined as more than one person per room. Data were analysed using weighted Generalised Estimating Equations controlling for participants' age, sex, income, diet and involvement in traditional activities. Higher household crowding was significantly associated with elevated AL levels and with greater odds of being at risk on at least seven physiological indicators, especially among women and independently of individuals' characteristics. This study demonstrates that household crowding is a source of chronic stress among the Inuit of Nunavik. Differential housing conditions are shown to be a marker of health inequalities among this population. Housing conditions are a critical public health issue in many aboriginal communities that must be investigated further to inform healthy and sustainable housing strategies.

  17. Mass loading and episodic variation of molecular markers in PM2.5 aerosols over a rural area in eastern central India

    Science.gov (United States)

    Nirmalkar, Jayant; Deshmukh, Dhananjay K.; Deb, Manas K.; Tsai, Ying I.; Sopajaree, Khajornsak

    2015-09-01

    The impact of biomass burning in atmospheric aerosols load is poorly known. We investigated the impact of biomass burning through molecular markers on the concentration of PM2.5 aerosol samples collected from a rural site in eastern central India during three episodic periods from October to November 2011. The collected PM2.5 samples were chemically quantified for potassium as well as sugars and dicarboxylic acids using ion chromatography. Levoglucosan and glucose were found as the most abundant sugar compounds and sugar-alcohols showed the predominance of mannitol whereas oxalic acid was the most abundant diacid followed by maleic acid in PM2.5 aerosols. Substantially enhanced concentrations of K+ as well as levoglucosan and glucose were observed in eastern central India. Analysis of the source specific molecular markers and ratios of sugars and diacids infer that combustion of biomass was the major emission sources of organic compounds associated with PM2.5 aerosols over eastern central India. We applied Spearman correlation analysis and principal component analysis to further investigate the sources of measured sugars and diacids. The concentrations of K+ and levoglucosan were significantly correlated with sugars and diacids that verifying their common sources from biomass burning emission. This study demonstrates that biomass burning for domestic heating and cooking purposes and agricultural activities significantly influence the air quality of eastern central India during the investigation period. The obtained data in this research is helpful for the global scientific community to assessments and remedial of air quality parameters in rural areas of developing countries under similar atmospheric circumstances.

  18. Sustainable railway bridges with higher axle loads:monitoring examples from northern Sweden

    OpenAIRE

    Elfgren, Lennart; Enochsson, Ola; Täljsten, Björn; Paulsson, Björn

    2007-01-01

    Monitoring of several railway bridges has been carried out in northern Sweden in order to increase the allowable axle load. The work is part of a European Integrated Project "Sustainable Bridges - Assessment for Future Traffic Demands and Longer Lives". The paper describes the project and gives some examples of applications. Monitoring of several railway bridges has been carried out in northern Sweden in order to increase the allowable axle load. The work is part of a European Integrated P...

  19. Forest fires in Himalayan region during 2016 - Aerosol load and smoke plume heights detection by multi sensor observations

    Science.gov (United States)

    Kumar, S.; Dumka, U. C.

    2017-12-01

    The forest fires are common events over the Central Himalayan region during the pre-monsoon season (March - June) of every year. Forest fire plays a crucial role in governing the vegetation structure, ecosystem, climate change as well as in atmospheric chemistry. In regional and global scales, the combustion of forest and grassland vegetation releases large volumes of smoke, aerosols, and other chemically active species that significantly influence Earth's radiative budget and atmospheric chemistry, impacting air quality and risks to human health. During the year 2016, massive forest fires have been recorded over the Central Himalayan region of Uttarakhand which continues for several weeks. To study this event we used the multi-satellite observations of aerosols and pollutants during pre-fire, fire and post-fire period over the central Himalayan region. The data used in this study are active fire count and aerosol optical depth (AOD) from MODerate-resolution Imaging Spectroradiometer (MODIS), aerosol index and gases pollutants from Ozone Monitoring Instrument (OMI), along with vertical profiles of aerosols and smoke plume height information from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The result shows that the mean fire counts were maximum in April. The daily average AOD value shows an increasing trend during the fire events. The mean value of AOD before the massive fire (25 April), during the fire (30 April) and post fire (5 May) periods are 0.3, 1.2 and 0.6 respectively. We find an increasing trend of total columnar NO2 over the Uttarakhand region during the massive fire event. Space-born Lidar (CALIPSO) retrievals show the extent of smoke plume heights beyond the planetary boundary layer up to 6 km during the peak burning day (April 30). The HYSPLIT air mass forward trajectory shows the long-range transportation of smoke plumes. The results of the present study provide valuable information for addressing smoke plume and

  20. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    uncertainties by "the I-beams". Only an uncertainty range rather than a best estimate is presented for direct aerosol forcing by mineral dust and for indirect aerosol forcing. An assessment of the present level of scientific understanding is indicated at the bottom of the figure (reproduced by permission of Intergovernmental Panel on Climate Change). The importance of atmospheric aerosols to issues of societal concern has motivated much research intended to describe their loading, distribution, and properties and to develop understanding of the controlling processes to address such issues as air pollution, acid deposition, and climate influences of aerosols. However, description based wholly on measurements will inevitably be limited in its spatial and temporal coverage and in the limited characterization of aerosol properties. These limitations are even more serious for predictions of future emissions and provide motivation for concurrent theoretical studies and development of model-based description of atmospheric aerosols.An important long-range goal, which has already been partly realized, is to develop quantitative understanding of the processes that control aerosol loading, composition, and microphysical properties as well as the resultant optical and cloud-nucleating properties. An objective is to incorporate these results into chemical transport models that can be used for predictions. Such models are required, for example, to design approaches to achieve air quality standards and to assess and predict aerosol influences on climate change. Much current research is directed toward enhancing this understanding and to evaluating it by comparison of model results and observations. However, compared to gases, models involving particles are far more complex because of the need to specify additional parameters such as particle sizes and size distributions, compositions as a function of size, particle shapes, and temporal and spatial variations, including reactions that occur

  1. Impact of Higher Fidelity Models on Simulation of Active Aerodynamic Load Control For Fatigue Damage Reduction

    NARCIS (Netherlands)

    Resor, B.; Wilson, D.; Berg, D.; Berg, J.; Barlas, T.; Van Wingerden, J.W.; Van Kuik, G.A.M.

    2010-01-01

    Active aerodynamic load control of wind turbine blades is being investigated by the wind energy research community and shows great promise, especially for reduction of turbine fatigue damage in blades and nearby components. For much of this work, full system aeroelastic codes have been used to

  2. Investigation about a possible correlation between the loading with environmental aerosols and the occurrence of child's lung disease

    International Nuclear Information System (INIS)

    Kagerer, S. P.

    1999-01-01

    In the recent years the increase of respiratory diseases and allergies has been discussed extensively, both by experts and in the media, at the national and the international level. This rise of respiratory diseases and allergies has stimulated the search for potential causes. One of these presumed causes is the occurrence of environmental aerosols in ambient air. Within the framework of the present masters thesis it was attempted to correlate cause and effect for the city and province of Salzburg. For this purpose, aerosol measurements were carried out at a few selected places: Salzburg (Rudolfsplatz) as an urban area and Tamsweg and Hallein Winterstall as rural areas. A comparison of the results of these measurements between the three places indicates an unambiguous decrease of concentration of the particles in the air, from the city to the country side. This gradient in particle concentrations consistent with the frequency of respiratory diseases and allergies. It is therefore possible to suggest a relationship between the concentration of environmental aerosols in ambient air and the health effects considered in this study. However, I would like to point out that the results of the present masters thesis have some informative value, but it would still be necessary to confirm them by a greater number of measurements which were unfortunately not possible within the framework of the present work. (author)

  3. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  4. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    Science.gov (United States)

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  5. New conceptual copper alloy bearing for diesel engine to achieve longer life under higher load; Diesel engine yo komen`atsu chojumyo jikuuke no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tomikawa, T; Oshiro, H; Hashizume, K; Kamiya, S [Taiho Kogyo Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, the requirement like higher output, lower fuel consumption and cleaner exhaust gas for automotive engines has been increased. As a result, especially, higher bearing performance is required for diesel engine under a higher unit load and longer period. For this reason, we have developed the new conceptual copper alloy bearing to achieve higher performance under a higher unit load. This paper describes about the performance of this new bearing material. 3 refs., 12 figs., 5 tabs.

  6. Identification of secondary aerosol precursors emitted by an aircraft turbofan

    Science.gov (United States)

    Kılıç, Doğuşhan; El Haddad, Imad; Brem, Benjamin T.; Bruns, Emily; Bozetti, Carlo; Corbin, Joel; Durdina, Lukas; Huang, Ru-Jin; Jiang, Jianhui; Klein, Felix; Lavi, Avi; Pieber, Simone M.; Rindlisbacher, Theo; Rudich, Yinon; Slowik, Jay G.; Wang, Jing; Baltensperger, Urs; Prévôt, Andre S. H.

    2018-05-01

    Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM) chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs) and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS) for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS) for nonrefractory particulate matter (NR-PM1) were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5-7 %), more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.

  7. Identification of secondary aerosol precursors emitted by an aircraft turbofan

    Directory of Open Access Journals (Sweden)

    D. Kılıç

    2018-05-01

    Full Text Available Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS for nonrefractory particulate matter (NR-PM1 were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5–7 %, more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.

  8. Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-15

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) measures particle mass loading and chemical composition in real time for non-refractory sub-micron aerosol particles. The ACSM is designed for long-term unattended deployment and routine monitoring applications.

  9. Safeguarding subcriticality during loading and shuffling operations in the higher density of the RSG-GAS's silicide core

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Kuntoro, I.

    2003-01-01

    The core conversion program of the RSG-GAS reactor is to convert the all-oxide to all-silicide core. The silicide equilibrium core with fuel meat density of 3.55 gU cm -3 is an optimal core for RSG-GAS reactor and it can significantly increase the operation cycle length from 25 to 32 full power days. Nevertheless, the subcriticality of the shutdown core and the shutdown margin are lower than of the oxide core. Therefore, the deviation of subcriticality condition in the higher silicide core caused by the fuel loading and shuffling error should be reanalysed. The objective of this work is to analyse the sufficiency of the subcriticality condition of the shutdown core to face the worst condition caused by an error during loading and shuffling operations. The calculations were carried out using the 2-dimensional multigroup neutron diffusion code of Batan-FUEL. In the fuel handling error, the calculated results showed that the subcriticality condition of the shutdown higher density silicide equilibrium core of RSG-GAS can be maintained. Therefore, all fuel management steps are fixed in the present reactor operation manual can be applied in the higher silicide equilibrium core of RSG-GAS reactor. (author)

  10. Field profile and loading measurements on higher order modes in a two cell 500 MHz superconducting structure

    International Nuclear Information System (INIS)

    Barry, W.; Edighoffer, J.; Chattopadhyay, S.; Fornaco, S.

    1992-01-01

    The Infrared Free Electron Laser, being designed at LBL as part of the Chemical Dynamics Research Laboratory, is based on a 500 MHz superconducting linac driver that consists of five 4-cell structures of the CERN/DESY type. A 500 MHz, 2-cell version of this structure is being used in a joint Stanford/LBL/BNL program to study accelerator issues relevant to the FEL applications. As part of this study, field profile and loading measurements of higher order modes have been made on the prototype structure. (Author) 3 refs., 2 figs., tab

  11. Field profile and loading measurements on higher order modes in a two cell 500 MHz superconducting structure

    International Nuclear Information System (INIS)

    Barry, W.; Edighoffer, J.; Chattopadhyay, S.; Fornaca, S.

    1992-08-01

    The Infrared Free Electron Laser, being designed at LBL as part of the Chemical Dynamics Research Laboratory, is based on a 500 MHz superconducting linac driver that consists of five 4-cell structures of the CERN/DESY type. A 500 MHz, 2-cell version of this structure is being used in a joint Stanford/LBL/BNL program to study accelerator issues relevant to the FEL applications. As part of this study, field profile and loading measurements of higher order modes have been made on the prototype structure

  12. Aerosol-Cloud-Precipitation Interactions in WRF Model:Sensitivity to Autoconversion Parameterization

    Institute of Scientific and Technical Information of China (English)

    解小宁; 刘晓东

    2015-01-01

    Cloud-to-rain autoconversion process is an important player in aerosol loading, cloud morphology, and precipitation variations because it can modulate cloud microphysical characteristics depending on the par-ticipation of aerosols, and aff ects the spatio-temporal distribution and total amount of precipitation. By applying the Kessler, the Khairoutdinov-Kogan (KK), and the Dispersion autoconversion parameterization schemes in a set of sensitivity experiments, the indirect eff ects of aerosols on clouds and precipitation are investigated for a deep convective cloud system in Beijing under various aerosol concentration backgrounds from 50 to 10000 cm−3. Numerical experiments show that aerosol-induced precipitation change is strongly dependent on autoconversion parameterization schemes. For the Kessler scheme, the average cumulative precipitation is enhanced slightly with increasing aerosols, whereas surface precipitation is reduced signifi-cantly with increasing aerosols for the KK scheme. Moreover, precipitation varies non-monotonically for the Dispersion scheme, increasing with aerosols at lower concentrations and decreasing at higher concentrations. These diff erent trends of aerosol-induced precipitation change are mainly ascribed to diff erences in rain wa-ter content under these three autoconversion parameterization schemes. Therefore, this study suggests that accurate parameterization of cloud microphysical processes, particularly the cloud-to-rain autoconversion process, is needed for improving the scientifi c understanding of aerosol-cloud-precipitation interactions.

  13. Aerosol generation and filter behaviour in sodium fires. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, L; Jordan, S

    1975-11-01

    In the scope of a long-term program (a) aerosol-formation rates during Na fires, (b) the behavior of Na aerosols in a closed system, and (c) the filtration of Na aerosols were investigated. These experiments in the ABRAUS facility should simulate the behaviour of Na aerosols after an accident in the inner and outer containment of the sodium-cooled fast Reactor SNR 300. At the conditions of the inner-containment (0.7% oxygen content in the atmosphere) aerosol-concentrations by Na - 0/sub 2/ reactions of 1 - 10 g/m/sup 3/ are possible. At the conditions of the outer-containment (21% 0/sub 2/-content) aerosol-concentrations at Na fires of 10 - 50 g/m/sup 3/ have been measured. The aerosol-formation rates are proportional to the 0/sub 2/-concentration: the rate at 21% 0/sub 2/-concentration is about 10-times higher than the rate at 0.7% 0/sub 2/. The aerosol formation rate was determined to 20 kgNa/m/sup 2/h at 21% 0/sub 2/. The behaviour of sand-bed-filters was investigated. A sand-bed-filter arrangement was developed which is better than HEPA-standard of fiberglas-filters concerning efficiency (better than 99.99) and load capacity (about 500 g Na/sub 2/0/sub 2//m/sup 2/). Beyond that sand-bed-filters resist high pressure- and temperature-peaks. Liquid Na aerosols are filtered with an efficiency better than 99.9%. A physical model was evaluated to explain pressure increase at the sand-bed-filter during load and penetration of the filter. The calculated values were in good agreement with experimental results.

  14. Optimization of economic load dispatch of higher order general cost polynomials and its sensitivity using modified particle swarm optimization

    International Nuclear Information System (INIS)

    Saber, Ahmed Yousuf; Chakraborty, Shantanu; Abdur Razzak, S.M.; Senjyu, Tomonobu

    2009-01-01

    This paper presents a modified particle swarm optimization (MPSO) for constrained economic load dispatch (ELD) problem. Real cost functions are more complex than conventional second order cost functions when multi-fuel operations, valve-point effects, accurate curve fitting, etc., are considering in deregulated changing market. The proposed modified particle swarm optimization (PSO) consists of problem dependent variable number of promising values (in velocity vector), unit vector and error-iteration dependent step length. It reliably and accurately tracks a continuously changing solution of the complex cost function and no extra concentration/effort is needed for the complex higher order cost polynomials in ELD. Constraint management is incorporated in the modified PSO. The modified PSO has balance between local and global searching abilities, and an appropriate fitness function helps to converge it quickly. To avoid the method to be frozen, stagnated/idle particles are reset. Sensitivity of the higher order cost polynomials is also analyzed visually to realize the importance of the higher order cost polynomials for the optimization of ELD. Finally, benchmark data sets and methods are used to show the effectiveness of the proposed method. (author)

  15. Investigations into the penetration and pressure drop of HEPA filter media during loading with submicron particle aerosols at high concentrations

    International Nuclear Information System (INIS)

    Leibold, H; Wilhelm, J.G.

    1991-01-01

    High Efficiency Particulate Air (HEPA) filters are typically employed in particle removal and retention within the air cleaning systems of clean rooms in the pharmaceutical, nuclear and semiconductor industries for dust concentrations of some μg/m 3 . Their extremely high removal efficiencies for submicron particles make them attractive candidates in complying with increasingly lower emission limits for industrial processes that involve dust concentrations of up to several g/m 3 . Cost-effective operation under such conditions requires the filter units to be recleanable. The recleanability of HEPA filter media depends not only on the operating conditions during the cleaning process but also on the filtration conditions during particle loading. The structure and location of the particles captured by the glass fiber matrix greatly affect the degree to which they can be subsequently dislodged and removed from the filter medium. Changes in filtration efficiency with service time for various particle diameters in the critical submicron size range, as well as the effects of filtration velocity on the increase in pressure drop, are important criteria with regard to recleaning HEPA filter units. Of special significance for the recleanability of HEPA filter media is knowledge of how operating conditions affect dust cake formation. (author)

  16. Black carbon in aerosol during BIBLE B

    Science.gov (United States)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  17. Spatio-temporal variability of aerosols in the tropics relationship with atmospheric and oceanic environments

    Science.gov (United States)

    Zuluaga-Arias, Manuel D.

    2011-12-01

    Earth's radiation budget is directly influenced by aerosols through the absorption of solar radiation and subsequent heating of the atmosphere. Aerosols modulate the hydrological cycle indirectly by modifying cloud properties, precipitation and ocean heat storage. In addition, polluting aerosols impose health risks in local, regional and global scales. In spite of recent advances in the study of aerosols variability, uncertainty in their spatio-temporal distributions still presents a challenge in the understanding of climate variability. For example, aerosol loading varies not only from year to year but also on higher frequency intraseasonal time scales producing strong variability on local and regional scales. An assessment of the impact of aerosol variability requires long period measurements of aerosols at both regional and global scales. The present dissertation compiles a large database of remotely sensed aerosol loading in order to analyze its spatio-temporal variability, and how this load interacts with different variables that characterize the dynamic and thermodynamic states of the environment. Aerosol Index (AI) and Aerosol Optical Depth (AOD) were used as measures of the atmospheric aerosol load. In addition, atmospheric and oceanic satellite observations, and reanalysis datasets is used in the analysis to investigate aerosol-environment interactions. A diagnostic study is conducted to produce global and regional aerosol satellite climatologies, and to analyze and compare the validity of aerosol retrievals. We find similarities and differences between the aerosol distributions over various regions of the globe when comparing the different satellite retrievals. A nonparametric approach is also used to examine the spatial distribution of the recent trends in aerosol concentration. A significant positive trend was found over the Middle East, Arabian Sea and South Asian regions strongly influenced by increases in dust events. Spectral and composite analyses

  18. Aerosol filtration with metallic fibrous filters

    International Nuclear Information System (INIS)

    Klein, M.; Goossens, W.R.A.

    1983-01-01

    The filtration efficiency of stainless steel fibrous filters (BEKIPOR porous mats and sintered webs) is determined using submicronic monodisperse polystyrene aerosols. Lasers spectrometers are used for the aerosol measurements. The parameters varied are the fiber diameter, the number of layers, the aerosol diameter and the superficial velocity. Two selected types of filters are tested with polydisperse methylene blue aerosols to determine the effect of bed loading on the filter performance and to test washing techniques for the regeneration of the filter

  19. Dry season aerosol iron solubility in tropical northern Australia

    Directory of Open Access Journals (Sweden)

    V. H. L. Winton

    2016-10-01

    Full Text Available Marine nitrogen fixation is co-limited by the supply of iron (Fe and phosphorus in large regions of the global ocean. The deposition of soluble aerosol Fe can initiate nitrogen fixation and trigger toxic algal blooms in nitrate-poor tropical waters. We present dry season soluble Fe data from the Savannah Fires in the Early Dry Season (SAFIRED campaign in northern Australia that reflects coincident dust and biomass burning sources of soluble aerosol Fe. The mean soluble and total aerosol Fe concentrations were 40 and 500 ng m−3 respectively. Our results show that while biomass burning species may not be a direct source of soluble Fe, biomass burning may substantially enhance the solubility of mineral dust. We observed fractional Fe solubility up to 12 % in mixed aerosols. Thus, Fe in dust may be more soluble in the tropics compared to higher latitudes due to higher concentrations of biomass-burning-derived reactive organic species in the atmosphere. In addition, biomass-burning-derived particles can act as a surface for aerosol Fe to bind during atmospheric transport and subsequently be released to the ocean upon deposition. As the aerosol loading is dominated by biomass burning emissions over the tropical waters in the dry season, additions of biomass-burning-derived soluble Fe could have harmful consequences for initiating nitrogen-fixing toxic algal blooms. Future research is required to quantify biomass-burning-derived particle sources of soluble Fe over tropical waters.

  20. Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma

    Directory of Open Access Journals (Sweden)

    E. Andrews

    2011-10-01

    Full Text Available A small airplane made 597 aerosol optical property (light absorption and light scattering vertical profile measurements over a rural Oklahoma site between March 2000 and December 2007. The aerosol profiles obtained during these 8 yr of measurements suggest significant seasonal differences in aerosol loading (scattering and absorption. The highest amounts of scattering and absorbing aerosol are observed during the summer and the lowest loading occurs during the winter. The relative contribution of aerosol absorption is highest in the winter (i.e., single scattering albedo is lowest in winter, particularly aloft. Aerosol absorption generally decreased with altitude below ~1.5 km and then was relatively constant or decreased more gradually above that. Aerosol scattering decreased sharply with altitude below ~1.5 km but, unlike absorption, also decreased at higher altitudes, albeit less sharply. Scattering Ångström exponents suggest that the aerosol was dominated by sub-micron aerosol during the summer at all altitudes, but that larger particles were present, especially in the spring and winter above 1 km. The seasonal variability observed for aerosol loading is consistent with AERONET aerosol optical depth (AOD although the AOD values calculated from in situ adjusted to ambient conditions and matching wavelengths are up to a factor of two lower than AERONET AOD values depending on season. The column averaged single scattering albedo derived from in situ airplane measurements are similar in value to the AERONET single scattering albedo inversion product but the seasonal patterns are different – possibly a consequence of the strict constraints on obtaining single scattering albedo from AERONET data. A comparison of extinction Ångström exponent and asymmetry parameter from the airplane and AERONET platforms suggests similar seasonal variability with smaller particles observed in the summer and fall and larger particles observed in spring and

  1. Organic aerosols

    International Nuclear Information System (INIS)

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  2. Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin.

    Science.gov (United States)

    Srivastava, Atul K; Singh, Sachchidanand; Tiwari, S; Bisht, D S

    2012-05-01

    The present work is aimed to understand direct radiation effects due to aerosols over Delhi in the Indo-Gangetic Basin (IGB) region, using detailed chemical analysis of surface measured aerosols during the year 2007. An optically equivalent aerosol model was formulated on the basis of measured aerosol chemical compositions along with the ambient meteorological parameters to derive radiatively important aerosol optical parameters. The derived aerosol parameters were then used to estimate the aerosol direct radiative forcing at the top of the atmosphere, surface, and in the atmosphere. The anthropogenic components measured at Delhi were found to be contributing ∼ 72% to the composite aerosol optical depth (AOD(0.5) ∼ 0.84). The estimated mean surface and atmospheric forcing for composite aerosols over Delhi were found to be about -69, -85, and -78 W m(-2) and about +78, +98, and +79 W m(-2) during the winter, summer, and post-monsoon periods, respectively. The anthropogenic aerosols contribute ∼ 90%, 53%, and 84% to the total aerosol surface forcing and ∼ 93%, 54%, and 88% to the total aerosol atmospheric forcing during the above respective periods. The mean (± SD) surface and atmospheric forcing for composite aerosols was about -79 (± 15) and +87 (± 26) W m(-2) over Delhi with respective anthropogenic contributions of ∼ 71% and 75% during the overall period of observation. Aerosol induced large surface cooling, which was relatively higher during summer as compared to the winter suggesting an increase in dust loading over the station. The total atmospheric heating rate at Delhi averaged during the observation was found to be 2.42  ±  0.72 K day(-1), of which the anthropogenic fraction contributed as much as ∼ 73%.

  3. Radioactive aerosols

    International Nuclear Information System (INIS)

    Chamberlain, A.C.

    1991-01-01

    Radon. Fission product aerosols. Radioiodine. Tritium. Plutonium. Mass transfer of radioactive vapours and aerosols. Studies with radioactive particles and human subjects. Index. This paper explores the environmental and health aspects of radioactive aerosols. Covers radioactive nuclides of potential concern to public health and applications to the study of boundary layer transport. Contains bibliographic references. Suitable for environmental chemistry collections in academic and research libraries

  4. Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests

    Science.gov (United States)

    Slowik, J. G.; Stroud, C.; Bottenheim, J. W.; Brickell, P. C.; Chang, R. Y.-W.; Liggio, J.; Makar, P. A.; Martin, R. V.; Moran, M. D.; Shantz, N. C.; Sjostedt, S. J.; van Donkelaar, A.; Vlasenko, A.; Wiebe, H. A.; Xia, A. G.; Zhang, J.; Leaitch, W. R.; Abbatt, J. P. D.

    2010-03-01

    Measurements of aerosol composition, volatile organic compounds, and CO are used to determine biogenic secondary organic aerosol (SOA) concentrations at a rural site 70 km north of Toronto. These biogenic SOA levels are many times higher than past observations and occur during a period of increasing temperatures and outflow from Northern Ontario and Quebec forests in early summer. A regional chemical transport model approximately predicts the event timing and accurately predicts the aerosol loading, identifying the precursors as monoterpene emissions from the coniferous forest. The agreement between the measured and modeled biogenic aerosol concentrations contrasts with model underpredictions for polluted regions. Correlations of the oxygenated organic aerosol mass with tracers such as CO support a secondary aerosol source and distinguish biogenic, pollution, and biomass burning periods during the field campaign. Using the Master Chemical Mechanism, it is shown that the levels of CO observed during the biogenic event are consistent with a photochemical source arising from monoterpene oxidation. The biogenic aerosol mass correlates with satellite measurements of regional aerosol optical depth, indicating that the event extends across the eastern Canadian forest. This regional event correlates with increased temperatures, indicating that temperature-dependent forest emissions can significantly affect climate through enhanced direct optical scattering and higher cloud condensation nuclei numbers.

  5. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    Science.gov (United States)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2017-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  6. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    Science.gov (United States)

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  7. How thermodynamic environments control stratocumulus microphysics and interactions with aerosols

    International Nuclear Information System (INIS)

    Andersen, Hendrik; Cermak, Jan

    2015-01-01

    Aerosol–cloud interactions are central to climate system changes and depend on meteorological conditions. This study identifies distinct thermodynamic regimes and proposes a conceptual framework for interpreting aerosol effects. In the analysis, ten years (2003–2012) of daily satellite-derived aerosol and cloud products are combined with reanalysis data to identify factors controlling Southeast Atlantic stratocumulus microphysics. Considering the seasonal influence of aerosol input from biomass burning, thermodynamic environments that feature contrasting microphysical cloud properties and aerosol–cloud relations are classified. While aerosol impact is stronger in unstable environments, it is mostly confined to situations with low aerosol loading (aerosol index AI ≲ 0.15), implying a saturation of aerosol effects. Situations with high aerosol loading are associated with weaker, seasonally contrasting aerosol-droplet size relationships, likely caused by thermodynamically induced processes and aerosol swelling. (letter)

  8. Evaluation of spatio-temporal variability of Hamburg Aerosol Climatology against aerosol datasets from MODIS and CALIOP

    Directory of Open Access Journals (Sweden)

    V. Pappas

    2013-08-01

    Full Text Available The new global aerosol climatology named HAC (Hamburg Aerosol Climatology is compared against MODIS (Collection 5, 2000–2007 and CALIOP (Level 2-version 3, 2006–2011 retrievals. The comparison of aerosol optical depth (AOD from HAC against MODIS shows larger HAC AOD values over regions with higher aerosol loads and smaller HAC AOD values than MODIS for regions with lower loads. The HAC data are found to be more reliable over land and for low AOD values. The largest differences between HAC and MODIS occur from March to August for the Northern Hemisphere and from September to February for the Southern Hemisphere. In addition, both the spectral variability and vertical distribution of the HAC AOD are examined at selected AERONET (1998–2007 sites, representative of main aerosol types (pollutants, sea salt, biomass and dust. Based on comparisons against spectral AOD values from AERONET, the mean absolute percentage error in HAC AOD data is 25% at ultraviolet wavelengths (400 nm, 6–12% at visible and 18% at near-infrared (1000 nm. For the same AERONET sites, the HAC AOD vertical distribution is compared against CALIOP space lidar data. On a daily average basis, HAD AOD is less by 9% in the lowest 3 km than CALIOP values, especially for sites with biomass burning smoke, desert dust and sea salt spray. Above the boundary layer, the HAC AOD vertical distribution is reliable.

  9. Studies on aerosol optical properties over urban and semi-urban environments of Hyderabad and Anantapur

    International Nuclear Information System (INIS)

    Lata, K.M.; Badarinath, K.V.S.; Rao, T.V. Ramakrishna; Reddy, R.R.; Ahammed, Y. Nazeer; Gopal, K. Rama; Azeem, P. Abdul

    2003-01-01

    Aerosols in the troposphere exert an important influence on global climate and the environment through scattering, transmission and absorption of radiation as well as acting as nuclei for cloud formation. Atmospheric aerosol particles influence the earth's radiation balance directly by scattering of infrared energy and indirectly by modifying the properties of clouds through microphysical processes. The present study addresses visibility, radiative forcing, size distribution and attenuation of aerosols over the period from January to May, 2001 for urban and semi-urban regions of Hyderabad and Anantapur. High aerosol loading has been observed over urban environment compared to semi-urban environment. Aerosol optical depth values increased from January to April and then decreased during May over both urban and semi-urban regions. Over urban region, visibility decreased from January to April and increased during May. Similar trend has been observed over semi-urban region with relatively higher values of visibility. Radiative forcing estimated using aerosol optical depth values increased from January to April and then decreased during the month of May over urban and semi-urban areas. High visibility and low radiative forcing has been noticed over semi-urban area due to less aerosol loading. Wavelength exponent and turbidity coefficient registered high values over urban environment compared to semi-urban environment. Attenuation coefficient showed high values over urban region compared to semi-urban region. It reveals that semi-urban environment receives high solar flux than urban environment. Using 10 channel quartz crystal microbalance, measurements of total mass concentration and mass size distribution of near surface aerosols has been made over semi-urban environment and compared with size distribution derived from inversion methods based on aerosol optical depth variation with wavelength. The sensitivity of constrained linear inversions for inferring columnar

  10. Secondary organic aerosols: Formation potential and ambient data

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1997-01-01

    Organic aerosols comprise a significant fraction of the total atmospheric particle loading and are associated with radiative forcing and health impacts. Ambient organic aerosol concentrations contain both a primary and secondary component. Herein, fractional aerosol coefficients (FAC) are used...... in conjunction with measurements of volatile organic compounds (VOC) to predict the formation potential of secondary organic aerosols (SOA) in the Lower Fraser Valley (LEV) of British Columbia. The predicted concentrations of SOA show reasonable accord with ambient aerosol measurements and indicate considerable...

  11. Potential modulations of pre-monsoon aerosols during El Niño: impact on Indian summer monsoon

    Science.gov (United States)

    Fadnavis, S.; Roy, Chaitri; Sabin, T. P.; Ayantika, D. C.; Ashok, K.

    2017-10-01

    The potential role of aerosol loading on the Indian summer monsoon rainfall during the El Niño years are examined using satellite-derived observations and a state of the art fully interactive aerosol-chemistry-climate model. The Aerosol Index (AI) from TOMS (1978-2005) and Aerosol Optical Depth (AOD) from MISR spectroradiometer (2000-2010) indicate a higher-than-normal aerosol loading over the Indo-Gangetic plain (IGP) during the pre-monsoon season with a concurrent El Niño. Sensitivity experiments using ECHAM5-HAMMOZ climate model suggests that this enhanced loading of pre-monsoon absorbing aerosols over the Indo-Gangetic plain can reduce the drought during El Niño years by invoking the `Elevated-Heat-Pump' mechanism through an anomalous aerosol-induced warm core in the atmospheric column. This anomalous heating upshot the relative strengthening of the cross-equatorial moisture inflow associated with the monsoon and eventually reduces the severity of drought during El Niño years. The findings are subject to the usual limitations such as the uncertainties in observations, and limited number of El Niño years (during the study period).

  12. Communication: Quantitative Fourier-transform infrared data for competitive loading of small cages during all-vapor instantaneous formation of gas-hydrate aerosols

    Science.gov (United States)

    Uras-Aytemiz, Nevin; Abrrey Monreal, I.; Devlin, J. Paul

    2011-10-01

    A simple method has been developed for the measurement of high quality FTIR spectra of aerosols of gas-hydrate nanoparticles. The application of this method enables quantitative observation of gas hydrates that form on subsecond timescales using our all-vapor approach that includes an ether catalyst rather than high pressures to promote hydrate formation. The sampling method is versatile allowing routine studies at temperatures ranging from 120 to 210 K of either a single gas or the competitive uptake of different gas molecules in small cages of the hydrates. The present study emphasizes hydrate aerosols formed by pulsing vapor mixtures into a cold chamber held at 160 or 180 K. We emphasize aerosol spectra from 6 scans recorded an average of 8 s after "instantaneous" hydrate formation as well as of the gas hydrates as they evolve with time. Quantitative aerosol data are reported and analyzed for single small-cage guests and for mixed hydrates of CO2, CH4, C2H2, N2O, N2, and air. The approach, combined with the instant formation of gas hydrates from vapors only, offers promise with respect to optimization of methods for the formation and control of gas hydrates.

  13. Methods and Tools to allow molecular flow simulations to be coupled to higher level continuum descriptions of flows in porous/fractured media and aerosol/dust dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States)

    2015-04-09

    The purpose of this project was to develop methods and tools that will aid in safety evaluation of nuclear fuels and licensing of nuclear reactors relating to accidents.The objectives were to develop more detailed and faster computations of fission product transport and aerosol evolution as they generally relate to nuclear fuel and/or nuclear reactor accidents. The two tasks in the project related to molecular transport in nuclear fuel and aerosol transport in reactor vessel and containment. For both the tasks, explorations of coupling of Direct Simulation Monte Carlo with Navier-Stokes solvers or the Sectional method were not successful. However, Mesh free methods for the Direct Simulation Monte Carlo method were successfully explored.These explorations permit applications to porous and fractured media, and arbitrary geometries.The computations were carried out in Mathematica and are fully parallelized. The project has resulted in new computational tools (algorithms and programs) that will improve the fidelity of computations to actual physics, chemistry and transport of fission products in the nuclear fuel and aerosol in reactor primary and secondary containments.

  14. Aerosol characterization in smoke plumes from a wetlands fire

    International Nuclear Information System (INIS)

    Woods, D.C.; Cofer, W.R. III; Levine, J.S.; Chuan, R.L.

    1991-01-01

    In this chapter, the authors present results from airborne measurements of aerosol mass loading, size distribution, and elemental composition obtained in a smoke plume from the burning of vegetation at a Florida wildlife refuge. These are important parameters in assessing the impact of biomass burning on the atmosphere. The results show that there was a high concentration of carbon-containing aerosols and salt crystals in the 0.1 μm to 0.2 μm size range, giving rise to a relatively strong fine particle size mode, during the hot flaming phase of the burning, compared to that during the smoldering phase, when a higher concentration of coarse particles were produced. They also found that the composition and morphology of the aerosols differed with size. They used the aerosol mass concentration along with CO 2 concentrations to calculate ratios or aerosol and CO 2 , which we found to be higher for the smoldering phase than for the flaming phase of combustion

  15. A Comparison of Aerosolization and Homogenization Techniques for Production of Alginate Microparticles for Delivery of Corticosteroids to the Colon.

    Science.gov (United States)

    Samak, Yassmin O; El Massik, Magda; Coombes, Allan G A

    2017-01-01

    Alginate microparticles incorporating hydrocortisone hemisuccinate were produced by aerosolization and homogenization methods to investigate their potential for colonic drug delivery. Microparticle stabilization was achieved by CaCl 2 crosslinking solution (0.5 M and 1 M), and drug loading was accomplished by diffusion into blank microparticles or by direct encapsulation. Homogenization method produced smaller microparticles (45-50 μm), compared to aerosolization (65-90 μm). High drug loadings (40% wt/wt) were obtained for diffusion-loaded aerosolized microparticles. Aerosolized microparticles suppressed drug release in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) prior to drug release in simulated colonic fluid (SCF) to a higher extent than homogenized microparticles. Microparticles prepared using aerosolization or homogenization (1 M CaCl 2 , diffusion loaded) released 5% and 17% of drug content after 2 h in SGF and 4 h in SIF, respectively, and 75% after 12 h in SCF. Thus, aerosolization and homogenization techniques show potential for producing alginate microparticles for colonic drug delivery in the treatment of inflammatory bowel disease. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    Science.gov (United States)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  17. Measurement-based J(NO2) sensitivity in a cloudless atmosphere under low aerosol loading and high solar zenith angle conditions

    International Nuclear Information System (INIS)

    Frueh, B.; Trautmann, T.

    2000-01-01

    The comparison between measured and simulated photodissociation frequencies of NO 2 , J(NO 2 ), in a cloudless atmosphere in a recent paper by Frueh et al., 2000 (Journal of Geophysical Research 105, 9843-9857) revealed an overestimation of J(NO 2 ) near ground level by model calculations compared with measurements and an underestimation in the upper part of the aerosol layer. A possible reason for the disagreement is the changing sun position during the vertical ascent. To resolve this problem we carried out a sensitivity study varying the solar zenith angle of 74 o by 1.4 o (which corresponds to the change of sun position during the vertical flight patterns). This results in a considerable deviation of J(NO 2 ) of about 10%. Further sensitivity studies on J(NO 2 ) have been done. These include realistic variations in ground albedo, humidity and aerosol properties. A variation in ground albedo from the measured value of A G = 0.023 (292-420 nm wavelength) to A G = 0 and A G = 0.05, respectively, resulted in an average J(NO 2 ) reduction and enhancement of only 2% near ground level with a slight decrease with increasing altitude. Furthermore, we compared simulations based on different relative humidity profiles with results from a dry atmosphere. Compared to the dry case the deviations of J(NO 2 ) were considerable (5-16%) although the measured aerosol concentration was very low. Moreover, we doubled the aerosol particle concentration. The maximum J(NO 2 ) deviations were in the same order of magnitude as for the relative humidity (5-16%). These changes are in the range of measurement uncertainty of J(NO 2 ) (author)

  18. Autotrophic and heterotrophic nitrification-anoxic denitrification dominated the anoxic/oxic sewage treatment process during optimization for higher loading rate and energy savings.

    Science.gov (United States)

    Zhang, Xueyu; Zheng, Shaokui; Zhang, Hangyu; Duan, Shoupeng

    2018-04-30

    This study clarified the dominant nitrogen (N)-transformation pathway and the key ammonia-oxidizing microbial species at three loading levels during optimization of the anoxic/oxic (A/O) process for sewage treatment. Comprehensive N-transformation activity analysis showed that ammonia oxidization was performed predominantly by aerobic chemolithotrophic and heterotrophic ammonia oxidization, whereas N 2 production was performed primarily by anoxic denitrification in the anoxic unit. The abundances of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria, and anaerobic AOB in activated sludge reflected their activities on the basis of high-throughput sequencing data. AOB amoA gene clone libraries revealed that the predominant AOB species in sludge samples shifted from Nitrosomonas europaea (61% at the normal loading level) to Nitrosomonas oligotropha (58% and 81% at the two higher loading levels). Following isolation and sequencing, the predominant culturable heterotrophic AOB in sludge shifted from Agrobacterium tumefaciens (42% at the normal loading level) to Acinetobacter johnsonii (52% at the highest loading level). Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Aerosol effects in radiation transfer

    International Nuclear Information System (INIS)

    Binenko, V.I.; Harshvardhan, H.

    1993-01-01

    The radiative properties and effects of aerosols are assessed for the following aerosol sources: relatively clean background aerosol, dust storms and dust outbreaks, anthropogenic pollution, and polluted cloud layers. Studies show it is the submicron aerosol fraction that plays a dominant radiative role in the atmosphere. The radiative effect of the aerosol depends not only on its loading but also on the underlying surface albedo and on solar zenith angle. It is only with highly reflecting surfaces such as Arctic ice that aerosols have a warming effect. Radiometric, microphysical, mineral composition, and refractive index measurements are presented for dust and in particular for the Saharan aerosol layer (SAL). Short-wave radiative heating of the atmosphere is caused by the SAL and is due mainly to absorption. However, the SAL does not contribute significantly to the long-wave thermal radiation budget. Field program studies of the radiative effects of aerosols are described. Anthropogenic aerosols deplete the incoming solar radiation. A case field study for a regional Ukrainian center is discussed. The urban aerosol causes a cooling of metropolitan centers, compared with outlying areas, during the day, which is followed by a warming trend at night. In another study, an increase in turbidity by a factor of 3 due to increased industrialization for Mexico City is noted, together with a drop in atmospheric transmission by 10% over a 50-year period. Numerous studies are cited that demonstrate that anthropogenic aerosols affect both the microphysical and radiative properties of clouds, which in turn affect regional climate. Particles acting as cloud nuclei are considered to have the greatest indirect effect on cloud absorptivity of short-wave radiation. Satellite observations show that low-level stratus clouds contaminated by ship exhaust at sea lead to an increase in cloud albedo

  20. Chemical and microphysical properties of the aerosol during foggy and nonfoggy episodes: a relationship between organic and inorganic content of the aerosol

    Science.gov (United States)

    Kaul, D. S.; Gupta, T.; Tripathi, S. N.

    2012-06-01

    An extensive field measurement during winter was carried out at a site located in the Indo-Gangetic Plain (IGP) which gets heavily influenced by the fog during winter almost every year. The chemical and microphysical properties of the aerosols during foggy and nonfoggy episodes and chemical composition of the fogwater are presented. Positive matrix factorization (PMF) as a tool for the source apportionment was employed to understand the sources of pollution. Four major sources viz. biomass burning, refractory, secondary and mineral dust were identified. Aerosols properties during foggy episodes were heavily influenced by almost all the sources and they caused considerable loading of almost all the organic and inorganic species during the period. The biomass generated aerosols were removed from the atmosphere by scavenging during foggy episodes. The wet removal of almost all the species by the fog droplets was observed. The K+, water soluble organic carbon (WSOC), water soluble inorganic carbon (WSIC) and NO3- were most heavily scavenged among the species and their concentrations consequently became lower than the nonfoggy episode concentrations. The production of secondary inorganic aerosol, mainly sulfate and ammonium, during foggy episodes was considerably higher than nitrate which was rather heavily scavenged and removed by the fog droplets. The fogwater analysis showed that dissolved inorganic species play a vital role in processing of organic carbon such as the formation of organo-sulfate and organo-nitrate inside the fog droplets. The formation of organo-sulfate and organo-nitrate in aerosol and the influence of acidity on the secondary organic aerosol (SOA) formation were rather found to be negligible. The study average inorganic component of the aerosol was considerably higher than the carbonaceous component during both foggy and nonfoggy episode. The secondary production of the aerosol changed the microphysical properties of aerosol which was reflected by

  1. Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations

    Science.gov (United States)

    Liu, Yuqin; de Leeuw, Gerrit; Kerminen, Veli-Matti; Zhang, Jiahua; Zhou, Putian; Nie, Wei; Qi, Ximeng; Hong, Juan; Wang, Yonghong; Ding, Aijun; Guo, Huadong; Krüger, Olaf; Kulmala, Markku; Petäjä, Tuukka

    2017-05-01

    Aerosol effects on low warm clouds over the Yangtze River Delta (YRD, eastern China) are examined using co-located MODIS, CALIOP and CloudSat observations. By taking the vertical locations of aerosol and cloud layers into account, we use simultaneously observed aerosol and cloud data to investigate relationships between cloud properties and the amount of aerosol particles (using aerosol optical depth, AOD, as a proxy). Also, we investigate the impact of aerosol types on the variation of cloud properties with AOD. Finally, we explore how meteorological conditions affect these relationships using ERA-Interim reanalysis data. This study shows that the relation between cloud properties and AOD depends on the aerosol abundance, with a different behaviour for low and high AOD (i.e. AOD 0.35). This applies to cloud droplet effective radius (CDR) and cloud fraction (CF), but not to cloud optical thickness (COT) and cloud top pressure (CTP). COT is found to decrease when AOD increases, which may be due to radiative effects and retrieval artefacts caused by absorbing aerosol. Conversely, CTP tends to increase with elevated AOD, indicating that the aerosol is not always prone to expand the vertical extension. It also shows that the COT-CDR and CWP (cloud liquid water path)-CDR relationships are not unique, but affected by atmospheric aerosol loading. Furthermore, separation of cases with either polluted dust or smoke aerosol shows that aerosol-cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust, which is ascribed to the higher absorption efficiency of smoke than dust. The variation of cloud properties with AOD is analysed for various relative humidity and boundary layer thermodynamic and dynamic conditions, showing that high relative humidity favours larger cloud droplet particles and increases cloud formation, irrespective of vertical or horizontal level. Stable atmospheric conditions enhance cloud cover horizontally

  2. Aerosol studies

    International Nuclear Information System (INIS)

    Cristy, G.A.; Fish, M.E.

    1978-01-01

    As part of the continuing studies of the effects of very severe reactor accidents, an effort was made to develop, test, and improve simple, effective, and inexpensive methods by which the average citizen, using only materials readily available, could protect his residence, himself, and his family from injury by toxic aerosols. The methods for protection against radioactive aerosols should be equally effective against a clandestine biological attack by terrorists. The results of the tests to date are limited to showing that spores of the harmless bacterium, bacillus globegii (BG), can be used as a simulant for the radioactive aerosols. An aerosol generator of Lauterbach type was developed which will produce an essentially monodisperse aerosol at the rate of 10 9 spores/min. Analytical techniques have been established which give reproducible results. Preliminary field tests have been conducted to check out the components of the system. Preliminary tests of protective devices, such as ordinary vacuum sweepers, have given protection factors of over 1000

  3. Impact of aerosols on ice crystal size

    Science.gov (United States)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin

    2018-01-01

    The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.

  4. The impact of atmospheric mineral aerosol deposition on the albedo of snow & sea ice: are snow and sea ice optical properties more important than mineral aerosol optical properties?

    Directory of Open Access Journals (Sweden)

    M. L. Lamare

    2016-01-01

    Full Text Available Knowledge of the albedo of polar regions is crucial for understanding a range of climatic processes that have an impact on a global scale. Light-absorbing impurities in atmospheric aerosols deposited on snow and sea ice by aeolian transport absorb solar radiation, reducing albedo. Here, the effects of five mineral aerosol deposits reducing the albedo of polar snow and sea ice are considered. Calculations employing a coupled atmospheric and snow/sea ice radiative-transfer model (TUV-snow show that the effects of mineral aerosol deposits are strongly dependent on the snow or sea ice type rather than the differences between the aerosol optical characteristics. The change in albedo between five different mineral aerosol deposits with refractive indices varying by a factor of 2 reaches a maximum of 0.0788, whereas the difference between cold polar snow and melting sea ice is 0.8893 for the same mineral loading. Surprisingly, the thickness of a surface layer of snow or sea ice loaded with the same mass ratio of mineral dust has little effect on albedo. On the contrary, the surface albedo of two snowpacks of equal depth, containing the same mineral aerosol mass ratio, is similar, whether the loading is uniformly distributed or concentrated in multiple layers, regardless of their position or spacing. The impact of mineral aerosol deposits is much larger on melting sea ice than on other types of snow and sea ice. Therefore, the higher input of shortwave radiation during the summer melt cycle associated with melting sea ice accelerates the melt process.

  5. MODIS 3km Aerosol Product: Algorithm and Global Perspective

    Science.gov (United States)

    Remer, L. A.; Mattoo, S.; Levy, R. C.; Munchak, L.

    2013-01-01

    After more than a decade of producing a nominal 10 km aerosol product based on the dark target method, the MODIS aerosol team will be releasing a nominal 3 km product as part of their Collection 6 release. The new product differs from the original 10 km product only in the manner in which reflectance pixels are ingested, organized and selected by the aerosol algorithm. Overall, the 3 km product closely mirrors the 10 km product. However, the finer resolution product is able to retrieve over ocean closer to islands and coastlines, and is better able to resolve fine aerosol features such as smoke plumes over both ocean and land. In some situations, it provides retrievals over entire regions that the 10 km product barely samples. In situations traditionally difficult for the dark target algorithm, such as over bright or urban surfaces the 3 km product introduces isolated spikes of artificially high aerosol optical depth (AOD) that the 10 km algorithm avoids. Over land, globally, the 3 km product appears to be 0.01 to 0.02 higher than the 10 km product, while over ocean, the 3 km algorithm is retrieving a proportionally greater number of very low aerosol loading situations. Based on collocations with ground-based observations for only six months, expected errors associated with the 3 km land product are determined to be greater than for the 10 km product: 0.05 0.25 AOD. Over ocean, the suggestion is for expected errors to be the same as the 10 km product: 0.03 0.05 AOD. The advantage of the product is on the local scale, which will require continued evaluation not addressed here. Nevertheless, the new 3 km product is expected to provide important information complementary to existing satellite-derived products and become an important tool for the aerosol community.

  6. Toxoplasma gondii, source to sea: higher contribution of domestic felids to terrestrial parasite loading despite lower infection prevalence.

    Science.gov (United States)

    Vanwormer, Elizabeth; Conrad, Patricia A; Miller, Melissa A; Melli, Ann C; Carpenter, Tim E; Mazet, Jonna A K

    2013-09-01

    Environmental transmission of Toxoplasma gondii, a global zoonotic parasite, adversely impacts human and animal health. Toxoplasma is a significant cause of mortality in threatened Southern sea otters, which serve as sentinels for disease threats to people and animals in coastal environments. As wild and domestic felids are the only recognized hosts capable of shedding Toxoplasma oocysts into the environment, otter infection suggests land-to-sea pathogen transmission. To assess relative contributions to terrestrial parasite loading, we evaluated infection and shedding among managed and unmanaged feral domestic cats, mountain lions, and bobcats in coastal California, USA. Infection prevalence differed among sympatric felids, with a significantly lower prevalence for managed feral cats (17%) than mountain lions, bobcats, or unmanaged feral cats subsisting on wild prey (73-81%). A geographic hotspot of infection in felids was identified near Monterey Bay, bordering a high-risk site for otter infection. Increased odds of oocyst shedding were detected in bobcats and unmanaged feral cats. Due to their large populations, pet and feral domestic cats likely contribute more oocysts to lands bordering the sea otter range than native wild felids. Continued coastal development may influence felid numbers and distribution, increase terrestrial pathogens in freshwater runoff, and alter disease dynamics at the human-animal-environment interface.

  7. Global simulations of aerosol processing in clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2008-12-01

    Full Text Available An explicit and detailed representation of in-droplet and in-crystal aerosol particles in stratiform clouds has been introduced in the global aerosol-climate model ECHAM5-HAM. The new scheme allows an evaluation of the cloud cycling of aerosols and an estimation of the relative contributions of nucleation and collision scavenging, as opposed to evaporation of hydrometeors in the global aerosol processing by clouds. On average an aerosol particle is cycled through stratiform clouds 0.5 times. The new scheme leads to important changes in the simulated fraction of aerosol scavenged in clouds, and consequently in the aerosol wet deposition. In general, less aerosol is scavenged into clouds with the new prognostic treatment than what is prescribed in standard ECHAM5-HAM. Aerosol concentrations, size distributions, scavenged fractions and cloud droplet concentrations are evaluated and compared to different observations. While the scavenged fraction and the aerosol number concentrations in the marine boundary layer are well represented in the new model, aerosol optical thickness, cloud droplet number concentrations in the marine boundary layer and the aerosol volume in the accumulation and coarse modes over the oceans are overestimated. Sensitivity studies suggest that a better representation of below-cloud scavenging, higher in-cloud collision coefficients, or a reduced water uptake by seasalt aerosols could reduce these biases.

  8. Stratospheric Aerosol Measurements

    Science.gov (United States)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  9. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    Science.gov (United States)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by

  10. Elevated Aerosol Layers and Their Radiative Impact over Kanpur During Monsoon Onset Period

    Science.gov (United States)

    Sarangi, Chandan; Tripathi, S. N.; Mishra, A. K.; Welton, E. J.

    2016-01-01

    Accurate information about aerosol vertical distribution is needed to reduce uncertainties in aerosol radiative forcing and its effect on atmospheric dynamics. The present study deals with synergistic analyses of aerosol vertical distribution and aerosol optical depth (AOD) with meteorological variables using multisatellite and ground-based remote sensors over Kanpur in central Indo-Gangetic Plain (IGP). Micro-Pulse Lidar Network-derived aerosol vertical extinction (sigma) profiles are analyzed to quantify the interannual and daytime variations during monsoon onset period (May-June) for 2009-2011. The mean aerosol profile is broadly categorized into two layers viz., a surface layer (SL) extending up to 1.5 km (where sigma decreased exponentially with height) and an elevated aerosol layer (EAL) extending between 1.5 and 5.5 km. The increase in total columnar aerosol loading is associated with relatively higher increase in contribution from EAL loading than that from SL. The mean contributions of EALs are about 60%, 51%, and 50% to total columnar AOD during 2009, 2010, and 2011, respectively. We observe distinct parabolic EALs during early morning and late evening but uniformly mixed EALs during midday. The interannual and daytime variations of EALs are mainly influenced by long-range transport and convective capacity of the local emissions, respectively. Radiative flux analysis shows that clear-sky incoming solar radiation at surface is reduced with increase in AOD, which indicates significant cooling at surface. Collocated analysis of atmospheric temperature and aerosol loading reveals that increase in AOD not only resulted in surface dimming but also reduced the temperature (approximately 2-3 C) of lower troposphere (below 3 km altitude). Radiative transfer simulations indicate that the reduction of incoming solar radiation at surface is mainly due to increased absorption by EALs (with increase in total AOD). The observed cooling in lower troposphere in high

  11. Using a latent variable model with non-constant factor loadings to examine PM2.5 constituents related to secondary inorganic aerosols.

    Science.gov (United States)

    Zhang, Zhenzhen; O'Neill, Marie S; Sánchez, Brisa N

    2016-04-01

    Factor analysis is a commonly used method of modelling correlated multivariate exposure data. Typically, the measurement model is assumed to have constant factor loadings. However, from our preliminary analyses of the Environmental Protection Agency's (EPA's) PM 2.5 fine speciation data, we have observed that the factor loadings for four constituents change considerably in stratified analyses. Since invariance of factor loadings is a prerequisite for valid comparison of the underlying latent variables, we propose a factor model that includes non-constant factor loadings that change over time and space using P-spline penalized with the generalized cross-validation (GCV) criterion. The model is implemented using the Expectation-Maximization (EM) algorithm and we select the multiple spline smoothing parameters by minimizing the GCV criterion with Newton's method during each iteration of the EM algorithm. The algorithm is applied to a one-factor model that includes four constituents. Through bootstrap confidence bands, we find that the factor loading for total nitrate changes across seasons and geographic regions.

  12. Impact of aerosols on ice crystal size

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2018-01-01

    Full Text Available The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei, which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol–cloud radiative forcing produced by ice clouds.

  13. Variation in penetration of submicrometric particles through electrostatic filtering facepieces during exposure to paraffin oil aerosol.

    Science.gov (United States)

    Plebani, Carmela; Listrani, Stefano; Tranfo, Giovanna; Tombolini, Francesca

    2012-01-01

    Several studies show the increase of penetration through electrostatic filters during exposure to an aerosol flow, because of particle deposition on filter fibers. We studied the effect of increasing loads of paraffin oil aerosol on the penetration of selected particle sizes through an electrostatic filtering facepiece. FFP2 facepieces were exposed for 8 hr to a flow rate of 95.0 ± 0.5 L/min of polydisperse paraffin aerosol at 20.0 ± 0.5 mg/m(3). The penetration of bis(2-ethylhexyl)sebacate (DEHS) monodisperse neutralized aerosols, with selected particle size in the 0.03-0.40 μm range, was measured immediately prior to the start of the paraffin aerosol loading and at 1, 4, and 8 hr after the start of paraffin aerosol loading. Penetration through isopropanol-treated facepieces not oil paraffin loaded was also measured to evaluate facepiece behavior when electrostatic capture mechanisms are practically absent. During exposure to paraffin aerosol, DEHS penetration gradually increased for all aerosol sizes, and the most penetrating particle size (0.05 μm at the beginning of exposure) shifted slightly to larger diameters. After the isopropanol treatment, the higher penetration value was 0.30 μm. In addition to an increased penetration during paraffin loading at a given particle size, the relative degree of increase was greater as the particle size increased. Penetration value measured after 8 hr for 0.03-μm particles was on average 1.6 times the initial value, whereas it was about 8 times for 0.40-μm particles. This behavior, as well evidenced in the measurements of isopropanol-treated facepieces, can be attributed to the increasing action in particle capture of the electrostatic forces (Coulomb and polarization), which depend strictly on the diameter and electrical charge of neutralized aerosol particles. With reference to electrostatic filtering facepieces as personal protective equipment, results suggest the importance of complying with the manufacturer

  14. Utilization of Plutonium and Higher Actinides in the HTGR as Possibility to Maintain Long-Term Operation on One Fuel Loading

    International Nuclear Information System (INIS)

    Tsvetkova, Galina V.; Peddicord, Kenneth L.

    2002-01-01

    Promising existing nuclear reactor concepts together with new ideas are being discussed worldwide. Many new studies are underway in order to identify prototypes that will be analyzed and developed further as systems for Generation IV. The focus is on designs demonstrating full inherent safety, competitive economics and proliferation resistance. The work discussed here is centered on a modularized small-size High Temperature Gas-cooled Reactor (HTGR) concept. This paper discusses the possibility of maintaining long-term operation on one fuel loading through utilization of plutonium and higher actinides in the small-size pebble-bed reactor (PBR). Acknowledging the well-known flexibility of the PBR design with respect to fuel composition, the principal limitations of the long-term burning of plutonium and higher actinides are considered. The technological challenges and further research are outlined. The results allow the identification of physical features of the PBR that significantly influence flexibility of the design and its applications. (authors)

  15. A scoping review on bio-aerosols in healthcare and the dental environment.

    Directory of Open Access Journals (Sweden)

    Charifa Zemouri

    Full Text Available Bio-aerosols originate from different sources and their potentially pathogenic nature may form a hazard to healthcare workers and patients. So far no extensive review on existing evidence regarding bio-aerosols is available.This study aimed to review evidence on bio-aerosols in healthcare and the dental setting. The objectives were 1 What are the sources that generate bio-aerosols?; 2 What is the microbial load and composition of bio-aerosols and how were they measured?; and 3 What is the hazard posed by pathogenic micro-organisms transported via the aerosol route of transmission?Systematic scoping review design. Searched in PubMed and EMBASE from inception to 09-03-2016. References were screened and selected based on abstract and full text according to eligibility criteria. Full text articles were assessed for inclusion and summarized. The results are presented in three separate objectives and summarized for an overview of evidence.The search yielded 5,823 studies, of which 62 were included. Dental hand pieces were found to generate aerosols in the dental settings. Another 30 sources from human activities, interventions and daily cleaning performances in the hospital also generate aerosols. Fifty-five bacterial species, 45 fungi genera and ten viruses were identified in a hospital setting and 16 bacterial and 23 fungal species in the dental environment. Patients with certain risk factors had a higher chance to acquire Legionella in hospitals. Such infections can lead to irreversible septic shock and death. Only a few studies found that bio-aerosol generating procedures resulted in transmission of infectious diseases or allergic reactions.Bio-aerosols are generated via multiple sources such as different interventions, instruments and human activity. Bio-aerosols compositions reported are heterogeneous in their microbiological composition dependent on the setting and methodology. Legionella species were found to be a bio-aerosol dependent hazard

  16. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen; Osipov, Serega; Bantges, Richard; Smirnov, Alexander; Banks, Jamie; Levy, Robert; Prakash, P.-Jish; Stenchikov, Georgiy L.

    2015-01-01

    for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly

  17. Geochemistry of regional background aerosols in the Western Mediterranean

    Science.gov (United States)

    Pey, J.; Pérez, N.; Castillo, S.; Viana, M.; Moreno, T.; Pandolfi, M.; López-Sebastián, J. M.; Alastuey, A.; Querol, X.

    2009-11-01

    The chemical composition of regional background aerosols, and the time variability and sources in the Western Mediterranean are interpreted in this study. To this end 2002-2007 PM speciation data from an European Supersite for Atmospheric Aerosol Research (Montseny, MSY, located 40 km NNE of Barcelona in NE Spain) were evaluated, with these data being considered representative of regional background aerosols in the Western Mediterranean Basin. The mean PM 10, PM 2.5 and PM 1 levels at MSY during 2002-2007 were 16, 14 and 11 µg/m 3, respectively. After compiling data on regional background PM speciation from Europe to compare our data, it is evidenced that the Western Mediterranean aerosol is characterised by higher concentrations of crustal material but lower levels of OM + EC and ammonium nitrate than at central European sites. Relatively high PM 2.5 concentrations due to the transport of anthropogenic aerosols (mostly carbonaceous and sulphate) from populated coastal areas were recorded, especially during winter anticyclonic episodes and summer midday PM highs (the latter associated with the transport of the breeze and the expansion of the mixing layer). Source apportionment analyses indicated that the major contributors to PM 2.5 and PM 10 were secondary sulphate, secondary nitrate and crustal material, whereas the higher load of the anthropogenic component in PM 2.5 reflects the influence of regional (traffic and industrial) emissions. Levels of mineral, sulphate, sea spray and carbonaceous aerosols were higher in summer, whereas nitrate levels and Cl/Na were higher in winter. A considerably high OC/EC ratio (14 in summer, 10 in winter) was detected, which could be due to a combination of high biogenic emissions of secondary organic aerosol, SOA precursors, ozone levels and insolation, and intensive recirculation of aged air masses. Compared with more locally derived crustal geological dusts, African dust intrusions introduce relatively quartz-poor but clay

  18. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements

    Science.gov (United States)

    Malinina, Elizaveta; Rozanov, Alexei; Rozanov, Vladimir; Liebing, Patricia; Bovensmann, Heinrich; Burrows, John P.

    2018-04-01

    health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy of key trace gases (e.g. ozone or water vapour) when interpreting remote sensing measurements of the scattered solar light. The most commonly used characteristics to describe stratospheric aerosols are the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters along with the aerosol number density is a more optimal approach. In this paper we present a new retrieval algorithm to obtain the particle size distribution of stratospheric aerosol from space-borne observations of the scattered solar light in the limb-viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density profile remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this is the first data set providing two parameters of the particle size distribution of stratospheric aerosol from space-borne measurements of scattered solar light. Typically, the mode radius and w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N-20° S) for 10 years (2002-2012) of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases in the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour of the absolute distribution width could be identified. A tape recorder

  19. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  20. Real time measurements of submicrometer aerosols in Seoul, Korea: Sources, characteristics, and processing of organic aerosols during winter time.

    Science.gov (United States)

    Kim, H.; Zhang, Q.

    2016-12-01

    Highly time-resolved chemical characterization of non-refractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter when persistent air quality problems associated with elevated PM concentrations were observed. The average NR-PM1 concentration was 27.5 µg m-3 and the average mass was dominated by organics (44%), followed by nitrate (24%) and sulfate (10%). Five distinct sources of organic aerosol (OA) were identified from positive matrix factorization (PMF) analysis of the AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA), cooking represented by a cooking OA factor (COA), wood combustion represented by a biomass burning OA factor (BBOA), and secondary aerosol formation in the atmosphere that is represented by a semi-volatile oxygenated OA factor (SVOOA) and a low volatile oxygenated OA factor (LVOOA). These factors, on average, contributed 16, 20, 23, 15 and 26% to the total OA mass, respectively, with primary organic aerosol (POA = HOA + COA + BBOA) accounting for 59% of the OA mass. On average, both primary emissions and secondary aerosol formation are important factors affecting air quality in Seoul during winter, contributing approximately equal. However, differences in the fraction of PM source and properties were observed between high and low loading PM period. For example, during stagnant period with low wind speed (WS) (0.99 ± 0.7 m/s) and high RH (71%), high PM loadings (43.6 ± 12.4 µg m-3) with enhanced fractions of nitrate (27%) and SVOOA (8%) were observed, indicating a strong influence from locally generated secondary aerosol. On the other hand, when low PM loadings (12.6 ± 7.1 µg m-3), which were commonly associated with high WS (1.8 ± 1.1 m/s) and low RH (50 %), were observed, the fraction of regional sources, such as sulfate (12%) and LVOOA (21

  1. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  2. Aerosol optical properties during firework, biomass burning and dust episodes in Beijing

    Science.gov (United States)

    Yu, Xingna; Shi, Chanzhen; Ma, Jia; Zhu, Bin; Li, Mei; Wang, Jing; Yang, Suying; Kang, Na

    2013-12-01

    In order to characterize the aerosol optical properties during different pollution episodes that occurred in Beijing, the aerosol loading, scattering, and size distributions are presented using solar and sky radiance measurements from 2001 to 2010 in this paper. A much higher aerosol loading than the background level was observed during the pollution episodes. The average aerosol optical depth (AOD) is largest during dust episodes coupled with the lowest Ångström exponent (α), while higher AOD and lower α were more correlated with firework and biomass burning days. The total mean AOD at 440, 675, 870 and 1020 nm were 0.24, 0.49, 0.64 and 1.38 in the clean, firework display, biomass burning and dust days, respectively. The mean α for dust days was 0.51 and exceeded 1.1 for the remaining episodes. The size distribution of the dusty periods was dominated by the coarse mode, but the coarse mode was similar magnitude to the fine mode during the firework and biomass burning days. The volume concentration of the coarse mode during the dust days increased by a magnitude of more than 2-8 times that derived in the other three aerosol conditions, suggesting that dust is the major contributor of coarse mode particles in Beijing. The single scattering albedo (SSA) values also increased during the pollution episodes. The overall mean SSA at the four wavelengths were 0.865, 0.911, 0.922 and 0.931 in clean, firework display, biomass burning, and dust days in Beijing, respectively. However, in the blue spectral range, the dust aerosols exhibited pronounced absorption.

  3. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    Science.gov (United States)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  4. Aerosol Chemical Composition and its Effects on Cloud-Aerosol Interactions during the 2007 CHAPS Experiment

    Science.gov (United States)

    Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.

    2007-12-01

    Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.

  5. The European aerosol budget in 2006

    Directory of Open Access Journals (Sweden)

    J. M. J. Aan de Brugh

    2011-02-01

    Full Text Available This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension. We model that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95% and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%. We model transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we underestimate the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match, while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional aerosol budgets, as presented in the current study.

  6. Aerosol scrubbers

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    The Submerged Gravel Scrubber is an air cleaning system developed by the Department of Energy's Liquid Metal Reactor Program. The Scrubber System has been patented by the Department of Energy. This technology is being transferred to industry by the DOE. Its basic principles can be adapted for individual applications and the commercialized version can be used to perform a variety of tasks. The gas to be cleaned is percolated through a continuously washed gravel bed. The passage of the gas through the gravel breaks the stream into many small bubbles rising in a turbulent body of water. These conditions allow very highly efficient removal of aerosols from the gas

  7. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane.

    Science.gov (United States)

    Sarkar, Omprakash; Venkata Mohan, S

    2017-10-01

    Application of pre-aeration (AS) to waste prior to feeding was evaluated on acidogenic process in a semi-pilot scale biosystem for the production of biobased products (biohydrogen, volatile fatty acids (VFA) and biohythane) from food waste. Oxygen assisted in pre-hydrolysis of waste along with the suppression of methanogenic activity resulting in enhanced acidogenic product formation. AS operation resulted in 97% improvement in hydrogen conversion efficiency (HCE) and 10% more VFA production than the control. Increasing the organic load (OL) of food waste in association with AS application improved the productivity. The application of AS also influenced concentration and composition of fatty acid. Highest fraction of acetic (5.3g/l), butyric (0.7g/l) and propionic acid (0.84g/l) was achieved at higher OL (100g COD/l) with good degree of acidification (DOA). AS strategy showed positive influence on biofuel (biohydrogen and biohythane) production along with the biosynthesis of short chain fatty acids functioning as a low-cost pretreatment strategy in a single stage bioprocess. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Calibration of aerosol radiometers. Special aerosol sources

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-01-01

    Problems of calibration of artificial aerosol radiometry and information-measurement systems of radiometer radiation control, in particular, are considered. Special aerosol source is suggested, which permits to perform certification and testing of aerosol channels of the systems in situ without the dismantling

  9. The influence of aerosols and land-use type on NO2 satellite retrieval over China

    Science.gov (United States)

    Liu, Mengyao; Lin, Jintai; Boersma, Folkert; Eskes, Henk; Chimot, Julien

    2017-04-01

    Both aerosols and surface reflectance have a strong influence on the retrieval of NO2 tropospheric vertical column densities (VCDs), especially over China with its heavy aerosol loading and rapid changes in land-use type. However, satellite retrievals of NO2 VCDs usually do not explicitly account for aerosol optical effects and surface reflectance anisotropy (BRDF) that varies in space and time. We develop an improved algorithm to derive tropospheric AMFs and VCDs over China from the OMI instrument - POMINO and DOMINO. This method can also be applied to TropOMI NO2 retrievals in the future. With small pixels of TropOMI and higher probability of encountering clear-sky scenes, the influence of BRDF and aerosol interference becomes more important than for OMI. Daily aerosol information is taken from the GEOS-Chem chemistry transport model and the aerosol optical depth (AOD) is adjusted via MODIS AOD climatology. We take the MODIS MCD43C2 C5 product to account for BRDF effects. The relative altitude of NO2 and aerosols is critical factor influencing the NO2 retrieval. In order to evaluate the aerosol extinction profiles (AEP) of GEOS-Chem improve our algorithm, we compare the GEOS-Chem simulation with CALIOP and develop a CALIOP AEP climatology to regulate the model's AEP. This provides a new way to include aerosol information into the tracer gas retrieval for OMI and TropOMI. Preliminary results indicate that the model performs reasonably well in reproducing the AEP shape. However, it seems to overestimate aerosols under 2km and underestimate above. We find that relative humidity (RH) is an important factor influencing the AEP shape when comparing the model with observations. If we adjust the GEOS-Chem RH to CALIOP's RH, the correlations of their AEPs also improve. Besides, take advantage of our retrieval method, we executed sensitivity tests to analyze their influences on NO2 trend and spatiotemporal variations in retrieval. It' the first time to investigate

  10. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  11. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  12. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    Full Text Available Black carbon (BC aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2 measurements of refractory BC (rBC mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA operated by the Facility for Airborne Atmospheric Measurements (FAAM. We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS and used positive matrix factorization to separate hydrocarbon-like (HOA and oxygenated organic aerosols (OOA. We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA did change for

  13. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    Science.gov (United States)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  14. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Chhagan, E-mail: chhaganpanwar@gmail.com; Vyas, B. M. [Department of Physics, M.L. Sukhadia University, Udaipur-313001 (India)

    2016-05-06

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (R{sub eff}), integrated content of total aerosols (N{sub t}), columnar content of accumulation and coarse size aerosols particles concentration (N{sub a}) (size < 0.5 µm) and (N{sub c}) (size between 0.5 to 2 µm) have been described specifically during winter (a stable weather condition and intense anthropogenic pollution activity period) and pre-monsoon (intense dust storms of natural mineral aerosols as well as unstable atmospheric weather condition period) at Jaisalmer (26.90°N, 69.90°E, 220 m above surface level (asl)) located in central Thar desert vicinity of western Indian site. The CSD and various derived other aerosols size parameters are retrieved from their average spectral characteristics of Aerosol Optical Thickness (AOT) from UV to Infrared wavelength spectrum measured from Multi-Wavelength solar Radiometer (MWR). The natures of CSD are, in general, bio-modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 10{sup 13} m{sup 2} μm{sup −1} at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 10{sup 10} to 10{sup 11} m{sup 2}/μm{sup −1} occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 10{sup 12} m{sup 2}μm{sup −3} is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols particles (0

  15. Aerosols and the lungs

    International Nuclear Information System (INIS)

    1987-01-01

    The lectures of the colloquium are discussed in summary form. There were 5 lectures on aerosol deposition, 5 on aerosol elimination, 7 on toxicology, and 7 on the uses of aerosols in medical therapy. In some cases aerosols with radioactive labels were used. Several lectures reviewed the kinetics and toxicology of airborne environmental pollutants. (MG) [de

  16. Estimating marine aerosol particle volume and number from Maritime Aerosol Network data

    Directory of Open Access Journals (Sweden)

    A. M. Sayer

    2012-09-01

    Full Text Available As well as spectral aerosol optical depth (AOD, aerosol composition and concentration (number, volume, or mass are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The "average solution" MODIS dataset agrees more closely with MAN than the "best solution" dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data. However, without accurate AOD data and prior knowledge of

  17. Glyoxal contribution to aerosols over Los Angeles

    Science.gov (United States)

    Balcerak, Ernie

    2012-01-01

    Laboratory and field studies have indicated that glyoxal (chemical formula OCHCHO), an atmospheric oxidation product of isoprene and aromatic compounds, may contribute to secondary organic aerosols in the atmosphere, which can block sunlight and affect atmospheric chemistry. Some aerosols are primary aerosols, emitted directly into the atmosphere, while others are secondary, formed through chemical reactions in the atmosphere. Washenfelder et al. describe in situ glyoxal measurements from Pasadena, Calif., near Los Angeles, made during summer 2010. They used three different methods to calculate the contribution of glyoxal to secondary atmospheric aerosol and found that it is responsible for 0-0.2 microgram per cubic meter, or 0-4%, of the secondary organic aerosol mass. The researchers also compared their results to those of a previous study that calculated the glyoxal contribution to aerosol for Mexico City. Mexico City had higher levels of organic aerosol mass from glyoxal. They suggest that the lower contribution of glyoxal to aerosol concentrations for Los Angeles may be due to differences in the composition or water content of the aerosols above the two cities. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2011JD016314, 2011)

  18. Aerosol Transport Over Equatorial Africa

    Science.gov (United States)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  19. A general circulation model (GCM) parameterization of Pinatubo aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.

  20. Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs simulated using the global aerosol model SPRINTARS

    Directory of Open Access Journals (Sweden)

    T. Takemura

    2012-12-01

    Full Text Available Global distributions and associated climate effects of atmospheric aerosols were simulated using a global aerosol climate model, SPRINTARS, from 1850 to the present day and projected forward to 2100. Aerosol emission inventories used by the Coupled Model Intercomparison Project Phase 5 (CMIP5 were applied to this study. Scenarios based on the Representative Concentration Pathways (RCPs were used for the future projection. Aerosol loading in the atmosphere has already peaked and is now reducing in Europe and North America. However, in Asia where rapid economic growth is ongoing, aerosol loading is estimated to reach a maximum in the first half of this century. Atmospheric aerosols originating from the burning of biomass have maintained high loadings throughout the 21st century in Africa, according to the RCPs. Evolution of the adjusted forcing by direct and indirect aerosol effects over time generally correspond to the aerosol loading. The probable future pathways of global mean forcing differ based on the aerosol direct effect for different RCPs. Because aerosol forcing will be close to the preindustrial level by the end of the 21st century for all RCPs despite the continuous increases in greenhouse gases, global warming will be accelerated with reduced aerosol negative forcing.

  1. Evidence of Aerosol's Influence on Climate from Beijing Olympics

    Science.gov (United States)

    Chen, S.; Fu, Q.; Huang, J.; Ge, J.; Su, J.

    2009-12-01

    Air pollution is a difficult problem during the process of industrialization in most developing countries. In China, the main air pollutants are inhaled aerosol particles. Because of the extremely high loading and rapid development, Beijing became a heavily polluted city, with a population of more than 16 million. The 2008 Olympic Summer Games provided a unique opportunity for the study of climate effects of aerosols due to many measurements taken to fight pollution caused by industrialization and economic growth.Surface temperature is the most intuitive meteorological factor and easy to get. Therefore, aerosol’s radiative effects on regional climate can be known by studying the relationship between aerosols and surface temperature in Beijing city in August 2008. However, many factors can affect the surface temperature and cloud is considered as a very important meteorological element in radiation balance. In order to remove the impact of clouds on surface temperature, here the ground temperature in clear sky days (when cloud cover is less than 2) are selected. Aerosol data from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Earth Observing System (EOS) Aqua shows that aerosol concentration decreased significantly in the area of Olympic venues in August 2008. Meanwhile, the ground-based observation data shows the surface temperature during the day (14LT) and night (02LT) in August 2008 is higher and lower than the mean temperature in August from 2002 to 2008, respectively. It is discovered that the distribution of satellite-retrieved aerosol optical Depth (AOD) in the whole area of Beijing in August of 2003 and 2004 is similar to that in 2008. We chosen four meteorological stations to analyze surface temperature and found that the diurnal changes of surface temperature are consistent with that in August of 2003, 2004 and 2008. Meanwhile, the decrease of AOD in the area of Olympic venues in August 2008 leads to the increase of precipitation

  2. Intercomparison test of various aerosol measurement techniques

    International Nuclear Information System (INIS)

    Cherdron, W.; Hassa, C.; Jordan, S.

    1984-01-01

    At the suggestion of the CONT group (Containment Loading and Response), which is a subgroup of the Safety Working Group of the Fast Reactor Coordinating Committee, a group of experts undertook a comparison of the techniques of sodium aerosol measurement used in various laboratories in the EC. The following laboratories took part in the exercise: CEN-Mol (Belgium), CEA-Cadarache (France), CEA-Fontenay-aux-Roses (France), KfK-Karlsruhe (Federal Republic of Germany), ENEA-Bologna (Italy), and UKAEA-Winfrith (United Kingdom). The objective of the aerosol measurement workshop was to assess the applicability and reliability of specific aerosol measuring instruments. Measurements performed with equipment from the participating laboratories were evaluated using a standard procedure. This enabled an estimate of the accuracy of the experimental data to be provided for the verification of aerosol codes. Thus these results can be used as input for the physical modelling of aerosol behaviour, and the work reported here is a contribution to the definition of the radioactive source term for severe accidents in LMFBRs. The aerosol experts participating in the exercise agreed to concentrate on the techniques of measuring aerosol particle size distributions. The tests were performed at the FAUNA test facility using the aerosol loop. A sodium spray fire, which provides a continuous aerosol source of variable concentration, was produced under open-loop conditions in this facility. Although the primary objective of the workshop was to determine the particle size distributions of the aerosols, measurements of the sodium mass concentration were also made

  3. Aerosol volatility in a boreal forest environment

    Science.gov (United States)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  4. Onshore Wind Speed Modulates Microbial Aerosols along an Urban Waterfront

    Directory of Open Access Journals (Sweden)

    M. Elias Dueker

    2017-11-01

    Full Text Available Wind blowing over aquatic and terrestrial surfaces produces aerosols, which include microbial aerosols. We studied the effect of onshore wind speeds on aerosol concentrations as well as total and culturable microbial aerosols (bacterial and viral at an urban waterfront (New York, NY, United States of America. We used two distinct methods to characterize microbial aerosol responses to wind speed: A culture-based exposure-plate method measuring viable bacterial deposition near-shore (CFU accumulation rate; and a culture-independent aerosol sampler-based method measuring total bacterial and viral aerosols (cells m−3 air. While ambient coarse (>2 µm and fine (0.3–2 µm aerosol particle number concentrations (regulated indicators of air quality decreased with increasing onshore wind speeds, total and depositing culturable bacterial aerosols and total viral aerosols increased. Taxonomic identification of the 16S rDNA of bacterial aerosol isolates suggested both terrestrial and aquatic sources. Wind appears to increase microbial aerosol number concentrations in the near-shore environment by onshore transport at low wind speeds (<4 m s−1, and increased local production and transport of new microbial aerosols from adjacent water surfaces at higher wind speeds (>4 m s−1. This study demonstrates a wind-modulated microbial connection between water and air in the coastal urban environment, with implications for public health management and urban microbial ecology.

  5. Predicting Thermal Behavior of Secondary Organic Aerosols

    Science.gov (United States)

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in 139 steadystate single precursor hydrocarbon oxidation experiments after passing through a temperature controlled inlet tube. Higher temperatures resulted in greater loss of particle volume, wi...

  6. Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan

    Science.gov (United States)

    Tariq, Salman; Zia, ul-Haq; Ali, Muhammad

    2016-02-01

    Due to increase in population and economic development, the mega-cities are facing increased haze events which are causing important effects on the regional environment and climate. In order to understand these effects, we require an in-depth knowledge of optical and physical properties of aerosols in intense haze conditions. In this paper an effort has been made to analyze the microphysical and optical properties of aerosols during intense haze event over mega-city of Lahore by using remote sensing data obtained from satellites (Terra/Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)) and ground based instrument (AErosol RObotic NETwork (AERONET)) during 6-14 October 2013. The instantaneous highest value of Aerosol Optical Depth (AOD) is observed to be 3.70 on 9 October 2013 followed by 3.12 on 8 October 2013. The primary cause of such high values is large scale crop residue burning and urban-industrial emissions in the study region. AERONET observations show daily mean AOD of 2.36 which is eight times higher than the observed values on normal day. The observed fine mode volume concentration is more than 1.5 times greater than the coarse mode volume concentration on the high aerosol burden day. We also find high values (~0.95) of Single Scattering Albedo (SSA) on 9 October 2013. Scatter-plot between AOD (500 nm) and Angstrom exponent (440-870 nm) reveals that biomass burning/urban-industrial aerosols are the dominant aerosol type on the heavy aerosol loading day over Lahore. MODIS fire activity image suggests that the areas in the southeast of Lahore across the border with India are dominated by biomass burning activities. A Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward trajectory showed that the winds at 1000 m above the ground are responsible for transport from southeast region of biomass burning to Lahore. CALIPSO derived sub-types of

  7. Filtration of sodium-fire aerosols

    International Nuclear Information System (INIS)

    Alexas, A.; Jordan, S.; Lindner, W.

    1979-01-01

    Different filter devices have been developed and tested with respect to their use in the off-gas system of liquid-metal fast breeder reactors to prevent the escape of sodium-fire aerosols that might be formed in case of an accident. The testing results have shown that the use of a multilayer sand bed filter is still the best method to filter limited amounts of sodium-fire aerosols over a long operating time. Efficiencies on the order of 99.98 and 98.8% were reached for loading capacities of 500 and 1000 g/m 2 , respectively. Unlimited amounts of sodium-fire aerosols can be filtered by wet scrubbers with an efficiency of 70% per scrubber stage. Fiberglas filters connot be used for the filtration of sodium-fire aerosols over a long operating time because the filter material can be destroyed after several days of operating

  8. The DRAGON aerosol research facility to study aerosol behaviour for reactor safety applications

    International Nuclear Information System (INIS)

    Suckow, Detlef; Guentay, Salih

    2008-01-01

    During a severe accident in a nuclear power plant fission products are expected to be released in form of aerosol particles and droplets. To study the behaviour of safety relevant reactor components under aerosol loads and prototypical severe accident conditions the multi-purpose aerosol generation facility DRAGON is used since 1994 for several projects. DRAGON can generate aerosol particles by the evaporation-condensation technique using a plasma torch system, fluidized bed and atomization of particles suspended in a liquid. Soluble, hygroscopic aerosol (i.e. CsOH) and insoluble aerosol particles (i.e. SnO 2 , TiO 2 ) or mixtures of them can be used. DRAGON uses state-of-the-art thermal-hydraulic, data acquisition and aerosol measurement techniques and is mainly composed of a mixing chamber, the plasma torch system, a steam generator, nitrogen gas and compressed air delivery systems, several aerosol delivery piping, gas heaters and several auxiliary systems to provide vacuum, coolant and off-gas treatment. The facility can be operated at system pressure of 5 bars, temperatures of 300 deg. C, flow rates of non-condensable gas of 900 kg/h and steam of 270 kg/h, respectively. A test section under investigation is attached to DRAGON. The paper summarizes and demonstrates with the help of two project examples the capabilities of DRAGON for reactor safety studies. (authors)

  9. Total Lightning Flash Activity Response to Aerosol over China Area

    Directory of Open Access Journals (Sweden)

    Pengguo Zhao

    2017-01-01

    Full Text Available Twelve years of measurements of aerosol optical depth (AOD, cloud fraction, cloud top height, ice cloud optical thickness and lightning flash density from 2001 to 2012 have been analyzed to investigate the effect of aerosols on electrical activity over an area of China. The results show that increasing aerosol loading inspires the convective intensity, and then increases the lightning flash density. The spatial distribution of the correlation between aerosol loading and electrical activity shows a remarkable regional difference over China. The high-correlation regions embody the positive aerosol microphysical effect on the intensity of the electrical activity, while the large-scale processes may play the main role in convection development and producing lightning in low-correlation regions.

  10. Atmospheric aerosol radiative forcing over a semi-continental location Tripura in North-East India: Model results and ground observations.

    Science.gov (United States)

    Dhar, Pranab; De, Barin Kumar; Banik, Trisanu; Gogoi, Mukunda M; Babu, S Suresh; Guha, Anirban

    2017-02-15

    Northeast India (NEI) is located within the boundary of the great Himalayas in the north and the Bay of Bengal (BoB) in the southwest, experiences the mixed influence of the westerly dust advection from the Indian desert, anthropogenic aerosols from the highly polluted Indo-Gangetic Plains (IGP) and marine aerosols from BoB. The present study deals with the estimation and characterization of aerosol radiative forcing over a semi-continental site Tripura, which is a strategic location in the western part of NEI having close proximity to the outflow of the IGP. Continuous long term measurements of aerosol black carbon (BC) mass concentrations and columnar aerosol optical depth (AOD) are used for the estimation of aerosol radiative forcing in each monthly time scale. The study revealed that the surface forcing due to aerosols was higher during both winter and pre-monsoon seasons, having comparable values of 32W/m 2 and 33.45W/m 2 respectively. The atmospheric forcing was also higher during these months due to increased columnar aerosol loadings (higher AOD ~0.71) shared by abundant BC concentrations (SSA ~0.7); while atmospheric forcing decreased in monsoon due to reduced magnitude of BC (SSA ~0.94 in July) as well as columnar AOD. The top of the atmosphere (TOA) forcing is positive in pre-monsoon and monsoon months with the highest positive value of 3.78W/m 2 in June 2012. The results are discussed in light of seasonal source impact and transport pathways from adjacent regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. AEROSOL AND GAS MEASUREMENT

    Science.gov (United States)

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  12. Some Technical Aspects of a CALIOP and MODIS Data Analysis that Examines Near-Cloud Aerosol Properties as a Function of Cloud Fraction

    Science.gov (United States)

    Varnai, Tamas; Yang, Weidong; Marshak, Alexander

    2016-01-01

    CALIOP shows stronger near-cloud changes in aerosol properties at higher cloud fractions. Cloud fraction variations explain a third of near-cloud changes in overall aerosol statistics. Cloud fraction and aerosol particle size distribution have a complex relationship.

  13. Facility of aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  14. Aerosols and Climate

    Indian Academy of Sciences (India)

    Large warming by elevated aerosols · AERONET – Global network (NASA) · Slide 25 · Slide 26 · Slide 27 · Slide 28 · Slide 29 · Slide 30 · Slide 31 · Long-term trends - Trivandrum · Enhanced warming over Himalayan-Gangetic region · Aerosol Radiative Forcing Over India _ Regional Aerosol Warming Experiment ...

  15. Aerosol Climate Time Series in ESA Aerosol_cci

    Science.gov (United States)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  16. Measurement of alpha-aerosol activity concentration by a moving filter device. Numerical simulation of both filter activity load and continuous monitoring process by compensation of natural activity by means of ABPD and AERD; Bilanzierung der Alpha-Aktivitaetskonzentration der Raumluft mit einem Schrittbandfiltergeraet. Numerische Simulation des Verlaufs der Bestaubung und der kontinuierlichen Auswertung mit Kompensation der natuerlichen Aktivitaet durch ABPD und AERD

    Energy Technology Data Exchange (ETDEWEB)

    Kraut, W.; Schwarz, W. [Duale Hochschule Baden-Wuerttemberg (DHBW), Karlsruhe (Germany). Studiengang Sicherheitswesen; Kraut, B. [Berthold Technologies GmbH und Co.KG, Bad Wildbad (Germany)

    2016-07-01

    Moving filter aerosol monitors offer the advantage of better measurement conditions by reducing the load of dust and activity. But at the same time the dynamical follow up of increasing or decreasing activity air concentrations is getting more complex by superposition oft the filter movement, especially if there are both short lived natural and long lived artificial activity to be monitored. The paper shows by a pure numerical simulation of activity load and measurement of Radon-daughters and long lived artificial activity, that a stable determination of activity concentration is possible right from the beginning of sampling. This is accomplished by multivariate regression analysis to separate short lived Po-218 and long lived artificial - Activity. Po-214 activity is compensated by means of ABPD and AERD techniques. The Model allows for variable activity concentrations during sampling. Results are presented.

  17. Climate Impacts From a Removal of Anthropogenic Aerosol Emissions

    Science.gov (United States)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.

    2018-01-01

    Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.

  18. Can Aerosol Offset Urban Heat Island Effect?

    Science.gov (United States)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  19. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2012-10-01

    Full Text Available This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Nudged simulations of the year 2000 are carried out to compare the aerosol properties and global distribution in HAM1 and HAM2, and to evaluate them against various observations. Sensitivity experiments are performed to help identify the impact of each individual update in model formulation.

    Results indicate that from HAM1 to HAM2 there is a marked weakening of aerosol water uptake in the lower troposphere, reducing the total aerosol water burden from 75 Tg to 51 Tg. The main reason is the newly introduced κ-Köhler-theory-based water uptake scheme uses a lower value for the maximum relative humidity cutoff. Particulate organic matter loading in HAM2 is considerably higher in the upper troposphere, because the explicit treatment of secondary organic aerosols allows highly volatile oxidation products of the precursors to be vertically transported to regions of very low temperature and to form aerosols there. Sulfate, black carbon, particulate organic matter and mineral dust in HAM2 have longer lifetimes than in HAM1 because of weaker in-cloud scavenging, which is in turn related to lower autoconversion efficiency in the newly introduced two-moment cloud microphysics scheme. Modification in the sea salt emission scheme causes a significant increase in the ratio (from 1.6 to 7.7 between accumulation mode and coarse mode emission fluxes of

  20. Regional Climate Effects of Aerosols Over South Asia: a Synthesis of Hybrid-Synergistic Analysis

    Science.gov (United States)

    Subba, T.; Gogoi, M. M.; Pathak, B.; Bhuyan, P. K.

    2017-12-01

    The south-Asian region faces formidable challenges in the accurate estimation of the aerosol-climate forcing due to the increasing demographic pressure and the rapid socio-economic growth which intensify the anthropogenic emissions causing degradation of regional air quality and climate. In this context, the present study employs a hybrid-method synergizing the aerosol data from ground-based measurements, satellite retrievals and radiative transfer simulations over the south-Asian region. The ground based aerosol and solar radiation data (2010-2015) are considered for nine selected locations of India as well as the adjoining Bay of Bengal representing distinct aerosol environment. The land use land cover (LULC) data from Indian remote sensing satellite (IRS-P6) is used to understand the association of aerosol environment with the change in the land surface pattern.The results indicate that the northern part, pre-dominantly the Indo-Gangetic plains (IGP) experiences the highest aerosol optical depth throughout the year. While the presence of dust plays a significant role in modifying the radiation balance over the west Asian region, extending to IGP; the highest Fire Radiative Power is observed over Eastern India ( 30 MW), the hotspot of biomass burning sources, followed by Central, South/West and Northern India. Considering the distinct source processes, incoming ground reaching fluxes are simulated using radiative transfer model, which showed a good correlation with the measured values (R2 0.97) with the mean bias errors between -40 to +7 Wm-2 (an overestimation of 2-4%). Estimated aerosol direct radiative forcing efficiency (DRFE) is highest over the eastern IGP due to heavy loading of long range transported aerosols from the arid region in the west, followed by the Himalayan foothills and west-Asian regions which are mostly dominated by agro-industrial and dust activities. However, a pristine high altitude location in the Western Ghats showed lower DRFE compared

  1. Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009

    Science.gov (United States)

    Mensah, A. A.; Holzinger, R.; Otjes, R.; Trimborn, A.; Mentel, Th. F.; ten Brink, H.; Henzing, B.; Kiendler-Scharr, A.

    2012-05-01

    Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and is compared to observations from aerosol size distribution measurements as well as composition measurements with a Monitor for AeRosol and GAses (MARGA) based instrument and a Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS). An overview of the data is presented and the data quality is discussed. In May 2008 enhanced pollution was observed with organics contributing 40% to the PM1 mass. In contrast the observed average mass loading was lower in March 2009 and a dominance of ammonium nitrate (42%) was observed. The semi-volatile nature of ammonium nitrate is evident in the diurnal cycles with maximum concentrations observed in the morning hours in May 2008 and little diurnal variation observed in March 2009. Size dependent composition data from AMS measurements are presented and show a dominance of organics in the size range below 200 nm. A higher O:C ratio of the organics is observed for May 2008 than for March 2009. Together with the time series of individual tracer ions this shows the dominance of OOA over HOA in May 2008.

  2. Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009

    Directory of Open Access Journals (Sweden)

    A. A. Mensah

    2012-05-01

    Full Text Available Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS and is compared to observations from aerosol size distribution measurements as well as composition measurements with a Monitor for AeRosol and GAses (MARGA based instrument and a Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS. An overview of the data is presented and the data quality is discussed. In May 2008 enhanced pollution was observed with organics contributing 40% to the PM1 mass. In contrast the observed average mass loading was lower in March 2009 and a dominance of ammonium nitrate (42% was observed. The semi-volatile nature of ammonium nitrate is evident in the diurnal cycles with maximum concentrations observed in the morning hours in May 2008 and little diurnal variation observed in March 2009. Size dependent composition data from AMS measurements are presented and show a dominance of organics in the size range below 200 nm. A higher O:C ratio of the organics is observed for May 2008 than for March 2009. Together with the time series of individual tracer ions this shows the dominance of OOA over HOA in May 2008.

  3. The effect of aerosol-derived changes in the warm phase on the properties of deep convective clouds

    Science.gov (United States)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven; Dagan, Guy

    2017-04-01

    The aerosol impact on deep convective clouds starts in an increased number of cloud droplets in higher aerosol loading environment. This change drives many others, like enhanced condensational growth, delay in collision-coalescence and others. Since the warm processes serve as the initial and boundary conditions for the mixed and cold-phase processes in deep clouds, it is highly important to understand the aerosol effect on them. The weather research and forecasting model (WRF) with spectral bin microphysics was used to study a deep convective system over the Marshall Islands, during the Kwajalein Experiment (KWAJEX). Three simulations were conducted with aerosol concentrations of 100, 500 and 2000 cm-3, to reflect clean, semipolluted, and polluted conditions. The results of the clean run agreed well with the radar profiles and rain rate observations. The more polluted simulations resulted in larger total cloud mass, larger upper level cloud fraction and rain rates. There was an increased mass both below and above the zero temperature level. It indicates of more efficient growth processes both below and above the zero level. In addition the polluted runs showed an increased upward transport (across the zero level) of liquid water due to both stronger updrafts and larger droplet mobility. In this work we discuss the transport of cloud mass crossing the zero temperature level (in both directions) in order to gain a process level understanding of how aerosol effects on the warm processes affect the macro- and micro-properties of deep convective clouds.

  4. Aerosol modelling and validation during ESCOMPTE 2001

    Science.gov (United States)

    Cousin, F.; Liousse, C.; Cachier, H.; Bessagnet, B.; Guillaume, B.; Rosset, R.

    The ESCOMPTE 2001 programme (Atmospheric Research. 69(3-4) (2004) 241) has resulted in an exhaustive set of dynamical, radiative, gas and aerosol observations (surface and aircraft measurements). A previous paper (Atmospheric Research. (2004) in press) has dealt with dynamics and gas-phase chemistry. The present paper is an extension to aerosol formation, transport and evolution. To account for important loadings of primary and secondary aerosols and their transformation processes in the ESCOMPTE domain, the ORISAM aerosol module (Atmospheric Environment. 35 (2001) 4751) was implemented on-line in the air-quality Meso-NH-C model. Additional developments have been introduced in ORganic and Inorganic Spectral Aerosol Module (ORISAM) to improve the comparison between simulations and experimental surface and aircraft field data. This paper discusses this comparison for a simulation performed during one selected day, 24 June 2001, during the Intensive Observation Period IOP2b. Our work relies on BC and OCp emission inventories specifically developed for ESCOMPTE. This study confirms the need for a fine resolution aerosol inventory with spectral chemical speciation. BC levels are satisfactorily reproduced, thus validating our emission inventory and its processing through Meso-NH-C. However, comparisons for reactive species generally denote an underestimation of concentrations. Organic aerosol levels are rather well simulated though with a trend to underestimation in the afternoon. Inorganic aerosol species are underestimated for several reasons, some of them have been identified. For sulphates, primary emissions were introduced. Improvement was obtained too for modelled nitrate and ammonium levels after introducing heterogeneous chemistry. However, no modelling of terrigeneous particles is probably a major cause for nitrates and ammonium underestimations. Particle numbers and size distributions are well reproduced, but only in the submicrometer range. Our work points out

  5. Dual aerosol detector based on forward light scattering with a single laser beam

    International Nuclear Information System (INIS)

    Kovach, B.J.; Custer, R.A.; Powers, F.L.; Kovach, A.

    1985-01-01

    The in-place leak testing of HEPA filter banks using a single detector can lead to some error in the measurement due to the fluctuation of the aerosol concentration while the single detector is being switched from the upstream to downstream sampling. The time duration of the test also can cause unnecessarily high DOP loading of the HEPA filters and in some cases higher radiation exposure to the testing personnel. The new forward light scattering detector uses one 632.8 nm laser beam for aerosol detection in a dual chamber sampling and detecting aerosol concentration simultaneously both upstream and downstream. This manner of operation eliminates the errors caused by concentration variations between upstream and downstream sample points while the switching takes place. The new detector uses large area silicone photodiodes with a hole in the center, to permit uninterrupted passage of the laser beam through the downstream sample chamber. The nonlinearity due to the aerosol over population of the laser beam volume is calculated to be less than 1% using a Poisson distribution method to determine the average distance of the particles. A simple pneumatic system prevents mixing of the upstream and downstream samples even in wide pressure variations of the duct system

  6. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    Science.gov (United States)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  7. Sulfur mass loading of the atmosphere from volcanic eruptions: Calibration of the ice core record on basis of sulfate aerosol deposition in polar regions from the 1982 El Chichon eruption

    Science.gov (United States)

    Sigurdsson, Haraldur; Laj, Paolo

    1990-01-01

    Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. We propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.

  8. Aerosol properties over the western Mediterranean basin: temporal and spatial variability

    OpenAIRE

    H. Lyamani; A. Valenzuela; D. Perez-Ramirez; C. Toledano; M. J. Granados-Muñoz; F. J. Olmo; L. Alados-Arboledas

    2015-01-01

    This study focuses on the analysis of AERONET aerosol data obtained over Alborán Island (35.95° N, 3.01° W, 15 m a.s.l.) in the western Mediterranean from July 2011 to January 2012. Additional aerosol data from three nearest AERONET stations and the Maritime Aerosol Network (MAN) were also analyzed in order to investigate the aerosol temporal and spatial variations over this scarcely explored region. Aerosol load over Alborán was significantly larger than that reported for o...

  9. Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals

    Science.gov (United States)

    Zhao, Bin; Gu, Yu; Liou, Kuo-Nan; Wang, Yuan; Liu, Xiaohong; Huang, Lei; Jiang, Jonathan H.; Su, Hui

    2018-04-01

    Aerosol-cloud interactions represent one of the largest uncertainties in external forcings on our climate system. Compared with liquid clouds, the observational evidence for the aerosol impact on ice clouds is much more limited and shows conflicting results, partly because the distinct features of different ice cloud and aerosol types were seldom considered. Using 9-year satellite retrievals, we find that, for convection-generated (anvil) ice clouds, cloud optical thickness, cloud thickness, and cloud fraction increase with small-to-moderate aerosol loadings (types provide valuable constraints on the modeling assessment of aerosol-ice cloud radiative forcing.

  10. Attachment of radon progeny to cigarette-smoke aerosols

    International Nuclear Information System (INIS)

    Biermann, A.H.; Sawyer, S.R.

    1995-05-01

    The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, ∼10 -6 cm 3 /s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols

  11. Microphysical and radiative effects of aerosols on warm clouds during the Amazon biomass burning season as observed by MODIS: impacts of water vapor and land cover

    Directory of Open Access Journals (Sweden)

    J. E. Ten Hoeve

    2011-04-01

    Full Text Available Aerosol, cloud, water vapor, and temperature profile data from the Moderate Resolution Imaging Spectroradiometer (MODIS are utilized to examine the impact of aerosols on clouds during the Amazonian biomass burning season in Rondônia, Brazil. It is found that increasing background column water vapor (CWV throughout this transition season between the Amazon dry and wet seasons likely exerts a strong effect on cloud properties. As a result, proper analysis of aerosol-cloud relationships requires that data be stratified by CWV to account better for the influence of background meteorological variation. Many previous studies of aerosol-cloud interactions over Amazonia have ignored the systematic changes to meteorological factors during the transition season, leading to possible misinterpretation of their results. Cloud fraction (CF is shown to increase or remain constant with aerosol optical depth (AOD, depending on the value of CWV, whereas the relationship between cloud optical depth (COD and AOD is quite different. COD increases with AOD until AOD ~ 0.3, which is assumed to be due to the first indirect (microphysical effect. At higher values of AOD, COD is found to decrease with increasing AOD, which may be due to: (1 the inhibition of cloud development by absorbing aerosols (radiative effect/semi-direct effect and/or (2 a possible retrieval artifact in which the measured reflectance in the visible is less than expected from a cloud top either from the darkening of clouds through the addition of carbonaceous biomass burning aerosols within or above clouds or subpixel dark surface contamination in the measured cloud reflectance. If (1 is a contributing mechanism, as we suspect, then an empirically-derived increasing function between cloud drop number and aerosol concentration, assumed in a majority of global climate models, is inaccurate since these models do not include treatment of aerosol absorption in and around clouds. The relationship between

  12. Surface aerosol measurements at Barrow during AGASP

    International Nuclear Information System (INIS)

    Bodhaine, B.A.; Dutton, E.G.; DeLuisi, J.J.

    1984-01-01

    Surface aerosol measurements were made at the Barrow GMCC Observatory during the AGASP flight series in March 1983. The condensation nucleus, scattering extinction coefficient, size distribution, and total aerosol optical depth measurements all clearly show conditions of background Arctic haze for March 9-11, a series of haze episodes during March 12-16, and a return to background haze for March 17-18. Angstrom exponents calculated from scattering coefficient data were low during March 9-11, relatively higher during March 12-14, and highest during March 15-18. Surface aerosol data and aerosol optical depth data are in good qualitative agreement for the 10-day period studied. Background haze was present when trajectories circled the Arctic basin, and haze episodes occurred when trajectories originated in western Asia and Europe

  13. Antarctic aerosols - A review

    Science.gov (United States)

    Shaw, Glenn E.

    1988-02-01

    Tropospheric aerosols with the diameter range of half a micron reside in the atmosphere for tens of days and teleconnect Antarctica with other regions by transport that reaches planetary scales of distances; thus, the aerosol on the Antarctic ice represents 'memory modules' of events that took place at regions separated from Antarctica by tens of thousands of kilometers. In terms of aerosol mass, the aerosol species include insoluble crustal products (less than 5 percent), transported sea-salt residues (highly variable but averaging about 10 percent), Ni-rich meteoric material, and anomalously enriched material with an unknown origin. Most (70-90 percent by mass) of the aerosol over the Antarctic ice shield, however, is the 'natural acid sulfate aerosol', apparently deriving from biological processes taking place in the surrounding oceans.

  14. Impact of Aerosol Processing on Orographic Clouds

    Science.gov (United States)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    . [6]. Our investigation regarding the influence of aerosol processing will focus on the regional scale using a cloud-system resolving model with a much higher resolution. Emphasis will be placed on orographic mixed-phase precipitation. Different two-dimensional simulations of idealized orographic clouds will be conducted to estimate the effect of aerosol processing on orographic cloud formation and precipitation. Here, cloud lifetime, location and extent as well as the cloud type will be of particular interest. In a supplementary study, the new parameterization will be compared to observations of total and interstitial aerosol concentrations and size distribution at the remote high alpine research station Jungfraujoch in Switzerland. In addition, our simulations will be compared to recent simulations of aerosol processing in warm, mixed-phase and cold clouds, which have been carried out at the location of Jungfraujoch station [5]. References: [1] Pruppacher & Jaenicke (1995), The processing of water vapor and aerosols by atmospheric clouds, a global estimate, Atmos. Res., 38, 283295. [2] Seifert & Beheng (2006), A two-moment microphysics parameterization for mixed-phase clouds. Part 1: Model description, Meteorol. Atmos. Phys., 92, 4566. [3] Vignati et al. (2004), An efficient size-resolved aerosol microphysics module for large-scale transport models, J. Geophys. Res., 109, D22202 [4] Muhlbauer & Lohmann (2008), Sensitivity studies of the role of aerosols in warm-phase orographic precipitation in different flow regimes, J. Atmos. Sci., 65, 25222542. [5] Hoose et al. (2008), Aerosol processing in mixed-phase clouds in ECHAM5HAM: Model description and comparison to observations, J. Geophys. Res., 113, D071210. [6] Hoose et al. (2008), Global simulations of aerosol processing in clouds, Atmos. Chem. Phys., 8, 69396963.

  15. Radioactive aerosols. [In Russian

    Energy Technology Data Exchange (ETDEWEB)

    Natanson, G L

    1956-01-01

    Tabulations are given presenting various published data on safe atmospheric concentrations of various radioactive and non-radioactive aerosols. Methods of determination of active aerosol concentrations and dispersion as well as the technical applications of labeled aerosols are discussed. The effect of atomic explosions are analyzed considering the nominal atomic bomb based on /sup 235/U and /sup 232/Pu equivalent to 20,000 tons of TNT.

  16. Aerosols CFA 97

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    During the thirteen congress on aerosols several papers were presented about the behaviour of radioactive aerosols and their impact on environment, or the exposure to radon and to its daughters, the measurement of the size of the particulates of the short-lived radon daughters and two papers about the behaviour of aerosols in containment during a fission products release in the primary circuit and susceptible to be released in atmosphere in the case of containment failure. (N.C.)

  17. Optimization of nebulized delivery of linezolid, daptomycin, and vancomycin aerosol

    Directory of Open Access Journals (Sweden)

    Zarogoulidis P

    2014-08-01

    Full Text Available Paul Zarogoulidis,1 Ioannis Kioumis,1 Sofia Lampaki,1 John Organtzis,1 Konstantinos Porpodis,1 Dionysios Spyratos,1 Georgia Pitsiou,1 Dimitris Petridis,2 Athanasia Pataka,1 Haidong Huang,3 Qiang Li,3 Lonny Yarmus,4 Wolfgang Hohenforst-Schmidt,5 Nikolaos Pezirkianidis,6 Konstantinos Zarogoulidis1 1Pulmonary Department-Oncology Unit, “G Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece; 2Department of Food Technology, School of Food Technology and Nutrition, Alexander Technological Educational Institute, Thessaloniki, Greece; 3Department of Respiratory Diseases, Shanghai Hospital, II Military University Hospital, Shanghai, People’s Republic of China; 4Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA; 5II Medical Department, “Coburg” Regional Hospital, Coburg, Germany; 6Surgery Department, Private Cabinet, Serres, Greece Background: At this time, several antibiotics have been investigated as possibilities for aerosol administration, but local therapy has been found to be more efficient in several diseases. Materials and methods: The drugs linezolid (Zyvox, vancomycin (Voncon, and daptomycin (Cubicin were tested with three jet nebulizers with seven different residual cups and different loadings. Moreover, three ultrasound nebulizers were again tested with these drugs, with different loadings and mouthpiece attachments. Results: When drugs are combined with particular cup designs, they significantly lower the droplet size to 1.60 and 1.80 µm, which represents the best combination of Zyvox and cup G and Cubicin and cup D, respectively. Cup design D is suggested as the most effective cup for lowering the droplet size (2.30 µm when considering a higher loading level (8 mL. Conclusion: Modification of current drugs from dry powder to solution is possible, and the residual cup design plays the most important role in droplet size production when the

  18. Seasonal dependence of aerosol processing in urban Philadelphia

    Science.gov (United States)

    Avery, A. M.; Waring, M. S.; DeCarlo, P. F.

    2017-12-01

    Urban aerosols pose an important threat to human health due to the conflation of emissions and concentrated population exposed. Winter and summer aerosol and trace gas measurements were taken in downtown Philadelphia in 2016. Measurements included aerosol composition and size with an Aerodyne Aerosol Mass Spectrometer (AMS), particle size distributions with an SMPS, and an aethalometer. Trace gas measurements of O3, NO, CH4, CO, and CO2 were taken concurrently. Sampling in seasonal extremes provided contrast in aerosol and trace gas composition, aerosol processing, and emission factors. Inorganic aerosol components contributed approximately 60% of the submicron aerosol mass, while summertime aerosol composition was roughly 70% organic matter. Positive Matrix Factorization (PMF) on the organic aerosol (OA) matrix revealed three factors in common in each season, including an oxygenated organic aerosol (OOA) factor with different temporal behavior in each season. In summertime, OOA varied diurnally with ozone and daytime temperature, but in the wintertime, it was anti-correlated with ozone and temperature, and instead trended with calculated liquid water, indicating a seasonally-dependent processing of organic aerosol in Philadelphia's urban environment. Due to the inorganic dominant winter aerosol, liquid water much higher (2.65 μg/m3) in winter than in summer (1.54 μg/m3). Diurnally varying concentrations of background gas phase species (CH4, CO2) were higher in winter and varied less as a result of boundary layer conditions; ozone was also higher in background in winter than summer. Winter stagnation events with low windspeed showed large buildup of trace gases CH4, CO, CO2, and NO. Traffic related aerosol was also elevated with black carbon and hydrocarbon-like OA (HOA) plumes of each at 3-5 times higher than the winter the average value for each. Winter ratios of HOA to black carbon were significantly higher in the winter than the summer due to lower

  19. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza

    2018-02-01

    This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton's principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy's third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.

  20. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  1. Capacitive behavior of Ag doped V2O5 grown by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Vernardou, D.; Marathianou, I.; Katsarakis, N.; Koudoumas, E.; Kazadojev, I.I.; O’Brien, S.; Pemble, M.E.; Povey, I.M.

    2016-01-01

    The growth of silver doped vanadium pentoxide was performed by aerosol assisted chemical vapour deposition and found to be optimal at 450° C. Additionally, an increase in crystallinity and a change in preferred orientation of V 2 O 5 was observed upon increasing the silver content. Silver incorporation also resulted in morphological changes in the thin films from rod to pellet-like structures. For higher silver content films the amount of incorporated charge increased and reversibility and repeatability was demonstrated for 500 cycles. Electrochemical impedance spectroscopy determined that the transfer and diffusion of Li+ ions through the cathode-electrolyte interface was assisted by silver loading, hence, enhancing the capacitive performance.

  2. Devices and methods for generating an aerosol

    KAUST Repository

    Bisetti, Fabrizio; Scribano, Gianfranco

    2016-01-01

    Aerosol generators and methods of generating aerosols are provided. The aerosol can be generated at a stagnation interface between a hot, wet stream and a cold, dry stream. The aerosol has the benefit that the properties of the aerosol can

  3. Aerosol Deposition and Solar Panel Performance

    Science.gov (United States)

    Arnott, W. P.; Rollings, A.; Taylor, S. J.; Parks, J.; Barnard, J.; Holmes, H.

    2015-12-01

    Passive and active solar collector farms are often located in relatively dry desert regions where cloudiness impacts are minimized. These farms may be susceptible to reduced performance due to routine or episodic aerosol deposition on collector surfaces. Intense episodes of wind blown dust deposition may negatively impact farm performance, and trigger need to clean collector surfaces. Aerosol deposition rate depends on size, morphology, and local meteorological conditions. We have developed a system for solar panel performance testing under real world conditions. Two identical 0.74 square meter solar panels are deployed, with one kept clean while the other receives various doses of aerosol deposition or other treatments. A variable load is used with automation to record solar panel maximum output power every 10 minutes. A collocated sonic anemometer measures wind at 10 Hz, allowing for both steady and turbulent characterization to establish a link between wind patterns and particle distribution on the cells. Multispectral photoacoustic instruments measure aerosol light scattering and absorption. An MFRSR quantifies incoming solar radiation. Solar panel albedo is measured along with the transmission spectra of particles collected on the panel surface. Key questions are: At what concentration does aerosol deposition become a problem for solar panel performance? What are the meteorological conditions that most strongly favor aerosol deposition, and are these predictable from current models? Is it feasible to use the outflow from an unmanned aerial vehicle hovering over solar panels to adequately clean their surface? Does aerosol deposition from episodes of nearby forest fires impact performance? The outlook of this research is to build a model that describes environmental effects on solar panel performance. Measurements from summer and fall 2015 will be presented along with insights gleaned from them.

  4. Do atmospheric aerosols form glasses?

    Directory of Open Access Journals (Sweden)

    D. A. Pedernera

    2008-09-01

    Full Text Available A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5, of dicarboxylic acids and ammonium sulfate (M5AS, of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K. To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol−1 and

  5. Aerosol Optical Depth Over India

    Science.gov (United States)

    David, Liji Mary; Ravishankara, A. R.; Kodros, John K.; Venkataraman, Chandra; Sadavarte, Pankaj; Pierce, Jeffrey R.; Chaliyakunnel, Sreelekha; Millet, Dylan B.

    2018-04-01

    Tropospheric aerosol optical depth (AOD) over India was simulated by Goddard Earth Observing System (GEOS)-Chem, a global 3-D chemical-transport model, using SMOG (Speciated Multi-pOllutant Generator from Indian Institute of Technology Bombay) and GEOS-Chem (GC) (current inventories used in the GEOS-Chem model) inventories for 2012. The simulated AODs were 80% (SMOG) and 60% (GC) of those measured by the satellites (Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer). There is no strong seasonal variation in AOD over India. The peak AOD values are observed/simulated during summer. The simulated AOD using SMOG inventory has particulate black and organic carbon AOD higher by a factor 5 and 3, respectively, compared to GC inventory. The model underpredicted coarse-mode AOD but agreed for fine-mode AOD with Aerosol Robotic Network data. It captured dust only over Western India, which is a desert, and not elsewhere, probably due to inaccurate dust transport and/or noninclusion of other dust sources. The calculated AOD, after dust correction, showed the general features in its observed spatial variation. Highest AOD values were observed over the Indo-Gangetic Plain followed by Central and Southern India with lowest values in Northern India. Transport of aerosols from Indo-Gangetic Plain and Central India into Eastern India, where emissions are low, is significant. The major contributors to total AOD over India are inorganic aerosol (41-64%), organic carbon (14-26%), and dust (7-32%). AOD over most regions of India is a factor of 5 or higher than over the United States.

  6. Spatial and temporal variability of column-integrated aerosol optical properties in the southern Arabian Gulf and United Arab Emirates in summer

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Sinyuk, A.; Dubovik, O.; Smirnov, A.; Giles, D.; O'Neill, N. T.; Tsay, S.-C.; Ji, Q.; Al Mandoos, A.; Ramzan Khan, M.; Reid, E. A.; Schafer, J. S.; Sorokine, M.; Newcomb, W.; Slutsker, I.

    2008-01-01

    A mesoscale network of 14 AERONET Sun photometers was established in the UAE and adjacent Arabian Gulf from August through September 2004 as a component of the United Arab Emirates Unified Aerosol Experiment (UAE2). These measurements allowed for spatial, temporal and spectral characterization of the complex aerosol mixtures present in this environment where coarse mode desert dust aerosols often mix with fine mode pollution aerosols largely produced by the petroleum industry. Aerosol loading was relatively high with 2-month averages of aerosol optical depth (AOD) at 500 nm (τa500) ranging from 0.40 to 0.53. A higher fine mode fraction of AOD was observed over Arabian Gulf island sites with Angstrom exponent at 440-870 nm (α440-870) of 0.77 as compared to an average of 0.64 over coastal sites and 0.50-0.57 at inland desert sites. During pollution events with α440-870 > 1 the retrieved fine mode radius was larger over an island site than a desert site probably because of hygroscopic growth over the humid marine environment. For these same pollution cases, single scattering albedo (ωo) at all wavelengths was ˜0.03 higher (less absorption) over the marine environment than over the desert, also consistent with aerosol humidification growth. At an inland desert location, the ωo at 440 nm remained relatively constant as Angstrom exponent varied since the fine mode pollution and coarse mode dust were both strong absorbers at short wavelengths. However, at longer wavelengths (675-1020 nm) the dust was much less absorbing than the pollution resulting in dynamic ωo as a function of α440-870.

  7. An 11-year analysis of satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf

    Science.gov (United States)

    Banks, Jamie; Brindley, Helen; Schepanski, Kerstin; Stenchikov, Georgiy

    2017-04-01

    As enclosed seas bordering two large desert regions, the Saharan and Arabian deserts, the maritime environments of the Red Sea and the Persian Gulf are heavily influenced by the presence of desert dust aerosol. The inter-annual variability of dust presence over the Red Sea is analysed and presented, with respect to the summer-time latitudinal gradient in dust loading, which is at a maximum in the far south of the Red Sea and at a minimum in the far north. Two satellite aerosol optical depth (AOD) products from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the MODerate resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify this loading over the region. Over an eleven-year period from 2005-2015 the July mean SEVIRI AODs at 630 nm vary between 0.48 and 1.45 in the southern half of the Sea, while in the north this varies between 0.22 and 0.66. Inter-retrieval offsets are observed to occur at higher dust loadings, with pronounced positive MODIS-SEVIRI AOD offsets at AODs greater than 1, indicating substantial and systematic differences between the retrievals over the Red Sea at high dust loadings. These differences appear to be influenced in part by the differences in scattering angle range of the satellite measurements, implying that assumptions of particle shape introduce more substantial biases at the highest dust loadings.

  8. Modification of Local Urban Aerosol Properties by Long-Range Transport of Biomass Burning Aerosol

    Directory of Open Access Journals (Sweden)

    Iwona S. Stachlewska

    2018-03-01

    Full Text Available During August 2016, a quasi-stationary high-pressure system spreading over Central and North-Eastern Europe, caused weather conditions that allowed for 24/7 observations of aerosol optical properties by using a complex multi-wavelength PollyXT lidar system with Raman, polarization and water vapour capabilities, based at the European Aerosol Research Lidar Network (EARLINET network urban site in Warsaw, Poland. During 24–30 August 2016, the lidar-derived products (boundary layer height, aerosol optical depth, Ångström exponent, lidar ratio, depolarization ratio were analysed in terms of air mass transport (HYSPLIT model, aerosol load (CAMS data and type (NAAPS model and confronted with active and passive remote sensing at the ground level (PolandAOD, AERONET, WIOS-AQ networks and aboard satellites (SEVIRI, MODIS, CATS sensors. Optical properties for less than a day-old fresh biomass burning aerosol, advected into Warsaw’s boundary layer from over Ukraine, were compared with the properties of long-range transported 3–5 day-old aged biomass burning aerosol detected in the free troposphere over Warsaw. Analyses of temporal changes of aerosol properties within the boundary layer, revealed an increase of aerosol optical depth and Ångström exponent accompanied by an increase of surface PM10 and PM2.5. Intrusions of advected biomass burning particles into the urban boundary layer seem to affect not only the optical properties observed but also the top height of the boundary layer, by moderating its increase.

  9. Nonurban aerosol composition near Beijing, China

    International Nuclear Information System (INIS)

    Winchester, J.W.; Darzi, M.; Leslie, A.C.D.; Wang, M.; Ren, L.; Lue, W.; Hansson, H.C.; Lannefors, H.

    1981-01-01

    The urban aerosol plume of Beijing has been sampled as a function of particle size and time at a site 110 km NE of the city, 9-16 March 1980, during the season for space heating by coal combustion. A fine particle mode, contained mostly in the 0.5-2 μm aerodynamic diameter range, could be distinguished from a coarse mode of dust having terrestrial composition by reference to the size distribution of Ca. Elemental composition determined by PIXE analysis for 17 elements, including S and heavy metals, indicates fine mode concentrations higher than background aerosol but with a similarity to cleaner air with respect to both relative elemental abundances and elemental particle size distributions. The results indicate that elements contained in aged coal combustion aerosol occur mainly in 0.5-2 μMAD particles, not smaller, and the aerosol is not substantially different from background aerosol except in overall concentrations. This result may simplify the prediction of the impact of coal combustion on air quality. The results also hint that the background aerosol in more remote continental areas may also be combustion derived. (orig.)

  10. Characterization of distinct Arctic aerosol accumulation modes and their sources

    Science.gov (United States)

    Lange, R.; Dall'Osto, M.; Skov, H.; Nøjgaard, J. K.; Nielsen, I. E.; Beddows, D. C. S.; Simo, R.; Harrison, R. M.; Massling, A.

    2018-06-01

    In this work we use cluster analysis of long term particle size distribution data to expand an array of different shorter term atmospheric measurements, thereby gaining insights into longer term patterns and properties of Arctic aerosol. Measurements of aerosol number size distributions (9-915 nm) were conducted at Villum Research Station (VRS), Station Nord in North Greenland during a 5 year record (2012-2016). Alongside this, measurements of aerosol composition, meteorological parameters, gaseous compounds and cloud condensation nuclei (CCN) activity were performed during different shorter occasions. K-means clustering analysis of particle number size distributions on daily basis identified several clusters. Clusters of accumulation mode aerosols (main size modes > 100 nm) accounted for 56% of the total aerosol during the sampling period (89-91% during February-April, 1-3% during June-August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking in February-April, with highest loadings of sulfate and black carbon concentrations. (2) Accumulation mode Bimodal aerosol shows two modes, at 38 nm and 150 nm, peaking in June-August, with the highest ratio of organics to sulfate concentrations. (3) Aged accumulation mode aerosol shows a single mode at 213 nm, peaking in September-October and is associated with cloudy and humid weather conditions during autumn. The three aerosol clusters were considered alongside CCN concentrations. We suggest that organic compounds, that are likely marine biogenic in nature, greatly influence the Bimodal cluster and contribute significantly to its CCN activity. This stresses the importance of better characterizing the marine ecosystem and the aerosol-mediated climate effects in the

  11. Radiative forcing of the desert aerosol at Ouarzazate (Morocco)

    Science.gov (United States)

    Tahiri, Abdelouahid; Diouri, Mohamed

    2018-05-01

    The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2

  12. Influence of anthropogenic aerosol on solar radiation in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ten Brink, H M

    1993-12-01

    Backscatter of solar radiation by aerosol and the cooling thus induced, is the single largest uncertainty factor in assessing the climate effect of the greenhouse gases. The dominant reason for the uncertainty in the aerosol effect is its local nature. Therefore it is only via localized efforts that estimates can be improved. It is the aim of the present study to better assess the amount of solar radiation intercepted by aerosol, especially that of aerosol of anthropogenic origin in Europe. The assessment is realized along three interconnected approaches. First, empirical factors stemming from measurements in the US and used in the present estimates of the reflection of solar radiation by anthropogenic aerosol are checked for their validity in the European domain. Secondly, historical data on solar flux in Europe are related to the historic trend in aerosol loading. Finally, a sophisticated aerosol and cloud (radiation) module is developed for incorporation in a climate model. The radiation module uses aerosol characteristics as measured in the field and is validated via solar radiation measurements. The concerted investigation started in January 1993. The data obtained in the first phase of the study formed the basis for the definite detailed approach and will therefore be reported in this text. 1 fig., 9 refs.

  13. Carbonaceous Aerosol Characterization during 2016 KOR-US 2016

    Science.gov (United States)

    Rodriguez, B.; Santos, G. M.; Sanchez, D.; Jeong, D.; Czimczik, C. I.; Kim, S.

    2017-12-01

    Atmospheric carbonaceous aerosols are a major component of fine particulate matter and assume important roles in Earth's climate and human health. Because atmospheric carbonaceous aerosols exist as a continuum ranging from small, light-scattering organic carbon (OC), to highly-condensed, light-absorbing elemental carbon (EC) they have contrasting effects on interaction with incoming and outgoing radiation, cloud formation, and snow/ice albedo. By strengthening our understanding of the relative contribution and sources of OC and EC we will be able to further describe aerosol formation and mixing at the regional level. To understand the relative anthropogenic and biogenic contributions to carbonaceous aerosol, 12 PM10 aerosols samples were collected on quartz fiber filters at the Mt. Taewha Research Forest in South Korea during the KORUS-AQ 2016 campaign over periods of 24-48 hours with a high-volume air sampler. Analysis of bulk C and N concentrations and absorption properties of filter extracts interspersed with HYSPLIT model results indicated that continental outflow across the Yellow Sea in enriched in bulk nitrogen loading and enhanced bulk absorptive properties of the aerosols. Bulk radiocarbon analysis also indicated enriched values in all samples indicating contamination from a nuclear power plant or the combustion of biomedical waste nearby. Here, we aim to investigate further the chemical characterization of VOCs adsorbed unto the aerosol through TD-GC-TOFMS. With this dataset we aim to determine the relative contribution of anthropogenic and biogenic aerosols by utilizing specific chemical tracers for source apportionment.

  14. Mixing states of aerosols over four environmentally distinct atmospheric regimes in Asia: coastal, urban, and industrial locations influenced by dust.

    Science.gov (United States)

    Ramachandran, S; Srivastava, Rohit

    2016-06-01

    Mixing can influence the optical, physical, and chemical characteristics of aerosols, which in turn can modify their life cycle and radiative effects. Assumptions on the mixing state can lead to uncertain estimates of aerosol radiative effects. To examine the effect of mixing on the aerosol characteristics, and their influence on radiative effects, aerosol mixing states are determined over four environmentally distinct locations (Karachi, Gwangju, Osaka, and Singapore) in Asia, an aerosol hot spot region, using measured spectral aerosol optical properties and optical properties model. Aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (g) exhibit spectral, spatial, and temporal variations. Aerosol mixing states exhibit large spatial and temporal variations consistent with aerosol characteristics and aerosol type over each location. External mixing of aerosol species is unable to reproduce measured SSA over Asia, thus providing a strong evidence that aerosols exist in mixed state. Mineral dust (MD) (core)-Black carbon (BC) (shell) is one of the most preferred aerosol mixing states. Over locations influenced by biomass burning aerosols, BC (core)-water soluble (WS, shell) is a preferred mixing state, while dust gets coated by anthropogenic aerosols (BC, WS) over urban regions influenced by dust. MD (core)-sea salt (shell) mixing is found over Gwangju corroborating the observations. Aerosol radiative forcing exhibits large seasonal and spatial variations consistent with features seen in aerosol optical properties and mixing states. TOA forcing is less negative/positive for external mixing scenario because of lower SSA. Aerosol radiative forcing in Karachi is a factor of 2 higher when compared to Gwangju, Osaka, and Singapore. The influence of g on aerosol radiative forcing is insignificant. Results emphasize that rather than prescribing one single aerosol mixing state in global climate models regionally and temporally varying aerosol

  15. Increased Age, but Not Parity Predisposes to Higher Bacteriuria Burdens Due to Streptococcus Urinary Tract Infection and Influences Bladder Cytokine Responses, Which Develop Independent of Tissue Bacterial Loads.

    Science.gov (United States)

    Sullivan, Matthew J; Carey, Alison J; Leclercq, Sophie Y; Tan, Chee K; Ulett, Glen C

    2016-01-01

    Streptococcus agalactiae causes urinary tract infection (UTI) in pregnant adults, non-pregnant adults, immune-compromised individuals and the elderly. The pathogenesis of S. agalactiae UTI in distinct patient populations is poorly understood. In this study, we used murine models of UTI incorporating young mice, aged and dam mice to show that uropathogenic S. agalactiae causes bacteriuria at significantly higher levels in aged mice compared to young mice and this occurs coincident with equivalent levels of bladder tissue colonisation at 24 h post-infection (p.i.). In addition, aged mice exhibited significantly higher bacteriuria burdens at 48 h compared to young mice, confirming a divergent pattern of bacterial colonization in the urinary tract of aged and young mice. Multiparous mice, in contrast, exhibited significantly lower urinary titres of S. agalactiae compared to age-matched nulliparous mice suggesting that parity enhances the ability of the host to control S. agalactiae bacteriuria. Additionally, we show that both age and parity alter the expression levels of several key regulatory and pro-inflammatory cytokines, which are known to be important the immune response to UTI, including Interleukin (IL)-1β, IL-12(p40), and Monocyte Chemoattractant Protein-1 (MCP-1). Finally, we demonstrate that other cytokines, including IL-17 are induced significantly in the S. agalactiae-infected bladder regardless of age and parity status. Collectively, these findings show that the host environment plays an important role in influencing the severity of S. agalactiae UTI; infection dynamics, particularly in the context of bacteriuria, depend on age and parity, which also affect the nature of innate immune responses to infection.

  16. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    Science.gov (United States)

    Jathar, Shantanu Hemant

    -only model suggested that differences in the volatility of the precursors were able to explain most of the variability observed in the SOA formation. For aircraft exhaust, the previous methods to simulate SOA formation from SVOC and IVOC performed poorly. A more physically-realistic modeling framework was developed, which was then used to show that SOA formation from aircraft exhaust was (a) higher for petroleum-based than synthetically derived jet fuel and (b) higher at lower engine loads and vice versa. All of the SOA data from combustion emissions experiments were used to determine source-specific parameterizations to model SOA formation from SVOC, IVOC and other unspeciated emissions. The new parameterizations were used to investigate their influence on the OA budget in the United States. Combustion sources were estimated to emit about 2.61 Tg yr-1 of SVOC, 1VOC and other unspeciated emissions (sixth of the total anthropogenic organic emissions), which are predicted to double SOA production from combustion sources in the United States. The contribution of SVOC and IVOC emissions to global SOA formation was assessed using a global climate model. Simulations were performed using a modified version of GISS GCM 11'. The modified model predicted that SVOC and IVOC contributed to half of the OA mass in the atmosphere. Their inclusion improved OA model-measurement comparisons for absolute concentrations, POA-SOA split and volatility (gas-particle partitioning) globally suggesting that atmospheric models need to incorporate SOA formation from SVOC and IVOC if they are to reasonably predict the abundance and properties of aerosols. This thesis demonstrates that SVOC/IVOC and possibly other unspeciated organics emitted by combustion sources are very important precursors of SOA and potentially large contributors to the atmospheric aerosol mass. Models used for research and policy applications need to represent them to improve model-predictions of aerosols on climate and health

  17. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during......, ammonium, black carbon, and trace metals. This PhD dissertation studies Arctic aerosols and their sources, with special focus on black carbon, attempting to increase the knowledge about aerosols’ effect on the climate in an Arctic content. The first part of the dissertation examines the diversity...... of aerosol emissions from an important anthropogenic aerosol source: residential wood combustion. The second part, characterizes the chemical and physical composition of aerosols while investigating sources of aerosols in the Arctic. The main instrument used in this research has been the state...

  18. Aerosol in the containment

    International Nuclear Information System (INIS)

    Lanza, S.; Mariotti, P.

    1986-01-01

    The US program LACE (LWR Aerosol Containment Experiments), in which Italy participates together with several European countries, Canada and Japan, aims at evaluating by means of a large scale experimental activity at HEDL the retention in the pipings and primary container of the radioactive aerosol released following severe accidents in light water reactors. At the same time these experiences will make available data through which the codes used to analyse the behaviour of the aerosol in the containment and to verify whether by means of the codes of thermohydraulic computation it is possible to evaluate with sufficient accuracy variable influencing the aerosol behaviour, can be validated. This report shows and compares the results obtained by the participants in the LACE program with the aerosol containment codes NAVA 5 and CONTAIN for the pre-test computations of the test LA 1, in which an accident called containment by pass is simulated

  19. A Characterization of Aerosolized Sudan Virus Infection in African Green Monkeys, Cynomolgus Macaques, and Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Donald K. Nichols

    2012-10-01

    Full Text Available Filoviruses are members of the genera Ebolavirus, Marburgvirus, and “Cuevavirus”. Because they cause human disease with high lethality and could potentially be used as a bioweapon, these viruses are classified as CDC Category A Bioterrorism Agents. Filoviruses are relatively stable in aerosols, retain virulence after lyophilization, and can be present on contaminated surfaces for extended periods of time. This study explores the characteristics of aerosolized Sudan virus (SUDV Boniface in non-human primates (NHP belonging to three different species. Groups of cynomolgus macaques (cyno, rhesus macaques (rhesus, and African green monkeys (AGM were challenged with target doses of 50 or 500 plaque-forming units (pfu of aerosolized SUDV. Exposure to either viral dose resulted in increased body temperatures in all three NHP species beginning on days 4–5 post-exposure. Other clinical findings for all three NHP species included leukocytosis, thrombocytopenia, anorexia, dehydration, and lymphadenopathy. Disease in all of the NHPs was severe beginning on day 6 post-exposure, and all animals except one surviving rhesus macaque were euthanized by day 14. Serum alanine transaminase (ALT and aspartate transaminase (AST concentrations were elevated during the course of disease in all three species; however, AGMs had significantly higher ALT and AST concentrations than cynos and rhesus. While all three species had detectable viral load by days 3-4 post exposure, Rhesus had lower average peak viral load than cynos or AGMs. Overall, the results indicate that the disease course after exposure to aerosolized SUDV is similar for all three species of NHP.

  20. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    Science.gov (United States)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  1. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  2. DARE : Dedicated Aerosols Retrieval Experiment

    NARCIS (Netherlands)

    Smorenburg, K.; Courrèges-Lacoste, G.B.; Decae, R.; Court, A.J.; Leeuw, G. de; Visser, H.

    2004-01-01

    At present there is an increasing interest in remote sensing of aerosols from space because of the large impact of aerosols on climate, earth observation and health. TNO has performed a study aimed at improving aerosol characterisation using a space based instrument and state-of-the-art aerosol

  3. Regional and monthly and clear-sky aerosol direct radiative effect (and forcing derived from the GlobAEROSOL-AATSR satellite aerosol product

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2013-01-01

    Full Text Available Using the GlobAEROSOL-AATSR dataset, estimates of the instantaneous, clear-sky, direct aerosol radiative effect and radiative forcing have been produced for the year 2006. Aerosol Robotic Network sun-photometer measurements have been used to characterise the random and systematic error in the GlobAEROSOL product for 22 regions covering the globe. Representative aerosol properties for each region were derived from the results of a wide range of literature sources and, along with the de-biased GlobAEROSOL AODs, were used to drive an offline version of the Met Office unified model radiation scheme. In addition to the mean AOD, best-estimate run of the radiation scheme, a range of additional calculations were done to propagate uncertainty estimates in the AOD, optical properties, surface albedo and errors due to the temporal and spatial averaging of the AOD fields. This analysis produced monthly, regional estimates of the clear-sky aerosol radiative effect and its uncertainty, which were combined to produce annual, global mean values of (−6.7 ± 3.9 W m−2 at the top of atmosphere (TOA and (−12 ± 6 W m−2 at the surface. These results were then used to give estimates of regional, clear-sky aerosol direct radiative forcing, using modelled pre-industrial AOD fields for the year 1750 calculated for the AEROCOM PRE experiment. However, as it was not possible to quantify the uncertainty in the pre-industrial aerosol loading, these figures can only be taken as indicative and their uncertainties as lower bounds on the likely errors. Although the uncertainty on aerosol radiative effect presented here is considerably larger than most previous estimates, the explicit inclusion of the major sources of error in the calculations suggest that they are closer to the true constraint on this figure from similar methodologies, and point to the need for more, improved estimates of both global aerosol loading and aerosol optical properties.

  4. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model.

    Science.gov (United States)

    Sato, Yousuke; Goto, Daisuke; Michibata, Takuro; Suzuki, Kentaroh; Takemura, Toshihiko; Tomita, Hirofumi; Nakajima, Teruyuki

    2018-03-07

    Aerosols affect climate by modifying cloud properties through their role as cloud condensation nuclei or ice nuclei, called aerosol-cloud interactions. In most global climate models (GCMs), the aerosol-cloud interactions are represented by empirical parameterisations, in which the mass of cloud liquid water (LWP) is assumed to increase monotonically with increasing aerosol loading. Recent satellite observations, however, have yielded contradictory results: LWP can decrease with increasing aerosol loading. This difference implies that GCMs overestimate the aerosol effect, but the reasons for the difference are not obvious. Here, we reproduce satellite-observed LWP responses using a global simulation with explicit representations of cloud microphysics, instead of the parameterisations. Our analyses reveal that the decrease in LWP originates from the response of evaporation and condensation processes to aerosol perturbations, which are not represented in GCMs. The explicit representation of cloud microphysics in global scale modelling reduces the uncertainty of climate prediction.

  5. Strong impacts on aerosol indirect effects from historical oxidant changes

    Science.gov (United States)

    Hafsahl Karset, Inger Helene; Koren Berntsen, Terje; Storelvmo, Trude; Alterskjær, Kari; Grini, Alf; Olivié, Dirk; Kirkevåg, Alf; Seland, Øyvind; Iversen, Trond; Schulz, Michael

    2018-06-01

    Uncertainties in effective radiative forcings through aerosol-cloud interactions (ERFaci, also called aerosol indirect effects) contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing estimates of the total aerosol indirect effect are so negative that they even offset the greenhouse gas forcing. This study highlights the role of oxidants in modeling of preindustrial-to-present-day aerosol indirect effects. We argue that the aerosol precursor gases should be exposed to oxidants of its era to get a more correct representation of secondary aerosol formation. Our model simulations show that the total aerosol indirect effect changes from -1.32 to -1.07 W m-2 when the precursor gases in the preindustrial simulation are exposed to preindustrial instead of present-day oxidants. This happens because of a brightening of the clouds in the preindustrial simulation, mainly due to large changes in the nitrate radical (NO3). The weaker oxidative power of the preindustrial atmosphere extends the lifetime of the precursor gases, enabling them to be transported higher up in the atmosphere and towards more remote areas where the susceptibility of the cloud albedo to aerosol changes is high. The oxidation changes also shift the importance of different chemical reactions and produce more condensate, thus increasing the size of the aerosols and making it easier for them to activate as cloud condensation nuclei.

  6. Combustion Aerosols from Full-Scale Suspension-Firing of Wood Pellets

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Wu, Hao; Frandsen, Flemming

    2012-01-01

    The objectives of the present work were to investigate the aerosol formation mechanisms during full-scale suspension firing of wood, and, to evaluate the effect of coal fly ash addition on the formation of aerosols under different ash load conditions. Tests with suspension firing of 100 % wood...

  7. Water content of aged aerosol

    OpenAIRE

    G. J. Engelhart; L. Hildebrandt; E. Kostenidou; N. Mihalopoulos; N. M. Donahue; S. N. Pandis

    2010-01-01

    The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008). A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS) was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH) as low as 20%. The aerosol was acidic during mo...

  8. Spectral dependence of aerosol light absorption at an urban and a remote site over the Tibetan Plateau.

    Science.gov (United States)

    Zhu, Chong-Shu; Cao, Jun-Ji; Hu, Ta-Feng; Shen, Zhen-Xing; Tie, Xue-Xi; Huang, Hong; Wang, Qi-Yuan; Huang, Ru-Jin; Zhao, Zhu-Zi; Močnik, Griša; Hansen, Anthony D A

    2017-07-15

    We present a study of aerosol light absorption by using a 7-wavelength Aethalometer model AE33 at an urban site (Lhasa) and a remote site (Lulang) in the Tibetan Plateau. Approximately 5 times greater aerosol absorption values were observed at Lhasa (53±46Mm -1 at 370nm and 20±18Mm -1 at 950nm, respectively) in comparison to Lulang (15±19Mm -1 at 370nm and 4±5Mm -1 at 950nm, respectively). Black carbon (BC) was the dominant light absorbing aerosol component at all wavelengths. The brown carbon (BrC) absorption at 370nm is 32±15% of the total aerosol absorption at Lulang, whereas it is 8±6% at Lhasa. Higher value of absorption Ångström exponent (AAE, 370-950nm) was obtained for Lulang (1.18) than that for Lhasa (1.04) due to the presence of BrC. The AAEs (370-950nm) of BrC were directly extracted at Lulang (3.8) and Lhasa (3.3). The loading compensation parameters (k) increased with wavelengths for both sites, and lower values were obtained at Lulang than those observed at Lhasa for all wavelengths. This study underlines the relatively high percentage of BrC absorption contribution in remote area compared to urban site over the Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Influence of Stratospheric Sulphate Aerosol Deployment on the Surface Air Temperature and the Risk of an Abrupt Global Warming

    Directory of Open Access Journals (Sweden)

    Roland von Glasow

    2010-12-01

    Full Text Available We used the ‘Radiative-Convective Model of the Earth-atmosphere system’ (OGIM to investigate the cooling effects induced by sulphur injections into the stratosphere. The ensemble of numerical calculations was based on the A1B scenario from the IPCC Special Report on Emissions Scenarios (SRES. Several geoengineered scenarios were analysed, including the abrupt interruption of these injections in different scenarios and at different dates. We focused on the surface air temperature (SAT anomalies induced by stratospheric sulphate aerosol generated in order to compensate future warming. Results show that continuous deployment of sulphur into the stratosphere could induce a lasting decrease in SAT. Retaining a constant aerosol loading equivalent to 6 TgS would delay the expected global warming by 53 years. Keeping the SAT constant in a context of increasing greenhouse gases (GHGs means that the aerosol loading needs to be increased by 1.9% annually. This would offset the effect of increasing GHG under the A1B scenario. A major focus of this study was on the heating rates of SAT that would arise in different scenarios in case of an abrupt cessation of sulphur injections into the stratosphere. Our model results show that heating rates after geoengineering interruption would be 15–28 times higher than in a case without geoengineering, with likely important consequences for life on Earth. Larger initial sulphate loadings induced more intense warming rates when the geoengineering was stopped at the same time. This implies that, if sulphate loading was increased to maintain constant SAT in the light of increasing GHG concentrations, the later the geoengineering interruption was to occur, the higher the heating rates would be. Consequently, geoengineering techniques like this should only be regarded as last-resort measures and require intense further research should they ever become necessary.

  10. Aerosol-cirrus interactions: a number based phenomenon at all?

    Directory of Open Access Journals (Sweden)

    M. Seifert

    2004-01-01

    Full Text Available In situ measurements of the partitioning of aerosol particles within cirrus clouds were used to investigate aerosol-cloud interactions in ice clouds. The number density of interstitial aerosol particles (non-activated particles in between the cirrus crystals was compared to the number density of cirrus crystal residuals. The data was obtained during the two INCA (Interhemispheric Differences in Cirrus Properties from Anthropogenic Emissions campaigns, performed in the Southern Hemisphere (SH and Northern Hemisphere (NH midlatitudes. Different aerosol-cirrus interactions can be linked to the different stages of the cirrus lifecycle. Cloud formation is linked to positive correlations between the number density of interstitial aerosol (Nint and crystal residuals (Ncvi, whereas the correlations are smaller or even negative in a dissolving cloud. Unlike warm clouds, where the number density of cloud droplets is positively related to the aerosol number density, we observed a rather complex relationship when expressing Ncvi as a function of Nint for forming clouds. The data sets are similar in that they both show local maxima in the Nint range 100 to 200cm, where the SH- maximum is shifted towards the higher value. For lower number densities Nint and Ncvi are positively related. The slopes emerging from the data suggest that a tenfold increase in the aerosol number density corresponds to a 3 to 4 times increase in the crystal number density. As Nint increases beyond the ca. 100 to 200cm, the mean crystal number density decreases at about the same rate for both data sets. For much higher aerosol number densities, only present in the NH data set, the mean Ncvi remains low. The situation for dissolving clouds allows us to offer two possible, but at this point only speculative, alternative interactions between aerosols and cirrus: evaporating clouds might be associated with a source of aerosol particles, or air pollution (high aerosol number density might

  11. Aerosols in Northern Morocco: Input pathways and their chemical fingerprint

    Science.gov (United States)

    Benchrif, A.; Guinot, B.; Bounakhla, M.; Cachier, H.; Damnati, B.; Baghdad, B.

    2018-02-01

    The Mediterranean basin is one of the most sensitive regions in the world regarding climate change and air quality. Deserts and marine aerosols combine with combustion aerosols from maritime traffic, large urban centers, and at a larger scale from populated industrialized regions in Europe. From Tetouan city located in the North of Morocco, we attempted to better figure out the main aerosol transport pathways and their respective aerosol load and chemical profile by examining air mass back trajectory patterns and aerosol chemical compositions from May 2011 to April 2012. The back trajectory analysis throughout the sampling period led to four clusters, for which meteorological conditions and aerosol chemical characteristics have been investigated. The most frequent cluster (CL3: 39%) corresponds to polluted air masses coming from the Mediterranean Basin, characterized by urban and marine vessels emissions out of Spain and of Northern Africa. Two other polluted clusters were characterized. One is of local origin (CL1: 22%), with a marked contribution from urban aerosols (Rabat, Casablanca) and from biomass burning aerosols. The second (CL2: 32%) defines air masses from the near Atlantic Ocean, affected by pollutants emitted from the Iberian coast. A fourth cluster (CL4: 7%) is characterized by rather clean, fast and rainy oceanic air masses, influenced during their last 24 h before reaching Tetouan by similar sources with those affecting CL2, but to a lesser extent. The chemical data show that carbonaceous species are found in the fine aerosols fraction and are generally from local primary sources (low OC/EC) rather than long-range transported. In addition to fresh traffic and maritime vessel aerosols, our results suggest the contribution of local biomass burning.

  12. Precision and accuracy of β gauge for aerosol mass determinations

    International Nuclear Information System (INIS)

    Courtney, W.J.; Shaw, R.W.; Dzabay, T.G.

    1982-01-01

    Results of an experimental determination of the precision and the accuracy of a β-ray attenuation method for measurement of aerosol mass are presented. The instrumental precision for a short-term experiment was 25 μg for a 6.5-cm 2 deposit collected on approximately 1 mg/cm 2 Teflon filters; for a longer-term experiment the precision was 27 μg. The precision of the gravimetric determinations of aerosol deposits was 22 μg for Teflon filters weighed to 1 μg. Filter reorientation and air density changes that were able adversely to affect the β-ray attenuation results are discussed. β-ray attenuation results are in good agreement with gravimetric measurements on the same filter-collected aerosols. Using dichotomous samplers in Durham, NC, we collected 136 aerosol samples on Teflon filters in two size ranges. A regression line was calculated implicitly assuming errors in both measurements of mass. The 90% confidence intervals lay within 21 μg of the regression line for mean fine fraction aerosol mass loadings of 536 μg and within 19 μg of the regression line for mean coarse fraction aerosol mass loadings of 349 μg. Any bias between gravimetric and β-gauge mass measurements was found to be less than 5%

  13. Sodium oxide aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    In the scope of the sodium aerosol trapping research effort by the CEA/DSN, the retention capacity and yield were measured for very high efficiency fiberglass filters and several types of prefilters (cyclone agglomerator, fabric prefilters, water scrubbers). (author)

  14. Sodium aerosol recovering device

    International Nuclear Information System (INIS)

    Fujimori, Koji; Ueda, Mitsuo; Tanaka, Kazuhisa.

    1997-01-01

    A main body of a recovering device is disposed in a sodium cooled reactor or a sodium cooled test device. Air containing sodium aerosol is sucked into the main body of the recovering device by a recycling fan and introduced to a multi-staged metal mesh filter portion. The air about against each of the metal mesh filters, and the sodium aerosol in the air is collected. The air having a reduced sodium aerosol concentration circulates passing through a recycling fan and pipelines to form a circulation air streams. Sodium aerosol deposited on each of the metal mesh filters is scraped off periodically by a scraper driving device to prevent clogging of each of the metal filters. (I.N.)

  15. Aerosol chemical physics

    International Nuclear Information System (INIS)

    Marlow, W.H.

    1982-01-01

    A classification of the research fields in the chemical physics of aerosol microparticles is given. The emphasis lies on the microphysics of isolated particles and clusters and on physical transformations and thermodynamics. (LDN)

  16. Sodium oxide aerosol filtration

    International Nuclear Information System (INIS)

    Duverger de Cuy, G.

    1979-01-01

    In the scope of the sodium aerosol trapping research effort by the CEA/DSN, the retention capacity and yield were measured for very high efficiency fiberglass filters and several types of prefilters (cyclone agglomerator, fabric prefilters, water scrubbers). (author)

  17. Aerosols and Climate

    Indian Academy of Sciences (India)

    aerosols, clouds, radiation and climate. ... the solar radiation to pass through but absorb most of infrared radiation emitted .... Fine soil and sand particles become airborne due to wind. Over ..... its sampling is difficult compared to other species.

  18. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  19. Cognitive Load and Cooperation

    DEFF Research Database (Denmark)

    Døssing, Felix Sebastian; Piovesan, Marco; Wengström, Erik Roland

    2017-01-01

    We study the effect of intuitive and reflective processes on cooperation using cognitive load. Compared with time constraint, which has been used in the previous literature, cognitive load is a more direct way to block reflective processes, and thus a more suitable way to study the link between...... intuition and cooperation. Using a repeated public goods game, we study the effect of different levels of cognitive load on contributions. We show that a higher cognitive load increases the initial level of cooperation. In particular, subjects are significantly less likely to fully free ride under high...... cognitive load....

  20. Carbonaceous aerosol characteristics over Delhi in Northern India: Seasonal variability and possible sources

    Science.gov (United States)

    Srivastava, Atul Kumar; Bisht, Ds; Tiwari, S.

    Carbonaceous aerosols have been the focus of extensive studies during the last decade due to its significant impacts on human health, visibility and climate change. As per Asian regions are concerned, aerosols in south-Asia are gaining considerable importance because of their potential impacts on regional climate, yet their possible sources are poorly understood. Semi-continuous measurements of organic carbon (OC) and elemental carbon (EC) and continuous measurements of black carbon (BC) aerosols were conducted simultaneously at Delhi during the period from January 2011 to May 2012. Delhi is the capital city of India and one of the densely populated and industrialized urban megacities in Asia, located at the Ganga basin in the northern part of India. Being highly polluted region, mass concentrations of OC, EC and BC over Delhi were found to vary from about 6-92 mug m (-3) (mean: 23±16 mug m (-3) ), 3-38 mug m (-3) (mean: 11±7 mug m (-3) ) and 1-24 mug m (-3) (mean: 7±5 mug m (-3) ), respectively during the entire measurement period, with about two times higher concentration during winter as compared to summer. A significant correlation between OC and EC (R=0.95, n=232) and relatively lower OC/EC ratio (range: 1.0-3.6; mean: 2.2±0.5) suggest fossil fuel emission as a dominant source of carbonaceous aerosols over the station. The average mass concentration of EC was found about 38% higher than BC during the study period, which is interestingly different as reported at other locations over Ganga basin. We also determined the associated optical properties of carbonaceous species (e.g. absorption coefficient and mass absorption efficiency) over the station. Significant loading of carbonaceous species over such regions emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective.

  1. Emergency Protection from Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  2. Emergency protection from aerosols

    International Nuclear Information System (INIS)

    Cristy, G.A.; Chester, C.V.

    1981-07-01

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved

  3. MISR Aerosol Typing

    Science.gov (United States)

    Kahn, Ralph A.

    2014-01-01

    AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.

  4. Aerosol Study over the Gulf of Guinea Region during DACCIWA Using a Mini Lidar onboard the French Aircraft ATR42

    Science.gov (United States)

    Shang, X.; Chazette, P.; Flamant, C.; Totems, J.; Denjean, C.; Meynadier, R.; Perrin, T.; Laurens, M.

    2016-12-01

    The EU-funded project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) aims to investigate the relationship between weather, climate and air pollution in southern West Africa. As part of this campaign, three research aircraft based in Lomé (Togo) flew targeted missions over West Africa from 27 June to 16 July 2016. In this area aerosols, having a mixing of natural and anthropogenic sources, exert an important influence on the local weather and climate, mainly due to the aerosol-cloud interactions. A mini backscattered lidar system onboard one research aircraft (the French aircraft ATR42) performed aerosols measurements over the Gulf of Guinea region. The main objective was to study aerosol properties in different chemical landscapes: from the background state over the Gulf of Guinea (marine aerosols or mix between marine aerosols and biomass burning aerosols) to ship/flaring emissions to the coastal strip of polluted megacities to the agricultural areas and forest areas further north, and eventually dust from Sahel/Sahara. Different aerosol origins were identified by using the coupling between the lidar cross-polarized channels and a set of back trajectories analyses. The aircraft conducted flights at low ( 1 km above the mean sea level -amsl) and high altitudes ( 5 km amsl), allowing the coupling of in situ and remote sensing data to assess the properties of the aerosol layers. During several flights, depolarizing aerosol layers from the northeast were observed between 2.5 and 4 km amsl, which highlight the significant contribution of dust-like particles to the aerosol load in the coastal region. The air masses originating from the southeast were loaded with biomass burning aerosols from Central Africa, which seem to be mixed with other aerosol types. The flight sampling strategy and related lidar investigations will be presented. The retrieved aerosol distributions and properties, and the aerosol type identification will be discussed.

  5. High efficiency filtration of liquid-metal-generated aerosols

    International Nuclear Information System (INIS)

    First, M.W.

    1977-01-01

    This paper will present data on filter performance for the range of sodium-containing aerorols that can result from large and small releases of hot metallic sodium into confined spaces containing air or special atmospheres and will compare the particle collection effectiveness, space and power requirements, service life, and disposal of the collected materials for the several options. Prompt reduction of in-vessel aerosols with methods that induce rapid coagulation and sedimentation by the application of violent turbulance, sonic energy, or electrostatic attraction; by aerosol scavenging with massive inert dust additions; and by a number of other innovative methods is of special interest because of their potential ability to bring down the aerosol cloud very rapidly and thereby to reduce vessel out-leakage drastically; as well as to relieve the particle load on filters. These methods will be examined as supplements to filtration methods for control of sodium-containing aerosols

  6. Major Influence of Tropical Volcanic Eruptions on the Stratospheric Aerosol Layer During the Last Decade

    Science.gov (United States)

    Vernier, Jean-Paul; Thomason, Larry W.; Pommereau, J.-P.; Bourassa, Adam; Pelon, Jacques; Garnier, Anne; Hauchecorne, A.; Blanot, L.; Trepte, Charles R.; Degenstein, Doug; hide

    2011-01-01

    The variability of stratospheric aerosol loading between 1985 and 2010 is explored with measurements from SAGE II, CALIPSO, GOMOS/ENVISAT, and OSIRIS/Odin space-based instruments. We find that, following the 1991 eruption of Mount Pinatubo, stratospheric aerosol levels increased by as much as two orders of magnitude and only reached background levels between 1998 and 2002. From 2002 onwards, a systematic increase has been reported by a number of investigators. Recently, the trend, based on ground-based lidar measurements, has been tentatively attributed to an increase of SO2 entering the stratosphere associated with coal burning in Southeast Asia. However, we demonstrate with these satellite measurements that the observed trend is mainly driven by a series of moderate but increasingly intense volcanic eruptions primarily at tropical latitudes. These events injected sulfur directly to altitudes between 18 and 20 km. The resulting aerosol particles are slowly lofted into the middle stratosphere by the Brewer-Dobson circulation and are eventually transported to higher latitudes.

  7. Validation of an hourly resolved global aerosol model in answer to solar electricity generation information needs

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2013-04-01

    Full Text Available Solar energy applications need global aerosol optical depth (AOD information to derive historic surface solar irradiance databases from geostationary meteorological satellites reaching back to the 1980's. This paper validates the MATCH/DLR model originating in the climate community against AERONET ground measurements. Hourly or daily mean AOD model output is evaluated individually for all stations in Europe, Africa and the Middle East – an area highly interesting for solar energy applications being partly dominated by high aerosol loads. Overall, a bias of 0.02 and a root-mean-square error (RMSE of 0.23 are found for daily mean AOD values, while the RMSE increases to 0.28 for hourly mean AOD values. Large differences between various regions and stations are found providing a feedback loop for the aerosol modelling community. The difference in using daily means versus hourly resolved modelling with respect to hourly resolved observations is evaluated. Nowadays state-of-the-art in solar resource assessment relies on monthly turbidity or AOD climatologies while at least hourly resolved irradiance time series are needed by the solar sector. Therefore, the contribution of higher temporally modelled AOD is evaluated.

  8. Quantitative impact of aerosols on numerical weather prediction. Part II: Impacts to IR radiance assimilation

    Science.gov (United States)

    Marquis, J. W.; Campbell, J. R.; Oyola, M. I.; Ruston, B. C.; Zhang, J.

    2017-12-01

    This is part II of a two-part series examining the impacts of aerosol particles on weather forecasts. In this study, the aerosol indirect effects on weather forecasts are explored by examining the temperature and moisture analysis associated with assimilating dust contaminated hyperspectral infrared radiances. The dust induced temperature and moisture biases are quantified for different aerosol vertical distribution and loading scenarios. The overall impacts of dust contamination on temperature and moisture forecasts are quantified over the west coast of Africa, with the assistance of aerosol retrievals from AERONET, MPL, and CALIOP. At last, methods for improving hyperspectral infrared data assimilation in dust contaminated regions are proposed.

  9. Effect of Diwali Firecrackers on Air Quality and Aerosol Optical Properties over Mega City (Delhi) in India

    Science.gov (United States)

    Sateesh, M.; Soni, V. K.; Raju, P. V. S.

    2018-06-01

    In this paper, the variations of aerosol properties due to crackers burning during Diwali event (11th-18th 2012) over mega city Delhi were investigated. The sky radiometer POM-2 aerosol optical property data from Skynet-India along with ambient air pollution data were critically analyzed. The aerosol optical depth (AOD) at 500 nm was 1.60 on 13th November, the Diwali day, and its value a maximum of 1.84 on 16th November. Due to stable atmosphere over Delhi during post Diwali, aerosols accumulate and remain in the atmosphere for longer time, which leads to higher AOD on 16th November. A lower value of single-scattering albedo (SSA) was observed at a longer wavelength (1020 nm) during the entire period that clearly indicates the dominance of absorbing-type black carbon aerosol. SSA showed a steep decrease after 16th November. Asymmetry parameter decreased to a maximum of 0.79 for the shorter wavelength at 340 nm and 0.632 is reported at the higher wavelength 1020 nm. Asymmetry parameter showed a decrease in value just after Diwali on 14th November, this suggesting the dominance of fine-mode aerosol from anthropogenic activities. The lowest value of the refractive index (1.4527) on 14th and 15th November indicates the higher loading of absorbing-type aerosol which may be associated with firecracker burning of Diwali festival. The significant correlation with the value of r = 0.9 was observed between sky radiometer and MODIS AOD with a standard deviation of 0.31 and an RMSE of 0.17 during the event. Radiative forcing and heating rate were estimated using SBDART. The maximum average concentrations 2641 and 1876 μg/m3 of PM10 and PM2.5, respectively, were observed on the Diwali night. A highest of 109 ppb surface ozone was reported in the night at 23:00 IST, which can be attributed to burning of the firecrackers.

  10. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  11. Aerosol effects on UV radiation

    International Nuclear Information System (INIS)

    Koepke, P.; Reuder, J.; Schwander, H.

    2000-01-01

    The reduction of erythemally weighted UV-irradiance (given as UV index, UVI) due to aerosols is analyzed by variation of the tropospheric particles in a wide, but realistic range. Varied are amount and composition of the particles and relative humidity and thickness of the mixing layer. The reduction of UVI increases with aerosol optical depth and the UV change is around 10% for a change aerosol optical depth from 0.25 to 0.1 and 0.4 respectively. Since both aerosol absorption and scattering are of relevance, the aerosol effect depends besides total aerosol amount on relative amount of soot and on relative humidity

  12. Fog and Cloud Induced Aerosol Modification Observed by AERONET

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M. A.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Platnick, S. E.; Arnold, G. T.; hide

    2011-01-01

    Large fine mode (sub-micron radius) dominated aerosols in size distributions retrieved from AERONET have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low altitude cloud such as stratocumulus or fog. Retrievals with cloud processed aerosol are sometimes bimodal in the accumulation mode with the larger size mode often approx.0.4 - 0.5 microns radius (volume distribution); the smaller mode typically approx.0.12 to aprrox.0.20 microns may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the shoulder of larger size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near cloud environment and therefore greater aerosol direct radiative forcing than typically obtained from remote sensing, due to bias towards sampling at low cloud fraction.

  13. A Mesoscale Analysis of Column-Integrated Aerosol Properties in Northern India During the TIGERZ 2008 Pre-Monsoon Period and a Comparison to MODIS Retrievals

    Science.gov (United States)

    Giles, D. M.; Holben, B. N.; Tripathi, S. N.; Eck, T. F.; Newcomb, W. W.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Wang, S.-H.; Singh, R. P.; hide

    2010-01-01

    The Indo-Gangetic Plain (IGP) of the northern Indian subcontinent produces anthropogenic pollution from urban, industrial and rural combustion sources nearly continuously and is affected by convection-induced winds driving desert and alluvial dust into the atmosphere during the premonsoon period. Within the IGP, the NASA Aerosol Robotic Network (AERONET) project initiated the TIGERZ measurement campaign in May 2008 with an intensive operational period from May 1 to June 23, 2008. Mesoscale spatial variability of aerosol optical depth (AOD, tau) measurements at 500mn was assessed at sites around Kanpur, India, with averages ranging from 0.31 to 0.89 for spatial variability study (SVS) deployments. Sites located downwind from the city of Kanpur indicated slightly higher average aerosol optical depth (delta Tau(sub 500)=0.03-0.09). In addition, SVS AOD area-averages were compared to the long-tenn Kanpur AERONET site data: Four SVS area-averages were within +/- 1 cr of the climatological mean of the Kanpur site, while one SVS was within 2sigma below climatology. For a SVS case using AERONET inversions, the 440-870mn Angstrom exponent of approximately 0.38, the 440-870mn absorption Angstrom exponent (AAE) of 1.15-1.53, and the sphericity parameter near zero suggested the occurrence of large, strongly absorbing, non-spherical aerosols over Kanpur (e.g., mixed black carbon and dust) as well as stronger absorption downwind of Kanpur. Furthermore, the 3km and lOkm Terra and Aqua MODIS C005 aerosol retrieval algorithms at tau(sub 550) were compared to the TIGERZ data set. Although MODIS retrievals at higher quality levels were comparable to the MODIS retrieval uncertainty, the total number of MODIS matchups (N) were reduced with subsequent quality levels (N=25, QA>=0; N=9,QA>=l; N=6, QA>=2; N=1, QA=3) over Kanpur during the premonsoon primarily due to the semi-bright surface, complex aerosol mixture and cloud-contaminated pixels. The TIGERZ 2008 data set provided a unique

  14. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    Science.gov (United States)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    Aerosol, one of key components of the climate system, is highly variable, both temporally and spatially. It often exerts great influences on the cloud-precipitation chain processes by serving as CCN/IN, altering cloud microphysics and its life cycle. Yet, the aerosol indirect effect on clouds remains largely unknown, because the initial changes in clouds due to aerosols may be enhanced or dampened by such feedback processes as modified cloud dynamics, or evaporation of the smaller droplets due to the competition for water vapor. In this study, we attempted to quantify the aerosol effects on warm cloud over eastern China, based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO and CPR/CLOUDSAT during the period 2006 to 2010. The seasonality of aerosol from ground-based PM10 is quite different from that estimated from MODIS AOD. This result is corroborated by lower level profile of aerosol occurrence frequency from CALIOP, indicating the significant role CALIOP could play in aerosol-cloud interaction. The combined use of CALIOP and CPR facilitate the process to exactly determine the (vertical) position of warm cloud relative to aerosol, out of six scenarios in terms of aerosol-cloud mixing status in terms of aerosol-cloud mixing status, which shows as follows: AO (Aerosol only), CO (Cloud only), SASC (Single aerosol-single cloud), SADC (single aerosol-double cloud), DASC (double aerosol-single cloud), and others. Results shows that about 54% of all the cases belong to mixed status, among all the collocated aerosol-cloud cases. Under mixed condition, a boomerang shape is observed, i.e., reduced cloud droplet radius (CDR) is associated with increasing aerosol at moderate aerosol pollution (AODcases. We categorize dataset into warm-season and cold-season subsets to figure out how the boomerang shape varies with season. For moderate aerosol loading (AODMixed" cases is greater during cold season (denoted by a large slope), as compared with that during warm

  15. Strong impacts on aerosol indirect effects from historical oxidant changes

    Directory of Open Access Journals (Sweden)

    I. H. H. Karset

    2018-06-01

    Full Text Available Uncertainties in effective radiative forcings through aerosol–cloud interactions (ERFaci, also called aerosol indirect effects contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing estimates of the total aerosol indirect effect are so negative that they even offset the greenhouse gas forcing. This study highlights the role of oxidants in modeling of preindustrial-to-present-day aerosol indirect effects. We argue that the aerosol precursor gases should be exposed to oxidants of its era to get a more correct representation of secondary aerosol formation. Our model simulations show that the total aerosol indirect effect changes from −1.32 to −1.07 W m−2 when the precursor gases in the preindustrial simulation are exposed to preindustrial instead of present-day oxidants. This happens because of a brightening of the clouds in the preindustrial simulation, mainly due to large changes in the nitrate radical (NO3. The weaker oxidative power of the preindustrial atmosphere extends the lifetime of the precursor gases, enabling them to be transported higher up in the atmosphere and towards more remote areas where the susceptibility of the cloud albedo to aerosol changes is high. The oxidation changes also shift the importance of different chemical reactions and produce more condensate, thus increasing the size of the aerosols and making it easier for them to activate as cloud condensation nuclei.

  16. Physical metrology of aerosols; Metrologie physique des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Boulaud, D.; Vendel, J. [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Protection et de Surete Nucleaire

    1996-12-31

    The various detection and measuring methods for aerosols are presented, and their selection is related to aerosol characteristics (size range, concentration or mass range), thermo-hydraulic conditions (carrier fluid temperature, pressure and flow rate) and to the measuring system conditions (measuring frequency, data collection speed, cost...). Methods based on aerosol dynamic properties (inertial, diffusional and electrical methods) and aerosol optical properties (localized and integral methods) are described and their performances and applications are compared

  17. Aerosol Size and Chemical Composition in the Canadian High Arctic

    Science.gov (United States)

    Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.

    2015-12-01

    Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.

  18. Study of total column atmospheric aerosol optical depth, ozone and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    general circulation models. ... at all wavelengths from initial to later part of observation period due to cloud-scavenging and rain-washout effects as well as signature of coastal aerosol loading. ... important roles in the study of the Earth's climate.

  19. The aerosols and the greenhouse effect; Aerosoler og klimaeffekten

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, Trond; Kirkevaag, Alf; Seland, Oeyvind; Debernard, Jens Boldingh; Kristjansson, Jon Egill; Storelvmo, Trude

    2008-07-01

    The article discussed the aerosol effects on the climatic changes and points out that the climate models do not incorporate these components satisfactorily mostly due to insufficient knowledge of the aerosol pollution sources. The direct and indirect effects of aerosols are mentioned as well as the climate response (tk)

  20. Two-Column Aerosol Project (TCAP) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-01

    This study included the deployment of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Mobile Facility (AMF), ARM Mobile Aerosol Observing System (MAOS) and the ARM Aerial Facility (AAF). The study was a collaborative effort involving scientists from DOE national laboratories, NOAA, NASA, and universities. The AAF and MAOS were deployed for two approximately month-long Intensive Operational Periods (IOPs) conducted in June 2012 and February 2013. Seasonal differences in the aerosol chemical and optical properties observed using the AMF, AAF, and MAOS are presented in this report. The total mass loading of aerosol is found to be much greater in the summer than in the winter, with the difference associated with greater amounts of organic aerosol. The mass fraction of organic aerosol is much reduced in the winter, when sulfate is the dominant aerosol type. Surprisingly, very little sea-salt aerosol was observed in the summer. In contrast, much more sea salt aerosol was observed in the winter. The mass loading of black carbon is nearly the same in both seasons. These differences lead to a relative increase in the aerosol light absorption in the winter and an associated decrease in observed single-scattering albedo. Measurements of aerosol mixing state were made using a single-particle mass spectrometer, which showed that the majority of the summertime aerosol consisted of organic compounds mixed with various amounts of sulfate. A number of other findings are also summarized in the report, including: impact of aerosol layers aloft on the column aerosol optical depth; documentation of the aerosol properties at the AMF; differences in the aerosol properties associated with both columns, which are not systematic but reflect the complicated meteorological and chemical processes that impact aerosol as it is advected away from North America; and new instruments and data-processing techniques for measuring both aerosol and

  1. Stable generator of polydisperse aerosol

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel

    2001-01-01

    Roč. 32, Suppl. 1 (2001), s. S823-S824 ISSN 0021-8502. [European Aerosol Conference 2001. Leipzig, 03.09.2001-07.09.2001] R&D Projects: GA AV ČR IAA4031105 Institutional research plan: CEZ:AV0Z4031919 Keywords : aerosol generator * fine aerosol * polydisperse aerosol Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.605, year: 2001

  2. Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber

    Directory of Open Access Journals (Sweden)

    M. A. Miracolo

    2011-05-01

    Full Text Available Field experiments were performed to investigate the effects of photo-oxidation on fine particle emissions from an in-use CFM56-2B gas turbine engine mounted on a KC-135 Stratotanker airframe. Emissions were sampled into a portable smog chamber from a rake inlet installed one-meter downstream of the engine exit plane of a parked and chocked aircraft. The chamber was then exposed to sunlight and/or UV lights to initiate photo-oxidation. Separate tests were performed at different engine loads (4, 7, 30, 85 %. Photo-oxidation created substantial secondary particulate matter (PM, greatly exceeding the direct PM emissions at each engine load after an hour or less of aging at typical summertime conditions. After several hours of photo-oxidation, the ratio of secondary-to-primary PM mass was on average 35 ± 4.1, 17 ± 2.5, 60 ± 2.2, and 2.7 ± 1.1 for the 4, 7, 30, and 85 % load experiments, respectively. The composition of secondary PM formed strongly depended on load. At 4 % load, secondary PM was dominated by secondary organic aerosol (SOA. At higher loads, the secondary PM was mainly secondary sulfate. A traditional SOA model that accounts for SOA formation from single-ring aromatics and other volatile organic compounds underpredicts the measured SOA formation by ~60 % at 4 % load and ~40 % at 85 % load. Large amounts of lower-volatiliy organic vapors were measured in the exhaust; they represent a significant pool of SOA precursors that are not included in traditional SOA models. These results underscore the importance of accounting for atmospheric processing when assessing the influence of aircraft emissions on ambient PM levels. Models that do not account for this processing will likely underpredict the contribution of aircraft emissions to local and regional air pollution.

  3. Aerosols in coastal and inland areas in the equatorial African belt.

    Science.gov (United States)

    Ssenyonga, Taddeo; Muyimbwa, Dennis; Okullo, Willy; Chen, Yi-Chun; Frette, Øvyind; Hamre, Børge; Steigen, Andreas; Dahlback, Arne; Stamnes, Jakob J

    2014-05-10

    Aerosols affect the climate directly through absorption and reflection of sunlight back to space and indirectly by acting as cloud condensation nuclei. This paper is based on more than three decades of satellite data (1979-1994 and 1996-2012) from total ozone mapping spectrometer (TOMS) and ozone monitoring instrument (OMI), which have provided measurements of backscattered radiances in the wavelength range from 331 to 380 nm. These data have been used to determine the aerosol climatology and to investigate the influence of the aerosol index (AI) on the ultraviolet index (UVI) in coastal land areas in Serrekunda (13.28°N, 16.34°W), The Gambia, and Dar-es-Salaam (6.8°S, 39.26°E), Tanzania, as well as in inland areas in Kampala (0.19°N, 32.34°E), Uganda. Heavy aerosol loadings were found to occur in the dry seasons at all three locations. To reduce the influence of clouds, we disregarded TOMS and OMI data for days during which the UV reflectivity was larger than 9% and investigated the correlation of the AI with the UVI for the remaining days at the three locations. We found a high correlation coefficient of 0.82 for Serrekunda, but poor correlation for Kampala and Dar-es-Salaam. The average AI for Serrekunda was found to be about three times higher than that for Kampala or Dar-es-Salaam, and a positive trend was found for the AI in Kampala and Dar-es-Salaam, whereas a negative trend was found for the AI in Serrekunda.

  4. Combustion aerosols from potassium-containing fuels

    International Nuclear Information System (INIS)

    Balzer Nielsen, Lars

    1998-01-01

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW Th pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using chemical

  5. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K.E.J. [VTT Energy, Espoo (Finland). Energy Use

    1997-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  6. Combustion aerosols from potassium-containing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Balzer Nielsen, Lars

    1999-12-31

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW{sub Th} pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using

  7. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K E.J. [VTT Energy, Espoo (Finland). Energy Use

    1998-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  8. Combustion aerosols from potassium-containing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Balzer Nielsen, Lars

    1998-12-31

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW{sub Th} pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using

  9. Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer

    Science.gov (United States)

    Kim, Hwajin; Zhang, Qi; Bae, Gwi-Nam; Kim, Jin Young; Bok Lee, Seung

    2017-02-01

    quality in Seoul during winter is influenced strongly by secondary aerosol formation, with sulfate, nitrate, ammonium, SV-OOA, and LV-OOA together accounting for 64 % of the PM1 mass during this study. However, aerosol sources and composition were found to be significantly different between clean and polluted periods. During stagnant periods with low wind speed (WS) and high relative humidity (RH), PM concentration was generally high (average ±1σ = 43.6 ± 12.4 µg m-3) with enhanced fractions of nitrate (27 %) and SV-OOA (8 %), which suggested a strong influence from local production of secondary aerosol. Low-PM loading periods (12.6 ± 7.1 µg m-3) tended to occur under higher-WS and lower-RH conditions and appeared to be more strongly influenced by regional air masses, as indicated by higher mass fractions of sulfate (12 %) and LV-OOA (20 %) in PM1. Overall, our results indicate that PM pollutants in urban Korea originate from complex emission sources and atmospheric processes and that their concentrations and composition are controlled by various factors, including meteorological conditions, local anthropogenic emissions, and upwind sources.

  10. Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation

    Science.gov (United States)

    Sjostedt, S. J.; Slowik, J. G.; Brook, J. R.; Chang, R. Y.-W.; Mihele, C.; Stroud, C. A.; Vlasenko, A.; Abbatt, J. P. D.

    2011-06-01

    We report simultaneous measurements of volatile organic compound (VOC) mixing ratios including C6 to C8 aromatics, isoprene, monoterpenes, acetone and organic aerosol mass loadings at a rural location in southwestern Ontario, Canada by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Aerosol Mass Spectrometry (AMS), respectively. During the three-week-long Border Air Quality and Meteorology Study in June-July 2007, air was sampled from a range of sources, including aged air from the polluted US Midwest, direct outflow from Detroit 50 km away, and clean air with higher biogenic input. After normalization to the diurnal profile of CO, a long-lived tracer, diurnal analyses show clear photochemical loss of reactive aromatics and production of oxygenated VOCs and secondary organic aerosol (SOA) during the daytime. Biogenic VOC mixing ratios increase during the daytime in accord with their light- and temperature-dependent sources. Long-lived species, such as hydrocarbon-like organic aerosol and benzene show little to no photochemical reactivity on this timescale. From the normalized diurnal profiles of VOCs, an estimate of OH concentrations during the daytime, measured O3 concentrations, and laboratory SOA yields, we calculate integrated local organic aerosol production amounts associated with each measured SOA precursor. Under the assumption that biogenic precursors are uniformly distributed across the southwestern Ontario location, we conclude that such precursors contribute significantly to the total amount of SOA formation, even during the period of Detroit outflow. The importance of aromatic precursors is more difficult to assess given that their sources are likely to be localized and thus of variable impact at the sampling location.

  11. Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia.

    Science.gov (United States)

    Pani, Shantanu Kumar; Lin, Neng-Huei; Chantara, Somporn; Wang, Sheng-Hsiang; Khamkaew, Chanakarn; Prapamontol, Tippawan; Janjai, Serm

    2018-08-15

    A large concentration of finer particulate matter (PM 2.5 ), the primary air-quality concern in northern peninsular Southeast Asia (PSEA), is believed to be closely related to large amounts of biomass burning (BB) particularly in the dry season. In order to quantitatively estimate the contributions of BB to aerosol radiative effects, we thoroughly investigated the physical, chemical, and optical properties of BB aerosols through the integration of ground-based measurements, satellite retrievals, and modelling tools during the Seven South East Asian Studies/Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment (7-SEAS/BASELInE) campaign in 2014. Clusters were made on the basis of measured BB tracers (Levoglucosan, nss-K + , and NO 3 - ) to classify the degree of influence from BB over an urban atmosphere, viz., Chiang Mai (18.795°N, 98.957°E, 354m.s.l.), Thailand in northern PSEA. Cluster-wise contributions of BB to PM 2.5 , organic carbon, and elemental carbon were found to be 54-79%, 42-79%, and 39-77%, respectively. Moreover, the cluster-wise aerosol optical index (aerosol optical depth at 500nm≈0.98-2.45), absorption (single scattering albedo ≈0.87-0.85; absorption aerosol optical depth ≈0.15-0.38 at 440nm; absorption Ångström exponent ≈1.43-1.57), and radiative impacts (atmospheric heating rate ≈1.4-3.6Kd -1 ) displayed consistency with the degree of BB. PM 2.5 during Extreme BB (EBB) was ≈4 times higher than during Low BB (LBB), whereas this factor was ≈2.5 for the magnitude of radiative effects. Severe haze (visibility≈4km) due to substantial BB loadings (BB to PM 2.5 ≈79%) with favorable meteorology can significantly impact the local-to-regional air quality and the, daily life of local inhabitants as well as become a respiratory health threat. Additionally, such enhancements in atmospheric heating could potentially influence the regional hydrological cycle and crop productivity over Chiang Mai in

  12. Multi year aerosol characterization in the tropical Andes and in adjacent Amazonia using AERONET measurements

    Science.gov (United States)

    Pérez-Ramírez, Daniel; Andrade-Flores, Marcos; Eck, Thomas F.; Stein, Ariel F.; O'Neill, Norman T.; Lyamani, Hassan; Gassó, Santiago; Whiteman, David N.; Veselovskii, Igor; Velarde, Fernando; Alados-Arboledas, L.

    2017-10-01

    This work focuses on the analysis of columnar aerosol properties in the complex geophysical tropical region of South America within 10-20° South and 50-70° West. The region is quite varied and encompasses a significant part of Amazonia (lowlands) as well as high mountains in the Andes (highlands,∼4000 m a.s.l.). Several AERONET stations were included to study the aerosol optical characteristics of the lowlands (Rio Branco, Ji Parana and Cuiaba in Brazil and Santa Cruz in Bolivia) and the highlands (La Paz, Bolivia) during the 2000-2014 period. Biomass-burning is by far the most important source of aerosol in the lowlands, particularly during the dry season (August-October). Multi-annual variability was investigated and showed very strong burning activity in 2005, 2006, 2007 and 2010. This resulted in smoke characterized by correspondingly strong, above-average AODs (aerosol optical depths) and homogeneous single scattering albedo (SSA) across all the stations (∼0.93). For other years, however, SSA differences arise between the northern stations (Rio Branco and Ji Parana) with SSAs of ∼0.95 and the southern stations (Cuiaba and Santa Cruz) with lower SSAs of ∼0.85. Such differences are explained by the different types of vegetation burned in the two different regions. In the highlands, however, the transport of biomass burning smoke is found to be sporadic in nature. This sporadicity results in highly variable indicators of aerosol load and type (Angstrom exponent and fine mode fraction) with moderately significant increases in both. Regional dust and local pollution are the background aerosol in this highland region, whose elevation places it close to the free troposphere. Transported smoke particles were generally found to be more optical absorbing than in the lowlands: the hypothesis to explain this is the significantly higher amount of water vapor in Amazonia relative to the high mountain areas. The air-mass transport to La Paz was investigated using

  13. Code Development on Fission Product Behavior under Severe Accident-Validation of Aerosol Sedimentation

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Kim, Sung Il; Jang, Jin Sung; Kim, Dong Ha

    2016-01-01

    The gas and aerosol phases of the radioactive materials move through the reactor coolant systems and containments as loaded on the carrier gas or liquid, such as steam or water. Most radioactive materials might escape in the form of aerosols from a nuclear power plant during a severe reactor accident, and it is very important to predict the behavior of these radioactive aerosols in the reactor cooling system and in the containment building under severe accident conditions. Aerosols are designated as very small solid particles or liquid droplets suspended in a gas phase. The suspended solid or liquid particles typically have a range of sizes of 0.01 m to 20 m. Aerosol concentrations in reactor accident analyses are typically less than 100 g/m3 and usually less than 1 g/m3. When there are continuing sources of aerosol to the gas phase or when there are complicated processes involving engineered safety features, much more complicated size distributions develop. It is not uncommon for aerosols in reactor containments to have bimodal size distributions for at least some significant periods of time early during an accident. Salient features of aerosol physics under reactor accident conditions that will affect the nature of the aerosols are (1) the formation of aerosol particles, (2) growth of aerosol particles, (3) shape of aerosol particles. At KAERI, a fission product module has been developed to predict the behaviors of the radioactive materials in the reactor coolant system under severe accident conditions. The fission product module consists of an estimation of the initial inventories, species release from the core, aerosol generation, gas transport, and aerosol transport. The final outcomes of the fission product module designate the radioactive gas and aerosol distribution in the reactor coolant system. The aerosol sedimentation models in the fission product module were validated using ABCOVE and LACE experiments. There were some discrepancies on the predicted

  14. Code Development on Fission Product Behavior under Severe Accident-Validation of Aerosol Sedimentation

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwang Soon; Kim, Sung Il; Jang, Jin Sung; Kim, Dong Ha [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The gas and aerosol phases of the radioactive materials move through the reactor coolant systems and containments as loaded on the carrier gas or liquid, such as steam or water. Most radioactive materials might escape in the form of aerosols from a nuclear power plant during a severe reactor accident, and it is very important to predict the behavior of these radioactive aerosols in the reactor cooling system and in the containment building under severe accident conditions. Aerosols are designated as very small solid particles or liquid droplets suspended in a gas phase. The suspended solid or liquid particles typically have a range of sizes of 0.01 m to 20 m. Aerosol concentrations in reactor accident analyses are typically less than 100 g/m3 and usually less than 1 g/m3. When there are continuing sources of aerosol to the gas phase or when there are complicated processes involving engineered safety features, much more complicated size distributions develop. It is not uncommon for aerosols in reactor containments to have bimodal size distributions for at least some significant periods of time early during an accident. Salient features of aerosol physics under reactor accident conditions that will affect the nature of the aerosols are (1) the formation of aerosol particles, (2) growth of aerosol particles, (3) shape of aerosol particles. At KAERI, a fission product module has been developed to predict the behaviors of the radioactive materials in the reactor coolant system under severe accident conditions. The fission product module consists of an estimation of the initial inventories, species release from the core, aerosol generation, gas transport, and aerosol transport. The final outcomes of the fission product module designate the radioactive gas and aerosol distribution in the reactor coolant system. The aerosol sedimentation models in the fission product module were validated using ABCOVE and LACE experiments. There were some discrepancies on the predicted

  15. Aerosols, clouds and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, S [University of Arizona, Tucson, AZ (USA). Inst. of Atmospheric Physics

    1991-01-01

    Most of the so-called 'CO{sub 2} effect' is, in fact, an 'H{sub 2}O effect' brought into play by the climate modeler's assumption that planetary average temperature dictates water-vapor concentration (following Clapeyron-Clausius). That assumption ignores the removal process, which cloud physicists know to be influenced by the aerosol, since the latter primarily controls cloud droplet number and size. Droplet number and size are also influential for shortwave (solar) energy. The reflectance of many thin to moderately thick clouds changes when nuclei concentrations change and make shortwave albedo susceptible to aerosol influence.

  16. A stratospheric aerosol increase

    Science.gov (United States)

    Rosen, J. M.; Hofmann, D. J.

    1980-01-01

    Large disturbances were noted in the stratospheric aerosol content in the midlatitude Northern Hemisphere commencing about 7 months after the eruption of La Soufriere and less than 1 month after the eruption of Sierra Negra. The aerosol was characterized by a very steep size distribution in the 0.15 to 0.25 micron radius range and contained a volatile component. Measurements near the equator and at the South Pole indicate that the disturbance was widespread. These observations were made before the May 18 eruption of Mt. St. Helens.

  17. Radon dose and aerosols

    International Nuclear Information System (INIS)

    Planinic, J.; Radolic, V.; Faj, Z.; Vukovic, B.

    2000-01-01

    The equilibrium factor value (F) was measured in the NRPB radon chamber and the corresponding track density ratio (r = D/D 0 ) of bare (D) and diffusion (D 0 ) LR-115 nuclear track detectors was determined, as well as the regression equation F(r). Experiments with LR-115 nuclear track detectors and aerosol sources (burning candle and cigarette) were carried out in the Osijek University radon chamber and afterwards an empirical relationship between the equilibrium factor and aerosol concentration was derived. For the purpose of radon dose equivalent assessment, procedures for determining the unattached fraction of radon progeny were introduced using two nuclear track detectors. (author)

  18. Lateral loadings on snubber assemblies

    International Nuclear Information System (INIS)

    Raphael, L.S.

    1981-01-01

    This paper examines the installation of snubber assemblies in power plants with respect to transverse or lateral loads as well as axial loads. Evaluation of the effects of low level, lateral loads was performed by analytical means. At higher loadings, the snubber assembly could no longer be treated as a column; therefore, the effects of lateral loadings was determined by test. The test consisted of applying both lateral and axial loads simultaneously. Results of both the analysis and the test showed that the application of lateral loads had a considerable effect on the snubber assemblies

  19. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    Science.gov (United States)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of

  20. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2016-02-01

    Full Text Available Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3 concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm−3 – higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between

  1. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    Science.gov (United States)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2016-02-01

    Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of

  2. El Chichon and 'mystery cloud' aerosols between 30 and 55 km Global observations from the SME visible spectrometer

    Science.gov (United States)

    Clancy, R. T.

    1986-01-01

    Visible limb radiances measured by the Solar Mesosphere Explorer (SME) are used to obtain volume scattering ratios for aerosol loading in the 30-55 km altitude range of the stratosphere. Global maps of these ratios are presented for the period January 1982 to August 1984. Significant aerosol scattering from the 'mystery cloud' and El Chichon aerosol layers are found above 30 km. A timescale of approximately 2 months between the appearance of the aerosol at 30.5 km and at 37.5 km is consistent with vertical transport of aerosol or vapor by eddy diffusion above 30 km. An anticorrelation exists between aerosol scattering and stratospheric temperatures. Periods of lower stratospheric temperatures may account for the formation of aerosol between 40 and 55 km altitude.

  3. Aerosol indirect effect on tropospheric ozone via lightning

    Science.gov (United States)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  4. Atmospheric aerosol system: An overview

    International Nuclear Information System (INIS)

    Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K.

    1983-01-01

    Aerosols could play a critical role in many processes which impact on our lives either indirectly (e.g., climate) or directly (e.g., health). However, our ability to assess these possible impacts is constrained by our limited knowledge of the physical and chemical properties of aerosols, both anthropogenic and natural. This deficiency is attributable in part to the fact that aerosols are the end product of a vast array of chemical and physical processes. Consequently, the properties of the aerosol can exhibit a great deal of variability in both time and space. Furthermore, most aerosol studies have focused on measurements of a single aerosol characteristic such as composition or size distribution. Such information is generally not useful for the assessment of impacts because the degree of impact may depend on the integral properties of the aerosol, for example, the aerosol composition as a function of particle size. In this overview we discuss recent work on atmospheric aerosols that illustrates the complex nature of the aerosol chemical and physical system, and we suggest strategies for future research. A major conclusion is that man has had a great impact on the global budgets of certain species, especially sulfur and nitrogen, that play a dominant role in the atmospheric aerosol system. These changes could conceivably affect climate. Large-scale impacts are implied because it has recently been demonstrated that natural and pollutant aerosol episodes can be propagated over great distances. However, at present there is no evidence linking anthropogenic activities with a persistent increase in aerosol concentrations on a global scale. A major problem in assessing man's impact on the atmospheric aerosol system and on global budgets is the absence of aerosol measurements in remote marine and continental areas

  5. Aerosol Indirect effect on Stratocumulus Organization

    Science.gov (United States)

    Zhou, X.; Heus, T.; Kollias, P.

    2015-12-01

    Large-eddy simulations are used to investigate the role of aerosol loading on organized Stratocumulus. We prescribed the cloud droplet number concentration (Nc) and considered it as the proxy for different aerosol loading. While the presence of drizzle amplifies the mesoscale variability as is in Savic-Jovcic and Stevens (JAS, 2008), two noticeable findings are discussed here: First, the scale of marine boundary layer circulation appears to be independent of aerosol loading, suggesting a major role of the turbulence. The precise role of the turbulence in stratocumulus organization is studied by modifying the large scale fluctuations from the LES domain. Second, while it is commonly thought that the whole circulation needs to be represented for robust cloud development, we find that stratocumulus dynamics, including variables like w'w' and w'w'w', are remarkably robust even if large scales are ignored by simply reducing the domain sizes. The only variable that is sensitive to the change of the scale is the amount of cloudiness. Despite their smaller cloud thickness and inhomogeneous macroscopic structure for low Nc, individual drizzling clouds have sizes that are commensurate with circulation scale. We observe an Nc threshold below which stratocumulus is thin enough so that a little decrease of Nc would lead to great change of cloud fraction. The simulated cloud albedo is more sensitive to in-cloud liquid water content than to the amount of cloudiness since the former decreases at least three times faster than the latter due to drizzle. The main impact of drizzle evaporation is observed to keep the sub-cloud layer moist and as a result to extend the lifetime of stratocumulus by a couple of hours.

  6. GRIP LANGLEY AEROSOL RESEARCH GROUP EXPERIMENT (LARGE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Langley Aerosol Research Group Experiment (LARGE) measures ultrafine aerosol number density, total and non-volatile aerosol number density, dry aerosol size...

  7. Impact of springtime biomass-burning aerosols on radiative forcing over northern Thailand during the 7SEAS campaign

    Science.gov (United States)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-04-01

    Biomass-burning (BB) aerosols are the significant contributor to the regional/global aerosol loading and radiation budgets. BB aerosols affect the radiation budget of the earth and atmosphere by scattering and absorbing directly the incoming solar and outgoing terrestrial radiation. These aerosols can exert either cooling or warming effect on climate, depending on the balance between scattering and absorption. BB activities in the form of wildland forest fires and agricultural crop burning are very pronounced in the Indochina peninsular regions in Southeast Asia mainly in spring (late February to April) season. The region of interest includes Doi Ang Khang (19.93° N, 99.05° E, 1536 msl) in northern Thailand, as part of the Seven South East Asian Studies (7-SEAS)/BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment) campaign in 2013. In this study, for the first time, the direct aerosol radiative effects of BB aerosols over near-source BB emissions, during the peak loading spring season, in northern Indochina were investigated by using ground-based physical, chemical, and optical properties of aerosols as well as the aerosol optical and radiative transfer models. Information on aerosol parameters in the field campaign was used in the OPAC (Optical Properties of Aerosols and Clouds) model to estimate various optical properties corresponding to aerosol compositions. Clear-sky shortwave direct aerosol radiative effects were further estimated with a raditive transfer model SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer). The columnar aerosol optical depth (AOD500) was found to be ranged from 0.26 to 1.13 (with the mean value 0.71 ± 0.24). Fine-mode (fine mode fraction ≈0.98, angstrom exponent ≈1.8) and significantly absorbing aerosols (columnar single-scattering albedo ≈0.89, asymmetry-parameter ≈0.67 at 441 nm wavelength) dominated in this region. Water soluble and black carbon (BC) aerosols mainly

  8. Size Resolved Measurements of Springtime Aerosol Particles over the Northern South China Sea

    Science.gov (United States)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Cliff, Stephen S.; Zhao, Yongjing; Lin, Neng-Huei; Tsay, Si-Chee; Chu, Yu-Chi; Westphal, Douglas L.

    2012-01-01

    Large sources of aerosol particles and their precursors are ubiquitous in East Asia. Such sources are known to impact the South China Sea (henceforth SCS), a sometimes heavily polluted region that has been suggested as particularly vulnerable to climate change. To help elucidate springtime aerosol transport into the SCS, an intensive study was performed on the remote Dongsha (aka Pratas) Islands Atoll in spring 2010. As part of this deployment, a Davis Rotating-drum Uniform size-cut Monitor (DRUM) cascade impactor was deployed to collect size-resolved aerosol samples at the surface that were analyzed by X-ray fluorescence for concentrations of selected elements. HYSPLIT backtrajectories indicated that the transport of aerosol observed at the surface at Dongsha was occurring primarily from regions generally to the north and east. This observation was consistent with the apparent persistence of pollution and dust aerosol, along with sea salt, in the ground-based dataset. In contrast to the sea-level observations, modeled aerosol transport suggested that the westerly flow aloft (w700 hPa) transported smoke-laden air toward the site from regions from the south and west. Measured aerosol optical depth at the site was highest during time periods of modeled heavy smoke loadings aloft. These periods did not coincide with elevated aerosol concentrations at the surface, although the model suggested sporadic mixing of this free-tropospheric aerosol to the surface over the SCS. A biomass burning signature was not clearly identified in the surface aerosol composition data, consistent with this aerosol type remaining primarily aloft and not mixing strongly to the surface during the study. Significant vertical wind shear in the region also supports the idea that different source regions lead to varying aerosol impacts in different vertical layers, and suggests the potential for considerable vertical inhomogeneity in the SCS aerosol environment.

  9. Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2012-09-01

    Full Text Available Herein, the Halogen Occultation Experiment (HALOE aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 μm is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 μm is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 μm aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40 μm aerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 μm channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived

  10. Process for retention of iodine and aerosols during containment venting

    International Nuclear Information System (INIS)

    Eckardt, B.; Betz, R.; Greger, G.U.; Werner, K.D.

    1990-05-01

    A process for retention of the majority of aerosols and iodine during containment venting was optimized. For this purpose, sections of a two-stage process comprising a venturi scrubber and a metal-fiber filter demister were tested under containment venting conditions assumed to prevail during a hypothetical core - melt accident and optimized with a view to achieving high decontamination factors and loading capacity while minimizing the size of the process. The loading and retention tests performed in a scrubber operating pressure range between 1 and 10 bar, at temperatures from 50 to 200degC (also boiling pools) and in air and steam atmospheres. Under these unfavorable conditions for aerosol retention, the retention efficiencies were determined at various flow rates with soluble and non-soluble aerosols as well as gaseous iodine. The retention efficiencies for BaSO 4 , uranine and SnO 2 aerosols were determined to be 99.95% to 99.99% for venturi scrubbers with metal-fiber filter demister. The retention efficiency for elemental iodine was determined to be ≥99% including revolatization effects over a 24-hour operating period. The high loading capacity of the venturi scrubber unit was verified after process modifications with various aerosols. The use of full-scale process section together with the best possible simulation of containment venting conditions by the test parameters ensured that the results can be transferred to real venting equipment. The aim of ensuring the retention of the majority of the aerosol-borne activity and of elemental iodine activity and minimizing the process size was clearly achieved and verified by means of this optimized venting equipment under an extremely wide range of hypothetical core-melt accident conditions. (orig.) With 17 refs., 3 tabs., 35 annexes [de

  11. Long-term aerosol climatology over Indo-Gangetic Plain: Trend, prediction and potential source fields

    Science.gov (United States)

    Kumar, M.; Parmar, K. S.; Kumar, D. B.; Mhawish, A.; Broday, D. M.; Mall, R. K.; Banerjee, T.

    2018-05-01

    Long-term aerosol climatology is derived using Terra MODIS (Collection 6) enhanced Deep Blue (DB) AOD retrieval algorithm to investigate decadal trend (2006-2015) in columnar aerosol loading, future scenarios and potential source fields over the Indo-Gangetic Plain (IGP), South Asia. Satellite based aerosol climatology was analyzed in two contexts: for the entire IGP considering area weighted mean AOD and for nine individual stations located at upper (Karachi, Multan, Lahore), central (Delhi, Kanpur, Varanasi, Patna) and lower IGP (Kolkata, Dhaka). A comparatively high aerosol loading (AOD: 0.50 ± 0.25) was evident over IGP with a statistically insignificant increasing trend of 0.002 year-1. Analysis highlights the existing spatial and temporal gradients in aerosol loading with stations over central IGP like Varanasi (decadal mean AOD±SD; 0.67 ± 0.28) and Patna (0.65 ± 0.30) exhibit the highest AOD, followed by stations over lower IGP (Kolkata: 0.58 ± 0.21; Dhaka: 0.60 ± 0.24), with a statistically significant increasing trend (0.0174-0.0206 year-1). In contrast, stations over upper IGP reveal a comparatively low aerosol loading, having an insignificant increasing trend. Variation in AOD across IGP is found to be mainly influenced by seasonality and topography. A distinct "aerosol pool" region over eastern part of Ganges plain is identified, where meteorology, topography, and aerosol sources favor the persistence of airborne particulates. A strong seasonality in aerosol loading and types is also witnessed, with high AOD and dominance of fine particulates over central to lower IGP, especially during post-monsoon and winter. The time series analyses by autoregressive integrated moving average (ARIMA) indicate contrasting patterns in randomness of AOD over individual stations with better performance especially over central IGP. Concentration weighted trajectory analyses identify the crucial contributions of western dry regions and partial contributions from

  12. The signal of aerosol-induced changes in sunshine duration records: A review of the evidence

    Science.gov (United States)

    Sanchez-Romero, A.; Sanchez-Lorenzo, A.; Calbó, J.; González, J. A.; Azorin-Molina, C.

    2014-04-01

    Aerosols play a significant yet complex and central role in the Earth's radiation budget, and knowledge of long-term changes in the atmospheric turbidity induced by aerosols is therefore fundamental for a better understanding of climate change. However, there is little available information on changes in aerosol concentration in the atmosphere, especially prior to the 1980s. The present paper reviews publications reporting the suitability of sunshine duration records with regard to detecting changes in atmospheric aerosols. Some of the studies reviewed propose methods for estimating aerosol-related magnitudes, such as turbidity, from sunshine deficit at approximately sunrise and sunset, when the impact of aerosols on the solar beam is more easily observed. In addition, there is abundant evidence that one cause of the decadal changes observed in sunshine duration records involves variations in atmospheric aerosol loading. Possible directions for future research are also suggested: in particular, detailed studies of the burn (not only its length but also its width) registered by means of Campbell-Stokes sunshine recorders may provide a way of creating time series of atmospheric aerosol loading metrics dating back to over 120 years from the present.

  13. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2011-02-01

    Full Text Available The secondary organic aerosol (SOA yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS. A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS.

  14. Effect of CALIPSO Cloud Aerosol Discrimination (CAD) Confidence Levels on Observations of Aerosol Properties near Clouds

    Science.gov (United States)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan

    2012-01-01

    CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.

  15. Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP

    NARCIS (Netherlands)

    Proestakis, Emmanouil; Amiridis, Vassilis; Marinou, Eleni; Georgoulias, Aristeidis K.; Solomos, Stavros; Kazadzis, Stelios; Chimot, J.J.; Che, Huizheng; Alexandri, Georgia; Binietoglou, Ioannis; Daskalopoulou, Vasiliki; Kourtidis, Konstantinos A.; Johannes Van Der A, Ronald

    2018-01-01

    We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET

  16. Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    N. L. Ng

    2010-05-01

    Full Text Available In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS datasets (27 of the datasets are reanalyzed in this work. The components from all sites, when taken together, provide a holistic overview of Northern Hemisphere organic aerosol (OA and its evolution in the atmosphere. At most sites, the OA can be separated into oxygenated OA (OOA, hydrocarbon-like OA (HOA, and sometimes other components such as biomass burning OA (BBOA. We focus on the OOA components in this work. In many analyses, the OOA can be further deconvolved into low-volatility OOA (LV-OOA and semi-volatile OOA (SV-OOA. Differences in the mass spectra of these components are characterized in terms of the two main ions m/z 44 (CO2+ and m/z 43 (mostly C2H3O+, which are used to develop a new mass spectral diagnostic for following the aging of OA components in the atmosphere. The LV-OOA component spectra have higher f44 (ratio of m/z 44 to total signal in the component mass spectrum and lower f43 (ratio of m/z 43 to total signal in the component mass spectrum than SV-OOA. A wide range of f44 and O:C ratios are observed for both LV-OOA (0.17±0.04, 0.73±0.14 and SV-OOA (0.07±0.04, 0.35±0.14 components, reflecting the fact that there is a continuum of OOA properties in ambient aerosol. The OOA components (OOA, LV-OOA, and SV-OOA from all sites cluster within a well-defined triangular region in the f44 vs. f43 space, which can be used as a standardized means for comparing and characterizing any OOA components (laboratory or ambient observed with the AMS. Examination of the OOA components in this triangular space indicates that OOA component spectra become increasingly similar to each other and to fulvic acid and HULIS sample spectra as f44 (a

  17. Cloud albedo increase from carbonaceous aerosol

    Directory of Open Access Journals (Sweden)

    W. R. Leaitch

    2010-08-01

    Full Text Available Airborne measurements from two consecutive days, analysed with the aid of an aerosol-adiabatic cloud parcel model, are used to study the effect of carbonaceous aerosol particles on the reflectivity of sunlight by water clouds. The measurements, including aerosol chemistry, aerosol microphysics, cloud microphysics, cloud gust velocities and cloud light extinction, were made below, in and above stratocumulus over the northwest Atlantic Ocean. On the first day, the history of the below-cloud fine particle aerosol was marine and the fine particle sulphate and organic carbon mass concentrations measured at cloud base were 2.4 μg m−3 and 0.9 μg m−3 respectively. On the second day, the below-cloud aerosol was continentally influenced and the fine particle sulphate and organic carbon mass concentrations were 2.3 μg m−3 and 2.6 μg m−3 respectively. Over the range 0.06–0.8 μm diameter, the shapes of the below-cloud size distributions were similar on both days and the number concentrations were approximately a factor of two higher on the second day. The cloud droplet number concentrations (CDNC on the second day were approximately three times higher than the CDNC measured on the first day. Using the parcel model to separate the influence of the differences in gust velocities, we estimate from the vertically integrated cloud light scattering measurements a 6% increase in the cloud albedo principally due to the increase in the carbonaceous components on the second day. Assuming no additional absorption by this aerosol, a 6% albedo increase translates to a local daytime radiative cooling of ∼12 W m−2. This result provides observational evidence that the role of anthropogenic carbonaceous components in the cloud albedo effect can be much larger than that of anthropogenic sulphate, as some global simulations have indicated.

  18. TROPOSPHERIC AEROSOL PROGRAM, PROGRAM PLAN, MARCH 2001

    Energy Technology Data Exchange (ETDEWEB)

    SCHWARTZ,S.E.; LUNN,P.

    2001-03-01

    The goal of Tropospheric Aerosol Program (TAP) will be to develop the fundamental scientific understanding required to construct tools for simulating the life cycle of tropospheric aerosols--the processes controlling their mass loading, composition, and microphysical properties, all as a function of time, location, and altitude. The TAP approach to achieving this goal will be by conducting closely linked field, modeling, laboratory, and theoretical studies focused on the processes controlling formation, growth, transport, and deposition of tropospheric aerosols. This understanding will be represented in models suitable for describing these processes on a variety of geographical scales; evaluation of these models will be a key component of TAP field activities. In carrying out these tasks TAP will work closely with other programs in DOE and in other Federal and state agencies, and with the private sector. A forum to directly work with our counterparts in industry to ensure that the results of this research are translated into products that are useful to that community will be provided by NARSTO (formerly the North American Research Strategy on Tropospheric Ozone), a public/private partnership, whose membership spans government, the utilities, industry, and university researchers in Mexico, the US, and Canada.

  19. Study of aerosol behavior on the basis of morphological characteristics during festival events in India

    Science.gov (United States)

    Agrawal, Anubha; Upadhyay, Vinay K.; Sachdeva, Kamna

    2011-07-01

    Two important festival events were selected to assess their impacts on atmospheric chemistry by understanding settling velocity and emission time of aerosols. Using high volume sampler, aerosols were collected in a sequential manner to understand settling velocity and emission time of aerosols on a particular day. Composition and total suspended particulate load of the aerosols collected during the festivals were used as markers for strengthening the assessment. Terminal settling velocity of the aerosols were calculated using morphological and elemental compositional data, obtained from scanning electron microcopy (SEM) and energy dispersive X-ray (EDX) study. Aerosol load, black carbon, aromatic carbon and terminal velocity calculations were correlated to obtain conclusion that aerosols collected on the festival day might have been emitted prior to the festival. Settling time of aerosols collected on 17th and 19th October'09 during Diwali were found to be 36.5 (1.5 days) and 12.8 h, respectively. Carbon concentration estimated using EDX was found to be almost double in the sample collected after 2 days of the festival event. This strengthens our inference of time calculation where carbon with high concentration of load must have settled approximately after two days of the event. Settling time of aerosols collected on Holi morning and afternoon was found to be 1.7 and 24.8 h, respectively. Further, because of the small distance of 5.4 km between the meteorological station and sampling site, observed TSP values were compared with theoretical load values, calculated by using visibility values taken from the meteorological data. And it was found that both experimental and calculated values are close to each other about 50% of the times, which proves the assumption that experimental and meteorological data are comparable.

  20. Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2

    Directory of Open Access Journals (Sweden)

    T. Liu

    2016-01-01

    Full Text Available Sulfur dioxide (SO2 can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs, but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhaust, remains uncertain. Gasoline vehicle exhaust (GVE and SO2, a typical pollutant from coal burning, are directly co-introduced into a smog chamber, in this study, to investigate the formation of secondary organic aerosols (SOA and sulfate aerosols through photooxidation. New particle formation was enhanced, while substantial sulfate was formed through the oxidation of SO2 in the presence of high concentration of SO2. Homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs, formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60–200 % in the presence of high concentration of SO2. The increase could principally be attributed to acid-catalyzed SOA formation as evidenced by the strong positive linear correlation (R2 = 0.97 between the SOA production factor and in situ particle acidity calculated by the AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS resolved OA's relatively lower oxygen-to-carbon (O : C (0.44 ± 0.02 and higher hydrogen-to-carbon (H : C (1.40 ± 0.03 molar ratios for the GVE / SO2 mixture, with a significantly lower estimated average carbon oxidation state (OSc of −0.51 ± 0.06 than −0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be a significant explanation for the lower SOA oxidation degree.

  1. Characterization of biomass burning aerosols from forest fire in Indonesia

    Science.gov (United States)

    Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.

    2012-12-01

    Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were

  2. American Association for Aerosol Research (AAAR) `95

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Fourteenth annual meeting of the American Association for Aerosol Research was held October 9-13, 1995 at Westin William Penn Hotel in Pittsburgh, PA. This volume contains the abstracts of the papers and poster sessions presented at this meeting, grouped by the session in which they were presented as follows: Radiation Effects; Aerosol Deposition; Collision Simulations and Microphysical Behavior; Filtration Theory and Measurements; Materials Synthesis; Radioactive and Nuclear Aerosols; Aerosol Formation, Thermodynamic Properties, and Behavior; Particle Contamination Issues in the Computer Industry; Pharmaceutical Aerosol Technology; Modeling Global/Regional Aerosols; Visibility; Respiratory Deposition; Biomass and Biogenic Aerosols; Aerosol Dynamics; Atmospheric Aerosols.

  3. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Lastly, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.

  4. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    Science.gov (United States)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  5. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    Science.gov (United States)

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-06

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.

  6. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe

    Directory of Open Access Journals (Sweden)

    W. T. Morgan

    2010-09-01

    Full Text Available A case study of atmospheric aerosol measurements exploring the impact of the vertical distribution of aerosol chemical composition upon the radiative budget in North-Western Europe is presented. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS on both an airborne platform and a ground-based site at Cabauw in the Netherlands. The examined period in May 2008 was characterised by enhanced pollution loadings in North-Western Europe and was dominated by ammonium nitrate and Organic Matter (OM. Both ammonium nitrate and OM were observed to increase with altitude in the atmospheric boundary layer. This is primarily attributed to partitioning of semi-volatile gas phase species to the particle phase at reduced temperature and enhanced relative humidity. Increased ammonium nitrate concentrations in particular were found to strongly increase the ambient scattering potential of the aerosol burden, which was a consequence of the large amount of associated water as well as the enhanced mass. During particularly polluted conditions, increases in aerosol optical depth of 50–100% were estimated to occur due to the observed increase in secondary aerosol mass and associated water uptake. Furthermore, the single scattering albedo was also shown to increase with height in the boundary layer. These enhancements combined to increase the negative direct aerosol radiative forcing by close to a factor of two at the median percentile level. Such increases have major ramifications for regional climate predictions as semi-volatile components are often not included in aerosol models.

    The results presented here provide an ideal opportunity to test regional and global representations of both the aerosol vertical distribution and subsequent impacts in North-Western Europe. North-Western Europe can be viewed as an analogue for the possible future air quality over other polluted regions of the Northern Hemisphere, where

  7. Special aerosol sources for certification and test of aerosol radiometers

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E.

    1991-01-01

    The results are presented of the development and practical application of new radionuclide source types (Special Aerosol Sources (SAS)), that meet the international standard recommendations, which are used for certification and test of aerosol radiometers (monitors) using model aerosols of plutonium-239, strontium-yttrium-90 or uranium of natural isotope composition and certified against Union of Soviet Socialist Republics USSR national radioactive aerosol standard or by means of a reference radiometer. The original technology for source production allows the particular features of sampling to be taken into account as well as geometry and conditions of radionuclides radiation registration in the sample for the given type of radiometer. (author)

  8. Special aerosol sources for certification and test of aerosol radiometers

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E. (Union Research Institute of Instrumentation, Moscow (USSR))

    1991-01-01

    The results are presented of the development and practical application of new radionuclide source types (Special Aerosol Sources (SAS)), that meet the international standard recommendations, which are used for certification and test of aerosol radiometers (monitors) using model aerosols of plutonium-239, strontium-yttrium-90 or uranium of natural isotope composition and certified against Union of Soviet Socialist Republics USSR national radioactive aerosol standard or by means of a reference radiometer. The original technology for source production allows the particular features of sampling to be taken into account as well as geometry and conditions of radionuclides radiation registration in the sample for the given type of radiometer. (author).

  9. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    Science.gov (United States)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case

  10. Mexico City aerosol study

    International Nuclear Information System (INIS)

    Falcon, Y.I.; Ramirez, C.R.

    1987-01-01

    A major task in the field of air pollution monitoring is the development of devices for determining the mass and composition of airborne particulate matter as a function of size - and time. The sample collection device must be designed giving consideration to the nature of the aerosol and to the effects of the aerosol on human health. It has been established that particles smaller than 3.5 μm in diameter can penetrate deeply into the human respiratory system, and that larger particles are trapped in the upper respiratory passages. For these reasons, it is desirable to use a dichotomous sampler to collect particles in two size ranges, rather than to collect total particulates on a single filter. The authors discuss a study in Mexico City using a dichotomous sampler

  11. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  12. Atmo-metabolomics: a new measurement approach for investigating aerosol composition and ecosystem functioning.

    Science.gov (United States)

    Rivas-Ubach, A.; Liu, Y.; Sardans, J.; Tfaily, M. M.; Kim, Y. M.; Bourrianne, E.; Paša-Tolić, L.; Penuelas, J.; Guenther, A. B.

    2016-12-01

    Aerosols play crucial roles in the processes controlling the composition of the atmosphere and the functioning of ecosystems. Gaining a deeper understanding of the chemical composition of aerosols is one of the major challenges for atmospheric and climate scientists and is beginning to be recognized as important for ecological research. Better comprehension of aerosol chemistry can potentially provide valuable information on atmospheric processes such as oxidation of organics and the production of cloud condensation nuclei as well as provide an approximation of the general status of an ecosystem through the measurement of certain stress biomarkers. In this study, we describe an efficient aerosol sampling method, the metabolite extraction and the analytical procedures for the chemical characterization of aerosols, namely, the atmo-metabolome. We used mass spectrometry (MS) coupled to liquid chromatography (LC-MS), gas chromatography (GC-MS) and Fourier transform ion cyclotron resonance (FT-ICR-MS) to characterize the atmo-metabolome of two marked seasons; spring and summer. Our sampling and extraction methods demonstrated to be suitable for aerosol chemical characterization with any of the analytical platforms used in this study. The atmo-metabolome between spring and summer showed overall statistically differences. We identified several metabolites that can be attributed to pollen and other plant-related aerosols. Spring aerosols exhibit higher concentrations of metabolites linked to higher plant activity while summer samples had higher concentrations of metabolites that may reflect certain oxidative stresses in primary producers. Moreover, the elemental composition of aerosols showed clear different between seasons. Summer aerosols were generally higher in molecular weight and with higher O/C ratios, indicating higher oxidation levels and condensation of compounds relative to spring. Our method represents an advanced approach for characterizing the composition of

  13. Aerosol chemistry over a high altitude station at northeastern Himalayas, India.

    Directory of Open Access Journals (Sweden)

    Abhijit Chatterjee

    Full Text Available BACKGROUND: There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. METHODOLOGY/PRINCIPAL FINDINGS: An extensive aerosol sampling program was conducted in Darjeeling (altitude approximately 2200 meter above sea level (masl, latitude 27 degrees 01'N and longitude 88 degrees 15'E, a high altitude station in northeastern Himalayas, during January-December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5+/-20.8 microg m(-3 and 19.6+/-11.1 microg m(-3 respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH(4NO(3 in fine mode aerosol during winter and as NaNO(3 in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO(2 during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO(4(2- in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. CONCLUSIONS/SIGNIFICANCE: The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over

  14. Aerosol chemistry over a high altitude station at northeastern Himalayas, India.

    Science.gov (United States)

    Chatterjee, Abhijit; Adak, Anandamay; Singh, Ajay K; Srivastava, Manoj K; Ghosh, Sanjay K; Tiwari, Suresh; Devara, Panuganti C S; Raha, Sibaji

    2010-06-16

    There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. An extensive aerosol sampling program was conducted in Darjeeling (altitude approximately 2200 meter above sea level (masl), latitude 27 degrees 01'N and longitude 88 degrees 15'E), a high altitude station in northeastern Himalayas, during January-December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5+/-20.8 microg m(-3) and 19.6+/-11.1 microg m(-3) respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH(4)NO(3) in fine mode aerosol during winter and as NaNO(3) in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO(2) during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO(4)(2-) in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over northeastern Himalayas, and should be useful to policy makers in making control

  15. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Miake-Lye, R C; Anderson, M R; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1998-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  16. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  17. Variability of aerosol vertical distribution in the Sahel

    Directory of Open Access Journals (Sweden)

    O. Cavalieri

    2010-12-01

    continent by the monsoon flow.

    During summer months, the entire Sahelian region is under the influence of Saharan dust aerosols: the air masses in low levels arrive from West Africa crossing the Sahara desert or from the Southern Hemisphere crossing the Guinea Gulf while in the upper layers air masses still originate from North, North-East. The maximum of the desert dust activity is observed in this period which is characterized by large AOD (above 0.2 and backscattering values. It also corresponds to a maximum in the extension of the aerosol vertical distribution (up to 6 km of altitude. In correspondence, a progressive cleaning up of the lowermost layers of the atmosphere is occurring, especially evident in the Banizoumbou and Cinzana sites.

    Summer is in fact characterized by extensive and fast convective phenomena.

    Lidar profiles show at times large dust events loading the atmosphere with aerosol from the ground up to 6 km of altitude. These events are characterized by large total attenuated backscattering values, and alternate with very clear profiles, sometimes separated by only a few hours, indicative of fast removal processes occurring, likely due to intense convective and rain activity.

    The inter-annual variability in the three year monitoring period is not very significant. An analysis of the aerosol transport pathways, aiming at detecting the main source regions, revealed that air originated from the Saharan desert is present all year long and it is observed in the lower levels of the atmosphere at the beginning and at the end of the year. In the central part of the year it extends upward and the lower levels are less affected by air masses from Saharan desert when the monsoon flow carries air from the Guinea Gulf and the Southern Hemisphere inland.

  18. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  19. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D.E.; Hopkins, A.R.; Paladino, J.D.; Whitefield, P.D. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1997-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  20. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D E; Hopkins, A R; Paladino, J D; Whitefield, P D [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H V [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1998-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  1. Aerosol Observing System (AOS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  2. Photothermal spectroscopy of aerosols

    International Nuclear Information System (INIS)

    Campillo, A.J.; Lin, H.B.

    1981-04-01

    In situ aerosol absorption spectroscopy was performed using two novel photothermal detection schemes. The first, based on a photorefractive effect and coherent detection, called phase fluctuation optical heterodyne (PFLOH) spectroscopy, could, depending on the geometry employed, yield particle specific or particle and gas absorption data. Single particles of graphite as small as 1 μm were detected in the particle specific mode. In another geometrical configuration, the total absorption (both gas and particle) of submicron sized aerosols of ammonium sulfate particles in equilibrium with gaseous ammonia and water vapor were measured at varying CO 2 laser frequencies. The specific absorption coefficient for the sulfate ion was measured to be 0.5 m 2 /g at 1087 cm -1 . The absorption coefficient sensitivity of this scheme was less than or equal to 10 -8 cm -1 . The second scheme is a hybrid visible Mie scattering scheme incorporating photothermal modulation. Particle specific data on ammonium sulfate droplets were obtained. For chemically identical species, the relative absorption spectrum versus laser frequency can be obtained for polydisperse aerosol distributions directly from the data without the need for complex inverse scattering calculations

  3. Characterization of regional atmospheric aerosols over Hungary by PIXE elemental analysis. Appendix 9

    International Nuclear Information System (INIS)

    Koltay, E.; Borbely-Kiss, I.; Szabo, Gy.; Kiss, A.Z.; Rajta, I.; Somorjai, E.; Meszaros, E.; Molnar, A.; Bozo, L.

    1995-01-01

    Earlier PIXE analytical data obtained on rural aerosol samples from Hungary have been extended by the results of further analyses in the frame of the present international Co-ordinated Research Programme. Samples have been collected in three more rural, one suburban and two urban stations. A comparison of the data revealed the distribution of aerosol loading by several trace elements over the country, supported the determination of aerosol budget indicating long-range transport from industrial sources and Saharan dust intrusion. The data show that Hungarian air is moderately polluted by aerosols from regional and faraway sources. Methodological results have been obtained in setting up a new microbeam channel for individual characterization of aerosol particles. (author)

  4. Properties of arctic haze aerosol from lidar observations during iarea 2015 campaign on spitsbergen

    Science.gov (United States)

    Stachlewska, Iwona S.; Ritter, Christoph; Böckmann, Christine; Engelmann, Ronny

    2018-04-01

    Arctic Haze event was observed on 5-8 April 2015 using simultaneously Near-range Aerosol Raman Lidar of IGFUW and Koldewey Aerosol Raman Lidar of AWI, both based at AWIPEV German-French station in Ny-Ålesund, Spitsbergen. The alterations in particle abundance and altitude of the aerosol load observed on following days of the event is analyzed. The daytime profiles of particle optical properties were obtained for both lidars, and then served as input for microphysical parameters inversion. The results indicate aerosol composition typical for the Arctic Haze. However, in some layers, a likely abundance of aqueous aerosol or black carbon originating in biomass burning over Siberia, changes measurably the Arctic Haze properties.

  5. Water content of aged aerosol

    Directory of Open Access Journals (Sweden)

    G. J. Engelhart

    2011-02-01

    Full Text Available The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008. A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH as low as 20%. The aerosol was acidic during most of the measurement campaign, which likely contributed to the water uptake at low RH. The water content observations were compared to the thermodynamic model E-AIM, neglecting any contribution of the organics to aerosol water content. There was good agreement between the water measurements and the model predictions. Adding the small amount of water associated with the organic aerosol based on monoterpene water absorption did not change the quality of the agreement. These results strongly suggest that the water uptake by aged organic aerosol is relatively small (a few percent of the total water for the conditions during FAME-08 and generally consistent with what has been observed in laboratory experiments. The water concentration measured by a Q-AMS was well correlated with the DAASS measurements and in good agreement with the predicted values for the RH of the Q-AMS inlet. This suggests that, at least for the conditions of the study, the Q-AMS can provide valuable information about the aerosol water concentrations if the sample is not dried.

  6. Topics in current aerosol research

    CERN Document Server

    Hidy, G M

    1971-01-01

    Topics in Current Aerosol Research deals with the fundamental aspects of aerosol science, with emphasis on experiment and theory describing highly dispersed aerosols (HDAs) as well as the dynamics of charged suspensions. Topics covered range from the basic properties of HDAs to their formation and methods of generation; sources of electric charges; interactions between fluid and aerosol particles; and one-dimensional motion of charged cloud of particles. This volume is comprised of 13 chapters and begins with an introduction to the basic properties of HDAs, followed by a discussion on the form

  7. Hemispheric transport and influence of meteorology on global aerosol climatology

    Directory of Open Access Journals (Sweden)

    T. L. Zhao

    2012-08-01

    Full Text Available Based on a 10-yr simulation with the global air quality modeling system GEM-AQ/EC, the northern hemispheric aerosol transport with the inter-annual and seasonal variability as well as the mean climate was investigated. The intercontinental aerosol transport is predominant in the zonal direction from west to east with the ranges of inter-annual variability between 14% and 63%, and is 0.5–2 orders of magnitude weaker in the meridional direction but with larger inter-annual variability. The aerosol transport is found to fluctuate seasonally with a factor of 5–8 between the maximum in late winter and spring and the minimum in late summer and fall. Three meteorological factors controlling the intercontinental aerosol transport and its inter-annual variations are identified from the modeling results: (1 Anomalies in the mid-latitude westerlies in the troposphere. (2 Variations of precipitation over the intercontinental transport pathways and (3 Changes of meteorological conditions within the boundary layer. Changed only by the meteorology, the aerosol column loadings in the free troposphere over the source regions of Europe, North America, South and East Asia vary inter-annually with the highest magnitudes of 30–37% in January and December and the lowest magnitudes of 16–20% in August and September, and the inter-annual aerosol variability within the boundary layer influencing the surface concentrations with the magnitudes from 6% to 20% is more region-dependent. As the strongest climatic signal, the El Niño-Southern Oscillation (ENSO can lead the anomalies in the intercontinental aerosols in El Niño- and La Niña-years respectively with the strong and weak transport of the mid-latitude westerlies and the low latitude easterlies in the Northern Hemisphere (NH.

  8. An initial assessment of the impact of Australian aerosols on surface ultraviolet radiation and implications for human health

    International Nuclear Information System (INIS)

    Chee, C Y; Mills, F P

    2010-01-01

    Aerosols can have significant influence on surface radiation, and the intense surface ultraviolet radiation Australia experiences contributes to Australia's high incidence rates for related human diseases. Aerosol properties, such as total column aerosol optical depth, have been measured over several years for varying lengths of time at sites across Australia using sunphotometers. Statistical analysis of the average daily aerosol optical depth over sites near Alice Springs, Canberra, Darwin, and Perth provides one measure of the annual atmospheric loading of aerosols over these sites. The sunphotometers used at these sites do not make measurements in the UV-B spectral region and have only one channel in the UV-A spectral region, the regions of most interest for assessing human health impact. Consequently, model calculations using standard aerosol types have been used to make an initial estimate of the impact of the aerosols found over these four sites on surface ultraviolet radiation. The aerosol loading is at times sufficient to significantly reduce the surface ultraviolet radiation, but few such days occur each year. The annual average effect of aerosols on surface ultraviolet radiation, thus, appears to be small compared to lifestyle factors, such as clothing and use of sunscreen.

  9. Geochemistry of aerosols from an urban site, Varanasi, in the Eastern Indo-Gangetic Plain

    Science.gov (United States)

    Ram, Kirpa; Norra, Stefan; Zirzov, Felix; Singh, Sunita; Mehra, Manisha; Nanad Tripathi, Sachichida

    2016-04-01

    PM2.5 aerosol samples were collected from an urban site, Varanasi, in the eastern Indo-Gangetic Plain on weekly basis during 19 March to 29 May 2015 (n=12), along with daily samples (n=8) during 11 to 18 March 2015 to study the geochemical and morphological features of aerosols. Samples were collected with a low volume sampler (Leckel GmbH, Germany) on the terrace of the Institute of Environment and Sustainable Development building, located in the Banaras Hindu University campus in the southern part of the city. Samples were analyzed for element concentration by Inductively Coupled Plasma Mass Spectrometry and particle morphology by Scanning Electron Microscope. PM2.5 concentration ranged between 22.3 and 70.5 μgm-3 in daily samples, whereas those varied between 52.0 and 106 μgm-3 in weekly samples. Lead, potassium, aluminum, zinc and iron have conspicuously higher concentrations with Pb concentration exceeding above the annual limit of 50 ngm-3 in four samples. First results show a trend of corresponding concentrations of chemical elements originated from anthropogenic and geogenic sources. The biogenic particles are a minor fraction of the total particulate aerosols. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectory analysis of air parcels indicate that the air mass for the low loaded days originate from eastern directions including the region of the gulf of Bengal, where as high aerosols concentrations in cases of air masses arriving from north-western direction transporting the air pollutants from the Gangetic Plain towards Varanasi. Black carbon (BC) concentration, measured using an microaethalometer (AE-51), exhibit a strong variability (4.4 to 8.4 μg m-3) in the University campus which are ˜20-40% lower than those measured in the Varanasi city. The carbon content was found to be high with soot particles constituting the largest part in these samples and exist as single particle as well as attachment to other particles

  10. 30-year lidar observations of the stratospheric aerosol layer state over Tomsk (Western Siberia, Russia)

    Science.gov (United States)

    Zuev, Vladimir V.; Burlakov, Vladimir D.; Nevzorov, Aleksei V.; Pravdin, Vladimir L.; Savelieva, Ekaterina S.; Gerasimov, Vladislav V.

    2017-02-01

    There are only four lidar stations in the world which have almost continuously performed observations of the stratospheric aerosol layer (SAL) state over the last 30 years. The longest time series of the SAL lidar measurements have been accumulated at the Mauna Loa Observatory (Hawaii) since 1973, the NASA Langley Research Center (Hampton, Virginia) since 1974, and Garmisch-Partenkirchen (Germany) since 1976. The fourth lidar station we present started to perform routine observations of the SAL parameters in Tomsk (56.48° N, 85.05° E, Western Siberia, Russia) in 1986. In this paper, we mainly focus on and discuss the stratospheric background period from 2000 to 2005 and the causes of the SAL perturbations over Tomsk in the 2006-2015 period. During the last decade, volcanic aerosol plumes from tropical Mt. Manam, Soufrière Hills, Rabaul, Merapi, Nabro, and Kelut and extratropical (northern) Mt. Okmok, Kasatochi, Redoubt, Sarychev Peak, Eyjafjallajökull, and Grímsvötn were detected in the stratosphere over Tomsk. When it was possible, we used the NOAA HYSPLIT trajectory model to assign aerosol layers observed over Tomsk to the corresponding volcanic eruptions. The trajectory analysis highlighted some surprising results. For example, in the cases of the Okmok, Kasatochi, and Eyjafjallajökull eruptions, the HYSPLIT air mass backward trajectories, started from altitudes of aerosol layers detected over Tomsk with a lidar, passed over these volcanoes on their eruption days at altitudes higher than the maximum plume altitudes given by the Smithsonian Institution Global Volcanism Program. An explanation of these facts is suggested. The role of both tropical and northern volcanic eruptions in volcanogenic aerosol loading of the midlatitude stratosphere is also discussed. In addition to volcanoes, we considered other possible causes of the SAL perturbations over Tomsk, i.e., the polar stratospheric cloud (PSC) events and smoke plumes from strong forest fires. At least

  11. Transport of dust and anthropogenic aerosols across Alexandria, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    El-Askary, H. [Chapman Univ., Orange, CA (United States). Dept. of Physics Computational Science and Engineering; Chapman Univ., Orange, CA (United States). Center of Excellence in Earth Observing; Alexandria Univ. (Egypt). Dept. of Environmental Sciences; National Authority for Remote Sensing and Space Science (NARSS), Cairo (Egypt); Farouk, R. [Alexandria Univ. (Egypt). Dept. of Environmental Sciences; Ichoku, C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Climate and Radiation Branch; Kafatos, M. [Chapman Univ., Orange, CA (United States). Dept. of Physics Computational Science and Engineering; Chapman Univ., Orange, CA (United States). Center of Excellence in Earth Observing

    2009-07-01

    The flow of pollutants from Europe and desert dust to Europe from the Sahara desert both affects the air quality of the coastal regions of Egypt. As such, measurements from both ground and satellite observations assume great importance to ascertain the conditions and flow affecting the Nile Delta and the large city of Alexandria. We note that special weather conditions prevailing in the Mediterranean Sea result in a westerly wind flow pattern during spring and from North to South during the summer. Such flow patterns transport dust-loaded and polluted air masses from the Sahara desert and Europe, respectively, through Alexandria, and the Nile Delta in Egypt. We have carried out measurements acquired with a ground- based portable sun photometer (Microtops II) and the satellite-borne TERRA/Moderate Resolution Imaging Spectroradiometer (MODIS) sensor during the periods of October 1999-August 2001 and July 2002-September 2003. These measurements show a seasonal variability in aerosol optical depth (AOD) following these flow patterns. Maximum aerosol loadings accompanied by total precipitable water vapor (W) enhancements are observed during the spring and summer seasons. Pronounced changes have been observed in the Aangstroem exponent ({alpha}) derived from ground-based measurements over Alexandria (31.14 N, 29.59 E) during both dust and pollution periods. We have followed up the observations with a 3-day back-trajectories model to trace the probable sources and pathways of the air masses causing the observed aerosol loadings. We have also used other NASA model outputs to estimate the sea salt, dust, sulfates and black carbon AOD spatial distributions during different seasons. Our results reveal the probable source regions of these aerosol types, showing agreement with the trajectory and Aangstroem exponent analysis results. It is confirmed that Alexandria is subjected to different atmospheric conditions involving dust, pollution, mixed aerosols and clean sky. (orig.)

  12. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  13. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    OpenAIRE

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2013-01-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, w...

  14. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    OpenAIRE

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in...

  15. The anthropogenic influence on carbonaceous aerosol in the European background

    Energy Technology Data Exchange (ETDEWEB)

    May, Barbara; Wagenbach, Dietmar; Hammer, Samuel (Institut fuer Umweltphysik, Univ. Heidelberg (Germany)). e-mail: barbara.may@iup.uni-heidelberg.de; Steier, Peter (VERA laboratory, Univ. of Vienna (Austria)); Puxbaum, Hans (Inst. for Chemical Technologies and Analytics, Vienna Univ. of Technology, Vienna (Austria)); Pio, Casimiro (CESAM and Dept. of Environment, Univ. of Aveiro (Portugal))

    2009-07-01

    To constrain the relatively uncertain anthropogenic impact on the organic aerosol load, radiocarbon analyses were performed on aerosol samples, collected year-round, at six non-urban sites including a maritime background and three remote mountain stations, lying on a west-east transect over Western Europe. From a crude three component model supported by TOC and levoglucosan filter data, the fossil fuel, biomass burning and biogenic TOC fraction are estimated, showing at all stations year-round, a relatively constant fossil fuel fraction of around (26 +- 6)%, a dominant biogenic contribution of on average (73 +- 7)% in summer and the continental as well as the maritime background TOC to be only about 50% biogenic. Assuming biomass burning as completely anthropogenic, the carbonaceous aerosol concentration at the mountain sites was found to have increased by a factor of up to (1.4 +- 0.2) in summer and up to (2.5 +- 1.0) in winter. This figure is significantly lower, however, than the respective TOC change since pre-industrial times seen in an Alpine ice core. Reconciling both observations would require an increase, since pre-industrial times, of the background biogenic aerosol load, which is estimated at a factor of 1.3-1.7.

  16. The anthropogenic influence on carbonaceous aerosol in the European background

    Energy Technology Data Exchange (ETDEWEB)

    May, Barbara; Wagenbach, Dietmar; Hammer, Samuel (Inst. fuer Umweltphysik, Univ. Heidelberg (Germany)). e-mail: barbara.may@iup.uni-heidelberg.de; Steier, Peter (VERA laboratory, Univ. of Vienna (Austria)); Puxbaum, Hans (Inst. for Chemical Technologies and Analytics, Vienna Univ. of Technology (Austria)); Pio, Casimiro (CESAM and Dept. of Environment, Univ. of Aveiro (Portugal))

    2008-07-01

    To constrain the relatively uncertain anthropogenic impact on the organic aerosol load, radiocarbon analyses were performed on aerosol samples, collected year-round, at six non-urban sites including a maritime background and three remote mountain stations, lying on a west-east transect over Western Europe. From a crude three component model supported by TOC and levoglucosan filter data, the fossil fuel, biomass burning and biogenic TOC fraction are estimated, showing at all stations year-round, a relatively constant fossil fuel fraction of around (26 +- 6)% , a dominant biogenic contribution of on average (73 +- 7)% in summer and the continental as well as the maritime background TOC to be only about 50% biogenic. Assuming biomass burning as completely anthropogenic, the carbonaceous aerosol concentration at the mountain sites was found to have increased by a factor of up to (1.4 +- 0.2) in summer and up to (2.5 +- 1.0) in winter. This figure is significantly lower, however, than the respective TOC change since pre-industrial times seen in an Alpine ice core. Reconciling both observations would require an increase, since pre-industrial times, of the background biogenic aerosol load, which is estimated at a factor of 1.3-1.7

  17. Aerosol sampler for analysis of fine and ultrafine aerosols

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Čapka, Lukáš; Večeřa, Zbyněk

    2018-01-01

    Roč. 1020 (2018), s. 123-133 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA14-25558S Institutional support: RVO:68081715 Keywords : atmospheric aerosols * aerosol collection * chemical composition Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  18. Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions.

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-05-27

    Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious.

  19. Ganges Valley Aerosol Experiment: Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, VR

    2010-06-21

    emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

  20. Three-Dimensional Physical and Optical Characteristics of Aerosols over Central China from Long-Term CALIPSO and HYSPLIT Data

    Directory of Open Access Journals (Sweden)

    Xin Lu

    2018-02-01

    Full Text Available Aerosols greatly influence global and regional atmospheric systems, and human life. However, a comprehensive understanding of the source regions and three-dimensional (3D characteristics of aerosol transport over central China is yet to be achieved. Thus, we investigate the 3D macroscopic, optical, physical, and transport properties of the aerosols over central China based on the March 2007 to February 2016 data obtained from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO mission and the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT model. Our results showed that approximately 60% of the aerosols distributed over central China originated from local areas, whereas non-locally produced aerosols constituted approximately 40%. Anthropogenic aerosols constituted the majority of the aerosol pollutants (69% that mainly distributed less than 2.0 km above mean sea level. Natural aerosols, which are mainly composed of dust, accounted for 31% of the total aerosols, and usually existed at an altitude higher than that of anthropogenic aerosols. Aerosol particles distributed in the near surface were smaller and more spherical than those distributed above 2.0 km. Aerosol optical depth (AOD and the particulate depolarization ratio displayed decreasing trends, with a total decrease of 0.11 and 0.016 from March 2007 to February 2016, respectively. These phenomena indicate that during the study period, the extinction properties of aerosols decreased, and the degree of sphericity in aerosol particles increased. Moreover, the annual anthropogenic and natural AOD demonstrated decreasing trends, with a total decrease of 0.07 and 0.04, respectively. This study may benefit the evaluation of the effects of the 3D properties of aerosols on regional climates.

  1. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  2. Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber

    Science.gov (United States)

    Kalogridis, A.-C.; Popovicheva, O. B.; Engling, G.; Diapouli, E.; Kawamura, K.; Tachibana, E.; Ono, K.; Kozlov, V. S.; Eleftheriadis, K.

    2018-07-01

    Vegetation open fires constitute a significant source of particulate pollutants on a global scale and play an important role in both atmospheric chemistry and climate change. To better understand the emission and aging characteristics of smoke aerosols, we performed small-scale fire experiments using the Large Aerosol Chamber (LAC, 1800 m3) with a focus on biomass burning from Siberian boreal coniferous forests. A series of burn experiments were conducted with typical Siberian biomass (pine and debris), simulating separately different combustion conditions, namely, flaming, smoldering and mixed phase. Following smoke emission and dispersion in the combustion chamber, we investigated aging of aerosols under dark conditions. Here, we present experimental data on emission factors of total, elemental and organic carbon, as well as individual organic compounds, such as anhydrosugars, phenolic and dicarboxylic acids. We found that total carbon accounts for up to 80% of the fine mode (PM2.5) smoke aerosol. Higher PM2.5 emission factors were observed in the smoldering compared to flaming phase and in pine compared to debris smoldering phase. For low-temperature combustion, organic carbon (OC) contributed to more than 90% of total carbon, whereas elemental carbon (EC) dominated the aerosol composition in flaming burns with a 60-70% contribution to the total carbon mass. For all smoldering burns, levoglucosan (LG), a cellulose decomposition product, was the most abundant organic species (average LG/OC = 0.26 for pine smoldering), followed by its isomer mannosan or dehydroabietic acid (DA), an important constituent of conifer resin (DA/OC = 0.033). A levoglucosan-to-mannosan ratio of about 3 was observed, which is consistent with ratios reported for coniferous biomass and more generally softwood. The rates of aerosol removal for OC and individual organic compounds were investigated during aging in the chamber in terms of mass concentration loss rates over time under dark

  3. Regional aerosol emissions and temperature response: Local and remote climate impacts of regional aerosol forcing

    Science.gov (United States)

    Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen

    2017-04-01

    Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential

  4. Comparison of aerosol extinction between lidar and SAGE II over Gadanki, a tropical station in India

    Directory of Open Access Journals (Sweden)

    P. Kulkarni

    2015-03-01

    Full Text Available An extensive comparison of aerosol extinction has been performed using lidar and Stratospheric Aerosol and Gas Experiment (SAGE II data over Gadanki (13.5° N, 79.2° E, a tropical station in India, following coincident criteria during volcanically quiescent conditions from 1998 to 2005. The aerosol extinctions derived from lidar are higher than SAGE II during all seasons in the upper troposphere (UT, while in the lower-stratosphere (LS values are closer. The seasonal mean percent differences between lidar and SAGE II aerosol extinctions are > 100% in the UT and Ba (sr−1, the ratio between aerosol backscattering and extinction, are needed for the tropics for a more accurate derivation of aerosol extinction.

  5. Deposition of inorganic particulate aerosols to vegetation - a new method of estimating

    International Nuclear Information System (INIS)

    Kwiecien, M.

    1997-01-01

    A new, direct method was developed for quantifying inorganic particulate aerosols trapped by the forest canopy, and for determining the resulting input of elements to a forest ecosystem. The method is based on direct measurements of only six parameters. Using this method, it is possible to determine the load of aerosols trapped by the forest canopy and deposited to leaves, as well as the load of aerosols falling to the forest floor by impaction on plants. It is also possible to estimate the aerosol input of soluble and insoluble elements to an ecosystem. With this new method it was found that the load of aerosols trapped by the canopy of a mixed forest locate din the Rybnik Coal Basin averaged 189.0 kg x ha -1 x growing season or 39.3% of the total inorganic particles reaching the ecosystem. The trapped aerosols provided 13.4 kg x ha -1 of soluble nitrogen and 0.91 kg x ha -1 of insoluble nitrogen over the growing season. At the same time, the input of soluble nitrogen from the atmosphere with rainfall to an open area averaged 13.9 kg x ha -1 , and the input of insoluble nitrogen with inorganic dusts averaged 1.4. kg x ha -1

  6. Mass yields of secondary organic aerosols from the oxidation of α-pinene and real plant emissions

    Directory of Open Access Journals (Sweden)

    J. N. Smith

    2011-02-01

    Full Text Available Biogenic volatile organic compounds (VOCs are a significant source of global secondary organic aerosol (SOA; however, quantifying their aerosol forming potential remains a challenge. This study presents smog chamber laboratory work, focusing on SOA formation via oxidation of the emissions of two dominant tree species from boreal forest area, Scots pine (Pinus sylvestris L. and Norway spruce (Picea abies, by hydroxyl radical (OH and ozone (O3. Oxidation of α-pinene was also studied as a reference system. Tetramethylethylene (TME and 2-butanol were added to control OH and O3 levels, thereby allowing SOA formation events to be categorized as resulting from either OH-dominated or O3-initiated chemistry. SOA mass yields from α-pinene are consistent with previous studies while the yields from the real plant emissions are generally lower than that from α-pinene, varying from 1.9% at an aerosol mass loading of 0.69 μg m−3 to 17.7% at 26.0 μg m−3. Mass yields from oxidation of real plant emissions are subject to the interactive effects of the molecular structures of plant emissions and their reaction chemistry with OH and O3, which lead to variations in condensable product volatility. SOA formation can be reproduced with a two-product gas-phase partitioning absorption model in spite of differences in the source of oxidant species and product volatility in the real plant emission experiments. Condensable products from OH-dominated chemistry showed a higher volatility than those from O3-initiated systems during aerosol growth stage. Particulate phase products became less volatile via aging process which continued after input gas-phase oxidants had been completely consumed.

  7. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    Science.gov (United States)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; hide

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  8. Sodium aerosols and vapour trapping

    International Nuclear Information System (INIS)

    Julien-Dolias, M.; Pradel, P.

    1986-01-01

    This paper gives a survey of the parameters influencing aerosols behaviour in argon cover gas, production and evolution. A comparison is given between experimental results obtained on large pools and theoretical calculations obtained with the code ''Aerosols A2'' in the field of separation in a pipe and deposit on cold surfaces

  9. Mount St. Helens aerosol evolution

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, V.R.; Farlow, N.H.

    1982-08-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  10. Mount St. Helens aerosol evolution

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, V.R.; Farlow, N.H.; Fong, W.; Snetsinger, K.G.; Ferry, G.V.; Hayes, D.M.

    1982-09-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples show that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  11. AEROSOL VARIABILITY OBSERVED WITH RPAS

    Directory of Open Access Journals (Sweden)

    B. Altstädter

    2013-08-01

    Full Text Available To observe the origin, vertical and horizontal distribution and variability of aerosol particles, and especially ultrafine particles recently formed, we plan to employ the remotely piloted aircraft system (RPAS Carolo-P360 "ALADINA" of TU Braunschweig. The goal of the presented project is to investigate the vertical and horizontal distribution, transport and small-scale variability of aerosol particles in the atmospheric boundary layer using RPAS. Two additional RPAS of type MASC of Tübingen University equipped with turbulence instrumentation add the opportunity to study the interaction of the aerosol concentration with turbulent transport and exchange processes of the surface and the atmosphere. The combination of different flight patterns of the three RPAS allows new insights in atmospheric boundary layer processes. Currently, the different aerosol sensors are miniaturized at the Leibniz Institute for Tropospheric Research, Leipzig and together with the TU Braunschweig adapted to fit into the RPAS. Moreover, an additional meteorological payload for measuring temperature, humidity and turbulence properties is constructed by Tübingen University. Two condensation particle counters determine the total aerosol number with a different lower detection threshold in order to investigate the horizontal and vertical aerosol variability and new particle formation (aerosol particles of some nm diameter. Further the aerosol size distribution in the range from about 0.300 to ~5 μm is given by an optical particle counter.

  12. Aerosol science: theory and practice

    International Nuclear Information System (INIS)

    Williams, M.M.R.; Loyalka, S.K.

    1991-01-01

    The purpose of this book is twofold. First, it is intended to give a thorough treatment of the fundamentals of aerosol behavior with rigorous proofs and detailed derivations of the basic equations and removal mechanisms. Second, it is intended to provide practical examples with special attention to radioactive particles and their distribution in size following a radioactive release arising from an accident with a nuclear system. We start with a brief introduction to the applications of aerosol science and the characteristics of aerosols in Chapter 1. In Chapter 2, we devote considerable attention to single and two particle motion with respect to both translation and rotation. Chapter 3 contains extensive discussion of the aerosol general dynamical equation and the dependences of aerosol distributions on size, shape, space, composition, radioactivity, and charge. Important particle rate processes of coagulation, condensation, and deposition/resuspension are discussed in the chapters 4, 6 and 7, respectively. In Chapter 5, we provide a thorough treatment of the analytical and numerical methods used in solving the various forms of the aerosol dynamical equation. We discuss the importance and applications of aerosol science to nuclear technology and, in particular, the nuclear source term in Chapter 8. Our focus in this chapter is on discussions of nuclear accidents that can potentially release large amount of radioactivity to environment. We also discuss the progress that has been made in understanding the natural and engineered aerosol processes that limit or affect such releases. (author)

  13. Aerosol azacytidine inhibits orthotopic lung cancers in mice through Its DNA demethylation and gene reactivation effects.

    Directory of Open Access Journals (Sweden)

    Xuan Qiu

    Full Text Available We devised an aerosol based demethylation therapy to achieve therapeutic efficacy in premalignant or in situ lesions of lung cancer, without systemic toxicity. Optimum regimens of aerosolized azacytidine (Aza were designed and used in orthotopic human non-small cell lung cancer xenograft models. The therapeutic efficacy and toxicity of aerosol Aza were compared with intravenously administered Aza. We observed that 80% of the droplets of the aerosol Aza measured ∼0.1-5 microns, which resulted in deposition in the lower bronchial airways. An animal model that phenocopies field carcinogeneisis in humans was developed by intratracheal inoculation of the human lung cancer cells in mice, thus resulting in their distribution throughout the entire airway space. Aerosolized Aza significantly prolonged the survival of mice bearing endo-bronchial lung tumors. The aerosol treatment did not cause any detectable lung toxicity or systemic toxicity. A pre-pharmacokinetic study in mice demonstrated that lung deposition of aerosolized Aza was significantly higher than the intravenous route. Lung tumors were resected after aerosol treatment and the methylation levels of 24 promoters of tumor-suppresser genes related to lung cancer were analyzed. Aerosol Aza significantly reduced the methylation level in 9 of these promoters and reexpressed several genes tested. In conclusion, aerosol Aza at non-cytotoxic doses appears to be effective and results in DNA demethylation and tumor suppressor gene re-expression. The therapeutic index of aerosol Aza is >100-fold higher than that of intravenous Aza. These results provide a preclinical rationale for a phase I clinical trial of aerosol Aza to be initiated at our Institution.

  14. Climatological aspects of aerosol optical properties in Northern Greece

    Directory of Open Access Journals (Sweden)

    E. Gerasopoulos

    2003-01-01

    Full Text Available Measurements of aerosol optical properties (aerosol optical depth, scattering and backscattering coefficients have been conducted at two ground-based sites in Northern Greece, Ouranoupolis (40° 23' N, 23° 57' E, 170 m a.s.l. and Thessaloniki (40° 38' N, 22° 57' E, 80 m a.s.l., between 1999 and 2002. The frequency distributions of the observed parameters have revealed the presence of individual modes of high and low values, indicating the influence from different sources. At both sites, the mean aerosol optical depth at 500 nm was 0.23. Values increase considerably during summer when they remain persistently between 0.3 and 0.5, going up to 0.7-0.8 during specific cases. The mean value of 65±40 Mm-1 of the particle scattering coefficient at 550 nm reflects the impact of continental pollution in the regional boundary layer. Trajectory analysis has shown that higher values of aerosol optical depth and the scattering coefficient are found in the east sector (former Soviet Union countries, eastern Balkan countries, whereas cleaner conditions are found for the NW direction. The influence of Sahara dust events is clearly reflected in the Ångström exponents. About 45-60% of the observed diurnal variation of the optical properties was attributed to the growth of aerosols with humidity, while the rest of the variability is in phase with the evolution of the sea-breeze cell. The contribution of local pollution is estimated to contribute 35±10% to the average aerosol optical depth at the Thessaloniki site during summer. Finally, the aerosol scale height (aerosol optical depth divided by scattering coefficient was found to be related to the height of the boundary layer with values between 0.5-1 km during winter and up to 2.5-3 km during summer.

  15. Premonsoon aerosol optical properties from AERONET retrievals and its probable source fields in Eastern India urban environment (Kolkata): evaluating spatial variability and its comparison with MODIS retrievals.

    Science.gov (United States)

    Priyadharshini, B.; Verma, S.

    2015-12-01

    Aerosol characteristics were examined using Aerosol Robotic Network (AERONET) and MODIS retrievals (Moderate Resolution Imaging Spectroradiometer) during the period, February to June 2009 in Eastern India, Kolkata (KOL). AERONET retrievals results for the study period manifested an aerosol optical depth - AOD (Angstrom exponent - α) in the range 0.65 - 0.81 (0.66 - 0.97) with an intermittent influence of dust. A substantial dominance of finer (coarser) particles were found in February (April) and an equal dominance of both in June. Aerosol size distribution (ASD) revealed a high volume in fine mode during June and that in April for the coarse mode. A few areas of in and around KOL, Odisha, and Sikkim influenced AOD ascertained using the Potential source contribution function (PSCF). Cluster analysis revealed preferred pathway as continental during February and both continental and marine during March to June. Episodic days identified for dust occurrence was examined and was further corroborated by MODIS Rapid response images. Further, comparative results of seven collateral AERONET sites in India, revealed a high AOD (α) at KOL during February to May (March and April) with Fine mode - FM (Coarse mode - CM) AOD of KOL being high during March and April (February to April) than other locations. Single scattering albedo (SSA) at 0.67 μm at KOL was slightly lower during February and March, with being equivalent and or higher than other sites during April to June. Comparison of AERONET - MODIS AOD at 0.55 µm for KOL (entire study period) for the collateral days revealed underestimation of MODIS during February to April and overestimation during May and June than AERONET. AERONET - MODIS AOD comparison for seven locations, during low (February) and high (June) aerosol loading, showed good agreement for few stations and divulged discrepancy for other sites.

  16. Water-soluble ions and carbon content of size-segregated aerosols in New Delhi, India: direct and indirect influences of firework displays.

    Science.gov (United States)

    Kumar, Pawan; Kumar, Rakesh; Yadav, Sudesh

    2016-10-01

    The particle size distribution and water-soluble inorganic ion (WSII) and carbonaceous species in size-segregated aerosols, Dp firework displays in New Delhi, India. The firework activity had the maximum contribution to the mass loading of PM 0.95 (786 μg/m 3 ) followed by PM 0.95-1.5 (216 μg/m 3 ) with all other three fractions accounting to a total of 214 μg/m 3 . The percentage contributions of WSII to the total mass of aerosols were highest in first two size fractions (39 and 40 %, respectively), compared to other fractions. The firework marker ion (Mg 2+ , Cl - , and K + ) mass concentration shows higher values in PM 0.95 during Diwali compared to before Diwali period. The mass size distribution of particles, NH 4 + , K + , Cl - , SO 4 2- , Mg 2+ , and NO 3 - , also showed changes on the Diwali night compared to previous and after days. The high Cl - /Na + (5.6) and OC/EC (3.4) ratio of PM 0.95 can be used as the indicators of firework displays. The lowering of mixing height on Diwali night to 50 m compared to before (277 mts) and after (269 mts) Diwali period further concentrated the aerosols in ambient atmosphere. Therefore, the firework display not only released the gaseous or elemental constituent but also influenced the temperature profile and both put together result in high aerosol concentrations, WSII, OC, and BC contents in ambient atmosphere. The alveolar, respirable, and inhalable fractions accounted for 64.6, 90.8, and 97.8 %, respectively, of the total PM 10 mass. People stay exposed to such high pollution level in short span of 6-8 h and experience adverse health impacts due to high mass concentrations and the chemical components of fine aerosols.

  17. Moderate Imaging Resolution Spectroradiometer (MODIS) Aerosol Optical Depth Retrieval for Aerosol Radiative Forcing

    Science.gov (United States)

    Asmat, A.; Jalal, K. A.; Ahmad, N.

    2018-02-01

    The present study uses the Aerosol Optical Depth (AOD) retrieved from Moderate Imaging Resolution Spectroradiometer (MODIS) data for the period from January 2011 until December 2015 over an urban area in Kuching, Sarawak. The results show the minimum AOD value retrieved from MODIS is -0.06 and the maximum value is 6.0. High aerosol loading with high AOD value observed during dry seasons and low AOD monitored during wet seasons. Multi plane regression technique used to retrieve AOD from MODIS (AODMODIS) and different statistics parameter is proposed by using relative absolute error for accuracy assessment in spatial and temporal averaging approach. The AODMODIS then compared with AOD derived from Aerosol Robotic Network (AERONET) Sunphotometer (AODAERONET) and the results shows high correlation coefficient (R2) for AODMODIS and AODAERONET with 0.93. AODMODIS used as an input parameters into Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model to estimate urban radiative forcing at Kuching. The observed hourly averaged for urban radiative forcing is -0.12 Wm-2 for top of atmosphere (TOA), -2.13 Wm-2 at the surface and 2.00 Wm-2 in the atmosphere. There is a moderate relationship observed between urban radiative forcing calculated using SBDART and AERONET which are 0.75 at the surface, 0.65 at TOA and 0.56 in atmosphere. Overall, variation in AOD tends to cause large bias in the estimated urban radiative forcing.

  18. The Influence of Aerosol Hygroscopicity on Retrieving the Aerosol Extincting Coefficient from MPL Data

    Science.gov (United States)

    Zhao, G.; Zhao, C.

    2016-12-01

    Micro-pulse Lidar (MPL) measurements have been widely used to profile the ambient aerosol extincting coefficient(). Lidar Ratio (LR) ,which highly depends on the particle number size distribution (PNSD) and aerosol hygroscopicity, is the most important factor to retrieve the profile. A constant AOD constrained LR is usually used in current algorithms, which would lead to large bias when the relative humidity (RH) in the mixed layer is high. In this research, the influences of PNSD, aerosol hygroscopicity and RH profiles on the vertical variation of LR were investigated based on the datasets from field measurements in the North China Plain (NCP). Results show that LR can have an enhancement factor of more than 120% when the RH reaches to 92%. A new algorithm of retrieving the profile is proposed based on the variation of LR due to aerosol hygroscopicity. The magnitude and vertical structures of retrieved using this method can be significantly different to that of the fiexed LR method. The relative difference can reach up to 40% when the RH in the mixed layer is higher than 90% . Sensitivity studies show that RH profile and PNSD affect most on the retrieved by fiexed LR method. In view of this, a scheme of LR enhancement factor by RH is proposed in the NCP. The relative differnce of the calculated between using this scheme and the new algorithm with the variable LR can be less than 10%.

  19. Global validation of two-channel AVHRR aerosol optical thickness retrievals over the oceans

    International Nuclear Information System (INIS)

    Liu Li; Mishchenko, Michael I.; Geogdzhayev, Igor; Smirnov, Alexander; Sakerin, Sergey M.; Kabanov, Dmitry M.; Ershov, Oleg A.

    2004-01-01

    The paper presents validation results for the aerosol optical thickness derived by applying a two-channel retrieval algorithm to Advanced Very High Resolution Radiometer (AVHRR) radiance data. The satellite retrievals are compared with ship-borne sun-photometer results. The comparison of spatial and temporal statistics of the AVHRR results and the ship measurements shows a strong correlation. The satellite retrieval results obtained with the original algorithm for a wavelength of 0.55μm are systematically higher than the sun-photometer measurements in the cases of low aerosol loads. The ensemble averaged satellite-retrieved optical thickness overestimates the ensemble averaged sun-photometer data by about 11% with a random error of about 0.04. Increasing the diffuse component of the ocean surface reflectance from 0.002 to 0.004 in the AVHRR algorithm produces a better match, with the ensemble-averaged AVHRR-retrieved optical thickness differing by only about 3.6% from the sun-photometer truth and having a small offset of 0.03

  20. Aerosol-foam interaction experiments

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Luscombe, C.DeM.; Mitchell, J.P.

    1990-03-01

    Foam treatment offers the potential to clean gas streams containing radioactive particles. A large decontamination factor has been claimed for the removal of airborne plutonium dust when spraying a commercially available foam on the walls and horizontal surfaces of an alpha-active room. Experiments have been designed and undertaken to reproduce these conditions with a non-radioactive simulant aerosol. Careful measurements of aerosol concentrations with and without foam treatment failed to provide convincing evidence to support the earlier observation. The foam may not have been as well mixed with the aerosol in the present studies. Further work is required to explore more efficient mixing methods, including systems in which the aerosol steam is passed through the foam, rather than merely spraying foam into the path of the aerosol. (author)

  1. Aerosol generation from Kerosene fires

    International Nuclear Information System (INIS)

    Jordan, S.; Lindner, W.

    1981-01-01

    The course of solvent surface fires is dependent on the surface area on fire; depth of pool and solvent composition do not influence the fire rate. But the fire rate increases rapidly with the burning area. The residual oxygen concentration after a fire in a closed container is dependent on the violence of the fire, i.e. on the burning surface. Moreover the ending of the fire is influenced by the TBP-concentration of the solvent. With sufficient supply of solvent the TBP-concentration changes only slightly during the fire, so that a fire at 14% O 2 -concentration is extinguished within the container. With the TBP-concentration changing considerably, i.e. little mass, a fire with a similar burning surface is already extinguished at an O 2 -content of 18%. The aerosol generation depends on the fire rate, and so it is higher in free atmosphere than in closed containers. The soot production in the mixture fire (kerosene /TBP 70/30) is higher by a factor 7 than in the pure kerosene fire. Primary soot-particles have a diameter of approximately 0,05 μm and agglomerate rapidly into aggregates of 0,2-0,4 μm. (orig.) [de

  2. Chamber for Aerosol Deposition of Bioparticles

    Science.gov (United States)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    Laboratory apparatus is depicted that is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles. The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column. To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced Po-210 antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent

  3. Proceedings of the 1998 Scientific Conference on Obscuration and Aerosol Research

    National Research Council Canada - National Science Library

    Coverstone, Amy

    1999-01-01

    ...: Aerosol Particle Generation and Dynamics, Aerosol Characterization Methods-Aerosol Samplers and Collectors, Preparing, Aerosolizing and Characterizing Erwinia Herbicola, and Optical Properties of Aerosols...

  4. Beam loading

    OpenAIRE

    Boussard, Daniel

    1987-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superco...

  5. Simulation of Cloud-aerosol Lidar with Orthogonal Polarization (CALIOP Attenuated Backscatter Profiles Using the Global Model of Aerosol Processes (GLOMAP

    Directory of Open Access Journals (Sweden)

    Young Stuart

    2016-01-01

    Full Text Available To permit the calculation of the radiative effects of atmospheric aerosols, we have linked our aerosol-chemical transport model (CTMGLOMAP to a new radiation module (UKCARADAER. In order to help assess and improve the accuracy of the radiation code, in particular the height dependence of the predicted scattering, we have developed a module that simulates attenuated backscatter (ABS profiles that would be measured by the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP if it were to sample an atmosphere with the same aerosol loading as predicted by the CTM. Initial results of our comparisons of the predicted ABS profiles with actual CALIOP data are encouraging but some differences are noted, particularly in marine boundary layers where the scattering is currently under-predicted and in dust layers where it is often over-predicted. The sources of these differences are being investigated.

  6. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, John; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Art; Shilling, John E.; Shrivastava, ManishKumar B.; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer M.; Wilson, Jacqueline M.; Zaveri, Rahul A.; Zelenyuk-Imre, Alla

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  7. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    Science.gov (United States)

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-07

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  8. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    Science.gov (United States)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  9. Effects of Aerosol on Cloud Liquid Water Path: Statistical Method a Potential Source for Divergence in Past Observation Based Correlative Studies

    Directory of Open Access Journals (Sweden)

    Ousmane Sy Savane

    2015-03-01

    Full Text Available Studies show a divergence in correlation between aerosol and cloud proxies, which has been thought of in the past as the results of varying physical mechanisms. Though modeling studies have supported this idea, from an observational standpoint it is difficult to attribute with confidence the correlations to specific physical mechanisms. We explore a methodology to assess the correlation between cloud water path and aerosol optical depth using Moderate-resolution Imaging Spectroradiometer (MODIS Aqua retrieved aerosol and cloud properties for absorbing and non-absorbing aerosol types over land and over the Atlantic Ocean for various meteorological conditions. The data covers a three-month period, June through August, during which different aerosol types are predominant in specific regions. Our approach eliminates outliers; sorts the data into aerosol bins; and the mean Aerosol Optical Depth (AOD value for each bin and the corresponding mean Cloud Water Path (CWP value are determined. The mean CWP is plotted against the mean AOD. The response curve for all aerosol types shows a peak CWP value corresponding to an aerosol loading value AODpeak. The peak is used to divide the total range of aerosol loading into two sub ranges. For AOD value below AODpeak, mean CWP and mean AOD are positively correlated. The correlation between mean CWP and mean AOD is negative for aerosol loading above AODpeak. Irrespective of aerosol type, atmospheric water vapor content and lower tropospheric static stability, the peak observed for each aerosol type seems to describe a universal feature that calls for further investigation. It has been observed for a variety of geographical locations and different seasons.

  10. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  11. Atmospheric and aerosol chemistry

    International Nuclear Information System (INIS)

    McNeill, V. Faye; Ariya, Parisa A.; McGill Univ. Montreal, QC

    2014-01-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  12. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-11-01

    aerosol processing (O : C ≅ 0.25 to O : C ≅ 0.6, no remarkable change is observed in the H : C ratio (~1.35. Such a result contrasts strongly with previous observations of chemical ageing of both urban and Amazonian biogenic aerosols. At higher levels of processing (O : C > 0.6, the H : C ratio changes with a H : C / O : C slope of −0.5, possibly due to the development of a combination of BB (H : C / O : C slope = 0 and biogenic (H : C /O :C slope =−1 organic aerosol (OA. An analysis of the ΔOA /ΔCO mass ratios yields very little enhancement in the OA loading with atmospheric processing, consistent with previous observations. These results indicate that negligible secondary organic aerosol (SOA formation occurs throughout the observed BB plume processing, or that SOA formation is almost entirely balanced by OA volatilization. Positive matrix factorization (PMF of the organic aerosol spectra resulted in three factors: fresh BBOA, aged BBOA, and low-volatility oxygenated organic aerosol (LV-OOA. Analysis of the diurnal patterns and correlation with external markers indicates that during the first part of the campaign, OA concentrations are impacted by local fire plumes with some chemical processing occurring in the near-surface layer. During the second part of the campaign, long-range transport of BB plumes above the surface layer, as well as potential SOAs formed aloft, dominates OA concentrations at our ground-based sampling site. This manuscript describes the first ground-based deployment of the aerosol mass spectrometry at a site heavily impacted by biomass burning in the Amazon region, allowing a deeper understanding of aerosol life cycle in this important ecosystem.

  13. DSMC multicomponent aerosol dynamics: Sampling algorithms and aerosol processes

    Science.gov (United States)

    Palaniswaamy, Geethpriya

    The post-accident nuclear reactor primary and containment environments can be characterized by high temperatures and pressures, and fission products and nuclear aerosols. These aerosols evolve via natural transport processes as well as under the influence of engineered safety features. These aerosols can be hazardous and may pose risk to the public if released into the environment. Computations of their evolution, movement and distribution involve the study of various processes such as coagulation, deposition, condensation, etc., and are influenced by factors such as particle shape, charge, radioactivity and spatial inhomogeneity. These many factors make the numerical study of nuclear aerosol evolution computationally very complicated. The focus of this research is on the use of the Direct Simulation Monte Carlo (DSMC) technique to elucidate the role of various phenomena that influence the nuclear aerosol evolution. In this research, several aerosol processes such as coagulation, deposition, condensation, and source reinforcement are explored for a multi-component, aerosol dynamics problem in a spatially homogeneous medium. Among the various sampling algorithms explored the Metropolis sampling algorithm was found to be effective and fast. Several test problems and test cases are simulated using the DSMC technique. The DSMC results obtained are verified against the analytical and sectional results for appropriate test problems. Results show that the assumption of a single mean density is not appropriate due to the complicated effect of component densities on the aerosol processes. The methods developed and the insights gained will also be helpful in future research on the challenges associated with the description of fission product and aerosol releases.

  14. Trends in aerosol optical depth in the Russian Arctic and their links with synoptic climatology

    International Nuclear Information System (INIS)

    Shahgedanova, Maria; Lamakin, Mikhail

    2005-01-01

    Temporal and spatial variability of aerosol optical depth (AOD) are examined using observations of direct solar radiation in the Eurasian Arctic for 1940-1990. AOD is estimated using empirical methods for 14 stations located between 66.2 deg N and 80.6 deg N, from the Kara Sea to the Chukchi Sea. While AOD exhibits a well-known springtime maximum and summertime minimum at all stations, atmospheric turbidity is higher in spring in the western (Kara-Laptev) part of the Eurasian Arctic. Between June and August, the eastern (East Siberian-Chukchi) sector experiences higher transparency than the western part. A statistically significant positive trend in AOD was observed in the Kara-Laptev sector between the late 1950s and the early 1980s predominantly in spring when pollution-derived aerosol dominates the Arctic atmosphere but not in the eastern sector. Although all stations are remote, those with positive trends are located closer to the anthropogenic sources of air pollution. By contrast, a widespread decline in AOD was observed between 1982 and 1990 in the eastern Arctic in spring but was limited to two sites in the western Arctic. These results suggest that the post-1982 decline in anthropogenic emissions in Europe and the former Soviet Union has had a limited effect on aerosol load in the Arctic. The post-1982 negative trends in AOD in summer, when marine aerosol is present in the atmosphere, were more common in the west. The relationships between AOD and atmospheric circulation are examined using a synoptic climatology approach. In spring, AOD depends primarily on the strength and direction of air flow. Thus strong westerly and northerly flows result in low AOD values in the East Siberian-Chukchi sector. By contrast, strong southerly flow associated with the passage of depressions results in high AOD in the Kara-Laptev sector and trajectory analysis points to the contribution of industrial regions of the sub-Arctic. In summer, low pressure gradient or

  15. Impacts of Aerosol-Monsoon Interaction on Rainfall and Circulation over Northern India and the Himalaya Foothills

    Science.gov (United States)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2016-01-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all- India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: 1) control with no aerosol, 2) aerosol radiative effect only and 3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into mesoscale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be substantial and cannot be ignored.

  16. A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations

    Science.gov (United States)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo

    2016-01-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  17. Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming

    Science.gov (United States)

    Koren, I.; Remer, L. A.; Altaratz, O.; Martins, J. V.; Davidi, A.

    2010-01-01

    The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  18. Aerosol-induced changes of convective cloud anvils produce strong climate warming

    Directory of Open Access Journals (Sweden)

    I. Koren

    2010-05-01

    Full Text Available The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm−2. Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing.

    We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvil clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming at top-of-atmosphere.

    Furthermore we introduce the cloud optical depth (τ, cloud height (Z forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene.

    Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds, increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  19. Modification of combustion aerosols in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-07-01

    Combustion aerosols particles are released on large scale into the atmosphere in the industrialized regions as well as in the tropics (by wood fires). The particles are subjected to various aging processes which depend on the size, morphology, and chemical composition of the particles. The interaction of combustion particles with sunlight and humidity as well as adsorption and desorption of volatile material to or from the particles considerably changes their physical and chemical properties and thus their residence time in the atmosphere. This is of importance because combustion particles are known to have a variety of health effects on people. Moreover, atmospheric aerosol particles have an influence on climate, directly through the reflection and absorption of solar radiation and indirectly through modifying the optical properties and lifetime of clouds. In a first step, a field experiment was carried out to study the sources and characteristics of combustion aerosols that are emitted from vehicles in a road tunnel. It was found that most of the fine particles were tail pipe emissions of diesel powered vehicles. The calculation shows that on an average these vehicles emit about 300 mg fine particulate matter per driven kilometer. This emission factor is at least 100 times higher than the mean emission factor estimated for gasoline powered vehicles. Furthermore, it is found that during their residence time in the tunnel, the particles undergo significant changes: The particles change towards a more compact structure. The conclusion is reached that this is mainly due to adsorption of volatile material from the gas phase to the particle surface. In the atmosphere, the life cycle as well as the radiative and chemical properties of an aerosol particle is strongly dependent on its response to humidity. Therefore the hygroscopic behavior of combustion particles emitted from single sources (i.e. from a gasoline and a diesel engine) were studied in laboratory experiments.

  20. Observation of optical properties and sources of aerosols at Buddha's birthplace, Lumbini, Nepal: environmental implications.

    Science.gov (United States)

    Rupakheti, Dipesh; Kang, Shichang; Rupakheti, Maheswar; Cong, Zhiyuan; Tripathee, Lekhendra; Panday, Arnico K; Holben, Brent N

    2018-03-15

    For the first time, aerosol optical properties are measured over Lumbini, Nepal, with CIMEL sunphotometer of the Aerosol Robotic Network (AERONET) program. Lumbini is a sacred place as the birthplace of Lord Buddha, and thus a UNESCO world heritage site, located near the northern edge of the central Indo-Gangetic Plains (IGP) and before the Himalayan foothills (and Himalayas) to its north. Average aerosol optical depth (AOD) is found to be 0.64 ± 0.38 (0.06-3.28) over the sampling period (January 2013-December 2014), with the highest seasonal AOD during the post-monsoon season (0.72 ± 0.44). More than 80% of the daily averaged AOD values, during the monitoring period, are above 0.3, indicating polluted conditions in the region. The levels of aerosol load observed over Lumbini are comparable to those observed at several heavily polluted sites in the IGP. Based on the relationship between AOD and Ångstrom exponent (α), anthropogenic, biomass burning, and mixed aerosols are found to be the most prevalent aerosol types. The aerosol volume-size distribution is bi-modal during all four seasons with modes centered at 0.1-0.3 and 3-4 μm. For both fine and coarse modes, the highest volumetric concentration of ~ 0.08 μm -3  μm -2 is observed during the post-monsoon and pre-monsoon seasons. As revealed by the single-scattering albedo (SSA), asymmetry parameter (AP), and refractive index (RI) analyses, aerosol loading over Lumbini is dominated by absorbing, urban-industrial, and biomass burning aerosols.

  1. A51F-0123: Model Analysis of Tropospheric Aerosol Variability and Sources over the North Atlantic During NAAMES 2015-2016

    Science.gov (United States)

    Liu, Hongyu; Moore, Richard; Hostetler, Chris A.; Ferrare, Richard Anthony; Fairlie, Thomas Duncan; Hu, Youngxiang; Chen, Gao; Hair, Johnathan W.; Johnson, Matthew S.

    2016-01-01

    The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five-year Earth-Venture Suborbital-2 Mission to characterize the plankton ecosystems and their influences on remote marine aerosols, boundary layer clouds, and their implications for climate in the North Atlantic. While marine-sourced aerosols have been shown to make important contributions to surface aerosol loading, cloud condensation nuclei and ice nuclei concentrations over remote marine and coastal regions, it is still a challenge to differentiate the marine biogenic aerosol signal from the strong influence of continental pollution outflow. We examine here the spatiotemporal variability and quantify the sources of tropospheric aerosols over the North Atlantic during the first two phases (November 2015 and May-June 2016) of NAAMES using a state-of-the-art chemical transport model (GEOS-Chem). The model is driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) from the NASA Global Modeling and Assimilation Office (GMAO). It includes sulfate-nitrate-ammonium aerosol thermodynamics coupled to ozone-NOx-hydrocarbon-aerosol chemistry, mineral dust, sea salt, elemental and organic carbon aerosols, and especially a recently implemented parameterization for the marine primary organic aerosol emission. The simulated aerosols over the North Atlantic are evaluated with available satellite (e.g., MODIS) observations of aerosol optical depths (AOD), and aircraft and ship aerosol measurements. We diagnose transport pathways for continental pollution outflow over the North Atlantic using carbon monoxide, an excellent tracer for anthropogenic pollution transport. We also conduct model perturbation experiments to quantify the relative contributions of terrestrial and oceanic sources to the aerosol loading, AOD, and their variability over the North Atlantic.

  2. Theoretical basis for convective invigoration due to increased aerosol concentration

    Directory of Open Access Journals (Sweden)

    Z. J. Lebo

    2011-06-01

    Full Text Available The potential effects of increased aerosol loading on the development of deep convective clouds and resulting precipitation amounts are studied by employing the Weather Research and Forecasting (WRF model as a detailed high-resolution cloud resolving model (CRM with both detailed bulk and bin microphysics schemes. Both models include a physically-based activation scheme that incorporates a size-resolved aerosol population. We demonstrate that the aerosol-induced effect is controlled by the balance between latent heating and the increase in condensed water aloft, each having opposing effects on buoyancy. It is also shown that under polluted conditions, increases in the CCN number concentration reduce the cumulative precipitation due to the competition between the sedimentation and evaporation/sublimation timescales. The effect of an increase in the IN number concentration on the dynamics of deep convective clouds is small and the resulting decrease in domain-averaged cumulative precipitation is shown not to be statistically significant, but may act to suppress precipitation. It is also shown that even in the presence of a decrease in the domain-averaged cumulative precipitation, an increase in the precipitation variance, or in other words, andincrease in rainfall intensity, may be expected in more polluted environments, especially in moist environments.

    A significant difference exists between the predictions based on the bin and bulk microphysics schemes of precipitation and the influence of aerosol perturbations on updraft velocity within the convective core. The bulk microphysics scheme shows little change in the latent heating rates due to an increase in the CCN number concentration, while the bin microphysics scheme demonstrates significant increases in the latent heating aloft with increasing CCN number concentration. This suggests that even a detailed two-bulk microphysics scheme, coupled to a detailed activation scheme, may not be

  3. The GRAPE aerosol retrieval algorithm

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2009-11-01

    Full Text Available The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998, as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE data-set.

    The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  4. Aerosol optical properties and radiative effects: Assessment of urban aerosols in central China using 10-year observations

    Science.gov (United States)

    Zhang, Ming; Ma, Yingying; Gong, Wei; Liu, Boming; Shi, Yifan; Chen, ZhongYong

    2018-06-01

    Poor air quality episodes are common in central China. Here, based on 10 years of ground-based sun-photometric observations, aerosol optical and radiative forcing characteristics were analyzed in Wuhan, the biggest metropolis in central China. Aerosol optical depth (AOD) in the last decade declined significantly, while the Ångström exponent (AE) showed slight growth. Single scattering albedo (SSA) at 440 nm reached the lowest value (0.87) in winter and highest value (0.93) in summer. Aerosol parameters derived from sun-photometric observations were used as input in a radiative transfer model to calculate aerosol radiative forcing (ARF) on the surface in ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave (SW) spectra. ARFSW sustained decreases (the absolute values) over the last 10 years. In terms of seasonal variability, due to the increases in multiple scattering effects and attenuation of the transmitted radiation as AOD increased, ARF in summer displayed the largest value (-73.94 W/m2). After eliminating the influence of aerosol loading, the maximum aerosol radiative forcing efficiency in SW range (ARFESW) achieved a value of -64.5 W/m2/AOD in April. The ARFE change in each sub-interval spectrum was related to the change in SSA and effective radius of fine mode particles (Refff), that is, ARFE increased with the decreases in SSA and Refff. The smallest contribution of ARFENIR to ARFESW was 34.11% under strong absorbing and fine particle conditions, and opposite results were found for the VIS range, whose values were always over 51.82%. Finally, due to the serious air pollution and frequency of haze day, aerosol characteristics in haze and clear days were analyzed. The percentage of ARFENIR increased from 35.71% on clear-air days to 37.63% during haze periods, while both the percentage of ARFEUV and ARFENIR in ARFESW kept decreasing. The results of this paper should help us to better understand the effect of aerosols on solar spectral radiation

  5. Aerosol properties and their impacts on surface CCN at the ARM Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment

    Science.gov (United States)

    Logan, Timothy; Dong, Xiquan; Xi, Baike

    2018-02-01

    Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean. Aerosol properties as well as meteorological observations from the Department of Energy Atmospheric Radiation Measurement (ARM) platform situated in the Southern Great Plains (SGP) are utilized in this study to illustrate the dependence of continental cloud condensation nuclei (CCN) number concentration ( N CCN) on aerosol type and transport pathways. ARM-SGP observations from the 2011 Midlatitude Continental Convective Clouds Experiment field campaign are presented in this study and compared with our previous work during the 2009-10 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign over the current ARM Eastern North Atlantic site. Northerly winds over the SGP reflect clean, continental conditions with aerosol scattering coefficient ( σ sp) values less than 20 Mm-1 and N CCN values less than 100 cm-3. However, southerly winds over the SGP are responsible for the observed moderate to high correlation ( R) among aerosol loading ( σ sp moisture via the Gulf of Mexico, indicating a strong dependence on air mass type. NASA MERRA-2 reanalysis aerosol and chemical data are moderately to highly correlated with surface ARM-SGP data, suggesting that this facility can represent surface aerosol conditions in the SGP, especially during strong aerosol loading events that transport via the Gulf of Mexico. Future long-term investigations will help to understand the seasonal influences of air masses on aerosol, CCN, and cloud properties over land in comparison to over ocean.

  6. Global aerosol transport and consequences for the radiation budget

    International Nuclear Information System (INIS)

    Newiger, M.; Grassl, H.; Schussel, P.; Rehkopf, J.

    1984-01-01

    Man's activities may influence global climate by changing the atmospheric composition and surface characteristics and by waste heat. Most prominent within this discussion is the increase or decrease of radiatively active trace gases like CO/sub 2/, N/sub 2/O, O/sub 3/, and others. The general opinion is converging towards a greenhouse effect as a combined action of all trace gases, whose exact magnitude is uncertain mainly because of the unknown reaction of water cycle. The aim of our global 2-D (resolving latitude and height) aerosol transport model is the calculation of aerosol particle number density profiles as a function of latitude for present natural plus anthropogenic emissions. The aerosol transport model uses prescribed meridonal circulation, diffusivity factors and cloud climatology for January as well as July. All these latitude and height dependent input parameters were taken from well known sources. The fixed climatology excludes the feedback of aerosol particle parameter changes on mean circulation. However, the radiative parameters of six clouds types are modified, although they possess by adoption of the Telegadas and London (1954) cloud climatology prescribed amount and height. The inclusion of the feedback on mean circulation seems premature at present. Adding particles either accounting for natural emissions or natural anthropogenic emission and removing particles by all known sinks outside and within clouds gives us - for the stationary state - vertical profiles of aerosol number density in three sizes classes as a function of latitude. These profiles in turn are input for radiation flux calculations in clear and cloudy areas in order to assess net flux changes caused by the present aerosol load in comparison to a scenario without anthropogenic emissions. The net flux changes finally are compared to those calculated for increased CO/sub 2/ levels

  7. Radon and aerosol release from open-pit uranium mining

    International Nuclear Information System (INIS)

    Thomas, V.W.; Nielson, K.K.; Mauch, M.L.

    1982-08-01

    The quantity of 222 Rn (hereafter called radon) released per unit of uranium produced from open pit mining has been determined. A secondary objective was to determine the nature and quantity of airborne particles resulting from mine operations. To accomplish these objectives, a comprehensive study of the release rates of radon and aerosol material to the atmosphere was made over a one-year period from April 1979 to May 1980 at the Morton Ranch Mine which was operated by United Nuclear Corporation (UNC) in partnership with Tennessee Valley Authority (TVA). The mine is now operated for TVA by Silver King Mines. Morton Ranch Mine was one of five open pit uranium mines studied in central Wyoming. Corroborative measurements were made of radon flux and 226 Ra (hereafter called radium) concentrations of various surfaces at three of the other mines in October 1980 and again at these three mines plus a fourth in April of 1981. Three of these mines are located in the Powder River Basin, about 80 kilometers east by northeast of Casper. One is located in the Shirley Basin, about 60 km south of Casper, and the remaining one is located in the Gas Hills, approximately 100 km west of Casper. The one-year intensive study included simultaneous measurement of several parameters: continuous measurement of atmospheric radon concentration near the ground at three locations, monthly 24-hour radon flux measurements from various surfaces, radium analyses of soil samples collected under each of the flux monitoring devices, monthly integrations of aerosols on dichotomous aerosol samplers, analysis of aerosol samplers for total dust loading, aerosol elemental and radiochemical composition, aerosol elemental composition by particle size, wind speed, wind direction, temperature, barometric pressure, and rainfall

  8. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, S; Schikarski, W; Schoeck, W [Gesellschaft fuer Kernforschung mbH, Karlsruhe (Germany)

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters.

  9. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Jordan, S.; Schikarski, W.; Schoeck, W.

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters

  10. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    Science.gov (United States)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2015-10-01

    The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and

  11. Observation-based estimation of aerosol-induced reduction of planetary boundary layer height

    Science.gov (United States)

    Zou, Jun; Sun, Jianning; Ding, Aijun; Wang, Minghuai; Guo, Weidong; Fu, Congbin

    2017-09-01

    Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 Wm-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.

  12. Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: Source identification, modification and aerosol type discrimination

    Science.gov (United States)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang

    2018-03-01

    A better understanding of aerosol optical, microphysical and radiative properties is a crucial challenge for climate change studies. In the present study, column-integrated aerosol optical and radiative properties observed at a rural site, Mbita (0.42°S, 34.20 °E, and 1125 m above sea level) located in Kenya, East Africa (EA) are investigated using ground-based Aerosol Robotic Network (AERONET) data retrieved during January, 2007 to December, 2015. The annual mean aerosol optical depth (AOD500 nm), Ångström exponent (AE440-870 nm), fine mode fraction of AOD500 nm (FMF500 nm), and columnar water vapor (CWV, cm) were found to be 0.23 ± 0.08, 1.01 ± 0.16, 0.60 ± 0.07, and 2.72 ± 0.20, respectively. The aerosol optical properties exhibited a unimodal distribution with substantial seasonal heterogeneity in their peak values being low (high) during the local wet (dry) seasons. The observed data showed that Mbita and its environs are significantly influenced by various types of aerosols, with biomass burning and/or urban-industrial (BUI), mixed (MXD), and desert dust (DDT) aerosol types contributing to 37.72%, 32.81%, and 1.40%, respectively during the local dry season (JJA). The aerosol volume size distribution (VSD) exhibited bimodal lognormal structure with a geometric mean radius of 0.15 μm and 3.86-5.06 μm for fine- and coarse-mode aerosols, respectively. Further, analysis of single scattering albedo (SSA), asymmetry parameter (ASY) and refractive index (RI) revealed dominance of fine-mode absorbing aerosols during JJA. The averaged aerosol direct radiative forcing (ARF) retrieved from the AERONET showed a strong cooling effect at the bottom of the atmosphere (BOA) and significant warming within the atmosphere (ATM), representing the important role of aerosols played in this rural site of Kenya. Finally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that aerosols from distinct sources resulted in enhanced loading

  13. Higher Education

    African Journals Online (AJOL)

    Kunle Amuwo: Higher Education Transformation: A Paradigm Shilt in South Africa? ... ty of such skills, especially at the middle management levels within the higher ... istics and virtues of differentiation and diversity. .... may be forced to close shop for lack of capacity to attract ..... necessarily lead to racial and gender equity,.

  14. A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2008-02-01

    Full Text Available With the global aerosol-climate model ECHAM5-HAM we investigate the potential influence of organic aerosol originating from the ocean on aerosol mass and chemical composition and the droplet concentration and size of marine clouds. We present sensitivity simulations in which the uptake of organic matter in the marine aerosol is prescribed for each aerosol mode with varying organic mass and mixing state, and with a geographical distribution and seasonality similar to the oceanic emission of dimethyl sulfide. Measurements of aerosol mass, aerosol chemical composition and cloud drop effective radius are used to assess the representativity of the model initializations. Good agreement with the measurements is obtained when organic matter is added to the Aitken, accumulation and coarse modes simultaneously. Representing marine organics in the model leads to higher cloud drop number concentrations and thus smaller cloud drop effective radii, and this improves the agreement with measurements. The mixing state of the organics and the other aerosol matter, i.e. internal or external depending on the formation process of aerosol organics, is an important factor for this. We estimate that globally about 75 Tg C yr−1 of organic matter from marine origin enters the aerosol phase, with comparable contributions from primary emissions and secondary organic aerosol formation.

  15. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    Science.gov (United States)

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.; Su, Hui; Yu, Nanpeng; Zhao, Chun; Qian, Yun; Zhao, Bin; Liou, Kuo-Nan; Choi, Yong-Sang

    2018-04-01

    , 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ˜ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April.

  16. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Young, S.E.; Becker, C.H.; Coggiola, M.J. [SRI International, Menlo Park, CA (United States); Wollnik, H. [Giessen Univ. (Germany)

    1997-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  17. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z; Young, S E; Becker, C H; Coggiola, M J [SRI International, Menlo Park, CA (United States); Wollnik, H [Giessen Univ. (Germany)

    1998-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  18. AOD Distributions and Trends of Major Aerosol Species over a Selection of the World's Most Populated Cities Based on the 1st Version of NASA's MERRA Aerosol Reanalysis

    Science.gov (United States)

    Provencal, Simon; Kishcha, Pavel; da Silva, Arlindo M.; Elhacham, Emily; Alpert, Pinhas

    2017-01-01

    NASA recently extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) with an atmospheric aerosol reanalysis which includes five particulate species: sulfate, organic matter, black carbon, mineral dust and sea salt. The MERRA Aerosol Reanalysis (MERRAero) is an innovative tool to study air quality issues around the world for its global and constant coverage and its distinction of aerosol speciation expressed in the form of aerosol optical depth (AOD). The purpose of this manuscript is to apply MERRAero to the study of urban air pollution at the global scale by analyzing the AOD over a period of 13 years (2003-2015) and over a selection of 200 of the world's most populated cities in order to assess the impacts of urbanization, industrialization, air quality regulations and regional transport which affect urban aerosol load. Environmental regulations and the recent global economic recession have helped to decrease the AOD and sulfate aerosols in most cities in North America, Europe and Japan. Rapid industrialization in China over the last two decades resulted in Chinese cities having the highest AOD values in the world. China has nevertheless recently implemented emission control measures which are showing early signs of success in many cities of Southern China where AOD has decreased substantially over the last 13 years. The AOD over South American cities, which is dominated by carbonaceous aerosols, has also decreased over the last decade due to an increase in commodity prices which slowed deforestation activities in the Amazon rainforest. At the opposite, recent urbanization and industrialization in India and Bangladesh resulted in a strong increase of AOD, sulfate and carbonaceous aerosols in most cities of these two countries. The AOD over most cities in Northern Africa and Western Asia changed little over the last decade. Emissions of natural aerosols, which cities in these two regions tend to be mostly composed of, don't tend to

  19. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  20. Beam loading

    International Nuclear Information System (INIS)

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed. (author)

  1. Identification of aerosol types over an urban site based on air-mass trajectory classification

    Science.gov (United States)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  2. Characteristics and Composition of Atmospheric Aerosols in Phimai, Central Thailand During BASE-ASIA

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; hide

    2012-01-01

    Popular summary: Atmospheric aerosols play an important role in the Earth's climate system, and can also have adverse effects on air quality and human health. The environmental impacts of aerosols, on the other hand, are highly regional, since their temporal/spatial distribution is inhomogeneous and highly depends on the regional emission sources. To better understand the effects of aerosols, intensive field experiments are necessary to characterize the chemical and physical properties on a region-by-region basis. From late February to early May in 2006, NASA/GSFC's SMARTLabs facility was deployed at a rural site in central Thailand, Southeast Asia, to conduct a field experiment dubbed BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment). The group was joined by scientists from the University of Hawaii and other regional institutes. Comprehensive measurements were made during the experiment, including aerosol chemical composition, optical and microphysical properties, as well as surface energetics and local . meteorology. This study analyzes part of the data from the BASE-ASIA experiment. It was found that, even for the relatively remote rural site, the aerosol loading was still substantial. Besides agricultural burning in the area, industrial pollution near the Bangkok metropolitan area, about 200 km southeast of the site, and even long-range transport from China, also contribute to the area's aerosol loading. The results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow. Abstract: Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.l83 N, 102.565 E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 +/- 64 Mm(exp -1); absorption: 15

  3. Simulation of the Ozone Monitoring Instrument aerosol index using the NASA Goddard Earth Observing System aerosol reanalysis products

    Science.gov (United States)

    Colarco, Peter R.; Gassó, Santiago; Ahn, Changwoo; Buchard, Virginie; da Silva, Arlindo M.; Torres, Omar

    2017-11-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI near-UV aerosol retrieval algorithms (known as OMAERUV) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining to the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600 and 1013.25 hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial-resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  4. Stratospheric aerosol geoengineering

    Energy Technology Data Exchange (ETDEWEB)

    Robock, Alan [Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 (United States)

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  5. Stratospheric aerosol geoengineering

    International Nuclear Information System (INIS)

    Robock, Alan

    2015-01-01

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming

  6. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation at Thessaloniki, Greece

    Directory of Open Access Journals (Sweden)

    A. V. Lindfors

    2013-04-01

    Full Text Available Pyranometer measurements of the solar surface radiation (SSR are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  7. Higher Education

    Science.gov (United States)

    & Development (LDRD) National Security Education Center (NSEC) Office of Science Programs Richard P Databases National Security Education Center (NSEC) Center for Nonlinear Studies Engineering Institute Scholarships STEM Education Programs Teachers (K-12) Students (K-12) Higher Education Regional Education

  8. Quantifying the risks of solid aerosol geoengineering: the role of fundamental material properties

    Science.gov (United States)

    Dykema, J. A.; Keutsch, F. N.; Keith, D.

    2017-12-01

    Solid aerosols have been considered as an alternative to sulfate aerosols for solar geoengineering due to their optical and chemical properties, which lead to different and possibly more attractive risk profiles. Solid aerosols can achieve higher solar scattering efficiency due to their higher refractive index, and in some cases may also be less effective absorbers of thermal infrared radiation. The optical properties of solid aerosols are however sensitive functions of the detailed physical properties of solid materials in question. The relevant details include the exact crystalline structure of the aerosols, the physical size of the particles, and interactions with background stratospheric molecular and particulate constituents. In this work, we examine the impact of these detailed physical properties on the radiative properties of calcite (CaCO3) solid aerosols. We examine how crystal morphology, size, chemical reactions, and interaction with background stratospheric aerosol may alter the scattering and absorption properties of calcite aerosols for solar and thermal infrared radiation. For example, in small particles, crystal lattice vibrations associated with the particle surface may lead to substantially different infrared absorption properties than bulk materials. We examine the wavelength dependence of absorption by the particles, which may lead to altered patterns of stratospheric radiative heating and equilibrium temperatures. Such temperature changes can lead to dynamical changes, with consequences for both stratospheric composition and tropospheric climate. We identify important uncertainties in the current state of understanding, investigate risks associated with these uncertainties, and survey potential approaches to quantitatively improving our knowledge of the relevant material properties.

  9. Aerosol Size Distributions In Auckland.

    Czech Academy of Sciences Publication Activity Database

    Coulson, G.; Olivares, G.; Talbot, Nicholas

    2016-01-01

    Roč. 50, č. 1 (2016), s. 23-28 E-ISSN 1836-5876 Institutional support: RVO:67985858 Keywords : aerosol size distribution * particle number concentration * roadside Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Aerosol Inlet Characterization Experiment Report

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Robert L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kuang, Chongai [Brookhaven National Lab. (BNL), Upton, NY (United States); Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  11. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder

  12. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  13. Enhancements to the CALIOP Aerosol Subtyping and Lidar Ratio Selection Algorithms for Level II Version 4

    Science.gov (United States)

    Omar, A. H.; Tackett, J. L.; Vaughan, M. A.; Kar, J.; Trepte, C. R.; Winker, D. M.

    2016-12-01

    fringes are detected at coarse resolution due to overlying attenuation and subsequent aerosol subtyping may not be as reliable as that of the adjacent higher-resolution layers overhead. SCAARF re-classifies the aerosol subtype of these lower fringes to the dominant subtype of the adjacent overlying layers.

  14. Assessment of Aerosol Distributions from GEOS-5 Using the CALIPSO Feature Mask

    Science.gov (United States)

    Welton, Ellsworth

    2010-01-01

    A-train sensors such as MODIS, MISR, and CALIPSO are used to determine aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important for climate assessment, air quality applications, and for comparisons and analysis with aerosol transport models. The Aerosols-Clouds-Ecosystems (ACE) satellite mission proposed in the NRC Decadal Survey describes a next generation aerosol and cloud suite similar to the current A-train, including a lidar. The future ACE lidar must be able to determine aerosol type effectively in conjunction with modeling activities to achieve ACE objectives. Here we examine the current capabilities of CALIPSO and the NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-5), to place future ACE needs in context. The CALIPSO level 2 feature mask includes vertical profiles of aerosol layers classified by type. GEOS-5 provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures and extinction profiles along the CALIPSO orbit track. In previous work, initial comparisons between GEOS-5 derived aerosol mixtures and CALIPSO derived aerosol types were presented for July 2007. In general, the results showed that model and lidar derived aerosol types did not agree well in the boundary layer. Agreement was poor over Europe, where CALIPSO indicated the presence of dust and pollution mixtures yet GEOS-5 was dominated by pollution with little dust. Over the ocean in the tropics, the model appeared to contain less sea salt than detected by CALIPSO, yet at high latitudes the situation was reserved. Agreement between CALIPSO and GEOS-5, aerosol types improved above the boundary layer, primarily in dust and smoke dominated regions. At higher altitudes (> 5 km), the model contained aerosol layers not detected

  15. Organic tracers of primary biological aerosol particles at subtropical Okinawa Island in the western North Pacific Rim

    Science.gov (United States)

    Zhu, Chunmao; Kawamura, Kimitaka; Kunwar, Bhagawati

    2015-06-01

    Primary biological aerosol particles (PBAPs) play an important role in affecting atmospheric physical and chemical properties. Aerosol samples were collected at Cape Hedo, Okinawa Island, Japan, from October 2009 to February 2012 and analyzed for five primary saccharides and four sugar alcohols as PBAP tracers. We detected high levels of sucrose in spring when blossoming of plants happens and prolifically emits pollen to the air. Concentrations of glucose, fructose, and trehalose showed levels higher than the other saccharides in spring in 2010. In comparison, primary saccharide levels were mutually comparable in spring, summer, and autumn in 2011, indicating the interannual variability of their local production in subtropical forests, which is driven by local temperature and radiation. High trehalose events were found to be associated with Asian dust outflows, indicating that Asian dust also contributes to PBAPs at Okinawa. Sugar alcohols peaked in summer and correlated with local precipitation and temperature, indicating high microbial activities. Positive matrix factorization analysis confirmed that the PBAPs are mainly derived from local vegetation, pollen, and fungal spores. A higher contribution of PBAP tracers to water-soluble organic carbon (WSOC) was found in summer (14.9%). The annual mean ambient loadings of fungal spores and PBAPs were estimated as 0.49 µg m-3 and 4.12 µg m-3, respectively, using the tracer method. We report, for the first time, year-round biomarkers of PBAP and soil dust and their contributions to WSOC in the subtropical outflow region of the Asian continent.

  16. Interannual variability of summertime aerosol optical depth over East Asia during 2000–2011: a potential influence from El Niño Southern Oscillation

    International Nuclear Information System (INIS)

    Liu, Yikun; Liu, Junfeng; Tao, Shu

    2013-01-01

    Aerosols degrade air quality, perturb atmospheric radiation, and impact regional and global climate. Due to the rapid increase in anthropogenic emissions, aerosol loading over East Asia (EA) is markedly higher than other industrialized regions, which motivates a need to characterize the evolution of aerosols and understand the associated drivers. Based on the MISR satellite data during 2000–2011, a wave-like interannual variation of summertime aerosol optical depth (SAOD) is observed over the highly populated North China Plain (NCP) in East Asia. Specifically, the peak-to-trough ratio of SAOD ranges from 1.4 to 1.6, with a period of 3–4 years. This variation pattern differs apparently from what has been seen in EA emissions, indicating a periodic change in regional climate pattern during the past decade. Investigations of meteorological fields over the region reveal that the high SAOD is generally associated with the enhanced Philippine Sea Anticyclone Anomaly (PSAA) which weakens southeasterlies over northeastern EA and depresses air ventilation. Alternatively, higher temperature and lower relative humidity are found to be coincident with reduced SAOD. The behavior of PSAA has been found previously to be modulated by the El Niño Southern Oscillations (ENSO), therefore ENSO could disturb the EA SAOD as well. Rather than changing coherently with the ENSO activity, the SAOD peaks over NCP are found to be accompanied by the rapid transition of El Niño warm to cold phases developed four months ahead. An index measuring the development of ENSO during January–April is able to capture the interannual variability of SAOD over NCP during 2000–2011. This finding indicates a need to integrate the large-scale periodic climate variability in the design of regional air quality policy. (letter)

  17. Observational evidence for aerosols increasing upper tropospheric humidity

    Directory of Open Access Journals (Sweden)

    L. Riuttanen

    2016-11-01

    Full Text Available Aerosol–cloud interactions are the largest source of uncertainty in the radiative forcing of the global climate. A phenomenon not included in the estimates of the total net forcing is the potential increase in upper tropospheric humidity (UTH by anthropogenic aerosols via changes in the microphysics of deep convection. Using remote sensing data over the ocean east of China in summer, we show that increased aerosol loads are associated with an UTH increase of 2.2 ± 1.5 in units of relative humidity. We show that humidification of aerosols or other meteorological covariation is very unlikely to be the cause of this result, indicating relevance for the global climate. In tropical moist air such an UTH increase leads to a regional radiative effect of 0.5 ± 0.4 W m−2. We conclude that the effect of aerosols on UTH should be included in future studies of anthropogenic climate change and climate sensitivity.

  18. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Science.gov (United States)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  19. Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS.

    Science.gov (United States)

    Levy, R. C.; Remer, L. A.; Martins, J. V.; Kaufman, Y. J.; Plana-Fattori, A.; Redemann, J.; Wenny, B.

    2005-04-01

    The Chesapeake Lighthouse Aircraft Measurements for Satellites (CLAMS) experiment took place from 10 July to 2 August 2001 in a combined ocean-land region that included the Chesapeake Lighthouse [Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE)] and the Wallops Flight Facility (WFF), both along coastal Virginia. This experiment was designed mainly for validating instruments and algorithms aboard the Terra satellite platform, including the Moderate Resolution Imaging Spectroradiometer (MODIS). Over the ocean, MODIS retrieved aerosol optical depths (AODs) at seven wavelengths and an estimate of the aerosol size distribution. Over the land, MODIS retrieved AOD at three wavelengths plus qualitative estimates of the aerosol size. Temporally coincident measurements of aerosol properties were made with a variety of sun photometers from ground sites and airborne sites just above the surface. The set of sun photometers provided unprecedented spectral coverage from visible (VIS) to the solar near-infrared (NIR) and infrared (IR) wavelengths. In this study, AOD and aerosol size retrieved from MODIS is compared with similar measurements from the sun photometers. Over the nearby ocean, the MODIS AOD in the VIS and NIR correlated well with sun-photometer measurements, nearly fitting a one-to-one line on a scatterplot. As one moves from ocean to land, there is a pronounced discontinuity of the MODIS AOD, where MODIS compares poorly to the sun-photometer measurements. Especially in the blue wavelength, MODIS AOD is too high in clean aerosol conditions and too low under larger aerosol loadings. Using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative code to perform atmospheric correction, the authors find inconsistency in the surface albedo assumptions used by the MODIS lookup tables. It is demonstrated how the high bias at low aerosol loadings can be corrected. By using updated urban/industrial aerosol

  20. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2017-12-01

    Full Text Available Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado, as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry

  1. Upgrading of aerosol generators for use at Cadarache (CEA)

    International Nuclear Information System (INIS)

    Kaspar, G.; Loescher, H.; Ruhmann, H.

    1988-11-01

    The aerosol generators developed for, and used in, the DEMONA project have been further developed for the FUCHIA project run by CEA. As a result of these efforts the generators have been uprated for fifty-hour continuous generation of SnO 2 and CsOH aerosols at a rate of 10 g/min against a system pressure of 5 bar. Significantly higher feed rates may be possible but were not required. The development objective was fully satisfied, the generators are ready for service in the FUCHIA project. (orig.). 1 ref., 2 tabs., 9 figs [de

  2. Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015

    Science.gov (United States)

    Liu, M.; Lin, J.

    2016-12-01

    Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.

  3. Climate forcing by anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, Jr, J A; Hansen, J E; Hofmann, D J [University of Washington, Seattle, WA (USA). Inst. for Environmental Studies, Dept. of Atmospheric Sciences

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square metre, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. 73 refs., 4 figs., 2 tabs.

  4. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  5. Climate forcing by anthropogenic aerosols.

    Science.gov (United States)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  6. Comparison of sodium aerosol codes

    International Nuclear Information System (INIS)

    Dunbar, I.H.; Fermandjian, J.; Bunz, H.; L'homme, A.; Lhiaubet, G.; Himeno, Y.; Kirby, C.R.; Mitsutsuka, N.

    1984-01-01

    Although hypothetical fast reactor accidents leading to severe core damage are very low probability events, their consequences are to be assessed. During such accidents, one can envisage the ejection of sodium, mixed with fuel and fission products, from the primary circuit into the secondary containment. Aerosols can be formed either by mechanical dispersion of the molten material or as a result of combustion of the sodium in the mixture. Therefore considerable effort has been devoted to study the different sodium aerosol phenomena. To ensure that the problems of describing the physical behaviour of sodium aerosols were adequately understood, a comparison of the codes being developed to describe their behaviour was undertaken. The comparison consists of two parts. The first is a comparative study of the computer codes used to predict aerosol behaviour during a hypothetical accident. It is a critical review of documentation available. The second part is an exercise in which code users have run their own codes with a pre-arranged input. For the critical comparative review of the computer models, documentation has been made available on the following codes: AEROSIM (UK), MAEROS (USA), HAARM-3 (USA), AEROSOLS/A2 (France), AEROSOLS/B1 (France), and PARDISEKO-IIIb (FRG)

  7. The Aerosol-Monsoon Climate System of Asia

    Science.gov (United States)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  8. Secondary organic aerosol formation from primary aliphatic amines with NO3 radical

    Science.gov (United States)

    Malloy, Q. G. J.; Qi, Li; Warren, B.; Cocker, D. R., III; Erupe, M. E.; Silva, P. J.

    2009-03-01

    Primary aliphatic amines are an important class of nitrogen containing compounds emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CE-CERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with O3 and NO3 have been investigated. Very little aerosol formation is observed in the presence of O3 only. However, after addition of NO, and by extension NO3, large aerosol mass yields (~44% for butylamine) are seen. Aerosol generated was determined to be organic in nature due to the small fraction of NO and NO2 in the total signal (tested) as detected by an aerosol mass spectrometer (AMS). We propose a reaction mechanism between carbonyl containing species and the parent amine leading to formation of particulate imine products. These findings can have significant impacts on rural communities with elevated nighttime PM loadings, when significant levels of NO3 exist.

  9. Determination of the aerosol filters efficiency by means of the tracer techniques

    International Nuclear Information System (INIS)

    Hirling, J.

    1978-01-01

    Estimation of the nonradioactive methods of filters efficiency determination and tracer techniques are given. The methods are stated and discriptions of the instrumentation for estimation of the filters efficiency are given, in particular: methodology of production of the radioactive synthetic test-aerosols by means of the disperse and steamcondensation aerosol generators; the radio isotope method of the aerosol filters investigations; the methodology of filtartion efficiency determination. The results are given of the radioisotope investigations of filters; properties of the artificial radioactive test-aerosols; characteristics of filters, determined by the tracer techniques. Curves are given for the filtration efficiency of the viscose filtering nozzles of different density depending on the filters load. (I.T.) [ru

  10. Aerosol generation and delivery in medical applications

    International Nuclear Information System (INIS)

    Soni, P.S.; Raghunath, B.

    1998-01-01

    It is well established that radioaerosol lung technique by inhalation is a very versatile technique in the evaluation of health effects and medical diagnostic applications, especially to detect chronic obstructive pulmonary diseases, their defence mechanism permeability and many others. Most important part of aerosol technology is to generate reproducibly stable diagnostic radioaerosols of known characteristics. Many compressed air atomisers are commercially available for generating aerosols but they have limited utility in aerosol inhalation, either because of large droplet size, low aerosol output or high airflow rates. There is clearly a need for a versatile and economical aerosol generation/inhalation system that can produce dry labelled aerosol particles with high deep lung delivery efficiency suitable for clinical studies. BARC (Bhabha Atomic Research Centre) has developed a dry aerosol generation/delivery system which operates on compressed air and generates dry polydisperse aerosols. This system is described along with an assessment of the aerosol characteristics and efficiency for diagnosis of various respiratory disorders

  11. Devices and methods for generating an aerosol

    KAUST Repository

    Bisetti, Fabrizio

    2016-03-03

    Aerosol generators and methods of generating aerosols are provided. The aerosol can be generated at a stagnation interface between a hot, wet stream and a cold, dry stream. The aerosol has the benefit that the properties of the aerosol can be precisely controlled. The stagnation interface can be generated, for example, by the opposed flow of the hot stream and the cold stream. The aerosol generator and the aerosol generation methods are capable of producing aerosols with precise particle sizes and a narrow size distribution. The properties of the aerosol can be controlled by controlling one or more of the stream temperatures, the saturation level of the hot stream, and the flow times of the streams.

  12. Aerosol transport over the Gangetic basin during ISRO-GBP land campaign-II

    Directory of Open Access Journals (Sweden)

    M. Aloysius

    2008-03-01

    Full Text Available MODIS (Moderate Resolution Imaging Spectroradiometer Level-3 aerosol optical depth (AOD data and NCEP (National Centre for Environmental Prediction reanalysis winds were incorporated into an aerosol flux continuity equation, for a quantitative assessment of the sources of aerosol generation over the Ganga basin in the winter month of December 2004. Preliminary analysis on the aerosol distribution and wind fields showed wind convergence to be an important factor which, supported by the regional topography, confines aerosols in a long band over the Indo Gangetic plain (IGP stretching from the west of the Thar desert into the Head-Bay-of-Bengal. The prevailing winds of the season carry the aerosols from Head-Bay-of-Bengal along the east coast as far as the southern tip of the peninsular India. A detailed examination of MODIS data revealed significant day-to-day variations in aerosol loading in localised pockets over the central and eastern parts of the Indo Gangetic plain during the second half of December, with AOD values even exceeding unity. Aerosols over the Ganga basin were dominated by fine particles (geometric mean radius ~0.05–0.1μm while those over the central and western India were dominated by large particles (geometric mean radius ~0.3–0.7μ. Before introducing it into the flux equation, the MODIS derived AOD was validated through a comparison with the ground-based measurements collected at Kharagpur and Kanpur; two stations located over the Ganga basin. The strength of the aerosol generation computed using the flux equation indicated the existence of aerosol sources whose locations almost coincided with the concentration of thermal power plants. The quantitative agreement between the source strength and the power plant concentration, with a correlation coefficient 0.85, pointed to thermal power plants as substantial contributors to the high aerosol loading over the Ganga Basin in winter. The layout of aerosol sources also nearly

  13. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    H. Jethva

    2011-10-01

    Full Text Available We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI during 2005–2007. In the current near-UV OMI aerosol algorithm (OMAERUV, it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September. Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols. The use of a new set of aerosol models assuming wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0 improved the OMAERUV retrieval results by significantly reducing the AOD bias observed when gray aerosols were assumed. In addition, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (ΔSSA = ±0.03. The new colored carbonaceous aerosol model was also found to

  14. Synthesis of nanosized metal particles from an aerosol

    Directory of Open Access Journals (Sweden)

    Srećko R. Stopić

    2013-10-01

    Full Text Available The synthesis of metallic nanoparticles from the precursor solution of salts using the ultrasonic spray pyrolysis method was considered in this work. During the control of process parameters (surface tension and density, the concentration of solution, residence time of aerosol in the reactor, presence of additives, gas flow rate, decomposition temperature of aerosol, type of precursor and working atmosphere it is possible to guide the process in order to obtain powders with such a morphology which satisfies more complex requirements for the desired properties of advanced engineering materials.  Significant advance in the improvement of powder characteristics (lower particles sizes, better spheroidity, higher surface area was obtained by the application of the ultrasonic generator for the preparation of aerosols. Ultrasonic spray pyrolysis is performed by the action of a powerful source of ultrasound on the corresponding precursor solution forming the aerosol with a constant droplet size, which depends on the characteristics of liquid and the frequency of ultrasound. The produced aerosols were transported into the hot reactor, which enables the reaction to occur in a very small volume of a particle and formation of  nanosized powder. Spherical, nanosized particles of metals (Cu, Ag, Au, Co were produced with new and improved physical and chemical characteristics at the IME, RWTH Aachen University. The high costs associated with small quantities of produced nanosized particles represent a limitation of the USP-method. Therefore, scale up of the ultrasonic spray pyrolysis was performed as a final target in the synthesis of nanosized powder.

  15. Aerosol Production from Charbroiled and Wet-Fried Meats

    Science.gov (United States)

    Niedziela, R. F.; Blanc, L. E.

    2012-12-01

    Previous work in our laboratory focused on the chemical and optical characterization of aerosols produced during the dry-frying of different meat samples. This method yielded a complex ensemble of particles composed of water and long-chain fatty acids with the latter dominated by oleic, stearic, and palmitic acids. The present study examines how wet-frying and charbroiling cooking methods affect the physical and chemical properties of their derived aerosols. Samples of ground beef, salmon, chicken, and pork were subject to both cooking methods in the laboratory, with their respective aerosols swept into a laminar flow cell where they were optically analyzed in the mid-infrared and collected through a gas chromatography probe for chemical characterization. This presentation will compare and contrast the nature of the aerosols generated in each cooking method, particularly those produced during charbroiling which exposes the samples, and their drippings, to significantly higher temperatures. Characterization of such cooking-related aerosols is important because of the potential impact of these particles on air quality, particularly in urban areas.

  16. How important is organic aerosol hygroscopicity to aerosol indirect forcing?

    International Nuclear Information System (INIS)

    Liu Xiaohong; Wang Jian

    2010-01-01

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR community atmospheric model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (represented by a single parameter 'κ' ) of POA and SOA. Our model simulation indicates that in the present-day (PD) condition changing the 'κ' value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S = 0.1% by 40-80% over the POA source regions, while changing the 'κ' value of SOA by ± 50% (from 0.14 to 0.07 and 0.21) changes the CCN concentration within 40%. There are disproportionally larger changes in CCN concentration in the pre-industrial (PI) condition. Due to the stronger impact of organics hygroscopicity on CCN and cloud droplet number concentration at PI condition, global annual mean anthropogenic aerosol indirect forcing (AIF) between PD and PI conditions reduces with the increase of the hygroscopicity of organics. Global annual mean AIF varies by 0.4 W m -2 in the sensitivity runs with the control run of - 1.3 W m -2 , highlighting the need for improved understanding of organics hygroscopicity and its representation in global models.

  17. Properties of Arctic Aerosol Particles and Residuals of Warm Clouds: Cloud Activation Efficiency and the Aerosol Indirect Effect

    Science.gov (United States)

    Zelenyuk, A.; Imre, D. G.; Leaitch, R.; Ovchinnikov, M.; Liu, P.; Macdonald, A.; Strapp, W.; Ghan, S. J.; Earle, M. E.

    2012-12-01

    Single particle mass spectrometer, SPLAT II, was used to characterize the size, composition, number concentration, density, and shape of individual Arctic spring aerosol. Background particles, particles above and below the cloud, cloud droplet residuals, and interstitial particles were characterized with goal to identify the properties that separate cloud condensation nuclei (CCN) from background aerosol particles. The analysis offers a comparison between warm clouds formed on clean and polluted days, with clean days having maximum particle concentrations (Na) lower than ~250 cm-3, as compared with polluted days, in which maximum concentration was tenfold higher. On clean days, particles were composed of organics, organics mixed with sulfates, biomass burning (BB), sea salt (SS), and few soot and dust particles. On polluted days, BB, organics associated with BB, and their mixtures with sulfate dominated particle compositions. Based on the measured compositions and size distributions of cloud droplet residuals, background aerosols, and interstitial particles, we conclude that these three particle types had virtually the same compositions, which means that cloud activation probabilities were surprisingly nearly composition independent. Moreover, these conclusions hold in cases in which less than 20% or more than 90% of background particles got activated. We concluded that for the warm clouds interrogated in this study particle size played a more important factor on aerosol CCN activity. Comparative analysis of all studied clouds reveals that aerosol activation efficiency strongly depends on the aerosol concentrations, such that at Na <200 cm-3, nearly all particles activate, and at higher concentrations the activation efficiency is lower. For example, when Na was greater than 1500 cm-3, less than ~30% of particles activated. The data suggest that as the number of nucleated droplets increases, condensation on existing droplets effectively competes with particle

  18. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ram, K.; Singh, Sachchidanand; Kumar, Sanjeev; Tiwari, S.

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm −2 ) and high values of corresponding heating rate (0.80 ± 0.14 Kday −1 ) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm −2 and from − 3 to − 50 Wm −2 at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm −2 resulting in a heating rate of 0.1–1.8 Kday −1 . - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed over the station in the

  19. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India); Ram, K. [Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi (India); Singh, Sachchidanand, E-mail: ssingh@nplindia.org [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Kumar, Sanjeev [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Tiwari, S. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India)

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm{sup −2}) and high values of corresponding heating rate (0.80 ± 0.14 Kday{sup −1}) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm{sup −2} and from − 3 to − 50 Wm{sup −2} at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm{sup −2} resulting in a heating rate of 0.1–1.8 Kday{sup −1}. - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed

  20. Aerosol variability over the Mediterranean basin from 2005-2012 POLDER-3/PARASOL and AERONET/PHOTONS measurements

    Science.gov (United States)

    Chiapello, Isabelle; Ducos, Fabrice; Dulac, François; Léon, Jean-François; Mallet, Marc; Tanré, Didier; Goloub, Philippe

    2013-04-01

    POLDER-3 (Polarization and Directionnality of the Earth's Reflectances) has been launched on board the PARASOL microsatellite in December 2004. Although the PARASOL orbit has been lowered twice (in September 2009 and in November 2011) compared to the other platforms of the A-Train constellation, POLDER observations continue, providing now more than seven years of innovative retrievals of aerosol properties from space. In this study we focus on analyzing POLDER-3 capabilities to derive both aerosol loads (Total Aerosol Optical Thickness) and size properties (fine and coarse spherical/non-spherical Aerosol Optical Thickness, Angström coefficients) over oceanic surfaces. This analysis, as part of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment) program, focus on the Mediterranean basin, a region under the influence of a complex mixture of aerosols from different sources. Especially we aim to investigate the respective contributions of (i) pollution aerosols (emitted by industry and urban environments of some European regions or megacities surrounding the basin), (ii) carbonaceous particles (from biomass burning events), (iii) mineral dust exported from arid and semi-arid regions of North Africa. In a first step, our study consists in an analysis of aerosol variability retrieved from AERONET/PHOTONS photometer records from selected sites located in Western part of the Mediterranean basin (i.e., Soust-East of France, Spain, Corsica/Sardinia), as well as central part (i.e., Italia and Lampedusa), and Eastern part (i.e.,Greece and Turkey). These measurements provide a unique characterization of both aerosol load (aerosol optical depth) and properties (size distribution and absorption though single scattering albedo) and their temporal variability over each part of the Mediterranean basin. The second step focus on a regional validation of the PARASOL monthly aerosol products by comparison with these equivalent and selected ground-based AERONET

  1. Higher Education.

    Science.gov (United States)

    Hendrickson, Robert M.

    This chapter reports 1982 cases involving aspects of higher education. Interesting cases noted dealt with the federal government's authority to regulate state employees' retirement and raised the questions of whether Title IX covers employment, whether financial aid makes a college a program under Title IX, and whether sex segregated mortality…

  2. Urban Surface Temperature Reduction via the Urban Aerosol Direct Effect: A Remote Sensing and WRF Model Sensitivity Study

    Directory of Open Access Journals (Sweden)

    Menglin Jin

    2010-01-01

    Full Text Available The aerosol direct effect, namely, scattering and absorption of sunlight in the atmosphere, can lower surface temperature by reducing surface insolation. By combining National Aeronautics and Space Administration (NASA AERONET (AErosol RObotic NETwork observations in large cities with Weather Research and Forecasting (WRF model simulations, we find that the aerosol direct reduction of surface insolation ranges from 40–100Wm−2, depending on aerosol loading and land-atmosphere conditions. To elucidate the maximum possible effect, values are calculated using a radiative transfer model based on the top quartile of the multiyear instantaneous aerosol data observed by AERONET sites. As a result, surface skin temperature can be reduced by 1°C-2°C while 2-m surface air temperature reductions are generally on the order of 0.5°C–1°C.

  3. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    T. W. Wilson

    2012-09-01

    Full Text Available Atmospheric secondary organic aerosol (SOA is likely to exist in a semi-solid or glassy state, particularly at low temperatures and humidities. Previously, it has been shown that glassy aqueous citric acid aerosol is able to nucleate ice heterogeneously under conditions relevant to cirrus in the tropical tropopause layer (TTL. In this study we test if glassy aerosol distributions with a range of chemical compositions heterogeneously nucleate ice under cirrus conditions. Three single component aqueous solution aerosols (raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA and levoglucosan and one multi component aqueous solution aerosol (raffinose mixed with five dicarboxylic acids and ammonium sulphate were studied in both the liquid and glassy states at a large cloud simulation chamber. The investigated organic compounds have similar functionality to oxidised organic material found in atmospheric aerosol and have estimated temperature/humidity induced glass transition thresholds that fall within the range predicted for atmospheric SOA. A small fraction of aerosol particles of all compositions were found to nucleate ice heterogeneously in the deposition mode at temperatures relevant to the TTL (<200 K. Raffinose and HMMA, which form glasses at higher temperatures, nucleated ice heterogeneously at temperatures as high as 214.6 and 218.5 K respectively. We present the calculated ice active surface site density, ns, of the aerosols tested here and also of glassy citric acid aerosol as a function of relative humidity with respect to ice (RHi. We also propose a parameterisation which can be used to estimate heterogeneous ice nucleation by glassy aerosol for use in cirrus cloud models up to ~220 K. Finally, we show that heterogeneous nucleation by glassy aerosol may compete with ice nucleation on mineral dust particles in mid-latitudes cirrus.

  4. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    Energy Technology Data Exchange (ETDEWEB)

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  5. Load sensor

    OpenAIRE

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder forming 30-60% by volume of the composite, and wherein the PZT powder forms 40-50% by volume of the composite.

  6. The Atmospheric Aerosols And Their Effects On Cloud Albedo And Radiative Forcing

    International Nuclear Information System (INIS)

    Stefan, S.; Iorga, G.; Zoran, M.

    2007-01-01

    The aim of this study is to provide results of the theoretical experiments in order to improve the estimates of indirect effect of aerosol on the cloud albedo and consequently on the radiative forcing. The cloud properties could be changed primarily because of changing of both the aerosol type and concentration in the atmosphere. Only a part of aerosol interacts effectively with water and will, in turn, determine the number concentration of cloud droplets (CDNC). We calculated the CDNC, droplet effective radius (reff), cloud optical thickness (or), cloud albedo and radiative forcing, for various types of aerosol. Our results show into what extent the change of aerosol characteristics (number concentration and chemical composition) on a regional scale can modify the cloud reflectivity. Higher values for cloud albedo in the case of the continental (urban) clouds were obtained

  7. Experiment on a multilayer type air filter for the filtration of sodium aerosol

    International Nuclear Information System (INIS)

    Otake, N.; Nozaki, O.

    1987-01-01

    An emergency air filter system of FBR was developed by using a multilayer type filter to protect the function of HEPA filter from clogging due to loading of sodium aerosol. To examine the effect of loading of sodium aerosol on the filter system, sodium aerosol consisting of sodium oxides and the related compound was supplied to the filter system. Several parameters to determine the effectiveness of the multilayer type filter were surveyed. It was confirmed that the emergency air filter system of FBR consisting of the multilayer type filter, a medium filter, HEPA filter with standard size (610 mm x 610 mm) in series could hold 800 g-Na at 1.5 kPa without clogging

  8. Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols

    Science.gov (United States)

    Agarwal, S.; Aggarwal, S. G.; Okuzawa, K.; Kawamura, K.

    2010-07-01

    To better understand the size-segregated chemical composition of aged organic aerosols in the western North Pacific rim, day- and night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using an Andersen impactor sampler with 5 size bins: Dp7.0 μm. Samples were analyzed for the molecular composition of dicarboxylic acids, ketoacids, α-dicarbonyls, and sugars, together with water-soluble organic carbon (WSOC), organic carbon (OC), elemental carbon (EC) and inorganic ions. Based on the analyses of backward trajectories and chemical tracers, we found that during the campaign, air masses arrived from Siberia (a biomass burning source region) on 8-9 August, from China (an anthropogenic source region) on 9-10 August, and from the East China Sea/Sea of Japan (a mixed source receptor region) on 10-11 August. Most of the diacids, ketoacids, dicarbonyls, levoglucosan, WSOC, and inorganic ions (i.e., SO42-, NH4+ and K+) were enriched in fine particles (PM1.1) whereas Ca2+, Mg2+ and Cl- peaked in coarse sizes (>1.1 μm). Interestingly, OC, most sugar compounds and NO3- showed bimodal distributions in fine and coarse modes. In PM1.1, diacids in biomass burning-influenced aerosols transported from Siberia (mean: 252 ng m-3) were more abundant than those in the aerosols originating from China (209 ng m-3) and ocean (142 ng m-3), whereas SO42- concentrations were highest in the aerosols from China (mean: 3970 ng m-3) followed by marine- (2950 ng m-3) and biomass burning-influenced (1980 ng m-3) aerosols. Higher loadings of WSOC (2430 ng m-3) and OC (4360 ng m-3) were found in the fine mode, where biomass-burning products such as levoglucosan are abundant. This paper presents a case study of long-range transported aerosols illustrating that biomass burning episodes in the Siberian region have a significant influence on the chemical composition of carbonaceous aerosols in the western North Pacific rim.

  9. Aerosol processing for nanomanufacturing

    International Nuclear Information System (INIS)

    Girshick, Steven L.

    2008-01-01

    Advances in nanoparticle synthesis are opening new opportunities for a broad variety of technologies that exploit the special properties of matter at the nanoscale. To realize this potential will require the development of new technologies for processing nanoparticles, so as to utilize them in a manufacturing context. Two important classes of such processing technologies include the controlled deposition of nanoparticles onto surfaces, and the application of chemically specific coatings onto individual nanoparticles, so as to either passivate or functionalize their surfaces. This paper provides an overview of three technologies related to these objectives, with an emphasis on aerosol-based methods: first, the deposition of nanoparticles by hypersonic impaction, so as so spray-coat large areas with nanoparticles; second, the use of aerodynamic lenses to produce focused beams of nanoparticles, with beam widths of a few tens of microns, so as to integrate nanoparticle-based structures into microelectromechanical systems; and third, the coating of individual nanoparticles by means of photoinduced chemical vapor deposition (photo-CVD), driven by excimer lamps. We also discuss the combination of these technologies, so that nanoparticle synthesis, together with multiple processing steps, can be accomplished in a single flow stream.

  10. Heterogeneity in pre-monsoon aerosol types over the Arabian Sea deduced from ship-borne measurements of spectral AODs

    Directory of Open Access Journals (Sweden)

    D. G. Kaskaoutis

    2010-05-01

    Full Text Available Ship-borne sunphotometer measurements obtained in the Arabian Sea (AS in the pre-monsoon season (18 April–10 May 2006 during a cruise campaign (ICARB have been used to retrieve the Aerosol Optical Depth (AOD; τ and the Ångström wavelength exponent (α. The continents surrounding the AS produce natural and anthropogenic aerosols that have distinctive influences on α and its spectral distribution. The α values were estimated by means of the least-squares method over the spectral bands 340–1020 nm and 340–870 nm. The spectral distribution of AOD in logarithmic co-ordinates could be fit using a 2nd order polynomial with higher accuracy in the wavelength band 340–1020 nm than in the 340–870 nm band. A polynomial fit analytically parameterizes the observed wavelength dependencies of AOD with least errors in spectral variation of α and yields accurate estimates of the coefficients (a1 and a2. The coarse-mode (positive curvature in the lnτλ vs. lnλ aerosols are mainly depicted in the Northern part of the AS closely associated with the nearby arid areas while fine-mode aerosols are mainly observed over the far and coastal AS regions. In the study period the mean AOD at 500 nm is 0.25±0.11 and the α340-1020 is 0.90±0.19. The α340-870 exhibits similar values (0.92±0.18, while significant differences revealed for the constant terms of the polynomial fit (a1 and a2 proportionally to the wavelength band used for their determination. Observed day-to-day variability in the aerosol load and optical properties are direct consequence of the local winds and air-mass trajectories along with the position of the ship.

  11. Lidar data assimilation for improved analyses of volcanic aerosol events

    Science.gov (United States)

    Lange, Anne Caroline; Elbern, Hendrik

    2014-05-01

    data in a variational data assimilation algorithm. The implemented method is tested by the assimilation of CALIPSO attenuated backscatter data that were taken during the eruption of the Eyjafjallajökull volcano in April 2010. It turned out that the implemented module is fully capable to integrate unexpected aerosol events in an automatic way into reasonable analyses. The estimations of the aerosol mass concentrations showed promising properties for the application of observations that are taken by lidar systems with both, higher and lower sophistication than CALIOP.

  12. Characteristics of Aerosols over the Garhwal Himalayas: India

    Science.gov (United States)

    Soni, A.; Panwar, P.; Sundriyal, S.; Prabhu, V.; Shridhar, V.

    2017-12-01

    Aerosols and Black Carbon (BC) is very important pollutants in context of global warming study. Due to high spatio-temporal variation in aerosols, there is a large uncertainty in climate change study. This study was conducted to understand the particulate pollution level in different altitude ranging from 300 m AMSL to 2600 m AMSL (see fig.). In this study eight different sizes of aerosols (10 µm to 0.43 µm) concentration along with BC measured during summer season (MJJ) of 2014-2016 over 5 different locations of Garhwal Himalayas using Anderson Cascade Impactor (ACI) and Aethalometer AE-33. Sampling was performed continuously for 15-20 days at each site. It is the preliminary study to understand the sources of aerosols. Further chemical analysis of different sizes of aerosols helps to identify sources accurately. It will also help in future policies implications. High altitude site i.e. at 2600 m was very close to the Gangotri Glacier where river Ganga originates. The Ganga is one of the most important river in India, millions people rely on the water of this river. Since last decade many catastrophic events happened in this region because of melting of glacier fastly. Previously, no one studies BC and aerosols over this important fragile landscape. BC concentration was ranging from 4.72 ± 5.64 µg m-3 to 15.06 ± 7.69 µg m-3 at 2600 m to 300 m AMSL. At high altitude site highest aerosol concentration was observed to be 56.43 µg m-3 on the size range of PM3.3-4.7. During April-May there was a big fire event (around 3500 hector forest burnt) and the sampling period at 2600 m was on May. So that, to understand transportation of aerosols from forest fire region backward trajectories were calculated using HYSPLIT model. It gives evidence that during summer months aerosols transported from neighbouring forest fire area. While the concentration at lowest altitude was observed to be 248.95 µg m-3 in the size range of PM9-10 which is much higher than the permissible

  13. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    Science.gov (United States)

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Significant atmospheric aerosol pollution caused by world food cultivation

    Science.gov (United States)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2017-04-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to it s sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  15. Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation

    Science.gov (United States)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-01-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  16. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    Science.gov (United States)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  17. Impacts of aerosol pollutant mitigation on lowland rice yields in China

    Science.gov (United States)

    Zhang, Tianyi; Li, Tao; Yue, Xu; Yang, Xiaoguang

    2017-10-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis and yields. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ a process-based modelling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. As a net effect, rice yields were estimated to significantly increase by 0.8%-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  18. Impacts of aerosol mitigation on Chinese rice photosynthesis: An integrated modeling approach

    Science.gov (United States)

    Zhang, T.; Li, T.; Yue, X.; Yang, X.

    2017-12-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ an integrated process-based modeling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. This response pattern and threshold are similar with observations, even through more data are needed in future investigation. As a net effect, rice yields were estimated to significantly increase by 0.8-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  19. Bounding the heterogeneous gas uptake on aerosols and ground using resistance model

    Science.gov (United States)

    Su, H.; Li, M.; Cheng, Y.

    2017-12-01

    Heterogeneous uptake on aerosols and ground are potential important atmospheric sinks for gases. Different schemes have been used to characterize the dry deposition and heterogeneous aerosol gas uptake, although they share similar characteristics. In this work, we propose a unified resistance model to compare the uptake flux on both ground and aerosols, to identify the dominate heterogeneous process within the planetary boundary layer (PBL). The Gamma(eq) is introduced to represent the reactive uptake coefficient on aerosols when these two processes are equally important. It's shown that Gamma(eq) is proportional to the dry deposition velocity, inversely proportional to aerosol surface area concentration. Under typical regional background condition, Gamma(eq) vary from 1x10-5 to 4x10-4 with gas species, land-use type and season, which indicates that aerosol gas uptake should be included in atmospheric models when uptake coefficient higher than 10-5. We address the importance of heterogeneous gas uptake on aerosols over ground especially for ozone uptake on liquid organic aerosols and for marine PBL atmosphere.

  20. Contrasting aerosol optical and radiative properties between dust and urban haze episodes in megacities of Pakistan

    Science.gov (United States)

    Iftikhar, Muhammad; Alam, Khan; Sorooshian, Armin; Syed, Waqar Adil; Bibi, Samina; Bibi, Humera

    2018-01-01

    Satellite and ground based remote sensors provide vital information about aerosol optical and radiative properties. Analysis of aerosol optical and radiative properties during heavy aerosol loading events in Pakistan are limited and, therefore, require in-depth examination. This work examines aerosol properties and radiative forcing during Dust Episodes (DE) and Haze Episodes (HE) between 2010 and 2014 over mega cities of Pakistan (Karachi and Lahore). Episodes having the daily averaged values of Aerosol Optical Depth (AOD) exceeding 1 were selected. DE were associated with high AOD and low Ångström Exponent (AE) over Karachi and Lahore while high AOD and high AE values were associated with HE over Lahore. Aerosol volume size distributions (AVSD) exhibited a bimodal lognormal distribution with a noticeable coarse mode peak at a radius of 2.24 μm during DE, whereas a fine mode peak was prominent at a radius 0.25 μm during HE. The results reveal distinct differences between HE and DE for spectral profiles of several parameters including Single Scattering Albedo (SSA), ASYmmetry parameter (ASY), and the real and imaginary components of refractive index (RRI and IRI). The AOD-AE correlation revealed that dust was the dominant aerosol type during DE and that biomass burning and urban/industrial aerosol types were pronounced during HE. Aerosol radiative forcing (ARF) was estimated using the Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) model. Calculations revealed a negative ARF at the Top Of the Atmosphere (ARFTOA) and at the Bottom Of the Atmosphere (ARFBOA), with positive ARF within the Atmosphere (ARFATM) during both DE and HE over Karachi and Lahore. Furthermore, estimations of ARFATM by SBDART were shown to be in good agreement with values derived from AERONET data for DE and HE over Karachi and Lahore.

  1. The Inhalation Toxicity of VX Aerosols Assessed in the McNamara Glove Box Facility

    National Research Council Canada - National Science Library

    Carpin, John C; McCaskey, David A; Cameron, Kenneth P

    2005-01-01

    ... in this facility and to serve as a benchmark for ranking the toxicity of other agents. Neat VX challenge aerosols were generated by feeding micro-liter quantities of agent from a loaded syringe to a custom-made air assist atomizer...

  2. Aerosol Radiative Impact on the Middle East Regional Climate and the Red Sea

    KAUST Repository

    Osipov, Sergey

    2017-01-01

    The climate in the Middle East is complex and remains poorly understood. Due to the vast Arabian Desert, it is very sensitive to radiative forcing. Mineral dust is the dominant aerosol in this region. High background dust loading and frequent dust

  3. Primary Emission and the Potential of Secondary Aerosol Formation from Chinese Gasoline Engine Exhaust

    Science.gov (United States)

    Hu, Min; Peng, Jianfei; Qin, Yanhong; Du, Zhuofei; Li, Mengjin; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Lu, Sihua; Wu, Yusheng; Zeng, Limin; Guo, Song; Shao, Min; Wang, Yinhui; Shuai, Shijin

    2017-04-01

    Along with the urbanization and economic growth, vehicle population in China reached 269 million, ranked the second in the world in 2015. Gasoline vehicle is identified to be the main source for urban PM2.5 in China, accounting for 15%-31%. In this study the impact of fuel components on PM2.5 and volatile organic compounds (VOCs) emissions from a gasoline port fuel injection (PFI) engine and a gasoline direct injection (GDI) engine are discussed. Results show that, higher proportion of aromatics, alkenes or sulfur in gasoline fuel will lead to higher PM emissions. The PM from the PFI engine mainly consists of OC and a small amount of EC and inorganic ions, while the PM discharge from the GDI engine mainly consists of EC, OM and a small amount of inorganic ions. Since the GDI engines can reduce fuel consumption and CO2 emissions, and it would become more and more popular in the near future. The characteristics of POM component, emission factors and source profile were investigated from GDI engine, particularly focused on the effect of engine speed, load and the catalyst, which will be very much helpful for source identification as source indicators. Chamber experiments were conducted to quantify the potential of secondary a