WorldWideScience

Sample records for high-temperature superconducting flywheels

  1. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  2. High speed superconducting flywheel system for energy storage

    Science.gov (United States)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  3. 1998 Annual Study Report. Research and development of power storage by high-temperature superconducting flywheels. Research and development of high-temperature superconducting materials; 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (koon chodendozai no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This R and D program is aimed at optimization of superconductors for improved levitation force of the superconducting magnetic bearings which support a 10 MWh power storage system by high-temperature superconducting flywheel (FW), to clarify possibility of sizing up the FW body and R and D themes for the commercialization. The processes are screened to simultaneously solve the conflicting targets of sizing up the sample of the Y-based bulk superconducting material and improved crystal orientation of the whole bearing, leading to selection of multi-seeding. The sample made on a trial basis improves levitation force by approximately 30%. It is considered that the OCMG-processed rare-earth-based superconducting material can generate very strong electromagnetic force, when combined with a permanent magnet. The Ag-doped Sm-based bulk material shows a reduced creep-caused loss of loading force, and a lower loss of Jc resulting from increased temperature than the Y-based one, decreasing AC loss and controlling temperature rise. The running characteristics and mechanical strength of the FW, and causes for temporal changes are investigated, in order to evaluate the superconducting material characteristics. (NEDO)

  4. Superconducting bearings for flywheel applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Asger Bech

    2001-05-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found on the applications of superconducting bearings in flywheels. (au)

  5. Rotational loss of a ring-shaped flywheel supported by high Tc superconducting levitation

    International Nuclear Information System (INIS)

    Teshima, Hidekazu; Tawara, Taichi; Shimada, Ryuichi.

    1997-01-01

    This paper describes the experimental results for the rotational loss of a ring-shaped flywheel supported by high T c superconducting levitation. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub because it is a non-contact and automatically stable levitation without any control systems. The rotational loss has been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The rotational loss decreased as the levitation gap height increased. In low-speed rotational regions, the rotational loss was in proportion to the rotation speed and depended more on the levitation gap. In high-speed rotational regions, the rotational loss was in proportion to the third power of the rotation speed and depended less on the levitation gap. The cubic rotational loss in He was reduced to one-fifth of that in air. The magnetic field pinned in bulk superconductors induces a loss in the materials composing the ring-shaped flywheel. The rotational loss of a ring-shaped flywheel supported by superconducting levitation can be reduced by improving the uniformity of the magnetic fields along the ring, enlargement of the bulk superconductor(s), and densely arranging the bulk superconductors. (author)

  6. Report on results 1998. Research and development on high-temperature superconducting flywheel power storage (investigation on system introduction); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (system donyu chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    In introducing high-temperature superconducting flywheel power storage equipment to an electrical power system, adaptability is examined and evaluated concerning secondary effect that can be expected while a load leveling function is maintained. The 1998 plan is such that the functions and usages other than the load leveling are put in order for such equipment, and that the effect/adaptability in the case of the introduction into the power system is evaluated by means of simulation and literature studies. The high-temperature superconducting flywheel power storage equipment may be used for such purposes as energy adjustment for a short time, system voltage adjustment and emergency power source, other than the load leveling, on the basis of the characteristics that enable high speed control of active/reactive power and storage/release of energy. Enumerated, as the effects obtainable in introducing these uses into the power system, are enhancement in system stability, improvement in voltage stability, improvement in instantaneous voltage drop, maintenance of system frequency, compensation of fluctuating load, countermeasures against power outrage, and output leveling of intermittent power sources, and these effects were examined. (NEDO)

  7. Report on the FY 1999 R and D on high temperature superconducting flywheel energy storage. System design/evaluation (Comparative study and information collection); 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. System sekkei hyoka (hikaku kento, joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Following the previous fiscal year, a flywheel technology survey committee by men of learning and experience was organized to make a comparative study on various flywheel energy storage systems. Concerning the list-making for checking each element of the high temperature superconducting flywheel system, characteristics and reasons for employment of the small model and medium model were outlined in terms of the system structure (structure in single unit, structure in more than one units), flywheel, bearing, electrically-driven generator, etc. Also about the system in which no superconducting magnetic bearing is used, the information is collected in Japan and abroad through internet, etc., to outline the system. Further, main results obtained in the project were made public in main international conferences or academic meetings such as EUCAS and ISOTC108. At the same time, visits were paid to research institutes such as Cambridge University in the U.K. for the purpose of supplementing the survey so far made, to investigate the recent trend of the research. (NEDO)

  8. Research and development of a high-temperature superconducting flywheel energy storage system. Research and development of the New Sunshine Program; Furaihoiru denryoku chozo shisutemu kenkyu kaihatsu. Nyu sanshain keikaku ni motozuku kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Y. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1999-11-25

    The project conducted by NEDO for developing a high-temperature superconducting flywheel energy storage system is introduced; the two test results of fundamental studies are described. One is the measurement of levitation force and rotation loss of superconducting magnetic bearings composed of oxide superconducting bulks and permanent magnet composite. Two types of superconducting magnetic bearings. axial and radial types, were fabricated and tested. The other test was the fabrication and testing of two functional models. A small-sized superconducting flywheel model of the 0.5 kWh class was fabricated and tested. A medium-sized rotating functional model of the 10 kWh class was fabricated as well. (author)

  9. Rotational loss of a ring-shaped flywheel supported by high T{sub c} superconducting levitation

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, Hidekazu [Nippon Steel Corp., Kawasaki, Kanagawa (Japan). Advanced Materials and Technology Research Labs.; Tawara, Taichi; Shimada, Ryuichi

    1997-08-01

    This paper describes the experimental results for the rotational loss of a ring-shaped flywheel supported by high T{sub c} superconducting levitation. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub because it is a non-contact and automatically stable levitation without any control systems. The rotational loss has been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The rotational loss decreased as the levitation gap height increased. In low-speed rotational regions, the rotational loss was in proportion to the rotation speed and depended more on the levitation gap. In high-speed rotational regions, the rotational loss was in proportion to the third power of the rotation speed and depended less on the levitation gap. The cubic rotational loss in He was reduced to one-fifth of that in air. The magnetic field pinned in bulk superconductors induces a loss in the materials composing the ring-shaped flywheel. The rotational loss of a ring-shaped flywheel supported by superconducting levitation can be reduced by improving the uniformity of the magnetic fields along the ring, enlargement of the bulk superconductor(s), and densely arranging the bulk superconductors. (author)

  10. Levitation properties of a ring-shaped flywheel supported by high Tc superconducting levitation

    International Nuclear Information System (INIS)

    Teshima, Hidekazu; Tawara, Taichi; Shimada, Ryuichi.

    1997-01-01

    In this paper we propose a new combination of high T c superconducting levitation and ring-shaped flywheel energy storage systems. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub, because it is a non-contact and automatically stable levitation without any control systems. The levitation properties such as static and dynamic lateral stiffnesses, lateral damping, and lateral vibration during rotation have been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The spring constant increased as the levitation gap height decreased, and the dynamic spring constant was slightly higher than the static constant. The damping coefficient increased as the gap height decreased and the vibration amplitude increased. The experimental critical speed was in good agreement with the calculated one using a one-degree of freedom model. Finally, the possibility of large-scaled practical systems is discussed from the viewpoint of superconducting levitation. (author)

  11. Report on results 1998. Research and development on high-temperature superconducting flywheel power storage (system design/evaluation (comparative assessment/information collection)); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (system sekkei, hyoka (hikaku kento, joho shushu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    For the purpose of evaluating the basic characteristics of high-temperature superconducting magnetic bearings (SBM), a system model is designed, experimentally manufactured and tested, which is embodied in the design/evaluation of a large-scale system, with an investigation carried out for the introduction of the system into an electrical power system. In this framework, an examination and research were conducted for the system design technology on which each component technology in the system structure can be applied consistently in the system. In the comparative assessment of various flywheel power storage systems, the specifications and achievements were compared in the component elements of the flywheel systems developed in Europe, America and Japan through the literature studies and the field survey, with examination performed towards the future development. As a result, it was found that, in America, bearings were all SMB's without control. Boeing's objective for the development is 10kWh or so in view of convenience for transportation and is prone to arrange it in numbers. Further, investigations were made in literature and documents on the domestic and international trend of development of high-temperature superconducting flywheel systems, elucidating the details of the development. (NEDO)

  12. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  13. Report on results 1998. Research and development on high-temperature superconducting flywheel power storage (system design/evaluation (comparative assessment/information collection)); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (system sekkei, hyoka (hikaku kento, joho shushu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    For the purpose of evaluating the basic characteristics of high-temperature superconducting magnetic bearings (SBM), a system model is designed, experimentally manufactured and tested, which is embodied in the design/evaluation of a large-scale system, with an investigation carried out for the introduction of the system into an electrical power system. In this framework, an examination and research were conducted for the system design technology on which each component technology in the system structure can be applied consistently in the system. In the comparative assessment of various flywheel power storage systems, the specifications and achievements were compared in the component elements of the flywheel systems developed in Europe, America and Japan through the literature studies and the field survey, with examination performed towards the future development. As a result, it was found that, in America, bearings were all SMB's without control. Boeing's objective for the development is 10kWh or so in view of convenience for transportation and is prone to arrange it in numbers. Further, investigations were made in literature and documents on the domestic and international trend of development of high-temperature superconducting flywheel systems, elucidating the details of the development. (NEDO)

  14. A double-superconducting axial bearing system for an energy storage flywheel model

    Science.gov (United States)

    Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.

    2008-02-01

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  15. Superconducting bearings in flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Campbell, A.M.; Ganney, I.; Lo, W. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Twardowski, T. [International Energy Systems, Chester High Road, Neston, South Wirral (United Kingdom); Dawson, B. [British Nuclear Fuels, Capenhurst, South Wirral (United Kingdom)

    1998-05-01

    Investigations are being carried out into the use of superconducting magnetic bearings to levitate energy storage flywheels. In a planned program of work, Cambridge University are aiming to produce a practical bearing system for Pirouette(TM). The Pirouette(TM) system is designed to provide 5 kWh of recoverable energy which is currently recoverable at a rate of 5 kW (future revisions will provide up to 50 kW). IES (a British Nuclear Fuels subsidiary) the owners of the Pirouette(TM) machine have supplied Cambridge with a flywheel. This flywheel weighs >40 kg and is being levitated using an Evershed-type arrangement in which the superconductor is being used to stabilize the interaction between two magnets. To date we have demonstrated stable levitation in static and low speed tests in a rig designed for low speeds of rotation in air. A second rig which is currently under construction at BNFL will run in vacuum at speeds of up to 50 (orig.) 5 refs.

  16. Advantage of superconducting bearing in a commercial flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Viznichenko, R; Velichko, A V; Hong, Z; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)], E-mail: tac1000@cam.ac.uk

    2008-02-01

    The use of a superconducting magnetic bearing in an Urenco Power Technologies (UPT) 100kW flywheel is being studied. The dynamics of a conventional flywheel energy storage system have been studied at low frequencies. We show that the main design consideration is overcoming drag friction losses and parasitic resonances. We propose an original superconducting magnetic bearing design and improved cryogenic motor cooling to increase stability and decrease energy losses in the system.

  17. Research and development of a superconducting flywheel power storage system in fiscal 1998. Research and development of rotation control technology; 1998 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. Kaiten seigyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Element technology research was performed on 'rotation control' aimed at practical application of a 10-MW class high-temperature superconducting flywheel power storage system. As part of the research, researches were carried out on small-size and middle-size models, low-loss control type magnetic bearing, and large-size models. For the small-size model, as a result of performing performance tests on the protective bearing by using a testing machine, it was revealed that the model is free of problems in the test for up to 5000 rpm. For the middle-size model, fabrication and installation were completed on a middle-size rotation control testing equipment having CFRP-made flywheel with a diameter of 1 m. In the control type bearing, as a result of adopting a homo-polar type magnetic pole, the rotation loss was reduced to about 1/5 of that of a hetero-polar type. The amount is about 75 W (12000 rpm) when the bias current is 1.5 A. Concept design was implemented on a 2-MWh flywheel bearing system supported with a high-temperature superconducting magnetic bearing as a full-size flywheel. The CFRP-made flywheel has a diameter of 4 m, and a circumferential velocity of 1200 m. (NEDO)

  18. Report of fiscal 1997 R and D result on high temperature superconducting flywheel power storage. System design and evaluation (comparative study and information gathering); 1997 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu seika hokokusho. System sekkei hyoka (hikaku kento, joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Information gathering and comparative study were conducted for the purpose of putting to practical use a 10 MWh class high temperature superconducting flywheel power storage system. This paper explains the fiscal 1977 results. On various methods conceivable as a flywheel system, characteristics were extracted in such points as structure, shape, axial support system, generator motor, and protective system, and compared with the method being developed in the present project. Test items methods, etc., were studied for a small model system (0.5 kWh, {phi} 400 mm, 30,000 rpm) for the purpose of clarifying problems and ways in approaching a large system (10 MWh class) through various tests of the small one. The main test items were a free-run test, steady state rotation test and a heat-run test, and the main points to evaluate were oscillation characteristics and the control performance of AMB, flux creep and loss, for example. Investigation was conducted of a dummy flywheel experimental equipment and a highly efficient power converter with the object of contributing to the development of a flywheel equipment for daily load leveling. The research members visited seven major research organizations in Europe and gathered information. (NEDO)

  19. Report on achievements in fiscal 1999. Research and development of electric power storage using high-temperature super-conductive flywheels (research and development on manufacture of super-conductive magnetic bearings); 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. Chodendo jiki jikuuke no seisaku no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Introduction of electric power storage equipment is sought, which will be discretely installed in power distribution substations. Therefore, elementary technologies were researched on 'manufacture of super-conductive magnetic bearings' intended for practical application of an electric power storage system of 10-MWh class using high-temperature super-conductive flywheels. Research and development has been performed on different kinds of super-conductive magnetic bearings which combine high-temperature super-conductive materials with permanent magnets. In order to measure the characteristics of the super-conductive magnetic bearings, measurements were executed on rotation loss, loading power and bearing constants. In the measurement of the rotation loss, a {phi} 180 axial type super-conductive magnetic bearing using an Sm-based superconductor ({phi} 180AxSMB2) was given various kinds of tests by using a rotation loss measuring and testing machine. The results were compared with those for the {phi} 180AxSMB1 using the YBCO-based superconductor and other SMBs. In the measurements for the other items, various items were measured on dynamic rotation properties of the {phi} 180AxSMB and {phi} 180RaSMB by using a static bearing constant testing machine. In discussing the loading power characteristics, the dynamic rotation properties of the {phi} 180RaSMB were measured, and the loading power characteristics were discussed on super-conductive magnetic bearings for medium size models and super-conductive magnetic bearings for large system FS. (NEDO)

  20. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    International Nuclear Information System (INIS)

    Ogata, M; Matsue, H; Yamashita, T; Hasegawa, H; Nagashima, K; Maeda, T; Matsuoka, T; Mukoyama, S; Shimizu, H; Horiuchi, S

    2016-01-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper. (paper)

  1. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  2. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  3. Optimum design of flywheel energy storage system using superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Lee, Jeung Gun; Kim, Jong Soo [Ajou University, Suwon (Korea, Republic of)

    1997-07-01

    Electricity demands changes by as much as 30% over a 12-hour period and results in significant costs for utilities as power output get adjusted to meet these changes. The purpose of High-Temperature Superconducting Flywheel Energy Storage System (HTS FES) is to store unused nighttime electricity until it is needed during the daytime. The HTS FES is designed by using flywheel shape function with uniform stress. Natural frequencies and natural modes are estimated by using Finite Element Analysis and correlated with the experimental results. By performing a vibration test, the stiffness and the damping ratio of the flux line, the flux pinning phenomenon are measured Using the modal parameters of each component and the measured stiffness, damping coefficient, the IDEAS System Dynamics Analysis is performed and frequency response function(FRF) of the joined system is obtained. The effect of tangential torque on flywheel has been studied using cantilever shaft with rotor at free end. To obtain the equation of motion, the Lagrange`s equation and the assumed-mode method are used. As a admissible function, a free vibration mode of clamped-free beam is used. The eigenvalues are computed and the stability boundaries are obtained. 19 refs., 33 figs. (author)

  4. Transient heat transfer analysis of superconducting magnetic levitating flywheel rotor operating in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, A.; Kudo, K.; Higasa, H.

    1999-07-01

    In the present study, transient temperature rise is analyzed in a flywheel type power storage system operated in vacuum environment. The flywheel rotor is levitated by high-temperature-superconducting magnetic bearing to reduce the bearing loss. Though the superconductor is cooled by liquid nitrogen, the temperature of the whole system rises due to Joule heating in the coils of the bearings and the motor during the operation. If the temperature should reach the critical temperature of the permanent magnet used for the magnetic bearings after long time operation, the magnetic bearings lose their effect. The heat generated in the levitated rotor diffuses within it by heat conduction and finally emitted to its surrounding solid materials by thermal radiation from the rotor surfaces across vacuum layer. Numerical simulation is carried out calculating the transient radiative-conductive heat transfer and time-dependent profiles of temperature within the rotor are obtained. The results are compared with the experimentally obtained temperatures by measured a test model of 1kWh power storage and the measured profiles of the temperature rise of the rotor fit very well with the calculated ones. Using this simulation tool, the effects of the surface emissivity of the materials of the rotor and the stator, the temperature of the surrounding casings and the thermal conductivity of the materials on the temperature profiles in the system are estimated.

  5. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings

    CERN Document Server

    Kim, J S

    2003-01-01

    The high-temperature superconducting magnetic bearing flywheel energy storage system (SMB-FESS) is proposed as an efficient energy storage system. It is important to identify the dynamic behaviour and the characteristics of the SMB-FESS. First, a new method for identifying SMB characteristics has been suggested. The suggested modelling method is verified by comparing the experimental and analytical frequency response functions. In this study, the analyses of critical speed and unbalance response are performed using the analytical model. The experimental test has been carried out to verify the result of simulation. A good agreement has been observed between the experiment and the simulation result.

  6. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  7. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  8. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  9. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    International Nuclear Information System (INIS)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-01-01

    This project's mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS)

  10. Report of fiscal 1997 R and D result on high temperature superconducting flywheel power storage. R and D of characteristic analysis of superconducting magnetic bearing; 1997 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu seika hokokusho. chodendo jiki jikuuke no tokusei kaiseki no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This paper explains fiscal 1997 results of the development of technologies for characteristic analysis of superconducting magnetic bearings (SMB), the development aimed at putting a 10 MWh high temperature superconducting flywheel power storage system to practical use. Following fiscal 1996, calculation programs were prepared for a load capacity and bearing constant (spring constant, damping constant) on an axial type SMB, with validity of the program examined through comparison with experimental values. A finite element method was applied to a complex magnetic field by a magnet arrangement devised for the purpose of improving load capacity, dividing a superconductor into divided sections so that the effect of a complex magnetic field distribution could be reflected, determining the magnetization generating in each divided section by using a two-dimensional Bean model, and developing a method for calculating load capacity of each divided section by a magnetic moment method. A program was completed for calculating the load capacity and bearing constant of the entire bearing in the axial type SMB. The calculated value of the load capacity and the bearing constant showed a superior agreement with the experimental value. (NEDO)

  11. Dynamical analysis of a flywheel-superconducting bearing with a moving magnet support

    International Nuclear Information System (INIS)

    Sivrioglu, Selim; Nonami, Kenzo

    2003-01-01

    A lateral stiffness improvement approach based on a moving magnet support is developed to reduce the vibration of a flywheel rotor-high temperature superconductor (HTS) bearing. A flywheel rotor levitated with an HTS bearing is modelled and then analysed with a moving stator magnet placed above the rotor. A dynamic support principle is introduced based on moving the stator magnet in anti-phase with the rotor displacement for small variations. A complete dynamical equation of the flywheel rotor is derived including gyroscopic and imbalance effects. The simulation results showed that the dynamic support of the flywheel rotor with additional stator magnet movements decreases the vibration of the flywheel rotor considerably

  12. Report of fiscal 1997 R and D result on high temperature superconducting flywheel power storage. R and D of manufacture of superconducting magnetic bearing; 1997 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu seika hokokusho. Chodendo denjiki jikuuke no seisaku no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Element technologies were developed for the manufacture of superconducting magnetic bearing (SMB) with the purpose of putting to practical use a 10 MWh class high-temperature superconducting flywheel power storage system. This paper explains the fiscal 1997 results. A {phi} 180 radial type SMB was designed and fabricated that satisfied the rotational strength at 17,200 rpm for a medium-sized model for measuring characteristics. Compared with the bearing made in the preceding year, improvements in the bearing dynamics were contrived such as flux creep, load capacity and rotational loss, with the maximum flux density improved by 30%; however, only a few percent improvement was attained in field uniformity. An SMB characteristics measuring and testing machine was built, with the characteristics measured. It was confirmed that the rotational loss of a control type magnetic bearing and the intrinsic performance of the testing machine were unchanged regardless of the operation/non-operation of the radial type SMB. The characteristics of the {phi} 180 axial bearing were measured by a stationary type bearing constant testing machine made in 1995, which provided a load capacity characteristics curve with the initially set gap as a parameter as well as a minor loop curve and a load capacity. Also obtained were the maximum average bearing pressure and the maximum load capacity. (NEDO)

  13. Modern high-temperature superconductivity

    International Nuclear Information System (INIS)

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  14. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  15. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Riedel, T; Goebel, B; Wippich, D; Schirrmeister, P

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN 2 . More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  16. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Science.gov (United States)

    Wu, J. F.; Li, Y.

    2014-10-01

    High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  17. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    International Nuclear Information System (INIS)

    Tang Jiqiang; Fang Jiancheng; Ge, Shuzhi Sam

    2012-01-01

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  18. An Evershed type superconducting flywheel bearing

    Energy Technology Data Exchange (ETDEWEB)

    Cansiz, A.; Campbell, A.M.; Coombs, T.A

    2003-07-15

    The objective of this work is to develop a bearing using high temperature superconductors (HTSs) for use in an energy storage flywheel. The experimental apparatus includes a cylindrical rotor levitated with the Evershed design in which the majority of the levitation force is provided by a permanent magnet arrangement and the stabilization of the system is achieved by HTS elements. The design characteristics and dynamics of the bearing associated with the rotor part are presented. The instrumentation measures the out of balance force and magnetomechanical stiffness associated with the rotor. A study of the rotational losses was performed using free spin down experiments associated with magnetic field variation measurements. The results are consistent with the loss being caused by hysteresis in the superconductor due to magnet inhomogeneity.

  19. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  20. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    International Nuclear Information System (INIS)

    Wu, J.F.; Li, Y.

    2014-01-01

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely

  1. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.F., E-mail: wujf@ciomp.ac.cn; Li, Y.

    2014-10-15

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  2. Flywheel Challenge: HTS Magnetic Bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2006-01-01

    A 200 mm cylindrical engineering prototype high temperature superconducting (HTS) was designed and fabricated. Measurements show that the 17 kg PM rotor can suspend safely 1000 kg in axial direction and 470 kg radially. The rationale for the bearing performance is to stabilize a 400 kg rotor of a new compact 5 kWh/280 kW flywheel energy storage system (COM - FESS). Measurements of the magnetic bearing force, stiffness and drag-torque are presented indicated the successful targeting a milestone in the HTS bearing technology. The influence of the PM configuration and the YBCO temperature on the bearing performance was experimentally studied, providing high-force or high-stiffness behaviour. The axial stiffness 5 kN/mm at 0.5 mm displacement is the highest value of a HTS bearing we know

  3. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  4. 1998 Annual Study Report. Research and development of power storage by high-temperature superconducting flywheels (research and development of permanent magnet); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (eikyu jishaku no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The permanent magnets have been investigated and developed, for eventual commercialization of a 10 MWh power storage system by high-temperature superconducting flywheel. The permanent magnet rotors have been already developed in the previous years using a praseodymium-based magnet (Pr magnet) and neodymium-based sintered magnet (Nd sintered magnet), and the target rotational speed of 30,000 rpm has been attained. For development of the magnetic circuit to produce a stronger and smoother magnetic field, magnetic flux density of the Nd sintered magnet is measured. It shows a lower magnetic flux irregularity than the Pd magnet, but there is still room for further improvement. For development of large-size permanent magnet fabrication techniques, it is confirmed that the large-size Nd sintered magnet can be easily magnetized by partial magnetizing, as is the case with the Pr magnet. In this year, the irregular magnetic flux is three-dimensionally simulated, based on the results obtained in the previous years, to find that the simulated results are in good agreement with the observed ones. The measures to solve the problems are also investigated. It is also confirmed that the large-size ring magnet can be easily magnetized by partial magnetization. (NEDO)

  5. Some theories of high temperature superconductivity

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1990-01-01

    In this paper a brief review is given of some historical aspects of theoretical research on superconductivity including a discussion of BCS theory and some theoretical proposals for mechanisms which can cause superconductivity at high temperatures

  6. High temperature interface superconductivity

    International Nuclear Information System (INIS)

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  7. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  8. A superconducting thrust-bearing system for an energy storage flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Cansiz, A.; Campbell, A.M. [IRC in Superconductivity, Cambridge (United Kingdom)

    2002-05-01

    We have constructed a bearing system for an energy storage flywheel. This bearing system uses a combination of permanent magnets and superconductors in an arrangement commonly termed as an Evershed bearing. In an Evershed system there are in fact two bearings which act in concert. In our system we have one bearing constructed entirely out of permanent magnets acting in attraction. This system bears the weight of the flywheel (43.6 kg) but would not, on its own, be stable. Stability is provided by a superconducting bearing which is formed by the interaction between the magnetic field of a permanent magnet sited on the rotor and superconductors on the stator. This overall arrangement is stable over a range of levitation heights and has been tested at rotation speeds of up to around 12 Hz (the maximum speed is dictated by the drive system not the bearing system). There is a sharp resonance peaking at between 2 and 3 Hz and spin down tests indicate that the equivalent coefficient of friction is of the order of 10{sup -5}. The rate of change of velocity is, however, not constant so the drag is clearly not solely frictional. The position of the resonance is dictated by the stiffness of the bearing relative to the mass of the flywheel but the amplitude of the resonance is dictated by the variation in magnitude of the magnetic field of the permanent magnets. Large magnets are (at present) fabricated in sections and this leads to a highly inhomogeneous field. The field has been smoothed by using a combination of iron which acts passively and copper which provides magnetic shielding due to the generation of eddy currents and therefore acts as an 'active' component. Calculations based on the spin down tests indicate that the resultant variation in field is of the order of 3% and measurements are being carried out to confirm this. (author)

  9. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  10. Status and future perspective of applications of high temperature superconductors

    Science.gov (United States)

    Tanaka, Shoji

    The material research on the high temperature superconductivity for the past ten years gave us sufficient information on the new phenomena of these new materials. It seems that new applications in a very wide range of industries are increasing rapidly. In this report three main topics of the applications are given ; [a] progress of the superconducting bulk materials and their applications to the flywheel electricity storage system and others, [b] progress in the development of superconducting tapes and their applications to power cables, the high field superconducting magnet for the SMES and for the pulling system of large silicon single crystal, and [c] development of new superconducting electronic devices (SFQ) and the possiblity of the application to next generation supercomputers. These examples show the great capability of the superconductivity technology and it is expected that the real superconductivity industry will take off around the year of 2005.

  11. Research and development in fiscal 2000 on element technologies for superconducting for electric power storage by using flywheels; 2000 nendo flywheel denryoku chozoyo chodendo jikuuke gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    With an objective to put flywheel electric power storage system into practical use, developmental research has been made on superconducting bearings that can support a rotating body having large load and rotating at high speed. This paper summarizes the achievements in fiscal 2000. In the study of enhancing the loading force for developing the element technologies for the superconducting bearings, specifications were established and fabrication was performed on the Y-based superconducting bulk for bearings, whereas the healthiness thereof was verified by measuring the trapped magnetic field distribution. This bulk was applied with vacuum impregnation treatment of an epoxy-based resin, to have fabricated a superconducting bearing model with a diameter of 180 mm class. Regarding the RE-based superconducting bulk, studies were carried out on a synthesizing method including optimization of the fabricating conditions, a columnar Sm-based bulk body with a diameter of 60 mm was fabricated, and its healthiness was verified. In the research of a rotation loss reducing technology, discussions were given on optimizing the magnetic circuitry to reduce the magnetic variation, by using the three-dimensional magnetic field simulation. In the evaluation test utilizing the existing test machine, the loading force of a 180-mm class-bearing model has shown 2105N at maximum. (NEDO)

  12. Abstracts of The First Polish-US Conference on High Temperature Superconductivity

    International Nuclear Information System (INIS)

    1995-01-01

    The current problems in high temperature superconductivity science have been presented at the conference. The two main topics have been mostly represented: superconducting material research and fundamental physical research on superconductivity mechanisms. Superconducting material preparation, chemical composition, magnetic and electrical properties of different type of high temperature superconductors, material structure and its influence on superconducting properties and related problems were included in the first of the general topics. In the range of second general topic of the two listed above, many theoretical models being applied for explanation of superconductivity mechanism in different systems up and below transition temperature were presented

  13. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-01-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  14. A Snapshot View of High Temperature Superconductivity 2002

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Univ. of California, San Diego, CA (United States); Bansil, Arun [Northeastern Univ., Boston, MA (United States); Basov, Dimitri N. [Univ. of California, San Diego, CA (United States)

    2002-04-05

    This report outlines the conclusions of a workshop on High Temperature Superconductivity held April 5-8, 2002 in San Diego. The purpose of this report is to outline and highlight some outstanding and interesting issues in the field of High Temperature Superconductivity. The range of activities and new ideas that arose within the context of High Temperature Superconductors is so vast and extensive that it is impossible to summarize it in a brief document. Thus, this report does not pretend to be all-inclusive and cover all areas of activity. It is a restricted snapshot and it only presents a few viewpoints. The complexity and difficulties with high temperature superconductivity are well illustrated by the Buddhist parable of the blind men trying to describe “experimentally” an elephant. These very same facts clearly illustrate that this is an extremely active field, with many unanswered questions, and with a great future potential for discoveries and progress in many (sometimes unpredictable) directions. It is very important to stress that, independently of any current or future applications, this is a very important area of basic research.

  15. High-temperature superconducting phase in rare earth alloys

    International Nuclear Information System (INIS)

    Vedyaev, A.V.; Molodykh, O.Eh.; Savchenko, M.A.; Stefanovich, A.V.

    1984-01-01

    A possibility of high-temperature superconducting phase existence in rare e arth alloys with aluminium: TbAl-NdAl is predicted. Such a phase is shown t o exist at t approximately 40 k, however its existence is possible only in a nar row temperature range and it might be metastable. A possibility of a supercondu cting phase occurrence in spin glass is studied. It is shown that the first kin d phase transition to superconducting state may first occur under definite condi tions in the system. But the phase in question will be a low-temperature one be cause of rather inefficient elctron-phonon interaction. Further temperature dec rease would lead to an appearance of magnetic order and to disappearance of the superconductivity

  16. Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Kim, C. H.; Han, S. C.; Du, S. G.; Han, Y. H.; Sung, T. H.

    2009-01-01

    A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  17. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  18. A Snapshot View of High Temperature Superconductivity 2002

    International Nuclear Information System (INIS)

    Schuller, Ivan K.; Bansil, Arun; Basov, Dimitri N.

    2002-01-01

    This report outlines the conclusions of a workshop on High Temperature Superconductivity held April 5-8, 2002 in San Diego. The purpose of this report is to outline and highlight some outstanding and interesting issues in the field of High Temperature Superconductivity. The range of activities and new ideas that arose within the context of High Temperature Superconductors is so vast and extensive that it is impossible to summarize it in a brief document. Thus, this report does not pretend to be all-inclusive and cover all areas of activity. It is a restricted snapshot and it only presents a few viewpoints. The complexity and difficulties with high temperature superconductivity are well illustrated by the Buddhist parable of the blind men trying to describe ''experimentally'' an elephant. These very same facts clearly illustrate that this is an extremely active field, with many unanswered questions, and with a great future potential for discoveries and progress in many (sometimes unpredictable) directions. It is very important to stress that, independently of any current or future applications, this is a very important area of basic research.

  19. Contribution to the study of superconducting magnets using high transition temperature superconducting materials

    International Nuclear Information System (INIS)

    Lecrevisse, Thibault

    2012-01-01

    The new industrial superconductors using high critical temperature compounds offer new possibilities for superconducting magnetism. Indeed they allow higher magnetic field with the same classical cryogenics at 4.2 K on one hand, and on the other hand they also pave the way for superconducting magnets working between 10 K and 30 K. The high temperature superconductors are then needed in order to produce magnetic fields higher than 16 T (case of HTS dipole insert for Large Hadron Collider at CERN) or to increase the specific density stored in one SMES (Superconducting Magnetic Energy Storage, in the case of the SuperSMES ANR Project).Nevertheless the indisputable assets (critical temperature, critical magnetic field, mechanical stresses) brought by the use of High critical temperature superconductors like YBCO, used in superconducting magnets, require to solve some challenges. Their behavior is still badly understood, especially during the resistive transitions. To succeed in protecting these conductors we need a new reflection on protection schemes designed to avoid the thermal and mechanical damages. The answer to the question: 'Can we use those materials in the long run inside superconducting magnets?' is now inescapable.Some answers are given here. The use of the conductors is approached through various experimental studies to understand the material (electrical characterization and modeling of the critical surface) and to define the key stages of high critical temperature superconducting magnets manufacturing (work on the junctions between conductors and pancakes). This study led to the creation of two coils in order to identify the issues related to the use of YBCO tapes. A numerical thermo-electrical model of the high critical temperature superconductor has been developed and a numerical code based on the CEA software CASTEM (Finish Elements Model) allowed to study the resistive transition (or quench) behavior of those conductor and coil. The code has been

  20. Possibility of high temperature superconducting phases in PdH

    Science.gov (United States)

    Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja

    2003-05-01

    Possible new superconducting phases with a high critical transition temperature (Tc) have been found in stable palladium-hydrogen (PdHx) samples for stoichiometric ratio x=H/Pd⩾1, in addition to the well-known low critical transition temperature (0⩽Tc⩽9) when x is in the range (0.75⩽x⩽1.00). Possible new measured superconducting phases with critical temperature in the range 51⩽Tc⩽295 K occur. This Tc varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density Jc⩾6.1×104 A cm-2 has been measured at 77 K with HDC=0 T.

  1. The discovery of high temperature superconductivity

    International Nuclear Information System (INIS)

    Muller, K. A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba, La, Cu, O and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed. 30 refs

  2. The discovery of high temperature superconductivity

    International Nuclear Information System (INIS)

    Muller, K.A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba La Cu O, and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed [fr

  3. Research briefing on high-temperature superconductivity

    Science.gov (United States)

    1987-10-01

    The research briefing was prepared in response to the exciting developments in superconductivity in ceramic oxide materials announced earlier in 1987. The panel's specific charge was to examine not only the scientific opportunities in high-temperature superconductivity but also the barriers to commercial exploitation. While the base of experimental knowledge on the superconductors is growing rapidly, there is as yet no generally accepted theoretical explanation of their behavior. The fabrication and processing challenges presented by the materials suggest that the period or precommercial exploration for applications will probably extend for a decade or more. Near term prospects for applications include magnetic shielding, the voltage standard, superconducting quantum interference devices, infrared sensors, microwave devices, and analog signal processing. The panel also identified a number of longer-term prospects in high-field and large-scale applications, and in electronics. The United States' competitive position in the field is discussed, major scientific and technological objectives for research and development identified, and concludes with a series of recommendations.

  4. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seino, H; Nagashima, K; Arai, Y [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)], E-mail: seino@rtri.or.jp

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  5. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    International Nuclear Information System (INIS)

    Seino, H; Nagashima, K; Arai, Y

    2008-01-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated

  6. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  7. Possibility of high temperature superconducting phases in PdH

    Energy Technology Data Exchange (ETDEWEB)

    Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja

    2003-05-15

    Possible new superconducting phases with a high critical transition temperature (T{sub c}) have been found in stable palladium-hydrogen (PdH{sub x}) samples for stoichiometric ratio x=H/Pd{>=}1, in addition to the well-known low critical transition temperature (0{<=}T{sub c}{<=}9) when x is in the range (0.75{<=}x{<=}1.00). Possible new measured superconducting phases with critical temperature in the range 51{<=}T{sub c}{<=}295 K occur. This T{sub c} varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density J{sub c}{>=}6.1x10{sup 4} A cm{sup -2} has been measured at 77 K with H{sub DC}=0 T.

  8. Alternative designs of high-temperature superconducting synchronous generators

    OpenAIRE

    Goddard, K. F.; Lukasik, B.; Sykulski, J. K.

    2010-01-01

    This paper discusses the different possible designs of both cored and coreless superconducting synchronous generators using high-temperature superconducting (HTS) tapes, with particular reference to demonstrators built at the University of Southampton using BiSCCO conductors. An overview of the electromagnetic, thermal, and mechanical issues is provided, the advantages and drawbacks of particular designs are highlighted, the need for compromises is explained, and practical solutions are offer...

  9. Vitaly Ginzburg and high temperature superconductivity: Personal reminiscences

    International Nuclear Information System (INIS)

    Mazin, Igor I.

    2008-01-01

    This article is an attempt to give Western readers, as well as young researchers in Russia, a glance at the atmosphere in one of the leading physics institutions in the USSR from 1977-1988, through the eye of a graduate student and later a posdoc in the theory group led by Vitaly Ginzburg, arguably the most enthusiatic proponent of high-temperature superconductivity before the discovery of Bednorz and Muller. This is a very personal narration, wherein the events of my own life and career are inevitably intertwined with scientific events and with my reminiscences of great Russian physicists whom I had the pleasure to meet with while working in the 'High-Temperature Superconductivity Section' at the Lebedev Institute within the aforementioned 12 years

  10. A Motor/Generator for Flywheel Energy Storage System Levitated by Bulk Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Koh, C.S.; Yeon, J.U.; Jeoung, H.M.; Choi, J.H. [Chungbuk National University (Korea); Lee, H.J; Hong, G.W. [Korea Atomic Energy Research Institute (Korea)

    2000-06-01

    The energy storage systems are being widely researched for the high quality of the electric power. The FES(flywheel energy storage system)is especially, on the center of the research because it does not make any pollution and its life is long. The FES converts the electrical energy into the mechanical kinetic energy of the flywheel and reconverts the mechanical energy into the electrical energy, In order to store as much energy as possible, the flywheel is supposed to be rotated with very high speed. The motor/generator of the FES should be high efficient at high speed, and generate constant torque with respect to the rotation. In this paper, a motor/generator employing a Halbach array of permanent magnets is designed and constructed to meet the requirements, and its characteristics are examined. The magnetic field is analysed by using the magnetic surface charge method. The armature winding is designed for the harmonic components to be minimized by using the FFT. The sinusoidal currents for the motor driving are generated by the hysteresis current controller. A sample superconducting flywheel energy storage system is constructed with a duralumin flywheel which has a maximum rotating speed of 40,000[rpm] and a stored energy of 240[Wh] and its validity is examined through the experiment. (author). 15 refs., 17 figs., 2 tabs.

  11. A conceptual design of high-temperature superconducting isochronous cyclotron magnet

    International Nuclear Information System (INIS)

    Jiao, F.; Tang, Y.; Li, J.; Ren, L.; Shi, J.

    2011-01-01

    A design of High-temperature superconducting (HTS) isochronous cyclotron magnet is proposed. The maximum magnetic field of cyclotron main magnet reaches 3 T. Laying the HTS coil aboard the magnetic pole will raise the availability of the magnetic Field. Super-iron structure can provide a high uniformity and high gradient magnetic field. Super-iron structure can raise the availability of the HTS materials. Along with the development of High-temperature superconducting (HTS) materials, the technology of HTS magnet is becoming increasingly important in the Cyclotron, which catches growing numbers of scholars' attentions. Based on the analysis of the problems met in the process of marrying superconducting materials with ferromagnetic materials, this article proposes a design of HTS isochronous cyclotron magnet. The process of optimization of magnet and the methods of realizing target parameters are introduced after taking finite element software as analyzing tools.

  12. Lightweight flywheel containment

    Science.gov (United States)

    Smith, James R.

    2004-06-29

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  13. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  14. Microscopic Superconductivity and Room Temperature Electronics of High-Tc Cuprates

    International Nuclear Information System (INIS)

    Liu Fusui; Chen Wanfang

    2008-01-01

    This paper points out that the Landau criterion for macroscopic superfluidity of He II is only a criterion for microscopic superfluidity of 4 He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-T c cuprates

  15. High critical temperature superconducting composite and fabrication process

    International Nuclear Information System (INIS)

    Dubots, P.; Legat, D.

    1989-01-01

    The core comprises a high temperature superconducting sintered oxide coated with alumina or barium oxide covered with a first sheath in aluminum, a second sheath in niobium and a third sheath in copper [fr

  16. JETC (Japanese Technology Evaluation Center) Panel Report on High Temperature Superconductivity in Japan

    Science.gov (United States)

    Shelton, Duane; Gamota, George

    1989-01-01

    The Japanese regard success in R and D in high temperature superconductivity as an important national objective. The results of a detailed evaluation of the current state of Japanese high temperature superconductivity development are provided. The analysis was performed by a panel of technical experts drawn from U.S. industry and academia, and is based on reviews of the relevant literature and visits to Japanese government, academic and industrial laboratories. Detailed appraisals are presented on the following: Basic research; superconducting materials; large scale applications; processing of superconducting materials; superconducting electronics and thin films. In all cases, comparisons are made with the corresponding state-of-the-art in the United States.

  17. Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

    International Nuclear Information System (INIS)

    Kim, J. H.; Park, S. I.; Im, S. H.; Kim, H. M.

    2013-01-01

    Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

  18. High temperature superconductivity and cold fusion

    International Nuclear Information System (INIS)

    Rabinowitz, M.

    1990-01-01

    There are numerous historical and scientific parallels between high temperature superconductivity (HTSC) and the newly emerging field of cold fusion (CF). Just as the charge carrier effective mass plays an important role in SC, the deuteron effective mass may play a vital role in CF. A new theory including effects of proximity, electron shielding, and decreased effective mass of the fusing nuclei can account for the reported CF results. A quantum-gas model that covers the range from low temperature to superhigh temperature SC indicates an increased T c with reduced dimensionality. A reduced dimensionality effect may also enhance CF. A relation is shown between CF and the significant cluster-impact fusion experiments

  19. Memory effect in the high-temperature superconducting bulks

    International Nuclear Information System (INIS)

    Zhang, Xing-Yi; Zhou, Jun; Zhou, You-He

    2013-01-01

    Highlights: •Effects of temperature cycles on levitation force relaxation are investigated. •Memory effect of the YBCO bulks is observed in experiments. •With an increase of temperature, memory of the superconductor is gradually lost. -- Abstract: We present an experimental investigation of the relaxation of vertical force components in a high-temperature superconducting levitation system with different temperature cycle processes. For a selected ambient temperature (T 1 ) of the system, the experimental results show that the relaxations of the levitation forces are strongly dependent on the initial temperature. When the sample was submitted to temperature jumps around T 1 , the sample temperature was regulated at T 2 , and there were two cases of the experiments, ΔT = T 2 − T 1 0 (positive temperature cycle). It was found that in the case of negative temperature cycle, the superconducting samples have memory effect. And for the positive temperature cycle, with the experimental temperature increase, the memory effect of samples is gradually losing. Additionally, with the increase of temperature, the influences of the negative and positive temperature cycle on the levitation force relaxation are unsymmetrical. All the results are interpreted by using the characteristics of the free energy ‘ground’ plot of the Spin-glasses qualitatively

  20. Recovery time of high temperature superconducting tapes exposed in liquid nitrogen

    International Nuclear Information System (INIS)

    Sheng, Jie; Zeng, Weina; Yao, Zhihao; Zhao, Anfeng; Hu, Daoyu; Hong, Zhiyong

    2016-01-01

    Highlights: • A novel method based on a sequence of AC pulses is presented. • Liquid nitrogen temperature is used as criterion to judge whether the sample has recovered. • Recovery time of some tape doesn't increase with the amplitude of fault current. • This phenomenon is caused by boiling heat transfer process of liquid nitrogen. • This phenomenon can be used in optimizing both the limiting rate and reclosing system. - Abstract: The recovery time is a crucial parameter to high temperature superconducting tapes, especially in power applications. The cooperation between the reclosing device and the superconducting facilities mostly relies on the recovery time of the superconducting tapes. In this paper, a novel method is presented to measure the recovery time of several different superconducting samples. In this method criterion used to judge whether the sample has recovered is the liquid nitrogen temperature, instead of the critical temperature. An interesting phenomenon is observed during the testing of superconducting samples exposed in the liquid nitrogen. Theoretical explanations of this phenomenon are presented from the aspect of heat transfer. Optimization strategy of recovery characteristics based on this phenomenon is also briefly discussed.

  1. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    National Research Council Canada - National Science Library

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  2. Use of high-temperature superconducting films in superconducting bearings

    International Nuclear Information System (INIS)

    Cansiz, A.

    1999-01-01

    We have investigated the effect of high-temperature superconductor (HTS) films deposited on substrates that are placed above bulk HTSs in an attempt to reduce rotational drag in superconducting bearings composed of a permanent magnet levitated above the film/bulk HTS combination. According to the critical state model, hysteresis energy loss is inversely proportional to critical current density, J c , and because HTS films typically have much higher J c than that of bulk HTS, the film/bulk combination was expected to reduce rotational losses by at least one order of magnitude in the coefficient of fiction, which in turn is a measure of the hysteresis losses. We measured rotational losses of a superconducting bearing in a vacuum chamber and compared the losses with and without a film present. The experimental results showed that contrary to expectation, the rotational losses are increased by the film. These results are discussed in terms of flux drag through the film, as well as of the critical state model

  3. Colloquium: High pressure and road to room temperature superconductivity

    Science.gov (United States)

    Gor'kov, Lev P.; Kresin, Vladimir Z.

    2018-01-01

    This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the

  4. High temperature superconducting films by rf magnetron sputtering

    International Nuclear Information System (INIS)

    Kadin, A.M.; Ballentine, P.H.

    1989-01-01

    The authors have produced sputtered films of Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O by rf magnetron sputtering from an oxide target consisting of loose reacted powder. The use of a large 8-inch stoichiometric target in the magnetron mode permits films located above the central region to be free of negative-ion resputtering effects, and hence yields reproducible, uniform stoichiometric compositions for a wide range of substrate temperatures. Superconducting YBCO films have been obtained either by sputtering at low temperatures followed by an 850 0 C oxygen anneal, or alternatively by depositing onto substrates heated to ∼600 - 650 0 C and cooling in oxygen. Films prepared by the former method on cubic zirconia substrate consist of randomly oriented crystallites with zero resistance above 83 K. Those deposited on zirconia at medium temperatures without the high-temperature anneal contain smooth partially oriented crystallites, with a slightly depressed T/sub c/ ∼75K. Finally, superconducting films have been deposited on MgO using a BiSrCaCu/sub 2/O/sub x/ powder target

  5. 10th International Symposium on Superconductivity

    CERN Document Server

    Hirabayashi, Izumi

    1998-01-01

    The International Symposium on Superconductivity, which has been held annu­ ally since 1988, is a forum for presenting the most up-to-date information about a broad range of research and development in superconductivity, from funda­ mental aspects to applications. More than 10 years have passed since the discovery of oxide superconductors and since various developments of applications began. It may be said that the prospects for application of oxide superconductors recently have opened up. Great progress has been made toward practical use, for example, of the flywheel, which uses bulk materials, and the high-performance cryo-cooled magnet made of bismuth wire. These were the results of persistent efforts to develop materials from the viewpoint of materials science and engineering. Also important is the progress in comprehensive understanding of high­ temperature superconductivity. Unique electronic properties of cuprates such as the non-Fermi liquid normal state, spin-charge separation, spin gap, and d-wav...

  6. Analysis of thermodynamic properties for high-temperature superconducting oxides

    International Nuclear Information System (INIS)

    Kushwah, S.S.; Shanker, J.

    1993-01-01

    Analysis of thermodynamic properties such as specific heat, Debye temperature, Einstein temperature, thermal expansion coefficient, bulk modulus, and Grueneisen parameter is performed for rare-earth-based, Tl-based, and Bi-based superconducting copper oxides. Values of thermodynamic parameters are calculated and reported. The relationship between the Debye temperature and the superconducting transition temperature is used to estimate the values of T c using the interaction parameters from Ginzburg. (orig.)

  7. Use of a High-Temperature Superconducting Coil for Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Fagnard, J-F; Crate, D; Jamoye, J-F; Laurent, Ph; Mattivi, B; Cloots, R; Ausloos, M; Genon, A; Vanderbemden, Ph

    2006-01-01

    A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a ''pancake'' coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 μV/cm criterion). Critical currents were found to exceed 100 A for T < 30 K. An electronic DC-DC converter was built in order to control the energy flow in and out of the superconducting coil. The converter consists of a MOS transistor bridge switching at a 80 kHz frequency and controlled with standard Pulse Width Modulation (PWM) techniques. The system was tested using a 30 V squared wave power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s

  8. COMPARATIVE ANALYSIS OF ENERGY ACCUMULATION SYSTEMS AND DETERMINATION OF OPTIMAL APPLICATION AREAS FOR MODERN SUPER FLYWHEELS

    Directory of Open Access Journals (Sweden)

    M. A. Sokolov

    2014-07-01

    Full Text Available The paper presents a review and comparative analysis of late years native and foreign literature on various energy storage devices: state of the art designs, application experience in various technical fields. Comparative characteristics of energy storage devices are formulated: efficiency, quality and stability. Typical characteristics are shown for such devices as electrochemical batteries, super capacitors, pumped hydroelectric storage, power systems based on compressed air and superconducting magnetic energy storage systems. The advantages and prospects of high-speed super flywheels as means of energy accumulation in the form of rotational kinetic energy are shown. High output power of a super flywheels energy storage system gives the possibility to use it as a buffer source of peak power. It is shown that super flywheels have great life cycle (over 20 years and are environmental. A distinctive feature of these energy storage devices is their good scalability. It is demonstrated that super flywheels are especially effective in hybrid power systems that operate in a charge/discharge mode, and are used particularly in electric vehicles. The most important factors for space applications of the super flywheels are their modularity, high efficiency, no mechanical friction and long operating time without maintenance. Quick response to network disturbances and high power output can be used to maintain the desired power quality and overall network stability along with fulfilling energy accumulation needs.

  9. Proceedings of a high temperature superconductivity strategy workshop

    International Nuclear Information System (INIS)

    Kurzfeld, A.

    1987-07-01

    The paper contains the proceedings of a high temperature superconductivity strategy workshop, held at the Rutherford Appleton Laboratory, United Kingdom, 1987. The purpose of the meeting was to consider the U.K. strategy to be adopted for the high Tsub(c) superconductors and their application. The notes are presented of five Working Groups examining the following subjects: materials preparation, structural evaluation, physical properties, theoretical studies, and applications. (UK)

  10. Flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Donald Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    In use since ancient times, the flywheel has smoothed the flow of energy in rotating machinery from small, hand held devices to the largest engines. Today, standalone flywheel systems are being developed to store electrical energy. These systems are deployed in applications as diverse as uninterruptible power supplies, gantry cranes, and large research facilities. This chapter presents the technical foundation of flywheel design, a comparison with other energy storage technologies, and a survey of applications where flywheel energy storage systems are currently in service.

  11. Influence of pulse electric current on structure and superconducting properties of high temperature superconductor

    International Nuclear Information System (INIS)

    Rajchenko, A.I.; Flis, A.A.; Chernenko, L.I.; Kryuchkova, N.I.

    1998-01-01

    The influence of high-density pulse current treatment at room temperature on structure and superconducting properties of HTSC Y Ba 2 Cu 3 O x ceramics is studied. The structures of the samples are found to undergo appreciable changes as the density of pulse current is gradually increased from its minimum value; as a certain threshold value is attained, there occurs a melting-off of coarse grains with a partial destroying of intergrain contact areas followed by superconductivity loss. A further increase in the treatment current density results in a restoration of the superconducting properties probably due to the occurrence of aligned-with-current superconducting bridges between the melted-off grains. The superconducting transition temperature in the samples does not charge but subsequent thermal treatment causes this temperature to increase

  12. High temperature superconductivity: Hope of a new technology

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Following the sensational report in 1986 from the IBM laboratory in Rueschlikon, Switzerland, that superconductivity - that permanent flow of current at temperatures close to absolute zero - is also possible at higher temperatures, the waves of enthusiasm among scientists at first rose high. They talked of a revolution in electrotechnology, especially since superconductors at room temperature seemed to have almost come within reach. In the meantime their thoughts on the matter are much more down to earth. What are the realistic fields of application for the 'new superconductors'? The questions are discussed by scientists, politicians and engineers. (orig.) [de

  13. Design of a Flywheel Storage System

    International Nuclear Information System (INIS)

    Cavia Santos, S.; Garcia-Tabares Rodriguez, L.

    1998-01-01

    Storing mechanical kinetic energy for short time with flywheels has been known for centuries. However the applications of flywheels for longer storage times like electrochemical batteries is recent. Advanced flywheels have been possible thanks to the development from materials science with high tensile strength composite materials, and bearing technology with magnetic bearing, which suspend rotating shaft or rotor by magnetic forces. This summary report provides a study of the mechanics of flywheel, design considerations, material for advance flywheels, and magnetic bearing. Finally a brief description of a conventional flywheel prototype is given. (Author)

  14. High-Tc superconducting electric motors

    International Nuclear Information System (INIS)

    Schiferl, R.; Stein, J.

    1992-01-01

    In this paper, the advantages and limitations of using superconductors in motors are discussed. A synchronous motor with a high temperature superconducting field winding for pump and fan drive applications is described and some of its unique design features are identified. A 10,000 horsepower superconducting motor design is presented. The critical field and current density requirements for high temperature superconducting wire in motors is discussed. Finally, recent progress in superconducting wire performance is presented

  15. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  16. Leaders in high temperature superconductivity commercialization win superconductor industry award

    CERN Multimedia

    2007-01-01

    CERN's Large Hadron Collider curretn leads project head Amalia Ballarino named superconductor industry person of the year 2006. Former high temperature superconductivity program manager at the US Department of energy James Daley wins lifetime achievement award. (1,5 page)

  17. Development of superconductor application technology - Flywheel energy storage system using superconducting magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Oh, Hueng Kuk; Yun, Keyng Reyl; Lee, Jeung Kun [Ahju University, Suwon (Korea, Republic of)

    1996-06-01

    Electricity must be used simultaneously with its generation. Existing storage methods either are dependent on special geography, are too expensive,= or are too inefficient. Electricity demand changes by as much as 30% over a 12-hour period and result in significant costs for utilities as power output get adjusted to meet these changes. The purpose of HTS FES is to store unused nighttime electricity until it is needed during the daytime. If every element of a rotating flywheel is stressed to a prescribed allowable value, the flywheel material will clearly be used in most efficient manner. The uniformlt stressed flywheel is about 25% stronger than a flat disk. The gap between superconductor and permanent magnet was 1.85 mm, and using bearing connector with the values, joining superconductor to permanent magnet Using bolt connector, joining permanent magnet to flywheel. Joined system is excited by exciting function that magnitude is 1, range is 0 up to 4000 HZ. 3 rd and 4 th natural frequency, 1857 HZ and 2340 HZ, in X direction and 2 nd natural frequency, 28.57 HZ, are avoided to prevent resonance. 15 refs., 11 tabs., 53 figs. (author)

  18. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  19. Capital and operating cost estimates for high temperature superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schoenung, S.M.; Meier, W.R.; Fagaly, R.L.; Heiberger, M.; Stephens, R.B.; Leuer, J.A.; Guzman, R.A.

    1992-01-01

    Capital and operating costs have been estimated for mid-scale (2 to 200 Mwh) superconducting magnetic energy storage (SMES) designed to use high temperature superconductors (HTS). Capital costs are dominated by the cost of superconducting materials. Operating costs, primarily for regeneration, are significantly reduced for HTS-SMES in comparison to low temperature, conventional systems. This cost component is small compared to other O and M and capital components, when levelized annual costs are projected. In this paper, the developments required for HTS-SMES feasibility are discussed

  20. Performance of a conduction-cooled high-temperature superconducting bearing

    International Nuclear Information System (INIS)

    Strasik, M.; Hull, J.R.; Johnson, P.E.; Mittleider, J.; McCrary, K.E.; McIver, C.R.; Day, A.C.

    2008-01-01

    We report rotational loss measurements for a high-temperature superconducting (HTS) bearing whose cooling consists of a thermal conduction path to the cold head of a cryocooler. Losses have been measured for rotational rates up to 14,500 rpm at different HTS temperatures. The rotational losses decrease with decreasing HTS temperature. For temperatures that can be obtained in a liquid-nitrogen thermosiphon system, at a given speed and gap, the loss of the conduction-cooled HTS bearing is not significantly higher than the loss of a nearly identical HTS bearing cooled by flowing nitrogen from the thermosiphon

  1. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  2. High temperature superconducting current lead test facility with heat pipe intercepts

    International Nuclear Information System (INIS)

    Blumenfeld, P.E.; Prenger, C.; Roth, E.W.; Stewart, J.A.

    1998-01-01

    A high temperature superconducting (HTS) current lead test facility using heat pipe thermal intercepts is under development at the Superconducting Technology Center at Los Alamos National Laboratory. The facility can be configured for tests at currents up to 1,000 A. Mechanical cryocoolers provide refrigeration to the leads. Electrical isolation is maintained by intercepting thermal energy from the leads through cryogenic heat pipes. HST lead warm end temperature is variable from 65 K to over 90 K by controlling heat pipe evaporator temperature. Cold end temperature is variable up to 30 K. Performance predictions in terms of heat pipe evaporator temperature as a function of lead current are presented for the initial facility configuration, which supports testing up to 200 A. Measurements are to include temperature and voltage gradient in the conventional and HTS lead sections, temperature and heat transfer rate in the heat pipes. as well as optimum and off-optimum performance of the conventional lead sections

  3. Applications of high-temperature superconductors in power technology

    International Nuclear Information System (INIS)

    Hull, John R

    2003-01-01

    Since the discovery of the first high-temperature superconductors (HTSs) in the late 1980s, many materials and families of materials have been discovered that exhibit superconductivity at temperatures well above 20 K. Of these, several families of HTSs have been developed for use in electrical power applications. Demonstration of devices such as motors, generators, transmission lines, transformers, fault-current limiters, and flywheels in which HTSs and bulk HTSs have been used has proceeded to ever larger scales. First-generation wire, made from bismuth-based copper oxides, was used in many demonstrations. The rapid development of second-generation wire, made by depositing thin films of yttrium-based copper oxide on metallic substrates, is expected to further accelerate commercial applications. Bulk HTSs, in which large single-grain crystals are used as basic magnetic components, have also been developed and have potential for electrical power applications

  4. Electronic and magnetic interactions in high temperature superconducting and high coercivity materials. Final performance report

    International Nuclear Information System (INIS)

    Cooper, B.R.

    1997-01-01

    The issue addressed in the research was how to understand what controls the competition between two types of phase transition (ordering) which may be present in a hybridizing correlated-electron system containing two transition-shell atomic species; and how the variation of behavior observed can be used to understand the mechanisms giving the observed ordered state. This is significant for understanding mechanisms of high-temperature superconductivity and other states of highly correlated electron systems. Thus the research pertains to magnetic effects as related to interactions giving high temperature superconductivity; where the working hypothesis is that the essential feature governing the magnetic and superconducting behavior of copper-oxide-type systems is a cooperative valence fluctuation mechanism involving the copper ions, as mediated through hybridization effects dominated by the oxygen p electrons. (Substitution of praseodymium at the rare earth sites in the 1·2·3 material provides an interesting illustration of this mechanism since experimentally such substitution strongly suppresses and destroys the superconductivity; and, at 100% Pr, gives Pr f-electron magnetic ordering at a temperature above 16K). The research was theoretical and computational and involved use of techniques aimed at correlated-electron systems that can be described within the confines of model hamiltonians such as the Anderson lattice hamiltonian. Specific techniques used included slave boson methodology used to treat modification of electronic structure and the Mori projection operator (memory function) method used to treat magnetic response (dynamic susceptibility)

  5. Design prospect of remountable high-temperature superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Hidetoshi, E-mail: hidetoshi.hashizume@qse.tohoku.ac.jp; Ito, Satoshi

    2014-10-15

    The remountable (mountable and demountable repeatedly) high-temperature superconducting (HTS) magnet has been proposed for huge and complex superconducting magnets in future fusion reactors to fabricate and repair easily the magnet and access inner structural components. This paper summarizes progress in R and D activities of mechanical joints of HTS conductors in terms of the electrical resistance and heat transfer performance at the joint region. The latest experimental results show the low joint resistance, 4 nΩ under 70 kA current condition using REBCO HTS conductor with mechanical lap joint system, and for the cooling system the maximum heat flux of 0.4 MW/m{sup 2} is removed by using bronze sintered porous media with sub-cooled liquid nitrogen. These values indicate that there is large possibility to design the remountable HTS magnet for fusion reactors.

  6. High temperature superconducting compounds II; Proceedings of the Second Symposium, Anaheim, CA, Feb. 20, 21, 1990

    International Nuclear Information System (INIS)

    Whang, S.H.; Dasgupta, A.; Laibowitz, R.

    1990-01-01

    Various topics relevant to the production and implementation of high-temperature superconducting compounds are highlighted including critical current; texturing; ceramics and novel processing; composites; deformation and consolidation; thin films; microstructures; tapes, filaments, and ribbons; and thermodynamics. The thermally activated flux creep, critical current density and current enhancement in high-temperature superconductors are addressed. Also discussed are the phase stability and microstructure of doped superconductors, mechanical considerations in the processing of high-Tc superconductors, fabrication and application of high current density, high RTc superconducting thin films and devices, the effect of substrate temperature and RF biasing on the composition of sputtered Bi-based superconducting thin films, and optical electron microanalysis of cuprate superconductors. The microstructure dependence of critical current density and fabrication of double-layered ribbons from cuprate are also discussed

  7. High-temperature superconducting nanowires for photon detection

    Energy Technology Data Exchange (ETDEWEB)

    Arpaia, R. [Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Göteborg (Sweden); CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Dipartimento di Fisica, Università degli Studi di Napoli ‘Federico II’, I-80125 Napoli (Italy); Ejrnaes, M. [CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Parlato, L. [CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Dipartimento di Fisica, Università degli Studi di Napoli ‘Federico II’, I-80125 Napoli (Italy); Tafuri, F. [CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, I-81031 Aversa, CE (Italy); Cristiano, R. [CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Golubev, D. [Low Temperature Laboratory (OVLL), Aalto University School of Science, P.O. Box 13500, FI-00076 Aalto (Finland); Sobolewski, Roman, E-mail: roman.sobolewski@rochester.edu [Institute of Electron Technology, PL-02668 Warszawa (Poland); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, NY 14627-0231 (United States); Bauch, T.; Lombardi, F. [Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Göteborg (Sweden); and others

    2015-02-15

    Highlights: • Homogeneous YBCO nanowires have been fabricated for photon detection applications. • Serial-parallel nanowire configuration leads to a large detector active area. • The YBCO nanowires exhibit critical current densities up to 106 A/cm{sup 2}. • The devices have been excited using a 1550-nm wavelength, pulsed laser irradiation. • Photoresponse signals have been measured and analyzed from 4 K up to the device T{sub c}. - Abstract: The possible use of high-temperature superconductors (HTS) for realizing superconducting nanowire single-photon detectors is a challenging, but also promising, aim because of their ultrafast electron relaxation times and high operating temperatures. The state-of-the-art HTS nanowires with a 50-nm thickness and widths down to 130 nm have been fabricated and tested under a 1550-nm wavelength laser irradiation. Experimental results presenting both the amplitude and rise times of the photoresponse signals as a function of the normalized detector bias current, measured in a wide temperature range, are discussed. The presence of two distinct regimes in the photoresponse temperature dependence is clearly evidenced, indicating that there are two different response mechanisms responsible for the HTS photoresponse mechanisms.

  8. Stable superconducting magnet. [high current levels below critical temperature

    Science.gov (United States)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  9. Routes to High-Temperature Superconductivity: A Lesson from FeSe/SrTiO3

    Science.gov (United States)

    Lee, Dung-Hai

    2018-03-01

    Raising the superconducting transition temperature to a point where applications are practical is one of the most important challenges in science. In this review, we aim at gaining insights on the Tc controlling factors for a particular high-temperature superconductor family - the FeSe-based superconductors. In particular, we discuss the mechanisms by which the Cooper pairing temperature is enhanced from ˜8 K in bulk FeSe to ˜80 K in the interface between an atomic layer of FeSe and SrTiO3. This includes the experimental hints and the theoretical simulation of the involved mechanisms. We end by applying these insights to suggest some possible high-temperature superconducting systems.

  10. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    A 3T proof-of-principle dipole magnet for accelerator applications, based on 2nd generation high temperature superconducting tape was designed, built, and tested by a consortium under the lead of Danfysik. The magnet was designed to have a straight, circular bore with a good field region of radius...

  11. Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films

    Science.gov (United States)

    Sandstrom, R. L.; Giess, E. A.; Gallagher, W. J.; Segmuller, A.; Cooper, E. I.

    1988-11-01

    It is demonstrated that lanthanum gallate (LaGaO3) has considerable potential as an electronic substrate material for high-temperature superconducting films. It provides a good lattice and thermal expansion match to YBa2Cu3O(7-x), can be grown in large crystal sizes, is compatible with high-temperature film processing, and has a reasonably low dielectric constant and low dielectric losses. Epitaxial YBa2Cu3O(7-x) films grown on LaGaO3 single-crystal substrates by three techniques have zero resistance between 87 and 91 K.

  12. Study on the transport by superconducting elevators

    Energy Technology Data Exchange (ETDEWEB)

    Ona, K. [Technov Inc., Tokyo (Japan)

    1999-02-01

    A study on the development of a transport system using the pinning effect of a superconducting bulk structure was undertaken and a model of a flywheel for electric power storage was manufactured by introducing a bearing applying the pinning effect to investigate the feasibility through its operation. The operation behavior of vertical transport combining the superconducting bulk structure and the electromagnetic coils reproduced the predictions of simulation. As for the electric power storage via flywheel, it was confirmed that the lighting duration of a indicating lamp was elongated from the ordinary interval, 1 min., to 4 min. (H. Baba)

  13. Hybrid superconducting magnetic suspensions

    International Nuclear Information System (INIS)

    Tixador, P.; Hiebel, P.; Brunet, Y.; Chaud, X.; Gautier-Picard, P.

    1996-01-01

    Superconductors, especially high T c ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO

  14. Flywheel Energy Storage for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2015-09-01

    Full Text Available A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%, 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS applications. The industry estimates the mass-production cost of a specific consumer-car flywheel system to be 2000 USD. For regular cars, this system has been shown to save 35% fuel in the U.S. Federal Test Procedure (FTP drive cycle.

  15. Flywheels: Mobile applications

    Science.gov (United States)

    Rabenhorst, D. W.

    1981-06-01

    The characteristics of modern flywheel energy storage systems uniquely qualify the flywheel for use in a variety of road vehicles, off road vehicles and rail vehicles. About sixty studies and vehicle demonstration programs in a dozen countries indicate that future such flywheel powered vehicles will have improved performance, reduced energy and fuel consumption and reduced life cycle cost. Flywheel capabilities and mobile applications were reviewed.

  16. AC Losses and Their Thermal Effect in High Temperature Superconducting Machines

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Zou, Shengnan

    2015-01-01

    In transient operations or fault conditions, high temperature superconducting (HTS) machines suffer AC losses which have an influence on the thermal stability of superconducting windings. In this paper, a method to calculate AC losses and their thermal effect in HTS machines is presented....... The method consists of three sub-models that are coupled only in one direction. The magnetic field distribution is first solved in a machine model, assuming a uniform current distribution in HTS windings. The magnetic fields on the boundaries are then used as inputs for an AC loss model which has...

  17. Flywheel energy storage workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  18. 6. Trilateral German-Russian-Ukrainian seminar on high-temperature superconductivity

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Kornilov, E.I.

    1993-01-01

    The proceedings of the 6. Trilateral German-Russian-Ukrainian seminar on high-temperature superconductivity are reported. Nuclear methods (neutron diffraction, neutron polarization, Raman scattering, ESR) applied to study rare earth cuprates are described. The reports dealing with fundamental experimental studies and theoretical investigations are presented. The source materials for preparation of high-tc superconductors and the ways of their preparation, as well as their physico-chemical properties are considered

  19. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet

    Directory of Open Access Journals (Sweden)

    Satoshi Fukui, Yoshihiro Shoji, Jun Ogawa, Tetsuo Oka, Mitsugi Yamaguchi, Takao Sato, Manabu Ooizumi, Hiroshi Imaizumi and Takeshi Ohara

    2009-01-01

    Full Text Available We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  20. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet.

    Science.gov (United States)

    Fukui, Satoshi; Shoji, Yoshihiro; Ogawa, Jun; Oka, Tetsuo; Yamaguchi, Mitsugi; Sato, Takao; Ooizumi, Manabu; Imaizumi, Hiroshi; Ohara, Takeshi

    2009-02-01

    We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  1. High-temperature superconducting fault-current limiter - optimisation of superconducting elements

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the findings of a study initiated to continue the work of a DTI-LINK Collaborative Research Programme 'Enhancing the Properties of Bulk High Temperature Superconductors and their Potential Application as Fault Current Limiters (FCL). Details are given of computer modelling of the quenching process involving the transition from superconducting to normal conducting states undergone by the material when large currents are present. The design of compound elements, and a multi-element model are described along with FCL design covering distribution bus-coupler, embedded generator connection, larger generator connection, hazardous area safety, and interconnection to fault-prone network. The evaluation of thermal loss, test equipment and schedule, the optimised element, installed cost data, and the UK market are considered

  2. Status and prospects on development of yttrium-based high-temperature superconducting coated conductor

    International Nuclear Information System (INIS)

    Izumi, Teruo; Yanagi, Nagato

    2017-01-01

    Development of a large-sized large-current conductor using a high-temperature superconducting wire rod based on copper oxide has been started worldwide for the purpose of applying it as an option of a magnet for a nuclear fusion prototype reactor. There is yttrium-based thin film wire rod as a promising candidate. Japan is leading the development of this wire rod for many years, aiming to apply it to power equipment and the like. This paper explained the history of wire rod development, basic superconducting properties and manufacturing method, and latest achievements, and overviewed the feasibility of application to nuclear fusion reactor magnets. At present, the use of niobium-based low-temperature superconducting wire rod that is used in ITER is the basic idea. On the other hand, the development of wire rod using a copper oxide type high-temperature superconductor (HTS) has also been started. HTS wire rod is evaluated as suitable for application to nuclear fusion magnets due to its superior critical current characteristics and high mechanical rigidity up to high magnetic fields at high temperatures of yttrium. As current development progress, there are development of high-quality wire rod in the magnetic field and development of low AC loss wire rod. As future prospects, cost reduction due to mass production and improvement of yield, and investigation of low-resistance connection technology are being studied. The remaining future challenges of yttrium-based HTS are improvement of the anisotropy, influence on neutron irradiation, and problem of activation. (A.O.)

  3. Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films

    International Nuclear Information System (INIS)

    Sandstrom, R.L.; Giess, E.A.; Gallagher, W.J.; Segmueller, A.; Cooper, E.I.; Chisholm, M.F.; Gupta, A.; Shinde, S.; Laibowitz, R.B.

    1988-01-01

    We demonstrate that lanthanum gallate (LaGaO 3 ) has considerable potential as an electronic substrate material for high-temperature superconducting films. It provides a good lattice and thermal expansion match to YBa 2 Cu 3 O/sub 7-//sub x/, can be grown in large crystal sizes, is compatible with high-temperature film processing, and has a reasonably low dielectric constant (ε≅25) and low dielectric losses. Epitaxial YBa 2 Cu 3 O/sub 7-//sub x/ films grown on LaGaO 3 single-crystal substrates by three techniques have zero resistance between 87 and 91 K

  4. Design and application consideration of high temperature superconducting current leads

    International Nuclear Information System (INIS)

    Wu, J.L.

    1994-01-01

    As a potential major source of heat leak and the resultant cryogen boiloff, cryogenic current leads can significantly affect the refrigeration power requirement of cryogenic power equipment. Reduction of the heat leak associated with current leads can therefore contribute to the development and application of this equipment. Recent studies and tests have demonstrated that, due to their superconducting and low thermal conductivity properties, ceramic high temperature superconductor (HTSC) can be employed in current leads to significantly reduce the heat leak. However, realization of this benefit requires special design considerations pertaining to the properties and the fabrication technology of the relatively new ceramic superconductor materials. Since processing and fabrication technology are continuously being developed in the laboratories, data on material properties unrelated to critical states are quite limited. Therefore, design analysis and experiments have to be conducted in tandem to achieve a successful development. Due to the rather unique combination of superconducting and thermal conductivities which are orders of magnitude lower than copper, ceramic superconductors allow expansion of the operating scenarios of current leads. In addition to the conventional vapor-cooled lead type application, low heat leak conduction-cooled type current leads may be practical and are being developed. Furthermore, a current lead with an intermediate heat leak intercept has been successfully demonstrated in a multiple current lead assembly employing HTSC. These design and application considerations of high temperature superconducting current leads are addressed here

  5. Improved flywheel materials :

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Bell, Nelson S; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

    2013-09-01

    As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance these green energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and a glue (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by a three-point-bend test. The results of the introduction of nanomaterials demonstrated an increase in strength of the flywheels C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost ($/kW-h).

  6. Feasibility study of electric motors constructed with high temperature superconducting materials

    International Nuclear Information System (INIS)

    Jordan, H.E.

    1989-01-01

    The potential application of high temperature superconducting (HTSC) materials to electric motors is discussed. The specific application area of motors in electric power generating stations has been selected and a feasible study has been initiated on the use of HTSC materials in the design of motors for this application. A progress report on this feasibility study is presented. Technical challenges in both the development of HTSC wire and the design of a motor to utilize this wire are discussed. Finally, the results of design calculations comparing a superconducting motor with one of conventional design are presented assuming that success can be achieved in overcoming the technical problems which must be resolved to produce a high performance HTSC wire

  7. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zhang, Xingyi, E-mail: zhangxingyi@lzu.edu.cn; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe [Key Laboratory of Mechanics on Disaster and Environment in Western China Attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China and Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-07-15

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.

  8. Shock-induced synthesis of high temperature superconducting materials

    Science.gov (United States)

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  9. Flywheel in an all-electric propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Johan

    2011-07-01

    Energy storage is a crucial condition for both transportation purposes and for the use of electricity. Flywheels can be used as actual energy storage but also as power handling device. Their high power capacity compared to other means of storing electric energy makes them very convenient for smoothing power transients. These occur frequently in vehicles but also in the electric grid. In both these areas there is a lot to gain by reducing the power transients and irregularities. The research conducted at Uppsala Univ. and described in this thesis is focused on an all-electric propulsion system based on an electric flywheel with double stator windings. The flywheel is inserted in between the main energy storage (assumed to be a battery) and the traction motor in an electric vehicle. This system has been evaluated by simulations in a Matlab model, comparing two otherwise identical drivelines, one with and one without a flywheel. The flywheel is shown to have several advantages for an all-electric propulsion system for a vehicle. The maximum power from the battery decreases more than ten times as the flywheel absorbs and supplies all the high power fluxes occurring at acceleration and braking. The battery delivers a low and almost constant power to the flywheel. The amount of batteries needed de- creases whereas the battery lifetime and efficiency increases. Another benefit the flywheel configuration brings is a higher energy efficiency and hence less need for cooling. The model has also been used to evaluate the flywheel functionality for an electric grid application. The power from renewable intermittent energy sources such as wave, wind and current power can be smoothened by the fly- wheel, making these energy sources more efficient and thereby competitive with a remaining high power quality in the electric grid

  10. What is strange about high-temperature superconductivity in cuprates?

    Science.gov (United States)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2017-10-01

    Cuprate superconductors exhibit many features, but the ultimate question is why the critical temperature (Tc) is so high. The fundamental dichotomy is between the weak-pairing, Bardeen-Cooper-Schrieffer (BCS) scenario, and Bose-Einstein condensation (BEC) of strongly-bound pairs. While for underdoped cuprates it is hotly debated which of these pictures is appropriate, it is commonly believed that on the overdoped side strongly-correlated fermion physics evolves smoothly into the conventional BCS behavior. Here, we test this dogma by studying the dependence of key superconducting parameters on doping, temperature, and external fields, in thousands of cuprate samples. The findings do not conform to BCS predictions anywhere in the phase diagram.

  11. High temperature superconductivity space experiment (HTSSE)

    International Nuclear Information System (INIS)

    Nisenoff, M.; Gubser, D.V.; Wolf, S.A.; Ritter, J.C.; Price, G.

    1991-01-01

    The Naval Research Laboratory (NRL) is exploring the feasibility of deploying high temperature superconductivity (HTS) devices and components in space. A variety of devices, primarily passive microwave and millimeter wave components, have been procured and will be integrated with a cryogenic refrigerator system and data acquisition system to form the space package, which will be launched late in 1992. This Space Experiment will demonstrate that this technology is sufficiently robust to survive the space environment and has the potential to significantly improved space communications systems. The devices for the initial launch (HTSSE-I) have been received by NRL and evaluated electrically, thermally and mechanically and will be integrated into the final space package early in 1991. In this paper the performance of the devices are summarized and some potential applications of HTS technology in space system are outlined

  12. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    NARCIS (Netherlands)

    Song, X.; Polinder, H.; Liu, D.; Mijatovic, Nenad; Holbøll, Joachim; Jensen, Bogi Bech

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen at

  13. Macroscopic Magnetic Coupling Effect: The Physical Origination of a High-Temperature Superconducting Flux Pump

    Science.gov (United States)

    Wang, Wei; Coombs, Tim

    2018-04-01

    We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.

  14. Pair Fermi contour and high-temperature superconductivity

    CERN Document Server

    Belyavsky, V I

    2002-01-01

    The holes superconducting coupling with the pair high summarized pulse and the relative motion low pulses is considered with an account of the quasi-two-dimensional electron structure of the HTSC-cuprates with the clearly-pronounced nesting of the Fermi contour. The superconducting energy gap and the condensation energy are determined and their dependences on the doping level are qualitatively studied. It is shown that the energy gap takes place in some holes concentration area, limited on both sides. The superconducting state, whereby the condensation energy is positive, originates in the more narrower doping interval inside this area. The hole pair redistribution in the pulse space constitutes the cause of the superconducting state origination by the holes repulsive screened Coulomb interaction. The coupling mechanism discussed hereby, males it possible to explain qualitatively not only the phase diagram basic peculiarities but also the key experimental facts, related to the cuprate HTSC-materials

  15. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Auciello, O. (Microelectronics Center of North Carolina, Research Triangle Park, NC (USA) North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. (North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Krauss, A.R. (Argonne National Lab., IL (USA))

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  16. High temperature superconducting Maglev equipment on vehicle

    Science.gov (United States)

    Wang, S. Y.; Wang, J. S.; Ren, Z. Y.; Zhu, M.; Jiang, H.; Wang, X. R.; Shen, X. M.; Song, H. H.

    2003-04-01

    Onboard high temperature superconducting (HTS) Maglev equipment is a heart part of a HTS Maglev vehicle, which is composed of YBaCuO bulks and rectangle-shape liquid nitrogen vessel and used successfully in the first manned HTS Maglev test vehicle. Arrangement of YBaCuO bulks in liquid nitrogen vessel, structure of the vessel, levitation forces of a single vessel and two vessels, and total levitation force are reported. The first manned HTS Maglev test vehicle in the world has operated well more than one year after it was born on Dec. 31, 2000, and more than 23,000 passengers have taken the vehicle till now. Well operation of more than one year proves the reliability of the onboard HTS Maglev equipment.

  17. Gauge models of planar high-temperature superconductivity without parity violation

    International Nuclear Information System (INIS)

    Mavromatos, N.E.; Grenoble-1 Univ., 74 - Annecy

    1993-02-01

    A status report is given of a parity-invariant model of two-dimensional superconductivity. The model consists of two-species of fermions coupled with opposite sign to an Abelian gauge field and is closely related to QED 3 . The dynamical generation of a parity-conserving fermion mass and the finite temperature symmetry restoration transition is studied, and it is shown, how the parity-invariant model arises as an effective long-wavelength theory of the dynamics of holes in a two-dimensional quantum antiferromagnetic system on a bi-partite lattice. The model exhibits type-II superconductivity without parity or time-reversal symmetry violation, a high value of 2 Δ /k B T c , flux quantization with quantum hc/2e and a two-dimensional Meissner effect. (author) 82 refs.; 15 figs.; 4 tabs

  18. Mechanical characterization of journal superconducting magnetic bearings: stiffness, hysteresis and force relaxation

    International Nuclear Information System (INIS)

    Cristache, Cristian; Valiente-Blanco, Ignacio; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco Antonio; Perez-Diaz, Jose Luis; Pato, Nelson

    2014-01-01

    Superconducting magnetic bearings (SMBs) can provide stable levitation without direct contact between them and a magnetic source (typically a permanent magnet). In this context, superconducting magnetic levitation provides a new tool for mechanical engineers to design non-contact mechanisms solving the tribological problems associated with contact at very low temperatures. In the last years, different mechanisms have been proposed taking advantage of superconducting magnetic levitation. Flywheels, conveyors or mechanisms for high-precision positioning. In this work the mechanical stiffness of a journal SMBs have been experimentally studied. Both radial and axial stiffness have been considered. The influence of the size and shape of the permanent magnets (PM), the size and shape of the HTS, the polarization and poles configuration of PMs of the journal SMB have been studied experimentally. Additionally, in this work hysteresis behavior and force relaxation are considered because they are essential for mechanical engineer when designing bearings that hold levitating axles.

  19. Design of a termination for a high temperature superconduction power cable

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa; Tønnesen, Ole

    1999-01-01

    ). This assembly is electrically insulated with an extruded polymer dielectric kept at room temperature. Cooling is provided by a flow of liquid nitrogen inside the former. The purpose of the termination is to connect the superconducting cable conductor at cryogenic temperature to the existing power grid at room...... temperatures, the transfer of liquid nitrogen over a high voltage drop and that of providing a well defined atmosphere inside the termination and around the cable conductor. Designs based on calculations and experiments will be presented. The solutions are optimized with respect to a low heat in-leak....

  20. Theory of high temperature superconductivity

    International Nuclear Information System (INIS)

    Srivastava, C.M.

    1989-01-01

    This paper develops a semi-empirical electronic band structure for a high T c superconductor like YBa 2 Cu 3 O 6 - δ . The author accounts for the electrical transport properties on the model based on the correlated electron transfer arising from the electron-phonon interaction. The momentum pairing leading to the superconducting phase amongst the mobile charge carriers is shown

  1. 5 MJ flywheel based on bulk HTS magnetic suspension

    Science.gov (United States)

    Poltavets, V.; Kovalev, K.; Ilyasov, R.; Glazunov, A.; Maevsky, V.; Verzbitsky, L.; Akhmadyshev, V.; Shikov, A.

    2014-05-01

    Nowadays the flywheel energy storage systems (FES) are developed intensively as uninterruptible power supply (UPS) devices for on-land and transport (especially airborne) applications worldwide. This work is devoted to the FES with magnetic suspension on the base of bulk HTS YBCO elements and permanent magnets. The developed FES is intended to be used as UPS in Russian atomic industry in case of an emergency. For the successful design of the FES the following questions should be solved: design of the motor/generator, design of the rotor (flywheel), design of the bearing system, design of the control system and system of power load matching, design of the cooling system. The developed small-scale FES with the stored energy 0.5 MJ was used to solve these basic questions. The elaborated FES consists of the synchronous electric machine with permanent magnets, the solid flywheel with axial magnetic suspension on the base of YBCO bulks and permanent magnets, the system of control and power load matching, and the system of liquid nitrogen cooling. The results of theoretical modeling of different schematics of magnetic suspension and experimental investigations of the constructed FES are presented. The design of the future full-scale FES with the stored energy ~5 MJ and output power up to 100 kW is described. The test results of the flywheel rotor and HTS magnetic suspension of 5 MJ FES are presented. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry"

  2. Composite flywheel development completion report, May 1--September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Huddleston, R. L.; Kelly, J. J.; Knight, C. E.

    1977-05-01

    The program to design, fabricate, and performance test a prototype, vehicular-sized, composite flywheel is described. The overall program scope encompasses development of both the flywheel and its containment; however, the FY 1976-1976T objective was directed toward development of the flywheel and testing it in existing facilities. The development effort was successful, leading to successful testing of a flywheel design which demonstrated an energy density performance of 10.1 Wh/lb during spin testing. The initial application selected for development of the composite flywheel was the heat engine/flywheel hybrid propulsion system for a vehicle. This application was selected by the ERDA Advanced Physical Methods Branch staff because of its high potential for conservation of petroleum fuel in both the near and far-term time frames. Other applications, such as utility load leveling, represent potential areas for significant energy savings but require more extensive development programs and funding resources. Successful development of a high-performance, composite, vehicular flywheel represents one step along the development path leading toward larger, higher-energy storage flywheel applications.

  3. Experimental Performance Evaluation of a High Speed Permanent Magnet Synchronous Motor and Drive for a Flywheel Application at Different Frequencies

    Science.gov (United States)

    Nagorny, Aleksandr S.; Jansen, Ralph H.; Kankam, M. David

    2007-01-01

    This paper presents the results of an experimental performance characterization study of a high speed, permanent magnet motor/generator (M/G) and drive applied to a flywheel module. Unlike the conventional electric machine the flywheel M/G is not a separated unit; its stator and rotor are integrated into a flywheel assembly. The M/G rotor is mounted on a flywheel rotor, which is magnetically levitated and sealed within a vacuum chamber during the operation. Thus, it is not possible to test the M/G using direct load measurements with a dynamometer and torque transducer. Accordingly, a new in-situ testing method had to be developed. The paper describes a new flywheel M/G and drive performance evaluation technique, which allows the estimation of the losses, efficiency and power quality of the flywheel high speed permanent magnet M/G, while working in vacuum, over wide frequency and torque ranges. This method does not require any hardware modification nor any special addition to the test rig. This new measurement technique is useful for high-speed applications, when applying an external load is technically difficult.

  4. Superconductivity from magnetic elements under high pressure

    International Nuclear Information System (INIS)

    Shimizu, Katsuya; Amaya, Kiichi; Suzuki, Naoshi; Onuki, Yoshichika

    2006-01-01

    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors

  5. Study of flywheel energy storage for space stations

    Science.gov (United States)

    Gross, S.

    1984-01-01

    The potential of flywheel systems for space stations using the Space Operations Center (SOC) as a point of reference is discussed. Comparisons with batteries and regenerative fuel cells are made. In the flywheel energy storage concept, energy is stored in the form of rotational kinetic energy using a spinning wheel. Energy is extracted from the flywheel using an attached electrical generator; energy is provided to spin the flywheel by a motor, which operates during sunlight using solar array power. The motor and the generator may or may not be the same device. Flywheel energy storage systems have a very good potential for use in space stations. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special impotance relative to batteries, are high energy density (lighter weight), longer cycle and operating life, and high efficiency which minimizes the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the potential for very high discharge rate. Major disadvantages are noted.

  6. Direct Observation of High-Temperature Superconductivity in One-Unit-Cell FeSe Films

    International Nuclear Information System (INIS)

    Zhang Wen-Hao; Zhang Jin-Song; Li Fang-Sen; Guo Ming-Hua; Ding Hao; Tang Chen-Jia; Wang Qing-Yan; He Ke; Ji Shuai-Hua; Chen Xi; Sun Yi; Zhao Yan-Fei; Xing Ying; Wang Hui-Chao; Zhang Hui-Min; Peng Jun-Ping; Li Zhi; Wang Meng; Fujita Takeshi; Hirata Akihiko

    2014-01-01

    We prepared one-unit-cell (1-UC) thick FeSe films on insulating SrTiO 3 substrates with non-superconducting FeTe protection layers by molecular beam epitaxy for ex situ studies. By direct transport and magnetic measurements, we provide definitive evidence for high temperature superconductivity in the 1-UC FeSe films with an onset T C above 40 K and an extremely large critical current density J C ∼1.7×10 6 A/cm 2 at 2 K, which are much higher than T C ∼8 K and J C ∼10 4 A/cm 2 for bulk FeSe, respectively. Our work may pave the way to enhancing and tailoring superconductivity by interface engineering. (express letter)

  7. High-temperature superconductivity in solid solutions based on mixed yttrium and barium cuprate

    International Nuclear Information System (INIS)

    Bazuev, G.V.; Kirsanov, N.A.; Makarova, O.V.; Zubkov, V.G.; Shveikin, G.P.

    1990-01-01

    The discovery of high-temperature superconductivity (T c = 30-40 K) in mixed lanthanum and alkaline earth cuprates La 2-x M x CuO 4 , where M = Ba and Ca (1-3) stimulated an extensive search for new superconducting phases based on mixed oxides of these elements. The superconducting transition temperature T c in LnBa 2 Cu 3 O 7-z phases is practically independent of the REE and lies between 90-96 K. The crystal structure of superconducting YBa 2 Cu 3 O 7-z is similar to perovskite, has orthorhombic symmetry (4,5), and is related to the lanthanum barium cuprite tetragonal defect structure La 3 Ba 3 Cu 6 O 14.1 (8). A study of possible solid solutions (SS) based on YBa 2 Cu 3 O 7-z through iso- or heterovalent substitution for Y 3+ and Ba 2+ and of their electrical properties seems warranted. In the present work, the authors report the synthesis, x-ray diffraction study, and specific electric resistivity of SS Y 1-x M x (Ba 1-y M y ') 2 Cu 3 O 7-z , where M = La, Lu, Sc, In, K, Zr, and Ce and M' = Ca, Sr, Mg, K, and La

  8. A Static Burst Test for Composite Flywheel Rotors

    Science.gov (United States)

    Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred

    2016-06-01

    High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.

  9. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    Science.gov (United States)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  10. Field cooling of a MgB2 cylinder around a permanent magnet stack: prototype for superconductive magnetic bearing

    International Nuclear Information System (INIS)

    Perini, E; Giunchi, G

    2009-01-01

    The behaviour of bulk superconductors as levitators of permanent magnets (PMs) has been extensively studied for the textured YBCO high-temperature superconductor material, in the temperature range lower than 77 K, obtaining extremely high trapped fields but also experiencing limitations on the mechanical characteristics of the material and on the possibility to produce large objects. Alternatively, bulk MgB 2 , even if it is superconducting at lower temperatures, has fewer mechanical problems, when fully densified, and presents stable magnetization in the temperature range between 10 and 30 K. With the reactive Mg-liquid infiltration technique we have produced dense MgB 2 bulk cylinders of up to 65 mm diameter and 100 mm height. This kind of cylinder can be consider as a prototype of a passive magnetic bearing for flywheels or other rotating electrical machines. We have conductively cooled one of these superconducting cylinders inside a specially constructed cryostat, and the levitation forces and stiffness, with respect to axial movements of various arrangements of the PM, have been measured as a function of the temperature below T c . We verified the very stable characteristics of the induced magnetization after several cycles of relative movements of the PM and the superconducting cylinder.

  11. The DARPA manufacturing initiative in high temperature superconductivity

    International Nuclear Information System (INIS)

    Adams, K.R.

    1989-01-01

    The Defense Advanced Research Projects Agency (DARPA) has a very aggressive Technology Base program in high temperature superconductivity. This program is expected to provide the basis for a specialized set of military products - passive microwave and millimeter wave devices - within the next three years. In order to get these high leverage products into military systems, a manufacturing base must be developed for HTSC components. A plan for DARPA in HTSC manufacturing is directly coupled with the ongoing DARPA materials and device oriented R and D program. In essence, this plan recommends a three phased effort: 1. Phase I (two years); Fund companies through R and D contracts for specialized HTSC components; prepare a detailed plan and develop an HTSC consortium. 2. Phase II (six years): Establish an HTSC Sematech initiative for electronic applications, including active devices. 3. Phase III (optional): Continue the HTSC Sematech with emphasis on high power applications

  12. High-temperature superconducting passive microwave devices, filters and antennas

    International Nuclear Information System (INIS)

    Ohshima, S.

    2000-01-01

    High-temperature superconducting (HTS) passive microwave devices, such as filters and antennas, are promising devices. In particular, HTS filters may be successfully marketed in the near future. Cross-coupled filters, ring filters, and coplanar waveguide filters are good options to reduce filter size. On the other hand, HTS patch antennas which can be cooled by a cryo-cooler are also promising devices as well, since they show higher efficiency than normal antennas. This paper examines the design process and filter properties of HTS filters as well as the gains, directivity, and cooling system of HTS patch antennas. (author)

  13. The impact of high temperature superconductivity on the electric power sector

    International Nuclear Information System (INIS)

    Wolsky, A.M.

    1996-01-01

    The progress and prospects for the application of high temperature superconductivity to the Electric Power Sector has been the topic of an IEA Implementing Agreement, begun in 1990. The present Task Members are Canada, Denmark, Finland, Germany, Israel, Italy, Japan, Netherlands, Norway, Sweden, Switzerland, Turkey, United Kingdom and the United States. As a result of the Implementing Agreement, work has been done by the Operating Agent with the full participation of all the member countries. This work has facilitated the exchange of information among experts in all countries and has documented relevant assessments. Further, this work has examined the status of high amperage conductor, fault-current limiters, superconducting magnetic energy storage, cables, rotating machines, refrigeration, and studies of the power system. The Task Members find more progress toward applications than many expected five years ago and the grounds for further international collaboration to hasten the use of superconductors in the power sector, early in the 21st century

  14. Flywheel Charge/Discharge Control Developed

    Science.gov (United States)

    Beach, Raymond.F.; Kenny, Barbara H.

    2001-01-01

    A control algorithm developed at the NASA Glenn Research Center will allow a flywheel energy storage system to interface with the electrical bus of a space power system. The controller allows the flywheel to operate in both charge and discharge modes. Charge mode is used to store additional energy generated by the solar arrays on the spacecraft during insolation. During charge mode, the flywheel spins up to store the additional electrical energy as rotational mechanical energy. Discharge mode is used during eclipse when the flywheel provides the power to the spacecraft. During discharge mode, the flywheel spins down to release the stored rotational energy.

  15. A vibrating wire parallel to a high temperature superconducting slab. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Saif, A G; El-sabagh, M A [Department of Mathematic and Theoretical physics, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The power losses problem for an idealized high temperature type II superconducting system of a simple geometry is studied. This system is composed of a vibrating normal conducting wire (two wires) carrying a direct current parallel to an uniaxial anisotropic type II superconducting slab (moving slab). First, the electromagnetic equation governing the dynamics of this system, and its solutions are obtained. Secondly, a modified anisotropic london equation is developed to study these systems in the case of the slab moving. Thirdly, it is found that, the power losses is dependent on the frequency, london penetration depth, permeability, conductivity, velocity, and the distance between the normal conductors and the surfaces of the superconducting slab. Moreover, the power losses decreases as the distance between the normal conductors and the surface of the superconducting slab decreases; and increases as the frequency, the london penetration depth, permeability, conductivity, and velocity are increased. These losses along the versor of the anisotropy axis is increased as {lambda}{sub |}| increases. Moreover, it is greater than the power losses along the crystal symmetry direction. In the isotropic case as well as the slab thickness tends to infinity, agreement with previous results are obtained. 2 figs.

  16. Gutzwiller-RVB theory of high temperature superconductivity. Results from renormalized mean field theory and variational Monte Carlo calculations

    International Nuclear Information System (INIS)

    Edegger, B.

    2007-01-01

    We consider the theory of high temperature superconductivity from the viewpoint of a strongly correlated electron system. In particular, we discuss Gutzwiller projected wave functions, which incorporate strong correlations by prohibiting double occupancy in orbitals with strong on-site repulsion. After a general overview on high temperature superconductivity, we discuss Anderson's resonating valence bond (RVB) picture and its implementation by renormalized mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. In the following, we present a detailed review on RMFT and VMC results with emphasis on our recent contributions. Especially, we are interested in spectral features of Gutzwiller-Bogolyubov quasiparticles obtained by extending VMC and RMFT techniques to excited states. We explicitly illustrate this method to determine the quasiparticle weight and provide a comparison with angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). We conclude by summarizing recent successes and by discussing open questions, which must be solved for a thorough understanding of high temperature superconductivity by Gutzwiller projected wave functions. (orig.)

  17. Gutzwiller-RVB theory of high temperature superconductivity. Results from renormalized mean field theory and variational Monte Carlo calculations

    Energy Technology Data Exchange (ETDEWEB)

    Edegger, B.

    2007-08-10

    We consider the theory of high temperature superconductivity from the viewpoint of a strongly correlated electron system. In particular, we discuss Gutzwiller projected wave functions, which incorporate strong correlations by prohibiting double occupancy in orbitals with strong on-site repulsion. After a general overview on high temperature superconductivity, we discuss Anderson's resonating valence bond (RVB) picture and its implementation by renormalized mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. In the following, we present a detailed review on RMFT and VMC results with emphasis on our recent contributions. Especially, we are interested in spectral features of Gutzwiller-Bogolyubov quasiparticles obtained by extending VMC and RMFT techniques to excited states. We explicitly illustrate this method to determine the quasiparticle weight and provide a comparison with angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). We conclude by summarizing recent successes and by discussing open questions, which must be solved for a thorough understanding of high temperature superconductivity by Gutzwiller projected wave functions. (orig.)

  18. Experimental Evaluation of a High Speed Flywheel for an Energy Cache System

    Science.gov (United States)

    Haruna, J.; Murai, K.; Itoh, J.; Yamada, N.; Hirano, Y.; Fujimori, T.; Homma, T.

    2011-03-01

    A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.

  19. Experimental Evaluation of a High Speed Flywheel for an Energy Cache System

    International Nuclear Information System (INIS)

    Haruna, J; Itoh, J; Murai, K; Yamada, N; Hirano, Y; Homma, T; Fujimori, T

    2011-01-01

    A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.

  20. Development of superconducting power devices in Europe

    International Nuclear Information System (INIS)

    Tixador, Pascal

    2010-01-01

    Europe celebrated last year (2008) the 100-year anniversary of the first liquefaction of helium by H. Kammerling Onnes in Leiden. It led to the discovery of superconductivity in 1911. Europe is still active in the development of superconducting (SC) devices. The discovery of high critical temperature materials in 1986, again in Europe, has opened a lot of opportunities for SC devices by broking the 4 K cryogenic bottleneck. Electric networks experience deep changes due to the emergence of dispersed generation (renewable among other) and to the advances in ICT (Information Communication Technologies). The networks of the future will be 'smart grids'. Superconductivity will offer 'smart' devices for these grids like FCL (Fault Current Limiter) or VLI (Very Low Inductance) cable and would certainly play an important part. Superconductivity also will participate to the required sustainable development by lowering the losses and enhancing the mass specific powers. Different SC projects in Europe will be presented (Cable, FCL, SMES, Flywheel and Electrical Machine) but the description is not exhaustive. Nexans has commercialized the first two FCLs without public funds in the European grid (UK and Germany). The Amsterdam HTS cable is an exciting challenge in term of losses for long SC cables. European companies (Nexans, Air Liquide, Siemens, Converteam, ...) are also very active for projects outside Europe (LIPA, DOE FCL, ...).

  1. Design and Test of a Thermal Triggered Persistent Current System using High Temperature Superconducting Tapes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Keun [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Kang, Hyoungku [Electro-Mechanical Research Institute, Hyundai Heavy Industries, Yongin (Korea, Republic of); Ahn, Min Cheol [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Yang, Seong Eun [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Yoon, Yong Soo [Department of Electrical Engineering, Ansan College of Technology, 671 Choji-Dong, Danwon-Gu, Ansan, 425-792 (Korea, Republic of); Lee, Sang Jin [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Ko, Tae Kuk [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2006-06-01

    A superconducting magnet which is operated in persistent current mode in SMES, NMR, MRI and MAGLEV has many advantages such as high uniformity of magnetic field and reduced thermal loss. A high temperature superconducting (HTS) persistent current switch (PCS) system was designed and tested in this research. The HTS PCS was optimally designed using two different HTS tapes, second generation coated conductor (CC) HTS tape and Bi-2223 HTS tape by the finite element method (FEM) in thermal quench characteristic view. The CC tape is more prospective applicable wire in these days for its high n value and critical current independency from external magnetic field than Bi-2223 tape. Also a prototype PCS system using Bi-2223 tape was manufactured and tested. The PCS system consists of a PCS part, a heater which induces the PCS to quench, and a superconducting magnet. The test was performed in various conditions of transport current. An initial current decay appeared when the superconducting magnet was energized in a PCS system was analyzed. This paper would be foundation of HTS PCS researches.

  2. Permanent magnet design for high-speed superconducting bearings

    Science.gov (United States)

    Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  3. Discussion of superconducting and room-temperature high-intensity ion linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1996-01-01

    The point of view taken in this discussion is that the basic technology base exists in all essential respects for both superconducting or room-temperature rf linac accelerators and associated power and control systems, and thus a project can make a choice between these technologies on overall system considerations. These include performance, cost, availability, flexibility, and upgradability. Large high-intensity neutron source proposals involving light-ion rf linacs in three categories are reviewed in this context. The categories arc cw linacs to high (∼1 GeV) and low (∼40 MeV) output energy, and pulsed linacs to energy ∼1 GeV

  4. Progress in DOE high temperature superconductivity electric power applications program

    International Nuclear Information System (INIS)

    Daley, J.G.; Sheahn, T.P.

    1992-01-01

    The Department of Energy (DOE) leads national R and D effort to develop US industry's capability to produce a wide range of advanced energy-efficient electric power products. The immediate need is to make high temperature superconductivity (HTS) wire. Wire developers at the DOE National laboratories are working wit industrial partners toward this objective. In this paper, the authors describe the progress to date, citing both the difficulties associated with making wire from these ceramic materials, and achievements at several organizations. Results for progress over the next five years are stated

  5. A Cryogenic Magnetostrictive Actuator Using a Persistent High Temperature Superconducting Magnet. Part 1; Concept and Design

    Science.gov (United States)

    Horner, Garnett; Bromberg, Leslie; Teter, J. P.

    2000-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSCCO 2212 with a magnetostrictive element will be discussed.

  6. Design and construction of a high temperature superconducting power cable cryostat for use in railway system applications

    International Nuclear Information System (INIS)

    Tomita, M; Muralidhar, M; Suzuki, K; Fukumoto, Y; Ishihara, A; Akasaka, T; Kobayashi, Y

    2013-01-01

    The primary objective of the current effort was to design and test a cryostat using a prototype five-meter long high temperature Bi 2 Sr 2 Ca 2 Cu 3 O y (Bi-2223) superconducting dc power cable for railway systems. To satisfy the safety regulations of the Govt of Japan a mill sheet covered by super-insulation was used inside the walls of the cryostat. The thicknesses of various walls in the cryostat were obtained from a numerical analysis. A non-destructive inspection was utilized to find leaks under vacuum or pressure. The cryostat target temperature range was around 50 K, which is well below liquid nitrogen temperature, the operating temperature of the superconducting cable. The qualification testing was carried out from 77 down to 66 K. When using only the inner sheet wire, the maximum current at 77.3 K was 10 kA. The critical current (I c ) value increased with decreasing temperature and reached 11.79 kA at 73.7 K. This is the largest dc current reported in a Bi 2 Sr 2 Ca 2 Cu 3 O y or YBa 2 Cu 3 O y (Y-123) superconducting prototype cable so far. These results verify that the developed DC superconducting cable is reliable and fulfils all the requirements necessary for successful use in various power applications including railway systems. The key issues for the design of a reliable cryogenic system for superconducting power cables for railway systems are discussed. (paper)

  7. Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Jeong, N. H.; Sung, T. H.; Han, Y. H.

    2008-01-01

    A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  8. Permanent magnet design for high-speed superconducting bearings

    International Nuclear Information System (INIS)

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs

  9. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Science.gov (United States)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse

    2017-10-17

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  10. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  11. Application of a phenomenological model for the surface impedance in high temperature superconducting films

    International Nuclear Information System (INIS)

    Mosquera, A.S.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2007-01-01

    We report the application of a phenomenological model for the microwave surface impedance in high temperature superconducting films. This model is based on the modified two-fluid model, in which the real and imaginary parts of the surface impedance use the modelling parameter γ. This is responsible for the superconducting and normal charge carrier density and is used for the description of the temperature dependence of the London penetration depth λ L (T) including λ L (0). The relaxation time model also uses the γ parameter in combination with the residual resistance parameter α. The parameter δ 1 1 , γ, α, and δ 2 . The parameter δ 2 n (T) is a result of the competition between the increase of the relaxation time and the decrease of the normal charge-carrier density. We applied this model to analyze experimental results of MgB 2 , YBa 2 Cu 3 O 7-δ and GdBa 2 Cu 3 O 7-δ superconducting material. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. The origins of macroscopic quantum coherence in high temperature superconductivity

    International Nuclear Information System (INIS)

    Turner, Philip; Nottale, Laurent

    2015-01-01

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  13. Safety flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, R.T.

    1977-01-17

    The patent application relates to an inertial energy storage device employing a safety flywheel which is made of flexible material such as a twisted rope ring. The rigidity required for such a device is achieved through centrifugal forces inherent in such a device when it is operating. A small number of the strands of the rope ring have a tensile strength that is lower than the vast majority of the strands of the rope ring whereby should any of these strands fail, they will begin to whiplash allowing such a failure to be detected and braked before a catastrophic failure occurs. This is accomplished by the inclusion of glass tubes located around the periphery of the flywheel. The tubes are in communication with a braking fluid reservoir. The flywheel and glass tubes are enclosed within a vacuum-tight housing.

  14. Theory of high-T{sub C} superconductivity: transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Harshman, Dale R [Physikon Research Corporation, Lynden, WA 98264 (United States); Fiory, Anthony T [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Dow, John D, E-mail: drh@physikon.net [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2011-07-27

    It is demonstrated that the transition temperature (T{sub C}) of high-T{sub C} superconductors is determined by their layered crystal structure, bond lengths, valency properties of the ions, and Coulomb coupling between electronic bands in adjacent, spatially separated layers. Analysis of 31 high-T{sub C} materials (cuprates, ruthenates, ruthenocuprates, iron pnictides, organics) yields the universal relationship for optimal compounds, k{sub B}T{sub C0} ={beta}/{iota}{zeta}, where {iota} is related to the mean spacing between interacting charges in the layers, {zeta} is the distance between interacting electronic layers, {beta} is a universal constant and T{sub C0} is the optimal transition temperature (determined to within an uncertainty of {+-} 1.4 K by this relationship). Non-optimum compounds, in which sample degradation is evident, e.g. by broadened superconducting transitions and diminished Meissner fractions, typically exhibit reduced T{sub C} < T{sub C0}. It is shown that T{sub C0} may be obtained from an average of the Coulomb interaction forces between the two layers.

  15. Gauge Model of High-Tc Superconductivity

    International Nuclear Information System (INIS)

    Ng, Sze Kui

    2012-01-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-T c superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature T c is related to the ionization energies of elements and can be computed by a formula of T c . For the high-T c superconductors such as La 2-x Sr x CuO 4 , Y Ba 2 Cu 3 O 7 , and MgB 2 , the computational results of T c agree with the experimental results.

  16. The design of high-Tc superconductors - Room-temperature superconductivity?

    International Nuclear Information System (INIS)

    Tallon, J.L.; Storey, J.G.; Mallett, B.

    2012-01-01

    This year is the centennial of the discovery of superconductivity and the 25th anniversary of the discovery of high-T c superconductors (HTS). Though we still do not fully understand how HTS work, the basic rules of design can be determined from studying their systematics. We know what to do to increase T c and, more importantly, what to do to increase critical current density J c . This in turn lays down a challenge for the chemist. Can the ideal design be synthesized? More importantly, what are the limits? Can one make a room-temperature superconductor? In fact fluctuations place strict constraints on this objective and provide important guidelines for the design of the ideal superconductor.

  17. Durability of filament-wound composite flywheel rotors

    Science.gov (United States)

    Koyanagi, Jun

    2012-02-01

    This paper predicts the durability of two types of flywheels, one assumes to fail in the radial direction and the other assumes to fail in the circumferential direction. The flywheel failing in the radial direction is a conventional filament-wound composite flywheel and the one failing in the circumferential direction is a tailor-made type. The durability of the former is predicted by Micromechanics of Failure (MMF) (Ha et al. in J. Compos. Mater. 42:1873-1875, 2008), employing time-dependent matrix strength, and that of the latter is predicted by Simultaneous Fiber Failure (SFF) (Koyanagi et al. in J. Compos. Mater. 43:1901-1914, 2009), employing identical time-dependent matrix strength. The predicted durability of the latter is much greater than that of the former, depending on the interface strength. This study suggests that a relatively weak interface is necessary for high-durability composite flywheel fabrication.

  18. Flywheel and power unit

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, R.W.

    1992-10-28

    A power unit, e.g. for an electrically driven vehicle, incorporates a flywheel for storing kinetic energy and a battery for storing electrical energy. The battery is incorporated as a substantial part of the rotating mass of the flywheel. Preferably the unit further includes an electrical machine being a motor or generator or machine operable either as a motor or a generator for transferring energy between the battery and the flywheel and/or for the input or output of rotary energy therefrom or thereto. The motor may be used for powering the flywheel and may also operate in a regenerative mode for recharging the unit on de-acceleration of the vehicle. The unit of the invention may also be utilized as an electrical stored power source, e.g. wind or water driven. (author)

  19. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan)

    2010-11-15

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  20. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    International Nuclear Information System (INIS)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken

    2010-01-01

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  1. Unusual temperature evolution of superconductivity in LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Nag, Pranab Kumar; Schlegel, Ronny; Baumann, Danny; Grafe, Hans-Joachim; Beck, Robert [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany); Hess, Christian [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2016-07-01

    We have performed temperature dependent scanning tunneling spectroscopy on an impurity-free surface area of a LiFeAs single crystal. Our data reveal a highly unusual temperature evolution of superconductivity: at T{sub c}{sup *}=18 K a partial superconducting gap opens, as is evidenced by subtle, yet clear features in the tunneling spectra, i.e. particle-hole symmetric coherence peaks and dip-hump structures. At T{sub c}=16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, this is accompanied by an almost jump-like increase of the gap energy at T{sub c} to about 87% of its low-temperature gap value. The energy of the dip as measured by its distance to the coherence peak remains practically constant in the whole temperature regime T ≤ T{sub c}{sup *}. We compare these findings with established experimental and theoretical results.

  2. Development of a High-Fidelity Model for an Electrically Driven Energy Storage Flywheel Suitable for Small Scale Residential Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2018-03-01

    Full Text Available Energy storage systems (ESS are key elements that can be used to improve electrical system efficiency by contributing to balance of supply and demand. They provide a means for enhancing the power quality and stability of electrical systems. They can enhance electrical system flexibility by mitigating supply intermittency, which has recently become problematic, due to the increased penetration of renewable generation. Flywheel energy storage systems (FESS are a technology in which there is gathering interest due to a number of advantages offered over other storage solutions. These technical qualities attributed to flywheels include high power density, low environmental impact, long operational life, high round-trip efficiency and high cycle life. Furthermore, when configured in banks, they can store MJ levels of energy without any upper limit. Flywheels configured for grid connected operation are systems comprising of a mechanical part, the flywheel rotor, bearings and casings, and the electric drive part, inclusive of motor-generator (MG and power electronics. This contribution focusses on the modelling and simulation of a high inertia FESS for energy storage applications which has the potential for use in the residential sector in more challenging situations, a subject area in which there are few publications. The type of electrical machine employed is a permanent magnet synchronous motor (PMSM and this, along with the power electronics drive, is simulated in the MATLAB/Simulink environment. A brief description of the flywheel structure and applications are given as a means of providing context for the electrical modelling and simulation reported. The simulated results show that the system run-down losses are 5% per hour, with overall roundtrip efficiency of 88%. The flywheel speed and energy storage pattern comply with the torque variations, whilst the DC-bus voltage remains constant and stable within ±3% of the rated voltage, regardless of

  3. Comparison study of cable geometries and superconducting tape layouts for high-temperature superconductor cables

    Science.gov (United States)

    Ta, Wurui; Shao, Tianchong; Gao, Yuanwen

    2018-04-01

    High-temperature superconductor (HTS) rare-earth-barium-copper-oxide (REBCO) tapes are very promising for use in high-current cables. The cable geometry and the layout of the superconducting tapes are directly related to the performance of the HTS cable. In this paper, we use numerical methods to perform a comparison study of multiple-stage twisted stacked-tape cable (TSTC) conductors to find better cable structures that can both improve the critical current and minimize the alternating current (AC) losses of the cable. The sub-cable geometry is designed to have a stair-step shape. Three superconducting tape layouts are chosen and their transport performance and AC losses are evaluated. The magnetic field and current density profiles of the cables are obtained. The results show that arrangement of the superconducting tapes from the interior towards the exterior of the cable based on their critical current values in descending order can enhance the cable's transport capacity while significantly reducing the AC losses. These results imply that cable transport capacity improvements can be achieved by arranging the superconducting tapes in a manner consistent with the electromagnetic field distribution. Through comparison of the critical currents and AC losses of four types of HTS cables, we determine the best structural choice among these cables.

  4. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  5. Integrated high-transition temperature magnetometer with only two superconducting layers

    DEFF Research Database (Denmark)

    Kromann, R.; Kingston, J.J.; Miklich, A.H.

    1993-01-01

    We describe the fabrication and testing of an integrated YBa2Cu3O7-x thin-film magnetometer consisting of a dc superconducting quantum interference device (SQUID), with biepitaxial grain boundary junctions, integrated with a flux transformer on a single substrate. Only two superconducting layers...... are required, the SQUID body serving as the crossunder that completes the multiturn flux transformer. The highest temperature at which any of the magnetometers functioned was 76 K. At 60 K the magnetic field gain of this device was 63, and the magnetic field noise was 160 fT Hz-1/2 at 2 kHz, increasing to 3...

  6. The creation of high-temperature superconducting cables of megawatt range in Russia

    Science.gov (United States)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  7. The creation of high-temperature superconducting cables of megawatt range in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A. [JSC NTTs FSC EES (Russian Federation); Popov, D. A.; Fedotov, E. V.; Komandenko, O. V. [JSC Irkutskkabel (Russian Federation)

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  8. High temperature superconducting Josephson transmission lines for pulse and step sharpening

    International Nuclear Information System (INIS)

    Martens, J.S.; Wendt, J.R.; Hietala, V.M.; Ginley, D.S.; Ashby, C.I.H.; Plut, T.A.; Vawter, G.A.; Tigges, C.P.; Siegal, M.P.; Hou, S.Y.; Phillips, J.M.; Hohenwarter, G.K.G.

    1992-01-01

    An increasing number of high speed digital and other circuit applications require very narrow impulses or rapid pulse edge transitions. Shock wave transmission lines using series or shunt Josephson junctions are one way to generate these signals. Using two different high temperature superconducting Josephson junction processes (step-edge and electron beam defined nanobridges), such transmission lines have been constructed and tested at 77 K. Shock wave lines with approximately 60 YBaCuO nanobridges, have generated steps with fall times of about 10 ps. With step-edge junctions (with higher figures of merit but lower uniformity), step transition times have been reduced to an estimated 1 ps

  9. Electronic properties of rocksalt copper monoxide: a proxy structure for high temperature superconductivity

    International Nuclear Information System (INIS)

    Grant, Paul M

    2008-01-01

    Cubic rocksalt copper monoxide, in contrast to its lighter transition metal neighbours, does not exist in nature nor has it yet been successfully synthesized. Nonetheless, its numerical study as a structurally much simpler proxy for the layered cuprate perovskites may prove useful in probing the source of high temperature superconductivity in the latter family of compounds. Here we report such a study employing density functional theory (DFT) abetted by the local density approximation including cation on-site Hubbard interactions (LDA+U). Rather surprisingly, we find that unlike oxides of the light transition metals, cubic CuO remains metallic for all physically reasonable values of U and does not result in a Mott- Hubbard induced charge transfer insulator as might be expected, and, in fact, displays a Fermi surface with clearly nesting tendencies. Preliminary calculations of the net dimensionless electron-phonon coupling constant, λ, yield values in the range 0.6 - 0.7 similar to those found for the superconducting fullerenes and magnesium diboride. On the other hand, we do find as we gradually introduce a tetragonal distortion away from pure cubic symmetry that a charge- transfer insulator emerges for values of U ∼ 5 eV and c/a ∼ 1.3 in agreement with recent experimental data on forced-epitaxial growth of 2-4 ML thick films of tetragonal rocksalt CuO. We preliminarily conclude from these computational studies that high temperature superconductivity in the copper oxide compounds is at least initially mediated by Jahn-Teller driven electron-phonon coupling as originally suggested by Bednorz and Mueller.

  10. Superconducting critical temperature under pressure

    Science.gov (United States)

    González-Pedreros, G. I.; Baquero, R.

    2018-05-01

    The present record on the critical temperature of a superconductor is held by sulfur hydride (approx. 200 K) under very high pressure (approx. 56 GPa.). As a consequence, the dependence of the superconducting critical temperature on pressure became a subject of great interest and a high number of papers on of different aspects of this subject have been published in the scientific literature since. In this paper, we calculate the superconducting critical temperature as a function of pressure, Tc(P), by a simple method. Our method is based on the functional derivative of the critical temperature with the Eliashberg function, δTc(P)/δα2F(ω). We obtain the needed coulomb electron-electron repulsion parameter, μ*(P) at each pressure in a consistent way by fitting it to the corresponding Tc using the linearized Migdal-Eliashberg equation. This method requires as input the knowledge of Tc at the starting pressure only. It applies to superconductors for which the Migdal-Eliashberg equations hold. We study Al and β - Sn two weak-coupling low-Tc superconductors and Nb, the strong coupling element with the highest critical temperature. For Al, our results for Tc(P) show an excellent agreement with the calculations of Profeta et al. which are known to agree well with experiment. For β - Sn and Nb, we found a good agreement with the experimental measurements reported in several works. This method has also been applied successfully to PdH elsewhere. Our method is simple, computationally light and gives very accurate results.

  11. Stationary flywheel energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gilhaus, A; Hau, E; Gassner, G; Huss, G; Schauberger, H

    1981-01-01

    The aim of this system study is to find out industrial applications of stationary flywheel energy accumulators. The economic value for the consumer and the effects on the power supply grid are investigated. Up to now, stationary flywheel energy accumulators have only been used in a small range. The main reason for thinking of the application in a wider range was the hope that those could be used economically for lowering the maximum output demand of the power supply grid. The possible savings in energy costs, however, proved to be too small for paying back the investment costs. Further benefits are necessary for advantageous application. As to overall economy, compensation of short time maximum power output seems to be more favorable at the power stations. An additional possibility for energy storage by flywheels is given where otherwise lost energy can be used effectively, according to the successful brake energy storage in vehicles. Under this aspect the future use of flywheels in wind-power-plants seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed for instance in telecommunication systems. Especially the application for emergency power supply, in power stations and in combustion with wind energy converters need further investigation.

  12. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  13. High-temperature superconducting phase of HBr under pressure predicted by first-principles calculations

    Science.gov (United States)

    Gu, Qinyan; Lu, Pengchao; Xia, Kang; Sun, Jian; Xing, Dingyu

    2017-08-01

    The high pressure phases of HBr are explored with an ab initio crystal structure search. By taking into account the contribution of zero-point energy (ZPE), we find that the P 4 /n m m phase of HBr is thermodynamically stable in the pressure range from 150 to 200 GPa. The superconducting critical temperature (Tc) of P 4 /n m m HBr is evaluated to be around 73 K at 170 GPa, which is the highest record so far among binary halogen hydrides. Its Tc can be further raised to around 95K under 170 GPa if half of the bromine atoms in the P 4 /n m m HBr are substituted by the lighter chlorine atoms. Our study shows that, in addition to lower mass, higher coordination number, shorter bonds, and more highly symmetric environment for the hydrogen atoms are important factors to enhance the superconductivity in hydrides.

  14. Variable temperature superconducting microscope

    Science.gov (United States)

    Cheng, Bo; Yeh, W. J.

    2000-03-01

    We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.

  15. A study on the development of high Tc superconducting materials

    International Nuclear Information System (INIS)

    Won, D. Y.; Hong, G. Y.; Lee, H. G.; Lee, H. J.; Kim, C. J.; Kwon, S. C.; Kim, K. B.; Kang, Y. H.; Chang, I. S.; Choi, M. J.

    1992-01-01

    The major work of this project aims to develop the frictionless superconducting bearing with a high speed. The high magnetization YBaCuO bulk superconductor was prepared by Quasi-melt process. The frictionless superconducting magnetic bearing standed a rotating bar with a speed of 75,000 rpm, which were operated by an electric controller. The low temperature chemical vapor deposition technique was developed. YBaCuO superconducting film showing a superconductivity above 77K was successfully prepared at 650 deg C. Effect of oxygen partial pressure, substrate, deposition temperature on the film properties were also investigated. (Author)

  16. Possible universal cause of high-Tc superconductivity in different metals

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Shaginyan, V.R.

    2002-01-01

    Using the theory of the high temperature superconductivity based on the idea of the fermion condensation quantum phase transition (FCQPT) it is shown that neither the d-wave pairing symmetry, nor the pseudogap phenomenon, nor the presence of the Cu-O 2 planes are of decisive importance for the existence of the high-T c superconductivity. The analysis of recent experimental data on this type of superconductivity in different materials is carried out. It is shown that these facts can be understood within the theory of superconductivity based on the FCQPT. The main features of a room-temperature superconductor are discussed [ru

  17. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Paul (ed.) [Jena Univ. (Germany). Inst. fuer Festkoerperphysik, AG Tieftemperaturphysik

    2015-07-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  18. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    International Nuclear Information System (INIS)

    Seidel, Paul

    2015-01-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  19. Interface-enhanced high-temperature superconductivity in single-unit-cell FeT e1 -xS ex films on SrTi O3

    Science.gov (United States)

    Li, Fangsen; Ding, Hao; Tang, Chenjia; Peng, Junping; Zhang, Qinghua; Zhang, Wenhao; Zhou, Guanyu; Zhang, Ding; Song, Can-Li; He, Ke; Ji, Shuaihua; Chen, Xi; Gu, Lin; Wang, Lili; Ma, Xu-Cun; Xue, Qi-Kun

    2015-06-01

    Recently discovered high-temperature superconductivity in single-unit-cell (UC) FeSe films on SrTi O3 (STO) substrate has stimulated tremendous research interest, both experimental and theoretical. Whether this scenario could be extended to other superconductors is vital in both identifying the enhanced superconductivity mechanism and further raising the critical transition temperature (Tc). Here we successfully prepared single-UC FeT e1 -xS ex(0.1 ≤x ≤0.6 ) films on STO substrates by molecular beam epitaxy and observed U -shaped superconducting gaps (Δ ) up to ˜16.5 meV , nearly ten times the gap value (Δ ˜1.7 meV ) of the optimally doped bulk FeT e0 .6S e0 .4 single crystal (Tc˜14.5 K ). No superconducting gap has been observed on the second UC and thicker FeT e1 -xS ex films at 5.7 K, indicating the important role of the interface. This interface-enhanced high-temperature superconductivity is further confirmed by ex situ transport measurements, which revealed an onset superconducting transition temperature above 40 K, nearly two times higher than that of the optimally doped bulk FeT e0 .6S e0 .4 single crystal. This work demonstrates that interface engineering is a feasible way to discover alternative superconductors with higher Tc.

  20. Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping

    Energy Technology Data Exchange (ETDEWEB)

    Dadras, S., E-mail: dadras@alzahra.ac.ir; Dehghani, S.; Davoudiniya, M.; Falahati, S.

    2017-06-01

    In this research, we report the synthesis and characterization of YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) high temperature superconductor prepared by sol-gel method and doped with Graphene Oxide (GO) in different weight percentages, 0, 0.1, 0.7 and 1 % wt. The x-ray diffraction (XRD) analysis confirms the formation of orthorhombic phase of superconductivity for all the prepared samples. We found that GO doping reduces the crystalline size of the samples. We evaluated the effects of GO doping on the normal state resistivity (ρ), superconducting transition temperature (T{sub c}) and critical current density (J{sub c}). The results show that the GO doping has a positive effect on these properties. Also, the highest J{sub c} is obtained for the 0.7 %wt GO doped YBCO compound that its critical current density is about 15 times more than the J{sub c} of pure one in 0.4 T magnetic field. The scanning electron microscope (SEM) analysis shows that there are better connections between the grains of GO doped samples. - Highlights: • Graphene Oxide doping increased the YBCO critical current density. • Graphene Oxide creates a better connection between the YBCO grains. • The normal resistivity of samples were decreased by GO doping to YBCO compounds. • Graphene Oxide doping has a positive effect on the critical transition temperature.

  1. Design study of high-temperature superconducting generators for wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Maki, N [Technova Inc. 13th Fl. Imperial Hotel Tower, 1-chome, Chiyoda-ku, Tokyo 100-0011 (Japan)], E-mail: naokmaki@technova.co.jp

    2008-02-15

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown.

  2. Design study of high-temperature superconducting generators for wind power systems

    International Nuclear Information System (INIS)

    Maki, N

    2008-01-01

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown

  3. Are we getting to the point of understanding high-temperature superconductivity?

    International Nuclear Information System (INIS)

    Huebener, R.P.; Tsuei, C.C.; Newns, D.M.

    1994-01-01

    The model elaborated by van Hove allows a coherent explanation of various anomalies observed with the phenomenon of high-T c superconductivity, including the cause of T c reaching such a high value, or the materials behaving like marginal Fermi liquids. However, there remain other enigma to be solved before it will be possible to fully explain and understand high-T c superconductivity. (DG) [de

  4. Stability analysis of high temperature superconducting coil in liquid hydrogen

    International Nuclear Information System (INIS)

    Nakayama, T.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2007-01-01

    Recently, it is expected that hydrogen plays an important role in energy source including electric power in near future. Liquid hydrogen has high potential for cooling down superconducting coil wound with high temperature superconductors (HTS), such as BSCCO, YBCO. In this paper, we study stabilities of the coils wound with BSCCO tapes, which are immersed in the liquid hydrogen, and compare stability results with those cooled by liquid helium. We treat a minimum propagation zone (MPZ) theory to evaluate the coil stability considering boiling heat flux of the liquid hydrogen, and specific heat, heat conduction and resistivity of HTS materials as a function of temperature. It is found that the coil cooled by the liquid hydrogen has higher stability margin than that cooled by the liquid helium. We compare the stability margins of both coils wound with Bi-2223/Ag tape and Bi-2212/Ag tape in liquid hydrogen. As a result, it is found that the stability of Bi-2212 coil is equivalent to that of Bi-2223 coil in low and high magnetic field, while the maximum current of Bi-2212 coil exceeds a little bit that of Bi-2223 coil in both magnetic fields

  5. Flywheels Would Compensate for Rotor Imbalance

    Science.gov (United States)

    Hrastar, J. A. S.

    1982-01-01

    Spinning flywheels within rotor can null imbalance forces in rotor. Flywheels axes are perpendicular to each other and to rotor axis. Feedback signals from accelerometers or strain gages in platform control flywheel speeds and rotation directions. Concept should be useful for compensating rotating bodies on Earth. For example, may be applied to large industrial centrifuge, particularly if balance changes during operation.

  6. Cryogenics Vision Workshop for High-Temperature Superconducting Electric Power Systems Proceedings

    International Nuclear Information System (INIS)

    Energetics, Inc.

    2000-01-01

    The US Department of Energy's Superconductivity Program for Electric Systems sponsored the Cryogenics Vision Workshop, which was held on July 27, 1999 in Washington, D.C. This workshop was held in conjunction with the Program's Annual Peer Review meeting. Of the 175 people attending the peer review meeting, 31 were selected in advance to participate in the Cryogenics Vision Workshops discussions. The participants represented cryogenic equipment manufactures, industrial gas manufacturers and distributors, component suppliers, electric power equipment manufacturers (Superconductivity Partnership Initiative participants), electric utilities, federal agencies, national laboratories, and consulting firms. Critical factors were discussed that need to be considered in describing the successful future commercialization of cryogenic systems. Such systems will enable the widespread deployment of high-temperature superconducting (HTS) electric power equipment. Potential research, development, and demonstration (RD and D) activities and partnership opportunities for advancing suitable cryogenic systems were also discussed. The workshop agenda can be found in the following section of this report. Facilitated sessions were held to discuss the following specific focus topics: identifying Critical Factors that need to be included in a Cryogenics Vision for HTS Electric Power Systems (From the HTS equipment end-user perspective) identifying R and D Needs and Partnership Roles (From the cryogenic industry perspective) The findings of the facilitated Cryogenics Vision Workshop were then presented in a plenary session of the Annual Peer Review Meeting. Approximately 120 attendees participated in the afternoon plenary session. This large group heard summary reports from the workshop session leaders and then held a wrap-up session to discuss the findings, cross-cutting themes, and next steps. These summary reports are presented in this document. The ideas and suggestions raised during

  7. Transition temperature to the superconducting phase of QCD at high baryon density

    International Nuclear Information System (INIS)

    Brown, William E.; Liu, James T.; Ren, Hai-cang

    2000-01-01

    Recent interest in the study of color superconductivity has focused on the regime of high baryon density where perturbative QCD may be employed. Based on the dominant one-gluon-exchange interaction, both the transition temperature and zero temperature gap have been determined to leading order in the coupling g. While the leading non-BCS behavior T C ∼μg -5 e -κ/g is easily obtained, the pre-exponential factor has proved more difficult to evaluate. Focusing on the transition temperature, we present a perturbative derivation of this factor, exact to leading order in g. This approach is first motivated by the study of a toy model and involves working to second order in the perturbative expansion. We compare this result to the zero temperature gap. Additionally, we extend the analysis to the case of higher angular momentum for longitudinal and transverse quark pairing. (c) 2000 The American Physical Society

  8. Magnetic levitation using high temperature superconducting pancake coils as composite bulk cylinders

    International Nuclear Information System (INIS)

    Patel, A; Hopkins, S C; Baskys, A; Glowacki, B A; Kalitka, V; Molodyk, A

    2015-01-01

    Stacks of superconducting tape can be used as composite bulk superconductors for both trapped field magnets and for magnetic levitation. Little previous work has been done on quantifying the levitation force behavior between stacks of tape and permanent magnets. This paper reports the axial levitation force properties of superconducting tape wound into pancake coils to act as a composite bulk cylinder, showing that similar stable forces to those expected from a uniform bulk cylinder are possible. Force creep was also measured and simulated for the system. The geometry tested is a possible candidate for a rotary superconducting bearing. Detailed finite element modeling in COMSOL Multiphysics was also performed including a full critical state model for induced currents, with temperature and field dependent properties and 3D levitation force models. This work represents one of the most complete levitation force modeling frameworks yet reported using the H-formulation and helps explain why the coil-like stacks of tape are able to sustain levitation forces. The flexibility of geometry and consistency of superconducting properties offered by stacks of tapes, make them attractive for superconducting levitation applications. (paper)

  9. Design and Construction of 10 kWh Class Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Jung, S. Y.; Han, S. C.; Han, Y. H.; Park, B. J.; Bae, Y. C.; Lee, W. R.

    2011-01-01

    A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 10 kWh class flywheel energy storage system (FESS) has been developed to evaluate the feasibility of a 35 kWh class SFES with a flywheel Ip/If ratio larger than 1. The 10 kWh class FESS is composed of a main frame, a composite flywheel, active magnetic dampers (AMDs), a permanent magnet bearing, and a motor/generator. The flywheel of the FESS rotates at a very high speed to store energy, while being levitated by a permanent magnetic bearing and a pair of thrust AMDs. The 10 kWh class flywheel is mainly composed of a composite rotor assembly, where most of the energy is stored, two radial and two thrust AMD rotors, which dissipate vibration at critical speeds, a permanent magnet rotor, which supports most of the flywheel weight, a motor rotor, which spins the flywheel, and a central hollow shaft, where the parts are assembled and aligned to. The stators of each of the main components are assembled on to housings, which are assembled and aligned to the main frame. Many factors have been considered while designing each part of the flywheel, stator and frame. In this study, a 10 kWh class flywheel energy storage system has been designed and constructed for test operation.

  10. A composite-flywheel burst-containment study

    Science.gov (United States)

    Sapowith, A. D.; Handy, W. E.

    1982-01-01

    A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These are: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk.

  11. Finding new superconductors: the spin-fluctuation gateway to high Tc and possible room temperature superconductivity.

    Science.gov (United States)

    Pines, David

    2013-10-24

    We propose an experiment-based strategy for finding new high transition temperature superconductors that is based on the well-established spin fluctuation magnetic gateway to superconductivity in which the attractive quasiparticle interaction needed for superconductivity comes from their coupling to dynamical spin fluctuations originating in the proximity of the material to an antiferromagnetic state. We show how lessons learned by combining the results of almost three decades of intensive experimental and theoretical study of the cuprates with those found in the decade-long study of a strikingly similar family of unconventional heavy electron superconductors, the 115 materials, can prove helpful in carrying out that search. We conclude that, since Tc in these materials scales approximately with the strength of the interaction, J, between the nearest neighbor local moments in their parent antiferromagnetic state, there may not be a magnetic ceiling that would prevent one from discovering a room temperature superconductor.

  12. Miniaturized high-temperature superconducting multiplexer with cascaded quadruplet structure

    Science.gov (United States)

    Xu, Zhang; Jingping, Liu; Shaolin, Yan; Lan, Fang; Bo, Zhang; Xinjie, Zhao

    2015-06-01

    In this paper, compact high temperature superconducting (HTS) multiplexers are presented for satellite communication applications. The first multiplexer consists of an input coupling node and three high-order bandpass filters, which is named triplexer. The node is realized by a loop microstrip line instead of conventional T-junction to eliminate the redundant susceptance due to combination of three filters. There are two eight-pole band-pass filters and one ten-pole band-pass filter with cascaded quadruplet structure for realizing high isolation. Moreover, the triplexer is extended to a multiplexer with six channels so as to verify the expansibility of the suggested approach. The triplexer is fabricated using double-sided YBa2Cu3O7 thin films on a 38 × 25 mm2 LaAlO3 substrate. The experimental results, when compared with those ones from the T-junction multiplexer, show that our multiplexer has lower insertion loss, smaller sizes and higher isolation between any two channels. Also, good agreement has been achieved between simulations and measurements, which illustrate the effectiveness of our methods for the design of high performance HTS multiplexers.

  13. Vertical Vibration Characteristics of a High-Temperature Superconducting Maglev Vehicle System

    Science.gov (United States)

    Jiang, Jing; Li, Ke Cai; Zhao, Li Feng; Ma, Jia Qing; Zhang, Yong; Zhao, Yong

    2013-06-01

    The vertical vibration characteristics of a high-temperature superconducting maglev vehicle system are investigated experimentally. The displacement variations of the maglev vehicle system are measured with different external excitation frequency, in the case of a certain levitation gap. When the external vibration frequency is low, the amplitude variations of the response curve are small. With the increase of the vibration frequency, chaos status can be found. The resonance frequencies with difference levitation gap are also investigated, while the external excitation frequency range is 0-100 Hz. Along with the different levitation gap, resonance frequency is also different. There almost is a linear relationship between the levitation gap and the resonance frequency.

  14. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  15. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  16. Third Generation Flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid

  17. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    Science.gov (United States)

    Charnukha, A.; Evtushinsky, D. V.; Matt, C. E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Borisenko, S. V.

    2015-12-01

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  18. Recommended Practices for the Safe Design and Operation of Flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Donald Arthur [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Flywheel energy storage systems are in use globally in increasing numbers . No codes pertaining specifically to flywheel energy storage exist. A number of industrial incidents have occurred. This protocol recommends a technical basis for safe flywheel de sign and operation for consideration by flywheel developers, users of flywheel systems and standards setting organizations.

  19. NASA space applications of high-temperature superconductors

    Science.gov (United States)

    Heinen, Vernon O.; Sokoloski, Martin M.; Aron, Paul R.; Bhasin, Kul B.

    1992-01-01

    The application of superconducting technology in space has been limited by the requirement of cooling to near liquid helium temperatures. The only means of attaining these temperatures has been with cryogenic fluids which severely limits mission lifetime. The development of materials with superconducting transition temperatures (T sub c) above 77 K has made superconducting technology more attractive and feasible for employment in aerospace systems. Potential applications of high-temperature superconducting technology in cryocoolers and remote sensing, communications, and power systems are discussed.

  20. High-temperature study of superconducting hydrogen and deuterium sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Durajski, A.P. [Institute of Physics, Czestochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czestochowa (Poland); Szczesniak, R. [Institute of Physics, Czestochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czestochowa (Poland); Institute of Physics, Jan Dlugosz University, Ave. Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Pietronero, L. [Sapienza, Universita di Roma, Dip. Fisica, P. le A. Moro 2, 00185 Roma (Italy); Institute of Complex Systems, CNR, Via dei Taurini 19 Roma (Italy); London Institute for Mathematical Sciences, South Street 22, Mayfair London (United Kingdom)

    2016-05-15

    Hydrogen-rich compounds are extensively explored as candidates for a high-temperature superconductors. Currently, the measured critical temperature of 203 K in hydrogen sulfide (H{sub 3}S) is among the highest over all-known superconductors. In present paper, using the strong-coupling Eliashberg theory of superconductivity, we compared in detail the thermodynamic properties of two samples containing different hydrogen isotopes H{sub 3}S and D{sub 3}S at 150 GPa. Our research indicates that it is possible to reproduce the measured values of critical temperature 203 K and 147 K for H{sub 3}S and D{sub 3}S by using a Coulomb pseudopotential of 0.123 and 0.131, respectively. However, we also discuss a scenario in which the isotope effect is independent of pressure and the Coulomb pseudopotential for D{sub 3}S is smaller than for H{sub 3}S. For both scenarios, the energy gap, specific heat, thermodynamic critical field and related dimensionless ratios are calculated and compared with other conventional superconductors. We shown that the existence of the strong-coupling and retardation effects in the systems analysed result in significant differences between values obtained within the framework of the Eliashberg formalism and the prediction of the Bardeen-Cooper-Schrieffer theory. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. High-temperature superconductivity: Perseverance and cooperation on the road to commercialization

    International Nuclear Information System (INIS)

    1988-01-01

    Early in 1986 two European researchers working in the Swiss laboratory of a U.S. firm made a remarkable and unexpected discovery. After years of dedicated materials research they had in fact found a class of materials which exhibited the remarkable phenomenon of superconductivity at a new and higher range of temperatures. Scientifically, the result was completely unexpected. Technologically, the result immediately brought out of mothballs the many applications of superconductivity that had generally seemed out of reach with the earlier materials. The recommendations are in two parts, the first aimed at strengthening the purely scientific effort, and the second aimed at providing strength and stability in the long term race for applications

  2. High-temperature uncertainty

    International Nuclear Information System (INIS)

    Timusk, T.

    2005-01-01

    Recent experiments reveal that the mechanism responsible for the superconducting properties of cuprate materials is even more mysterious than we thought. Two decades ago, Georg Bednorz and Alex Mueller of IBM's research laboratory in Zurich rocked the world of physics when they discovered a material that lost all resistance to electrical current at the record temperature of 36 K. Until then, superconductivity was thought to be a strictly low-temperature phenomenon that required costly refrigeration. Moreover, the IBM discovery - for which Bednorz and Mueller were awarded the 1987 Nobel Prize for Physics - was made in a ceramic copper-oxide material that nobody expected to be particularly special. Proposed applications for these 'cuprates' abounded. High-temperature superconductivity, particularly if it could be extended to room temperature, offered the promise of levitating trains, ultra-efficient power cables, and even supercomputers based on superconducting quantum interference devices. But these applications have been slow to materialize. Moreover, almost 20 years on, the physics behind this strange state of matter remains a mystery. (U.K.)

  3. The infinite range Heisenberg model and high temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil

    1992-01-01

    The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.

  4. Characteristics of the joint mini-model high temperature superconducting cable

    International Nuclear Information System (INIS)

    Kim, H.; Sim, K.; Cho, J.; Kim, S.; Kim, J.H.; Jung, H.Y.

    2008-01-01

    To obtain realistic data on the high temperature superconducting (HTS) power cable, 3-phase 100 m long, 22.9 kV class HTS power transmission cable system have been developed by Korea Electrotechnology Research Institute (KERI) and LS cable Ltd. that is one of 21st Century Frontier Project in Korea. This cable was installed at Go-chang testing site of Korea Electric Power Corporation (KEPCO). For the application of the HTS power cable joint is very important to ensure the performance. Therefore, this paper gives some investigation of AC loss, critical current and joint resistance in jointed HTS tape. We experimentally showed that the influence of joint resistance on AC loss by using several joint methods. Finally, we are measured critical current, AC loss and jointed resistance for the manufactured mini-model cable

  5. Modeling, Testing, and Characteristic Analysis of a Planetary Flywheel Inerter

    Directory of Open Access Journals (Sweden)

    Zheng Ge

    2018-01-01

    Full Text Available We propose the planetary flywheel inerter, which is a new type of ball screw inerter. A planetary flywheel consists of several planetary gears mounted on a flywheel bracket. When the flywheel bracket is driven by a screw and rotating, each planetary gear meshing with an outer ring gear generates a compound motion composed of revolution and rotation. Theoretical analysis shows that the output force of the planetary flywheel inerter is proportional to the relative acceleration of one terminal of the inerter to the other. Optimizing the gear ratio of the planetary gears to the ring gear allows the planetary flywheel to be lighter than its traditional counterpart, without any loss on the inertance. According to the structure of the planetary flywheel inerter, nonlinear factors of the inerter are analyzed, and a nonlinear dynamical model of the inerter is established. Then the parameters in the model are identified and the accuracy of the model is validated by experiment. Theoretical analysis and experimental data show that the dynamical characteristics of a planetary flywheel inerter and those of a traditional flywheel inerter are basically the same. It is concluded that a planetary flywheel can completely replace a traditional flywheel, making the inerter lighter.

  6. NMR initiatives on understanding high-temperature superconductivity

    International Nuclear Information System (INIS)

    Kitaoka, Y.; Mukuda, H.; Shimizu, S.; Abe, M.; Iyo, A.; Tanaka, Y.; Kito, H.; Tokiwa, K.; Watanabe, T.

    2007-01-01

    We review a recent progress of NMR studies [H. Mukuda, et al., Phys. Rev. Lett 96 (2006) 087001; S. Shimizu, et al., submitted for publication.] on multi-layered cuprates. This work has shed new light to a generic phase diagram of high-temperature superconductivity (HTSC) which suggests a competition between antiferromagnetism (AFM) and superconductivity (SC). The multi-layered cuprates include two types of CuO 2 planes, an outer CuO 2 plane (OP) in a pyramidal coordination and an inner CuO 2 plane (IP) in a square one with no apical oxygen. Remarkable feature of the multi-layered systems is the presence of ideally flat CuO 2 planes that are homogeneously doped. Systematic Cu-NMR studies on the optimally-doped five-layered HgBa 2 Ca 4 Cu 5 O 12+δ (Hg-1245(OPT)) and slightly overdoped Tl-1245(OVD) have revealed the coexistent phase of SC and AFM in a unit cell [H. Kotegawa, et al., Phys. Rev. B 64 (2001) 064515; H. Kotegawa, et al., Phys. Rev. B 69 (2004) 014501.]. The optimally doped two OPs are predominantly superconducting with T c =108 and 100K, whereas the under-doped three IPs show the AFM order below T N =60 and 45K for Hg-1245(OPT) and Tl-1245(OVD), respectively. Recently exciting is the finding of the uniform mixing of AFM and HTSC in a single CuO 2 layer in the under-doped Hg-1245(UD) and the heavily underdoped four-layered Ba 2 Ca 3 Cu 4 O 8 F 2 (0234F(2.0)) that has fluorine ions (F 1- ) as apical ions [H. Mukuda, et al., Phys. Rev. Lett 96 (2006) 087001; S. Shimizu, et al., submitted for publication.]. In Hg-1245(UD) with T c =72K and T N =290K, the OPs exhibit the uniform mixing of AFM and HTSC with AFM moment of M AFM (OP)=0.1μ B , whereas the IPs are possibly AFM insulators with a small doping [H. Mukuda, et al., Phys. Rev. Lett 96 (2006) 087001.]. In 0234F(2.0) with T c =55K and T N =100K, the uniform mixing of AFM and HTSC is demonstrated to take place in electron (n)-doped IPs [S. Shimizu, et al., submitted for publication.], thanks to insight

  7. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    Science.gov (United States)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  8. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity

  9. Operation and design selection of high temperature superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2004-01-01

    Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN 2 for cooling down, and about 0.2 l LN 2 h -1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings

  10. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  11. A Review of Flywheel Energy Storage System Technologies and Their Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2017-03-01

    Full Text Available Energy storage systems (ESS provide a means for improving the efficiency of electrical systems when there are imbalances between supply and demand. Additionally, they are a key element for improving the stability and quality of electrical networks. They add flexibility into the electrical system by mitigating the supply intermittency, recently made worse by an increased penetration of renewable generation. One energy storage technology now arousing great interest is the flywheel energy storage systems (FESS, since this technology can offer many advantages as an energy storage solution over the alternatives. Flywheels have attributes of a high cycle life, long operational life, high round-trip efficiency, high power density, low environmental impact, and can store megajoule (MJ levels of energy with no upper limit when configured in banks. This paper presents a critical review of FESS in regards to its main components and applications, an approach not captured in earlier reviews. Additionally, earlier reviews do not include the most recent literature in this fast-moving field. A description of the flywheel structure and its main components is provided, and different types of electric machines, power electronics converter topologies, and bearing systems for use in flywheel storage systems are discussed. The main applications of FESS are explained and commercially available flywheel prototypes for each application are described. The paper concludes with recommendations for future research.

  12. Application of high temperature superconductivity to electric motor design

    International Nuclear Information System (INIS)

    Edmonds, J.S.; Sharma, D.K.; Jordan, H.E.; Edick, J.D.; Schiferl, R.F.

    1992-01-01

    This paper reports on progress made in a joint project conducted by the Electric Power Research Institute and Reliance Electric Company to study the possible application of High Temperature Super Conductors (HTSC), materials to electric motors. Specific applications are identified which can be beneficially served by motors constructed with HTSC materials. A summary is presented of the components and design issues related to HTSC motors designed for these applications. During the course of this development program, a three tier HTSC wire performance specification has evolved. The three specifications and the rationale behind these three levels of performance are explained. A description of a test motor that has been constructed to verify the electromagnetic analytical techniques of HTSC motor design is given. Finally, a DC motor with an HTSC field coil is described. Measured data with the motor running is presented showing that the motor is operating with the field winding in the superconducting state

  13. Study of Servo Press with a Flywheel

    Science.gov (United States)

    Tso, Pei-Lum; Li, Cheng-Ho

    The servo press with a flywheel is able to provide flexible motions with energy-saving merit, but its true potential has not been thoroughly studied and verified. In this paper, such the “hybrid-driven” servo press is focused on, and the stamping capacity and the energy distribution between the flywheel and the servomotor are investigated. The capacity is derived based on the principle of energy conservation, and a method of using a capacity percentage plane for evaluation is proposed. A case study is included to illustrate and interpret that the stamping capacity is highly dependent on the programmed punch motions, thus the capacity prediction is always necessary while applying this kind of servo press. The energy distribution is validated by blanking experiments, and the results indicate that the servomotor needs only to provide 15% to the flywheel torque, 12% of the total stamping energy. This validates that the servomotor power is significantly saved in comparison with conventional servo presses.

  14. Spin dynamics in high-TC superconducting cuprates

    International Nuclear Information System (INIS)

    Bourges, Ph.

    2003-07-01

    This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa 2 Cu 3 O 6+x system

  15. Low-temperature synthesis of superconducting nanocrystalline MgB2

    International Nuclear Information System (INIS)

    Lu, J.; Xiao, Z.; Lin, Q.; Claus, H.; Fang, Z.Z.

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  16. Design optimisation of a flywheel hybrid vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kok, D.B.

    1999-11-04

    during the engine start-up and shutdown periods. Correct throttle valve control ensures that hydrocarbon emissions are not critical for legislative emission limits, but the engine's standard lambda control cannot prevent an increase of nitric oxides. In order to improve tailpipe emissions, the thermo-chemical behaviour of the catalytic converter is investigated and adapted for hybrid vehicle application. In cold-start situations, the fuel consumption and exhaust gas emissions of a mechanical driveline with internal combustion engine increase. A detailed numerical investigation of the thermal behaviour of the hybrid driveline showed that the energy-efficient operation of the engine decreases thermal waste energy that is available to warm up driveline components. Therefore, a redesign of the cooling circuitry and thermal management of the driveline was required to improve system warm-up. A computer model has been developed that combines the functional description of the flywheel hybrid vehicle with the calculation of energy losses. Apart from standardised European drive cycles, velocity profiles that represent more realistic vehicle utilisation are used to assess and optimise the hybrid vehicle's fuel economy, exhaust gas emission and acceleration performance. Subdivision of energy consumption enabled the classification of those systems and components that have a major effect on fuel consumption. Of these, the optimised flywheel system, the hydraulic system, and the transmission consume energy of comparable magnitude in city driving. It is shown that the system's fuel economy is mainly a result of the improved engine operation. Regenerative braking has only limited effect on vehicle fuel consumption. Experiments with an early prototype of the hybrid driveline yielded no gains in fuel consumption when compared to a conventional CVT reference vehicle due to high storage losses in the flywheel system. However, the improved prototype of the flywheel hybrid

  17. An investigation of texturing by magnetic and mechanical techniques in high critical temperature superconducting ceramics

    International Nuclear Information System (INIS)

    Deschanels, X.

    1992-11-01

    The principal goal of this work is to quantify the influence of texture of ceramic superconductors ReBaCuO (Re=Dy, Y) on their critical current density (Jc). The magnetic alignment of particles at ambient temperature is the first technique who has allowed us to produce superconducting (Meissner effect) and textured ceramics. However, these materials are very brittle because of their porosity and this makes it impossible to measure their Jc. Press-forging (or creep sintering) is the second technique who has allowed us to prepare highly textured ceramics materials which are also dense. We have studied the influence of various conditions of thermomechanical treatment (sintering time and temperature, applied load, rate of deformation, density of the material at the beginning) on the texture quality. We have shown that at 900 deg, the eutectic liquid formed by BaCuO 2 , CuO and YBa 2 Cu 3 0 7-Y various mechanisms that help explain the formation of observed texture. After the oxidation stage which requires heat treatment under controlled atmospheres, we obtain superconducting ceramics (Tc=85 K). Moreover, this study also shows that the texture can improve the Jc by 400%, to 750 A/cm 2 at 77 K in the best specimens. This low value is explained by the presence of non-superconducting secondary phases and amorphous phases at the grain boundaries. (Author). 120 refs., figs., tabs

  18. The US market for high-temperature superconducting wire in transmission cable applications

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, D

    1996-04-01

    Telephone interviews were conducted with 23 utility engineers concerning the future prospects for high-temperature superconducting (HTS) transmission cables. All have direct responsibility for transmission in their utility, most of them in a management capacity. The engineers represented their utilities as members of the Electric Power Research Institute`s Underground Transmission Task Force (which has since been disbanded). In that capacity, they followed the superconducting transmission cable program and are aware of the cryogenic implications. Nineteen of the 23 engineers stated the market for underground transmission would grow during the next decade. Twelve of those specified an annual growth rate; the average of these responses was 5.6%. Adjusting that figure downward to incorporate the remaining responses, this study assumes an average growth rate of 3.4%. Factors driving the growth rate include the difficulty in securing rights-of-way for overhead lines, new construction techniques that reduce the costs of underground transmission, deregulation, and the possibility that public utility commissions will allow utilities to include overhead costs in their rate base. Utilities have few plans to replace existing cable as preventive maintenance, even though much of the existing cable has exceeded its 40-year lifetime. Ten of the respondents said the availability of a superconducting cable with the same life-cycle costs as a conventional cable and twice the ampacity would induce them to consider retrofits. The respondents said a cable with those characteristics would capture 73% of their cable retrofits.

  19. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  20. High-energy neutron irradiation of superconducting compounds

    International Nuclear Information System (INIS)

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  1. FY 1999 Report on research and development of power storage by high-temperature superconducting flywheel. Research and development of permanent magnet; 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu eikyu jishaku no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The R and D program is implemented for permanent magnet, as part of the project aimed at commercialization of a 10 MWh-class high-temperature superconducting magnetic bearing type power storage system. A speed of rotation of 28,570 rpm is attained by using an iron intermediate ring for a Pr permanent magnet rotator and reinforcing the rotator with a plastic hoop reinforced with carbon fibers three-fold (CFPR hoop). The speed is increased to 31,300 rpm by interlacing carbon fibers also in the radial direction and replacing iron for the intermediate ring by titanium. The highest speed of rotation of 33,506 rpm is realized by the rotator of permanent magnet of sintered Nd. The magnetic circuit of stronger, more smooth magnetic field needs the permanent magnet of less uneven magnetic flux. The magnet is of a monoaxially anisotropic rare-earth metal, with four-fold magnetic ring bodies having fan-shaped small pieces arranged on each ring. Uneven magnetic flux occurs at the joint between these small pieces. The one-body-ring magnet of radially anisotropic, sintered Nd is developed, and incorporated in the repulsion type magnetic circuit, to reduce unevenness of the magnetic flux. (NEDO)

  2. Cryogenic System for a High-Temperature Superconducting Power Transmission Cable

    International Nuclear Information System (INIS)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-01-01

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed

  3. Cryocooled superconducting magnets for high magnetic fields at the HFLSM and future collaboration with the TML

    International Nuclear Information System (INIS)

    Watanabe, K; Nishijima, G; Awaji, S; Koyama, K; Takahashi, K; Kobayashi, N; Kiyoshi, T

    2006-01-01

    A hybrid magnet needs a large amount of liquid helium for operation. In order to make an easy-to-operate hybrid magnet system, we constructed a cryocooled 28 T hybrid magnet, consisting of an outer cryocooled 10 T superconducting magnet and an inner traditional water-cooled 19 T resistive magnet. As a performance test, the cryocooled hybrid magnet generated 27.5 T in a 32 mm room temperature experimental bore. As long as Nb3Sn superconducting wires are employed, the expected maximum high field generation in the cryocooled superconducting magnet will be 17 T at 5 K. We adopted the high temperature superconducting insert coil, employing Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10 superconducting tape. In combination with the low temperature 16.5 T back-up coil with a 174 mm cold bore, the cryocooled high temperature superconducting magnet successfully generated the total central field of 18.1 T in a 52 mm room temperature bore. As a next step, we start the collaboration with the National Institute for Materials Science for the new developmental works of a 30 T high temperature superconducting magnet and a 50 T-class hybrid magnet

  4. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  5. Flywheel system using wire-wound rotor

    Science.gov (United States)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  6. Bi-based superconducting fibers with high critical parameters

    International Nuclear Information System (INIS)

    Huo Yujing; He Yusheng; Liu Menglin; Mao Sining; Cai Liying; Wang Ying; Zhang Jincang; He Aisheng; Wang Jinsong

    1991-01-01

    Superconducting fibers of Bi(Pb)-Sr-Ca-Cu-O high Tc superconducting materials have been prepared by means of the laser-heated pedestal growth (LHPG) method. The highest zero resistance temperature T c0 reaches is 114K, and the highest critical current density J c (77K, O T) is greater than 5000 A/cm 2 . As-grown superconducting fibers were successfully fabricated without post growth heat treatment. Amorphous materials were used for the first time to make high quality fibers. The influence of growth conditions, thermal treatment and the composition of the fibers were discussed. (author). 5 refs., 7 figs., 3 tabs

  7. Epitaxial YBa2Cu3O7 films on rolled-textured metals for high temperature superconducting applications

    International Nuclear Information System (INIS)

    Norton, D.P.; Park, C.; Prouteau, C.

    1998-04-01

    The epitaxial growth of high temperature superconducting (HTS) films on rolled-textured metal represents a viable approach for long-length superconducting tapes. Epitaxial, 0.5 microm thick YBa 2 Cu 3 O 7 (YBCO) films with critical current densities, J c , greater than 1 MA/cm 2 have been realized on rolled-textured (001) Ni tapes with yttria-stabilized zirconia (YSZ)/CeO 2 oxide buffer layers. This paper describes the synthesis using pulsed-laser deposition (PLD) of epitaxial oxide buffer layers on biaxially-textured metal that comprise the so-called rolling-assisted biaxially-textured substrates (RABiTs trademark). The properties of the buffer and YBa 2 Cu 3 O 7 films on rolled-textured Ni are discussed, with emphasis given to the crystallographic and microstructural properties that determine the superconducting properties of these multilayer structures

  8. Elucidation of the origins of transport behaviour and quantum oscillations in high temperature superconducting cuprates

    International Nuclear Information System (INIS)

    Wilson, John A

    2009-01-01

    A detailed exposition is given of recent transport and 'quantum oscillation' results from high temperature superconducting (HTSC) systems covering the full carrier range from overdoped to underdoped material. This now very extensive and high quality data set is here interpreted within the framework developed by the author of local pairs and boson-fermion resonance, arising in the context of negative- U behaviour within an inhomogeneous electronic environment. The strong inhomogeneity comes with the mixed-valence condition of these materials, which when underdoped lie in close proximity to the Mott-Anderson transition. The observed intense scattering is presented as resulting from pair formation and from electron-boson collisions in the resonant crossover circumstance. The high level of scattering carries the systems to incoherence in the pseudogapped state, p c (= 0.183). In a high magnetic field the striped partition of the inhomogeneous charge distribution becomes much strengthened and regularized. Magnetization and resistance oscillations, of period dictated by the favoured positioning of the fluxon array within the real space environment of the diagonal 2D charge striping array, are demonstrated to be responsible for the recently reported behaviour hitherto widely attributed to the quantum oscillation response of a much more standard Fermi liquid condition. A detailed analysis embracing all the experimental data serves to reveal that in the given conditions of very high field, low temperature, 2D-striped, underdoped, d-wave superconducting, HTSC material the flux quantum becomes doubled to h/e.

  9. On the mechanism of high-temperature superconductivity in hydrogen sulfide at 200 GPa: Transition into superconducting anti-adiabatic state in coupling to H-vibrations

    Directory of Open Access Journals (Sweden)

    Pavol Baňacký

    Full Text Available It has been shown that the adiabatic electronic structure of the superconducting phase of sulfur hydride at 200 GPa is unstable toward the vibration motion of H-atoms. A theoretical study indicates that in coupling to H-vibrations, the system undergoes a transition from adiabatic into a stabilized anti-adiabatic multi-gap superconducting state at a temperature that can reach 203 K. Keywords: Superconductivity of sulfur hydride, Electron–phonon coupling in superconductors, Anti-adiabatic theory of superconductivity

  10. Fermi-surface reconstruction and the origin of high-temperature superconductivity

    International Nuclear Information System (INIS)

    Norman, M.R.

    2010-01-01

    lattice into a d 9 configuration, with one localized hole in the 3d shell per copper site. Given the localized nature of this state, it was questioned whether a momentum-space picture was an appropriate description of the physics of the cuprates. In fact, this question relates to a long-standing debate in the physics community: Since the parent state is also an antiferromagnet, one can, in principle, map the Mott insulator to a band insulator with magnetic order. In this 'Slater' picture, Mott physics is less relevant than the magnetism itself. It is therefore unclear which of the two, magnetism or Mott physics, is more fundamentally tied to superconductivity in the cuprates. After twenty years of effort, definitive quantum oscillations that could be used to map the Fermi surface were finally observed in a high-temperature cuprate superconductor in 2007. This and subsequent studies reveal a profound rearrangement of the Fermi surface in underdoped cuprates. The cause of the reconstruction, and its implication for the origin of high-temperature superconductivity, is a subject of active debate.

  11. Theory of superconductivity

    International Nuclear Information System (INIS)

    Crisan, M.

    1988-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity

  12. Contrasting dynamic spin susceptibility models and their relation to high-temperature superconductivity

    International Nuclear Information System (INIS)

    Schuettler, H.; Norman, M.R.

    1996-01-01

    We compare the normal-state resistivities ρ and the critical temperatures T c for superconducting d x 2 -y 2 pairing due to antiferromagnetic (AF) spin fluctuation exchange in the context of two phenomenological dynamical spin susceptibility models for the cuprate high-T c materials, one based on fits to NMR data on Y-Ba-Cu-O (YBCO) proposed by Millis, Monien, and Pines (MMP) and Monthoux and Pines (MP), and the other based on fits to neutron scattering data on YBCO proposed by Radtke, Ullah, Levin, and Norman (RULN). Assuming comparable electronic bandwidths and resistivities in both models, we show that the RULN model gives a much lower d-wave T c (approx-lt 20 K) than the MMP model (with T c ∼100 K). We demonstrate that these profound differences in the T c close-quote s arise from fundamental differences in the spectral weight distributions of the two model susceptibilities at high (>100 meV) frequencies and are not primarily caused by differences in the calculational techniques employed by MP and RULN. Further neutron scattering experiments, to explore the spectral weight distribution at all wave vectors over a sufficiently large excitation energy range, will thus be of crucial importance to resolve the question whether AF spin fluctuation exchange can provide a viable mechanism to account for high-T c superconductivity. Limitations of the Migdal-Eliashberg approach in such models will be discussed. copyright 1996 The American Physical Society

  13. A Cryogenic Magnetostrictive Actuator using a Persistent High Temperature Superconducting Magnet, Part 1: Concept and Design. Part 1; Concept and Design

    Science.gov (United States)

    Horner, Garnett C.; Bromberg, Leslie; Teter, J. P.

    2001-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications, such as Next Generation Space Telescope (NGST), the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Very fast charging and discharging of HTS tubes, as short as 100 microseconds, has been demonstrated. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSSCO 2212 with a

  14. A high temperature superconducting impulse generator

    International Nuclear Information System (INIS)

    Locker, J.R.; Geers, S.

    1992-01-01

    A mechanism based upon the Superconducting Vector Switch (SVS) effect displays the property of impulse generation. In this paper the principle of operation of this impulse generator is discussed. Experimental results and analytical predictions are presented

  15. Deposition of superconducting (Cu, C)-Ba-O films by pulsed laser deposition at moderate temperature

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuro; Kikunaga, Kazuya; Obara, Kozo; Terada, Norio; Kikuchi, Naoto; Tanaka, Yasumoto; Tokiwa, Kazuyasu; Watanabe, Tsuneo; Sundaresan, Athinarayanan; Shipra

    2007-01-01

    Superconducting (Cu, C)-Ba-O thin films have been epitaxially grown on (100) SrTiO 3 at a low growth temperature of 500-600 deg. C by pulsed laser deposition. The dependences of their crystallinity and transport properties on preparation conditions have been investigated in order to clarify the dominant parameters for carbon incorporation and the emergence of superconductivity. It has been revealed that the CO 3 content in the films increases with increasing both the parameters of partial pressure of CO 2 during film growth and those of growth rate and enhancement of superconducting properties. The present study has also revealed that the structural and superconducting properties of the (Cu, C)-Ba-O films are seriously deteriorated by the irradiation of energetic particles during deposition. Suppression of the radiation damage is another key for a high and uniform superconducting transition. By these optimizations, a superconducting onset temperature above 50 K and a zero-resistance temperature above 40 K have been realized

  16. Aspects of the SO(5) symmetry and the problem of high temperature superconductivity

    Science.gov (United States)

    Demler, Eugene A.

    This dissertation reviews several aspects of the SO(5) theory, that unifies superconductivity and antiferromagnetism and that has recently been suggested in connection with the problem of high temperature superconductivity. Microscopic analysis of the pi operators (generators of the SO(5) symmetry) is given for the t-J and Hubbard models and it is argued that pseudo-Goldstone bosons that correspond to these operators produce resonant peaks observed in neutron scattering experiments on YBCO. Microscopic models with exact SO(5) symmetry are considered and the nature of the AF/SC transition in these systems is discussed. Analysis of a non-Abelian SU(2) holonomy of the SO (5) spinor states is presented, the SO(5) Berry's phase is shown to be related to the second Hopf map and described by a Yang monopole at the degeneracy point. These results are used to show that fermionic excitations in models with exact SO(5) symmetry may be described as four component Dirac fermions coupled to SU(2) gauge fields in 2 + 1 dimensions. Finally some experimental tests of the SO(5) model are suggested.

  17. Characterization of the microwave properties of superconducting films with high transition temperature

    International Nuclear Information System (INIS)

    Richter, W.; Klinger, M.; Daginnus, M.

    1989-01-01

    In the meantime high quality Y-Ba-Cu-O thin films were produced. The latest results show, that its surface resistances are clearly lower than the values of copper, measured at a temperature of 77 K and up to frequencies of 86 GHz. This examination had the aim to produce high-T c films with a simple and low cost method, to use them as transmission lines at frequencies up to 30 GHz and above. A screen printing process was investigated, and high-T c thick films were fabricated on several substrates. Superconducting transition temperatures up to 80 K (dc zero resistance) were obtained. The films showed no complete magnetic shielding, and its microwave surface resistances were clearly higher than that ones for copper. The a. c. Josephson effect was proved with granular structures of bulk Y-Ba-Cu-O material and with screen printed thick films. Because of its high surface resistances, these thick films are unsuitable for the use as transmission lines at high frequencies. However, the a.c. Josephson effect can be used to manufacture microwave sensors in bulk Y-Ba-Cu-O and screen printed films of Y-Ba-Cu-O, which have a favourable geometric structure. (orig.) With 16 refs., 2 tabs., 24 figs [de

  18. Superconductivity of high Tc Scientific revolution?

    International Nuclear Information System (INIS)

    Marquina, J.E.; Ridaura, R.; Gomez, R.; Marquina, V.; Alvarez, J.L.

    1997-01-01

    A short history of superconductivity, since its discovery by Bednorz and Muller to the development of new materials with high transition temperatures, is presented. Further evolvements are analyzed in terms of T.s. Kuhn conceptions expressed in his book. The Structure of Scientific Revolutions. (Author) 4 refs

  19. The influence of flywheel micro vibration on space camera and vibration suppression

    Science.gov (United States)

    Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo

    2018-02-01

    Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

  20. First applications of high temperature superconductors in microelectronic. Subproject: Foundations of a reality-near simulation of superconducting high frequency circuits. Final report

    International Nuclear Information System (INIS)

    Wolff, I.; Konopka, J.; Fritsch, U.; Hofschen, S.; Rittweger, M.; Becks, T.; Schroeder, W.; Ma Jianguo.

    1994-01-01

    The basis of computer aided design of the physical properties of high temperature superconductors in high frequency and microwave areas were not well known and understood at the beginning of this research project. For this reason within in the research project as well new modells for describing the microwave properties of these superconductors have been developed as alos well known numerical analysis techniques as e.g. the boundary integral method, the method of finite differences in time domain and the spectral domain analysis technique have been changed so that they meet the requirements of superconducting high frequency and microwave circuits. Hereby it especially also was considered that the substrate materials used for high temperature superconductors normally have high dielectric constants and big anisotropies so that new analysis techniques had to be developed to consider the influence of these parameters on the components and circuits. The dielectric properties of the substrate materials furthermore have been a subject of measurement activities in which the permittivity tensor of the materials have been determined with high accuracy and ogver a large frequency range. As a result of the performed investigations now improved numerical simulation techniques on a realistic basis are available for the analysis of superconducting high frequency and microwave circuits. (orig.) [de

  1. A high field and cryogenic test facility for neutron irradiated superconducting wire

    Science.gov (United States)

    Nishimura, A.; Miyata, H.; Yoshida, M.; Iio, M.; Suzuki, K.; Nakamoto, T.; Yamazaki, M.; Toyama, T.

    2017-12-01

    A 15.5 T superconducting magnet and a variable temperature insert (VTI) system were installed at a radiation control area in Oarai center in Tohoku University to investigate the superconducting properties of activated superconducting materials by fast neutron. The superconductivity was measured at cryogenic temperature and high magnetic field. During these tests, some inconvenient problems were observed and the additional investigation was carried out. The variable temperature insert was designed and assembled to perform the superconducting property tests. without the liquid helium. To remove the heat induced by radiation and joule heating, high purity aluminum rod was used in VTI. The thermal contact was checked by FEM analysis and an additional support was added to confirm the decreasing the stress concentration and the good thermal contact. After the work for improvement, it was affirmed that the test system works well and all troubles were resolved. In this report, the improved technical solution is described and the first data set on the irradiation effect on Nb3Sn wire is presented.

  2. Analisa Variable Moment of Inertia (VMI Flywheel pada Hydro-Shock Absorber Kendaraan

    Directory of Open Access Journals (Sweden)

    Hasbulah Zarkasy

    2017-01-01

    Full Text Available Flywheel selama ini dimanfaatkan untuk menyimpan energi mekanik pada mesin, membuat mesin berputar dengan lebih lembut. Prinsip kerja dari flywheel adalah dengan memanfaatkan momen inersia. Baru-baru ini dilakukan penelitian lebih lanjut mengenai pemanfaatan dari flywheel, yakni pada sistem suspense, akan tetapi selama ini penelitian yang dilakukan terbatas pada flywheel dengan momen inersia yang konstan (Constant Moment of Inertia. Kali ini akan dilakukan penelitian mengenai Variable Moment of Inertia Flywhel atau dengan kata lain flywheel yang momen inersianya berubah-ubah. Flywheel ini terdiri dari dua bagian utama, yakni flywheel berongga dan slider yang dapat bergerak bebas di sepanjang guide track. Percobaan bertujuan untuk mengetahui bagaimana karakteristik gaya redam dari VMI Flywheel. Juga akan dianalisa seperti apa respon dinamis dari slider selama flywheel berputar. Selain itu respon dinamis kendaraan saat VMI Flywheel ini dipasangkan juga dianalisa. Hasil yang didapat menunjukkan bahwa variasi massa slider berpengaruh terhadap gaya redam yang dihasilkan oleh VMI Flywheel. Semakin besar massa slider, gaya redam yang muncul juga semakin besar. Faktor frekuensi input juga berpengaruh, sebab semakin besar frekuensi input yang pada shock absorber, gaya redam yang timbul juga membesar. Perpindahan yang dialami oleh slider juga tergantung pada jenis massa slider tersebut. Semakin besar massa slider, perpindahan yang dialami juga akan semakin besar. Performa VMI Flywheel secara umum pada frekuensi rendah. Sedangkan pada frekuensi tinggi, performa VMI Flywheel cenderung tidak bagus dan menyebabkan kendaraan tidak nyaman.

  3. A high Tc superconducting liquid nitrogen level sensor

    International Nuclear Information System (INIS)

    Jin, J. X.; Liu, H. K.; Dou, S. X.; Grantham, C.; Beer, J.

    1996-01-01

    Full text: The dramatic resistance change in the superconducting-normal transition temperature range enables a high T c superconductor to be considered for designing a liquid nitrogen level sensor. A (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire is selected and tested as a continuous liquid nitrogen level sensor to investigate the possibility for this application. The (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire has approximately 110 K critical temperature, with more flexible and stable properties compared with bulk shape ceramic high T c superconductors. The voltage drops across the sensor are tested with different immersion lengths in liquid nitrogen. The accuracy of the HTS sensor is analysed with its dR/dT in the superconducting-normal transition range. The voltage signal is sensitive to liquid nitrogen level change, and this signal can be optimized by controlling the transport current. The problems of the Ag clad superconductor are that the Ag sheath thermal conductivity is very high, and the sensor normal resistance is low. These are the main disadvantages for using such a wire as a continuous level sensor. However, a satisfactory accuracy can be achieved by control of the transport current. A different configuration of the wire sensor is also designed to avoid this thermal influence

  4. FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS) INTEGRATED IN VEHICLES

    OpenAIRE

    THOMAS MATHEWS; NISHANTH D

    2013-01-01

    Today, many hybrid electric vehicles have been developed in order to reduce the consumption of fossil fuels; unfortunately these vehicles require electrochemical batteries to store energy, with high costs as well as poor conversion efficiencies. By integrating flywheel hybrid systems, these drawbacks can be overcome and can potentially replace battery powered hybrid vehicles cost effectively. The paper will explain the engineering, mechanics of the flywheel system and it’s working in detail. ...

  5. Contribution of ion beam analysis methods to the development of 2nd generation high temperature superconducting (HTS) wires

    Energy Technology Data Exchange (ETDEWEB)

    Usov, Igor O [Los Alamos National Laboratory; Arendt, Paul N [Los Alamos National Laboratory; Stan, Liliana [Los Alamos National Laboratory; Holesinger, Terry G [Los Alamos National Laboratory; Foltyn, Steven R [Los Alamos National Laboratory; Depaula, Raymond F [Los Alamos National Laboratory

    2009-01-01

    One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and an intermediate layer with a good match to the lattice parameter of superconducting Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA, ERD) was employed for analysis of each buffer layer and the YBCO films. These results assisted in understanding of a variety of physical processes occurring during the buffet layer fabrication and helped to optimize the buffer layer architecture as a whole.

  6. The calculation of energy storage flywheels of fiber composites with electric energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Canders, W R

    1982-01-01

    The computation and the design of energy storage flywheels with electromechanical energy converters are considered in the present study. The most important stress parameters for flywheels of unidirectional laminate are determined, and criteria for the dimensioning of the flywheel are presented, taking into account centrifugal and compressive stresses. The required high speed of the flywheel is the dominating factor, which has to be considered also in the design of the driving engine for the storage device. The computation of the design characteristics of an outside-rotor motor with permanent-magnet excitation as an integral component of the storage device is discussed. The significance of the obtained results is illustrated with the aid of design examples and an application example in the area of vehicular technology.

  7. High pressure driven superconducting critical temperature tuning in Sb{sub 2}Se{sub 3} topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Anversa, Jonas [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Escola de Engenharia Civil, Faculdade Meridional, 99070-220, Passo Fundo, RS (Brazil); Chakraborty, Sudip, E-mail: sudiphys@gmail.com [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, S-75120 Uppsala (Sweden); Piquini, Paulo [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Ahuja, Rajeev [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, S-75120 Uppsala (Sweden); Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden)

    2016-05-23

    In this letter, we are reporting the change of superconducting critical temperature in Sb{sub 2}Se{sub 3} topological insulator under the influence of an external hydrostatic pressure based on first principles electronic structure calculations coupled with Migdal–Eliashberg model. Experimentally, it was shown previously that Sb{sub 2}Se{sub 3} was undergoing through a transition to a superconducting phase when subjected to a compressive pressure. Our results show that the critical temperature increases up to 6.15 K under the pressure unto 40 GPa and, subsequently, drops down until 70 GPa. Throughout this pressure range, the system is preserving the initial Pnma symmetry without any structural transformation. Our results suggest that the possible relevant mechanism behind the superconductivity in Sb{sub 2}Se{sub 3} is primarily the electron–phonon coupling.

  8. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  9. Quasiparticles in the superconducting state of high-Tc metals

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Shaginyan, V.R.

    2003-01-01

    The behavior of quasiparticles in the superconducting state of high-T c metals within the framework of the theory of superconducting state based on the fermion condensation quantum phase transition is considered. It is shown that the behavior coincides with the behavior of Bogoliubov quasiparticles, whereas the maximum value of the superconducting gap and other exotic properties are determined by the presence of the fermion condensate. If at low temperatures the normal state is recovered by the application of a magnetic field suppressing the superconductivity, the induced state can be viewed as Landau-Fermi liquid. These observations are in good agreement with recent experimental facts [ru

  10. Exciton interaction: its possible role in high temperature superconductivity

    International Nuclear Information System (INIS)

    Little, W.A.

    1987-01-01

    The recent remarkable developments in superconductivity has forced the group of physicists in the main stream of superconductivity research to re-examine the possible role of what has been referred to in the conference as novel mechanisms of superconductivity. The exciton mechanism is one such. While the many studies and developments in this subject are relatively well known to those involved in studies of organic superconductors and superconductors of reduced dimension, it appears that it is not well known to that large body of physicists involved in the more conventional mainstream of superconductivity. The salient features of the mechanism are reviewed and what it can and cannot do is discussed. Remarks are based on the most recent and most comprehensive review of the subject published in 1979, plus a few key papers since that time

  11. Does Flywheel Paradigm Training Improve Muscle Volume and Force? A Meta-Analysis.

    Science.gov (United States)

    Nuñez Sanchez, Francisco J; Sáez de Villarreal, Eduardo

    2017-11-01

    Núñez Sanchez, FJ and Sáez de Villarreal, E. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J Strength Cond Res 31(11): 3177-3186, 2017-Several studies have confirmed the efficacy of flywheel paradigm training for improving or benefiting muscle volume and force. A meta-analysis of 13 studies with a total of 18 effect sizes was performed to analyse the role of various factors on the effectiveness of flywheel paradigm training. The following inclusion criteria were employed for the analysis: (a) randomized studies; (b) high validity and reliability instruments; (c) published in a high quality peer-reviewed journal; (d) healthy participants; (e) studies where the eccentric programme were described; and (f) studies where increases in muscle volume and force were measured before and after training. Increases in muscle volume and force were noted through the use of flywheel systems during short periods of training. The increase in muscle mass appears was not influenced by the existence of eccentric overload during the exercise. The increase in force was significantly higher with the existence of eccentric overload during the exercise. The responses identified in this analysis are essential and should be considered by strength and conditioning professionals regarding the most appropriate dose response trends for flywheel paradigm systems to optimize the increase in muscle volume and force.

  12. The intrinsic crossing point of the magnetization vs. temperature curves in superconducting cuprates in the high-magnetic-field limit

    International Nuclear Information System (INIS)

    Mosqueira, J.; Torron, C.; Veira, J.A.; Vidal, F.

    1998-01-01

    The crossing point of the magnetization vs. temperature curves that appears below T c in highly anisotropic superconducting cuprates was measured in different compounds, with a different number, N, of superconducting CuO 2 layers per periodicity length, s, and also with different values of s. By correcting the measurements from different extrinsic inhomogeneity effects through the Meissner fraction, it is demonstrated experimentally for the first time that in the high-magnetic-field limit the intrinsic crossing point may be explained at a quantitative level in terms of the Tesanovic and coworkers approach based on thermal fluctuations of quasi-2D vortices (pancakes), with an effective periodicity length equal to s, independently of N. (orig.)

  13. Photoemission and the origin of high temperature superconductivity

    International Nuclear Information System (INIS)

    Norman, M. R.; Randeria, M.; Janko, B.; Campuzano, J. C.

    2000-01-01

    The condensation energy can be shown to be a moment of the change in the occupied part of the spectral function when going from the normal to the superconducting state. As a consequence, there is a one to one correspondence between the energy gain associated with forming the superconducting ground state, and the dramatic changes seen in angle resolved photoemission spectra. Some implications this observation has are offered

  14. Application of high-temperature superconducting permanent magnets to synchrotron radiation sources

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2004-09-01

    Full Text Available A simple scheme for field enhancement in synchrotron radiation sources such as undulators and wigglers is proposed, which is based on the fundamental nature of the superconducting loop where the magnetic flux is preserved. A superconductor ring placed to enclose the magnetic pole works as a kind of permanent magnet. The magnetization is performed by electromagnetic induction brought by the opening movement of the magnetic gap. Since neither additional external power supplies nor current leads are necessary, high-temperature bulk superconductors can easily be implemented in this scheme. Calculations to check the effectiveness of the new concept show that the critical current density of the superconductor is crucial to the performance of the synchrotron radiation sources based on this concept. Experiments were performed to verify the principle of the proposed scheme, which gave promising results to strongly support it.

  15. Spin dynamics in high-T{sub C} superconducting cuprates; Dynamique de spins dans les oxydes de cuivre supraconducteurs a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Bourges, Ph

    2003-07-01

    This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa{sub 2}Cu{sub 3}O{sub 6+x} system.

  16. Conventional superconductivity at 203 K at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdov, Alexander; Eremets, Mikhail; Troyan, Ivan [Max-Planck-Institut fuer Chemie, Hahn-Meitner-Weg 1, 55128 Mainz (Germany); Ksenofontov, Vadim; Shylin, Sergii [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitet Mainz, Staudingerweg 9, 55099 Mainz (Germany)

    2016-07-01

    A search for high, room temperature conventional superconductivity is promising as the Bardeen-Cooper-Schrieffer (BCS) theory in the Eliashberg formulation puts no apparent limits on T{sub c}. Materials with light elements are especially favorable as they provide high frequencies in the phonon spectrum. However only a moderately high T{sub c} = 39 K has been found in this search in MgB{sub 2}. We systematically studied metallic hydrogen and covalent hydrogen dominant compounds and found the record T{sub c} of 203 K at pressure 140 GPa in sulfur hydride. We proved occurrence of superconductivity by the sharp drop of the resistivity to zero; the decrease of T{sub c} with magnetic field; the pronounce isotope shift of T{sub c} in D{sub 2}S which evidences of a major role of phonons in the superconductivity; and the magnetic susceptibility measurements. The X-ray diffraction data confirmed that the superconductive phase has the predicted bcc structure. This phase can be considered as an atomic hydrogen superconductor stabilized by sulfur.

  17. Analysis of the energy capacity of rim-spoke composite flywheels

    International Nuclear Information System (INIS)

    Moorlat, P.A.; Portnov, G.G.

    1986-01-01

    The rim-spoke flywheel consisting of a rim, connected to the hub by spokes encompassing the rim periphery, is one of the most promising types of energy accumulators. For the rational design of rim-spoke flywheels, the authors investigate the dependence of their mass energy capacity and their volume energy capacity; the limit speed on the geometric parameters of the flywheel and the properties of the composites used in making the rim and the spokes are also examined. It is shown through various programs, worked out for analyzing the energy capacity of rim-spoke flywheels, that they can substantially facilitate the designing of such flywheels according to specified requirements that their operational characteristics have to meet

  18. Final report: High current capacity high temperature superconducting film based tape for high field magnets

    International Nuclear Information System (INIS)

    Ying Xin

    2000-01-01

    The primary goal of the program was to establish the process parameters for the continuous deposition of high quality, superconducting YBCO films on one meter lengths of buffered RABiTS tape using MOCVD and to characterize the potential utility of the resulting tapes in high field magnet applications

  19. Superconductivity in the unconventional high pressure phase bismuth-III

    Energy Technology Data Exchange (ETDEWEB)

    Semeniuk, Konstantin; Brown, Philip; Vasiljkovic, Aleksandar; Grosche, Malte [University of Cambridge (United Kingdom)

    2015-07-01

    One of the most surprising developments in high pressure research was the realisation that many elements assume very unexpected high pressure structures, described in terms of extremely large or even infinite unit cells. Elemental bismuth, which has been known to undergo a series of pressure induced structural transitions between 25 kbar and 80 kbar, is an interesting example: the intermediate pressure Bi-III phase has a complex 'host-guest' structure consisting of two incommensurate sublattices. Since the unit cell is infinitely large, the description of electronic and lattice excitations is problematic. Apart from its metallic character and the observation of superconductivity at low temperature, little is known about the electronic structure in this phase. We investigate the electrical resistivity within the metallic Bi-III phase under high hydrostatic pressure and in applied magnetic field using a piston cylinder cell. Superconductivity is observed below 7.1 K, and we extract the temperature dependence of the upper critical field, which exceeds 2 T at low temperature. The normal state resistivity exhibits an approximately linear temperature dependence. This could be attributed to strong scattering from low-lying excitations, as caused by an unusually soft phonon spectrum. The results suggest that strong coupling superconductivity arises within the host-guest structure of Bi-III out of an unusual electronic state.

  20. Construction of sputtering system and preparation of high temperature superconducting thin films

    International Nuclear Information System (INIS)

    Kaynak, E.

    2000-01-01

    The preparation of high T c superconducting thin film is important both for the understanding of fundamental behaviours of these materials and for the investigations on the usefulness of technological applications. High quality thin films can be prepared by various kinds of techniques being used today. Among these, sputtering is the most preferred one. The primary aim of this work is the construction of a r. f. and c. magnetron sputtering system. For this goal, a magnetron sputtering system was designed and constructed having powers up to 500W (r.f.) and 1KW (d.c.) that enables to deposit thin films of various kinds of materials: metals, ceramics and magnetic materials. The temperature dependence of the electrical resistance of the films was investigated by using four-point probe method. The zero resistance and the transition with of the films were measured as 80-85 K, and 2-9 K, respectively. The A.C. susceptibility experiments were done by utilising the system that was designed and constructed. The applied field dependence of the real and imaginary components of the susceptibility that were measured between the 77-120 K temperature interval and at a fixed frequency was investigated

  1. Evaluation of high temperature superconductive thermal bridges for space borne cryogenic detectors

    Science.gov (United States)

    Scott, Elaine P.

    1996-01-01

    Infrared sensor satellites are used to monitor the conditions in the earth's upper atmosphere. In these systems, the electronic links connecting the cryogenically cooled infrared detectors to the significantly warmer amplification electronics act as thermal bridges and, consequently, the mission lifetimes of the satellites are limited due to cryogenic evaporation. High-temperature superconductor (HTS) materials have been proposed by researchers at the National Aeronautics and Space Administration Langley's Research Center (NASA-LaRC) as an alternative to the currently used manganin wires for electrical connection. The potential for using HTS films as thermal bridges has provided the motivation for the design and the analysis of a spaceflight experiment to evaluate the performance of this superconductive technology in the space environment. The initial efforts were focused on the preliminary design of the experimental system which allows for the quantitative comparison of superconductive leads with manganin leads, and on the thermal conduction modeling of the proposed system. Most of the HTS materials were indicated to be potential replacements for the manganin wires. In the continuation of this multi-year research, the objectives of this study were to evaluate the sources of heat transfer on the thermal bridges that have been neglected in the preliminary conductive model and then to develop a methodology for the estimation of the thermal conductivities of the HTS thermal bridges in space. The Joule heating created by the electrical current through the manganin wires was incorporated as a volumetric heat source into the manganin conductive model. The radiative heat source on the HTS thermal bridges was determined by performing a separate radiant interchange analysis within a high-T(sub c) superconductor housing area. Both heat sources indicated no significant contribution on the cryogenic heat load, which validates the results obtained in the preliminary conduction

  2. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  3. The present status of the high temperature superconducting Maglev vehicle in China

    International Nuclear Information System (INIS)

    Wang, J S; Wang, S Y; Zeng, Y W; Deng, C Y; Ren, Z Y; Wang, X R; Song, H H; Wang, X Z; Zheng, J; Zhao, Y

    2005-01-01

    Since the first successful running of the people-carrying high temperature superconducting (HTS) Maglev test vehicle on 31 December 2000, about 27,000 people have taken it, and the accumulated running distance is about 400 km. The levitation force of the onboard HTS equipment is measured periodically, and new experimental results measured on 5 March 2003 show that the performance of the onboard HTS Maglev equipment is almost the same as that of two years ago. Experimental results indicate that the long-term stability of the HTS Maglev vehicle is good. This further proves the feasibility of the HTS Maglev vehicle for practical transportation. It is worth mentioning that all the results are measured at a low speed; however, investigations of the dynamic performance of the HTS Maglev vehicle at high speed are necessary for practical application. Research on the dynamic performance of the HTS Maglev vehicle is ongoing

  4. The present status of the high temperature superconducting Maglev vehicle in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J S; Wang, S Y; Zeng, Y W; Deng, C Y; Ren, Z Y; Wang, X R; Song, H H; Wang, X Z; Zheng, J; Zhao, Y [Superconductivity R and D Center, Mail Stop: 152, Southwest Jiaotong University, Chengdu 610031, Sichuan (China)

    2005-02-01

    Since the first successful running of the people-carrying high temperature superconducting (HTS) Maglev test vehicle on 31 December 2000, about 27,000 people have taken it, and the accumulated running distance is about 400 km. The levitation force of the onboard HTS equipment is measured periodically, and new experimental results measured on 5 March 2003 show that the performance of the onboard HTS Maglev equipment is almost the same as that of two years ago. Experimental results indicate that the long-term stability of the HTS Maglev vehicle is good. This further proves the feasibility of the HTS Maglev vehicle for practical transportation. It is worth mentioning that all the results are measured at a low speed; however, investigations of the dynamic performance of the HTS Maglev vehicle at high speed are necessary for practical application. Research on the dynamic performance of the HTS Maglev vehicle is ongoing.

  5. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  6. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    Science.gov (United States)

    Ciszek, Theodore F.

    1994-01-01

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate.

  7. A Pole Pair Segment of a 2-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2017-01-01

    A 2-MW high-temperature superconducting (HTS) generator with 24 pole pairs has been designed for the wind turbine application. In order to identify potential challenges and obtain practical knowledge prior to production, a full-size stationary experimental setup, which is one pole pair segment...... and the setup in terms of the flux density, the operating condition of the HTS winding, and the force-generation capability. Finite element (FE) software MagNet is used to carry out numerical simulations. The findings show that the HTS winding in the setup is a good surrogate for these that would be used...

  8. A Pole Pair Segment of a 2 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2016-01-01

    A 2 MW high temperature superconducting (HTS) generator with 24 pole pairs has been designed for the wind turbine application. In order to identify potential challenges and obtain practical knowledge prior to production, a fullsize stationary experimental set-up, which is one pole pair segment...... generator and the set-up in terms of the flux density, the operating condition of the HTS winding, and the force-generation capability. Finite element (FE) software MagNet is used to carry out numerical simulations. The findings show that the HTS winding in the set-up is a good surrogate...

  9. PREFACE: PASREG 2003: International Workshop on Processing and Applications of Superconducting (RE)BCO Large Grain Materials

    Science.gov (United States)

    Murakami, Masato; Cardwell, David; Salama, Kamel; Krabbes, Gernot; Habisreuther, Tobias; Gawalek, Wolfgang

    2005-02-01

    Superconducting melt-textured bulk (RE)BCO large grain materials are one of the most promising materials for power applications of high temperature superconductivity at the liquid nitrogen temperature range. Industrial applications are expected in high-speed low-loss magnetic bearings for flywheel energy storage devices, high-dynamic high-torque electric reluctance motors, and MAGLEV transportation systems. The material has high magnetic field trapping capability and therefore a new class of high-field superconducting permanent magnets will soon appear. However, there is still the need to improve the magnetic and mechanical material properties, as well as to increase the single domain size. This special issue contains papers concerning these topics presented at the International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials. The workshop was held on the 30 June-2 July 2003 in Jena, Germany, and was organized by the Institut fuer Physikalische Hochtechnologie, Jena. It was the fourth in the series of PASREG workshops after Cambridge, UK (1997), Morioka, Japan (1999), and Seattle, USA (2001). Sixty two contributions were presented at the workshop, 38 oral presentations and 24 poster presentations. This special issue contains 42 papers. The editors are grateful for the support of many colleagues who reviewed the manuscripts to guarantee their high technical quality. The editors also wish to thank Doris Litzkendorf and Tobias Habisreuther from Institut fuer Physikalische Hochtechnologie, Jena, for their assistance with the organization and handling of the manuscripts. Many thanks to the workshop co-chairman Gernot Krabbes from Leibniz-Institut fuer Festkoerper und Werkstoffforschung, Dresden, for hosting the workshop participants in Dresden. Finally, all attendees wish to acknowledge the efforts of Wolfgang Gawalek, Tobias Habisreuther, Doris Litzkendorf and the Team of Department Magnetics from the Institut fuer

  10. Superconductivity at high pressure in NbSe3

    International Nuclear Information System (INIS)

    Nunez Regueiro, M.; Castello, D.; Mignot, J.M.

    1992-01-01

    We have measured the electrical resistivity of NbSe 3 between 2 K and room temperature up to a pressure of 7.2 GPa. At P 1 = 3.5 GPa we observe the extinction of the high-temperature charge density wave (T 1 -CDW) and the enhancement of the superconducting critical temperature T c to ≅ 5 K. The logarithmic pressure slopes of T 1 (P 1 ) and T c (P > P 1 ) are found to be practically equal. A similar behaviour had been reported previously at lower pressures for T 2 (P 2 ) and T c (P 2 1 ) in the distorted state. We discuss these results in terms of an anisotropic superconducting state in NbSe 3 , with different gaps associated with different types of chains. 10 refs., 2 figs

  11. Critical currents and superconductivity ferromagnetism coexistence in high-Tc oxides

    CERN Document Server

    Khene, Samir

    2016-01-01

    The book comprises six chapters which deal with the critical currents and the ferromagnetism-superconductivity coexistence in high-Tc oxides. It begins by gathering key data for superconducting state and the fundamental properties of the conventional superconductors, followed by a recap of the basic theories of superconductivity. It then discusses the differences introduced by the structural anisotropy on the Ginzburg-Landau approach and the Lawrence-Doniach model before addressing the dynamics of vortices and the ferromagnetism-superconductivity coexistence in high-Tc oxides, and provides an outline of the pinning phenomena of vortices in these materials, in particular the pinning of vortices by the spins. It elucidates the methods to improve the properties of superconducting materials for industrial applications. This optimization aims at obtaining critical temperatures and densities of critical currents at the maximum level possible. Whereas the primary objective is the basic mechanisms pushing the superco...

  12. Flywheels for Low-Speed Kinetic Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Portnov, G.; Cruz, I.; Arias, F.; Fiffe, R. P.

    2003-07-01

    A brief overview of different steel disc-type flywheels is presented. It contents the analysis of relationship between stress-state and kinetic energy of rotating body, comparison of the main characteristics of flywheels and description of their optimization procedures. It is shown that profiles of the discs calculated on a basis of plane stress-state assumption may be considered only as a starting point for its further improvement using 3-D approach. The aim of the review is to provide a designer for a insight into problem of shaping of steel flywheels. (Author) 19 refs.

  13. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2016-01-01

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen...... at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator’s equivalent circuits is developed to simulate short circuit faults. Afterwards, the model is used to study the transient performance of a 10 MW HTS wind turbine generator under four different short...... that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The results presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  14. Short Circuits of a 10-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2017-01-01

    Direct Drive high-temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits take...... place at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator's equivalent circuits is developed to simulate short-circuit faults. Afterward, the model is used to study the transient performance of a 10-MW HTS wind turbine generator under four...... show that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The findings presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  15. High-temperature superconducting oxide synthesis and the chemical doping of the Cu-O planes

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Bagley, B.G.; Greene, L.H.; McKinnon, W.R.; Hull, G.W.

    1987-01-01

    Different synthesis techniques for the preparation of dense superconducting ceramics are discussed, and a sol-gel process is shown to be very promising. The effect of oxygen content, and the effect of substitution of Ni and Zn for copper, on the structural, transport and superconducting properties of the La-Sr-Cu-O and Y-Ba-Cu-O systems are presented. The authors find that substitution on the copper sites destroys T/sub c/ in the La-Sr-Cu-O system and decreases it in the Y-Ba-Cu-O system, and this effect is insensitive as to whether the 3d metal is magnetic (Ni) or diamagnetic (Zn). A detailed study of the YBa/sub 2/Cu/sub 3/O/sub 7-y/ system as a function of oxygen content (y) shows that superconductivity can be destroyed in these materials by the removal of oxygen and restored by reinjecting oxygen; either thermally at 500 0 C or at temperatures (80 0 C) compatible with device processing by means of a novel plasma oxidation process. Of scientific interest, the plasma process induces bulk superconductivity in the undoped La/sub 2/CuO/sub 4/

  16. Flywheel energy storage; Schwungmassenspeicher

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H.J. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany)

    1996-12-31

    Energy storages may be chemical systems such as batteries, thermal systems such as hot-water tanks, electromagnetic systems such as capacitors and coils, or mechanical systems such as pumped storage power systems or flywheel energy storages. In flywheel energy storages the energy is stored in the centrifugal mass in the form of kinetic energy. This energy can be converted to electricity via a motor/generator unit and made available to the consumer. The introduction of magnetic bearings has greatly enhanced the potential of flywheel energy storages. As there is no contact between the moving parts of magnetic bearings, this technology provides a means of circumventing the engineering and operational problems involved in the we of conventional bearings (ball, roller, plain, and gas bearings). The advantages of modern flywheel energy storages over conventional accumulators are an at least thousandfold longer service life, low losses during long-time storage, greater power output in the case of short-time storage, and commendable environmental benignity. (orig./HW) [Deutsch] Als Enegiespeicher kommen chemische Systeme, z.B. Batterien, thermische Systeme, z.B. Warmwassertanks, elektromagnetische Systeme, z.B. Kondensatoren und Spulen, sowie mechanische Systeme, z.B. Pumpspeicherwerke und Schwungmassenspeicher in Frage. In einem Schwungmassenspeicher wird Energie in Form von kinetischer Energie in der Schwungmasse gespeichert. Ueber eine Moter/Generator Einheit wird diese Energie in elektrischen Strom umgewandelt und dem Verbraucher zugefuehrt. Mit der Einfuehrung von magnetischen Lagern konnte die Leistungsfaehigkeit von Schwungmassenspeichern erheblich gesteigert werden. Da in einem Magnetlager keine Beruehrung zwischen sich bewegenden Teilen besteht, wird ein Grossteil der mit dem Einsatz konventioneller Lager (Kugel- und Rollenlager, Gleitlager und Gaslager) verbundenen ingenieurtechnischen und betriebstechnischen Probleme vermieden. Die Vorteile von modernen

  17. JET flywheel generators

    International Nuclear Information System (INIS)

    Huart, M.; Sonnerup, L.

    1986-01-01

    Two large vertical shaft flywheel generators each provides the JET device with peak power up to 400 MW and energy up to 2600 MJ per pulse to induce and confine the multi-mega-ampere plasma current. The integrated rotor flywheel consists of a 650 tonne/10 m diameter rim carrying the poles of the machine. The energy is stored kinetically during a 9 min interval of acceleration from half-speed to full-speed and then released during a 20 s long deceleration. A design life of 100 000 cycles at full energy rating was specified. The mechanical design and construction of the generators is reviewed. Particular attention is paid to the assessment of the stresses and fatigue life of the rotor system, its dynamic behaviour (rim movement, critical speed and balancing) and on the performance in operation of the large thrust bearing. (author)

  18. High-temperature superconductors learn from heavy fermions

    International Nuclear Information System (INIS)

    Varma, C.

    1998-01-01

    Physicists have been intrigued by the nature of high-temperature superconductors since they were discovered 12 years ago. Superconducting materials lose their electrical resistance below a transition temperature, T c , and certain copper-oxide compounds remain superconducting at temperatures up to 160 K. Research into these materials has been driven by fundamental, yet intractable, questions about the basic concepts of condensed-matter physics and the mechanisms of superconductivity. A key question is how the electrons come together to form the Cooper pairs responsible for superconductivity. Physicists at Cambridge University have now studied two heavy-fermion compounds experimentally, and have found that the electron pairing is caused by magnetic effects (N Mathur et al. 1998 Nature 394 39). In this article the author describes their research. (UK)

  19. Safety in unlimited power supply. Method and means of parallel operation of flywheel aggregates. [parallel operation of flywheel machines

    Energy Technology Data Exchange (ETDEWEB)

    Krause, E [Struever (A.) K.G., Hamburg (Germany, F.R.)

    1975-11-01

    A special type of Diesel emergency generator sets, i.e., with flywheel machines is described. Construction and operation of a flywheel machine are described and reasons are given for a possible or necessary parallel operation. The basic requirements for parallel operation are explained and the intrinsic operation is described. Special designs are also presented.

  20. Start It up: Flywheel Energy Storage Efficiency

    Science.gov (United States)

    Dunn, Michelle

    2011-01-01

    The purpose of this project was to construct and test an off-grid photovoltaic (PV) system in which the power from a solar array could be stored in a rechargeable battery and a flywheel motor generator assembly. The mechanical flywheel energy storage system would in turn effectively power a 12-volt DC appliance. The voltage and current of…

  1. The Application of High Temperature Superconducting Materials to Power Switches

    CERN Document Server

    March, S A; Ballarino, A

    2009-01-01

    Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...

  2. Development of high purity niobium material for superconducting cavities

    International Nuclear Information System (INIS)

    Umezawa, Hiroaki; Takeuchi, Koichi; Sakita, Kohei; Suzuki, Takafusa; Saito, Kenji; Noguchi, Shuichi.

    1993-01-01

    For the superconducting niobium cavities, issues of thermal quench and field emission have to be solved to achieve a high field gradient (>25MV/m) for TESLA (TeV Energy Superconducting Linear Accelerator). In order to overcome the quench, upgrading of thermal conductivity of niobium material at the low temperature is very important. On the reduction of the field emission not only dust particles but also defect, impurity and inhomogeneity should be considered. Therefore development of high purity niobium material is very important to solve these issues. This paper describes the our latest R and D for high purity niobium material. (author)

  3. Theory of high-Tc superconducting cuprates based on experimental evidence

    International Nuclear Information System (INIS)

    Abrikosov, A. A.

    1999-01-01

    A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of Tc, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc

  4. Many-body problems in high temperature superconductivity

    International Nuclear Information System (INIS)

    Yu Lu.

    1991-10-01

    In this brief review the basic experimental facts about high T c superconductors are outlined. The superconducting properties of these superconductors are not very different from those of the ordinary superconductors. However, their normal state properties cannot be described by the standard Fermi liquid (FL) theory. Our current understanding of the strongly correlated models is summarized. In one dimension these systems behave like a ''Luttinger liquid'', very much distinct from the FL. In spite of the enormous efforts made in two-dimensional studies, the question of FL vs non-FL behaviour is still open. The numerical results as well as various approximation schemes are discussed. Both the single hole problem in a quantum antiferromagnet and finite doping regime are considered. (author). 104 refs, 9 figs

  5. High temperature superconducting material: Bismuth strontium calcium copper oxide. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the development, fabrication, and analysis of a high temperature superconducting material based on bismuth-strontium-calcium-copper-oxides (Bi-Sr-Ca-Cu-O). Topics include the physical properties, structural and compositional analysis, magnetic field and pressure effects, and noble metal dopings of Bi-Sr-Ca-Cu-O based systems. The highest transition temperature recorded to date for this material was 120 degrees Kelvin. Fabrication methods and properties of Bi-Sr-Ca-Cu-O films and ceramics are also considered. (Contains 250 citations and includes a subject term index and title list.)

  6. Comparison of joint kinetics during free weight and flywheel resistance exercise.

    Science.gov (United States)

    Chiu, Loren Z F; Salem, George J

    2006-08-01

    The most common modality for resistance exercise is free weight resistance. Alternative methods of providing external resistance have been investigated, in particular for use in microgravity environments such as space flight. One alternative modality is flywheel inertial resistance, which generates resistance as a function of the mass, distribution of mass, and angular acceleration of the flywheel. The purpose of this investigation was to characterize net joint kinetics of multijoint exercises performed with a flywheel inertial resistance device in comparison to free weights. Eleven trained men and women performed the front squat, lunge, and push press on separate days with free weight or flywheel resistance, while instrumented for biomechanical analysis. Front squats performed with flywheel resistance required greater contribution of the hip and ankle, and less contribution of the knee, compared to free weight. Push presses performed with flywheel resistance had similar impulse requirements at the knee compared to free weight, but greater impulse requirement at the hip and ankle. As used in this investigation, flywheel inertial resistance increases the demand on the hip extensors and ankle plantarflexors and decreases the mechanical demand on the knee extensors for lower extremity exercises such as the front squat and lunge. Exercises involving dynamic lower and upper extremity actions, such as the push press, may benefit from flywheel inertial resistance, due to the increased mechanical demand on the knee extensors.

  7. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  8. Flywheels for Low-Speed Kinetic Energy Storage Systems

    International Nuclear Information System (INIS)

    Portnov, G.; Cruz, I.; Arias, F.; Fiffe, R. P.

    2003-01-01

    A brief overview of different steel disc-type flywheels is presented. It contents the analysis of relationship between stress-state and kinetic energy of rotating body, comparison of the main characteristics of flywheels and description of their optimization procedures. It is shown that pro files of the discs calculated on a basis of plane stress-state assumption may be considered only as a starting point for its further improvement using 3-D approach. The aim of the review is to provide a designer for a insight into problem of shaping of steel flywheels. (Author) 19 refs

  9. Superconductivity in doped insulators

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is shown that many synthetic metals, including high temperature superconductors are ''bad metals'', with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described

  10. Pump Coastdown with the Submerged Flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun-Gi; Seo, KyoungWoo; Kim, Seong Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many research reactors are generally designed as open pool types in consideration of the heat removal of the nuclear fuels, reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom as shown in Fig. 1. Primary cooling system pump circulates the coolant from the reactor structure to the heat exchanger in order to continuously remove the heat generated from the reactor core in the research reactor as shown in Fig. 1. The secondary cooling system releases the transferred heat to the atmosphere by the cooling tower. Coastdown flow rate of the primary cooling system pump with the submerged flywheel are calculated analytically in case of the accident situation. Coastdown flow rate is maintained until almost 80 sec when the pump stops normally. But, coastdown flow rate is rapidly decreased when the flywheel is submerged because of the friction load on the flywheel surface.

  11. Magnetic ordering at low temperatures in some random superconducting and insulating compounds

    International Nuclear Information System (INIS)

    Hueser, D.

    1985-01-01

    This thesis presents the results of some investigations on the magnetic ordering phenomena in some random superconducting and insulating materials. The results are described of an investigation of the coexistence of superconductivity and random magnetic freezing in (Th,Nd)Ru 2 . On the basis of various measurements as function of temperature and external magnetic field the author found that spin glass-like freezing can occur far below the superconductivity and even that a sample may re-enter the superconducting state below a freezing temperature. Associated with the isothermal remanent magnetization of a random magnetic material he observed strong anomalies in the critical field versus temperature curves. Also a magnetic field memory effect has been found. (Auth.)

  12. Current high-temperature superconducting coils and applications in Japan

    International Nuclear Information System (INIS)

    Matsushita, T.

    2000-01-01

    In Japan, four projects for the application of Bi-based superconducting magnets to practical apparatus are currently underway. These projects involve the development of an insert magnet for a 1 GHz nuclear magnetic resonance spectrometer, a magnet for a silicon single-crystal pulling apparatus, a magnet for a magnetic separation system, and a 1 T pulse magnet for a superconducting magnet energy storage system. For example, the magnet for the silicon single-crystal pulling apparatus is of the class with stored energy of 1 MJ to be operated at around 20 K. This review focuses on the present status of the development of these magnets, followed by a discussion of the problems of the present superconducting tapes that need to be overcome for future applications. (author)

  13. High intensity neutrino source superconducting solenoid cyrostat design

    Energy Technology Data Exchange (ETDEWEB)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  14. FY 1999 report on the results of the superconductive energy application technology development/research on a total system, etc. Survey of potentiality of the commercialization of superconductive technology, effects of the introduction, etc. (Future course of the superconductive technology development in Japan); 1999 nendo chodendo denryoku oryokuyo gijutsu kaihatsu total system nado no kenkyu. Chodendo gijutsu no jitsuyoka kanosei oyobi donyu koka nado no chosa (Nippon ni okeru chodendo gijutsu kaihatsu no kongo no hokosei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    By the use of superconductive technology, the following are aimed at: marked reduction in power loss of electrical equipment and power transmission path, and size/weight reduction in electrical devices by high current/magnetic flux density. The superconductive technology has advantages such as great energy saving effect, CO2 reduction and global environmental preservation. As an example, concerning the superconductive generator now being developed under the New Sunshine Project, power loss can be reduced by half, and by the use of high magnetic field, size/weight can be reduced such as reduction in rotor diameter and reduction in weight by half. Further, as an innovative system, cited are the superconducting magnetic energy storage system (SMES) and flywheel energy storage system. The superconducting magnetic levitation railway, medical use MRI, etc. have also innovativity which is difficult to get in the conventional technology. Effects are also expected of introducing the process development using superconducting magnet such as magnetic separation, electromagnetic metallurgy, electromagnetic agitation and monocrytal growth convection control. Also cited is Josephson electronic device. High performance SQUID in bio-magnetic/non-destructive inspection is also expected to be developed. (NEDO)

  15. Applications of high-temperature superconductivity

    International Nuclear Information System (INIS)

    Malozemoff, A.P.; Gallagher, W.J.; Schwall, R.E.

    1987-01-01

    The new high temperature superconductors open up possibilities for applications in magnets, power transmission, computer interconnections, Josephson devices and instrumentation, among many others. The success of these applications hinges on many interlocking factors, including critical current density, critical fields, allowable processing temperatures, mechanical properties and chemical stability. An analysis of some of these factors suggests which applications may be the easiest to realize and which may have the greatest potential

  16. Conceptual design of current lead for large scale high temperature superconducting rotating machine

    International Nuclear Information System (INIS)

    Le, T. D.; Kim, J. H.; Park, S. I.; Kim, H. M.

    2014-01-01

    High-temperature superconducting (HTS) rotating machines always require an electric current of from several hundreds to several thousand amperes to be led from outside into cold region of the field coil. Heat losses through the current leads then assume tremendous importance. Consequently, it is necessary to acquire optimal design for the leads which would achieve minimum heat loss during operation of machines for a given electrical current. In this paper, conduction cooled current lead type of 10 MW-Class HTS rotating machine will be chosen, a conceptual design will be discussed and performed relied on the least heat lost estimation between conventional metal lead and partially HTS lead. In addition, steady-state thermal characteristic of each one also is considered and illustrated.

  17. High-performance sensorless nonlinear power control of a flywheel energy storage system

    International Nuclear Information System (INIS)

    Amodeo, S.J.; Chiacchiarini, H.G.; Solsona, J.A.; Busada, C.A.

    2009-01-01

    The flywheel energy storage systems (FESS) can be used to store and release energy in high power pulsed systems. Based on the use of a homopolar synchronous machine in a FESS, a high performance model-based power flow control law is developed using the feedback linearization methodology. This law is based on the voltage space vector reference frame machine model. To reduce the magnetic losses, a pulse amplitude modulation driver for the armature is more adequate. The restrictions in amplitude and phase imposed by the driver are also included. A full order Luenberger observer for the torque angle and rotor speed is developed to implement a sensorless control strategy. Simulation results are presented to illustrate the performance.

  18. High temperature hydrogenation of CaC6

    International Nuclear Information System (INIS)

    Srinivas, G.; Howard, C.A.; Skipper, N.T.; Bennington, S.M.; Ellerby, M.

    2009-01-01

    The structure and superconducting properties of high temperature hydrogenated calcium-graphite intercalation compound, CaC 6 have been investigated using room temperature X-ray diffraction, and temperature and field dependence of magnetisation. It is found that the hydrogenation can only decompose the CaC 6 phase, and generate a mixture of CaH 2 and graphite as the final compound. The hydrogenation of CaC 6 also reveals a degradation of its superconducting properties. The experimental results are discussed in detail and it is found that the formation of stable CaH 2 and deintercalation are the main source for observed phase separation and suppression in superconductivity.

  19. Two decades on[Research into high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, M. [Physics World (United Kingdom)

    2006-04-15

    Research into high-temperature superconductors should focus on experiment, not theory. While the world looked on in horror at the events unfolding at the Chernobyl nuclear-power plant in the Soviet Union 20 years ago this month, another significant - but far less reported - development in the world of physics had just taken place. On 17 April 1986 a short paper by Georg Bednorz and Alexander Mueller arrived at the offices of Zeitschrift fuer Physik in Heidelberg, Germany. The two physicists, based at IBM's Zurich Research Laboratory in Switzerland, announced they had made a material from barium, lanthanum, copper and oxygen that could conduct electricity without resistance when cooled below a transition temperature, T{sub c}, of about 30 K. It was the world's first 'high-temperature' superconductor. Driven by the dream of materials that can superconduct at room temperature, experimentalists scurried back to their labs. Within a year, a T{sub c} of 90 K in another material had been reported and by October 1987 Bednorz and Mueller had been crowned with a Nobel prize. While papers on high-temperature superconductivity have continued to stream out since those heady days, progress has been slower than expected. Applications like levitating trains and resistance-free power cables are only now starting to come to market. Scientists have been unable to make superconducting wires that work much above 130 K, while a reliable theory of high-temperature superconductivity remains elusive. Even if we had such a theory, it is not clear that it would predict which materials might superconduct at room temperature. After all, the Bardeen-Cooper-Schrieffer theory, which explains the behaviour of low-temperature superconductors with admirable success, said nothing about the superconducting properties of Bednorz and Mueller's copper-oxide ceramics. What successes there have been over the last 20 years - such as the recent discoveries that iron, single crystals

  20. A Hall probe technique for characterizing high-temperature superconductors

    International Nuclear Information System (INIS)

    Zhang, J.; Sheldon, P.; Ahrenkiel, R.K.

    1992-01-01

    Thin-film GaAs Hall probes were fabricated by molecular beam epitaxy technology. A contactless technique was developed to characterize thin-film, high-temperature superconducting (HTSC) materials. The Hall probes detected the ac magnetic flux penetration through the high-temperature superconducting materials. The Hall detector has advantages over the mutual inductance magnetic flux detector

  1. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method

  2. Potentialities in electronics of new high critical temperature superconductors

    International Nuclear Information System (INIS)

    Hartemann, P.

    1989-01-01

    The main electronic applications of superconductors involve the signal processing, the electromagnetic wave detection and the magnetometry. Characteristics of devices based on conventional superconductors cooled by liquid helium are given and the changes induced by incorporating high-temperature superconductors are estimated. After a survey of new superconductor properties, the superconducting devices for analog or digital signal processing are reviewed. The gains predicted for high-temperature superconducting analog devices are considered in greater detail. Different sections deal with the infrared or (sub)millimeter wave detection. The most sensitive apparatuses for magnetic measurements are based on SQUIDs. Features of SQUIDs made of granular high-temperature superconducting material samples (grain boundaries behave as barriers of intrinsic junctions) are discussed [fr

  3. High temperature superconductive flux gate magnetometer

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper proposes a different type of HTS superconducting magnetometer based on the non-linear magnetic behavior of bulk HTS materials. The device design is based on the generation of second harmonics which arise as a result of non-linear magnetization observed in Type-II superconductors. Even harmonics are generated from the non-linear interaction of an ac excitation signal with an external DC magnetic field which acts as a bias signal

  4. Three-terminal superconducting devices

    International Nuclear Information System (INIS)

    Gallagher, W.J.

    1985-01-01

    The transistor has a number of properties that make it so useful. The authors discuss these and the additional properties a transistor would need to have for high performance applications at temperatures where superconductivity could contribute advantages to system-level performance. These properties then serve as criteria by which to evaluate three-terminal devices that have been proposed for applications at superconducting temperatures. FETs can retain their transistor properties at low temperatures, but their power consumption is too large for high-speed, high-density cryogenic applications. They discuss in detail why demonstrated superconducting devices with three terminals -Josephson effect based devices, injection controlled weak links, and stacked tunnel junction devices such as the superconducting transistor proposed by K. Gray and the quiteron -- each fail to have true transistor-like properties. They conclude that the potentially very rewarding search for a transistor compatible with superconductivity in high performance applications must be in new directions

  5. Analogue demonstration of a high temperature superconducting sigma-delta modulator with 27 GHz sampling

    Energy Technology Data Exchange (ETDEWEB)

    Forrester, M.G.; Hunt, B.D.; Miller, D.L.; Talvacchio, J.; Young, R.M. [Northrop Grumman Science and Technology Center, Pittsburgh, PA 15235-5098 (United States)

    1999-11-01

    We have successfully fabricated and tested a high temperature superconducting (HTS) sigma-delta modulator for analogue-to-digital conversion. This is the first demonstration of a GHz sampling A-to-D in HTS. The 15-junction single-flux-quantum (SFQ) circuit, fabricated using an epitaxial multilayer HTS process with YBCO/Co-YBCO/YBCO edge junctions, was internally clocked at 27 GHz and used to convert a 5.01 MHz signal. The modulator demonstrated a spur-free dynamic range of more than 75 dB. Two-tone measurements with 5.01 MHz and 5.51 MHz signals demonstrated third-order intermodulation products to be lower than -59 dBc. Demonstration of a functional HTS modulator represents a significant milestone in the development of high dynamic range ADCs suitable for such applications as surveillance radar. (author)

  6. Instantaneous flywheel torque of IC engine grey-box identification

    Science.gov (United States)

    Milašinović, A.; Knežević, D.; Milovanović, Z.; Škundrić, J.

    2018-01-01

    In this paper a mathematical model developed for the identification of excitation torque acting on the IC engine flywheel is presented. The excitation torque gained through internal combustion of the fuel in the IC engine is transmitted from the flywheel to the transmission. The torque is not constant but variable and is a function of the crank angle. The verification of the mathematical model was done on a 4-cylinder 4-stroke diesel engine for which the in-cylinder pressure was measured in one cylinder and the instantaneous angular speed of the crankshaft at its free end. The research was conducted on a hydraulic engine brake. Inertial forces of all rotational parts, from flywheel to the turbine wheel of the engine brake, are acting on the flywheel due to the nonuniform motion of the flywheel. It is known from the theory of turbomachinery that the torque on the hydraulic brake is a quadratic function of angular speed. Due to that and the variable angular speed of the turbine wheel of the engine brake, the torque during one engine cycle is also variable. The motivation for this research was the idea (intention) to determine the instantaneous torque acting on the flywheel as a function of the crank angle with a mathematical model without any measuring and based on this to determine the quality of work of specific cylinders of the multi-cylinder engine. The crankshaft was considered elastic and also its torsional vibrations were taken into account.

  7. Calculation of alternating current losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications

    DEFF Research Database (Denmark)

    Zermeno, Victor M. R.; Abrahamsen, Asger Bech; Mijatovic, Nenad

    2013-01-01

    A homogenization method to model a stack of second generation High Temperature Superconducting tapes under AC applied transport current or magnetic field has been obtained. The idea is to find an anisotropic bulk equivalent for the stack such that the geometrical layout of the internal alternatin...

  8. Novel structures and superconductivities of calcium–lithium alloys at high pressures: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying, E-mail: xuying3270@cust.edu.cn; Chen, Changbo; Wang, Sihan; Sun, Xiuping

    2016-06-05

    Exposing a material to high pressures can fundamentally influence its crystal and electronic structure, leading to the formation of new materials with unique physical and chemical properties. Here, we have conducted a systematic search for Ca–Li alloys by using a global minima search based on particle-swarm optimization algorithm in combination with density functional theory calculations. We predict that Calcium and Lithium with a high Ca composition CaLi, Ca{sub 2}Li and Ca{sub 3}Li exist, and a strikingly decomposition-combination-decomposition oscillating behavior with pressure is revealed. All predicted Ca–Li compounds are metallic and good electron–phonon superconductors with transition temperatures (T{sub c}) of around 8–19 K. The superconductivity mainly originates from the low-energy Ca vibrations and the pressure dependence of T{sub c} is dominated by the phonon softening/hardening. - Highlights: • Three high Ca compositions of CaLi, Ca{sub 2}Li, and Ca{sub 3}Li alloys have been predicted. • High superconducting temperatures were predicted for Ca–Li alloys at high pressures. • The origin of the superconductivity is revealed. • The superconducting temperature increases with increasing pressures for Fd-3m CaLi. • The Fd-3m phase of CaLi is a potential high-temperature superconductor.

  9. Novel structures and superconductivities of calcium–lithium alloys at high pressures: A first-principles study

    International Nuclear Information System (INIS)

    Xu, Ying; Chen, Changbo; Wang, Sihan; Sun, Xiuping

    2016-01-01

    Exposing a material to high pressures can fundamentally influence its crystal and electronic structure, leading to the formation of new materials with unique physical and chemical properties. Here, we have conducted a systematic search for Ca–Li alloys by using a global minima search based on particle-swarm optimization algorithm in combination with density functional theory calculations. We predict that Calcium and Lithium with a high Ca composition CaLi, Ca_2Li and Ca_3Li exist, and a strikingly decomposition-combination-decomposition oscillating behavior with pressure is revealed. All predicted Ca–Li compounds are metallic and good electron–phonon superconductors with transition temperatures (T_c) of around 8–19 K. The superconductivity mainly originates from the low-energy Ca vibrations and the pressure dependence of T_c is dominated by the phonon softening/hardening. - Highlights: • Three high Ca compositions of CaLi, Ca_2Li, and Ca_3Li alloys have been predicted. • High superconducting temperatures were predicted for Ca–Li alloys at high pressures. • The origin of the superconductivity is revealed. • The superconducting temperature increases with increasing pressures for Fd-3m CaLi. • The Fd-3m phase of CaLi is a potential high-temperature superconductor.

  10. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Doucette, Reed T.; McCulloch, Malcolm D. [Department of Engineering Science, University of Oxford, Thom Building, Parks Road, Oxford, OX1 3PJ (United Kingdom)

    2011-02-01

    Fuel cells aboard hybrid electric vehicles (HEVs) are often hybridized with an energy storage system (ESS). Batteries and ultracapacitors are the most common technologies used in ESSs aboard HEVs. High-speed flywheels are an emerging technology with traits that have the potential to make them competitive with more established battery and ultracapacitor technologies in certain vehicular applications. This study compares high-speed flywheels, ultracapacitors, and batteries functioning as the ESS in a fuel cell based HEV on the bases of cost and fuel economy. In this study, computer models were built to simulate the powertrain of a fuel cell based HEV where high-speed flywheels, batteries, and ultracapacitors of a range of sizes were used as the ESS. A simulated vehicle with a powertrain using each of these technologies was run over two different drive cycles in order to see how the different ESSs performed under different driving patterns. The results showed that when cost and fuel economy were both considered, high-speed flywheels were competitive with batteries and ultracapacitors. (author)

  11. High-kinetic inductance additive manufactured superconducting microwave cavity

    Science.gov (United States)

    Holland, Eric T.; Rosen, Yaniv J.; Materise, Nicholas; Woollett, Nathan; Voisin, Thomas; Wang, Y. Morris; Torres, Sharon G.; Mireles, Jorge; Carosi, Gianpaolo; DuBois, Jonathan L.

    2017-11-01

    Investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation, while concurrent progress in additive manufacturing, "3D printing," opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. We find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature is in agreement with DC resistance measurements, while the lower transition temperature, not previously known in the literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of 8 ± 3 μm—roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors.

  12. On the Optimally Controlled Hydrostatic Mechanical Drive in Case of Flywheel Acceleration

    Directory of Open Access Journals (Sweden)

    V. A. Korsunskii

    2016-01-01

    Full Text Available An improving dynamic quality of vehicles and enhanced fuel efficiency are gained thanks to the combined power system (CPS, comprising a main energy source - internal combustion engine (ICE with an attained level of the power source - and an auxiliary energy source, i.e. an energy storage device (a flywheel.To solve this problem was developed a mathematical model of CPS comprising internal combustion engine and flywheel energy storage (FES with stepless drive.The stepless drive of the flywheel is made to be hydrostatic mechanical to raise the system efficiency. To reduce the drive weight and simplify the control system in the hydraulic part of the flywheel drive is used only one hydraulic unit being controlled.The paper presents a kinematic diagram of the track-type vehicle equipped with the CPS that has a hydrostatic mechanical drive of the flywheel and a mechanical transmission.A mathematical model of the system comprising an ICE, hydrostatic mechanical drive, and FES with stepless drive has been developed. This mathematical model was used to study the influence of ICE and flywheel drive parameters on the dynamic characteristics of the system.The paper estimates the impact of flywheel energy consumption, pressure in the hydraulic system, and control parameter of hydrostatic mechanical drive on the charging time of FES.The obtained piecewise linear law to control the regulation parameter of the hydraulic unit allows us to minimize the charging time of the flywheel at the short-term stops and in the parking area of a tracked vehicle equipped with a CPS.The causes affecting the performance of ‘ICE – drive – flywheel’ system in the course of the flywheel acceleration are a restricted maximum power of the engine, as well as a limited generating capacity, and a maximum flywheel drive hydro-system pressure.The obtained results allow us to determine rational parameters of the flywheel and the laws of drive control to provide their further

  13. Calorimeters for Precision Power Dissipation Measurements on Controlled-Temperature Superconducting Radiofrequency Samples

    International Nuclear Information System (INIS)

    Xiao, Binping P.; Kelley, Michael J.; Reece, Charles E.; Phillips, H. L.

    2012-01-01

    Two calorimeters, with stainless steel and Cu as the thermal path material for high precision and high power versions, respectively, have been designed and commissioned for the surface impedance characterization (SIC) system at Jefferson Lab to provide low temperature control and measurement for CW power up to 22 W on a 5 cm dia. disk sample which is thermally isolated from the RF portion of the system. A power compensation method has been developed to measure the RF induced power on the sample. Simulation and experimental results show that with these two calorimeters, the whole thermal range of interest for superconducting radiofrequency (SRF) materials has been covered. The power measurement error in the interested power range is within 1.2% and 2.7% for the high precision and high power versions, respectively. Temperature distributions on the sample surface for both versions have been simulated and the accuracy of sample temperature measurements have been analysed. Both versions have the ability to accept bulk superconductors and thin film superconducting samples with a variety of substrate materials such as Al, Al 2 O 3 , Cu, MgO, Nb and Si

  14. Radiation Shielding Utilizing A High Temperature Superconducting Magnet

    Data.gov (United States)

    National Aeronautics and Space Administration — Project objective is to evaluate human radiation protection and architecture utilizing existing superconducting magnet technology while attempting to significantly...

  15. Measuring the microwave response of superconducting Nb:STO and Ti at mK temperatures using superconducting resonators

    Energy Technology Data Exchange (ETDEWEB)

    Thiemann, Markus; Beutel, Manfred; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-07-01

    Niobium doped SrTiO{sub 3} is a superconductor, with the lowest charge carrier density among all superconductors. It shows a dome in the transition temperature as a function of doping concentration with a maximum T{sub c} ∼ 0.3 K. The superconducting dome may originate from the different bands being occupied depending on the doping level. The low energy scales of the system, as indicated by the low T{sub c} are within the GHz-regime. Therefore microwave measurements are a powerful technique to reveal the electronic properties of these superconductors. We preformed microwave measurements on Nb:STO of different doping levels in a dilution refrigerator, using superconducting stripline resonators. Measurements were done in a temperature and frequency range from 40-400 mK and 1-20 GHz, covering the normal and superconducting states. For comparison we also measured the temperature dependence of the surface impedance of superconducting titanium (T{sub c} ∼ 0.5 K), which can be well described by the Mattis-Bardeen equations with a ratio (2Δ)/(k{sub B}T{sub c}) = 3.56. Therefore titanium is an ideal reference sample representing a conventional BCS-superconductor.

  16. Low-temperature rapid synthesis and superconductivity of Fe-based oxypnictide superconductors.

    Science.gov (United States)

    Fang, Ai-Hua; Huang, Fu-Qiang; Xie, Xiao-Ming; Jiang, Mian-Heng

    2010-03-17

    Fe-based oxypnictide superconductors were successfully synthesized at lower reaction temperatures and with shorter reaction times made possible by starting with less stable compounds, which provide a larger driving force for reactions. Using ball-milled powders of intermediate compounds, phase-pure superconductors with T(c) above 50 K were synthesized at 1173 K in 20 min. This method is particularly advantageous for retaining F, a volatile dopant that enhances superconductivity. Bulk superconductivity and high upper critical fields up to 392 T in Sm(0.85)Nd(0.15)FeAsO(0.85)F(0.15) were demonstrated.

  17. Transport critical current measurement apparatus using liquid nitrogen cooled high-T(c) superconducting magnet with variable temperature insert.

    Science.gov (United States)

    Nishijima, G; Kitaguchi, H; Tshuchiya, Y; Nishimura, T; Kato, T

    2013-01-01

    We have developed an apparatus to investigate transport critical current (I(c)) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10) (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating I(c) measurement environment for a high-T(c) superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  18. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  19. Trial manufacture of liquid nitrogen cooling High Temperature Superconductivity Motor

    International Nuclear Information System (INIS)

    Sugimoto, H; Nishikawa, T; Tsuda, T; Hondou, Y; Akita, Y; Takeda, T; Okazaki, T; Ohashi, S; Yoshida, Y

    2006-01-01

    We present a new high temperature superconductivity (HTS) synchronous motor using the liquid nitrogen as the refrigerant in this paper. This motor is designed to be used as the propulsion motor in ship. Because we use the liquid nitrogen as the refrigerant, it is possible to simplify the cooling equipments in the motor. And in our design, we apply the axial flux type of motor to simplify the cryostat of the HTS wires used to make the field coils. Here, the fields using the bismuth HTS wire for the HTS coils are fixed. Moreover, the cores used in the fields are separated from cryostat, and the armature applies the core-less structure. According to various the electromagnetic field analysis results, the new motor was designed and produced. The diameter of the motor is 650mm, and the width of the motor is 360mm. The motor's rated output is 8.8kW at 100rpm, while the overload output is 44kW, and the maximum efficiency is 97.7%. Also, in order to further miniaturize the motor, other magnetic field analysis have been done when the high-current-density type HTS wire was used and the permendur was used instead of magnetic steel plates. In this case, the motor's rated output is 12kW, and the overload output is 60kW

  20. Superconducting materials

    International Nuclear Information System (INIS)

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La 2-x Sr x CuO 4 ; source of high transition temperatures; and prospects for new superconductors

  1. Structural relationships in high temperature superconductors

    International Nuclear Information System (INIS)

    Schuller, I.K.; Segre, C.U.; Hinks, D.G.; Jorgensen, J.D.; Soderholm, L.; Beno, M.; Zhang, K.

    1987-09-01

    The recent discovery of two types of metallic copper oxide compounds which are superconducting to above 90 0 K has renewed interest in the search for new high temperature superconducting materials. It is significant that both classes of compounds, La/sub 2-x/Sr/sub x/CuO/sub 4-y/ and YBa 2 Cu 3 O/sub 7-δ/ are intimately related to the extensively studied perovskite family. Both compounds contain highly oxidized, covalently bonded Cu-O sublattices, however, they differ in geometry. In this paper we discuss the relationship of these features to the superconducting properties. 30 refs., 6 figs

  2. Exotic Magnetic Orders and Their Interplay with Superconductivity

    DEFF Research Database (Denmark)

    Christensen, Morten Holm

    Superconductivity represents one of the most important scientific discoveries of the 20th century. The practical applications are numerous ranging from clean energy storage and MRI machines to quantum computers. However, the low temperatures required for superconductivity prohibits many practical...... applications. The more recent discovery of high-temperature superconductors, with superconducting transition temperatures above 100~K, has led to the hope that superconductivity at room-temperature might be achievable, although a complete theoretical understanding of the high-temperature superconductors...

  3. The improved damping of superconductor bearings for 35 kWh superconductor flywheel energy storage system

    International Nuclear Information System (INIS)

    Han, Y.H.; Park, B.J.; Jung, S.Y.; Han, S.C.; Lee, W.R.; Bae, Y.C.

    2013-01-01

    Highlights: ► We made a 35 kWh superconductor flywheel energy storage system. ► The damping coefficient of the superconductor bearing was increased over 3000 N s/m. ► The source of damping was discussed. -- Abstract: A 35 kWh Superconductor Flywheel Energy Storage system (SFES) using hybrid bearing sets, which is composed of a high temperature superconductor (HTS) bearing and an active magnet damper (AMD), has been developed at KEPCO Research Institute (KEPRI). Damping is a source of energy loss but necessary for the stability of the flywheel system. We found that the damping of HTS bearings can be improved by thermal insulating bolts, which play a role of passive type external damper. To investigate the source of the increased damping, damping coefficients were measured with HTS bearings using insulating bolts made of three kinds of polymer materials. The damping coefficient was raised over 3000 N s/m in the case of PEEK bolts. The value was almost a quarter of the AMD. In this study, thermoelastic and Coulomb friction damping mechanisms are discussed. The main damping mechanism was the thermoelastic damping of the bolts themselves. And interfacial gap between the insulating bolt and metal chamber, which increased during the cooling process, was considered to be the cause of the anisotropic damping coefficients. Finally, the effects of the HTS bearings on the first critical speed are shown

  4. Characterization of the superconducting state in hafnium hydride under high pressure

    Science.gov (United States)

    Duda, A. M.; Szewczyk, K. A.; Jarosik, M. W.; Szcześniak, K. M.; Sowińska, M. A.; Szcześniak, D.

    2018-05-01

    The hydrogen-rich compounds at high pressure may exhibit notably high superconducting transition temperatures. In the paper, we have calculated the basic thermodynamic parameters of the superconducting state in two selected phases of HfH2 hydride under high-pressure respectively at 180 GPa for Cmma and 260 GPa for P21 / m . Calculations has been conducted in the framework of the Eliashberg formalism. In particular, we have determined the values of the critical temperature (TC) to be equal to 8 K and 13 K for the Cmma and P21 / m phases, respectively. Moreover, we have estimated other thermodynamic properties such as the order parameter (Δ (T)) , the thermodynamic critical field (HC (T)) , and the specific heat for the normal (CN) and superconducting (CS) state. Finally, we have shown that the characteristic ratios: RΔ = 2 Δ (0) /kBTC and RC = ΔC (TC) /CN (TC) , which are related to the above thermodynamic functions, slightly differ from the predictions of the Bardeen-Cooper-Schrieffer theory due to the strong-coupling and retardation effects.

  5. A Full-size High Temperature Superconducting Coil Employed in a Wind Turbine Generator Set-up

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2016-01-01

    A full-size stationary experimental set-up, which is a pole pair segment of a 2 MW high temperature superconducting (HTS) wind turbine generator, has been built and tested under the HTS-GEN project in Denmark. The performance of the HTS coil is crucial to the set-up, and further to the development...... is tested in LN2 first, and then tested in the set-up so that the magnetic environment in a real generator is reflected. The experimental results are reported, followed by a finite element simulation and a discussion on the deviation of the results. The tested and estimated Ic in LN2 are 148 A and 143 A...

  6. Transient characteristics of current lead losses for the large scale high-temperature superconducting rotating machine

    International Nuclear Information System (INIS)

    Le, T. D.; Kim, J. H.; Park, S. I.; Kim, D. J.; Kim, H. M.; Lee, H. G.; Yoon, Y. S.; Jo, Y. S.; Yoon, K. Y.

    2014-01-01

    To minimize most heat loss of current lead for high-temperature superconducting (HTS) rotating machine, the choice of conductor properties and lead geometry - such as length, cross section, and cooling surface area - are one of the various significant factors must be selected. Therefore, an optimal lead for large scale of HTS rotating machine has presented before. Not let up with these trends, this paper continues to improve of diminishing heat loss for HTS part according to different model. It also determines the simplification conditions for an evaluation of the main flux flow loss and eddy current loss transient characteristics during charging and discharging period.

  7. Interplay between magnetism and superconductivity in iron based high temperature superconductors

    International Nuclear Information System (INIS)

    Price, Stephen

    2013-01-01

    In this thesis, magnetic properties of a series of different Fe-based superconducting materials have been studied by means of neutron scattering techniques. Magnetic correlations in underdoped Ba(Fe 0.95 Co 0.05 ) 2 As 2 have been investigated for three phases of the phase diagram. It was possible to detect the spin gap and spin resonance signal, two features of the particle hole excitation spectrum at Q=(0.5,0.5,0), characteristic for the superconducting phase. The spin wave excitations present in the ordered phase have been analyzed quantitatively in terms of a linear spin wave model, whereas a spin diffusion model was applied to the collective excitations of the paramagnetic phase. However, it was found that both models can be applied to excitations in all three phases. In optimally doped CaFe 0.88 Co 0.12 AsF, a spin resonance signal was detected as part of the spin excitation spectrum at Q=(0.5,0.5,0). The observation of the spin resonance signal supports the s ± symmetry of the superconducting gap function. In the undoped CaFeAsF compound three dimensional spin wave like excitations of the static Fe-SDW order have been observed at Q AFM =(0.5,0.5,0.5), for temperatures below T N . Above T N and for energies below 20 meV, the spin wave like excitations are replaced by short range two dimensional paramagnetic excitations, which persist up to 270 K. In superconducting FeSe 0.5 Te 0.5 polarized neutron scattering investigations revealed the magnetic nature of the spin resonance signal and the excitation spectrum at Q=(0.5,0.5,0) up to 30 meV. The whole excitation spectrum including the spin resonance signal consists of an isotropic distribution of spin excitations with magnetic moments fluctuating in the ab-plane and perpendicular to the ab-plane, χ ab ''(Q,ω)∼χ c ''(Q,ω). In Eu(Fe 1-x Co x ) 2 As 2 and EuFe 2 (As 1-x P x ) 2 the effect of impurity doping on the static order of the magnetic lattice of the Eu 2+ -moments has been studied by means of

  8. Modeling and comparison of superconducting linear actuators for highly dynamic motion

    Directory of Open Access Journals (Sweden)

    Bruyn B.J.H. de

    2015-12-01

    Full Text Available This paper presents a numerical modeling method for AC losses in highly dynamic linear actuators with high temperature superconducting (HTS tapes. The AC losses and generated force of two actuators, with different placement of the cryostats, are compared. In these actuators, the main loss component in the superconducting tapes are hysteresis losses, which result from both the non-sinusoidal phase currents and movement of the permanent magnets. The modeling method, based on the H-formulation of the magnetic fields, takes into account permanent magnetization and movement of permanent magnets. Calculated losses as function of the peak phase current of both superconducting actuators are compared to those of an equivalent non-cryogenic actuator.

  9. Superconductivity in bad metals

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is argued that many synthetic metals, including high temperature superconductors are ''bad metals'' with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described

  10. High-Tc superconducting microbolometer for terahertz applications

    Science.gov (United States)

    Ulysse, C.; Gaugue, A.; Adam, A.; Kreisler, A. J.; Villégier, J.-C.; Thomassin, J.-L.

    2002-05-01

    Superconducting hot electron bolometer mixers are now a competitive alternative to Schottky diode mixers in the terahertz frequency range because of their ultra wideband (from millimeter waves to visible light), high conversion gain, and low intrinsic noise level. High Tc superconductor materials can be used to make hot electron bolometers and present some advantage in term of operating temperature and cooling. In this paper, we present first a model for the study of superconducting hot electron bolometers responsivity in direct detection mode, in order to establish a firm basis for the design of future THz mixers. Secondly, an original process to realize YBaCuO hot electron bolometer mixers will be described. Submicron YBaCuO superconducting structures are expitaxially sputter deposited on MgO substrates and patterned by using electron beam lithography in combination with optical lithography. Metal masks achieved by electron beam lithography are insuring a good bridge definition and protection during ion etching. Finally, detection experiments are being performed with a laser at 850 nm wavelength, in homodyne mode in order to prove the feasibility and potential performances of these devices.

  11. Superconducting permanent magnets for high-temperature operation

    Czech Academy of Sciences Publication Activity Database

    Jirsa, Miloš; Muralidhar, M.

    2004-01-01

    Roč. 54, Suppl. D (2004), D441-D444 ISSN 0011-4626. [Czech and Slovak Conference on Magnetism. Košice, 12.07.2004-15.07.2004] Institutional research plan: CEZ:AV0Z1010914 Keywords : superconducting magnets * ternary LRE-123 compounds * mesoscopic defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.292, year: 2004

  12. A new hybrid protection system for high-field superconducting magnets

    CERN Document Server

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A new protection system for superconducting magnets is presented, comprising a combination of a novel coupling-loss induced quench (CLIQ) system and conventional quench heaters. CLIQ can provoke a very fast transition to the normal state in coil windings by introducing coupling loss and thus heat in the coil's conductor. The advantage of the hybrid protection system is a global transition, resulting in a much faster current decay, a significantly lower hot-spot temperature, and a more homogeneous temperature distribution in the magnet's coil.

  13. High-frequency applications of high-temperature superconductor thin films

    Science.gov (United States)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  14. High-frequency applications of high-temperature superconductor thin films

    International Nuclear Information System (INIS)

    Klein, N.

    2002-01-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz. (author)

  15. Di- and tri-carboxylic-acid-based etches for processing high temperature superconducting thin films and related materials

    International Nuclear Information System (INIS)

    Ginley, D.S.; Barr, L.; Ashby, C.I.H.; Plut, T.A.; Urea, D.; Siegal, M.P.; Martens, J.S.; Johansson, M.E.

    1994-01-01

    The development of passive and active electronics from high-temperature superconducting thin films depends on the development of process technology capable of producing appropriate feature sizes without degrading the key superconducting properties. We present a new class of chelating etches based on di- and tri-carboxylic acids that are compatible with positive photoresists and can produce sub-micron feature sizes while typically producing increases the microwave surface resistance at 94 GHz by less than 10%. This simple etching process works well for both the Y--Ba--Cu--O and Tl--Ba--Ca--Cu--O systems. In addition, we demonstrate that the use of chelating etches with an activator such as HF allows the etching of related oxides such as LaAlO 3 , which is a key substrate material, and Pb(Zr 0.53 Ti 0.47 )O 3 (PZT) which is a key ferroelectric material for HTS and other applications such as nonvolatile memories

  16. Basic concepts on the theory of high temperature superconductivity. The importance of the isotope effect. Grundvorstellungen zur Theorie der Hochtemperatur-Supraleitung. Die Rolle des Isotopieeffektes

    Energy Technology Data Exchange (ETDEWEB)

    Der, R.; Schumacher, W. (Zentralinstitut fuer Isotopen- und Strahlenforschung, Leipzig (Germany, F.R.))

    1991-01-01

    With the experimental detection of high temperature superconduction (HTSC) a lot of different new concepts for the explanation of this phenomenon have been developed. After a short reminiscence of the conventional theory of superconduction these new approaches are outlined and discussed. Contrarely to the conventional superconductors the isotopic effect in HTSC is generally very small or absent. The role of the isotopic effects in the investigation of new HTSC mechanisms is discussed. (orig.).

  17. A study on the development of high Tc superconducting materials

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Lee, Hee Gyoun; Kim, Chan Joong

    1990-01-01

    The microstructure, crystal structure and formation kinetics for the superconducting phases were studied in the lead-doped BiSrCaCuO system. The formation kinetics was also investigated in the samples with different Pb/Bi ratio and it was observed that the 30 % Pb addition is most perferable for the formation of the high T c phase. The formation of the high T c phase was delayed by the excessive addition of Pb. The lattice parameter (c) of the unit cell of both low T c and high T c phases increased with increasing Pb content. Superconducting thin film was sucessfully prepared by chemical vapor deposition (CVD). Film deposited on MgO substrate showed a T c , onset of 85 K and did not reach to zero resistivity down to 77 K. Superconducting 124 phase in Y-system, which is more stable than 123 phase at high temperature showed a T c , onser of 84 K. Additionally, 0.1 mole of Pb, Sn and Ca was substituted for yttrium in 124 phase, respectively. For Pb and Sn-subsituted specimens, 124 phase was formed and for Ca substituted specimen, 124 phase was not formed and revealed no superconductivity down to 77 K. For Sn-substituted specimens, 124 phase was formed but showed no superconductivity down to 77 K. (author)

  18. Developmental activities of the 18 GHz high temperature superconducting ECR ion source, PKDELIS, for the high current injector at IUAC

    International Nuclear Information System (INIS)

    Rodrigues, G.; Lakshmy, P.S.; Mathur, Y.; Ahuja, R.; Dutt, R.N.; Rao, U.K.; Mandal, A.; Kanjilal, D.; Roy, A.

    2011-01-01

    Various developmental activities of the 18 GHz High Temperature Superconducting ECR Ion Source, PKDELIS have been carried out as a part of the High Current Injector programme. Emittance measurements using a simple technique has given important inputs for the design of downstream accelerators like RFQ, DTL and low beta cavities. The techniques allows for emittance matching by varying the emittance parameters to match with the acceptance of the accelerators. X-ray Beamstrahlung measurements from ECR plasma has shown that it is a diagnostic tool to optimize the production of highly charged ions. The ion optics through the low energy beam transport section has been benchmarked with various codes and given a handle to optimize the transmission. New techniques to improve the extraction efficiency of highly charged ions has been developed. (author)

  19. Fabrication and characterizations of high-Tc superconducting ceramic/polymer 0--3 composites

    International Nuclear Information System (INIS)

    Du, J.; Unsworth, J.

    1994-01-01

    High-T c superconducting ceramic YBa 2 Cu 3 O 7-x /thermosetting plastic 0--3 composites were fabricated. The structure, physical property, magnetic susceptibility, levitation, and mechanical strength of the composites were accessed. The influence of filler content on these properties was also studied. Although the 0--3 composites lack an electrical superconducting path through materials, the intrinsic diamagnetic properties were preserved. The magnetic superconducting transition temperature was not degraded. The values of magnetic susceptibility and levitation force for the composites were basically proportional to the actual volume fraction of superconducting filler. These new composite materials are most suitable for the applications in levitating vehicles and mechanical bearings

  20. Theory of high-T sub c superconductivity based on the fermion-condensation quantum phase transition

    CERN Document Server

    Amusia, M Ya; Shaginyan, V R

    2001-01-01

    A theory of high temperature superconductivity based on the combination of the fermion-condensation quantum phase transition and the conventional theory of superconductivity is presented. This theory describes maximum values of the superconducting gap which can be as big as DELTA sub 1 approx 0.1 epsilon sub F , with epsilon sub F being the Fermi level. It is shown that the critical temperature 2T sub c approx = DELTA sub 1. If there exists the pseudogap above T sub c then 2T* approx = DELTA sub 1 , and T* is the temperature at which the pseudogap vanished. A discontinuity in the specific heat at T sub c is calculated. The transition from conventional superconductors to high-T sub c ones as a function of the doping level is investigated

  1. Skating crossovers on a motorized flywheel: a preliminary experimental design to test effect on speed and on crossovers.

    Science.gov (United States)

    Smith, Aynsley M; Krause, David A; Stuart, Michael J; Montelpare, William J; Sorenson, Matthew C; Link, Andrew A; Gaz, Daniel V; Twardowski, Casey P; Larson, Dirk R; Stuart, Michael B

    2013-12-01

    Ice hockey requires frequent skater crossovers to execute turns. Our investigation aimed to determine the effectiveness of training crossovers on a motorized, polyethylene high-resistance flywheel. We hypothesized that high school hockey players training on the flywheel would perform as well as their peers training on ice. Participants were 23 male high-school hockey players (age 15-19 years). The study used an experimental prospective design to compare players who trained for 9 sessions on the 22-foot flywheel with players who trained for 9 sessions on a similarly sized on-ice circle. Both groups were compared with control subjects who were randomly selected from the same participant pool as those training on ice. All players were tested before and after their 3-week training regimens, and control subjects were asked to not practice crossovers between testing. Group 1 trained in a hockey training facility housing the flywheel, and group 2 trained in the ice hockey arena where testing occurred. Primary outcome measures tested in both directions were: (a) speed (time in seconds) required to skate crossovers for 3 laps of a marked face-off circle, (b) cadence of skating crossovers on the similarly sized circles, and (c) a repeat interval speed test, which measures anaerobic power. No significant changes were found between groups in on-ice testing before and after training. Among the group 1 players, 7 of 8 believed they benefited from flywheel training. Group 2 players, who trained on ice, did not improve performance significantly over group 1 players. Despite the fact that no significant on-ice changes in performance were observed in objective measures, players who trained on the flywheel subjectively reported that the flywheel is an effective cost-effective alternative to training on ice. This is a relevant finding when placed in context with limited availability of on-ice training.

  2. Infinite-range Heisenberg model and high-temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil; Goddard, William A., III

    1993-11-01

    A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.

  3. THE REDUCTION OF VIBRATIONS IN A CAR – THE PRINCIPLE OF PNEUMATIC DUAL MASS FLYWHEEL

    Directory of Open Access Journals (Sweden)

    Robert GREGA

    2014-09-01

    Full Text Available The dual-mass flywheel replaces the classic flywheel in such way that it is divided into two masses (the primary mass and the secondary mass, which are jointed together by means of a flexible interconnection. This kind of the flywheel solution enables to change resonance areas of the engine with regard to the engine dynamic behaviour what leads to a reduction of vibrations consequently. However, there is also a disadvantage of the dualmass flywheels. The disadvantage is its short-time durability. There was projected a new type of the dual-mass flywheel in the framework of our workplace in order to eliminate disadvantages of the present dual-mass flywheels, i.e. we projected the pneumatic dual-mass flywheel, taking into consideration our experiences obtained during investigation of vibrations.

  4. Temperature dependence of the superconducting proximity effect quantified by scanning tunneling spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Stępniak

    2015-01-01

    Full Text Available Here, we present the first systematic study on the temperature dependence of the extension of the superconducting proximity effect in a 1–2 atomic layer thin metallic film, surrounding a superconducting Pb island. Scanning tunneling microscopy/spectroscopy (STM/STS measurements reveal the spatial variation of the local density of state on the film from 0.38 up to 1.8 K. In this temperature range the superconductivity of the island is almost unaffected and shows a constant gap of a 1.20 ± 0.03 meV. Using a superconducting Nb-tip a constant value of the proximity length of 17 ± 3 nm at 0.38 and 1.8 K is found. In contrast, experiments with a normal conductive W-tip indicate an apparent decrease of the proximity length with increasing temperature. This result is ascribed to the thermal broadening of the occupation of states of the tip, and it does not reflect an intrinsic temperature dependence of the proximity length. Our tunneling spectroscopy experiments shed fresh light on the fundamental issue of the temperature dependence of the proximity effect for atomic monolayers, where the intrinsic temperature dependence of the proximity effect is comparably weak.

  5. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1991-01-01

    The results of positron annihilation measurements as a function of temperature, across Tc, in a variety of high temperature superconductors such as Y-Ba-Cu-O (Y1237), Y-Ba-Cu-O (Y1248), Bi-Sr-Ca-Cu-O, Tl-Ba-Ca-Cu-O, Ba-K-Bi-O and Nd-Ce-Cu-O are presented. It is shown that the variation of annihilation parameters in the superconducting state is correlated with the diposition of the positron density distribution with respect to the superconducting CuO planes. An increase in positron lifetime is observed below Tc when the positrons probe the CuO planes whereas a decrease in lifetime is observed when the positron density overlaps predominantly with the apical oxygen atom. With this correlation, the different temperature variation of annihilation parameters, seen in the various high temperature superconductors, is understood in terms of a local charge transfer from the planar oxygen atom to the apical oxygen atom. The significance of these results in the context of various theoretical models of high temperature superconductivity is discussed. In addition, the application of positron annihilation spectroscopy to the study of oxygen defects in the Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O and Nd-Ce-Cu-O is presented. (author). 53 refs., 17 figs., 2 tabs

  6. Superconductivity of divalent Chevrel phases at very high pressures

    International Nuclear Information System (INIS)

    Yao, Y.S.; Guertin, R.P.; Hinks, D.G.; Jorgensen, J.; Capone II, D.W.

    1988-01-01

    The electrical resistivity and the superconducting transition temperatures were examined for three representative divalent Chevrel phase systems, SnMo 6 S 8 , EuMo 6 S 8 , and BaMo 6 S 8 , as a function of hydrostatic pressure to 2 GPa and in quasihydrostatic pressures to 10 GPa. In all systems, T/sub c/ is depressed to 0 K for sufficiently large pressures. For the Sn- and Eu-based systems, both highly purified samples and samples with controlled oxygen content were used. In an oxygenated SnMo 6 S 8 sample (less than 3% O 2 substituted for the S atoms) the pressure threshold and maximum T/sub c/ are 40% lower than in the pure sample, but for P>3.5 GPa the T/sub c/-P phase diagrams nearly coincide, with T/sub c/ reaching zero at an extrapolated pressure of about 12 GPa. In pure EuMo 6 S 8 , superconductivity appears only above a threshold pressure of about 1 GPa and is depressed to 0 K above 4.5 GPa. In an oxygenated sample the maximum T/sub c/ and the threshold pressure are depressed, and above about 3.5 GPa the T/sub c/-P phase diagrams coincide, as in the Sn-based system, although T/sub c/ is then rapidly depressed to 0 K at about 4.5 GPa. In a highly purified BaMo 6 S 8 sample superconductivity appears above about 2 GPa and is depressed to 0 K at extrapolated pressures above 12 GPa. A full transition to the zero-resistance superconducting state is observed in BaMo 6 S 8 . The data are discussed in terms of a model linking the rhombohedral-to-triclinic structural transition, the superconducting transition temperature, and the role of pressure in suppressing the structural transition

  7. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

    Science.gov (United States)

    Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.

    2018-05-01

    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.

  8. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    International Nuclear Information System (INIS)

    Yung Moo Huh

    2001-01-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La 2-x Sr x CuO 4-δ , La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H(parallel)c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T c0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La 2-x Sr x CuO 4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T c . The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ζ c becomes comparable to the spacing between adjacent CuO 2 layers s at sufficiently high magnetic fields near H c2

  9. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    International Nuclear Information System (INIS)

    Finnemore, Douglas K.

    2001-01-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La 2-x Sr x CuO 4-δ , La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H (parallel) c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T c0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La 2-x Sr x CuO 4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T c . The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ξ c becomes comparable to the spacing between adjacent CuO 2 layers s at sufficiently high magnetic field near H c2

  10. Superconducting active impedance converter

    International Nuclear Information System (INIS)

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures

  11. Phase competition and anomalous thermal evolution in high-temperature superconductors

    Science.gov (United States)

    Yu, Zuo-Dong; Zhou, Yuan; Yin, Wei-Guo; Lin, Hai-Qing; Gong, Chang-De

    2017-07-01

    The interplay of competing orders is relevant to high-temperature superconductivity known to emerge upon suppression of a parent antiferromagnetic order typically via charge doping. How such interplay evolves at low temperature—in particular at what doping level the zero-temperature quantum critical point (QCP) is located—is still elusive because it is masked by the superconducting state. The QCP had long been believed to follow a smooth extrapolation of the characteristic temperature T* for the strange normal state well above the superconducting transition temperature. However, recently the T* within the superconducting dome was reported to unexpectedly exhibit back-bending likely in the cuprate Bi2Sr2CaCu2O8 +δ . Here we show that the original and revised phase diagrams can be understood in terms of weak and moderate competitions, respectively, between superconductivity and a pseudogap state such as d -density or spin-density wave, based on both Ginzburg-Landau theory and the realistic t -t'-t''-J -V model for the cuprates. We further found that the calculated temperature and doping-level dependence of the quasiparticle spectral gap and Raman response qualitatively agrees with the experiments. In particular, the T* back-bending can provide a simple explanation of the observed anomalous two-step thermal evolution dominated by the superconducting gap and the pseudogap, respectively. Our results imply that the revised phase diagram is likely to take place in high-temperature superconductors.

  12. Calculation of composite-fibre flywheels with electric power converters for energy storage purposes. Zur Berechnung von Schwungradenergiespeichern aus Faserverbundwerkstoff mit elektrischem Energiewandler

    Energy Technology Data Exchange (ETDEWEB)

    Canders, W R

    1982-07-13

    The dissertation discusses the calculation and design of flywheel energy storage systems with electromechanical power converters and composite-fibre flywheels. For this purpose, the main load criteria for centrifugal and pressure loads on flywheel rings of unidirectional laminates are determined, and criteria are given for the dimensioning of flywheel rings. The fast rotational speed of the flywheel dominates the design of the driving motor. As an example, the calculation of a permanent-magnet-excited external rotor motor is described. Special consideration is given to the close correlation between stator current density and ampere bars per cm, and rotor strength. The findings are illustrated by design examples, by an example from the field of vehicle construction, and by experimental studies on composite-fibre flywheels and a driving motor with a high rotational speed.

  13. Valence skipping driven superconductivity and charge Kondo effect

    International Nuclear Information System (INIS)

    Yanagisawa, Takashi; Hase, Izumi

    2013-01-01

    Highlights: •Valence skipping in metallic compounds can give rise to an unconventional superconductivity. •Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. •The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. •We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. •There is a high temperature region near the boundary. -- Abstract: Valence skipping in metallic compounds can give rise to an unconventional superconductivity. Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. The superconducting state is changed into a metallic state with a local singlet as the attractive interaction |U| increases. There is a high temperature region near the boundary

  14. Analyses, algorithms, and computations for models of high-temperature superconductivity. Final report

    International Nuclear Information System (INIS)

    Du, Q.

    1997-01-01

    Under the sponsorship of the Department of Energy, the authors have achieved significant progress in the modeling, analysis, and computation of superconducting phenomena. The work so far has focused on mezoscale models as typified by the celebrated Ginzburg-Landau equations; these models are intermediate between the microscopic models (that can be used to understand the basic structure of superconductors and of the atomic and sub-atomic behavior of these materials) and the macroscale, or homogenized, models (that can be of use for the design of devices). The models they have considered include a time dependent Ginzburg-Landau model, a variable thickness thin film model, models for high values of the Ginzburg-landau parameter, models that account for normal inclusions and fluctuations and Josephson effects, and the anisotropic ginzburg-Landau and Lawrence-Doniach models for layered superconductors, including those with high critical temperatures. In each case, they have developed or refined the models, derived rigorous mathematical results that enhance the state of understanding of the models and their solutions, and developed, analyzed, and implemented finite element algorithms for the approximate solution of the model equations

  15. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.

    Science.gov (United States)

    Takeda, Keiji; Mori, Hatsumi; Yamaguchi, Akira; Ishimoto, Hidehiko; Nakamura, Takayoshi; Kuriki, Shinya; Hozumi, Toshiya; Ohkoshi, Shin-ichi

    2008-03-01

    We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa2Cu3O7-delta of 92 nm in thickness with photolithography techniques to have a hole of 4x9 microm2 and 2 microm wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current Ic were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 microm3), [Mn2(H2O)2(CH3COO)][W(CN)8]2H2O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10(-12) J T(-1) (10(-9) emu) with a HTS micro-SQUID magnetometer.

  16. Interplay between magnetism and superconductivity in iron based high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Price, Stephen

    2013-07-01

    In this thesis, magnetic properties of a series of different Fe-based superconducting materials have been studied by means of neutron scattering techniques. Magnetic correlations in underdoped Ba(Fe{sub 0.95}Co{sub 0.05}){sub 2}As{sub 2} have been investigated for three phases of the phase diagram. It was possible to detect the spin gap and spin resonance signal, two features of the particle hole excitation spectrum at Q=(0.5,0.5,0), characteristic for the superconducting phase. The spin wave excitations present in the ordered phase have been analyzed quantitatively in terms of a linear spin wave model, whereas a spin diffusion model was applied to the collective excitations of the paramagnetic phase. However, it was found that both models can be applied to excitations in all three phases. In optimally doped CaFe{sub 0.88}Co{sub 0.12}AsF, a spin resonance signal was detected as part of the spin excitation spectrum at Q=(0.5,0.5,0). The observation of the spin resonance signal supports the s{sub ±} symmetry of the superconducting gap function. In the undoped CaFeAsF compound three dimensional spin wave like excitations of the static Fe-SDW order have been observed at Q{sub AFM}=(0.5,0.5,0.5), for temperatures below T{sub N}. Above T{sub N} and for energies below 20 meV, the spin wave like excitations are replaced by short range two dimensional paramagnetic excitations, which persist up to 270 K. In superconducting FeSe{sub 0.5}Te{sub 0.5} polarized neutron scattering investigations revealed the magnetic nature of the spin resonance signal and the excitation spectrum at Q=(0.5,0.5,0) up to 30 meV. The whole excitation spectrum including the spin resonance signal consists of an isotropic distribution of spin excitations with magnetic moments fluctuating in the ab-plane and perpendicular to the ab-plane, χ{sub ab}''(Q,ω)∼χ{sub c}''(Q,ω). In Eu(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} and EuFe{sub 2}(As{sub 1-x}P{sub x}){sub 2} the effect of

  17. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    Science.gov (United States)

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  18. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  19. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  20. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  1. High-T /SUB c/ Superconducting integrated circuit: a dc SQUID with input coil

    International Nuclear Information System (INIS)

    Di Iorio, M.S.; Beasley, M.R.

    1985-01-01

    We have fabricated a high transition temperature superconducting integrated circuit consisting of a dc SQUID and an input coupling coil. The purpose is to ascertain the generic problems associated with constructing a high-T /SUB c/ circuit as well as to fabricate a high performance dc SQUID. The superconductor used for both the SQUID and the input coil is Nb 3 Sn which must be deposited at 800 0 C. Importantly, the insulator separating SQUID and input coil maintains its integrity at this elevated temperature. A hole in the insulator permits contact to the innermost winding of the coil. This contact has been achieved without significant degradation of the superconductivity. Consequently, the device operates over a wide temperature range, from below 4.2 K to near T /SUB c/

  2. Understanding and application of superconducting materials

    International Nuclear Information System (INIS)

    Moon, Byeong Mu; Lee, Chun Heung

    1997-02-01

    This book deals with superconducting materials, which contains from basic theory to application of superconducting materials. The contents of this book are mystery of superconducting materials, properties of superconducting materials, thermodynamics of superconducting materials, theoretical background of superconducting materials, tunnelling and quantum interference, classification and properties of superconducting materials, high temperature superconducting materials, production and analysis of superconducting materials and application of superconducting materials.

  3. Study of damping in 5 kWh superconductor flywheel energy storage system using a piezoelectric actuator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, H.K.; Song, D.; Kim, S.B. [Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Han, S.C. [Korea Electric Power Research Institute, 103-16 Munji-Ro, Yuseong-Gu, Daejeon 305-380 (Korea, Republic of); Sung, T.H., E-mail: sungth@hanyang.ac.kr [Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of)

    2012-05-15

    A 5 kWh superconductor flywheel energy storage system (SFES) has advantages in terms of high electrical energy density, environmental affinity and long life. However, the SFES has disadvantage that electromagnetic damper is needed because superconducting bearings do not have enough damping coefficient. The purpose of this experiment is to develop a method of damping the vibration of the SFES. A piezoelectric actuator was attached to a superconducting bearing system for feasibility test in order to make it as a damper of the SFES. For this experiment, a cylindrical permanent magnet (PM) 40 mm in diameter and 10 mm height was used as a rotor, a high-temperature superconductor bulk (HTS bulk) with dimensions 40 mm Multiplication-Sign 40 mm Multiplication-Sign 15 mm was used as a stator, and two vibration exciters (an upper and a lower vibration exciter) and a piezoelectric actuator were used. The PM was fixed on the upper vibration exciter. The HTS bulk was fixed on either the lower vibration exciter to test for damping in the feasibility test, or on the piezoelectric actuator for the actual SFES. The conditions of this experiment included various voltage outputs of a power amplifier to the lower vibration exciter, moving distances of the piezoelectric actuator which are displacements of the HTS bulk, and phase differences between the upper and lower vibration exciter or the piezoelectric actuator. The damping feasibility test was conducted with a 300 {mu}m gap between the PM and HTS bulk with a PM vibration of 30 {mu}m. For the actual SFES test, the gap between the PM and HTS bulk was 1.6 mm and the PM vibration was 25 {mu}m. The following conditions were conducted to optimize: an appropriate voltage input to the lower vibration exciter or a displacement of piezoelectric actuator and an appropriate phase difference. When the piezoelectric actuator was used, the damping effect was greatly improved up to 92.32% which a displacement of damped PM was 1.92 {mu}m.

  4. Superconducting property measuring system by magnetization method

    International Nuclear Information System (INIS)

    Ikisawa, K.; Mori, T.; Takasu, N.

    1988-01-01

    Superconducting property measuring system (CMS-370B) for high temperature oxide superconductor has been developed. This system adopts magnetization measurement. The superconducting properties are able to be measured automatically and continuously changing the temperature and external magnetic field. The critical current density as a function of temperature and magnetic field of high temperature superconductor YBa 2 Cu 3 O 7-y (YBCO) has been measured. This paper reports how it was confirmed that this system having the high performance and the accuracy gave the significant contribution to the superconducting material development

  5. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  6. Studies on the levitation height decay of the high temperature superconducting Maglev vehicle

    International Nuclear Information System (INIS)

    Deng, Z.G.; Zheng, J.; Zhang, J.; Wang, J.S.; Wang, S.Y.; Zhang, Y.; Liu, L.

    2007-01-01

    The levitation height decay was found in the high temperature superconducting (HTS) Maglev test vehicle system during man-loading running. Experimental results show that the no-load levitating system would drift to a new equilibrium position by the external loaded history, but the new equilibrium position will almost not drift by the second-round same loaded history. A new method is proposed to improve the stability of the HTS Maglev vehicle, that is, a pre-load was applied to the HTS Maglev vehicle before running. The impulse responses are performed on the HTS Maglev vehicle before the pre-load and after the pre-load. The results show that the pre-load method is considerably effective to improve the stiffness and damping coefficient of the HTS Maglev vehicle. Moreover, it helps to suppress the levitation height decay and enhance the stability of the HTS Maglev vehicle in practical operation

  7. Magnetic superelevation design of Halbach permanent magnet guideway for high-temperature superconducting maglev

    Science.gov (United States)

    Lei, Wuyang; Qian, Nan; Zheng, Jun; Huang, Huan; Zhang, Ya; Deng, Zigang

    2017-07-01

    To improve the curve negotiating ability of high-temperature superconducting (HTS) maglev system, a special structure of magnetic superelevation for double-pole Halbach permanent magnet guideway (PMG) was designed. The most significant feature of this design is the asymmetrical PMG that forms a slanting magnetic field without affecting the smoothness of the PMG surface. When HTS maglev vehicle runs through curves with magnetic superelevation, the vehicle will slant due to asymmetry in magnetic field and the flux-pinning effect of onboard HTS bulks. At the same time, one component of the levitation force provides a part of the centripetal force that reduces lateral acceleration of the vehicle and thus enhances its curve negotiating ability. Furthermore, the slant angle of magnetic superelevation can be adjusted by changing the materials and the thickness of the added permanent magnets. This magnetic superelevation method, together with orographic uplift, can be applied to different requirements of PMG designs. Besides, the applicability of this method would benefit future development of high-speed HTS maglev system.

  8. Analyses, algorithms, and computations for models of high-temperature superconductivity. Final technical report

    International Nuclear Information System (INIS)

    Gunzburger, M.D.; Peterson, J.S.

    1998-01-01

    Under the sponsorship of the Department of Energy, the authors have achieved significant progress in the modeling, analysis, and computation of superconducting phenomena. Their work has focused on mezoscale models as typified by the celebrated ginzburg-Landau equations; these models are intermediate between the microscopic models (that can be used to understand the basic structure of superconductors and of the atomic and sub-atomic behavior of these materials) and the macroscale, or homogenized, models (that can be of use for the design of devices). The models the authors have considered include a time dependent Ginzburg-Landau model, a variable thickness thin film model, models for high values of the Ginzburg-Landau parameter, models that account for normal inclusions and fluctuations and Josephson effects, and the anisotropic Ginzburg-Landau and Lawrence-Doniach models for layered superconductors, including those with high critical temperatures. In each case, they have developed or refined the models, derived rigorous mathematical results that enhance the state of understanding of the models and their solutions, and developed, analyzed, and implemented finite element algorithms for the approximate solution of the model equations

  9. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    Science.gov (United States)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic

  10. High-pressure effects on the superconductivity of β-pyrochlore oxides AOs2O6

    International Nuclear Information System (INIS)

    Muramatsu, Takaki; Takeshita, Nao; Terakura, Chikeko; Takagi, Hidenori; Tokura, Yoshinori; Yonezawa, Shigeki; Muraoka, Yuji; Hiroi, Zenji

    2006-01-01

    High-pressure effects on the superconducting transitions of β-pyrochlore oxide superconductors AOs 2 O 6 (A=Cs, Rb, K) are studied by measuring resistivity under high pressures up to 16 GPa. The superconducting transition temperature T c first increases with increasing pressure in all the compounds and then exhibits a broad maximum at 7.6 K (6 GPa), 8.2 K (2 GPa) and 10 K (0.6 GPa) for A=Cs, Rb and K, respectively. Finally, the superconductivity is suppressed completely at a critical pressure near 7 and 6 GPa for A=Rb and K and probably above 10 GPa for A=Cs. Characteristic changes in the temperature dependence of resistivity of RbOs 2 O 6 under high pressure. The residual resistivity largely increases with pressure above 4 GPa and, as a result, resistivity indicates small temperature dependence down to 4.2 K at 7 GPa and application of further pressure up to 10 GPa indicates that temperature dependence of resistivity decrease below 100 K. This characteristic behavior in the β-pyrochlore oxides may originate from the nesting of nearly octahedron shape of Fermi surface

  11. Concept of a modified flywheel for megajoule storage and pulse conditioning

    International Nuclear Information System (INIS)

    Leung, T.T.

    1991-01-01

    This paper introduces the concept of a flywheel with a variable moment of inertia for electromagnetic launch (EML). A flywheel is among the best energy density storage devices. The modified flywheel will further improve upon the energy density and efficiency. Coupled to a pulse-duty generator, it could produce a near-square pulse or other desirable pulse shapes. The mount of energy, its rate, and its switching all could be controlled prior to electric energy conversion. The modified flywheel is structured with masses movable along radial paths. Potential energy is stored with respect to mass position and kinetic energy with respect to spin. This mass positioning provides a means to control the rate of energy discharge. Control with spring-loaded weight--the design presented here--would have near constant spin output

  12. Development of high field superconducting magnet

    International Nuclear Information System (INIS)

    Irie, Fujio; Takeo, Masakatsu.

    1986-01-01

    Recently, in connection with nuclear fusion research, the development of high field superconducting magnets showed rapid progress. The development of high field magnets of 15 T class by the techniques of winding after heat treatment has been continued in various places, as these techniques are suitable to make large magnets. In 1985, Kyushu University attained the record of 15.5 T. However in high field magnets, there are many problems peculiar to them, and the basic research related to those is demanded. In this report, these general problems, the experience of the design and manufacture in Kyushu University and the related problems are described. The superconducting magnet installed in the Superconducting Magnet Research Center of Kyushu University attained the record of 15.5 T for the first time in March, 1985. In superconducting magnets, very difficult problem must be solved since superconductivity, heat and mechanical force are inter related. The problems of the wire materials for high field, the scale of high field magnets, the condition limiting mean current density, and the development of high field magnets in Kyushu University are described. (Kako, I.)

  13. Development of superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    In this paper, the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors; one is based on high temperature superconductors......; and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are, however, not without their challenges. The superconductors have to be cooled down to somewhere...

  14. Development of Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2012-01-01

    In this paper the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors (LTS); one is based on high temperature superconductors...... (HTS); and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are however not without their challenges. The superconductors have to be cooled down...

  15. Superconductivity at the industrial scale

    International Nuclear Information System (INIS)

    Tixador, P.; Lebrun, Ph.

    2011-01-01

    The discovery of superconductivity is 100 years old but theoretical works are still necessary: the BCS theory does not apply to the new families of high temperature superconducting materials discovered after 1986. In 2001 it was discovered that MgB 2 is superconducting at 39 K, this critical temperature is not the highest but MgB 2 is easy to produce and cheap. Today's highest critical temperature under atmospheric pressure is that of the HgTlBaCaCuO compound: 138 K. The complexity and the cost of cryogenic systems restrain the applications of superconductivity. The author reviews the applications of superconducting in medical imaging, particle detectors, and in the safety systems of power networks. (A.C.)

  16. Potentialities in electronics of new high critical temperature superconductors. Potentialites en electronique des nouveaux supraconducteurs a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, P [Thomson-CSF, 75 - Paris (FR)

    1989-09-01

    The main electronic applications of superconductors involve the signal processing, the electromagnetic wave detection and the magnetometry. Characteristics of devices based on conventional superconductors cooled by liquid helium are given and the changes induced by incorporating high-temperature superconductors are estimated. After a survey of new superconductor properties, the superconducting devices for analog or digital signal processing are reviewed. The gains predicted for high-temperature superconducting analog devices are considered in greater detail. Different sections deal with the infrared or (sub)millimeter wave detection. The most sensitive apparatuses for magnetic measurements are based on SQUIDs. Features of SQUIDs made of granular high-temperature superconducting material samples (grain boundaries behave as barriers of intrinsic junctions) are discussed.

  17. Inverter Output Filter Effect on PWM Motor Drives of a Flywheel Energy Storage System

    Science.gov (United States)

    Santiago, Walter

    2004-01-01

    NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheel systems for small satellite energy storage and attitude control applications. One research and development area has been the minimization of the switching noise produced by the pulsed width modulated (PWM) inverter that drives the flywheel permanent magnet motor/generator (PM M/G). This noise can interfere with the flywheel M/G hardware and the system avionics hampering the full speed performance of the flywheel system. One way to attenuate the inverter switching noise is by placing an AC filter at the three phase output terminals of the inverter with the filter neutral point connected to the DC link (DC bus) midpoint capacitors. The main benefit of using an AC filter in this fashion is the significant reduction of the inverter s high dv/dt switching and its harmonics components. Additionally, common mode (CM) and differential mode (DM) voltages caused by the inverter s high dv/dt switching are also reduced. Several topologies of AC filters have been implemented and compared. One AC filter topology consists of a two-stage R-L-C low pass filter. The other topology consists of the same two-stage R-L-C low pass filter with a series connected trap filter (an inductor and capacitor connected in parallel). This paper presents the analysis, design and experimental results of these AC filter topologies and the comparison between the no filter case and conventional AC filter.

  18. Superconductivity of ternary metal compounds prepared at high pressures

    CERN Document Server

    Shirotani, I

    2003-01-01

    Various ternary metal phosphides, arsenides, antimonides, silicides and germanides have been prepared at high temperatures and high pressures. These ternary metal compounds can be classified into four groups: [1] metal-rich compounds MM' sub 4 X sub 2 and [2] MM'X, [3] non-metal-rich compounds MXX' and [4] MM' sub 4 X sub 1 sub 2 (M and M' = metal element; X and X' = non-metal element). We have studied the electrical and magnetic properties of these materials at low temperatures, and found many new superconductors with the superconducting transition temperature (T sub c) of above 10 K. The metal-rich compound ZrRu sub 4 P sub 2 with a tetragonal structure showed the superconducting transition at around 11 K, and had an upper critical field (H sub c sub 2) of 12.2 tesla (T) at 0 K. Ternary equiatomic compounds ZrRuP and ZrRuSi crystallize in two modifications, a hexagonal Fe sub 2 P-type structure [h-ZrRuP(Si)] and an orthorhombic Co sub 2 P-type structure [o-ZrRuP(Si)]. Both h-ZrRuP and h-ZrRuSi have rather h...

  19. Interplay of CDW, SDW and superconductivity in high-Tc cuprates

    International Nuclear Information System (INIS)

    Panda, S.K.; Rout, G.C.

    2009-01-01

    We present a model calculation of the interplay of the charge density wave (CDW), spin density wave (SDW) and superconductivity in high temperature superconductors. In low doping situation the long range antiferromagnetic order is destroyed to give rise to SDW state accompanied by a CDW state in the system due to doping. For suitable doping the superconductivity appears in the system. The CDW state may describe the pseudogap phenomenon which co-exists with the superconducting phase and extends to normal phase in high-T c systems. These three competiting interactions co-exist together. These three gap parameters are calculated from the model Hamiltonian and solved self-consistently. By varying their coupling constants their interplay are investigated. Finally density of states is calculated for the conduction band which displays the experimental conductance data of Ekino et al. [T. Ekino, Y. Sezaki, H. Fujji, Phys. Rev. B 60 (1999) 6916].

  20. Superconductivity revisited

    CERN Document Server

    Dougherty, Ralph

    2013-01-01

    While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.

  1. Theory of High-T{sub c} Superconducting Cuprates Based on Experimental Evidence

    Science.gov (United States)

    Abrikosov, A. A.

    1999-12-10

    A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of T{sub c}, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc.

  2. Superconducting Technology Program: Sandia 1993 annual report

    International Nuclear Information System (INIS)

    Roth, E.P.

    1994-05-01

    Sandia's STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) process research on the material synthesis of high-temperature superconductors; (2) investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films; (3) process development and characterization of high-temperature superconducting wire and tape, and (4) cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY93 in each of these four areas. A brief background of each project is included to provide historical context and perspective. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas

  3. Oxygen stoichiometry and the high Tc superconducting oxides

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Bagley, B.G.

    1989-01-01

    Methods for determining the oxygen content in high Tc materials, such as thermogravimetric analysis and chemical analysis, are discussed. Consideration is given to La-based cuprates, Y-based cuprates, and Bi-based cuprates. Superconducting transition temperatures are analyzed as a function of the Cu(1)-O(4) bond lengths for several different compositions in the Y-based system. 28 references

  4. Self-contained high-pressure chambers for study on the Moessbauer effect at low temperatures

    International Nuclear Information System (INIS)

    Stepanov, G.N.

    1980-01-01

    Designs of two high-pressure chambers intended for studying the Moessbauer effect at low temperatures are described. The high-pressure chamber of the Bridgman anvil type is made of non magnetic materials and intended for operation at helium temperatures. The chamber employs a superconducting pressure gage. A sample and superconducting pressure gage are surrounded with a liquid medium of a high pressure at a room temperature. Measurements of the pressure were taken during heating the chamber in the vapours of liquid helium according to the known dependence of the lead superconducting transition temperature on pressure. The other high-pressure chamber of the piston-to-cylinder type can be used to study the Moessbauer effect at temperatures ranging from 4 to 300 K. Pressure in the chamber is measured by means of the superconducting pressure gage. The maximum pressure obtained in the chamber constitutes 25 kbar

  5. Application of high-temperature superconducting coil for internal ring devices

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yuichi [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan)]. E-mail: ogawa@ppl.k.u-tokyo.ac.jp; Morikawa, Junji [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan); Mito, Toshiyuki [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Yanagi, Nagato [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Iwakuma, Masataka [Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2006-11-15

    A high-temperature superconducting (HTS) coil is applied for plasma confinement devices, where plasma is confined with a magnetic field of a floating HTS coil. The internal coil device mini-RT with a BSCCO tape has been constructed, in which the coil major radius and magnetomotive force are 0.15 m and 50 kA, respectively. The coil is cooled to 20 K with a helium gas by using a demountable transfer tube and check valve system. The coil current is directly excited by the external power supply with demountable electrodes. To reduce the heat load, the electrodes were cooled with liquid nitrogen. The levitation experiment of the HTS coil has been carried out. The position of the HTS coil is measured by laser sensors, and is feedback-controlled with the levitation coil current. We have succeeded in levitating the HTS coil during 1 h with accuracy of less than 20 {mu}m. The magnetic field strength near the internal coil is around 0.1 T, and a radio-frequency wave of 2.45 GHz is applied for the plasma production. At the floating condition of the HTS coil, a high-density plasma with more than 10{sup 17} m{sup -3}, which is higher than the cut-off density of a 2.45 GHz microwave, has been produced. A new device RT-1 with a major radius of 0.25 m and a magnetomotive force of 250 kA is under construction, and a persistent current has been demonstrated. The feasibility on YBCO tape is briefly discussed.

  6. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  7. Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors

    Science.gov (United States)

    Hu, Jiangping; Ding, Hong

    2012-01-01

    Cuprates, ferropnictides and ferrochalcogenides are three classes of unconventional high temperature superconductors, who share similar phase diagrams in which superconductivity develops after a magnetic order is suppressed, suggesting a strong interplay between superconductivity and magnetism, although the exact picture of this interplay remains elusive. Here we show that there is a direct bridge connecting antiferromagnetic exchange interactions determined in the parent compounds of these materials to the superconducting gap functions observed in the corresponding superconducting materials: in all high temperature superconductors, the Fermi surface topology matches the form factor of the pairing symmetry favored by local magnetic exchange interactions. We suggest that this match offers a principle guide to search for new high temperature superconductors. PMID:22536479

  8. Submicron superconducting structures

    International Nuclear Information System (INIS)

    Golovashkin, A.I.; Lykov, A.N.

    1986-01-01

    An overview of works concerning superconducting structures of submicron dimensions and a system of such structures is given. It is noted that usage of the above structures in superconducting microelectronics permits, first, to increase the element packing density, to decrease the signal transmission time, capacity, power dissipated in high-frequency applications. Secondly, negligible coherence length in transition metals, their alloys and high-temperature compounds also restrict the dimensions of superconducting weak couplings when the 'classical' Josephson effect is displayed. The most effective methods for production of submicron superconducting structures are the following: lithography, double scribering. Recently the systems of superconducting submicron elements are extensively studied. It is shown that such systems can be phased by magnetic field

  9. Theoretical study of stability and superconductivity of ScHn (n =4 -8 ) at high pressure

    Science.gov (United States)

    Qian, Shifeng; Sheng, Xiaowei; Yan, Xiaozhen; Chen, Yangmei; Song, Bo

    2017-09-01

    The synthesis of hydrogen sulfides, with the potential of high-temperature superconductivity, was recently proposed at high Tc = 203 K. It motivated us to employ an ab initio approach for the predictions of crystal structures to find the stable scandium hydrides. In addition to the earlier predicted three stoichiometries of ScH, ScH2, and ScH3, we identify three other metallic stoichiometries of ScH4, ScH6, and ScH8, which show superconductivity at significantly higher temperatures. The phases of ScH4 and ScH6, whose stability does not require extremely high pressures (ZPE), are primarily ionic compounds containing exotic quasimolecular H2 arrangements. The present electron-phonon calculations revealed the superconductive potential of ScH4 and ScH6 with estimated Tc of 98 K and 129 K at 200 GPa and 130 GPa, respectively. The superconductivity of ScHn stems from the large electron-phonon coupling associated with the wagging, bending, and intermediate-frequency modes attributed mainly to the hydrogen atoms.

  10. The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd, Y)Ba2Cu3Ox superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Yao, Y; Chen, Y; Shi, T; Liu, Y; Khatri, ND; Liu, J; Lei, C; Galstyan, E; Majkic, G

    2012-10-26

    Critical current performances of state-of-the-art Zr-added (Gd, Y)BaCuO tapes have been investigated over a temperature range of 20-77 K, in magnetic fields up to 9 T and over a wide angular range of magnetic field orientations. The peak in critical current that is commonly observed in the field orientation perpendicular to the tape in BaZrO3 (BZO) containing superconducting tapes is found to vanish at 30 K in magnetic fields at 1-9 T. While the critical current of 15% Zr-added tapes was about 40% lower than that of 7.5% Zr-added tapes at 77 K, the pinning force values of the former were found to be 18-23% higher than those of the latter in the temperature range of 20-40 K and in magnetic fields of 3-5 T. The results from this study emphasize the importance of optimization of coated conductor fabrication processes for optimum performance not just in low magnetic fields at 77 K but also at the operating conditions of low temperatures and high magnetic fields that are of interest, especially for rotating superconducting machinery applications.

  11. The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd,Y)Ba2Cu3Ox superconducting tapes

    International Nuclear Information System (INIS)

    Selvamanickam, V; Yao, Y; Shi, T; Liu, Y; Khatri, N D; Liu, J; Galstyan, E; Majkic, G; Chen, Y; Lei, C

    2012-01-01

    Critical current performances of state-of-the-art Zr-added (Gd, Y)BaCuO tapes have been investigated over a temperature range of 20–77 K, in magnetic fields up to 9 T and over a wide angular range of magnetic field orientations. The peak in critical current that is commonly observed in the field orientation perpendicular to the tape in BaZrO 3 (BZO) containing superconducting tapes is found to vanish at 30 K in magnetic fields at 1–9 T. While the critical current of 15% Zr-added tapes was about 40% lower than that of 7.5% Zr-added tapes at 77 K, the pinning force values of the former were found to be 18–23% higher than those of the latter in the temperature range of 20–40 K and in magnetic fields of 3–5 T. The results from this study emphasize the importance of optimization of coated conductor fabrication processes for optimum performance not just in low magnetic fields at 77 K but also at the operating conditions of low temperatures and high magnetic fields that are of interest, especially for rotating superconducting machinery applications. (paper)

  12. Superconductivity in Spain. Midas program

    International Nuclear Information System (INIS)

    Yndurain, F.

    1996-01-01

    The different activities in the field of applied superconductivity carried out in Spain under the auspices of the MIDAS program are reported. Applications using both low- and high-temperature superconductors are considered. In the low temperature superconductors case, the design and construction of a 1 mega joule SMES (Superconducting Magnetic Energy Storage) unit, as well as the fabrication of voltage and resistance standards, are reviewed. Developments involving the design and fabrication of an inductive current fault limited and mono- and multi-filamentary wires and tapes using high-temperature superconductors are discussed. Finally, the prospects for the application of superconductivity technology to electric power systems for the electric utilities is considered. (author)

  13. Eddy damping effect of additional conductors in superconducting levitation systems

    Science.gov (United States)

    Jiang, Zhao-Fei; Gou, Xiao-Fan

    2015-12-01

    Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  14. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet.

    Science.gov (United States)

    Wang, Y; Yin, D C; Liu, Y M; Shi, J Z; Lu, H M; Shi, Z H; Qian, A R; Shang, P

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  15. High temperature superconductors and method

    International Nuclear Information System (INIS)

    Ruvalds, J.J.

    1977-01-01

    This invention comprises a superconductive compound having the formula: Ni/sub 1-x/M/sub x/Z/sub y/ wherein M is a metal which will destroy the magnetic character of nickel (preferably copper, silver or gold); Z is hydrogen or deuterium; x is 0.1 to 0.9; and y, correspondingly, 0.9 to 0.1, and method of conducting electric current with no resistance at relatively high temperature of T>1 0 K comprising a conductor consisting essentially of the superconducting compound noted above

  16. The potential for EMS Maglev using high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Goodall, R [Loughborough Univ. (United Kingdom); Macleod, C [Loughborough Univ. (United Kingdom); El-Abbar, A [Loughborough Univ. (United Kingdom); Jones, H [Oxford Univ. (United Kingdom); Jenkins, R [Oxford Univ. (United Kingdom); Campbell, A [Cambridge Univ. (United Kingdom)

    1996-12-31

    Various aspects relating to the use of high temperature superconducting materials in iron-cored magnets for Maglev are considered. The particular emphasis is upon direct control of the superconducting coils, and a control analysis is undertaken to assess the requirements. Experimental results form tests conducted to determine how a superconducting magnet will perform under the conditions required for Maglev are included, and the final section determines the likely effect on the magnet design of using superconducting rather than normal coils. (orig.)

  17. Nanostructures of Boron, Carbon and Magnesium Diboride for High Temperature Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, Lisa [Yale Univ., New Haven, CT (United States); Fang, Fang [Yale Univ., New Haven, CT (United States); Iyyamperumal, Eswarmoorthi [Yale Univ., New Haven, CT (United States); Keskar, Gayatri [Yale Univ., New Haven, CT (United States)

    2013-12-23

    Direct fabrication of MgxBy nanostructures is achieved by employing metal (Ni,Mg) incorporated MCM-41 in the Hybrid Physical-Chemical Vapor Deposition (HPCVD) reaction. Different reaction conditions are tested to optimize the fabrication process. TEM analysis shows the fabrication of MgxBy nanostructures starting at the reaction temperature of 600oC, with the yield of the nanostructures increasing with increasing reaction temperature. The as-synthesized MgxBy nanostructures have the diameters in the range of 3-5nm, which do not increase with the reaction temperature consistent with templated synthesis. EELS analysis of the template removed nanostructures confirms the existence of B and Mg with possible contamination of Si and O. NEXAFS and Raman spectroscopy analysis suggested a concentric layer-by-layer MgxBy nanowire/nanotube growth model for our as-synthesized nanostructures. Ni k-edge XAS indicates that the formation of MgNi alloy particles is important for the Vapor-Liquid-Solid (VLS) growth of MgxBy nanostructures with fine diameters, and the presence of Mg vapor not just Mg in the catalyst is crucial for the formation of Ni-Mg clusters. Physical templating by the MCM-41 pores was shown to confine the diameter of the nanostructures. DC magnetization measurements indicate possible superconductive behaviors in the as-synthesized samples.

  18. High temperature superconducting YBCO microwave filters

    Science.gov (United States)

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  19. High-temperature superconducting current leads

    Science.gov (United States)

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  20. Dynamic motion modes of high temperature superconducting maglev on a 45-m long ring test line

    Science.gov (United States)

    Lei, W. Y.; Qian, N.; Zheng, J.; Jin, L. W.; Zhang, Y.; Deng, Z. G.

    2017-10-01

    With the development of high temperature superconducting (HTS) maglev, studies on the running stability have become more and more significant to ensure the operation safety. An experimental HTS maglev vehicle was tested on a 45-m long ring test line under the speed from 4 km/h to 20 km/h. The lateral and vertical acceleration signals of each cryostat were collected by tri-axis accelerometers in real time. By analyzing the phase relationship of acceleration signals on the four cryostats, several typical motion modes of the HTS maglev vehicle, including lateral, yaw, pitch and heave motions were observed. This experimental finding is important for the next improvement of the HTS maglev system.

  1. Built and operation of three powerful AC pulse flywheel generator sets

    International Nuclear Information System (INIS)

    Wang Shujin; Li Huajun; Li Zhijian; Huang Zhaorong; Wang Xiaoping; Xu Lirong; Liu Xuemei; Bu Mingnan; Hu Haotian; Mao Weicheng

    2006-10-01

    Based on modification of the old pulse generator sets the new flywheel generator system has been developed. Now it is successfully used in supplying power to the HL-2A tokamak and meets the needs of HL-2A physical experiments. By far it is the most powerful pulse flywheel generator system on in-stalled gross capacity, energy storage and release in China today. In addition, the characteristic of the flywheel generator system is that each generator stator has two Y windings with 30 degree phase shift to avoid damaging the rotor due to rectifying load. (authors)

  2. A dielectric approach to high temperature superconductivity

    International Nuclear Information System (INIS)

    Mahanty, J.; Das, M.P.

    1989-01-01

    The dielectric response of an electron-ion system to the presence of a pair of charges is investigated. From the nature of the dielectric function, it is shown that a strong attractive pair formation is possible depending on the dispersion of the ion branches. The latter brings a reduction to the sound velocity which is used as a criterion for the superconductivity. By solving the BCS equation with the above dielectric function, we obtain a reasonable value of T/sub c/. 17 refs., 1 fig

  3. Research on Adaptive Dual-Mode Switch Control Strategy for Vehicle Maglev Flywheel Battery

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2015-01-01

    Full Text Available Because of the jamming signal is real-time changeable and control algorithm cannot timely tracking control flywheel rotor, this paper takes vehicle maglev flywheel battery as the research object. One kind of dual-model control strategy is developed based on the analysis of the vibration response impact of the flywheel battery control system. In view of the complex foundation vibration problems of electric vehicles, the nonlinear dynamic simulation model of vehicle maglev flywheel battery is solved. Through analyzing the nonlinear vibration response characteristics, one kind of dual-mode adaptive hybrid control strategy based on H∞ control and unbalance displacement feed-forward compensation control is presented and a real-time switch controller is designed. The reliable hybrid control is implemented, and the stability in the process of real-time switch is solved. The results of this project can provide important basic theory support for the research of vehicle maglev flywheel battery control system.

  4. Superconductivity and its application

    International Nuclear Information System (INIS)

    Spadoni, M.

    1988-01-01

    This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials

  5. Quench Detection and Protection for High Temperature Superconducting Transformers by Using the Active Power Method

    Science.gov (United States)

    Nanato, N.; Kobayashi, Y.

    AC high temperature superconducting (HTS) coils have been developed for transformers, motors and so on. Quench detection and protection system are essential for safety operations of the AC HTS facilities. The balance voltage method is universally used for the quench detection and protection, however especially for AC operations, the method has risks in terms of high voltage sparks. Because the method needs a voltage tap soldered to a midpoint of the coil winding and the AC HTS facilities generally operate at high voltages and therefore high voltage sparks may occur at the midpoint with no insulation. We have proposed the active power method for the quench detection and protection. The method requires no voltage tap on the midpoint of the coil winding and therefore it has in-built effectiveness for the AC HTS facilities. In this paper, we show that the method can detect the quench in an HTS transformer and moreover our proposed quench protection circuits which consist of thyristors are simple and useful for the AC HTS facilities.

  6. Superconducting technology program Sandia 1996 annual report

    International Nuclear Information System (INIS)

    Roth, E.P.

    1997-02-01

    Sandia's Superconductivity Technology Program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) Process development and characterization of thallium-based high-temperature superconducting closed system wire and tape, (2) Investigation of the synthesis and processing of thallium-based thick films using two-zone processing, and (3) Cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY96 in each of these areas

  7. A two-pole Halbach permanent magnet guideway for high temperature superconducting Maglev vehicle

    International Nuclear Information System (INIS)

    Jing, H.; Wang, J.; Wang, S.; Wang, L.; Liu, L.; Zheng, J.; Deng, Z.; Ma, G.; Zhang, Y.; Li, J.

    2007-01-01

    In order to improve the levitation performance of the high temperature superconducting (HTS) magnetic levitation (Maglev) vehicle, a two-pole Halbach array's permanent magnet guideway (PMG) is proposed, which is called as Halbach PMG. The finite element method (FEM) calculations indicate that Halbach PMG has a wider high-field region than the present PMG of equal PM's transverse section. The levitation force of bulk HTSCs with the present PMG and Halbach PMG are measured. The results show that at different levitation gaps, the force ratios based on the Halbach PMG are about 2.3 times larger than that on the present PMG, which greatly increases the load capability of the system. Therefore, both the numerical analysis and experimental results have confirmed that the Halbach PMG will further enhance the performance of the vehicle and it is possible to decrease the total numbers of onboard HTSCs, reducing overall costs. So based on the Halbach PMG, we further study the width ratios between HTSCs and PMG for making the better use of the onboard HTSCs. Some preliminary results are given. These results are important for further HTS Maglev vehicle system designs using Halbach PMG

  8. High-Temperature Cuprate Superconductors Experiment, Theory, and Applications

    CERN Document Server

    Plakida, Nikolay Maksimilianovich

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their...

  9. Low temperature x-ray analysis and electron microscopy of a new family of superconducting materials

    International Nuclear Information System (INIS)

    Ossipyan, Yu.A.; Borodin, V.A.; Goncharov, V.A.; Kondakov, S.F.; Khasanov, S.S.; Chernyshova, L.M.; Shekhtman, V.S.; Shmyt'ko, I.M.; Stchegolev, N.F.

    1987-01-01

    Recent findings in the field of high temperature superconductivity require that structural aspects of the behavior of this class of materials be investigated in detail in a wide temperature interval. A series of superconducting ceramics on the base of lanthanum and yttrium oxides (La/sub 2-x/Sr/sub x/CuO 4 ; x = 0, 2 and YBaCuO) have been obtained in the solid state Physics Institute of the Academy of Sciences of the USSR. This paper presents the results of the analysis of powder and sintered materials, using X-ray diffractometers (DRON), scanning electron microscope and special devices, enabling the investigations to be carried out within 4.2 K - 573 K

  10. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university.

    Science.gov (United States)

    Choi, Y H; Song, J B; Yang, D G; Kim, Y G; Hahn, S; Lee, H G

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  11. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university

    Science.gov (United States)

    Choi, Y. H.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Hahn, S.; Lee, H. G.

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  12. Temperature Dependence of Quasiparticle Spectral Weight and Coherence in High Tc Superconductors

    Science.gov (United States)

    He, Yang; Zhang, Jessie; Hoffman, Jennifer; Hoffman Lab Team

    2014-03-01

    Superconductivity arises from the Cooper pairing of quasiparticles on the Fermi surface. Understanding the formation of Cooper pairs is an essential step towards unveiling the mechanism of high Tc superconductivity. We compare scanning tunneling microscope investigations of the temperature dependence of quasiparticle spectral weight and quasiparticle interference in several families of high Tc materials. We calculate the coherent spectral weight related to superconductivity, despite the coexistence of competing orders. The relation between pairing temperature and coherent spectral weight is discussed. We acknowledge support by the New York Community Trust-George Merck Fund.

  13. Structural integrity analysis of reactor coolant pump flywheel(I)

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1986-01-01

    A reactor coolant pump flywheel is an important machine element to provide the necessary rotational inertia in the event of loss of power to the pumps. This paper attempts to assess the influence of keyways on flywheel stresses and fracture behaviour in detail. The finite element method was used to determine stresses near keyways, including residual stresses, and to establish stress intensity factors for keyway cracks for use in fracture mechanics assessments. (Author)

  14. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  15. In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD

    International Nuclear Information System (INIS)

    Zhao, J.; Noh, D.W.; Chern, C.; Li, Y.Q.; Norris, P.E.; Kear, B.; Gallois, B.

    1991-01-01

    Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology

  16. Characterization of high-current, high-temperature superconductor current lead elements

    International Nuclear Information System (INIS)

    Niemann, R.C.; Evans, D.J.; Fisher, B.L.; Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J.

    1996-08-01

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures

  17. Investigation on the bisoliton mechanism of high-temperature superconductors

    International Nuclear Information System (INIS)

    Zhang Lingyun; Li Bozang; Pu Fucho; Lin Jiatih

    1996-01-01

    Microscopic parameters in the Davydov model are calculated on the basis of the bisoliton idea. The energy gap is obtained from combining the condition for the solution of Davydov's equation with the condensation energy of the superconductive state in zero field, and some characteristic parameters of high-temperature superconductors such as coherence length, penetration depth, and density of critical current for a thin film in weak magnetic field are given. It is also proved that lattice displacement in Davydov's equation satisfies the φ 4 field form. The critical temperature and the coefficient of linear specific heat of high-temperature superconductors are studied from the statistics of lattice kinks. The agreement between theoretical and experimental values for YBaCuO oxide ceramics suggests that the bisoliton model gives a reasonable explanation of high-temperature superconductivity. (orig.)

  18. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  19. Novel method to improve power handling capability for coplanar waveguide high-temperature superconducting filter

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, K; Koizumi, D; Narahashi, S [NTT DoCoMo, Inc., 3-5 Hikari-no-oka, 239-8536 Yokosuka (Japan)

    2006-06-01

    This paper proposes a novel method to improve the power handling capability of a coplanar waveguide (CPW) high-temperature superconducting (HTS) filter. The noteworthy point of the proposed method is that it is based on the concept that the power handling capability is improved by reducing the maximum current density of the filter. Numerical investigations confirm that a CPW HTS filter using 66-{omega} characteristic impedance resonators (66-{omega} CPW HTSF) reduces the maximum current density compared to that using conventional 50-{omega} resonators (50-{omega} CPW HTSF). We fabricated 5-GHz band four-pole Chevyshev CPW HTSFs based on the proposed and conventional methods. The fabricated 66-{omega} CPW HTSF exhibited the third-order intercept point (TOI) of + 61 dBm while the 50-{omega} CPW HTSF exhibited the TOI of + 54 dBm, both at 60 K. These results indicate the effectiveness of the proposed method.

  20. Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid

    Science.gov (United States)

    Nair S, Gayathri; Senroy, Nilanjan

    2016-02-01

    Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.

  1. Systematics in positron annihilation lifetime analysis of high Tc superconducting transitions

    International Nuclear Information System (INIS)

    Howell, R.H.; Radousky, H.B.; Wachs, A.L.; Fluss, M.J.; Turchi, P.E.A.; Jean, Y.C.; Sunder, C.S.; Chu, C.W.; Peng, J.L.; Folkerts, T.J.; Shelton, R.N.; Hinks, D.G.

    1989-01-01

    Values of the positron lifetime have previously been observed to change with temperature below T c in high T c superconducting oxides. The authors report new measurements on Ba .6 K .4 Bio 3 and Nd 1.85 Ce .15 CuO 4

  2. Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA)

    2009-10-01

    This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

  3. Research On Bi-Based High-Temperature Superconductors

    Science.gov (United States)

    Banks, Curtis; Doane, George B., III; Golben, John

    1993-01-01

    Brief report describes effects of melt sintering on Bi-based high-temperature superconductor system, as well as use of vibrating-sample magnetometer to determine hysteresis curves at 77 K for partially melt-sintered samples. Also discussed is production of high-temperature superconducting thin films by laser ablation: such films potentially useful in detection of signals of very low power.

  4. Finding high-temperature superconductors by metallizing the σ-bonding electrons

    International Nuclear Information System (INIS)

    Gao Miao; Lu Zhongyi; Xiang Tao

    2015-01-01

    Raising superconducting transition temperature (T_c) is an important task of fundamental research on superconductivity. It is also a prerequisite for the large scale application of superconductors. Since the microscopic mechanism of high-T_c superconductivity is unknown, the conventional approach for increasing T_c is either to apply high pressure to a material which has the potential to become superconducting, or to push it close to an antiferromagnetic or some other quantum instability point by chemical doping. In this article, the authors point out that another general approach for raising T_c is to lift the σ-bonding bands to the Fermi level, or to metallize the σ-bonding elections. This approach can increase the probability of finding a novel high-T_c superconductor because the coupling of σ-bonding electrons with phonons is generally strong and the superconducting transition induced by this interaction can occur at relatively high temperatures. After elucidating the underlying mechanism, the authors discuss a number of schemes to metallize σ-bonding electrons, and present their recent prediction for the crystalline and electronic structures of two potential high-T_c superconductors, Li_2B_3C and Li_3B_4C_2, with T_c higher than 50 K. (authors)

  5. submitter Superconducting instrumentation for high Reynolds turbulence experiments with low temperature gaseous helium

    CERN Document Server

    Pietropinto, S; Baudet, C; Castaing, B; Chabaud, B; Gagne, Y; Hébral, B; Ladam, Y; Lebrun, P; Pirotte, O; Roche, P

    2003-01-01

    Turbulence is of common experience and of high interest for industrial applications, despite its physical grounds is still not understood. Cryogenic gaseous helium gives access to extremely high Reynolds numbers (Re). We describe an instrumentation hosted in CERN, which provides a 6 kW @ 4.5 K helium refrigerator directly connected to the experiment. The flow is a round jet; the flow rates range from 20 g/s up to 260 g/s at 4.8 K and about 1.2 bar, giving access to the highest controlled Re flow ever developed. The experimental challenge lies in the range of scales which have to be investigated: from the smallest viscous scale η, typically 1 μm at Re=107 to the largest L∼10 cm. The corresponding frequencies: f=v/η can be as large as 1 MHz. The development of an original micrometric superconducting anemometer using a hot spot and its characteristics will be discussed together with its operation and the perspectives associated with superconducting anemometry.

  6. An investigation in texturing high Tc superconducting ceramics by creep sintering

    International Nuclear Information System (INIS)

    Regnier, P.; Deschanels, X.; Maurice, F.; Schmirgeld, L.; Aguillon, C.; Senoussi, S.; Mac Carthy, M.; Tatlock, G.J.

    1991-01-01

    We study in detail the possibility of high-T c superconducting ceramics texturing by high pressing them during sintering. We show texture variations as a function of the applied load, of the deformation, of the temperature, and of the sintering stage length, of the rate of variation of temperature, of the material nature in contact with ceramic and of the original powder quality. We present results obtained by optical microscopy, electronic microscopy, X-rays, and local chemical analysis

  7. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  8. Experimental study on using a high-temperature superconducting inductor for power loss reduction in an active power filter

    International Nuclear Information System (INIS)

    Chao, C; To, H P; Grantham, C; Rahman, M F

    2006-01-01

    An active power filter improves the electric power quality through the compensation of harmonics in the power network. A current-source active power filter using a conventional copper inductor for its energy storage has a significant power loss. The loss in the copper inductor can be substantially reduced by using a high-temperature superconducting (HTS) inductor instead. Experiments have been conducted on a prototype current-source active power filter for studying the power loss reduction effect and harmonics compensation performance of the active power filter using a HTS inductor. Experimental results are analysed and discussed in this paper

  9. Metallic Contaminant Detection using a High-Temperature Superconducting Quantum Interference Devices Gradiometer

    International Nuclear Information System (INIS)

    Tanaka, Saburo; Akai, Tomohiro; Takemoto, Makoto; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Ikeda, Yoshio; Suzuki, Shuichi

    2010-01-01

    We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important issue for manufacturers producing commercial products such as lithium ion batteries. If such contaminants cause damages, the manufacturer of the product suffers a big financial loss due to having to recall the faulty products. Previously, we described a system for finding such ultra-small particles in food. In this study, we describe further developments of the system, for the reduction of the effect of the remnant field of the products, and we test the parallel magnetization of the products to generate the remnant field only at both ends of the products. In addition, we use an SQUID gradiometer in place of the magnetometer to reduce the edge effect by measuring the magnetic field gradient. We test the performances of the system and find that tiny iron particles as small as 50 × 50 μm 2 on the electrode of a lithium ion battery could be clearly detected. This detection level is difficult to achieve when using other methods. (cross-disciplinary physics and related areas of science and technology)

  10. High Temperature Superconducting Magnets with Active Control for Attraction Levitation Transport Applications

    Science.gov (United States)

    Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.

    1996-01-01

    A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.

  11. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  12. Battery Recharging Issue for a Two-Power-Level Flywheel System

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves de Oliveira

    2010-01-01

    Full Text Available A novel battery recharging system for an all-electric driveline comprising a flywheel with a permanent magnet double wound synchronous machine (motor/generator is presented. The double winding enables two voltage levels and two different power levels. This topology supersedes other all-electric drivelines. The battery operates in a low-power regime supplying the average power whereas the flywheel delivers and absorbs power peaks, which are up to a higher order of magnitude. The topology presents new challenges for the power conversion system, which is the focus of this investigation. The main challenge is the control of the power flow to the battery when the vehicle is parked despite the decay of the flywheel machine voltage; which is dependent on its charge state, that is, rotational speed. The design and simulation of an unidirectional DC/DC buck/boost converter for a variable rotational speed flywheel is presented. Conventional power electronic converters are used in a new application, which can maintain a constant current or voltage on the battery side. Successful PI current control has been implemented and simulated, together with the complete closed loop system.

  13. Introduction to superconductivity

    CERN Document Server

    Darriulat, Pierre

    1998-01-01

    The lecture series will address physicists, such as particle and nuclear physicists, familiar with non-relativistic quantum mechanics but not with solid state physics. The aim of this introduction to low temperature superconductivity is to give sufficient bases to the student for him/her to be able to access the scientific literature on this field. The five lectures will cover the following topics : 1. Normal metals, free electron gas, chambers equation. 2. Cooper pairs, the BCS ground state, quasi particle excitations. 3. DC superconductivity, Meissner state, dirty superconductors.4. Self consistent approach, Ginsburg Landau equations, Abrikosov fluxon lattice. 5. Josephson effects, high temperature superconductivity.

  14. High-temperature superconductors induced by ion implantation. Final report

    International Nuclear Information System (INIS)

    Greenwald, A.C.; Johnson, E.

    1988-08-01

    High dose oxygen ion implantation (10 to the 17th power ions per sq. cm.) at elevated temperatures (300 C) has been shown to adjust the critical temperature of gamma-Y-Ba-Cu-O and Bi-Ca-Sr-Cu-O materials. These results are in marked contrast to earlier work which showed complete destruction of superconducting properties for similar radiation doses, and marked reduction in superconducting properties at one-tenth this dose in the 1-2-3- compound only. Experiments also showed that the superconducting materials can be patterned into conducting and nonconducting areas without etching by ion implantation, allowing maintenance of planar geometries required for microcircuit fabrication. Experiments on deposition of thin films of high temperature superconductors for use with the ion implantation experiments showed that ion beam sputtering from a single target could achieve the correct stoichiometry. Variations of composition with ion beam energy and angle of sputtered ions were studied

  15. Efficient energy transfer and increase of energy density of magnetically charged flywheels

    International Nuclear Information System (INIS)

    Hinterdorfer, T.

    2014-01-01

    Flywheel Energy Storage Systems represent an ecologically and economically sustainable technology for decentralized energy storage. Compared to other storage technologies such as e.g. chemical accumulators, they offer longer life cycles without performance degradation over time and usage and need almost no systematic maintenance. Further, they are made of environmentally friendly materials. By means of the driving torque of an electric motor, the flywheel is accelerated and thus electrical energy is transformed to kinetic energy. The stored energy can be transfered back by the load torque of a generator when needed. Modern flywheel energy storage applications use magnetic bearings to minimize selfdischarge. To avoid bearing forces due to rotor eccentricity an unbalance control strategy is used. However, this leads to an off-centered run of the electric machines rotor which in turn generates undesirable forces. A force-compensating operation of the electric machine will minimize the influence on the magnetic bearings in the planned control scheme, thus increasing their efficiency. Different concepts will be developed and compared to each other by means of simulations. Validation of the simulation models is carried out on a specially constructed test setup under defined conditions. In addition, the electrical machine will be integrated into the concept of redundancy of the flywheel. A bearingless operation increases the reliability and enables a safe shutdown of the application in case of malfunction of the magnetic bearings. High strength composite materials are used to achieve high speeds. Based on existing results from past research activities, a disc-shaped rotor is optimized first. To increase material utilization and to maximize energy density a topology optimization is performed. Evolutionary and gradient based optimization algorithms are used. Thereby the unused strength potential of the material is exploited in order to increase the economic efficiency of

  16. Superconductivity in borides and carbides

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2007-01-01

    It was thought that intermetallic superconductors do not exhibit superconductivity at temperatures over 30 K because of the Bardeen-Cooper-Schrieffer (BCS) limit; therefore, researchers have been interested in high-T c cuprates. Our group discovered high-T c superconductivity in MgB 2 at 39 K in 2001. This discovery has initiated a substantial interest in the potential of high-T c superconductivity in intermetallic compounds that include 'light' elements (borides, carbides, etc.). (author)

  17. Adaptation of superconducting fault current limiter to high-speed reclosing

    International Nuclear Information System (INIS)

    Koyama, T.; Yanabu, S.

    2009-01-01

    Using a high temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor might break in some cases because of its excessive generation of heat. Therefore, it is desirable to interrupt early the current that flows to superconductor. So, we proposed the SFCL using an electromagnetic repulsion switch which is composed of a superconductor, a vacuum interrupter and a by-pass coil, and its structure is simple. Duration that the current flow in the superconductor can be easily minimized to the level of less than 0.5 cycle using this equipment. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. There is duty of high-speed reclosing after interrupting fault current in the electric power system. After the fault current is interrupted, the back-up breaker is re-closed within 350 ms. So, the electromagnetic repulsion switch should return to former state and the superconductor should be recovered to superconducting state before high-speed reclosing. Then, we proposed the SFCL using an electromagnetic repulsion switch which employs our new reclosing function. We also studied recovery time of the superconductor, because superconductor should be recovered to superconducting state within 350 ms. In this paper, the recovery time characteristics of the superconducting wire were investigated. Also, we combined the superconductor with the electromagnetic repulsion switch, and we did performance test. As a result, a high-speed reclosing within 350 ms was proven to be possible.

  18. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-04-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  19. Numerical simulation and analysis of single grain YBCO processed from graded precursor powders

    OpenAIRE

    Zou, J; Ainslie, Mark Douglas; Hu, D; Zhai, W; Kumar, N Devendra; Durrell, John Hay; Shi, Yunhua; Cardwell, David Anthony

    2015-01-01

    Large single-grain bulk high-temperature superconducting materials can trap high magnetic fields in comparison with conventional permanent magnets, making them ideal candidates to develop more compact and efficient devices, such as actuators, magnetic levitation systems, flywheel energy storage systems and electric machines. However, macro-segregation of Y-211 inclusions in melt processed Y–Ba–Cu–O (YBCO) limits the macroscopic critical current density Jc of such bulk supercond...

  20. Modelling and optimization of a permanent-magnet machine in a flywheel

    NARCIS (Netherlands)

    Holm, S.R.

    2003-01-01

    This thesis describes the derivation of an analytical model for the design and optimization of a permanent-magnet machine for use in an energy storage flywheel. A prototype of this flywheel is to be used as the peak-power unit in a hybrid electric city bus. The thesis starts by showing the

  1. Comparative study of irreversibility effects in Nb foil and high temperature superconducting ceramics by μSR

    International Nuclear Information System (INIS)

    Grebinnik, V.G.; Duginov, V.N.; Zhukov, V.A.

    1990-01-01

    We present the results of investigation of superconducting niobium and high temperature ceramical superconductor La 1.9 Sr 0.1 CuO 4 by the μSR technique. The experiments with the niobium sample have confirmed high reliability of the μSR-technique in determining such characteristics of type II superconductors as T c , H c1 , H c2 , the magnetic field penetration depth λ, and the critical current density J c . The analysis of the field dependences of the distribution width and mean value of the magnetic fields on the muon when the samples are magnetized was carried out. One has revealed qualitative difference in the behaviour of the magnetic dield distribution width in Nb and LaSrCuO. While the niobium data are well described in the frame of the critical state model, application of the similar approach to the high-T c superconductor did not give satisfactory description of our experimental results. 10 refs.; 4 figs

  2. Impurity band Mott insulators: a new route to high Tc superconductivity

    Directory of Open Access Journals (Sweden)

    Ganapathy Baskaran

    2008-01-01

    Full Text Available Last century witnessed the birth of semiconductor electronics and nanotechnology. The physics behind these revolutionary developments is certain quantum mechanical behaviour of 'impurity state electrons' in crystalline 'band insulators', such as Si, Ge, GaAs and GaN, arising from intentionally added (doped impurities. The present article proposes that certain collective quantum behaviour of these impurity state electrons, arising from Coulomb repulsions, could lead to superconductivity in a parent band insulator, in a way not suspected before. Impurity band resonating valence bond theory of superconductivity in boron doped diamond, recently proposed by us, suggests possibility of superconductivity emerging from impurity band Mott insulators. We use certain key ideas and insights from the field of high-temperature superconductivity in cuprates and organics. Our suggestion also offers new possibilities in the field of semiconductor electronics and nanotechnology. The current level of sophistication in solid state technology and combinatorial materials science is very well capable of realizing our proposal and discover new superconductors.

  3. High-temperature cuprate superconductors. Experiment, theory, and applications

    International Nuclear Information System (INIS)

    Plakida, Nikolay

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials. (orig.)

  4. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  5. The pressure effect on the superconducting transition temperature of black phosphorus

    CERN Document Server

    Karuzawa, M; Endo, S

    2002-01-01

    We have measured the pressure effect on the superconducting transition temperature T sub c of black phosphorus up to 160 GPa using a superconducting quantum interference device vibrating coil magnetometer. It was found that T sub c had a maximum value of about 9.5 K at about 32 GPa, began decreasing with pressure and reached about 4.3 K at about 100 GPa.

  6. Misfit dislocations and phase transformations in high-T sub c superconducting films

    CERN Document Server

    Gutkin, M Y

    2002-01-01

    A theoretical model is suggested that describes the effects of misfit stresses on defect structures, phase content and critical transition temperature T sub c in high-T sub c superconducting films. The focus is placed on the exemplary case of YBaCuO films deposited onto LaSrAlO sub 4 substrates. It is theoretically revealed here that misfit stresses are capable of inducing phase transformations controlled by the generation of misfit dislocations in growing cuprate films. These transformations, in the framework of the suggested model, account for experimental data on the influence of the film thickness on phase content and critical temperature T sub c of superconducting cuprate films, reported in the literature. The potential role of stress-assisted phase transformations in suppression of critical current density across grain boundaries in high-T sub c superconductors is briefly discussed.

  7. Performance characteristics of solar-photovoltaic flywheel-storage systems

    Science.gov (United States)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  8. Dynamic response characteristics of the high-temperature superconducting maglev system under lateral eccentric distance

    Science.gov (United States)

    Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2016-07-01

    Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.

  9. The New Structure Design and Analysis of Energy Storage of Flywheel of Split Rotor

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-02-01

    Full Text Available The braking of the rail transit train consumes a great quantity of energy, and the thermal energy produced in the process of braking can affect the normal operation of the transit train. Thus recycling the braking energy becomes a research hotspot of urban rail train. This paper made an overall analysis of regenerative braking process, the rationale, and the main features and then put forward the optimizing the structure of the composite flywheel concept and design calculation method. This paper also designs a new flywheel structure which can be applied on urban rail operating system. The new flywheel structure should be checked by finite element method and the radius of the rotor should be defined under the condition of meeting the requirements of carbon fiber material strength. Meanwhile, compared with the solid flywheel under the same condition, analysis shows that the maximum rotary inertia of the new flywheel and the quality energy density increased, and the discharge depth also perks up.

  10. Jet Propulsion Laboratory/NASA Lewis Research Center space qualified hybrid high temperature superconducting/semiconducting 7.4 GHz low-noise downconverter for NRL HTSSE-II program

    International Nuclear Information System (INIS)

    Javadi, H.H.S.; Bowen, J.G.; Rascoe, D.L.; Chorey, C.M.

    1996-01-01

    A deep space satellite downconverter receiver was proposed by Jet Propulsion Laboratory (JPL) and NASA Lewis Research Center (LeRC) for the Naval Research Laboratory's (NRL) high temperature superconductivity space experiment, phase-II (HTSSE-II) program. Space qualified low-noise cryogenic downconverter receivers utilizing thin-film high temperature superconducting (HTS) passive circuitry and semiconductor active devices were developed and delivered to NRL. The downconverter consists of an HTS preselect filter, a cryogenic low-noise amplifier, a cryogenic mixer, and a cryogenic oscillator with an HTS resonator. HTS components were inserted as the front-end filter and the local oscillator resonator for their superior 77 K performance over the conventional components. The semiconducting low noise amplifier also benefited from cooling to 77 K. The mixer was designed specifically for cryogenic applications and provided low conversion loss and low power consumption. In addition to an engineering model, two space qualified units (qualification, flight) were built and delivered to NRL. Manufacturing, integration and test of the space qualified downconverters adhered to the requirements of JPL class-D space instruments and partially to MIL-STD-883D specifications. The qualification unit has ∼50 K system noise temperature which is a factor of three better than a conventional downconverter at room temperature

  11. Thirty year operational experience of the JET flywheel generators

    Energy Technology Data Exchange (ETDEWEB)

    Rendell, Daniel, E-mail: dan.rendell@ccfe.ac.uk; Shaw, Stephen R.; Pool, Peter J.; Oberlin-Harris, Colin

    2015-10-15

    Highlights: • The pony-motor rotor circuit's liquid resistor requires frequent maintenance. • A crowned profile on the thrust pads is desirable. • Both plug braking transformers have been replaced after flashovers occurred. • Two-plane balancing of one of the flywheel generators has improved vibration levels but also provided information to lead further investigations. • A half-life inspection on the flywheel generators has shown no major issues after 30 year of operating. - Abstract: The JET flywheel generator converters have operated since 1983 and for over 85,000 pulses. Problems with this plant are discussed, including corrosion, unbalanced flow and arcing within the liquid resistors; starting difficulties on both machines; and failure of the plug-braking transformers at energisiation. In 2012/13 two sets of thrust bearing pads have required refurbishment, a process which highlighted the importance of their profile. Extensive half-life inspections have shown that there are no serious problems with either generator.

  12. Influence of radiant heating treatments on fusion of high-temperature superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.

    1999-01-01

    Regardless of the fact that the materials made of HTSC-ceramics are promising, there is no any information about their successful practical application in publications. To our opinion, it is explained by the fact, first of all, that the conservative technologies of the powder metallurgy do not allow producing HTSC systems with excellent operating performance (structure homogeneity, long-term stability of Sc properties and etc.). This report presents outcomes of experiments on fusion of yttrium ceramics containing raw components irradiated by g-rays 60 Co under the temperature exceeding 500 degrees C. HTSC properties of ceramics were studied according to their differential spectra of radio-frequency (RF) field absorption. The RF absorption spectrum of yttrium ceramics samples produced according to conservative technology is sufficiently permitted triplet with the Sc transition temperatures range of 80 K, 90 K, 95 K. Irradiation under the increased temperatures and mechanical limitation allow producing samples of yttrium HTSC-ceramics with sufficient homogeneous structure and superconducting properties that are stable to air conditions for not less than one year

  13. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    2013-01-01

    We predict that superconducting particles will show an apparent increase in thickness at low temperatures when measured by electron holography. This will result not from a real thickness increase, rather from an increase in the mean inner potential sensed by the electron wave traveling through the particle, originating in expansion of the electronic wavefunction of the superconducting electrons and resulting negative charge expulsion from the interior to the surface of the superconductor, giving rise to an increase in the phase shift of the electron wavefront going through the sample relative to the wavefront going through vacuum. The temperature dependence of the observed phase shifts will yield valuable new information on the physics of the superconducting state of metals. - Highlights: • A new property of superconducting particles is predicted. • Electron holography will show an apparent increase in thickness at low temperatures. • This will result from a predicted increase in the mean inner potential. • This will originate in expulsion of electrons from the interior to the surface. • This is not predicted by the conventional BCS theory of superconductivity

  14. High-Density Superconducting Cables for Advanced ACTPol

    Science.gov (United States)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-07-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  15. Irradiation effect of the insulating materials for fusion superconducting magnets at cryogenic temperature

    Science.gov (United States)

    Kobayashi, Koji; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    In ITER, superconducting magnets should be used in such severe environment as high fluence of fast neutron, cryogenic temperature and large electromagnetic forces. Insulating material is one of the most sensitive component to radiation. So radiation resistance on mechanical properties at cryogenic temperature are required for insulating material. The purpose of this study is to evaluate irradiation effect of insulating material at cryogenic temperature by gamma-ray irradiation. Firstly, glass fiber reinforced plastic (GFRP) and hybrid composite were prepared. After irradiation at room temperature (RT) or liquid nitrogen temperature (LNT, 77 K), interlaminar shear strength (ILSS) and glass-transition temperature (Tg) measurement were conducted. It was shown that insulating materials irradiated at room temperature were much degraded than those at cryogenic temperature.

  16. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  17. Influence of disorder on the superconducting critical temperature in indium-opal nanocomposites

    Science.gov (United States)

    Zakharchuk, I.; Januzaj, A.; Mikhailin, N. Yu.; Traito, K. B.; Chernyaev, A. V.; Romanov, S. G.; Safonchik, M.; Shamshur, D. V.; Lähderanta, E.

    2018-06-01

    Transport properties of bulk indium-opal and indium-porous glass superconducting nanocomposites possessing moderate and strong disorder are investigated. A strongly nonmonotonous dependence of the global critical temperature Tc versus normal state conductivity of samples is found. The maximum, which is observed at moderate disorder, has Tc higher than that of clean bulk indium. The increasing part can be explained by the Eliashberg equations with disorder and an additional mechanism of interaction between superconducting and dielectric granules. The descending part of the maximum at higher disorder can be explained by the increasing of long-range Coulomb repulsion due to diffusion of charges. Negative slope in magnetic field dependence of resistivity and a peak in the temperature dependence of resistivity, observed in the sample near the proximity to the disorder-induced superconductor-insulator transition (SIT). A large difference between the onset temperature of superconducting fluctuations, Tcon , and global critical temperature Tc is found and considered in the framework of the weak multifractal theory. Slow time-logarithmic relaxation of the resistivity between Tc and Tcon is observed, which assumes existence of the precursor state near the SIT. This unusual state is discussed in the scope of the many-body localization theory.

  18. Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables

    Energy Technology Data Exchange (ETDEWEB)

    Dondapati, Raja Sekhar, E-mail: drsekhar@ieee.org [School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144401 (India); Ravula, Jeswanth [School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144401 (India); Thadela, S. [Department of Mechanical Engineering, Andhra University, Visakhapatnam, Andhra Pradesh (India); Usurumarti, Preeti Rao [Department of Mechanical Engineering, P.V.K. Institute of Technology, Anantapur, Andhra Pradesh (India)

    2015-12-15

    Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (T{sub C} + 10 K) and pressure (P{sub C} + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables. - Highlights: • Analytical functions are developed for thermophysical properties of Supercritical Nitrogen. • Error analysis shows extremely low errors in the developed analytical functions.

  19. Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables

    International Nuclear Information System (INIS)

    Dondapati, Raja Sekhar; Ravula, Jeswanth; Thadela, S.; Usurumarti, Preeti Rao

    2015-01-01

    Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (T_C + 10 K) and pressure (P_C + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables. - Highlights: • Analytical functions are developed for thermophysical properties of Supercritical Nitrogen. • Error analysis shows extremely low errors in the developed analytical functions.

  20. High-Tc cuprate superconductivity in a nutshell

    International Nuclear Information System (INIS)

    Won, Hyekyung; Haas, Stephan; Parker, David; Maki, Kazumi

    2005-01-01

    Since the discovery of high-T c cuprate superconductivity in 1986 many new experimental techniques and theoretical concepts have been developed. In particular it was shown that the BCS theory of d-wave superconductivity describes semi-quantitatively the high-T c superconductivity. Furthermore, it was demonstrated that Volovik's approach is extremely useful for finding the quasiparticle properties in the vortex state. Here we survey these developments and forecast future directions. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Southwire's High Temperature Superconducting Cable Development - Summary Report

    International Nuclear Information System (INIS)

    Sinha, Uday; Lindsay, David

    2005-01-01

    at ORNL for the DC Ic, voltage withstand, ac loss, and other properties using both the Vacuum and Pressure Terminations. The design concept was proven with the 5-m cables and the same design was used for the 30-m cables. Three 30-m cables were constructed during the first two quarters of 1999. The cables were made on flexible formers but they were introduced into three separate rigid vacuum jacketed pipes (VJP). The cables passed the DC Ic tests that were carried out at the manufacturing site. A site was developed at Southwire with a switch yard, liquid nitrogen tank, a cryogenic cooling and delivery system, and a control room with PLC control for the system. The HTS cables were installed by the third quarter of 1999. The HTS cables were energized Jan. 6, 2000. The official opening was carried out on Feb. 18, 2000. As of April 30, 2005 the HTS site has been operating at 100% load for >29,000 hours. Since June 1, 2001 the system has logged over 21,000 hours at full load without an operator on duty at the site. The cryogenic system has been under operation for more than two years and has proven very reliable. Southwire has developed World's First Industrial HTS cable and is continuing to prove its reliability. This report contains several sections outlined below that are related to Southwire's HTS cable development: (1) High Temperature Superconducting (HTS) Tapes; (2) Hand Wound 1-m Cables; (3) Development of Facilities for Construction and testing of HTS cables; (4) 5-m HTS Cables; (5) 30-m HTS Cables, Installation at Southwire; (6) Continued Developments; and (7) Publications. Each of the above sections provide only a short report. The details are given in separate volumes (Vol. 1 to Vol. 7) with separate appendices for each section. These are available at the Cofer Center Technical Library

  2. Macroscopic phase separation in high-temperature superconductors

    Science.gov (United States)

    Wen, Hai-Hu

    2000-01-01

    High-temperature superconductivity is recovered by introducing extra holes to the Cu-O planes, which initially are insulating with antiferromagnetism. In this paper I present data to show the macroscopic electronic phase separation that is caused by either mobile doping or electronic instability in the overdoped region. My results clearly demonstrate that the electronic inhomogeneity is probably a general feature of high-temperature superconductors. PMID:11027323

  3. Nonempirical Calculation of Superconducting Transition Temperatures in Light-Element Superconductors.

    Science.gov (United States)

    Arita, Ryotaro; Koretsune, Takashi; Sakai, Shiro; Akashi, Ryosuke; Nomura, Yusuke; Sano, Wataru

    2017-07-01

    Recent progress in the fully nonempirical calculation of the superconducting transition temperature (T c ) is reviewed. Especially, this study focuses on three representative light-element high-T c superconductors, i.e., elemental Li, sulfur hydrides, and alkali-doped fullerides. Here, it is discussed how crucial it is to develop the beyond Migdal-Eliashberg (ME) methods. For Li, a scheme of superconducting density functional theory for the plasmon mechanism is formulated and it is found that T c is dramatically enhanced by considering the frequency dependence of the screened Coulomb interaction. For sulfur hydrides, it is essential to go beyond not only the static approximation for the screened Coulomb interaction, but also the constant density-of-states approximation for electrons, the harmonic approximation for phonons, and the Migdal approximation for the electron-phonon vertex, all of which have been employed in the standard ME calculation. It is also shown that the feedback effect in the self-consistent calculation of the self-energy and the zero point motion considerably affect the calculation of T c . For alkali-doped fullerides, the interplay between electron-phonon coupling and electron correlations becomes more nontrivial. It has been demonstrated that the combination of density functional theory and dynamical mean field theory with the ab initio downfolding scheme for electron-phonon coupled systems works successfully. This study not only reproduces the experimental phase diagram but also obtains a unified view of the high-T c superconductivity and the Mott-Hubbard transition in the fullerides. The results for these high-T c superconductors will provide a firm ground for future materials design of new superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Interplay of CDW, SDW and superconductivity in high-T{sub c} cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Panda, S K [K.D. Science College, Pochilima, Hinjilicut 761 101, Ganjam, Orissa (India); Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group, Dept. of Applied Physics and Ballistics, F.M. University, Balasore 756 019, Orissa (India)

    2009-07-01

    We present a model calculation of the interplay of the charge density wave (CDW), spin density wave (SDW) and superconductivity in high temperature superconductors. In low doping situation the long range antiferromagnetic order is destroyed to give rise to SDW state accompanied by a CDW state in the system due to doping. For suitable doping the superconductivity appears in the system. The CDW state may describe the pseudogap phenomenon which co-exists with the superconducting phase and extends to normal phase in high-T{sub c} systems. These three competiting interactions co-exist together. These three gap parameters are calculated from the model Hamiltonian and solved self-consistently. By varying their coupling constants their interplay are investigated. Finally density of states is calculated for the conduction band which displays the experimental conductance data of Ekino et al. [T. Ekino, Y. Sezaki, H. Fujji, Phys. Rev. B 60 (1999) 6916].

  5. Application of flywheel energy storage for heavy haul locomotives

    International Nuclear Information System (INIS)

    Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Sun, Yan Quan; Cole, Colin; Nielsen, Dwayne

    2015-01-01

    Highlights: • A novel design for heavy haul locomotive equipped with a flywheel energy storage system is proposed. • The integrated intelligent traction control system was developed. • A flywheel energy storage system has been tested through a simulation process. • The developed hybrid system was verified using an existing heavy haul railway route. • Fuel efficiency analysis confirms advantages of the hybrid design. - Abstract: At the present time, trains in heavy haul operations are typically hauled by several diesel-electric locomotives coupled in a multiple unit. This paper studies the case of a typical consist of three Co–Co diesel-electric locomotives, and considers replacing one unit with an alternative version, with the same design parameters, except that the diesel-electric plant is replaced with flywheel energy storage equipment. The intelligent traction and energy control system installed in this unit is integrated into the multiple-unit control to allow redistribution of the power between all units. In order to verify the proposed design, a three-stage investigation has been performed as described in this paper. The initial stage studies a possible configuration of the flywheel energy storage system by detailed modelling of the proposed intelligent traction and energy control system. The second stage includes the investigation and estimation of possible energy flows using a longitudinal train dynamics simulation. The final stage compares the conventional and the proposed locomotive configurations considering two parameters: fuel efficiency and emissions reduction.

  6. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  7. Testing and evaluation of high temperature superconductor current leads

    International Nuclear Information System (INIS)

    Yadav, Anand; Puntambekar, Avinash; Manekar, M.A.

    2009-01-01

    National Institute for Inter-disciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research, Trivandrum (formerly Regional Research Laboratory) has accomplished a DAE-BRNS project with Raja Ramanna Centre for Advanced Technology (RRCAT) as principal collaborator for the development of high temperature superconductor (HTS) current leads. These HTS current leads have self-field critical currents (Ic) ranging from 50 A to 1000 A at liquid nitrogen (LN 2 ) temperature. These HTS are made out of silver sheathed Bismuth Strontium Calcium Copper Oxide (BSCCO-2223), for direct application in superconducting (SC) systems involving transportation of high electric currents from power sources at room temperature to superconducting devices at cryogenic temperatures. RRCAT has participated in this project by testing and evaluation of these HTS current leads and carried out actual load trials. In this paper, we will describe the HTS testing setup, tests performed with their testing procedure and the test results. The testing of these HTS has been done with joint effort of Materials Advanced Accelerator Science and Cryogenics Div. and Superconducting Technology Lab (SCT Lab), Advanced Accelerator Module Development Div., using the test facility available at the SCT Lab. (author)

  8. Flywheel-battery hydrid: a new concept for vehicle propulsion

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A new concept was examined for powering the automobile: a flywheel-battery hybrid that can be developed for near-term use from currently available lead-acid batteries and state-of-the-art flywheel designs. To illustrate the concept, a calculation is given of the range and performance of the hybrid power system in a typical commute vehicle, and the results are compared to the measured range and performance of an all-battery vehicle. This comparison shows improved performance and a twofold urban-range increase for the hybrid over the all-battery power system

  9. Processing of high-temperature superconductors at high strain rates

    International Nuclear Information System (INIS)

    Mamalis, A.G.; Pantazsopoulos, G.; Manolakos, D.E.; Szalay, A.

    2000-01-01

    This new book provides, for the first time, a systematic, unified presentation of all steps in the processing of high-temperature superconductor materials, ranging from synthesis of various systems to fabrication and industrial applications. Also covered are characterization techniques and current directions in research and development. The authors are leading specialists who bring to this new book their many years of experience in research, education and industrial engineering work in superconductor materials. This book is primarily focused on the bulk-fabrication techniques of high-temperature ceramic superconducting components, especially on the combination of dynamic powder-consolidation and subsequent deformation processing. The properties of these ceramics, which are difficult-to-form materials by applying conventional techniques, are combined for the net-shape manufacturing of such components for the construction of HTS deviceshor e llipsis. However, very important topics such as superconducting structures, chemical synthesis, film fabrication and characterization techniques are also reviewedhor e llipsis to provide a complete, comprehensive view of superconductors engineering

  10. Fullerides - Superconductivity at the limit

    NARCIS (Netherlands)

    Palstra, Thomas T. M.

    The successful synthesis of highly crystalline Cs3C60, exhibiting superconductivity up to a record temperature for fullerides of 38 K, demonstrates a powerful synthetic route for investigating the origin of superconductivity in this class of materials.

  11. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi

    2006-07-01

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusion model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.

  12. A model of evaluating the pseudogap temperature for high ...

    Indian Academy of Sciences (India)

    The observation of pseudogap in normal-state properties of high-temperature supercon- ducting (HTS) oxide materials has raised many questions about the origin and its relation with superconductivity. Emery and Kevilson [1] first used the term pseudogap temper- ature for underdoped high-Tc materials. The temperature at ...

  13. Charge imbalance induced by a temperature gradient in superconducting aluminum

    International Nuclear Information System (INIS)

    Mamin, H.J.; Clarke, J.; Van Harlingen, D.J.

    1984-01-01

    The quasiparticle transport current induced in a superconducting aluminum film by a temperature gradient has been measured by means of the spatially decaying charge imbalance generated near the end of the sample where the current is divergent. The magnitude and decay length of the charge imbalance are in good agreement with the predictions of a simple model that takes into account the nonuniformity of the temperature gradient. The inferred value of the thermopower in the superconducting state agrees reasonably well with the value measured in the normal state. Measurements of the decay length of charge imbalance induced by current injection yield a value of the inelastic relaxation time tau/sub E/ of about 2 ns. This value is substantially smaller than that obtained from other measurements for reasons that are not known

  14. ASM Inaugural Lecture 2009: High temperature superconductors: Materials, mechanisms and applications

    International Nuclear Information System (INIS)

    Roslan Abdul Shukor

    2009-01-01

    A surprising variety of new superconducting materials has been discovered in recent years. Many compounds with light elements such as fullerenes, oxides, borides, nitrides, some organic materials and also heavy fermions have been found to superconductor at various temperatures. Hitherto, superconductors have proven to be highly varied in composition but elusive and mysterious. The juxtaposition of superconductivity and magnetism at the nano scale in some of these new materials has paved the way to a rich and exciting new field in condensed matter and materials research. An overview of superconductor research in Malaysian institutions is presented in this paper. Some of the new superconducting materials and their possible mechanisms, conventional and exotic, are presented. The possible role of lattice vibrations in the mechanisms of high temperature superconductivity and the study of this via acoustic methods are discussed. Frozen flux superconductors in a nano magnet-superconductor hybrid system are also discussed. (author)

  15. AC Losses and Their Thermal Effect in High-Temperature Superconducting Machines

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Zou, Shengnan

    2016-01-01

    In transient operations or fault conditions, hightemperature superconducting (HTS) machines suffer ac losses, which have an influence on the thermal stability of superconducting windings. In this paper, a method to calculate ac losses and their thermal effect in HTS machines is presented....... The method consists of three submodels that are coupled only in one direction. The magnetic field distribution is first solved in a machine model, assuming a uniform current distribution in HTS windings. The magnetic fields on the boundaries are then used as inputs for an ac loss model that has a homogeneous...

  16. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    Science.gov (United States)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  17. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  18. Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load

    International Nuclear Information System (INIS)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-01-01

    A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG

  19. Performance of high-temperature superconducting band-pass filters with high selectivity for base transceiver applications of digital cellular communication systems

    Science.gov (United States)

    Kwak, J. S.; Lee, J. H.; Kim, C. O.; Hong, J. P.; Han, S. K.; Char, K.

    2002-07-01

    Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5 × 17 × 41 mm3. The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge.

  20. Performance of high-temperature superconducting band-pass filters with high selectivity for base transceiver applications of digital cellular communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J.S.; Lee, J.H.; Kim, C.O.; Hong, J.P. [Department of Physics, Hanyang University, Seoul (Korea, Republic of); Han, S.K.; Char, K. [RFtron Inc., Seoul (Korea, Republic of)

    2002-07-01

    Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5x17x41 mm{sup 3}. The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge. (author)