WorldWideScience

Sample records for high-temperature nickel alloys

  1. Corrosion Behavior of Nickel-Plated Alloy 600 in High Temperature Water

    International Nuclear Information System (INIS)

    Kim, Ji Hyun; Hwang, Il Soon

    2008-01-01

    In this paper, electrochemical and microstructural characteristics of nickel-plated Alloy 600 wee investigated in order to identify the performance of electroless Ni-plating on Alloy 600 in high-temperature aqueous condition with the comparison of electrolytic nickel-plating. For high temperature corrosion test of nickel-plated Alloy 600, specimens were exposed for 770 hours to typical PWR primary water condition. During the test, open circuit potentials (OCP's) of all specimens were measured using a reference electrode. Also, resistance to flow accelerated corrosion (FAC) test was examined in order to check the durability of plated layers in high-velocity flow environment at high temperature. After exposures to high flow rate aqueous condition, the integrity of surfaces was confirmed by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). For the field application, a remote process for electroless nickel-plating was demonstrated using a plate specimen with narrow gap on a laboratory scale. Finally, a practical seal design was suggested for more convenient application

  2. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  3. Nickel alloys and high-alloyed special stainless steels. Properties, manufacturing, applications. 4. compl. rev. ed.

    International Nuclear Information System (INIS)

    Heubner, Ulrich; Kloewer, Jutta; Alves, Helena; Behrens, Rainer; Schindler, Claudius; Wahl, Volker; Wolf, Martin

    2012-01-01

    This book contains the following eight topics: 1. Nickel alloys and high-alloy special stainless steels - Material overview and metallurgical principles (U. Heubner); 2. Corrosion resistance of nickel alloys and high-alloy special stainless steels (U. Heubner); 3. Welding of nickel alloys and high-alloy special stainless steels (T. Hoffmann, M. Wolf); 4. High-temperature materials for industrial plant construction (J. Kloewer); 5. Nickel alloys and high-alloy special stainless steels as hot roll clad composites-a cost-effective alternative (C. Schindler); 6. Selected examples of the use of nickel alloys and high-alloy special stainless steels in chemical plants (H. Alves); 7. The use of nickel alloys and stainless steels in environmental engineering (V. Wahl); 8: Nickel alloys and high-alloy special stainless steels for the oil and gas industry (R. Behrens).

  4. Straining electrode behavior and corrosion resistance of nickel base alloys in high temperature acidic solution

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo

    1992-01-01

    Repassivation behavior and IGA resistance of nickel base alloys containing 0∼30 wt% chromium was investigated in high temperature acid sulfate solution. (1) The repassivation rate was increased with increasing chromium content. And so the amounts of charge caused by the metal dissolution were decreased with increasing chromium content. (2) Mill-annealed Alloy 600 suffered IGA at low pH environment below about 3.5 at the fixed potentials above the corrosion potential in 10%Na 2 SO 4 +H 2 SO 4 solution at 598K. On the other hand, thermally-treated Alloy 690 was hard to occur IGA at low pH environments which mill-annealed Alloy 600 occurred IGA. (3) It was considered that the reason, why nickel base alloys containing high chromium content such as Alloy 690 (60%Ni-30%Cr-10%Fe) had high IGA/SCC resistance in high temperature acidic solution containing sulfate ion, is due to both the promotion of the repassivation and the suppression of the film dissolution by the formation of the dense chromium oxide film

  5. Kinetics of passivation of a nickel-base alloy in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Machet, A. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France)]|[Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Galtayries, A.; Zanna, S.; Marcus, P. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France); Jolivet, P.; Scott, P. [Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Foucault, M.; Combrade, P. [Framatome ANP, Centre Technique, F-71205 Le Creusot (France)

    2004-07-01

    The kinetics of passivation and the composition of the surface oxide layer, in high temperature and high pressure water, of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS). The samples have been exposed for short (0.4 - 8.2 min) and longer (0 - 400 hours) time periods to high temperature (325 deg. C) and high pressure water (containing boron and lithium) under controlled hydrogen pressure. The experiments were performed in two types of autoclaves: a novel autoclave dedicated to short time periods and a classic static autoclave for the longer exposures. In the initial stage of passivation, a continuous ultra-thin layer of chromium oxide (Cr{sub 2}O{sub 3}) is rapidly formed on the surface with an external layer of chromium hydroxide. For longer times of passivation, the oxide layer is in a duplex form with an internal chromium oxide layer and an external layer of nickel hydroxide. The growth of the internal Cr{sub 2}O{sub 3} oxide layer has been fitted by three classical models (parabolic, logarithmic and inverse logarithmic laws) for the short passivation times, and the growth curves have been extrapolated to longer passivation periods. The comparison with the experimental results reveals that the kinetics of passivation of Alloy 600 in high temperature and high pressure water, for passivation times up to 400 hours, is well fitted by a logarithmic growth law. (authors)

  6. Kinetics of passivation of a nickel-base alloy in high temperature water

    International Nuclear Information System (INIS)

    Machet, A.; Galtayries, A.; Zanna, S.; Marcus, P.; Jolivet, P.; Scott, P.; Foucault, M.; Combrade, P.

    2004-01-01

    The kinetics of passivation and the composition of the surface oxide layer, in high temperature and high pressure water, of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS). The samples have been exposed for short (0.4 - 8.2 min) and longer (0 - 400 hours) time periods to high temperature (325 deg. C) and high pressure water (containing boron and lithium) under controlled hydrogen pressure. The experiments were performed in two types of autoclaves: a novel autoclave dedicated to short time periods and a classic static autoclave for the longer exposures. In the initial stage of passivation, a continuous ultra-thin layer of chromium oxide (Cr 2 O 3 ) is rapidly formed on the surface with an external layer of chromium hydroxide. For longer times of passivation, the oxide layer is in a duplex form with an internal chromium oxide layer and an external layer of nickel hydroxide. The growth of the internal Cr 2 O 3 oxide layer has been fitted by three classical models (parabolic, logarithmic and inverse logarithmic laws) for the short passivation times, and the growth curves have been extrapolated to longer passivation periods. The comparison with the experimental results reveals that the kinetics of passivation of Alloy 600 in high temperature and high pressure water, for passivation times up to 400 hours, is well fitted by a logarithmic growth law. (authors)

  7. Oxidation resistance of nickel alloys at high temperature

    International Nuclear Information System (INIS)

    Tyuvin, Yu.D.; Rogel'berg, I.L.; Ryabkina, M.M.; Plakushchaya, A.F.

    1977-01-01

    The heat resistance properties of nickel alloys Ni-Cr-Si, Ni-Si-Al, Ni-Si-Mn and Ni-Al-Mn have been studied by the weight method during oxidation in air at 1000 deg and 1200 deg C. It is demonstrated that manganese reduces the heat resistance properties of Ni-Si and Ni-Al alloys, whilst the addition of over 3% aluminium enhances the heat resistance properties of Ni-Si (over 1.5%) alloys. The maximum heat resistance properties are shown by Ni-Si-Al and Ni-Cr-Si alloys with over 2% Si. These alloys offer 3 to 4 times better oxidation resistance as compared with pure nickel at 1000 deg C and 10 times at 1200 deg C

  8. Cast thermally stable high temperature nickel-base alloys and casting made therefrom

    International Nuclear Information System (INIS)

    Acuncius, D.A.; Herchenroeder, R.B.; Kirchner, R.W.; Silence, W.L.

    1977-01-01

    A cast thermally stable high temperature nickel-base alloy characterized by superior oxidation resistance, sustainable hot strength and retention of ductility on aging is provided by maintaining the alloy chemistry within the composition molybdenum 13.7% to 15.5%; chromium 14.7% to 16.5%; carbon up to 0.1%, lanthanum in an effective amount to provide oxidation resistance up to 0.08%; boron up to 0.015%; manganese 0.3% to 1.0%; silicon 0.2% to 0.8%; cobalt up to 2.0%; iron up to 3.0%; tungsten up to 1.0%; copper up to 0.4%; phosphorous up to 0.02%; sulfur up to 0.015%; aluminum 0.1% to 0.5% and the balance nickel while maintaining the Nv number less than 2.31

  9. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures

    International Nuclear Information System (INIS)

    Li, Yinghong; Zhou, Liucheng; He, Weifeng; He, Guangyu; Wang, Xuede; Nie, Xiangfan; Wang, Bo; Luo, Sihai; Li, Yuqin

    2013-01-01

    We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30–200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation. (paper)

  10. Effects of deposition temperature on electrodeposition of zinc–nickel alloy coatings

    International Nuclear Information System (INIS)

    Qiao, Xiaoping; Li, Helin; Zhao, Wenzhen; Li, Dejun

    2013-01-01

    Highlights: ► Both normal and anomalous deposition can be realized by changing bath temperature. ► The Ni content in Zn–Ni alloy deposit increases sharply as temperature reach 60 °C. ► The abrupt change in coating composition is caused by the shift of cathodic potential. ► The deposition temperature has great effect on microstructure of Zn–Ni alloy deposit. -- Abstract: Zinc–nickel alloy coatings were electrodeposited on carbon steel substrates from the ammonium chloride bath at different temperatures. The composition, phase structure and morphology of these coatings were analyzed by energy dispersive spectrometer, X-ray diffractometer and scanning electron microscopy respectively. Chronopotentiometry and potentiostatic methods were also employed to analyze the possible causes of the composition and structure changes induced by deposition temperature. It has been shown that both normal and anomalous co-deposition of zinc and nickel could be realized by changing deposition temperature under galvanostatic conditions. The abrupt changes in the composition and phase structure of the zinc–nickel alloy coatings were observed when deposition temperature reached 60 °C. The sharply decrease of current efficiency for zinc–nickel co-deposition was also observed when deposition temperature is higher than 40 °C. Analysis of the partial current densities showed that the decrease of current efficiency with the rise of deposition temperature was due to the enhancement of the hydrogen evolution. It was also confirmed that the ennoblement of cathodic potential was the cause for the increase of nickel content in zinc–nickel alloy coatings as a result of deposition temperature rise. The good zinc–nickel alloy coatings with compact morphology and single γ phase could be obtained when the deposition temperature was fixed at 30–40 °C

  11. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  12. Austenitic stainless steel alloys with high nickel contents in high temperature liquid metal systems

    International Nuclear Information System (INIS)

    Konvicka, H.R.; Schwarz, N.F.

    1981-01-01

    Fe-Cr-Ni base alloys (nickel content: from 15 to 70 wt%, Chromium content: 15 wt%, iron: balance) together with stainless steel (W.Nr. 1.4981) have been exposed to flowing liquid sodium at 730 0 C in four intervals up to a cumulative exposure time of 1500 hours. Weight change data and the results of post-exposition microcharacterization of specimens are reported. The corrosion rates increase with increasing nickel content and tend to become constant after longer exposure times for each alloy. The corrosion rate of stainless steel is considerably reduced due to the presence of the base alloys. Different kinetics of nickel poor (up to 35% nickel) and nickel rich (> 50% nickel) alloys and nickel transport from nickel rich to nickel poor material is observed. (orig.)

  13. Nickel-based materials and high-alloy, special stainless steels. 2. new rev. and enl. ed.

    International Nuclear Information System (INIS)

    Heubner, U.; Brill, U.; Hoffmann, T.; Jasner, M.; Kirchheiner, R.; Koecher, R.; Richter, H.; Rockel, M.; White, F.

    1993-01-01

    The book is intended as a source of information on nickel-based materials and special stainless steels and apart from the up-to-date materials data presents information on recent developments and knowledge gained, so that it may be a valuable aid to materials engineers looking for cost-effective resolutions of their materials problems in the chemical process industry, power plant operation, and high-temperature applications. The book presents eight individual contributions entitled as follows: (1) Nickel-base alloys and high-alloy, special stainless steels. - Materials survey and data sheets (Ulrich Heubner). (2) Corrosion of nickel-base alloys and special stainless steels (Manfred Rockel). (3) Welding of nickel-base alloys and high-alloy, special stainless steels (Theo Hoffmann). (4) High-temperature resistant materials (Ulrich Brill). (5) Application and processing of nickel-base materials in the chemical process industry and in pollution abatement equipment (Reiner Koecher). (6) Selected examples of applications of nickel-base materials in chemical plant (Manfred Jasner, Frederick White). (7) Applications of nickel-base alloys and special stainless steels in power plant. (8) The use of nickel-base alloys and stainless steels in pollution abatement processes (R. Kirchheiner). (orig./MM). 151 figs., 226 refs [de

  14. Evaluation of High Temperature Corrosion Resistance of Finned Tubes Made of Austenitic Steel And Nickel Alloys

    Directory of Open Access Journals (Sweden)

    Turowska A.

    2016-06-01

    Full Text Available The purpose of the paper was to evaluate the resistance to high temperature corrosion of laser welded joints of finned tubes made of austenitic steel (304,304H and nickel alloys (Inconel 600, Inconel 625. The scope of the paper covered the performance of corrosion resistance tests in the atmosphere of simulated exhaust gases of the following chemical composition: 0.2% HCl, 0.08% SO2, 9.0% O2 and N2 in the temperature of 800°C for 1000 hours. One found out that both tubes made of austenitic steel and those made of nickel alloy displayed good resistance to corrosion and could be applied in the energy industry.

  15. High temperature cathodic charging of hydrogen in zirconium alloys and iron and nickel base alloys

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Gadiyar, H.S.

    1990-01-01

    These investigations lead to the development of a new technique for charging hydrogen into metals and alloys. In this technique a mixture of sulfates and bisulfates of sodium and potassium is kept saturated with water at 250-300degC in an open pyrex glass beaker and electrolysed using platinum anode and the material to be charged as the cathode. Most of the studies were carried out on Zr alloys. It is shown that because of the high hydrogen flux available at the surface and the high diffusivity of hydrogen in metals at these temperatures the materials pick up hydrogen faster and more uniformly than the conventional electrolytic charging at room temperature and high temperature autoclaving in LiOH solutions. Chemical analysis, metallographic examination and XRD studies confirm this. This technique has been used to charge hydrogen into many iron and nickel base austentic alloys, which are very resistant to hydrogen pick up and to H-embrittlement. Since this involved a novel method of electrolysing water, the hydrogen/deuterium isotopic ratio has been studied. At this temperatures the D/H ratio in the evolved hydrogen gas was found to be closer to the value in the liquid water, which means a smaller separation factor. This confirm the earlier observation that separation factor decreases with increase of temperature. (author). 16 refs., 21 fi gs., 6 tabs

  16. High-temperature brazing, present situation and development trends - brazing alloys

    International Nuclear Information System (INIS)

    Lugscheider, E.

    1980-01-01

    The range of application of high-temperature brazing is described. The process is defined. High-temperature nickel-base brazing alloys (alloying constituents, types of products. properties of the brazing alloys) and high-temperature brazing alloys for special metals and ceramics are dealt with. (orig.) [de

  17. Nickel-titanium alloys: stress-related temperature transitional range.

    Science.gov (United States)

    Santoro, M; Beshers, D N

    2000-12-01

    The inducement of mechanical stress within nickel-titanium wires can influence the transitional temperature range of the alloy and therefore the expression of the superelastic properties. An analogous variation of the transitional temperature range may be expected during orthodontic therapy, when the archwires are engaged into the brackets. To investigate this possibility, samples of currently used orthodontic nickel-titanium wires (Sentalloy, GAC; Copper Ni-Ti superelastic at 27 degrees C, 35 degrees C, 40 degrees C, Ormco; Nitinol Heat-Activated, 3M-Unitek) were subjected to temperature cycles ranging between 4 degrees C and 60 degrees C. The wires were mounted in a plexiglass loading device designed to simulate clinical situations of minimum and severe dental crowding. Electrical resistivity was used to monitor the phase transformations. The data were analyzed with paired t tests. The results confirmed the presence of displacements of the transitional temperature ranges toward higher temperatures when stress was induced. Because nickel-titanium wires are most commonly used during the aligning stage in cases of severe dental crowding, particular attention was given to the performance of the orthodontic wires under maximum loading. An alloy with a stress-related transitional temperature range corresponding to the fluctuations of the oral temperature should express superelastic properties more consistently than others. According to our results, Copper Ni-Ti 27 degrees C and Nitinol Heat-Activated wires may be considered suitable alloys for the alignment stage.

  18. FTIR study of the influence of minor alloying elements on the high temperature oxidation of nickel alloys

    International Nuclear Information System (INIS)

    Lenglet, M.; Delaunay, F.; Lefez, B.

    1997-01-01

    The purpose of this paper is to study the reflectance spectra of the different single oxide layer systems : Cr 2 O 3 /Fe, MnCr 2 O 4 /Fe, TiO 2 /Fe, NiCr 2 O 4 /Fe and NiFe 2 O 4 /Fe and to extend the theoretical calculations to multilayer oxide systems on metallic substrates. The interpretation of the resulting reflectance spectra for these systems is used to explain the initial stages of oxide formation and the influence of minor alloying elements on the high temperature oxidation of three commercial nickel alloys : Incoloy 800, Inconel 600 and X. (orig.)

  19. An overview of advanced high-strength nickel-base alloys for LWR applications

    International Nuclear Information System (INIS)

    Prybylowski, J.; Ballinger, R.G.

    1989-01-01

    This paper reviews our current understanding of the behavior of high strength nickel base alloys used in light water reactor (LWR) applications. Emphasis is placed on understanding the fundamental mechanisms controlling crack propagation in these environments. To provide a foundation for this survey, general mechanisms of stress corrosion cracking and hydrogen embrittlement are first reviewed. The behavior of high strength nickel base alloys in LWR environments, as well as in other relevant environments is then reviewed. Suggested mechanisms of crack propagation are discussed. Alternate alloys and microstructural modifications that may result in improved behavior are presented. It is now clear that, at temperatures near 100C, alloy X-750, the predominant high strength nickel base alloy used today in LWR applications, is susceptible to hydrogen embrittlement. A review of published data from hydrogen embrittlement studies of nickel base superalloys during electrolytic charging and in hydrogen sulfide/brine solutions suggests that other nickel base superalloys are available possessing resistance to hydrogen embrittlement superior to that of alloy X-750. Available results of tests in gaseous hydrogen suggest that reduced grain boundary precipitation and a fine distribution of intragranular precipitates that act as irreversible hydrogen traps is the optimum microstructure for hydrogen embrittlement resistance. 42 refs., 2 figs., 5 tabs

  20. Corrosion of Nickel-Based Alloys in Ultra-High Temperature Heat Transfer Fluid

    Science.gov (United States)

    Wang, Tao; Reddy, Ramana G.

    2017-03-01

    MgCl2-KCl binary system has been proposed to be used as high temperature reactor coolant. Due to its relatively low melting point, good heat capacity and excellent thermal stability, this system can also be used in high operation temperature concentrating solar power generation system as heat transfer fluid (HTF). The corrosion behaviors of nickel based alloys in MgCl2-KCl molten salt system at 1,000 °C were determined based on long-term isothermal dipping test. After 500 h exposure tests under strictly maintained high purity argon gas atmosphere, the weight loss and corrosion rate analysis were conducted. Among all the tested samples, Ni-201 demonstrated the lowest corrosion rate due to the excellent resistance of Ni to high temperature element dissolution. Detailed surface topography and corrosion mechanisms were also determined by using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS).

  1. Electroless nickel-plating for the PWSCC mitigation of nickel-base alloys in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Ji Hyun; Hwang, Il Soon

    2008-01-01

    The feasibility study has been performed as an effort to apply the electroless nickel-plating method for a proposed countermeasure to mitigate primary water stress corrosion cracking (PWSCC) of nickel-base alloys in nuclear power plants. In order to understand the corrosion behavior of nickel-plating at high temperature water, the electrochemical properties of electroless nickel-plated alloy 600 specimens exposed to simulated pressurized water reactor (PWR) primary water were experimentally characterized in high temperature and high pressure water condition. And, the resistance to the flow accelerated corrosion (FAC) test was investigated to check the durability of plated layers in high-velocity water-flowing environment at high temperature. The plated surfaces were examined by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after exposures to the condition. From this study, it is found that the corrosion resistance of electroless nickel-plated Alloy 600 is higher than that of electrolytic plating in 290 deg. C water

  2. Effect of Ni +-ION bombardment on nickel and binary nickel alloys

    Science.gov (United States)

    Roarty, K. B.; Sprague, J. A.; Johnson, R. A.; Smidt, F. A.

    1981-03-01

    Pure nickel and four binary nickel alloys have been subjected to high energy Ni ion bombardment at 675, 625 and 525°C. After irradiation, each specimen was studied by transmission electron microscopy. The pure nickel control was found to swell appreciably (1 to 5%) and the Ni-Al and the Ni-Ti samples were found to swell at all temperatures, but to a lesser degree (0.01 to 0.35%). The Ni-Mo contained a significant density of voids only at 525° C, while swelling was suppressed at all temperatures in the Ni-Si alloy. The dislocation structure progressed from loops to tangles as temperature increased in all materials except the Ni-Ti, in which there was an absence of loops at all temperatures. Dislocation densities decreased as temperature increased in all samples. These results do not correlate well with the relative behavior of the same alloys observed after neutron irradiation at 455°C. The differences between these two sets of data appear to be caused by different mechanisms controlling void nucleation in ion and neutron irradiation of these alloys.

  3. Stress corrosion crack tip microstructure in nickel-based alloys

    International Nuclear Information System (INIS)

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content

  4. Using the PSCPCSP computer software for optimization of the composition of industrial alloys and development of new high-temperature nickel-base alloys

    Science.gov (United States)

    Rtishchev, V. V.

    1995-11-01

    Using computer programs some foreign firms have developed new deformable and castable high-temperature nickel-base alloys such as IN, Rene, Mar-M, Udimet, TRW, TM, TMS, TUT, with equiaxial, columnar, and single-crystal structures for manufacturing functional and nozzle blades and other parts of the hot duct of transport and stationary gas-turbine installations (GTI). Similar investigations have been carried out in Russia. This paper presents examples of the use of the PSCPCSP computer software for a quantitative analysis of structural und phase characteristics and properties of industrial alloys with change (within the grade range) in the concentrations of the alloying elements for optimizing the composition of the alloys and regimes of their heat treatment.

  5. Ductile tungsten-nickel alloy and method for making same

    Science.gov (United States)

    Snyder, Jr., William B.

    1976-01-01

    The present invention is directed to a ductile, high-density tungsten-nickel alloy which possesses a tensile strength in the range of 100,000 to 140,000 psi and a tensile elongation of 3.1 to 16.5 percent in 1 inch at 25.degree.C. This alloy is prepared by the steps of liquid phase sintering a mixture of tungsten-0.5 to 10.0 weight percent nickel, heat treating the alloy at a temperature above the ordering temperature of approximately 970.degree.C. to stabilize the matrix phase, and thereafter rapidly quenching the alloy in a suitable liquid to maintain the matrix phase in a metastable, face-centered cubic, solid- solution of tungsten in nickel.

  6. Phase Transformations in Nickel base Superalloy Inconel 718 during Cyclic Loading at High Temperature

    Directory of Open Access Journals (Sweden)

    Michal Jambor

    2017-06-01

    Full Text Available Nickel base superalloys are hi-tech materials intended for high temperature applications. This property owns a complex microstructure formed by matrix of Ni and variety of precipitates. The type, form and the amount of these phases significantly affect the resulting properties of these alloys. At sufficiently long exposure to high temperatures, the transformation phase can occur, which can lead to degradation of properties of these alloys. A cyclic plastic deformation can accelerate these changes, and they could occur at significantly lower temperatures or in shorter time of exposure. The aim of this study is to describe phase transformation, which can occur by a cyclic plastic deformation at high temperatures in nickel base superalloy Inconel 718.

  7. Corrosion of nickel-base heat resistant alloys in simulated VHTR coolant helium at very high temperatures

    International Nuclear Information System (INIS)

    Shindo, Masami; Kondo, Tatsuo

    1976-01-01

    A comparative evaluation was made on three commercial nickel-base heat resistant alloys exposed to helium-base atmosphere at 1000 0 C, which contained several impurities in simulating the helium cooled very high temperature nuclear reactor (VHTR) environment. The choice of alloys was made so that the effect of elements commonly found in commercial alloys were typically examined. The corrosion in helium at 1000 0 C was characterized by the sharp selection of thermodynamically unstable elements in the oxidizing process and the resultant intergranular penetration and internal oxidation. Ni-Cr-Mo-W type solution hardened alloy such as Hastelloy-X showed comparatively good resistance. The alloy containing Al and Ti such as Inconel-617 suffered adverse effect in contrast to its good resistance to air oxidation. The alloy nominally composed only of noble elements, Ni, Fe and Mo, such as Hastelloy-B showed least apparent corrosion, while suffered internal oxidation due to small amount of active impurities commonly existing in commercial heats. The results were discussed in terms of selection and improvement of alloys for uses in VHTR and the similar systems. (auth.)

  8. Thermal cycling influence on microstructural characterization of alloys with high nickel content

    International Nuclear Information System (INIS)

    Abrudeanu, M.; Gradin, O.; Vulpe, S. C.; Ohai, D.

    2013-01-01

    The IV nuclear energy generation systems are aimed at making revolutionary improvements in economics, safety and reliability, and sustainability. To achieve these goals, Generation IV systems will operate at higher temperatures and in higher radiation fields. This paper shows the thermal cycling influences on microstructure and hardness of nickel based alloys: Incoloy 800 HT and Inconel 617. These alloys were meekly at a thermal cycling of 25, 50, 75 and 100 cycles. The temperature range of a cycle was between 400 O C and 700 O C. Nickel base alloys develop their properties by solid solution and/or precipitation strengthening. (authors)

  9. Interfacial failure in dissimilar weld joint of high boron 9% chromium steel and nickel-based alloy under high-temperature creep condition

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Tetsuya, E-mail: MATSUNAGA.Tetsuya@nims.go.jp; Hongo, Hiromichi, E-mail: HONGO.Hiromichi@nims.go.jp; Tabuchi, Masaaki, E-mail: TABUCHI.Masaaki@nims.go.jp

    2017-05-17

    The advanced ultra-supercritical (A-USC) power generation system is expected to become the next-generation base-load power station in Japan. Dissimilar weld joints between high-Cr heat-resistant steels and nickel-based alloys with a nickel-based filler metal (Alloy 82) will need to be adopted for this purpose. However, interfacial failure between the steels and weld metal has been observed under high-temperature creep conditions. Fractography and microstructure observations showed the failure initiated in a brittle manner by an oxide notch at the bottom of the U-groove. The fracture then proceeded along the bond line in a ductile manner with shallow dimples, where micro-Vickers hardness tests showed remarkable softening in the steel next to the bond line. In addition, the steel showed a much larger total elongation and reduction of area than the weld metal at low stresses under long-term creep conditions, leading to mismatch deformation at the interface. According to the results, it can be concluded that the interfacial failure between the 9Cr steels and Alloy 82 weld metal is initiated by an oxide notch and promoted by softening and the difference in the plasticity of the steels and weld metal.

  10. High temperature oxidation behavior of gamma-nickel+gamma'-nickel aluminum alloys and coatings modified with platinum and reactive elements

    Science.gov (United States)

    Mu, Nan

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000°C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455°C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain beta-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used beta-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt+Hf-modified gamma-Ni+gamma'-Ni 3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase gamma-Ni and gamma'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al 2O3 formation by suppressing the NiO growth on both gamma-Ni and gamma'-Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures (˜970°C) in the very early stage of oxidation. It

  11. Aluminium alloys containing iron and nickel

    International Nuclear Information System (INIS)

    Coriou, H.; Fournier, R.; Grall, L.; Hure, J.; Herenguel, J.; Lelong, P.

    1958-01-01

    The first part of this report addresses mechanism, kinetics and structure factors of aluminium alloys containing iron and nickel in water and high temperature steam. The studied alloys contain from 0.3 to 0.7 per cent of iron, and 0.2 to 1.0 per cent of nickel. Corrosion resistance and corrosion structure have been studied. The experimental installation, process and samples are presented. Corrosion structures in water at 350 C are identified and discussed (structure of corrosion products, structure of metal-oxide interface), and then in steam at different temperatures (350-395 C). Corrosion kinetics is experimentally studied (weight variation in time) in water at 350 C and in steam at different temperatures. Reactions occurring at over-heated steam (more than 400 C) are studied, and the case of welded alloys is also addressed. The second part addresses the metallurgical mechanism and processes influencing aluminium alloy resistance to corrosion by high temperature water as it appeared that separated phases protect the solid solution through a neighbourhood action. In order to avoid deep local corrosions, it seems necessary to multiply protective phases in an as uniform as possible way. Some processes enabling this result are described. They belong to conventional metallurgy or to powder metallurgy (with sintering and extrusion)

  12. High temperature oxidation and electrochemical investigations on nickel-base alloys

    International Nuclear Information System (INIS)

    Obigodi-Ndjeng, Georgia

    2011-01-01

    This study examined high-temperature oxidation behavior of different Ni-base alloys. In addition, electrochemical characterization of the alloy's corrosion behavior was carried out, including comparison of the properties of native passive films grown at room temperature and high temperature oxide scales. PWA 1483 (single-crystalline Ni-base superalloy) and model alloys Ni-Cr-X (where X is either Co or Al) were oxidized at 800 and 900 C in air for different time periods. The superalloy showed the best oxidation behavior at both temperatures, which might be due to the fact that the oxidation growth function is subparabolic for the model alloys and parabolic for the superalloy at 800 C. At higher temperatures, changes in the kinetics are induced, as the oxides grow faster, thus only PWA 1483 growth follows the parabolic law. Different scales in a typical sandwich form were detected, with the inner layer comprised of mostly Cr 2 O 3 , the middle layer was mixture of different oxides and spinels, depending on the alloying elements, and the oxide at the interface oxygen/oxide was found to be NiO. The influence of sample preparation could also be shown, as rougher surfaces change the oxidation kinetics from parabolic and subparabolic for polished samples to linear. The influence of moisture on the oxidation behavior of the 2 nd generation single crystal Ni-base superalloys (PWA 1484, PWA 1487, CMSX 4, Rene N5 and Rene N5+) was studied at 1000 C after 100 h oxidation period. It was found that the moisture increased the oxidation rate and mostly the transient oxides growth rate. The water vapor content in air also influenced the behavior of these alloys, as they showed a higher mass gain in air + 30% water vapor than in air + 10% water vapor. The alloys PWA 1484 and CMSX 4 showed respectively the worst and best behavior in all the studied atmospheres. The addition of reactive elements, such as Yttrium, Hafnium and Lanthanum is likely to enhance the oxidation behavior of PWA

  13. dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water

    Science.gov (United States)

    Chen, Kai; Wang, Jiamei; Du, Donghai; Andresen, Peter L.; Zhang, Lefu

    2018-05-01

    The effect of dK/da on crack growth behavior of nickel base alloys has been studied by conducting stress corrosion cracking tests under positive and negative dK/da loading conditions on Alloys 690, 600 and X-750 in high temperature water. Results indicate that positive dK/da accelerates the SCC growth rates, and the accelerating effect increases with dK/da and the initial CGR. The FRI model was found to underestimate the dK/da effect by ∼100X, especially for strain hardening materials, and this underscores the need for improved insight and models for crack tip strain rate. The effect of crack tip strain rate and dK/dt in particular can explain the dK/da accelerating effect.

  14. Structural instabilities of high temperature alloys and their use in advanced high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Schuster, H.; Ennis, P.J.; Nickel, H.; Czyrska-Filemonowicz, A.

    1989-01-01

    High-temperature, iron-nickel and nickel based alloys are the candidate heat exchanger materials for advanced high temperature gas-cooled reactors supplying process heat for coal gasification, where operation temperatures can reach 850-950 deg. C and service lives of more than 100,000 h are necessary. In the present paper, typical examples of structural changes which occur in two representative alloys (Alloy 800 H, Fe-32Ni-20Cr and Alloy 617, Ni-22Cr-12Co-9Mo-1Al) during high temperature exposure will be given and the effects on the creep rupture properties discussed. At service temperatures, precipitation of carbides occurs which has a significant effect on the creep behaviour, especially in the early stages of creep when the precipitate particles are very fine. During coarsening of the carbides, carbides at grain boundaries restrict grain boundary sliding which retards the development of creep damage. In the service environments, enhanced carbide precipitation may occur due to the ingress of carbon from the environment (carburization). Although the creep rate is not adversely affected, the ductility of the carburized material at low and intermediate temperatures is very low. During simulated service exposures, the formation of surface corrosion scales, the precipitation of carbides and the formation of internal oxides below the surface leads to depletion of the matrix in the alloying elements involved in the corrosion processes. In thin-walled tubes the depletion of Cr due to Cr 2 O 3 formation on the surface can lead to a loss of creep strength. An additional depletion effect resulting from environmental-metal reactions is the loss of carbon (decarburization) which may occur in specific environments. The compositions of the cooling gases which decarburize the material have been determined; they are to be avoided during reactor operation

  15. Corrosion considerations of high-nickel alloys and titanium alloys for high-level radioactive waste disposal containers

    International Nuclear Information System (INIS)

    Gdowski, G.E.; McCright, R.D.

    1991-07-01

    Corrosion resistant materials are being considered for the metallic barrier of the Yucca Mountain Project's high-level radioactive waste disposal containers. High nickel alloys and titanium alloys have good corrosion resistance properties and are considered good candidates for the metallic barrier. The localized corrosion phenomena, pitting and crevice corrosion, are considered as potentially limiting for the barrier lifetime. An understanding of the mechanisms of localized corrosion of how various parameters affect it will be necessary for adequate performance assessments of candidate container materials. Examples of some of the concerns involving candidate container materials. Examples of some of the concerns of involving localized corrosion are discussed. The effects of various parameters, such as temperature and concentration of halide species, on localized corrosion are given. In addition concerns about aging of the protective oxide layer in the expected service temperature range (50 to 250 degrees C) are presented. Also some mechanistic considerations of localized corrosion are given. 31 refs., 1 tab

  16. High Temperature Corrosion of Nickel in NaVO3-V2O5 Melts

    Directory of Open Access Journals (Sweden)

    J. Porcayo-Calderon

    2017-01-01

    Full Text Available Many alloys used at high temperature in industrial processes are Ni-based and many others contain it in appreciable quantities, so it is of interest to evaluate the performance of pure nickel in order to determine the behavior of its alloys once the elements responsible for their protection have been depleted due to accelerated corrosion processes in the presence of vanadium-rich molten salts. Due to this, this work presents the study of Ni behavior in NaVO3-V2O5 mixtures at different temperatures. The behavior of pure nickel was determined by both electrochemical and mass loss measurements. The results show that the aggressiveness of the vanadium salts is increased by increasing both the V2O5 content and temperature. V2O5 addition considerably increases the current densities of the anodic and cathodic reactions. The corrosion process of Ni is modified due to the presence of its corrosion products, and its presence increases the activation energy by at least one order of magnitude. Although nickel shows a high reactivity in vanadium-rich salts, its reaction products are highly stable and protect it from the corrosive medium because the corrosion reactions trap the vanadium and block the migration of nickel ions.

  17. Hot corrosion studies on nickel-based alloys containing silicon

    International Nuclear Information System (INIS)

    Kerr, T.W.; Simkovich, G.

    1976-01-01

    Alloys of Ni--Cr, Ni--Si and Ni--Cr--Si were oxidized and ''hot corroded'' in pure oxygen at 1000 0 C. In the oxidation experiments it was found that small amounts of either chromium or silicon in nickel increased the oxidation rates in comparison to pure nickel in accord with Wagner's parabolic oxidation theory. At high concentrations of the alloying elements the oxidation rates decreased due to the formation of oxide phases other than nickel oxide in the scale. Hot corrosion experiments were conducted on both binary and ternary alloys by oxidizing samples coated with 1.0 mg/cm 2 of Na 2 SO 4 in oxygen at 1000 0 C. In general it was found that high chromium and high silicon alloys displayed excellent resistance to the hot corrosion process gaining or losing less than 0.5 mg/cm 2 in 1800 min at temperature. Microprobe and x-ray diffraction studies of the alloy and the scale indicate that amorphous SiO 2 probably formed to aid in retarding both the oxidation and the hot corrosion process

  18. Microstructural evolutions and mechanical behaviour of the nickel based alloys 617 and 230 at high temperature

    International Nuclear Information System (INIS)

    Chomette, S.

    2009-11-01

    High Temperature Reactors (HTR), is one of the innovative nuclear reactor designed to be inherently safer than previous generation and to produce minimal waste. The most critical metallic component in that type of reactor is the Intermediate Heat exchanger (IHX). The constraints imposed by the conception and the severe operational conditions (high temperature of 850 C to 950 C, lifetime of 20,000 h) have guided the IHX material selection toward two solid solution nickel base alloys, the Inconel 617 and the Haynes 230. Inconel 617 is the primary candidate alloy thanks to its good high temperature mechanical and corrosion properties and the large data base developed in previous programs. However, its high cobalt content has to be considered as an issue (nuclear activation). The more recent alloy Haynes 230, in which most of the cobalt has been replaced by tungsten, present characteristics similar to the 617 alloy. The objective of this thesis is to study the high temperature mechanical behaviour of both alloys in relation with their microstructural evolutions. The as received microstructural observations have revealed primary carbides (M 6 C). Most of this precipitates are evenly distributed in the materials. Few M 23 C 6 secondary carbides are observed in both alloys in the as received state. Thermal ageing treatments at 850 C lead to an important M 23 C 6 precipitation on slip lines and at grain boundaries. The size of this carbides increases and their number decreases with increasing ageing duration. The intragranular precipitation of secondary carbides at 950 C is more limited and the intergranular evolution more important than at 850 C. The microstructural observations and the hardness evolution of both alloys show that the main microstructural evolutions occur before 1,000 h at both studied temperatures. The mechanical properties of the Inconel 617 and the Haynes 230 have been studied using tensile, creep, fatigue and relaxation-fatigue tests. Particularly, the

  19. Tungsen--nickel--cobalt alloy and method of producing same

    International Nuclear Information System (INIS)

    Dickinson, J.M.; Riley, R.E.

    1977-01-01

    An improved tungsten alloy having a tungsten content of approximately 95 weight percent, a nickel content of about 3 weight percent, and the balance being cobalt of about 2 weight percent is described. A method for producing this tungsten--nickel--cobalt alloy is further described and comprises coating the tungsten particles with a nickel--cobalt alloy, pressing the coated particles into a compact shape, heating the compact in hydrogen to a temperature in the range of 1400 0 C and holding at this elevated temperature for a period of about 2 hours, increasing this elevated temperature to about 1500 0 C and holding for 1 hour at this temperature, cooling to about 1200 0 C and replacing the hydrogen atmosphere with an inert argon atmosphere while maintaining this elevated temperature for a period of about 1 / 2 hour, and cooling the resulting alloy to room temperature in this argon atmosphere

  20. Properties of super alloys for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Izaki, Takashi; Nakai, Yasuo; Shimizu, Shigeki; Murakami, Takashi

    1975-01-01

    The existing data on the properties at high temperature in helium gas of iron base super alloys. Incoloy-800, -802 and -807, nickel base super alloys, Hastelloy-X, Inconel-600, -617 and -625, and a casting alloy HK-40 were collectively evaluated from the viewpoint of the selection of material for HTGRs. These properties include corrosion resistance, strength and toughness, weldability, tube making, formability, radioactivation, etc. Creep strength was specially studied, taking into consideration the data on the creep characteristics in the actual helium gas atmosphere. The necessity of further long run creep data is suggested. Hastelloy-X has completely stable corrosion resistance at high temperature in helium gas. Incoloy 800 and 807 and Inconel 617 are not preferable in view of corrosion resistance. The creep strength of Inconel 617 extraporated to 1,000 deg C for 100,000 hours in air was the greatest rupture strength of 0.6 kg/mm 2 in all above alloys. However, its strength in helium gas began to fall during a relatively short time, so that its creep strength must be re-evaluated in the use for long time. The radioactivation and separation of oxide film in primary construction materials came into question, Inconel 617 and Incoloy 807 showed high induced radioactivity intensity. Generally speaking, in case of nickel base alloys such as Hastelloy-X, oxide film is difficult to break away. (Iwakiri, K.)

  1. Mechanodynamical analysis of nickel-titanium alloys for orthodontics application

    International Nuclear Information System (INIS)

    Arruda, Carlos do Canto

    2002-01-01

    Nickel-titanium alloys may coexist in more than one crystalline structure. There is a high temperature phase, austenite, and a low temperature phase, martensite. The metallurgical basis for the superelasticity and the shape memory effect relies in the ability of these alloys to transform easily from one phase to another. There are three essential factors for the orthodontist to understand nickel-titanium alloys behaviour: stress; deflection; and temperature. These three factors are related to each other by the stress-deflection, stress-temperature and deflection-temperature diagrams. This work was undertaken with the objective to analyse commercial nickel-titanium alloys for orthodontics application, using the dynamical mechanical analyser - DMA. Four NiTi 0,017 X 0,025'' archwires were studied. The archwires were Copper NiTi 35 deg C (Ormco), Neo Sentalloy F200 (GAC), Nitinol Superelastic (Unitek) and NiTi (GAC). The different mechanodynamical properties such as elasticity and damping moduli were evaluated. Each commercial material was evaluated with and without a 1 N static force, aiming to evaluate phase transition temperature variation with stress. The austenitic to martensitic phase ratio, for the experiments without static force, was in the range of 1.59 to 1.85. For the 1 N static force tests the austenitic to martensitic phase ratio, ranged from 1.28 to 1.57 due to the higher martensite elasticity modulus. With elastic modulus variation with temperature behaviour, the orthodontist has the knowledge of the force variation applied in the tooth in relation to the oral cavity temperature change, for nickel-titanium alloys that undergo phase transformation. The damping capacity of the studied alloys depends on the materials state: martensitic phase; austenitic phase or during phase transformation. The martensitic phase shows higher dumping capacity. During phase transformation, an internal friction peak may be observed for the CuNiTi 35 deg C and Neo Sentalloy F

  2. EIS pitting temperature determination of A182 nickel based alloy in simulated BWR environment containing dilute seawater

    International Nuclear Information System (INIS)

    Lavigne, Olivier; Shoji, Tetsuo; Takeda, Yoichi

    2014-01-01

    Graphical abstract: - Highlights: • Stable pitting events in function of the temperature are monitored by electrochemical impedance spectroscopy. • The pitting temperature for the nickel based alloy A182 in solution containing 450 ppm Cl − is defined as above 160 °C. • The presented method can be applied for others passive alloys as stainless steel in solution containing aggressive anions. - Abstract: A method based on electrochemical impedance spectroscopy (EIS) measurements to monitor the pitting temperature of passive alloys in a given media is developed in this communication. The pitting corrosion behavior of the nickel based alloy 182 in water containing 450 ppm by weight of chloride is presented in this study. The analysis of the EIS fit parameters from the proposed equivalent electrical circuit allows to determine the temperature from which stable pitting event occurs at open circuit potential. For the A182 sample this temperature is measured above 160 °C

  3. Method and alloys for fabricating wrought components for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Thompson, L.D.; Johnson, W.R.

    1983-01-01

    Wrought, nickel-based alloys, suitable for components of a high-temperature gas-cooled reactor exhibit strength and excellent resistance to carburization at elevated temperatures and include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength. The range of compositions of these alloys is given. (author)

  4. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    OpenAIRE

    Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min

    2016-01-01

    Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type t...

  5. Electrochemical evaluation of zinc effect on the corrosion of nickel alloy in PWR solutions with increasing temperature

    International Nuclear Information System (INIS)

    Alvial M, Gaston; Neves, Celia F.C.; Schvartzman, Monica M.A.M.; Quinan, Marco Antonio D.

    2007-01-01

    The main objective for the addition of zinc acetate to the reactor coolant system of PWRs is to effect radiation dose rate reductions. However, zinc is also added as an approach to mitigate the occurrence or severity of primary water stress corrosion cracking of nickel alloy 600. The mechanism by which zinc affects the corrosion of austenitic nickel-base alloys is by incorporation of zinc into the spinel oxide corrosion films. The purpose of this work is to evaluate the influence of zinc on the corrosion behavior of the nickel alloy 600 in PWR chemical environment (1200 ppm B, 2.2 ppm Li, deoxygenated water) with increasing temperature at room pressure. Electrochemical tests (anodic potentiodynamic polarization and electrochemical impedance spectroscopy) were used to characterize the alloy 600. Two conditions were applied: 0 and 100 ppb zinc and the temperature range was 50 - 90 deg C, at ambient pressure. Potentiodynamic polarization was inefficient to present conclusive results. Impedance measurements showed single semicircle in the Nyquist plane suggesting reduction of the charge transference resistance in zinc-containing solutions. This effect is evident at 90 deg C suggesting prejudicial influence of zinc for the alloy 600 at room pressure. (author)

  6. Annealing texture of rolled nickel alloys

    International Nuclear Information System (INIS)

    Meshchaninov, I.V.; Khayutin, S.G.

    1976-01-01

    A texture of pure nickel and binary alloys after the 95% rolling and annealing has been studied. Insoluble additives (Mg, Zr) slacken the cubic texture in nickel and neral slackening of the texture (Zr). In the case of alloying with silicium (up to 2%) the texture practically coinsides with that of a technical-grade nickel. The remaining soluble additives either do not change the texture of pure nickel (C, Nb) or enhance the sharpness and intensity of the cubic compontnt (Al, Cu, Mn, Cr, Mo, W, Co -at their content 0.5 to 2.0%). A model is proposed by which variation of the annealing texture upon alloying is caused by dissimilar effect of the alloying elements on the mobility of high- and low-angle grain boundaries

  7. Aluminium alloys containing iron and nickel; Alliages d'aluminium contenant du fer et du nickel

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Fournier, R.; Grall, L.; Hure, J. [Commissariat a l' Energie atomique, Centre d' Etudes Nucleaires de Saclay, Departement de Metallurgie et de Chimie Appliquee (France); Herenguel, J.; Lelong, P. [Centre de Recherches d' Antony, des Trefileries et Laminoirs du Havre (France)

    1958-07-01

    The first part of this report addresses mechanism, kinetics and structure factors of aluminium alloys containing iron and nickel in water and high temperature steam. The studied alloys contain from 0.3 to 0.7 per cent of iron, and 0.2 to 1.0 per cent of nickel. Corrosion resistance and corrosion structure have been studied. The experimental installation, process and samples are presented. Corrosion structures in water at 350 C are identified and discussed (structure of corrosion products, structure of metal-oxide interface), and then in steam at different temperatures (350-395 C). Corrosion kinetics is experimentally studied (weight variation in time) in water at 350 C and in steam at different temperatures. Reactions occurring at over-heated steam (more than 400 C) are studied, and the case of welded alloys is also addressed. The second part addresses the metallurgical mechanism and processes influencing aluminium alloy resistance to corrosion by high temperature water as it appeared that separated phases protect the solid solution through a neighbourhood action. In order to avoid deep local corrosions, it seems necessary to multiply protective phases in an as uniform as possible way. Some processes enabling this result are described. They belong to conventional metallurgy or to powder metallurgy (with sintering and extrusion)

  8. The suppression of dissolution for alloy 690 in high temperature and high pressure water with chromium ion implantation

    International Nuclear Information System (INIS)

    Shibata, Toshio; Fujimoto, Shinji; Ohtani, Saburou; Watanabe, Masanori; Hirao, Kyozo; Okumoto, Masaru; Shibaike, Hiroyuki.

    1994-01-01

    As the material of heat exchanger tubes for PWRs, the nickel alloys such as alloy 690 and alloy 600 have been used, but 58 Ni and 60 Co contained as an impurity elute in primary cooling water, and are radioactivated, in this way, they become the cause of radiation exposure. By increasing chromium concentration, the corrosion resistance of nickel alloys is improved, and for modern heat exchangers, the alloy 690, of which the chromium content is increased up to 30%, has been adopted, and excellent results have been obtained. In this research, aiming at the further reduction of radiation exposure, by increasing the chromium concentration in surface layer using ion implantation technology, the change of the corrosion behavior of alloy 690 in high temperature, high pressure water was investigated. The chemical composition of the alloy 690 used, and the making of plate specimens are shown. The polarization behavior of alloy 690 in 0.1 mol/l sulfuric acid deaerated at normal temperature is reported, and the effect of suppressing dissolution was remarkable in the specimens with much implantation. The electrochemical behavior of alloy 690 in simulated cooling water was investigated. Immobile case has high chromium content and is thin. (K.I.)

  9. Effects of metallurgical factors on stress corrosion cracking of Ni-base alloys in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, T.; Sasaguri, N.; Onimura, K.

    1988-01-01

    Nickel-base Alloy 600 is the principal material used for the steam generator tubes of PWRs. Generally, this alloy has been proven to be satisfactory for this application, however when it is subjected to extremely high stress level in PWR primary water, it may suffer from stress corrosion cracking. The authors have systematically studied the effects of test temperature and such metallurgical factors as cold working, chemical composition and heat treatment on the stress corrosion cracking of Alloy 600 in high temperature water, and also on that of Alloy 690 which is a promising material for the tubes and may provide improved crrosion resistance for steam generators. The test materials, the stress corrosion cracking test and the test results are reported. When the test temperature was raise, the stress corrosion cracking of the nickel-base alloys was accelerated. The time of stress corrosion cracking occurrence decreased with increasing applied stress, and it occurred at the stress level higher than the 0.2 % offset proof stress of Alloy 600. In Alloy 690, stress corrosion cracking was not observed at such stress level. Cold worked Alloy 600 showed higher resistance to stress corrosion cracking than the annealed alloy. (Kako, I.)

  10. High-temperature ductility of electro-deposited nickel

    Science.gov (United States)

    Dini, J. W.; Johnson, H. R.

    1977-01-01

    Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.

  11. Study of the oxidation kinetics of the nickel-molybdenum alloy

    International Nuclear Information System (INIS)

    Gouillon, Marie-Josephe

    1974-01-01

    This research thesis reports the study of the oxidation of a nickel-molybdenum alloy in the high-nickel-content part of this alloy. After a bibliographical study on the both metals, the author proposes a physical model based on observed phenomena and based on experimental results. Based on a thermodynamic study, the author compares the stability of the different oxides which may be formed, and reports a prediction of oxides obtained on the alloy during oxidation. Qualitative and quantitative studies have been performed by scanning electron microscopy coupled with electronic microprobe analysis to investigate morphological characteristics on oxidation films. A kinetic study by thermogravimetry shows a decrease of the alloy oxidation rate with respect to that of pure nickel at temperatures lower than 800 degrees C. This result is interpreted by the intervention of two opposed diffusion phenomena which act against each other [fr

  12. Effect of test temperature on tensile and fatigue properties of nickel-base heat-resistant alloys

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime

    1987-01-01

    A series of tensile and strain controlled low-cycle fatigue tests were conducted at temperatures ranging from RT to 900 0 C on a nickel-base heat-resistant alloy, Hastelloy XR-II, which is one of the candidate alloys for applications in the process heating high-temperature gas-cooled reactor (HTGR). Fatigue tests at room temperature and all tensile tests were conducted in air, while fatigue tests at and above 400 0 C were conducted in the simulated HTGR helium environment. In those tests the effect of test temperature on tensile and fatigue properties was investigated. The ductility minimum point was observed near 600 0 C, while tensile and fatigue strengths decreased with increasing test temperature. The fatigue lives estimated with the method proposed by Manson were compatible with the experimental results under the given conditions. For the specimens fatigued at and above 700 0 C, the percentage of the intergranular fracture mode gradually increased with increasing test temperature. (orig.)

  13. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    Science.gov (United States)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500 mAh, AAA size type 900 mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material.

  14. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    International Nuclear Information System (INIS)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    2006-01-01

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  15. High temperature corrosion behaviour of a new Ni-30Fe-10Ar-Cr-alloy

    International Nuclear Information System (INIS)

    Kloewer, J.; Sauthoff, G.

    1997-01-01

    The high temperature corrosion behaviour of a new duplex nickel-base alloy containing about 30 mass% iron, 10 mass% aluminium and 8 mass% chromium was determined in both air and hot process gases containing methane/hydrogen, sulphur dioxide and hydrogen sulphide, respectively. It was found that the corrosion resistance against carburisation, sulphidation and oxidation was excellent due to the formation of a dense, protective alumina scale. The adherence of the alumina scale was increased by an addition of 0.1 mass% hafnium. The concentration of chromium was found to have a remarkable impact on the oxidation and high temperature corrosion resistance. Alloys without chromium showed increased corrosion rates in both air and sulphur-containing gas atmospheres due to the initial formation of nickel oxides. In sulphidising SO 2 -and H 2 S- containing gases at least 4 mass% chromium are required to stabilise the formation of alumina and to prevent the formation of nickel/sulphur compounds. (orig.)

  16. Transpassive dissolution of alloy 625, chromium, nickel, and molybdenum in high-temperature solutions containing hydrochloric acid and oxygen

    International Nuclear Information System (INIS)

    Kritzer, P.; Boukis, N.; Dinjus, E.

    2000-01-01

    Coupons of nickel, molybdenum, chromium, and the nickel-based Alloy 625 (UNS 06625) were corroded in strongly oxidizing hydrochloric acid (HCl) solutions at 350 C and a pressure (p) of 24 MPa, with reaction times between 0.75 h and 50 h. For Alloy 625, the effect of surface roughness also was investigated. Nickel and molybdenum showed strong material loss after only 5 h of reaction as a result of the instability of the solid oxides formed under experimental conditions. The attack on chromium started at the grain boundaries. At longer reaction times, thick, spalling oxide layers formed on the surface. The attack on Alloy 625 also started at the grain boundaries and at inclusions leading to the formation of small pits. On polished surfaces, the growth of these pits occurred faster than on nonpolished surfaces, but fewer pits grew. Corrosion products formed at the surface consisted of oxygen and chromium. On isolated spots, nickel- and chlorine-containing products also were found

  17. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  18. Effects of solution temperature on localized corrosion of high nickel content stainless steels and nickel in chromated LiBr solution

    International Nuclear Information System (INIS)

    Munoz, A. Igual; Anton, J. Garcia; Guinon, J.L.; Perez Herranz, V.

    2006-01-01

    The potentiodynamic technique has been used to study the general and localized corrosion resistance of high-alloyed stainless steels (UNS N02031 and UNS R20033) and nickel (UNS N02205) at different temperatures (from 25 deg. C to 80 deg. C) in a heavy brine Lithium Bromide solution. The engineering question of concern is the compatibility of the LiBr fluid with the structural materials of refrigeration systems which use absorption technology. The results of potentiodynamic polarization studies indicate excellent corrosion resistance for stainless steels in LiBr solution at room temperature and no big differences at temperatures above 50 deg. C. In the temperature range of 25-80 deg. C, a linear relationship exists between logarithmic of corrosion rate and reciprocal of absolute temperature (Arrhenius plot). The linear plots showed that the mechanism of the corresponding passivation process is the same for the three investigated alloys, essentially due to the presence of nickel. Tests indicated that stainless steels UNS N02031 and UNS R20033 were the most suitable for use to be used in the construction of absorption units for refrigeration purposes

  19. Electrodeposition behavior of nickel and nickel-zinc alloys from the zinc chloride-1-ethyl-3-methylimidazolium chloride low temperature molten salt

    International Nuclear Information System (INIS)

    Gou Shiping; Sun, I.-W.

    2008-01-01

    The electrodeposition of nickel and nickel-zinc alloys was investigated at polycrystalline tungsten electrode in the zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Although nickel(II) chloride dissolved easily into the pure chloride-rich 1-ethyl-3-methylimidazolium chloride ionic melt, metallic nickel could not be obtained by electrochemical reduction of this solution. The addition of zinc chloride to this solution shifted the reduction of nickel(II) to more positive potential making the electrodeposition of nickel possible. The electrodeposition of nickel, however, requires an overpotential driven nucleation process. Dense and compact nickel deposits with good adherence could be prepared by controlling the deposition potential. X-ray powder diffraction measurements indicated the presence of crystalline nickel deposits. Non-anomalous electrodeposition of nickel-zinc alloys was achieved through the underpotential deposition of zinc on the deposited nickel at a potential more negative than that of the deposition of nickel. X-ray powder diffraction and energy-dispersive spectrometry measurements of the electrodeposits indicated that the composition and the phase types of the nickel-zinc alloys are dependent on the deposition potential. For the Ni-Zn alloy deposits prepared by underpotential deposition of Zn on Ni, the Zn content in the Ni-Zn was always less than 50 atom%

  20. Nickel-base alloys having a low coefficient of thermal expansion

    International Nuclear Information System (INIS)

    Baldwin, J.F.; Maxwell, D.H.

    1975-01-01

    Alloy compositions consisting predominantly of nickel, chromium, molybdenum, carbon, and boron are disclosed. The alloys possess a duplex structure consisting of a nickel--chromium--molybdenum matrix and a semi-continuous network of refractory carbides and borides. A combination of desirable properties is provided by these alloys, including elevated temperature strength, resistance to oxidation and hot corrosion, and a very low coefficient of thermal expansion

  1. Copper and nickel alloys and titanium for seawater applications

    International Nuclear Information System (INIS)

    Richter, H.

    1977-01-01

    Copper and nickel alloys and titanium have been successfully used for heat exchangers on ships, in power plants and for chemical apparatus and piping systems because of their resistance against corrosion in sea water. Aluminium brass and copper nickel alloys, the standard materials for condensers and coolers, however, may be attacked, the corrosion depending on water quality, water velocity, and structural conditions. The mechanisms of corrosion are discussed. Under severe conditions the use of titanium may be indicated. The use of nickel base alloys is advantageous at elevated temperatures, e.g. for chemical reactions and for evaporation processes. Examples are given for application and for prevention of corrosion. (orig.) [de

  2. Burner rig alkali salt corrosion of several high temperature alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  3. Construction of a high-temperature viscosimeter and measurement of the viscosity of melts of the system aluminium-nickel; Aufbau eines Hochtemperaturviskosimeters und Messung der Viskositaet von Schmelzen des Systems Aluminium-Nickel

    Energy Technology Data Exchange (ETDEWEB)

    Kehr, Mirko

    2009-10-29

    The system aluminium-nickel is of importance as a model-system in materials science as well as a basic system for superalloys in technical applications. The knowledge of the thermophysical properties of the system aluminium-nickel has been limited to the areas close to the pure elements mainly related to the high melting temperatures of up to 1638 C. The viscosity, which is one of these thermophysical properties, depends on alloy composition as well as on temperature. The viscosity is of importance as an input parameter in computer simulations and for improving casting processes of metallic alloys. The viscosity of aluminium-nickel melts has been measured only once so far. However, not the whole concentration range of the aluminium-nickel system was covered by these data. In particular the viscosity values of the high melting alloys, which are of technological interest, were unknown. The measurement of the missing values was not possible due to the high melting temperatures using existing viscometers. A new oscillating cup viscometer has been constructed within this work. The viscometer has been tested measuring the viscosity values of pure metals, which are well known in literature. The test measurements have been done at temperatures up to 1800 C. A temperature of 2300 C is achievable with slight modifications. A new software for controlling the device and evaluation of the measured data has been developed. Several working equations for calculating the viscosity have been implemented. Furthermore a new approach has been used for detecting the damping of the oscillation of the pendulum containing the liquid sample. The viscosity of aluminium-nickel melts have been measured successfully. The measured values are in good agreement with the little number of known values. A good agreement with values calculated from diffusion experiments and computer simulations was observed as well. Several models for calculating the viscosity of liquid alloys have been tested and

  4. Cathodic protection of steel by electrodeposited zinc-nickel alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, K.R.; Smith, C.J.E. [Defence Research Agency, Farnborough (United Kingdom). Structural Materials Centre; Robinson, M.J. [Cranfield Univ. (United Kingdom). School of Industrial and Manufacturing Science

    1995-12-01

    The ability of electrodeposited zinc-nickel alloy coatings to cathodically protect steel was studied in dilute chloride solutions. The potential distribution along steel strips partly electroplated with zinc-nickel alloys was determined, and the length of exposed steel that was held below the minimum protection potential (E{sub prot}) was taken as a measure of the level of cathodic protection (CP) provided by the alloy coatings. The level of CP afforded by zinc alloy coatings was found to decrease with increasing nickel content. When nickel content was increased to {approx} {ge} 21 wt%, no CP was obtained. Surface analysis of uncoupled zinc-nickel alloys that were immersed in sodium chloride (NaCl) solutions showed the concentration of zinc decreased in the surface layers while the concentration of nickel increased, indicating that the alloys were susceptible to dezincification. The analysis of zinc-nickel alloy coatings on partly electroplated steel strips that were immersed in chloride solution showed a significantly higher level of dezincification than that found for uncoupled alloy coatings. This effect accounted for the rapid loss of CP afforded to steel by some zinc alloy coatings, particularly those with high initial nickel levels.

  5. Generalized corrosion of nickel base alloys in high temperature aqueous media: a contribution to the comprehension of the mechanisms

    International Nuclear Information System (INIS)

    Marchetti-Sillans, L.

    2007-11-01

    In France, nickel base alloys, such as alloy 600 and alloy 690, are the materials constituting steam generators (SG) tubes of pressurized water reactors (PWR). The generalized corrosion resulting from the interaction between these alloys and the PWR primary media leads, on the one hand, to the formation of a thin protective oxide scale (∼ 10 nm), and on the other hand, to the release of cations in the primary circuit, which entails an increase of the global radioactivity of this circuit. The goal of this work is to supply some new comprehension elements about nickel base alloys corrosion phenomena in PWR primary media, taking up with underlining the effects of metallurgical and physico-chemical parameters on the nature and the growth mechanisms of the protective oxide scale. In this context, the passive film formed during the exposition of alloys 600, 690 and Ni-30Cr, in conditions simulating the PWR primary media, has been analyzed by a set of characterization techniques (SEM, TEM, PEC and MPEC, XPS). The coupling of these methods leads to a fine description, in terms of nature and structure, of the multilayered oxide forming during the exposition of nickel base alloys in primary media. Thus, the protective part of the oxide scale is composed of a continuous layer of iron and nickel mixed chromite, and Cr 2 O 3 nodules dispersed at the alloy / mixed chromite interface. The study of protective scale growth mechanisms by tracers and markers experiments reveals that the formation of the mixed chromite is the consequence of an anionic mechanism, resulting from short circuits like grain boundaries diffusion. Besides, the impact of alloy surface defects has also been studied, underlining a double effect of this parameter, which influences the short circuits diffusion density in oxide and the formation rate of Cr 2 O 3 nodules. The sum of these results leads to suggest a description of the nickel base alloys corrosion mechanisms in PWR primary media and to tackle some

  6. High density tungsten-nickel-iron-cobalt alloys having improved hardness and method for making same

    International Nuclear Information System (INIS)

    Penrice, T.W.; Bost, J.

    1988-01-01

    This patent describes the process of making high density alloy containing about 85 to 98 weight percent tungsten and the balance of the alloy being essentially a binder of nickel, iron and cobalt, and wherein the cobalt is present in an amount within the range of about 5 to 47.5 weight percent of the binder, comprising: blending powders of the tungsten, nickel, iron and cobalt into a homogeneous composition, compacting the homogeneous composition into a shaped article, heating the shaped article to a temperature and for a time sufficient to sinter the article, subjecting the sintered article to a temperature sufficient to enable the intermetallic phase formed at the matrix to tungsten interface to diffuse into the gamma austenitic phase whereby the alpha tungsten/gamma austenite boundaries are essentially free of such intermetallic phase, quenching the article, and swaging the article to a reduction in area of about 5 to 40 percent, the article having improved mechanical properties, including improved tensile strength and hardness while maintaining suitable ductility for subsequent working thereof

  7. Nickel and its alloys as perspective materials for intermediate temperature steam electrolysers operating on proton conducting solid acids as electrolyte

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Jensen, Jens Oluf

    2012-01-01

    Several stainless steels, nickel-based alloys, Ta-coated stainless steel, niobium, nickel, platinum and gold were evaluated as possible materials for use in the intermediate temperature water electrolysers. The corrosion resistance was measured in molten KH2PO4 as simulated conditions corresponding...

  8. CASTI handbook of stainless steels and nickel alloys. 2. ed.

    International Nuclear Information System (INIS)

    Lamb, S.

    2002-01-01

    This is the only up-to-date (2002) reference book that covers both stainless steels and nickel alloys. Written by 30 authors and peer reviewers with over 700 years of combined industrial experience, this CASTI handbook provides the latest stainless steels and nickel alloys information in a practical and comprehensive manner. For the project engineer, maintenance engineer or inspector, this book provides solutions to many of the corrosion problems encountered in aggressive environmental conditions. Some of the corrosive conditions covered are: stress corrosion cracking, reducing environments, halogenation, highly oxidizing environments, and high temperatures. Hundreds of different material applications and selections, throughout many industries, are referenced. It is an ideal reference source to assist in preventing or minimizing corrosion related problems, including those encountered during welding fabrication. This practical handbook also contains a handy 'Alloy Index' which lists each alloy by its ASTM Specification, UNS Number, common name, trade name and page number references. The second edition includes additional coverage of corrosion resistant alloys for downhole production tubing. The new material covers corrosion processes, corrosion rates, hydrogen sulfide environments, corrosion inhibitors, corrosion resistant alloys, the application of stainless steel in production conditions, and more

  9. Friction behavior of cobalt base and nickel base hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    A friction behavior of the hardfacing materials such as cobalt base alloy ''Stellite'' and nickel base alloy ''Colmonoy'' used in the sliding components of a sodium cooled fast breeder reactor was investigated in various sodium environments. Also, friction tests on these materials were carried out in argon environment. And they were compared with those in sodium environment. The results obtained are as follows: (1) In argon, the cobalt base hardfacing alloy showed better friction behavior than the nickel base hardfacing alloy. In sodium, the latter was observed to have the better friction behavior being independent of the sodium temperature. (2) The friction coefficient of each material tends to become lower by pre-exposure in sodium. Particularly, this tendency was remarkable for the nickel base hardfacing alloy. (3) The friction coefficient between SUS 316 and one of these hardfacing materials was higher than that between latter materials. Also, some elements of hardfacing alloys were recognized to transfer on the friction surface of SUS 316 material. (4) It was observed that each tested material has a greater friction coefficient with a decrease of the oxygen content in sodium. (author)

  10. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...

  11. On the rational alloying of structural chromium-nickel steels

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1982-01-01

    A study was made on the influence of chromium nickel, phosphorus on the critical brittleness temperature of Cr-Ni-Mo-V structural steels. It is shown that the critical brittleness temperature of these steels increases at chromium content more over than 2% and nickel content more than 2% in the result of carbide transformations during tempering. Increase of nickel content in Cr-Ni-Mo-V-steels strengthens the tendency to embrittlement during slow cooling, from tempering temperature owing to development of process of phosphorus grain-boundary segregation. Two mentioned mechanisms of embrittlement determine principles of rational steel alloying. The extreme dependence of the critical brittleness temperature on chromium and nickel content, which enables to choose the optimum composition of Cr-Ni-Mo-V-steels, was established

  12. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Nickel based alloy, the characteristic of which is that it mainly includes in percentages by weight: 57-63 Ni, 7-18 Cr, 10-20 Fe, 4-6 Mo, 1-2 Nb, 0.2-0.8 Si, 0.01-0.05 Zr, 1.0-2.5 Ti, 1.0-2.5 Al, 0.02-0.06 C and 0.002-0.015 B. The aim is to create new nickel-chromium alloys, hardened in a solid solution and by precipitation, that are stable, exhibit reduced swelling and resistant to plastic deformation inside the reactor. These alloys of the gamma prime type have improved mechanical strengthm swelling resistance, structural stability and welding properties compared with Inconel 625 [fr

  13. Nickel-titanium alloys: a systematic review

    Directory of Open Access Journals (Sweden)

    Marcelo do Amaral Ferreira

    2012-06-01

    Full Text Available OBJECTIVE: A systematic review on nickel-titanium wires was performed. The strategy was focused on Entrez-PubMed-OLDMEDLINE, Scopus and BioMed Central from 1963 to 2008. METHODS: Papers in English and French describing the behavior of these wires and laboratorial methods to identify crystalline transformation were considered. A total of 29 papers were selected. RESULTS: Nickel-titanium wires show exceptional features in terms of elasticity and shape memory effects. However, clinical applications request a deeper knowledge of these properties in order to allow the professional to use them in a rational manner. In addition, the necessary information regarding each alloy often does not correspond to the information given by the manufacturer. Many alloys called "superelastic" do not present this effect; they just behave as less stiff alloys, with a larger springback if compared to the stainless steel wires. CONCLUSIONS: Laboratory tests are the only means to observe the real behavior of these materials, including temperature transition range (TTR and applied tensions. However, it is also possible to determine in which TTR these alloys change the crystalline structure.

  14. Nickel coating on high strength low alloy steel by pulse current deposition

    Science.gov (United States)

    Nigam, S.; Patel, S. K.; Mahapatra, S. S.; Sharma, N.; Ghosh, K. S.

    2015-02-01

    Nickel is a silvery-white metal mostly used to enhance the value, utility, and lifespan of industrial equipment and components by protecting them from corrosion. Nickel is commonly used in the chemical and food processing industries to prevent iron from contamination. Since the properties of nickel can be controlled and varied over broad ranges, nickel plating finds numerous applications in industries. In the present investigation, pulse current electro-deposition technique has been used to deposit nickel on a high strength low alloy (HSLA) steel substrate.Coating of nickel is confirmed by X-ray diffraction (XRD) and EDAX analysis. Optical microscopy and SEM is used to assess the coating characteristics. Electrochemical polarization study has been carried out to study the corrosion behaviour of nickel coating and the polarisation curves have revealed that current density used during pulse electro-deposition plays a vital role on characteristics of nickel coating.

  15. Evolution of precipitate in nickel-base alloy 718 irradiated with argon ions at elevated temperature

    International Nuclear Information System (INIS)

    Jin, Shuoxue; Luo, Fengfeng; Ma, Shuli; Chen, Jihong; Li, Tiecheng; Tang, Rui; Guo, Liping

    2013-01-01

    Alloy 718 is a nickel-base superalloy whose strength derives from γ′(Ni 3 (Al,Ti)) and γ″(Ni 3 Nb) precipitates. The evolution of the precipitates in alloy 718 irradiated with argon ions at elevated temperature were examined via transmission electron microscopy. Selected-area electron diffraction indicated superlattice spots disappeared after argon ion irradiation, which showing that the ordered structure of the γ′ and γ″ precipitates became disordered. The size of the precipitates became smaller with the irradiation dose increasing at 290 °C

  16. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.

    1981-01-01

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  17. Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    Science.gov (United States)

    DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.

    2009-01-01

    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.

  18. Galvanic corrosion resistance of welded dissimilar nickel-base alloys

    International Nuclear Information System (INIS)

    Corbett, R.A.; Morrison, W.S.; Snyder, R.J.

    1986-01-01

    A program for evaluating the corrosion resistance of various dissimilar welded nickel-base alloy combinations is outlined. Alloy combinations included ALLCORR, Hastelloy C-276, Inconel 72 and Inconel 690. The GTAW welding process involved both high and minimum heat in-put conditions. Samples were evaluated in the as-welded condition, as well as after having been aged at various condtions of time and temperature. These were judged to be most representative of process upset conditions which might be expected. Corrosion testing evaluated resistance to an oxidizing acid and a severe service environment in which the alloy combinations might be used. Mechanical properties are also discussed

  19. A sulfidation-resistant nickel-base alloy

    International Nuclear Information System (INIS)

    Lai, G.Y.

    1989-01-01

    For applications in mildly to moderately sulfidizing environments, stainless steels, Fe-Ni-Cr alloys (e.g., alloys 800 and 330), and more recently Fe-Ni-Cr-Co alloys (e.g., alloy 556) are frequently used for construction of process equipment. However, for many highly sulfidizing environments, few existing commercial alloys have adequate performance. Thus, a new nickel-based alloy containing 27 wt.% Co, 28 wt.% Cr, 4 wt.% Fe, 2.75 wt.% Si, 0.5 wt.% Mn and 0.05 wt.% C (Haynes alloy HR-160) was developed

  20. Protective coatings for high temperature alloys state of technology

    International Nuclear Information System (INIS)

    Goward, G.W.

    1976-01-01

    Coatings used on nickel- and cobalt-base superalloy blades and vanes in gas turbine engines typify the state of coating technology for high temperature alloys. Coatings formed by interdiffusion of aluminum with the alloys to form layers consisting mainly of intermetallic compounds, such as NiAl and CoAl, were the first systems used for protection of gas turbine airfoils. The protectivity of these systems is derived from the formation of protective alumina scales. In a general way, coating degradation occurs by cyclic oxidation, molten salt hot corrosion and, at higher temperatures, interdiffusion with the substrate. Thermal fatigue properties are governed by the brittle-ductile transition behavior of the intermetallic compounds NiAl and CoAl. Both positive and negative effects occur, depending on the shapes of thermal strain-temperature curves for particular applications. Significant increases in hot corrosion and oxidation resistance have been obtained by the incorporation of noble metals, such as platinum, in aluminide coatings. The so-called MCrAlY overlay coatings, based on nickel, cobalt, iron and combinations thereof with chromium, aluminum and yttrium can be formulated over a wide range of compositions nominally independent of those of substrate alloys. Improved oxidation resistance and, in part, hot corrosion resistance is derived from yttrium which enhances protective oxide adherence. Mechanical properties, principally ductility, and therefore thermal fatigue resistance, can be adjusted to the requirements of specific applications. Incremental improvements in performance of the MCrAlY coatings are expected as research programs define degradation mechanisms in greater detail and more complex compositions are devised. More basic evaluations of mixed metal-ceramic insulative coatings have been initiated to determine if these systems are capable of effecting further increases in airfoil durability

  1. Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated

    Science.gov (United States)

    Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd

    2005-01-01

    High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.

  2. Photo-Electrochemical Effect of Zinc Addition on the Electrochemical Corrosion Potentials of Stainless Steels and Nickel Alloys in High Temperature Water

    International Nuclear Information System (INIS)

    Lee, Yi-Ching; Fong, Clinton; Fang-Chu, Charles; Chang, Ching

    2012-09-01

    Hydrogen water chemistry (HWC) is one of the main mitigating methods for stress corrosion cracking problem of reactor core stainless steel and nickel based alloy components. Zinc is added to minimize the radiation increase associated with HWC. However, the subsequently formed zinc-containing surface oxides may exhibit p-type semiconducting characteristics. Upon the irradiation of Cherenkov and Gamma ray in the reactor core, the ECP of stainless steels and nickel based alloys may shift in the anodic direction, possibly offsetting the beneficial effect of HWC. This study will evaluate the photo-electrochemical effect of Zinc Water Chemistry on SS304 stainless steel and Alloy 182 nickel based weld metal under simulated irradiated BWR water environments with UV illumination. The experimental results reveal that Alloy 182 nickel-based alloy generally possesses n-type semiconductor characteristics in both oxidizing NWC and reducing HWC conditions with zinc addition. Upon UV irradiation, the ECP of Alloy 182 will shift in the cathodic direction. In most conditions, SS304 will also exhibit n-type semiconducting properties. Only under hydrogen water chemistry, a weak p-type property may emerge. Only a slight upward shift in the anodic direction is detected when SS304 is illuminated with UV light. The potential influence of p-type semiconductor of zinc containing surface oxides is weak and the mitigation effect of HWC on the stress corrosion cracking is not adversely affected. (authors)

  3. Texture Formation of Electroplated Nickel and Nickel Alloy on Cu Substrate

    International Nuclear Information System (INIS)

    Lee, Hee Gyoun; Hong, Gye Won; Kim, Jae Geun; Lee, Sun Wang; Kim, Ho Jin

    2006-01-01

    Nickel and nickel-tungsten alloy were electroplated on a cold rolled and heat treated copper(Cu) substrate. 4 mm-thick high purity commercial grade Cu was rolled to various thicknesses of 50, 70, 100 and 150 micron. High reduction ratio of 30% was applied down to 150 micron. Rolled texture was converted into cube texture via high temperature heat treatment at 400-800 degrees C. Grain size of Cu was about 50 micron which is much smaller compared to >300 micron for the Cu prepared using smaller reduction pass of 5%. 1.5 km-long 150 micron Cu was fabricated with a rolling speed of 33 m/min and texture of Cu was uniform along length. Abnormal grain growth and non-cube texture appeared for the specimen anneal above 900 degrees C. 1-10 micron thick Ni and Ni-W film was electroplated onto an annealed cube-textured Cu or directly on a cold rolled Cu. Both specimens were annealed and the degree of texture was measured. For electroplating of Ni on annealed Cu, Ni layer duplicated the cube-texture of Cu substrate and the FWHM of in plane XRD measurement for annealed Cu layer and electroplated layer was 9.9 degree and 13.4 degree, respectively. But the FWHM of in plane XRD measurement of the specimen which electroplated Ni directly on cold rolled Cu was 8.6 degree, which is better texture than that of nickel electroplated on annealed Cu and it might be caused by the suppression of secondary recrystallization and abnormal grain growth of Cu at high temperature above 900 degrees C by electroplated nickel.

  4. Environmentally assisted fatigue evaluation model of alloy 690 steam generator tube in high temperature water

    International Nuclear Information System (INIS)

    Tan Jibo; Wu Xinqiang; Han Enhou; Wang Xiang; Liu Xiaoqiang; Xu Xuelian

    2015-01-01

    Nickel-based alloy 690 has been widely used as steam generator tube in light water reactor (LWR) nuclear power plants, which may suffer from corrosion fatigue during long-term service. Many researches and operating experience indicated that the effect of LWR environment could significantly reduce the fatigue life of structural materials. However. such an environmental degradation effect was not fully addressed in the current ASME code design fatigue curves. Therefore, the Regulatory Guide 1.207 issued by US NRC required a new NPP have to incorporate the environment effects into fatigue analyses. In the last few decades, researchers in USA and Japan systematically investigated the corrosion fatigue behavior of nuclear-grade structural materials in LWR environment. Then, ANL model and JSME model were proposed, which incorporated environmental effects, including temperature, dissolved oxygen (DO) and strain rate for the nickel-based alloys. Due to lack of experiment data on domestic materials, there is no related environmental fatigue design model in China. In the present work, based on the corrosion fatigue tests of a kind of boat-shaped specimen in borated and lithiated high temperature water, the corrosion fatigue behavior and environmentally assisted cracking mechanism of domestic Alloy 690 steam generator tube have been investigate. An IMR model for the nickel-based alloy was proposed. The environmental fatigue life correction factor (F en ) was established, which addressed the environmental factors, including temperature, strain rate and dissolved oxygen. The method to evaluate environmental fatigue damage of structural materials in NPPs was proposed. (authors)

  5. Electrodeposition of zinc--nickel alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J W; Johnson, H R

    1977-10-01

    One possible substitute for cadmium in some applications is a zinc--nickel alloy deposit. Previous work by others showed that electrodeposited zinc--nickel coatings containing about 85 percent zinc and 15 percent nickel provided noticeably better corrosion resistance than pure zinc. Present work which supports this finding also shows that the corrosion resistance of the alloy deposit compares favorably with cadmium.

  6. Design of high-temperature high-strength Al-Ti-V-Zr alloys

    International Nuclear Information System (INIS)

    Lee, H.M.

    1990-01-01

    This paper reports that it seems plausible to develop high-strength Al-base alloys useful up to 698K in view of the behavior of nickel base superalloys which resist degradation of mechanical properties to 75 pct of their absolute melting temperature. For high temperature Al alloys, the dispersed hardening phase must not undergo phase transformation to an undesirable phase during long time exposure at the temperature of interest. An additional factor to be considered is the stability of the hardening phase with respect to Ostwald ripening. This coarsening resistance is necessary so that the required strength level can be maintained after the long-time service at high temperatures. The equilibrium crystal structures of Al 3 Ti, Al 3 V and Al 3 Zr are tetragonal D0 22 , D0 22 and D0 23 , respectively. At the temperatures of interest, around 698K, vanadium and titanium are mutually substitutable in the form of Al 3 (Ti, V). Much of titanium and vanadium can be substituted for zirconium in the D0 23 - type Al 3 Zr compound, creating Al 3 (Ti, Zr) and Al 3 (V, Zr), respectively. In particular, it has been reported that fcc L1 2 -structured Al 3 M dispersoids form in the rapidly solidified Al-V-Zr and Al-Ti-Zr systems and both L1 2 and D0 23 -structured Al 3 M phases showed slow coarsening kinetics

  7. An Investigation of the Mechanical Properties of a Weldment of 7% Nickel Alloy Steels

    Directory of Open Access Journals (Sweden)

    Jeong Yeol Park

    2016-11-01

    Full Text Available During the last decade, the demand for natural gas has steadily increased for the prevention of environmental pollution. For this reason, many liquefied natural gas (LNG carriers have been manufactured. Since one of the most important issues in the design of LNG carriers is to guarantee structural safety, the use of low-temperature materials is increasing. Among commonly employed low-temperature materials, nickel steel has many benefits such as good strength and outstanding corrosion resistance. Accordingly, nickel steels are one of the most commonly used low-temperature steels for LNG storage tanks. However, the study of fracture toughness with various welding consumables of 7% nickel alloy steel is insufficient for ensuring the structural safety of LNG storage tanks. Therefore, the aim of this study was to evaluate fracture toughness of several different weldments for 7% nickel alloy steels. The weldment of 7% nickel alloy steel was fabricated by tungsten inert gas (TIG, flux cored arc welding (FCAW, and gas metal arc welding (GMAW. In order to assess the material performance of the weldments at low temperature, fracture toughness such as crack tip opening displacement (CTOD and the absorbed impact energy of weldments were compared with those of 9% nickel steel weldments.

  8. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    Science.gov (United States)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  9. Studies on neutron irradiation effects of iron alloys and nickel-base heat resistant alloys

    International Nuclear Information System (INIS)

    Watanabe, Katsutoshi

    1987-09-01

    The present paper describes the results of neutron irradiation effects on iron alloys and nickel-base heat resistant alloys. As for the iron alloys, irradiation hardening and embrittlement were investigated using internal friction measurement, electron microscopy and tensile testings. The role of alloying elements was also investigated to understand the irradiation behavior of iron alloys. The essential factors affecting irradiation hardening and embrittlement were thus clarified. On the other hand, postirradiation tensile and creep properties were measured of Hastelloy X alloy. Irradiation behavior at elevated temperatures is discussed. (author)

  10. The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions

    International Nuclear Information System (INIS)

    Hernandez-Sandoval, J.; Garza-Elizondo, G.H.; Samuel, A.M.; Valtiierra, S.; Samuel, F.H.

    2014-01-01

    Highlights: • Characterization on the precipitation of Ni- and Zr-based intermetallics. • High temperature tensile properties of 354 alloy containing Zr and Ni below 0.5%. • Quality index charts as a function of heat treatment. • Yield strength and ductility color contours as a function of aging temperature and aging time. - Abstract: The principal aim of the present work was to investigate the effects of minor additions of nickel and zirconium on the strength of cast aluminum alloy 354 at ambient and high temperatures. Tensile properties of the as-cast and heat-treated alloys were determined at room temperature and at high temperatures (190 °C, 250 °C, 350 °C). The results show that Zr reacts only with Ti, Si and Al. From the quality index charts constructed for these alloys, the quality index attains minimum and maximum values of 259 MPa and 459 MPa, in the as-cast and solution-treated conditions; also, maximum and minimum values of yield strength are observed at 345 MPa and 80 MPa, respectively, within the series of aging treatments applied. A decrease in tensile properties of ∼10% with the addition of 0.4 wt.% nickel is attributed to a nickel–copper reaction. The reduction in mechanical properties due to addition of different elements is attributed principally to the increase in the percentage of intermetallic phase particles formed during solidification; such particles act as stress concentrators, decreasing the alloy ductility. Tensile test results at ambient temperatures show a slight increase (∼10%) in alloys with Zr and Zr/Ni additions, particularly at aging temperatures above 240 °C. Additions of Zr and Zr + Ni increase the high temperature tensile properties, in particular for the alloy containing 0.2 wt.% Zr + 0.2 wt.% Ni, which exhibits an increase of more than 30% in the tensile properties at 300 °C compared with the base 354 alloy

  11. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  12. High chromium nickel base alloys hot cracking susceptibility

    International Nuclear Information System (INIS)

    Tirand, G.; Primault, C.; Robin, V.

    2014-01-01

    High Chromium nickel based alloys (FM52) have a higher ductility dip cracking sensitivity. New filler material with higher niobium and molybdenum content are developed to decrease the hot crack formation. The behavior of these materials is studied by coupling microstructural analyses and hot cracking test, PVR test. The metallurgical analyses illustrate an Nb and Mo enrichment of the inter-dendritic spaces of the new materials. A niobium high content (FM52MSS) induces the formation of primary carbide at the end of solidification. The PVR test reveal a solidification crack sensitivity of the new materials, and a lowest ductility dip cracking sensitivity for the filler material 52MSS. (authors)

  13. Shape memory behavior of single and polycrystalline nickel rich nickel titanium alloys

    Science.gov (United States)

    Kaya, Irfan

    NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni 51Ti49 (at.%) single-crystals are determined. Their properties are sensitive to heat treatments that affect the phase transformation behavior of these alloys. Phase transformation properties and microstructure were investigated in aged Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase transformation was found to be responsible for the change in shape memory behavior with stress. The shape memory responses of [001], [011] and [111] oriented Ni 51Ti49 single-crystals alloy were reported under compression to reveal the orientation dependence of their shape memory behavior. It has been found that transformation strain, temperatures and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are highly orientation dependent. The effects of precipitation formation and compressive loading at selected temperatures on the two-way shape memory effect (TWSME) properties of a [111]- oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied compression stress along the

  14. Dependence of secondary ion emission current on the composition of beryllium-nickel alloys

    International Nuclear Information System (INIS)

    Pistryak, V.M.; Kozlov, V.F.; Tikhinskij, G.F.; Fogel', Ya.M.

    1976-01-01

    The dependence is studied of the secondary ions emission current on the composition of beryllium-nickel alloys. It is established that appearance of intermetallide phases in the Be-Ni alloys has no effect on the linear character of the secondary ions Ni + and Be + of emission current. The phase transformation from the solid solution to the compound Ni 5 Be 21 with a change in the alloys concentration is fixed by appearance of the secondary ion NiBe + emission. The limited solubility of nickel in solid beryllium at a temperature close to room temperature is determined to be equal to 1.3+-0.27 at%

  15. Carbon formation on nickel and nickel-copper alloy catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alstrup, I.; Soerensen, O.; Rostrup-Nielsen, J.R. [Haldor Topsoe Research Labs., Lyngby (Denmark); Tavares, M.T.; Bernardo, C.A.

    1998-05-01

    Equilibrium, kinetic and morphological studies of carbon formation in CH{sub 4} + H{sub 2}, CO, and CO + H{sub 2} gases on silica supported nickel and nickel-copper catalysts are reviewed. The equilibrium deviates in all cases from graphite equilibrium and more so in CO + CO{sub 2} than in CH{sub 4} + H{sub 2}. A kinetic model based on information from surface science results with chemisorption of CH{sub 4} and possibly also the first dehydrogenation step as rate controlling describes carbon formation on nickel catalyst in CH{sub 4} + H{sub 2} well. The kinetics of carbon formation in CO and CO + H{sub 2} gases are in agreement with CO disproportionation as rate determining step. The presence of hydrogen influences strongly the chemisorption of CO. Carbon filaments are formed when hydrogen is present in the gas while encapsulating carbon dominates in pure CO. Small amounts of Cu alloying promotes while larger amounts (Cu : Ni {>=} 0.1) inhibits carbon formation and changes the morphology of the filaments (``octopus`` carbon formation). Adsorption induced nickel segregation changes the kinetics of the alloy catalysts at high carbon activities. Modifications suggested in some very recent papers on the basis of new results are also briefly discussed. (orig.) 31 refs.

  16. Special features of nickel-molybdenum alloy electrodeposition onto screen-type cathodes

    International Nuclear Information System (INIS)

    Aleksandrova, G.S.; Varypaev, V.N.

    1982-01-01

    Electrolytic nickel-molybdenum alloy, which has a rather low hydrogen overpotential and high corrosion resistance, is of interest as cathode material in industrial electrolysis. Screen-type electrodes with a nickel-molybdenum coating can be used as nonconsumable cathodes in water-activated magnesium-alloy batteries

  17. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  18. Effect of deformation and annealing on mechanical properties of nickel-rhenium alloys

    International Nuclear Information System (INIS)

    Mashkova, V.M.

    1978-01-01

    Studied have been the mechanical properties of nickel-rhenium alloys, depending on the extent of deformation and heat treatment leading to softening. The mechanical properties of the alloys have been estimated by the results of the tensile tests of wire samples. The softening of the alloy at different temperatures is judged about by the variation in hardness. The results of the study indicate that the most abrupt reduction in the hardness of the cold-hardened metal occurs at 900-1,000 deg C and the hold-time of 1 min. Increase in the hold-time at such temperature almost does not reduce the hardness. It is established that in order to soften nickel-rhenium alloys in the process of the cold-deformation at brief annealings in the air the hold-time should not exceed 5 min at 800-900 deg C

  19. Surface treatment for hydrogen storage alloy of nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.-S.; Wu, H.-R.; Wang, Y.-Y.; Wan, C.-C. [National Tsing Hua Univ., Hsinchu (Taiwan). Dept. of Chemical Engineering

    2000-04-28

    The electrochemical performance of AB{sub 2}-type (Ti{sub 0.35}Zr{sub 0.65}Ni{sub 1.2}V{sub 0.6}Mn{sub 0.2}Cr{sub 0.2}) and AB{sub 5}-type (MmB{sub 4.3}(Al{sub 0.3}Mn{sub 0.4}){sub 0.5}) hydrogen storage alloys modified by hot KOH etching and electroless nickel coating has been investigated. It is found that the alloy modified with hot KOH solution shows quick activation but at the expense of cycle-life stability. The alloy coated with nickel was effectively improved in both cycle-life stability and discharge capacity. Both the exchange and limiting current densities were increased by modifying the alloys by hot KOH solution dipping or electroless nickel coating as compared with untreated alloy electrode. The electrode with higher exchange current density and limiting current density leads to increased high-rate dischargeability. A duplex surface modified alloy (i.e., alloy first treated with hot KOH solution and then coated with nickel) has been developed, which performs satisfactorily with respect to both quick activation and long cycle life. In addition, the high-rate dischargeability for the electrode with duplex surface modification is superior to that of electrode solely treated with KOH etching or Ni plating. (orig.)

  20. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    Science.gov (United States)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

  1. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Machet, A.; Galtayries, A.; Zanna, S.; Klein, L.; Maurice, V.; Jolivet, P.; Foucault, M.; Combrade, P.; Scott, P.; Marcus, P

    2004-09-15

    The early stages of passivation in high temperature water of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM). The samples (polycrystal Ni-16Cr-9Fe (wt. %) and single crystal Ni-17Cr-7Fe (1 1 1)) have been exposed for short time periods (0.4-8.2 min) to high temperature (325 deg. C) and high pressure water, under controlled hydrogen pressure, in a microautoclave designed to transfer the samples from and to the XPS spectrometer without air exposure. In the early stages of oxidation of the alloy (0.4-4 min), an ultra-thin oxide layer (about 1 nm) is formed, which consists of chromium oxide (Cr{sub 2}O{sub 3}), according to the Cr 2p{sub 3/2} core level spectrum. An outer layer of Cr(OH){sub 3} with a very small amount of Ni(OH){sub 2} is also revealed by the Cr 2p{sub 3/2}, Ni 2p{sub 3/2}, and O 1s core level spectra. At this early stage, there is a temporary blocking of the growth of Cr{sub 2}O{sub 3}. For longer exposures (4-8 min), the Cr{sub 2}O{sub 3} inner layer becomes thicker, at the expense of the outer Cr(OH){sub 3} layer. This implies the transport of Cr and Ni through the oxide layer, and release of Ni{sup 2+} in the solution. The structure of the ultra-thin oxide film formed on a single crystal Ni-17Cr-7Fe(1 1 1) alloy was analysed by STM in the constant current mode; STM images reveal that, in the early stages of oxidation, the oxide is crystalline, and the observed structure is consistent with the hexagonal structure of the oxygen sub-lattice in the basal plane (0 0 0 1) of {alpha}-Cr{sub 2}O{sub 3}.

  2. New alloys for high temperature applications in incineration plants

    International Nuclear Information System (INIS)

    Martinz, H.P.; Koeck, W.

    1993-01-01

    The hot components of incineration plants exposed to temperatures between 800 and 1,200 C like boilers, grates, thermocouple sheaths and nozzles suffer from severe joint slag and hot gas attack. Considering corrosion resistance only, ceramic materials show excellent performance under these conditions. But because of the ceramics' brittleness metallic materials exhibit an overall advantage although being corroded faster. Within the class of suitable metals PM-ODS (oxide dispersion strengthened)-superalloys based on iron or nickel and PM-Cr-base-alloys are among the most promising ones. This can be derived from various laboratory and field tests which were performed up to now. Laboratory oxidation tests indicate that these new alloys can be used at temperatures up to 1,300 C in hot air. High temperature erosion tests with quartz particles show that PM 2,000 (Fe 19,5Cr5,5Al0,5Ti0,5Y 2 O 3 ) and Ducropur (99.7% Cr) have almost the same resistance against particle impact as alumina or zirconia at 900 C. The corresponding laboratory and field tests under typical joint slag and hot gas conditions at temperatures up to 1,200 C show good results for PM 2,000 and already lead to the actual application of boiler components. Extensive testing has been performed in the field of municipal waste incineration. Depending on temperature, slag and hot gas composition selected grades of the PM-ODS and Cr-base-alloy-group give satisfactory results in the field tests. In the pulp industry black liquor, an alkaline solution with high concentrations of organic waste, is incinerated for the recovery of caustic soda. Flame sprayed coatings of Ducrolloy Cr50Ni give a sixfold increase of the lifetime of the burner nozzles compared to unprotected stainless steel

  3. Localized corrosion of molybdenum-bearing nickel alloys in chloride solutions

    International Nuclear Information System (INIS)

    Postlethwaite, J.; Scoular, R.J.; Dobbin, M.H.

    1988-01-01

    Electrochemical and immersion tests have been applied to a study of the localized corrosion resistance of two molybdenum-bearing nickel alloys. Alloys C-276 and 6y25, in neutral chloride solutions in the temperature range of 25 to 200 C as part of the container materials evaluation screening tests for the Canadian Nuclear Fuel Waste Management Program. Cyclic polarization studies show that the passivation breakdown potentials move rapidly to more active values with increasing temperatures, indicating a reduced resistance to localized corrosion. The results of immersion tests show that both alloys do suffer crevice corrosion in neutral aerated sodium chloride solutions at elevated temperatures, but that in both cases there is a limiting temperature > 100C, below which, the alloys are not attacked, regardless of the chloride concentration

  4. Ignition characteristics of the nickel-based alloy UNS N07001 in pressurized oxygen

    Science.gov (United States)

    Bransford, J. W.; Billiard, P. A.

    1990-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel-based alloy UNS N07001. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to combustion from temperatures below the solidus temperature. In addition, the alloy had a tendency to develop combustion zones (hot spots) at high oxygen pressures when the incremental (step) heating test mode was used. Unique points on the temperature-time curves that describe certain events are defined and the temperatures at which these events occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  5. Void swelling and segregation in dilute nickel alloys

    International Nuclear Information System (INIS)

    Potter, D.I.; Rehn, L.E.; Okamoto, P.R.; Wiedersich, H.

    1977-01-01

    Five binary alloys containing 1 at.% of Al, Ti, Mo, Si and Be in nickel were irradiated at temperatures from 525 to 675 0 C with 3.5-MeV 58 Ni + ions. The resultant microstructures were examined by TEM, and void diameters, number densities and swelling are presented for each alloy over the temperature interval investigated. A systematic relation between solute misfit (size factor) and void swelling is established for these alloys. Solute concentration profiles near the irradiated surface were determined and these also exhibited a systematic behavior--undersize solutes segregated to the surface, whereas oversize solutes were depleted. The results are consistent with calculations based on strong interstitial-solute trapping by undersize solutes and vacancy-solute trapping by oversize solutes that are weak interstitial traps

  6. Studies on the growth of oxide films on alloy 800 and alloy 600 in lithiated water at high temperature

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Bordon, R.

    2007-01-01

    In this work, the oxide films grown on Alloy 800 and Alloy 600 in lithiated (pH 25 C d egrees = 10.2-10.4) water at high temperature, with and without hydrogen overpressure (HO) and an initial oxygen dissolved in the water have been studied. The oxide films were grown at different temperatures (220-350 C degrees) and exposure times with HO, and at 315 C degrees without HO in static autoclaves. Some results are also reported for oxide layers grown on Alloy 800 coupons exposed in a high temperature loop during extended exposure times. The average oxide thickness was determined using descaling procedures. The morphology and composition of the oxide films were analyzed with scanning electron microscopy (SEM), EDS and X-ray diffraction (XRD). For both Alloys, at 350 C degrees with HO, the oxide layers were clearly composed of a double layer: an inner one of very small crystallites and an outer layer formed by bigger crystals scattered over the inner one. The analysis by X-ray diffraction indicated the presence of spinel structures like magnetite (Fe 3 O 4 ) and ferrites and/or nickel chromites. In this case the average oxide thickness was around 0.12 to 0.15 μm for both Alloys. Similar values were found at lower temperatures. The morphology of the oxide layer was similar at lower temperatures for Alloy 800, but a different morphology consisting of platelets or needles was found for Alloy 600. The oxide morphology found at 315 C degrees, without HO and with initial dissolved oxygen in the water, was also very different between both Alloys. The oxide film grown on Alloy 600 with an initial dissolved oxygen in the water, showed clusters of platelets forming structures like flowers that were dispersed on an rather homogeneous layer consisting of smaller platelets or needles. The average oxide film grown in this case was around 0.25 μm for Alloy 600 and 0.18 μm for Alloy 800. (author) [es

  7. Precipitation in solid solution and structural transformations in single crystals of high rhenium ruthenium-containing nickel superalloys at high-temperature creep

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A.A.; Petrushin, N.V.; Zaitsev, D.V.; Treninkov, I.A.; Filonova, E.V. [All-Russian Scientific Research Institute of Aviation Materials (VIAM), Moscow (Russian Federation)

    2010-07-01

    The phase composition and structure of single crystals of two superalloys (alloy 1 and alloy 2) were investigated in this work. For alloy 1 (Re - 9 wt%) the kinetics of precipitation in solid solution at heat treatment (HT) was investigated. TEM and X-Ray examinations have revealed that during HT rhombic phase (R-phase) precipitation (Immm class (BCR)) occurs. The TTT diagram is plotted, it contains the time-temperature area of the existence of R-phase particles. The element content of R-phase is identified (at. %): Re- 51.5; Co- 23.5; Cr- 14.8; Mo- 4.2; W- 3.3; Ta- 2.7. For alloy 2 (Re - 6.5 wt %, Ru - 4 wt %) structural transformations at high-temperature creep are investigated. By dark-field TEM methods it is established, that in alloy 2 the additional phase with a rhombic lattice is formed during creep. Particles of this phase precipitate in {gamma}-phase and their quantity increases during high-temperature creep. It is revealed that during creep 3-D dislocation network is formed in {gamma}-phase. At the third stage of creep the process of inversion structure formation is observed in the alloy, i.e. {gamma}'-phase becomes a matrix. Thus during modeling creep the volume fraction of {gamma}'-phase in the samples increases from 30% (at creep duration of 200 hrs) up to 55% (at 500 hrs). The processes of structure formation in Re and Ru-containing nickel superalloys are strongly affected by decomposition of solid solution during high-temperature creep that includes precipitation of additional TCP-phases. (orig.)

  8. Stress corrosion cracking of several high strength ferrous and nickel alloys

    Science.gov (United States)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  9. Generalized corrosion of nickel base alloys in high temperature aqueous media: a contribution to the comprehension of the mechanisms; Corrosion generalisee des alliages a base nickel en milieu aqueux a haute temperature: apport a la comprehension des mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti-Sillans, L

    2007-11-15

    In France, nickel base alloys, such as alloy 600 and alloy 690, are the materials constituting steam generators (SG) tubes of pressurized water reactors (PWR). The generalized corrosion resulting from the interaction between these alloys and the PWR primary media leads, on the one hand, to the formation of a thin protective oxide scale ({approx} 10 nm), and on the other hand, to the release of cations in the primary circuit, which entails an increase of the global radioactivity of this circuit. The goal of this work is to supply some new comprehension elements about nickel base alloys corrosion phenomena in PWR primary media, taking up with underlining the effects of metallurgical and physico-chemical parameters on the nature and the growth mechanisms of the protective oxide scale. In this context, the passive film formed during the exposition of alloys 600, 690 and Ni-30Cr, in conditions simulating the PWR primary media, has been analyzed by a set of characterization techniques (SEM, TEM, PEC and MPEC, XPS). The coupling of these methods leads to a fine description, in terms of nature and structure, of the multilayered oxide forming during the exposition of nickel base alloys in primary media. Thus, the protective part of the oxide scale is composed of a continuous layer of iron and nickel mixed chromite, and Cr{sub 2}O{sub 3} nodules dispersed at the alloy / mixed chromite interface. The study of protective scale growth mechanisms by tracers and markers experiments reveals that the formation of the mixed chromite is the consequence of an anionic mechanism, resulting from short circuits like grain boundaries diffusion. Besides, the impact of alloy surface defects has also been studied, underlining a double effect of this parameter, which influences the short circuits diffusion density in oxide and the formation rate of Cr{sub 2}O{sub 3} nodules. The sum of these results leads to suggest a description of the nickel base alloys corrosion mechanisms in PWR primary

  10. Determination of an instability temperature for alloys in the cooling gas of a high temperature reactor

    International Nuclear Information System (INIS)

    Grimmer, H.; Grman, D.; Krompholz, K.; Zimmermann, U.; Ullrich, G.

    1985-05-01

    High temperature alloys designed to be used for components in the primary circuit of a helium cooled high temperature nuclear reactor show massive CO production above a certain temperature, called the instability temperature T/sub i/, which increases with increasing partial pressure of CO in the cooling gas. At p/sub CO/ = 15 microbar, T/sub i/ lies between 900 and 950 degrees C for the four alloys under investigation: T/sub i/ is lowest for the iron base alloy Incoloy 800 H and increases for the nickel base alloys in the order Inconel 617, HDA 230 and Nimonic 86. Measurements of T/sub i/ made at 3 different laboratories were compared and shown to agree for p/sub CO/ 25 microbar, compatible with CO production by a reaction of Cr2O3 with carbides. Some measurements of T/sub i/ on HDA 230 and Nimonic 86 were performed in the course of simulated reactor disturbances. They showed that the oxide layer looses its protective properties above T/sub i/. A highlight of the examinations was the detection of eta-carbides (M6C) with unusual properties. M6C is the only type of carbide occuring in HDA 230. An eta-carbide with a lattice constant of 1088.8 pm had developed at the surface of Nimonic 86 during pre-oxidation before the disturbance simulation. Its composition is estimated at Ni3SiMo2C. Eta-carbides containing Si and especially eta-carbides with lattice constants as low as 1088.8 pm have been described only rarely until now. (author)

  11. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Wojcik, C.C.

    1991-01-01

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  12. Stress corrosion cracking of nickel alloys in bicarbonate and chloride solutions

    International Nuclear Information System (INIS)

    Ares, A. E.; Carranza, R. M.; Giordano, C. M.; Zadorozne, N. S.; Rebak, R.B.

    2013-01-01

    Alloy 22 is one of the candidates for the manufacture of high level radioactive waste containers. These containers provide services in natural environments characterized by multi-ionics solutions, it is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate at temperatures above 60°C and applied potentials around +400 mVSCE are necessary in order to produce cracking, . This susceptibility may be associated to the instability of the passive film formed and to the formation of an anodic current peak in the polarization curves in these media. Until now, it is unclear the role played by each alloying element (Ni, Cr or Mo) in the SCC susceptibility of Alloy 22 in these media The aim of this work is to evaluate the SCC susceptibility of nickel-based alloys in media containing bicarbonate and chloride ions, at high temperature. Slow Strain Rate Testing (SSRT) was conducted to samples of different alloys: 22 (Ni-Cr-Mo), 600 (Ni-Cr-Fe), 800H (Ni-Fe-Cr) y 201 (99.5% Ni).This tests were conducted in 1.1 mol/L NaHCO 3 +1.5 mol/L NaCl a 90°C and different applied potentials (+200mVSCE,+300 mVSCE, +400 mVSCE). These results were complemented with those obtained in a previous work, where we studied the anodic electrochemical behavior of nickel base alloys under the same conditions. It was found that alloy 22 showed a current peak in a potential range between +200 mVSCE and +300 mVSCE when immersed in bicarbonate ions containing solutions. This peak was attributed to the presence of chromium in the alloys. The SSRT showed that only alloy 22 has a clear indication of stress corrosion cracking. The current results suggested that the presence of an anodic peak in the polarization curves was not a sufficient condition for cracking. (author)

  13. Method for electrodeposition of nickel--chromium alloys and coating of uranium

    International Nuclear Information System (INIS)

    Stromatt, R.W.; Lundquist, J.R.

    1975-01-01

    High-quality electrodeposits of nickel-chromium binary alloys in which the percentage of chromium is controlled can be obtained by the addition of a complexing agent such as ethylenediaminetetraacetic disodium salt to the plating solution. The nickel-chromium alloys were found to provide an excellent hydrogen barrier for the protection of uranium fuel elements. (U.S.)

  14. KCl-induced high temperature corrosion of selected commercial alloys. Part I: chromia-formers

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Dahl, Kristian Vinter; Montgomery, Melanie

    2015-01-01

    -grained), Sanicro 28 and the nickel-based alloys 625, 263 and C276. Exposure was performed at 600 °C for 168 h in flowing N2(g)+5%O2(g)+15% H2O(g) (vol.%). Samples were covered with KCl powder prior to exposure. A salt-free exposure was also performed for comparison. Corrosion morphology and products were studied......Laboratory testing of selected chromia-forming alloys was performed to rank the materials and gain further knowledge on the mechanism of KCl-induced high temperature corrosion. The investigated alloys were stainless steels EN1.4021, EN1.4057, EN1.4521, TP347H (coarse-grained), TP347HFG (fine....... In the presence of solid KCl, all the alloys showed significant corrosion. Measurement of corrosion extent indicated that alloys EN1.4057, Sanicro 28 and 625 show a better performance compared to the industrial state of the art material TP347HFG under laboratory conditions. An additional test was performed...

  15. Advanced nickel base alloys for high strength, corrosion applications

    Science.gov (United States)

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  16. Mechanodynamical analysis of nickel-titanium alloys for orthodontics application; Analise mecanodinamica de ligas de niquel-titanio para aplicacao ortodontica

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, Carlos do Canto

    2002-07-01

    Nickel-titanium alloys may coexist in more than one crystalline structure. There is a high temperature phase, austenite, and a low temperature phase, martensite. The metallurgical basis for the superelasticity and the shape memory effect relies in the ability of these alloys to transform easily from one phase to another. There are three essential factors for the orthodontist to understand nickel-titanium alloys behaviour: stress; deflection; and temperature. These three factors are related to each other by the stress-deflection, stress-temperature and deflection-temperature diagrams. This work was undertaken with the objective to analyse commercial nickel-titanium alloys for orthodontics application, using the dynamical mechanical analyser - DMA. Four NiTi 0,017 X 0,025'' archwires were studied. The archwires were Copper NiTi 35 deg C (Ormco), Neo Sentalloy F200 (GAC), Nitinol Superelastic (Unitek) and NiTi (GAC). The different mechanodynamical properties such as elasticity and damping moduli were evaluated. Each commercial material was evaluated with and without a 1 N static force, aiming to evaluate phase transition temperature variation with stress. The austenitic to martensitic phase ratio, for the experiments without static force, was in the range of 1.59 to 1.85. For the 1 N static force tests the austenitic to martensitic phase ratio, ranged from 1.28 to 1.57 due to the higher martensite elasticity modulus. With elastic modulus variation with temperature behaviour, the orthodontist has the knowledge of the force variation applied in the tooth in relation to the oral cavity temperature change, for nickel-titanium alloys that undergo phase transformation. The damping capacity of the studied alloys depends on the materials state: martensitic phase; austenitic phase or during phase transformation. The martensitic phase shows higher dumping capacity. During phase transformation, an internal friction peak may be observed for the CuNiTi 35 deg C and Neo

  17. Mechanodynamical analysis of nickel-titanium alloys for orthodontics application; Analise mecanodinamica de ligas de niquel-titanio para aplicacao ortodontica

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, Carlos do Canto

    2002-07-01

    Nickel-titanium alloys may coexist in more than one crystalline structure. There is a high temperature phase, austenite, and a low temperature phase, martensite. The metallurgical basis for the superelasticity and the shape memory effect relies in the ability of these alloys to transform easily from one phase to another. There are three essential factors for the orthodontist to understand nickel-titanium alloys behaviour: stress; deflection; and temperature. These three factors are related to each other by the stress-deflection, stress-temperature and deflection-temperature diagrams. This work was undertaken with the objective to analyse commercial nickel-titanium alloys for orthodontics application, using the dynamical mechanical analyser - DMA. Four NiTi 0,017 X 0,025'' archwires were studied. The archwires were Copper NiTi 35 deg C (Ormco), Neo Sentalloy F200 (GAC), Nitinol Superelastic (Unitek) and NiTi (GAC). The different mechanodynamical properties such as elasticity and damping moduli were evaluated. Each commercial material was evaluated with and without a 1 N static force, aiming to evaluate phase transition temperature variation with stress. The austenitic to martensitic phase ratio, for the experiments without static force, was in the range of 1.59 to 1.85. For the 1 N static force tests the austenitic to martensitic phase ratio, ranged from 1.28 to 1.57 due to the higher martensite elasticity modulus. With elastic modulus variation with temperature behaviour, the orthodontist has the knowledge of the force variation applied in the tooth in relation to the oral cavity temperature change, for nickel-titanium alloys that undergo phase transformation. The damping capacity of the studied alloys depends on the materials state: martensitic phase; austenitic phase or during phase transformation. The martensitic phase shows higher dumping capacity. During phase transformation, an internal friction peak may be observed for the CuNiTi 35 deg C and Neo Sentalloy F

  18. Fractography of hydrogen-embrittled iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1980-01-01

    Tensile specimens of iron-chromium-nickel base alloys were broken in either a hydrogen environment or in air following thermal charging with hydrogen. Fracture surfaces were examined by scanning electron microscopy. Fracture morphology of hydrogen-embrittled specimens was characterized by: changed dimple size, twin-boundary parting, transgranular cleavage, and intergranular separation. The nature and extent of the fracture mode changes induced by hydrogen varied systematically with alloy composition and test temperature. Initial microstructure developed during deformation processing and heat treating had a secondary influence on fracture mode

  19. Phases in lanthanum-nickel-aluminum alloys

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1992-01-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi 5 -phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified

  20. Nickel and cobalt base alloys

    International Nuclear Information System (INIS)

    Houlle, P.

    1994-01-01

    Nickel base alloys have a good resistance to pitting, cavernous or cracks corrosion. Nevertheless, all the nickel base alloys are not equivalent. Some differences exit between all the families (Ni, Ni-Cu, Ni-Cr-Fe, Ni-Cr-Fe-Mo/W-Cu, Ni-Cr-Mo/W, Ni-Mo). Cobalt base alloys in corrosive conditions are generally used for its wear and cracks resistance, with a compromise to its localised corrosion resistance properties. The choice must be done from the perfect knowledge of the corrosive medium and of the alloys characteristics (chemical, metallurgical). A synthesis of the corrosion resistance in three medium (6% FeCl 3 , 4% NaCl + 1% HCl + 0.1% Fe 2 (SO 4 ) 3 , 11.5% H 2 SO 4 + 1.2% HCl + 1% Fe 2 (SO 4 ) 3 + 1% CuCl 2 ) is presented. (A.B.). 11 refs., 1 fig., 12 tabs

  1. Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media

    Science.gov (United States)

    Guo, Hailing; Youliwasi, Nuerguli; Zhao, Lei; Chai, Yongming; Liu, Chenguang

    2018-03-01

    This paper addresses a new post-treatment strategy for the formation of carbon-encapsulated nickel-cobalt alloys nanoparticles, which is easily controlled the performance of target products via changing precursor composition, calcination conditions (e.g., temperature and atmosphere) and post-treatment condition. Glassy carbon electrode (GCE) modified by the as-obtained carbon-encapsulated mono- and bi-transition metal nanoparticles exhibit excellent electro-catalytic activity for hydrogen production in alkaline water electrolysis. Especially, Ni0.4Co0.6@N-Cs800-b catalyst prepared at 800 °C under an argon flow exhibited the best electrocatalytic performance towards HER. The high HER activity of the Ni0.4Co0.6@N-Cs800-b modified electrode is related to the appropriate nickel-cobalt metal ratio with high crystallinity, complete and homogeneous carbon layers outside of the nickel-cobalt with high conductivity and the synergistic effect of nickel-cobalt alloys that also accelerate electron transfer process.

  2. Corrosion Characterization in Nickel Plated 110 ksi Low Alloy Steel and Incoloy 925: An Experimental Case Study

    Science.gov (United States)

    Thomas, Kiran; Vincent, S.; Barbadikar, Dipika; Kumar, Shresh; Anwar, Rebin; Fernandes, Nevil

    2018-04-01

    Incoloy 925 is an age hardenable Nickel-Iron-Chromium alloy with the addition of Molybdenum, Copper, Titanium and Aluminium used in many applications in oil and gas industry. Nickel alloys are preferred mostly in corrosive environments where there is high concentration of H2S, CO2, chlorides and free Sulphur as sufficient nickel content provides protection against chloride-ion stress-corrosion cracking. But unfortunately, Nickel alloys are very expensive. Plating an alloy steel part with nickel would cost much lesser than a part make of nickel alloy for large quantities. A brief study will be carried out to compare the performance of nickel plated alloy steel with that of an Incoloy 925 part by conducting corrosion tests. Tests will be carried out using different coating thicknesses of Nickel on low alloy steel in 0.1 M NaCl solution and results will be verified. From the test results we can confirm that Nickel plated low alloy steel is found to exhibit fairly good corrosion in comparison with Incoloy 925 and thus can be an excellent candidate to replace Incoloy materials.

  3. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  4. Corrosion properties of plasma deposited nickel and nickel-based alloys

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Pražák, M.; Kalabisová, E.; Kreislová, K.; Had, J.; Neufuss, Karel

    2003-01-01

    Roč. 48, č. 3 (2003), s. 215-226 ISSN 0001-7043 R&D Projects: GA ČR GA106/99/0298 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma deposits, nickel, nickel-based alloys Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  5. Sulphide stress corrosion behaviour of a nickel coated high-strength low-alloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Salvago, G; Fumagalli, G; Cigada, A; Scolari, P

    1987-01-01

    The sulphide stress corrosion cracking (SSCC) of the quenched and tempered AISI 4137 H steel either bare or coated with nickel alloys was examined. Both traditional electrochemical and linear elastic fracture mechanics methods were used to examine cracking in the NACE environment and in environments simulating the geothermal fluids found in the area of Larderello in Italy. Some tests were carried out on a geothermal well in Ferrara. High nickel content coatings seem to increase the SSCC resistance of the AISI 4137-H steel. Galvanic couplings effects are possible factors responsible for the behaviour in SSCC.

  6. Dynamic high-temperature characterization of an iridium alloy in tension

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jin, Helena [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Ruhr Univ., Bochum (Germany)

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  7. High emittance black nickel coating on copper substrate for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Soniya, E-mail: jrf0013@isac.gov.in; Pillai, Anju M., E-mail: anjum@isac.gov.in; Rajendra, A., E-mail: rajendra@isac.gov.in; Sharma, A.K., E-mail: aks@isac.gov.in

    2015-09-15

    Highlights: • High emittance black nickel coating is obtained on copper substrate. • The effect of various process parameters on IR emittance is studied systematically. • Process parameters are optimized to develop a high emittance black nickel coating. • Coating obtained using the finalized parameters exhibited an emittance of 0.83. • SEM and EDAX are used for coating characterization. - Abstract: Black nickel, an alloy coating of zinc and nickel, is obtained on copper substrate by pulse electrodeposition from a modified Fishlock bath containing nickel sulphate, nickel ammonium sulphate, zinc sulphate and ammonium thiocyanate. A nickel undercoat of 4–5 μm thickness is obtained using Watts bath to increase the corrosion resistance and adhesion of the black nickel coating. The effect of bath composition, temperature, solution pH, current density and plating time on the coating appearance and corresponding infra-red emittance of the coating is investigated systematically. Process parameters are optimized to develop a high emittance space worthy black nickel coating to improve the heat radiation characteristics. The effect of the chemistry of the plating bath on the coating composition was studied using energy dispersive X-ray analysis (EDAX) of the coatings. The 5–6 μm thick uniform jet black zinc–nickel alloy coating obtained with optimized process exhibited an emittance of 0.83 and an absorbance of 0.92. The zinc to nickel ratio of black nickel coatings showing high emittance and appealing appearance was found to be in the range 2.3–2.4.

  8. Carbide Coatings for Nickel Alloys, Graphite and Carbon/Carbon Composites to be used in Fluoride Salt Valves

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Denis [Johns Hopkins Univ., Baltimore, MD (United States); Zhang, Dajie [Johns Hopkins Univ., Baltimore, MD (United States)

    2015-10-22

    The focus of this research was concerned with developing materials technology that supports the evolution of Generation IV Advanced High Temperature Reactor (AHTR) concepts. Specifically, we investigate refractory carbide coatings for 1) nickel alloys, and 2) commercial carbon-carbon composites (CCCs). Numerous compelling reasons have driven us to focus on carbon and carbide materials. First, unlike metals, the strength and modulus of CCCs increase with rising temperature. Secondly, graphite and carbon composites have been proven effective for resisting highly corrosive fluoride melts such as molten cryolite [Na₃AlF₆] at ~1000°C in aluminum reduction cells. Thirdly, graphite and carbide materials exhibit extraordinary radiation damage tolerance and stability up to 2000°C. Finally, carbides are thermodynamically more stable in liquid fluoride salt than the corresponding metals (i.e. Cr and Zr) found in nickel based alloys.

  9. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    Directory of Open Access Journals (Sweden)

    Li Benkai

    2016-08-01

    Full Text Available Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL. This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1 castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2 palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3 MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4 viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5 although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6 saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7 a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7% energy

  10. High-temperature deformation of a mechanically alloyed niobium-yttria alloy

    International Nuclear Information System (INIS)

    Chou, I.; Koss, D.A.; Howell, P.R.; Ramani, A.S.

    1997-01-01

    Mechanical alloying (MA) and hot isostatic pressing have been used to process two Nb alloys containing yttria particles, Nb-2 vol.%Y 2 O 3 and Nb-10 vol.%Y 2 O 3 . Similar to some thermomechanically processed nickel-based alloys, both alloys exhibit partially recrystallized microstructures, consisting of a 'necklace' of small recrystallized grains surrounding much larger but isolated, unrecrystallized, cold-worked grains. Hot compression tests from 1049 to 1347 C (0.5-0.6T MP ) of the 10% Y 2 O 3 alloy show that MA material possesses a much higher yield and creep strength than its powder-blended, fully recrystallized counterpart. In fact, the density-compensated specific yield strength of the MA Nb-10Y 2 O 3 exceeds that of currently available commercial Nb alloys. (orig.)

  11. Generation of copper, nickel, and CuNi alloy nanoparticles by spark discharge

    International Nuclear Information System (INIS)

    Muntean, Alex; Wagner, Moritz; Meyer, Jörg; Seipenbusch, Martin

    2016-01-01

    The generation of copper, nickel, and copper-nickel alloy nanoparticles by spark discharge was studied, using different bespoke alloy feedstocks. Roughly spherical particles with a primary particle Feret diameter of 2–10 nm were produced and collected in agglomerate form. The copper-to-nickel ratios determined by Inductively coupled plasma mass spectrometry (ICP-MS), and therefore averaged over a large number of particles, matched the nominal copper content quite well. Further investigations showed that the electrode compositions influenced the evaporation rate and the primary particle size. The evaporation rate decreased with increasing copper content, which was found to be in good accordance with the Llewellyn-Jones model. However, the particle diameter was increasing with an increasing copper content, caused by a decrease in melting temperature due to the lower melting point of copper. Furthermore, the alloy compositions on the nanoscale were investigated via EDX. The nanoparticles exhibited almost the same composition as the used alloy feedstock, with a deviation of less than 7 percentage points. Therefore, no segregation could be detected, indicating the presence of a true alloy even on the nanoscale.

  12. The GENIALL process for generation of nickel-iron alloys from nickel ores or mattes

    International Nuclear Information System (INIS)

    Diaz, G.; Frias, C.; Palma, J.

    2001-01-01

    A new process, called GENIALL (acronym of Generation of Nickel Alloys), for nickel recovery as ferronickel alloys from ores or mattes without previous smelting is presented in this paper. Its core technology is a new electrolytic concept, the ROSEL cell, for electrowinning of nickel-iron alloys from concentrated chloride solutions. In the GENIALL Process the substitution of iron-based solid wastes as jarosite, goethite or hematite, by saleable ferronickel plates provides both economic and environmental attractiveness. Another advantage is that no associated sulfuric acid plant is required. The process starts with leaching of the raw material (ores or mattes) with a solution of ferric chloride. The leachate liquor is purified by conventional methods like cementation or solvent extraction, to remove impurities or separate by-products like copper and cobalt. The purified solution, that contains a mixture of ferrous and nickel chlorides is fed to the cathodic compartment of the electrowinning cell, where nickel and ferrous ions are reduced together to form an alloy. Simultaneously, ferrous chloride is oxidized to ferric chloride in the anodic compartment, from where it is recycled to the leaching stage. The new electrolytic equipment has been developed and scaled up from laboratory to pilot prototypes with commercial size electrodes of 1 m 2 . Process operating conditions have been established in continuous runs at bench and pilot plant scale. The technology has shown a remarkable capacity to produce nickel-iron alloys of a wide range of compositions, from 10% to 80% nickel, just by adjusting the operating parameters. This emerging technology could be implemented in many processes in which iron and other non-ferrous metals are harmful impurities to be removed, or valuable metals to be recovered as a marketable iron alloy. Other potential applications of this technology are regeneration of spent etching liquors, and iron removal from aqueous effluents. (author)

  13. Stress corrosion of nickel alloys: influence of metallurgical, chemical and physicochemical parameters

    International Nuclear Information System (INIS)

    Gras, J.M.; Pinard-Legry, G.

    1997-01-01

    Stress corrosion of nickel alloys (alloys 600, X-750, 182, 82..)is the main problem of corrosion in PWR type reactors. This article gives the main knowledge about this question, considering particularly the influence of the mechanical, microstructural and physicochemical factors on cracks under stress of the alloy 600 in water at high temperature. The acquired knowledge allows nowadays to better anticipate and control the phenomenon. On the industrial point of view, they have allowed to improve the resistance of in service or future materials. While a lot of advances have been carried out in the understanding of the influence of parameters, several uncertainties still remain concerning the corrosion mechanism and the part of some factors. (O.M.)

  14. High-alloy steels and nickel alloys for construction of industrial plants. Pt. 2

    International Nuclear Information System (INIS)

    2007-01-01

    Vol. 2 of the 8. Dresden Corrosion Protection Seminar comprises eight papers, most of which are in the form of PowerPoint presentations: High-temperature materials and their applications in chemical engineering (J. Kloever); Alloy 602 CA in metal dusting conditions; Material requirements in future power plants (H. Schneider); Status report on material qualification for the 700 C technology in coal power plants (R. Mohrmann); Materials for nuclear fusion (M. Paju); The degradation mechanism relaxation cracking as exemplified by the alloys 800 H and 617 (H.C. van Wortel); Specific requirements on the design of a pressurised manifold of Alloy 800 H in refineries, a case study (I. Rommerskirchen et al.); Materials for electro-surfacing for corrosion protection in conditions of high-temperature corrosion (M.Spiegel) [de

  15. Zinc-nickel alloy electrodeposits for water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheela, G.; Pushpavanam, Malathy; Pushpavanam, S. [Central Electrochemical Research Inst., Karaikudi (India)

    2002-06-01

    Electrodeposited zinc-nickel alloys of various compositions were prepared. A suitable electrolyte and conditions to produce alloys of various compositions were identified. Alloys produced on electroformed nickel foils were etched in caustic to leach out zinc and to produce the Raney type, porous electro catalytic surface for hydrogen evolution. The electrodes were examined by polarisation measurements, to evaluate their Tafel parameters, cyclic voltammetry, to test the change in surface properties on repeated cycling, scanning electron microscopy to identify their microstructure and X-ray diffraction. The catalytic activity as well as the life of the electrode produced from 50% zinc alloy was found to be better than others. (Author)

  16. Void formation in irradiated binary nickel alloys

    International Nuclear Information System (INIS)

    Shaikh, M.A.; Ahmed, M.; Akhter, J.I.

    1994-01-01

    In this work a computer program has been used to compute void radius, void density and swelling parameter for nickel and binary nickel-carbon alloys irradiated with nickel ions of 100 keV. The aim is to compare the computed results with experimental results already reported

  17. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO 2 dissolves in Nb 2 O 5 to form 6HfO-Nb 2 O 5 . This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 2400 0 F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 2400 0 F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  18. High temperature corrosion of nickel alloys by molten calcium chloride in an oxidising environment

    International Nuclear Information System (INIS)

    Barnett, Roger; Gittos, Mike

    2012-09-01

    A series of nickel alloys was submerged in molten calcium chloride (a molten salt proposed for and used in the nuclear industry for a variety of applications), at 850 deg. C for 72 hours under an oxidising environment. The samples were analysed in detail, in order to determine their corrosion behaviour and suitability for use under these conditions. 310 stainless steel was used as a reference material. Extensive corrosion occurred and the observed attack on the metal substrates was general and massive with corrosion rates ranging from 1.17 mm/year, for Haynes 214, to 13.3 mm/year, for 310 stainless steel. All materials showed selective leaching of chromium from the samples but the oxide layer formed was not protective, spalling away easily. The severity of the attack was not immediately visible from the corrosion rate alone: samples showed a friable scale on the surface and deep penetration of the attack beneath, up to 0.63 mm for 310 stainless steel. In some cases, the attack was clearly intergranular with chromium being depleted along the grain boundaries, whereas in others, the attack was more general. No simple correlation between alloying elements and corrosion rate was apparent, with additions of aluminium and silicon appearing to have little or no protective effect. Alloys 600 and Haynes HR-160 showed promise, with relatively low corrosion rates and penetration depths. (authors)

  19. Alloys of nickel-iron and nickel-silicon do not swell under fast neutron irradiation

    International Nuclear Information System (INIS)

    Silvestre, G.; Silvent, A.; Regnard, C.; Sainfort, G.

    1975-01-01

    This research is concerned with the effect of fast-neutron irradiation on the swelling of nickel and nickel alloys. Ni-Fe (0-60at%Fe) and Ni-Si (0-8at%Si) were studied, and the fluences were in the range 10 20 -4.3x10 22 n/cm 2 . In dilute alloys, the added elements are dissolved and reduce swelling, silicon being particularly effective. In more concentrated alloys, irradiation of Ni-Fe and Ni-Si alloys brings about the formation of plate-shaped precipitates of Ni 3 X and these alloys do not swell. (Auth.)

  20. The speed of growth of the gamma phase comes prime in nickel based alloys

    International Nuclear Information System (INIS)

    Peretti, M.M; Ges, A.M; Versaci, R.A

    2004-01-01

    Nickel-based alloys have a high fraction in volume of precipitate phase. This precipitate phase provides the characteristics of high mechanical resistance to high temperatures and, therefore, a study of the growth of this phase can predict the behavior of the components in service. This work studies the speed of growth in the alloy INCONEL 713C at temperatures of 800 o C, 875 o C and 950 o C with different treatment times. The present phase in this alloy is Ni3(AlTi), with a very high fraction in volume. The follow-up on the growth of the phase was carried out using scanning and transmission electron microscopy techniques. The speed of growth presents modifications that increase and decrease as a function of time. These variations in speed are attributed to modifications in the size and morphology of the precipitate particles. The changes in size and morphology directly influence the interfacial energy that produces the change in the speed of growth (CW)

  1. Calculation of the driving force for the radiation induced precipitation of Ni3Si in nickel-silicon alloys

    International Nuclear Information System (INIS)

    Miodownik, A.P.; Watkin, J.S.

    1979-01-01

    The appearance of precipitates which have been identified as Ni 3 Si in irradiated stainless steels and nickel rich alloys such as Inconel is of considerable interest in relation to the swelling behaviour of such materials. Work on binary nickel-silicon alloys has shown that Ni 3 Si can be induced to precipitate in alloys whose silicon content is well below the accepted solubility limit, and it has also been shown that such precipitates redissolve when heat-treatment is continued at the same temperature in the absence of irradiation. Such effects imply an irradiation induced shift of chemical potential, and cannot be explained by merely involving accelerated diffusion. This paper represents an attempt to calculate the shift in chemical potential required to precipitate Ni 3 Si in alloys containing 1-10% Si (at%) over a range of temperatures (300-1000K), and then proceeds to relate this calculated chemical potential with available information concerning the dose rates required to induce such precipitates at various temperatures. Presentation of the results is modelled on the well established methods for handling the Time-Temperature-Transformation behaviour of ordinary alloy systems, with dose rate being substituted for the time axis. Analogous calculations are presented for nickel-germanium alloys, in order to check whether the numerical values deduced from the nickel silicon system have more general applicability, and also to see whether there are any significant differences in a system where the size factor of the solute is of the opposite sign. (orig.) [de

  2. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  3. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  4. Mechanical characteristics of heterogeneous structures obtained by high-temperature brazing of corrosion-resistant steels with rapidly quenched non-boron nickel-based alloys

    Science.gov (United States)

    Kalin, B.; Penyaz, M.; Ivannikov, A.; Sevryukov, O.; Bachurina, D.; Fedotov, I.; Voennov, A.; Abramov, E.

    2018-01-01

    Recently, the use rapidly quenched boron-containing nickel filler metals for high temperature brazing corrosion resistance steels different classes is perspective. The use of these alloys leads to the formation of a complex heterogeneous structure in the diffusion zone that contains separations of intermediate phases such as silicides and borides. This structure negatively affects the strength characteristics of the joint, especially under dynamic loads and in corrosive environment. The use of non-boron filler metals based on the Ni-Si-Be system is proposed to eliminate this structure in the brazed seam. Widely used austenitic 12Cr18Ni10Ti and ferrite-martensitic 16Cr12MoSiWNiVNb reactor steels were selected for research and brazing was carried out. The mechanical characteristics of brazed joints were determined using uniaxial tensile and impact toughness tests, and fractography was investigated by electron microscopy.

  5. Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Zhang Ziping; Yu Gang; Ouyang Yuejun; He Xiaomei; Hu Bonian; Zhang Jun; Wu Zhenjun

    2009-01-01

    The effect of zinc immersion and the role of fluoride in nickel plating bath were mainly investigated in nickel electroplating on magnesium alloy AZ91D. The state of zinc immersion, the composition of zinc film and the role of fluoride in nickel plating bath were explored from the curves of open circuit potential (OCP) and potentiodynamic polarization, the images of scanning electron microscopy (SEM) and the patterns of energy dispersive X-ray (EDX). Results show that the optimum zinc film mixing small amount of Mg(OH) 2 and MgF 2 is obtained by zinc immersion for 30-90 s. The corrosion potential of magnesium alloy substrate attached zinc film will be increased in nickel plating bath and the quantity of MgF 2 sandwiched between magnesium alloy substrate and nickel coating will be reduced, which contributed to produce nickel coating with good performance. Fluoride in nickel plating bath serves as an activator of nickel anodic dissolution and corrosion inhibitor of magnesium alloy substrate. 1.0-1.5 mol dm -3 of F - is the optimum concentration range for dissolving nickel anode and protecting magnesium alloy substrate from over-corrosion in nickel plating bath. The nickel coating with good adhesion and high corrosion resistance on magnesium alloy AZ91D is obtained by the developed process of nickel electroplating. This nickel layer can be used as the rendering coating for further plating on magnesium alloys.

  6. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Nan [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al2O3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at

  7. Low cycle fatigue of austempered ductile cast iron alloyed with nickel at room and at depressed temperature

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Beran, Přemysl; Šmíd, Miroslav; Roupcová, Pavla; Tesařová, H.

    2009-01-01

    Roč. 16, 3a (2009), s. 1-6 ISSN 1335-0803. [Degradácia konštrukčných materiálov 2009. Tatranská Lomnica, 02.09.2009-04.09.2009] R&D Projects: GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : Low cycle fatigue * ADI with nickel alloying * Neutron diffraction * Fatigue crack initiation * Depressed temperature Subject RIV: JL - Materials Fatigue , Friction Mechanics

  8. Development of aero-space structural Ni3Al-based alloys for service at temperature above 1000 oC in air without protection coating

    International Nuclear Information System (INIS)

    Kablov, E.N.; Buntushkin, V.P.; Povarova, K.B.; Kasanskaya, N.K.

    2001-01-01

    The principles of alloying are developed for alloys based on the γ' phase Ni 3 Al and realized for the design of a high-temperature alloy VKNA-1V destined for a wide range of 'hot' GTE articles (e.g., flaps, nozzle vanes, turbine rotor blades, elements of flame tubes, and other complex thin-wall articles) produced by vacuum investment casting. Owing to a fortunate combination of the selected boron-free alloying system (Ni-AI-Cr-W-Mo-Zr-C), the presence of a ductile structure constituent such as nickel-based γ solid solution (∼10 wt%) and directed columnar or single crystal structure the alloy is characterized by high ductility at room (El=14-35 %), middle and high temperatures (El=18-31 % at 673-1473 K), by a melting temperature (solidus) as high as T m = 1613 K, a density of at most 7930 kg /m 3 , high short term and long term strength at temperatures 1273-1573 K (σ 100 =110 MPa at 1373 K). Alloy has a high oxidation resistance at temperatures up to 1573 K and is resistant to stress corrosion and general atmospheric corrosion. New VKNA-1V Ni 3 Al-based alloy with equiaxed grained, directional solidification (DS), or single crystal structures can be produced by conventional cast processes used for investment casting of nickel superalloys, including the process of high-gradient DS. Compared to nickel analogs, the alloy is relatively cheap and do not need in protective coating up to 1573 K in air. (author)

  9. Anodic characteristics and stress corrosion cracking behavior of nickel rich alloys in bicarbonate and buffer solutions

    International Nuclear Information System (INIS)

    Zadorozne, Natalia S.; Giordano, Mabel C.; Ares, Alicia E.; Carranza, Ricardo M.; Rebak, Raul B.

    2016-01-01

    Highlights: • We investigate which element in alloy C-22 may be responsible for the cracking susceptibility of the high nickel alloy. • Six nickel based alloys with different amount of Cr and Mo were selected for the electrochemical tests and response to SSRT. • Polarization tests showed that an anodic peak appear in the passive region in Cr containing alloys. • Cracking of Ni alloys in carbonate solutions seem to be a consequence of the instability of the passivating chromium oxide. • Alloys containing both Cr and Mo have the highest susceptibility. - Abstract: The aim of this work is to investigate which alloying element in C-22 is responsible for the cracking susceptibility of the alloy in bicarbonate and two buffer solutions (tungstate and borate). Six nickel based alloys, with different amount of chromium (Cr) and molybdenum (Mo) were tested using electrochemical methods and slow strain rate tests (SSRT) at 90 °C. All Cr containing alloys had transgranular cracking at high anodic potential; however, C-22 containing high Cr and high Mo was the most susceptible alloy to cracking. Bicarbonate was the most aggressive of three tested environments of similar pH.

  10. Hydrogen-absorbing alloys for the nickel-metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Mingming Geng; Jianwen Han; Feng Feng [University of Windsor, Ontario (Canada). Mechanical and Materials Engineering; Northwood, D.O. [University of Windsor, Ontario (Canada). Mechanical and Materials Engineering]|[Ryerson Polytechnic University, Toronto (Canada)

    1998-12-31

    In recent years, owing to the rapid development of portable electronic and electrical appliances, the market for rechargeable batteries has increased at a high rate. The nickel-metal hydride battery (Ni/MH) is one of the more promising types, because of its high capacity, high-rate charge/discharge capability and non-polluting nature. This type of battery uses a hydrogen storage alloy as its negative electrode. The characteristics of the Ni/MH battery, including discharge voltage, high-rate discharge capability and charge/discharge cycle lifetime are mainly determined by the construction of the negative electrode and the composition of the hydrogen-absorbing alloy. The negative electrode of the Ni/MH battery described in this paper was made from a mixture of hydrogen-absorbing alloy, nickel powder and polytetrafluoroethylene (PTFE). A multicomponent MmNi{sub 5}-based alloy (Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85} Co{sub 0.45}Mn{sub 0.35}Al{sub 0.35}) was used as the hydrogen-absorbing alloy. The discharge characteristics of the negative electrode, including discharge capacity, cycle lifetime, and polarization overpotential, were studied by means of electrochemical experiments and analysis. The decay of the discharge capacity for the Ni/MH battery (AA size, 1 Ah) was about 1% after 100 charge/discharge cycles and 10% after 500 charge/discharge cycles. (author)

  11. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  12. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  13. Model-based Approach for Long-term Creep Curves of Alloy 617 for a High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Kim, Yong Wan

    2008-01-01

    Alloy 617 is a principal candidate alloy for the high temperature gas-cooled reactor (HTGR) components, because of its high creep rupture strength coupled with its good corrosion behavior in simulated HTGR-helium and its sufficient workability. To describe a creep strain-time curve well, various constitutive equations have been proposed by Kachanov-Rabotnov, Andrade, Garofalo, Evans and Maruyama, et al.. Among them, the K-R model has been used frequently, because a secondary creep resulting from a balance between a softening and a hardening of materials and a tertiary creep resulting from an appearance and acceleration of the internal or external damage processes are adequately considered. In the case of nickel-base alloys, it has been reported that a tertiary creep at a low strain range may be generated, and this tertiary stage may govern the total creep deformation. Therefore, a creep curve for nickel-based Alloy 617 will be predicted appropriately by using the K-R model that can reflect a tertiary creep. In this paper, the long-term creep curves for Alloy 617 were predicted by using the nonlinear least square fitting (NLSF) method in the K-R model. The modified K-R model was introduced to fit the full creep curves well. The values for the λ and K parameters in the modified K-R model were obtained with stresses

  14. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    Science.gov (United States)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  15. Corrosion behaviour of high temperature alloys in impure helium environments

    International Nuclear Information System (INIS)

    Shindo, Masami; Quadakkers, W.J.; Schuster, H.

    1986-01-01

    Corrosion tests with Ni-base high temperature alloys were carried out at 900 and 950 0 C in simulated high temperature reactor helium environments. It is shown that the carburization and decarburization behaviour is strongly affected by the Cr and Ti(Al) contents of the alloys. In carburizing environments, additions of Ti, alone or in combination with Al, significantly improve the carburization resistance. In oxidizing environment, the alloys with high Cr and Al(Ti) contents are the most resistant against decarburization. In this environment alloys with additions of Ti and Al show poor oxidation resistance. The experimental results obtained are compared with a recently developed theory describing corrosion of high temperature alloys in high temperature reactor helium environments. (orig.)

  16. Promising materials for HTGR high temperature heat exchangers

    International Nuclear Information System (INIS)

    Kuznetsov, E.V.; Tokareva, T.B.; Ryabchenkov, A.V.; Novichkova, O.V.; Starostin, Yu.D.

    1989-01-01

    The service conditions for high-temperature heat-exchangers with helium coolant of HTGRs and requirements imposed on materials for their production are discussed. The choice of nickel-base alloys with solid-solution hardening for long-term service at high temperatures is grounded. Results of study on properties and structure of types Ni-25Cr-5W-5Mo and Ni-20Cr-20W alloy in the temperature range of 900 deg. - 1,000 deg. C are given. The ageing of Ni-25Cr-5W-5Mo alloy at 900 deg. - 950 deg. C results in decreased corrosion-mechanical properties and is caused by the change of structural metal stability. Alloy with 20% tungsten retains a high stability of both structure and properties after prolonged exposure in helium at above temperatures. The alloy has also increased resistance to delayed fracture and low-cycle fatigue at high temperatures. The developed alloy of type Ni-20Cr-20W with microalloying is recommended for production of tubes for HTGR high-temperature heat-exchangers with helium coolant. (author). 3 refs, 8 figs

  17. Thermal Analysis in the Technological “Step” Test of H282 Nickel Alloy

    Directory of Open Access Journals (Sweden)

    Pirowski Z.

    2015-03-01

    Full Text Available Superalloys show a good combination of mechanical strength and resistance to surface degradation under the influence of chemically active environments at high temperature. They are characterized by very high heat and creep resistance. Their main application is in gas turbines, chemical industry, and in all those cases where resistance to creep and the aggressive corrosion environment is required. Modern jet engines could never come into use if not for progress in the development of superalloys. Superalloys are based on iron, nickel and cobalt. The most common and the most interesting group includes superalloys based on nickel. They carry loads at temperatures well in excess of the eighty percent of the melting point. This group includes the H282 alloy, whose nominal chemical composition is as follows (wt%: Ni - base, Fe - max. 1.5%, Al - 1.5% Ti - 2.1%, C - 0.06% Co - 10% Cr - 20% Mo - 8.5%. This study shows the results of thermal analysis of the H282 alloy performed on a cast step block with different wall thickness. Using the results of measurements, changes in the temperature of H282 alloy during its solidification were determined, and the relationship dT / dt = f (t was derived. The results of the measurements taken at different points in the cast step block allowed identifying a number of thermal characteristics of the investigated alloy and linking the size of the dendrites formed in a metal matrix (DAS with the thermal effect of solidification. It was found that the time of solidification prolonged from less than ome minute at 10 mm wall thickness to over seven minutes at the wall thickness of 44 mm doubled the value of DAS.

  18. Aqueous electrochemistry of precipitation-hardened nickel base alloys

    International Nuclear Information System (INIS)

    Hosoya, K.; Ballinger, R.; Prybylowski, J.; Hwang, I.S.

    1990-11-01

    An investigation has been conducted to explore the importance of local crack tip electrochemical processes in precipitation-hardened Ni-Cr-Fe alloys driven by galvanic couples between grain boundary precipitates and the local matrix. The electrochemical behavior of γ' [Ni 3 (Al,Ti)] has been determined as a function of titanium concentration, temperature, and solution pH. The electrochemical behavior of Ni-Cr-Fe solid solution alloys has been investigated as a function of chromium content for a series of 10 Fe-variable Cr (6--18%)-balance Ni alloys, temperature, and pH. The investigation was conducted in neutral and pH3 solutions over the temperature range 25--300 degree C. The results of the investigation show that the electrochemical behavior of these systems is a strong function of temperature and composition. This is especially true for the γ' [Ni 3 (Al,Ti)] system where a transition from active/passive behavior to purely active behavior and back again occurs over a narrow temperature range near 100 degree C. Behavior of this system was also found to be a strong function of titanium concentration. In all cases, the Ni 3 (Al,Ti) phase was active with respect to the matrix. The peak in activity near 100 degree C correlates well with accelerated crack growth in this temperature range, observed in nickel-base alloy X-750 heat treated to precipitate γ' on the grain boundaries. 20 refs., 23 figs., 3 tabs

  19. High temperature corrosion of nickel-base alloys in environments containing alkali sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Rachel; Flyg, Jesper; Caddeo, Sophie [Corrosion and Metals Research Institute, KIMAB, Stockholm (Sweden); Karlsson, Fredrik [Siemens Industrial Turbomachinery, Finspong (Sweden)

    2007-02-15

    This work is directed towards producing data to assist in lifetime assessment of components in gas turbines run in severely polluted industrial environments where the main corrosive species is SO{sub 2}, which can condense to form alkali sulphates. Corrosion rates have been measured for the base materials, in order to assess the worst-case scenario, in which cracks or other damage has occurred to the protective coating. The information is expected to be of value to manufacturers, owners and inspectors of gas turbines. Six nickel-base superalloys were subject to thermal cycles of 160 hours duration, and 0.8mg/cm{sup 2} of 20 mol % Na{sub 2}SO{sub 4} + 80mol% K{sub 2}SO{sub 4} was applied before each cycle. The test temperatures were 850 deg C and 900 deg C, with maximum test durations of 24 cycles and 12 cycles respectively. The metal loss was assessed by metallography of cross sections and the sulphidation attack was found to be very uneven. Mass change data indicated that the corrosion process was largely linear in character, and probability plots and estimations of the propagation rate of corrosion based on the linear growth assumption were produced. The performance of the alloys increased with increasing chromium content. The single crystal materials CMSX4 and MD2 showed such high corrosion rates that their use in severely contaminated industrial environments is considered inadvisable. The best performance was shown by Inconel 939 and Inconel 6203, so that even if cracks occur in the protective coating, a reasonable remaining lifetime can be expected for these materials. Sulphide formation occurred at the reaction front in all cases and mixed sulphides such as Ta-Ni or Ti-Nb sulphides were often present. The work has news value since very little long-term data is currently available for materials performance in severely sulphidising environments. The project goals in terms of exposures and metrology have been fully realised. Contributions have been made to the

  20. Human biomonitoring of chromium and nickel from an experimental exposure to manual metal arc welding fumes of low and high alloyed steel.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Schettgen, Thomas; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-05-01

    The uptake and elimination of metals from welding fumes is currently not fully understood. In the Aachen Workplace Simulation Laboratory (AWSL) it is possible to investigate the impact of welding fumes on human subjects under controlled exposure conditions. In this study, the uptake and elimination of chromium or chromium (VI) respectively as well as nickel was studied in subjects after exposure to the emissions of a manual metal arc welding process using low or high alloyed steel. In this present study 12 healthy male non-smokers, who never worked as welders before, were exposed for 6h to welding fumes of a manual metal arc welding process. In a three-fold crossover study design, subjects were exposed in randomized order to either clean air, emissions from welding low alloyed steel, and emissions from welding high alloyed steel. Particle mass concentration of the exposure aerosol was 2.5mg m(-3). The content of chromium and nickel in the air was determined by analysing air filter samples on a high emission scenario. Urine analysis for chromium and nickel was performed before and after exposure using methods of human biomonitoring. There were significantly elevated chromium levels after exposure to welding fumes from high alloyed steel compared to urinary chromium levels before exposure to high alloyed welding fumes, as well as compared to the other exposure scenarios. The mean values increased from 0.27 µg l(-1) to 18.62 µg l(-1). The results were in good agreement with already existing correlations between external and internal exposure (German exposure equivalent for carcinogenic working materials EKA). The variability of urinary chromium levels was high. For urinary nickel no significant changes could be detected at all. Six-hour exposure to 2.5mg m(-3) high alloyed manual metal arc welding fumes lead to elevated urinary chromium levels far higher (7.11-34.16 µg l(-1)) than the German biological exposure reference value (BAR) of 0.6 µg l(-1) directly after

  1. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  2. TiAu based shape memory alloys for high temperature applications

    International Nuclear Information System (INIS)

    Wadood, Abdul; Yamabe-Mitarai, Yoko; Hosoda, Hideki

    2014-01-01

    TiAu (equiatomic) exhibits phase transformaion from B2 (ordered bcc) to thermo-elastic orthorhombic B19 martensite at about 875K and thus TiAu is categorized as high temperature shape memory alloy. In this study, recent research and developments related to TiAu based high temperature shape memory alloys will be discussed in the Introduction part. Then some results of our research group related to strengthening of TiAu based high temperature shape memory alloys will be presented. Potential of TiAu based shape memory alloys for high temperature shape memory materials applications will also be discussed

  3. Structural mechanisms of high-temperature shape changes in titanium-nickel alloys after low-temperature thermomechanical treatment

    International Nuclear Information System (INIS)

    Prokoshkin, S.D.; Turenne, S.; Khmelevskaya, I.Yu.; Brailovski, V.; Trochu, F.

    2000-01-01

    High-Temperature Shape Memory Effect (HTSME) in Ti-Ni alloys and corresponding structural and internal stress changes were studied using dilatometry, in situ electron microscope and X-ray diffractometry. The HTSME induced by the Low Temperature Thermomechanical Treatment (LTMT) consists of two stages. The temperature range of the first stage is limited to 250 o C, while the second stage extends to 400-500 o C. The first stage is caused by the oriented reverse martensite transformation. The heterogeneous residual stress field causes a different thermal stability for the different martensite orientations. During the reverse transformation an anisotropic shift of martensite and austenite X-ray lines is observed that can be due to a relaxation of the orientated stresses and to changes in the martensite lattice. The second stage of HTSME is caused by internal stress relaxation during recovery and polygonization of austenite that are not typical shape memory mechanisms. The possible reasons for the martensite stabilization induced by LTMT will be discussed. (author)

  4. Low-cycle fatigue of heat-resistant alloys in high-temperature gas-cooled reactor helium

    International Nuclear Information System (INIS)

    Tsuji, H.; Kondo, T.

    1984-01-01

    Strain controlled low-cycle fatigue tests were conducted on four nickel-base heat-resistant alloys at 900 0 C in simulated high-temperature gas-cooled reactor (HTGR) environments and high vacuums of about 10 -6 Pa. The observed behaviors of the materials were different and divided into two groups when tests were made in simulated HTGR helium, while all materials behaved similarly in vacuums. The materials that have relatively high ductility and compatibility with impure helium at test temperature showed considerable resistance to the fatigue damage in impure helium. On the other hand, the alloys qualified with their high creep strength were seen to suffer from the adverse effects of impure helium and the trend of intergranular cracking as well. The results were analyzed in terms of their susceptibility to the environmentenhanced fatigue damage by examining the ratios of the performance in impure helium to in vacuum. The materials that showed rather unsatisfactory resistance were considered to be characterized by their limited ductility partly due to their coarse grain structure and susceptibility to intergranular oxidation. Moderate carburization was commonly noted in all materials, particularly at the cracked portions, indicating that carbon intrusion had occurred during the crack growth stage

  5. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  6. Use of a high temperature hydrostatic extrusion technique for powders strengthening

    International Nuclear Information System (INIS)

    Decours, J.; Gavinet, J.; Weisz, M.

    1975-01-01

    A conventional 575 tonnes extrusion press has been modified by a device permitting the extrusion process by hydrostatic pression through a leakless mechanical set (13,000 bars maximum), from room temperature to 1,200 deg C. This new device allows: the high temperature hydrostatic extrusion for strengthening of powders, the isostatic compression of powders. Examples of realisations obtained by this process are described, including the influence of different parameters: pressure, temperature, extrusion ratio and for different materials: pure metals (iron, nickel, niobium, etc...) and alloys (stainless steel, molybdenum, niobium nickel alloys, etc...). Then, the advantages of the process are emphasized [fr

  7. Liquid phase sintering of carbides using a nickel-molybdenum alloy

    International Nuclear Information System (INIS)

    Barranco, J.M.; Warenchak, R.A.

    1987-01-01

    Liquid phase vacuum sintering was used to densify four carbide groups. These were titanium carbide, tungsten carbide, vanadium carbide, and zirconium carbide. The liquid phase consisted of nickel with additions of molybdenum of from 6.25 to 50.0 weight percent at doubling increments. The liquid phase or binder comprised 10, 20, and 40 percent by weight of the pressed powders. The specimens were tested using 3 point bending. Tungsten carbide showed the greatest improvement in bend rupture strength, flexural modulus, fracture energy and hardness using 20 percent binder with lesser amounts of molybdenum (6.25 or 12.5 wt %) added to nickel compared to pure nickel. A refinement in the carbide microstructure and/or a reduction in porosity was seen for both the titanium and tungsten carbides when the alloy binder was used compared to using the nickel alone. Curves depicting the above properties are shown for increasing amounts of molybdenum in nickel for each carbide examined. Loss of binder phase due to evaporation was experienced during heating in vacuum at sintering temperatures. In an effort to reduce porosity, identical specimens were HIP processed at 15 ksi and temperatures averaging 110 C below the sintering g temperature. The tungsten carbide and titanium carbide series containing 80 and 90 weight percent carbide phase respectively showed improvement properties after HIP while properties decreased for most other compositions

  8. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    International Nuclear Information System (INIS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-01-01

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  9. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljlbuaa@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang; Chen, Wang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  10. Dynamic precipitation of nickel-based superalloys undergoing severe deformation below the solvus temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nowotnik, Andrzej; Rokicki, Pawel; Mrowka-Nowotnik, Grazyna; Sieniawski, Jan [Rzeszow Univ. of Technology (Poland). Dept. of Material Science

    2015-07-15

    The authors performed uniaxial compression tests of nickel-based superalloys: single crystal CMSX-4, also precipitation hardened; Inconel 718 and X750, at temperatures below the γ' solvus, in order to study the effect of temperature and strain rate on their flow stress and microstructural development. On the basis of the obtained flow stress values, the activation energy of a high-temperature deformation process was estimated. Microstructural observations of the deformed samples at high temperatures, previously solution heat treated and aged CMSX-4 and Inconel alloys revealed non-uniform deformation effects. Distribution of either molybdenum- or niobium-rich carbides was found to be affected by localized flow within the investigated strain range at relatively low deformation temperatures, 720-850 C. Microstructural examination of the alloys also showed that shear banding and cavity growth were responsible for the decrease in flow stress and a specimen fracture at larger strains.

  11. Effect of nickel plating upon tensile tests of uranium--0.75 titanium alloy

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1975-01-01

    Electrolytic-nickel-plated specimens of uranium-0.75 wt percent titanium alloy were tested in air at 20 and 100 percent relative humidities. Tensile-test ductility values were lowered by a high humidity and also by nickel plating alone. Baking the nickel-plated specimens did not eliminate the ductility degradation. Embrittlement because of nickel plating was also evident in tensile tests at -34 0 C. (U.S.)

  12. Materials and coatings to resist high temperature oxidation and corrosion

    International Nuclear Information System (INIS)

    1977-01-01

    Object of the given papers are the oxidation and corrosion behaviour of several materials (such as stainless steels, iron-, or nickel-, or cobalt-base alloys, Si-based ceramics) used at high temperatures and various investigations on high-temperature protective coatings. (IHoe) [de

  13. Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    Yonezawa, T.; Onimura, K.

    1987-01-01

    In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 360 0 C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)

  14. Nickel aluminide alloy suitable for structural applications

    Science.gov (United States)

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  15. High-temperature mechanical properties of high-purity 70 mass% Cr-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, M.; Harima, N.; Takaki, S.; Abiko, K. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2002-01-16

    An ingot of high-purity 70 mass% Cr-Fe alloy was prepared by high-frequency induction melting in a high-purity argon atmosphere using a cold copper crucible. Its tensile properties such as hot-ductility and tensile strength were measured, and compared with the results for a high-purity 50 mass% Cr-Fe alloy, a high-purity 60 mass% Cr-Fe alloy and a Ni-based super-alloy. The formation of {sigma}-phase was also examined. The purity of a 70Cr-Fe alloy (70 mass% Cr-Fe alloy) ingot is more than 99.98 mass% and the total amount of gaseous impurities (C, N, O, S, H) in the 70Cr-Fe alloy is 69.9 mass ppm. The strength of the 70Cr-Fe alloy is higher than those of the 60Cr-Fe alloy and the 50Cr-Fe alloy at the temperatures between 293 and 1573 K, without decrease in ductility with increasing Cr content. The 70Cr-Fe alloy also possesses excellent high-temperature ductility. The {sigma}-phase was not observed after aging of 3.6 Ms at 873 K. Consequently, the 70Cr-Fe alloy is an excellent alloy as the base of super heat-resistant alloys. (orig.)

  16. Characterization of zinc–nickel alloy electrodeposits obtained from ...

    Indian Academy of Sciences (India)

    Zinc alloy offers superior sacrificial protection to steel as the alloy dissolves more slowly than pure zinc. The degree of protection and the rate of dissolution depend on the alloying metal and its composition. Zinc-nickel alloy may also serve as at less toxic substitute for cadmium. In this paper the physico-chemical ...

  17. Iron-nickel-chromium alloys

    International Nuclear Information System (INIS)

    Karenko, M.K.

    1981-01-01

    A specification is given for iron-nickel-chromium age-hardenable alloys suitable for use in fast breeder reactor ducts and cladding, which utilize the gamma-double prime strengthening phase and are characterized in having a delta or eta phase distributed at or near grain boundaries. A range of compositions is given. (author)

  18. Nickel: makes stainless steel strong

    Science.gov (United States)

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  19. Oxygen-induced intergranular fracture of the nickel-base alloy IN718 during mechanical loading at high temperatures

    Directory of Open Access Journals (Sweden)

    Krupp Ulrich

    2004-01-01

    Full Text Available There is a transition in the mechanical-failure behavior of nickel-base superalloys from ductile transgranular crack propagation to time-dependent intergranular fracture when the temperature exceeds about 600 °C. This transition is due to oxygen diffusion into the stress field ahead of the crack tip sufficient to cause brittle decohesion of the grain boundaries. Since very high cracking rates were observed during fixed-displacement loading of IN718, it is not very likely that grain boundary oxidation governs the grain-boundary-separation process, as has been proposed in several studies on the fatigue-damage behavior of the nickel-base superalloy IN718. Further studies on bicrystal and thermomechanically processed specimens of IN718 have shown that this kind of brittle fracture, which has been termed "dynamic embrittlement", depends strongly on the structure of the grain boundaries.

  20. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer

    International Nuclear Information System (INIS)

    Huo Hongwei; Li Ying; Wang Fuhui

    2004-01-01

    A chemical conversion treatment and an electroless nickel plating were applied to AZ91D alloy to improve its corrosion resistance. By conversion treatment in alkaline stannate solution, the corrosion resistance of the alloy was improved to some extent as verified by immersion test and potentiodynamic polarization test in 3.5 wt.% NaCl solution at pH 7.0. X-ray diffraction patterns of the stannate treated AZ91D alloy showed the presence of MgSnO 3 · H 2 O, and SEM images indicated a porous structure, which provided advantage for the adsorption during sensitisation treatment prior to electroless nickel plating. A nickel coating with high phosphorus content was successfully deposited on the chemical conversion coating pre-applied to AZ91D alloy. The presence of the conversion coating between the nickel coating and the substrate reduced the potential difference between them and enhanced the corrosion resistance of the alloy. An obvious passivation occurred for the nickel coating during anodic polarization in 3.5 wt.% NaCl solution

  1. Determination of the gaseous hydrogen ductile-brittle transition in copper-nickel alloys

    Science.gov (United States)

    Parr, R. A.; Johnston, M. H.; Davis, J. H.; Oh, T. K.

    1985-01-01

    A series of copper-nickel alloys were fabricated, notched tensile specimens machined for each alloy, and the specimens tested in 34.5 MPa hydrogen and in air. A notched tensile ratio was determined for each alloy and the hydrogen environment embrittlement (HEE) determined for the alloys of 47.7 weight percent nickel to 73.5 weight percent nickel. Stacking fault probability and stacking fault energies were determined for each alloy using the x ray diffraction line shift and line profiles technique. Hydrogen environment embrittlement was determined to be influenced by stacking fault energies; however, the correlation is believed to be indirect and only partially responsible for the HEE behavior of these alloys.

  2. Machinability of nickel based alloys using electrical discharge machining process

    Science.gov (United States)

    Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.

    2018-04-01

    The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.

  3. Non-isothermal irradiation creep of nickel alloys Inconel 706 and PE-16

    International Nuclear Information System (INIS)

    Gilbert, E.R.; Chin, B.A.

    1984-06-01

    The results of in-reactor step temperature change experiments conducted on two nickel alloys, PE-16 and Inconel 706, were evaluated to determine the creep behavior under nonisothermal conditions. The effect of the temperature changes was found to be significantly different for the two alloys. Following a step temperature change, the creep rate of PE-16 adjusted to the rate found in isothermal tests at the new temperature. In contrast for Inconel 706, a reduction in temperature from 540 to 425 0 C produced a 300% increase in creep above that measured at 540 0 C in isothermal tests. The response of in-reactor creep in Inconel 706 to temperature changes was attributed to the dissolution of the gamma double-prime phase and subsequent loss of precipitation-strengthening at temperatures below 500 C

  4. Long-life fatigue test results for two nickel-base structural alloys

    International Nuclear Information System (INIS)

    Mowbray, D.F.; Giaquinto, E.V.; Mehringer, F.J.

    1978-11-01

    The results are reported of fatigue tests on two nickel--base alloys, hot-cold-worked and stress-relieved nickel--chrome--iron Alloy 600 and mill-annealed nickel--chrome--moly--iron Alloy 625 in which S-N data were obtained in the life range of 10 6 to 10 10 cycles. The tests were conducted in air at 600 0 F, in the reversed membrane loading mode, at a frequency of approx. 1850 Hz. An electromagnetic, closed loop servo-controlled machine was built to perform the tests. A description of the machine is given

  5. High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Lee, Gyeong-Geun; Jung, Sujin; Kim, Daejong; Jeong, Yong-Whan; Kim, Dong-Jin

    2012-01-01

    Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at 850°C-950°C in a helium environment containing the impurity gases H_2, CO, and CH_4, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high temperature corrosion behavior of Alloy 617 for the VHTR application.

  6. Co-reduction of Copper Smelting Slag and Nickel Laterite to Prepare Fe-Ni-Cu Alloy for Weathering Steel

    Science.gov (United States)

    Guo, Zhengqi; Pan, Jian; Zhu, Deqing; Zhang, Feng

    2018-02-01

    In this study, a new technique was proposed for the economical and environmentally friendly recovery of valuable metals from copper smelting slag while simultaneously upgrading nickel laterite through a co-reduction followed by wet magnetic separation process. Copper slag with a high FeO content can decrease the liquidus temperature of the SiO2-Al2O3-CaO-MgO system and facilitate formation of liquid phase in a co-reduction process with nickel laterite, which is beneficial for metallic particle growth. As a result, the recovery of Ni, Cu, and Fe was notably increased. A crude Fe-Ni-Cu alloy with 2.5% Ni, 1.1% Cu, and 87.9% Fe was produced, which can replace part of scrap steel, electrolytic copper, and nickel as the burden in the production of weathering steel by an electric arc furnace. The study further found that an appropriate proportion of copper slag and nickel laterite in the mixture is essential to enhance the reduction, acquire appropriate amounts of the liquid phase, and improve the growth of the metallic alloy grains. As a result, the liberation of alloy particles in the grinding process was effectively promoted and the metal recovery was increased significantly in the subsequent magnetic separation process.

  7. Phase transformations in nickel-aluminum alloys during ion beam mixing

    International Nuclear Information System (INIS)

    Eridon, J.; Rehn, L.; Was, G.

    1986-01-01

    The effect of ion beam mixing of nickel-aluminum alloys with 500 keV krypton ions has been investigated over a range of temperature, composition, ion dose, and post-irradiation thermal treatments. Samples were formed by alternate evaporation of layers of aluminum and nickel. A portion of these samples was subsequently annealed to form intermetallic compounds. Irradiations were performed at both room temperature and 80 0 K using the 2MV ion accelerator at Argonne National Laboratory. Phase transformations were observed during both in situ irradiations in the High Voltage Electron Microscope (HVEM) at Argonne, and also in subsequent analysis of an array of irradiated samples. Electron diffraction indicates the presence of metastable crystalline structures not present in the conventional nickel-aluminum phase diagram. Transformations occur at doses as low as 5 x 10 14 cm -2 and continue to develop as the irradiation progresses up to 2 x 10 16 cm -2 . Layer mixing is followed through Rutherford Backscattering analysis. Samples are also checked with x-rays and Electron Energy Loss Spectroscopy (EELS). A thermodynamic argument is presented to explain the phase transformations in terms of movements on a free energy diagram. This analysis explains the interesting paradox concerning the radiation hardness of the NiAl phase and the amorphous structure of mixed Ni-50% Al layers

  8. Heat treatment of nickel alloys

    International Nuclear Information System (INIS)

    Smith, D.F. Jr.; Clatworthy, E.F.

    1975-01-01

    A heat treating process is described that can be used to produce desired combinations of strength, ductility, and fabricability characteristics in heat resistant age-hardenable alloys having precipitation-hardening amounts of niobium, titanium, and/or tantalum in a nickel-containing matrix. (U.S.)

  9. The interaction of reaction-bonded silicon carbide and inconel 600 with a nickel-based brazing alloy

    Science.gov (United States)

    McDermid, J. R.; Pugh, M. D.; Drew, R. A. L.

    1989-09-01

    The objective of the present research was to join reaction-bonded silicon carbide (RBSC) to INCONEL 600 (a nickel-based superalloy) for use in advanced heat engine applications using either direct brazing or composite interlayer joining. Direct brazing experiments employed American Welding Society (AWS) BNi-5, a commercial nickel-based brazing alloy, as a filler material; composite interlayers consisted of intimate mixtures of α-SiC and BNi-5 powders. Both methods resulted in the liquid filler metal forming a Ni-Si liquid with the free Si in the RBSC, which, in turn, reacted vigorously with the SiC component of the RBSC to form low melting point constituents in both starting materials and Cr carbides at the metal-ceramic interface. Using solution thermodynamics, it was shown that a Ni-Si liquid of greater than 60 at. pct Ni will decompose a-SiC at the experimental brazing temperature of 1200 ‡C; these calculations are consistent with the experimentally observed composition profiles and reaction morphology within the ceramic. It was concluded that the joining of RBSC to INCONEL 600 using a nickel-based brazing alloy is not feasible due to the inevitability of the filler metal reacting with the ceramic, degrading the high-temperature properties of the base materials.

  10. The development of additive manufacturing technique for nickel-base alloys: A review

    Science.gov (United States)

    Zadi-Maad, Ahmad; Basuki, Arif

    2018-04-01

    Nickel-base alloys are an attractive alloy due to its excellent mechanical properties, a high resistance to creep deformation, corrosion, and oxidation. However, it is a hard task to control performance when casting or forging for this material. In recent years, additive manufacturing (AM) process has been implemented to replace the conventional directional solidification process for the production of nickel-base alloys. Due to its potentially lower cost and flexibility manufacturing process, AM is considered as a substitute technique for the existing. This paper provides a comprehensive review of the previous work related to the AM techniques for Ni-base alloys while highlighting current challenges and methods to solving them. The properties of conventionally manufactured Ni-base alloys are also compared with the AM fabricated alloys. The mechanical properties obtained from tension, hardness and fatigue test are included, along with discussions of the effect of post-treatment process. Recommendations for further work are also provided.

  11. High Temperature Properties and Recent Research Trend of Mg-RE Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Soo Woo [Korea Institute of Science and Technology Information, Seoul (Korea, Republic of)

    2017-04-15

    For the applications in automotive, aircraft, aerospace, and electronic industries, the lightest structural Mg alloys have received much attention since 2000. There has been some progress for the improvement of the mechanical properties such as room temperature strength, formability and mechanical anisotropy. However, the high temperature strength of Mg alloys is very low to be used for the parts and structures of high temperature conditions. For the last decade, considerable efforts are concentrated for the development of Mg alloys to be used at high temperature. Newly developing Mg-RE alloys are the good examples for the high temperature use. In this regard, this review paper introduces the recent research trends for the development of Mg-RE alloys strengthened with some precipitates and the long period stacking ordered (LPSO) structures related RE elements.

  12. High Temperature Properties and Recent Research Trend of Mg-RE Alloys

    International Nuclear Information System (INIS)

    Nam, Soo Woo

    2017-01-01

    For the applications in automotive, aircraft, aerospace, and electronic industries, the lightest structural Mg alloys have received much attention since 2000. There has been some progress for the improvement of the mechanical properties such as room temperature strength, formability and mechanical anisotropy. However, the high temperature strength of Mg alloys is very low to be used for the parts and structures of high temperature conditions. For the last decade, considerable efforts are concentrated for the development of Mg alloys to be used at high temperature. Newly developing Mg-RE alloys are the good examples for the high temperature use. In this regard, this review paper introduces the recent research trends for the development of Mg-RE alloys strengthened with some precipitates and the long period stacking ordered (LPSO) structures related RE elements.

  13. Grinding temperature and energy ratio coe cient in MQL grinding of high-temperature nickel-base alloy by using di erent vegetable oils as base oil

    Institute of Scientific and Technical Information of China (English)

    Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min

    2016-01-01

    Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grind-ing temperature, and energy ratio coefficient of MQL grinding were compared among the seven veg-etable oil types. Results revealed that (1) castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient;(2) palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient;(3) MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil;(4) viscosity significantly influences grinding force and grinding tem-perature to a greater extent than fatty acid varieties and contents in vegetable oils;(5) although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less vis-cous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature;(6) saturated fatty acid is a more efficient lubricant than unsaturated fatty acid;and (7) a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7%energy ratio coefficient

  14. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    Science.gov (United States)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  15. Developing prospects of NiAlMn high temperature shape memory alloy

    International Nuclear Information System (INIS)

    Zou Min

    1999-01-01

    The reason and information on high temperature shape memory alloy research are introduced briefly Also, referring to some experimental reports on NiAlMn high temperature shape memory alloy, it is pointed out that ductility and memory property of this alloy can be improved by adapting proper composition and procedure to control its microstructure. Meanwhile, the engineering details must be considered when NiAlMn high temperature shape memory alloy being developed so as to resolve the problems of its practical use

  16. Phosphorus effect on structure and physical properties of iron-nickel alloys

    International Nuclear Information System (INIS)

    Berseneva, F.N.; Kalinin, V.M.; Rybalko, O.F.

    1982-01-01

    The structure and properties of iron-nickel alloys (30-50 % Ni) containing from 0.02 to 0.5 wt. % P have been investigated. It has been found that phosphorus solubility in iron-nickel alloys at most purified from impurities exceeds limiting solubility values usually observed for commercial alloys. Phosphide eutectics precipitation over the grain boundaries of studied alloys occurs but with phosphorus content equal 0.45 wt. %. The 0.4 wt. % P addition in invar alloys increases saturation magnetization and the Curie point and leads to a more homogeneous structure

  17. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.

    Science.gov (United States)

    Benatti, O F; Miranda, W G; Muench, A

    2000-09-01

    The low resistance to corrosion is the major problem related to the use of copper-aluminum alloys. This in vitro and in vivo study evaluated the corrosion of 2 copper-aluminum alloys (Cu-Al and Cu-Al-Zn) compared with a nickel-chromium alloy. For the in vitro test, specimens were immersed in the following 3 corrosion solutions: artificial saliva, 0.9% sodium chloride, and 1.0% sodium sulfide. For the in vivo test, specimens were embedded in complete dentures, so that one surface was left exposed. The 3 testing sites were (1) close to the oral mucosa (partial self-cleaning site), (2) surface exposed to the oral cavity (self-cleaning site), and (3) specimen bottom surface exposed to the saliva by means of a tunnel-shaped perforation (non-self-cleaning site). Almost no corrosion occurred with the nickel-chromium alloy, for either the in vitro or in vivo test. On the other hand, the 2 copper-aluminum-based alloys exhibited high corrosion in the sulfide solution. These same alloys also underwent high corrosion in non-self-cleaning sites for the in vivo test, although minimal attack was observed in self-cleaning sites. The nickel-chromium alloy presented high resistance to corrosion. Both copper-aluminum alloys showed considerable corrosion in the sulfide solution and clinically in the non-self-cleaning site. However, in self-cleaning sites these 2 alloys did not show substantial corrosion.

  18. Design of a single variable helium effects experiment for irradiation in FFTF [Fast Flux Test Facility] using alloys enriched in nickel 59

    International Nuclear Information System (INIS)

    Simons, R.L.; Brager, H.R.; Matsumoto, W.Y.

    1986-03-01

    Nickel enriched in nickel 59 was extracted from the fragments of a fracture toughness specimen of Inconel 600 irradiated in the Engineering Test Reactor (ETR). The nickel contained 2.0% nickel 59. Three heats of austenitic steel doped with nickel-59 were prepared and inserted in the Materials Open Test Assembly (MOTA) of the Fast Flux Test Facility (FFTF). The experiment was single variable in helium effects because chemically identical alloys without nickel-59 were being irradiated side by side with the doped material. The alloys doped with nickel 59 produced 10 to 100 times more helium than the control alloys. The materials included ternary and quaternary alloys in the form of transmission electron microscope (TEM) discs and miniature tensile specimens. The helium to dpa ratio was in the range 5 to 35 and was nearly constant throughout the irradiation. The exposures ranged from 0.25 to 50 displacements per atom (dpa) over the duration of the experiment. The irradiation temperatures covered the range of 360 to 600 0 C

  19. The effect lead impurities on the corrosion resistance of alloy 600 and alloy 690 in high temperature water

    International Nuclear Information System (INIS)

    Sakai, T.; Nakagomi, N.; Kikuchi, T.; Aoki, K.; Nakayasu, F.; Yamakawa, K.

    1998-01-01

    Degradation of nickel-based alloy steam generator (SG) tubing caused by lead-induced corrosion has been reported recently in some PWR plants. Several laboratory studies also have shown that lead causes intergranular or transgranular stress corrosion cracking (IGSCC or TGSCC) of the tubing materials. Information from previous studies suggests two possible explanations for the mechanism of lead-induced corrosion. One is selective dissolution of tube metal elements, resulting in formation of a lead-containing nickel-depleted oxide film as observed in mildly acidic environments. The other explanation is an increase in potential, as has been observed in lead-contaminated caustic environments, although not in all volatile treatment (AVT) water such as the ammonium-hydrazine water chemistry. These observation suggest that an electrochemical reaction between metal elements and dissolved lead might be the cause of lead-induced corrosion. The present work was undertaken to clarify the lead-induced corrosion mechanism of nickel-based alloys from an electrochemical viewpoint, focusing on mildly acidic and basic environments. These are the probable pH conditions in the crevice region between the tube and tube support plate of the SG where corrosion damage could occur. Measurements of corrosion potential and electrochemical polarization of nickel-based alloys were performed to investigate the effect of lead on electrochemical behavior of the alloys. Then, constant extension rate tests (CERT) were carried out to determine the corrosion susceptibility of the alloys in a lead-contaminated environment. (J.P.N.)

  20. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  1. Investigation into cathode polarization during deposition of rhodium-nickel and rhodium-indium alloys

    International Nuclear Information System (INIS)

    Evdokimova, N.V.; Byacheslavov, P.M.; Lokshtanova, O.G.

    1979-01-01

    The results of kinetic regularities experimental investigations during electrodeposition of rhodium-nickel and rhonium-indium alloys are presented. Methods of general and partial polarization curves have been used to show the nature of polarization during the rhonium-nickel and rhodium-indium alloys deposition. It is shown that indium into the rhodium-indium alloy and nickel into the rhodium-nickel alloy deposit with great depolarization ( PHIsub(In)sup(0)=-0.33B, PHIsub(Ni)sup(0)=-0.23B). Indium and nickel in pure form do not deposit from the electrolytes of the given composition (H 2 SO 4 - 50 g/l, HNH 2 SO 3 -10 g/l). The recalculation of partial polarization curve of indium precipitation into the rhodium-indium alloy in the mixed kinetics coordinates gives a straight line with 40 mV inclination angle. This corresponds to the delayed stage of the second electron addition with the imposition of diffusion limitations

  2. Evaluation and comparison of shear bond strength of porcelain to a beryllium-free alloy of nickel-chromium, nickel and beryllium free alloy of cobalt-chromium, and titanium: An in vitro study

    Directory of Open Access Journals (Sweden)

    Ananya Singh

    2017-01-01

    Conclusion: It could be concluded that newer nickel and beryllium free Co-Cr alloys and titanium alloys with improved strength to weight ratio could prove to be good alternatives to the conventional nickel-based alloys when biocompatibility was a concern.

  3. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    International Nuclear Information System (INIS)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-01-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating

  4. DC Electric Arc Furnace Application for Production of Nickel-Boron Master Alloys

    Science.gov (United States)

    Alkan, Murat; Tasyürek, Kerem Can; Bugdayci, Mehmet; Turan, Ahmet; Yücel, Onuralp

    2017-09-01

    In this study, nickel-boron (Ni-B) alloys were produced via a carbothermic reduction starting from boric acid (H3BO3) with high-purity nickel oxide (NiO), charcoal, and wood chips in a direct current arc furnace. In electric arc furnace experiments, different starting mixtures were used, and their effects on the chemical compositions of the final Ni-B alloys were investigated. After the reduction and melting stages, Ni-B alloys were obtained by tapping from the bottom of the furnace. The samples from the designated areas were also taken and analyzed. The chemical composition of the final alloys and selected samples were measured with wet chemical analysis. The Ni-B alloys had a composition of up to 14.82 mass% B. The phase contents of the final alloys and selected samples were measured using x-ray diffraction (XRD). The XRD data helped predict possible reactions and reaction mechanisms. The material and energy balance calculations were made via the XRD Rietveld and chemical compositions. Nickel boride phases started to form 600 mm below the surface. The targeted NiB phase was detected at the tapping zone of the crucible (850-900 mm depth). The energy consumption was 1.84-4.29 kWh/kg, and the electrode consumption was 10-12 g/kg of raw material charged.

  5. Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Na; Li, Yajiang; Wang, Juan [Shandong Univ., Jinan (CN). Key Lab. for Liquid - Solid Structural Evolution and Processing of Materials (Ministry of Education)

    2012-06-15

    High nickel austenitic alloy, 6 mm thick, and Cr18-Ni8 stainless steel with a thickness of 0.6 mm were joined by pulsed current tungsten inert gas arc welding without filler metal in this work. Metallographic examination, microhardness measurement and electron microprobe analysis were used to reveal microstructural characteristics in the joint. The results indicated that the weld metal consisted of {gamma}-austenite, {delta}-ferrite and carbides without the appearance of martensite. There were dendrite crystals at the edge of the weld metal near the high nickel austenitic alloy and isometric crystals in the center of the weld metal. The microhardness of the weld metal was the highest due to the existence of carbides and its finer structure. Graphite flakes were still embedded in the austenite matrix of the heat-affected zone without the formation of martensite. (orig.)

  6. ASSET, An Information System for Alloy Corrosion in High Temperature Gases

    International Nuclear Information System (INIS)

    R. C. John; A. D. Pelton; A. L. Young; W. T. Thompson; I. G. Wright

    2001-01-01

    A large database for corrosion data and a corrosion prediction information system for metals and alloys corroding in high-temperature gases have been created. Corrosion data for about 75 commercial alloys, 4600 corrosion data measurements, and six million exposure hours have been compiled into an information system, ASSET. ASSET allows prediction of sound metal thickness losses for metals and alloys corroding by several common corrosion mechanisms at high-temperatures as functions of gas composition, temperature, time, and alloy. This paper presents examples of predicted metal losses of alloys corroding in standard conditions for several corrosion mechanisms expected in high-temperature gases. ASSET also provides a comprehensive capability to analyze the thermochemical interactions between alloys, corrosion products and exposure conditions. Some of the uses of the data compilation and the corrosion prediction feature are illustrated for oxidizing, sulfidizing, sulfidizing/oxidizing , and carburizing conditions

  7. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    Science.gov (United States)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

  8. Development of high nickel austenitic steels for the application to fast reactor cores, (I). Alloy design with the aid of the d-electrons concept

    International Nuclear Information System (INIS)

    Murata, Yoshinori; Morinaga, Masahiko; Yukawa, Natsuo; Ukai, Shigeharu; Nomura, Shigeo; Okuda, Takanari; Harada, Makoto

    1999-01-01

    The design of high nickel austenitic steels for the core materials of the fast reactors was performed following the d-electrons concept devised on the basis of molecular orbital calculations of transition-metal based alloys. In this design two calculated parameters are mainly utilized. The one is the d-orbital energy level (Md) of alloying transition elements, and the other is the bond order (Bo) that is a measure of the covalent bond strength between atoms. Using the Md-bar - Bo-bar phase stability diagram accurate prediction become possible for the phase stability of the austenite phase and 5% swelling at 140 dpa for nickel ions. Here, Md-bar and Bo-bar are the compositional average of Md and Bo parameters, respectively. On the basis of the phase stability diagram and preliminary experiments, guidelines for the alloy design of carbo-nitrides precipitated high nickel austenitic steels were constructed. Following the guidelines several new austenitic steels were designed for the fast reactors core material. (author)

  9. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    Science.gov (United States)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  10. High temperature brazing of primary-system components in the nuclear field

    International Nuclear Information System (INIS)

    Belicic, M.; Fricker, H.W.; Iversen, K.; Leukert, W.

    1981-01-01

    Apart from the well-known welding procedures, high-temperature brazing is successfully applied in the manufacture of primary components in the field of nuclear reactor construction. This technique is applied in all cases where apart from sufficient resistance and high production safety importance is laid on dimensional stability without subsequent mechanical processing of the components. High-temperature brazing is therefore very important in the manufacture of fuel rod spacers or control rod guide tubes. In this context, during one brazing process many brazing seams have to be produced in extremely narrow areas and within small tolerances. As basic materials precipitation hardening alloys with a high nickel percentage, austenitic Cr-Ni-steels or the zirconium alloy Zry 4 are used. Generally applied are: boron free nickel or zirconium brazing filler metals. (orig.)

  11. The machinability of nickel-based alloys in high-pressure jet assisted (HPJA turning

    Directory of Open Access Journals (Sweden)

    D. Kramar

    2013-10-01

    Full Text Available Due to their mechanical, thermal and chemical properties, nickel-based alloys are generally included among materials that are hard to machine. An experimental study has been performed to investigate the capabilities of conventional and high-pressure jet assisted (HPJA turning of hard-to-machine materials, namely Inconel 718. The capabilities of different hard turning procedures are compared by means of chip breakability. The obtained results show that HPJA method offers a significant increase in chip breakability, under the same cutting conditions (cutting speed, feed rate, depth of cut.

  12. The effect of heat treatment on the micro-structure and the mechanical properties of high-temperature nickel-base-superalloys

    International Nuclear Information System (INIS)

    Schubert, R.; Horn, E.

    1974-01-01

    General review of heat treatment applied to high-temperature nickel-base-superalloys as a function of the volume percent of the γ'-phase. Heat treatment schedule. γ'-morphology and γ'-distribution as well as their effect on mechanical properties. Values obtained from tensile tests up to 1,000 0 C. Results obtained from creep tests. Limitation for the heat treatment of alloys having an unstable γ'-phase. Alloys X 5 NiCrTi 26 15, ATS 270 (approximately INCO 718), NiCr 20 TiAl, NiCr 20 Co 18 Ti, ATS 342 (approximately Waspaloy), ATS 354 (approximately Udimet 520), NiCo 20 Cr 15 MoAlTi, ATS 382 (approximately Udimet 710), ATS 381-G (approximately Mar M 246), FIS 145 and ATS 391-G (aproximately IN 100). (orig.) [de

  13. Characterization of the dissimilar welding - austenitic stainless steel with filler metal of the nickel alloy

    International Nuclear Information System (INIS)

    Soares, Bruno Amorim; Schvartzman, Monica Maria de Abreu Mendonca; Campos, Wagner Reis da Costa

    2007-01-01

    In elevated temperature environments, austenitic stainless steel and nickel alloy has a superior corrosion resistance due to its high Cr content. Consequently, this alloys is widely used in nuclear reactors components and others plants of energy generation that burn fossil fuel or gas, chemical and petrochemical industries. The object of the present work was to research the welding of AISI 304 austenitic stainless steel using the nickel alloy filler metals, Inconel 625. Gas tungsten arc welding, mechanical and metallographic tests, and compositional analysis of the joint were used. A fundamental investigation was undertaken to characterize fusion boundary microstructure and to better understand the nature and character of boundaries that are associated with cracking in dissimilar welds. The results indicate that the microstructure of the fusion zone has a dendritic structure, inclusions, and precipitated phases containing Ti and Nb are present in the inter-dendritic region. In some parts near to the fusion line it can be seen a band in the weld, probably a eutectic phase with lower melting point than the AISI 304, were the cracking may be beginning by stress corrosion. (author)

  14. Influence of pH on the chemical and structural properties of the oxide films formed on 316L stainless steel, alloy 600 and alloy 690 in high temperature aqueous environments

    International Nuclear Information System (INIS)

    Dupin, M.; Gosser, P.; Walls, M.G.; Rondot, B.; Pastol, J.L.

    2002-01-01

    The oxide films formed on 316L stainless steel, alloy 600 and alloy 690 at 320 deg C in high temperature aqueous environments of different pH have been examined by glow discharge optical spectroscopy, scanning electron microscopy, atomic force microscopy and capacitance measurements. The analytical study reveals that the films formed at pH 5 are mainly composed of chromium oxides. When the pH increases the chromium concentration decreases and those of the other two elements (Ni and Fe) tend to increase. The films formed at pH 5 on 316L stainless steel and alloy 600 are thick and powder-like. The film formed at the same pH on alloy 690 is thin and is composed of a compact protective inner layer and a less-compact outer layer formed by crystals of mixed iron-nickel-chromium oxides. The morphological appearance of the thick films and that of the thin films is very different. However, equivalent morphologies can be observed for the relatively thin duplex films formed at pH 8 and pH 9.5 on the 316L stainless steel and nickel-base alloys. The evolution of the chemical composition of the films is accompanied by important changes from the point of view of their semi-conductivity. (authors)

  15. Microstructural characteristics of high-temperature oxidation in nickel-base superalloy

    International Nuclear Information System (INIS)

    Khalid, F.A.

    1997-01-01

    Superalloys are used for aerospace and nuclear applications where they can withstand high-temperature and severe oxidizing conditions. High-temperature oxidation behavior of a nickel-base superalloy is examined using optical and scanning electron microscopical techniques. The morphology of the oxide layers developed is examined, and EDX microanalysis reveals diffusion of the elements across the oxide-metal interface. Evidence of internal oxidation is presented, and the role of structural defects is considered. The morphology of the oxide-metal interface formed in the specimens exposed in steam and air is examined to elucidate the mechanism of high-temperature oxidation

  16. Corrosion behaviour of cladded nickel base alloys

    International Nuclear Information System (INIS)

    Brandl, W.; Ruczinski, D.; Nolde, M.; Blum, J.

    1995-01-01

    As a consequence of the high cost of nickel base alloys their use as surface layers is convenient. In this paper the properties of SA-as well as RES-cladded NiMo 16Cr16Ti and NiCr21Mo14W being produced in single and multi-layer technique are compared and discussed with respect to their corrosion behaviour. Decisive criteria describing the qualities of the claddings are the mass loss, the susceptibility against intergranular corrosion and the pitting corrosion resistance. The results prove that RES cladding is the most suitable technique to produce corrosion resistant nickel base coatings. The corrosion behaviour of a two-layer RES deposition shows a better resistance against pitting than a three layer SAW cladding. 7 refs

  17. Nickel-based gadolinium alloy for neutron adsorption application in ram packages

    International Nuclear Information System (INIS)

    Robino, C.; McConnell, P.; Mizia, R.

    2004-01-01

    This paper will outline the results of a metallurgical development program that is investigating the alloying of gadolinium into a nickel-chromium-molybdenum alloy matrix. Gadolinium has been chosen as the neutron absorption alloying element due to its high thermal neutron absorption cross section and low solubility in the expected U.S. repository environment. The nickel-chromium-molybdenum alloy family was chosen for its known corrosion performance, mechanical properties, and weldability. The workflow of this program includes chemical composition definition, primary and secondary melting studies, ingot conversion processes, properties testing, and national consensus codes and standards work. The microstructural investigation of these alloys shows that the gadolinium addition is not soluble in the primary austenite metallurgical phase and is present in the alloy as gadolinium-rich second phase. This is similar to what is observed in a stainless steel alloyed with boron. The mechanical strength values are similar to those expected for commercial Ni-Cr-Mo alloys. The alloys have been corrosion tested in simulated Yucca Mountain aqueous chemistries with acceptable results. The initial results of weldability tests have also been acceptable. Neutronic testing in a moderated critical array has generated favorable results. An American Society for Testing and Materials material specification has been issued for the alloy and a Code Case has been submitted to the American Society of Mechanical Engineers for code qualification. The ultimate goal is acceptance of the alloy for use at the Yucca Mountain repository

  18. Method for inhibiting corrosion of nickel-containing alloys

    Science.gov (United States)

    DeVan, J.H.; Selle, J.E.

    Nickel-containing alloys are protected against corrosion by contacting the alloy with a molten alkali metal having dissolved therein aluminum, silicon or manganese to cause the formation of a corrosion-resistant intermetallic layer. Components can be protected by applying the coating after an apparatus is assembled.

  19. Parallel between steels alloyed with chrome-nickel and Fe-Mn-Al-C steels, in their response to fracture and wear (Review)

    International Nuclear Information System (INIS)

    Ramos, J; Perez, G.A

    2008-01-01

    The big worldwide demand for chrome-nickel alloy steels ('conventional steel') leads to the need for advanced materials for applications in different engineering systems that operate at high temperatures and in aggressive environmental conditions, favoring research and development in alternate alloys. In this technological race in search of these new materials, the FeMnAlC alloys ('new steels') have attracted attention for their excellent mechanical and tribological properties as well as for their good performance in corrosive-oxide environments, which make them similar to conventional steel. There are two important similarities between these two steels. First, an agent that causes the passive film to become stainless appears in both steels: chrome in the conventional steel, and aluminum in the FeMnAl alloy. The second similarity is that a stabilizing agent of the austenitic phase (FCC) appears in both, so that excellent mechanical properties can be obtained: nickel in the conventional steel, and manganese in the FeMnAl alloy. In certain sectors, such as aeronautics, conventional steel is rarely used because it is a very heavy material. This conventional steel is almost three times heavier that aluminum (7.85/2.7). Two advantages that the new FeMnAIC steels have compared to the conventional steels are that they are about 13% lighter in weight and they are less expensive. The FeMnAl also have excellent mechanical properties and good corrosion-oxidation resistance, which generates big expectations for their application in a broad scientific spectrum. This work reports the state of the information currently available about FeMnAlC alloys, comparing the mechanical and tribological behaviors of conventional alloy steels with chrome and nickel alloys, specifying the scopes of their application. A condition that favors the steels' fragility is the high speed of deformation and impact, where the FCC crystalline structure materials do not have a fragile ductile transition

  20. Incorporation of iridium into electrodeposited rhenium–nickel alloys

    International Nuclear Information System (INIS)

    Cohen Sagiv, Maayan; Eliaz, Noam; Gileadi, Eliezer

    2013-01-01

    Rhenium (Re), a refractory metal that has gained significant recognition as a high performance engineering material, is mostly used in military, aircraft and aerospace applications, as well as for catalysis in the petrochemical industry. However, its performance at high temperature in humid air is limited by the formation of rhenium heptoxide (Re 2 O 7 ), which penetrates the grain boundaries and causes brittleness. Improvement of this is being sought through the incorporation of iridium (Ir) into Re deposits. To this end, suitable plating baths for Re–Ir–Ni coatings were developed. These alloys were deposited from different aqueous solutions on copper substrates under galvanostatic conditions, in a three-electrode cell. The plating bath consisted of iridium tri-chloride, ammonium perrhenate and nickel sulfamate as the electroactive species, and citric acid as the complexing agent. The effects of bath composition and operating conditions on the Faradaic efficiency (FE), partial current densities, as well as on the thickness of the coatings and their composition were studied. Re–Ir–Ni coatings as thick as 18 μm, with Re-content as high as 73 at.% and Ir-content as high as 29 at.%, were obtained, using different plating baths. A mechanism of the electrochemical process was suggested. It was found that both an HCP Ir 0.4 Re 0.6 phase and an HCP Ni phase with nanometric crystallites were formed, possibly together with a hexagonal nickel hydride (Ni 2 H) phase

  1. The assessment of non-metallic inclusions in steels and nickel alloys for ultra high vacuum applications

    International Nuclear Information System (INIS)

    Meriguet, P.J.-L.

    1992-01-01

    The presence of non-metallic inclusions in steels and nickel alloys may create leak-paths under Ultra High Vacuum conditions. This paper shows the application of the ASTM E45 standard to the assessment of these inclusions and gives some design recommendations. Three case-histories encountered at the Joint European Torus Joint Undertaking and a possible explanation of the phenomenon are also presented. (Author)

  2. Effects of prior surface damage on high-temperature oxidation of Fe-, Ni-, and Co-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL; Lowe, Tracie M [ORNL; Pint, Bruce A [ORNL

    2009-01-01

    Multi-component metallic alloys have been developed to withstand high-temperature service in corrosive environments. Some of these applications, like exhaust valve seats in internal combustion engines, must also resist sliding, impact, and abrasion. The conjoint effects of temperature, oxidation, and mechanical contact can result in accelerated wear and the formation of complex surface layers whose properties differ from those of the base metal and the oxide scale that forms in the absence of mechanical contact. The authors have investigated the effects of prior surface damage, produced by scratch tests, on the localized reformation of oxide layers. Three high-performance commercial alloys, based on iron, nickel, and cobalt, were used as model materials. Thermogravimetric analysis (TGA) was used to determine their static oxidation rates at elevated temperature (850o C). A micro-abrasion, ball-cratering technique was used to measure oxide layer thickness and to compare it with TGA results. By using taper-sectioning techniques and energy-dispersive elemental mapping, a comparison was made between oxide compositions grown on non-damaged surfaces and oxides that formed on grooves produced by a diamond stylus. Microindentation and scratch hardness data revealed the effects of high temperature exposure on both the substrate hardness and the nature of oxide scale disruption. There were significant differences in elemental distribution between statically-formed oxides and those that formed on scratched regions

  3. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    International Nuclear Information System (INIS)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel; Kittel, Jean; Grosjean, Francois; Ropital, Francois

    2014-01-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C 4 H 10 + H 2 + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  4. The solidification velocity of nickel and titanium alloys

    Science.gov (United States)

    Altgilbers, Alex Sho

    2002-09-01

    The solidification velocity of several Ni-Ti, Ni-Sn, Ni-Si, Ti-Al and Ti-Ni alloys were measured as a function of undercooling. From these results, a model for alloy solidification was developed that can be used to predict the solidification velocity as a function of undercooling more accurately. During this investigation a phenomenon was observed in the solidification velocity that is a direct result of the addition of the various alloying elements to nickel and titanium. The additions of the alloying elements resulted in an additional solidification velocity plateau at intermediate undercoolings. Past work has shown a solidification velocity plateau at high undercoolings can be attributed to residual oxygen. It is shown that a logistic growth model is a more accurate model for predicting the solidification of alloys. Additionally, a numerical model is developed from simple description of the effect of solute on the solidification velocity, which utilizes a Boltzmann logistic function to predict the plateaus that occur at intermediate undercoolings.

  5. Anodic behavior of nickel alloys in media containing bicarbonate ions

    International Nuclear Information System (INIS)

    Zadorozne, N.S; Carranza, R. M.; Giordano, C.M.

    2011-01-01

    Alloy 22 has been designed to resist corrosion in oxidizing and reducing conditions. Thanks to these properties it is considered a possible candidate for the fabrication of containers of high-level radioactive waste. Since the containers provide services in natural environments characterized by multi-ionic solutions, it is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is required in order to produce cracking. It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media potentials below trans-passivity. The aim of this work is to study the anodic behavior of Alloy 22 in different media containing bicarbonate and chloride ions in various concentrations and temperatures and compare the results with other alloys containing nickel, and relate them to the susceptibility to stress corrosion cracking in a future job. Polarization curves were made on alloy 22 (Ni-Cr-Mo), 600 (Ni- Cr-Fe), 800h (Ni-Fe- Cr) and 201 (Ni commercially pure) in the following environments: 1.148 mol/L NaHCO 3 , 1.148 mol/L NaHCO 3 + 1 mol/L NaCl, 1.148 mol/L NaHCO 3 + 0.1 mol/L NaCl. The tests were performed at the following temperatures: 90°C, 75°C, 60°C and 25°C. It was found that alloy 22 has a current peak in the anodic domain at potentials below trans-passivity between 200 and 300 m VECS, when the test temperature was 90°C. The potential, at which this peak occurred, increased with decreasing temperature. Also there was a variation of the peak with the composition of the solution. When bicarbonate ions were added to a solution containing chloride ions, the peak potential shifted to higher current densities, depending on the concentration of added chloride ions. It was found that diminishing the content of

  6. Inconel type resistive alloys based on ultrahigh purity nickel

    International Nuclear Information System (INIS)

    Matsarin, K.A.; Matsarin, S.K.

    2000-01-01

    The new nickel high-ohm alloys (ρ = 1.2-1.4 μOhm · m), containing the W, Al, Mo alloying elements in the quantity, not exceeding their solubility in a solid solution, are developed on the basis of the Inconel-type standard alloy. The optical composition of the alloy was determined by the results of the alloy was determined by the results of the electric resistance measurement and technological effectiveness indices (relative to the pressure and workable metal yield). The following optimal component concentrations were established: 14-17 %Cr; 10-12 %Fe; 0.5-1.0 %Cu; 1.0-1.5 %Mn; 0.1-0.2 %C; 0.4-0.6 %Si; 0.5-3.0 %W; 5-16 %Mo; 0.5-2.0 %Al; the remainder - Ni. The new alloys are recommended as materials for resistive elements of direct-glow cathode nodes of low capacity electron tubes [ru

  7. Microstructure and mechanical properties of metallic high-temperature materials. Research report

    International Nuclear Information System (INIS)

    Mughrabi, H.; Gottstein, G.; Mecking, H.; Riedel, H.; Toboloski, J.

    1999-01-01

    This volume contains 38 lectures of research studies performed in the course of the Priority Programme 'Microstructure and Mechanical Properties of Metallic High-Temperature Materials' supported by the Deutsche Forschungsgemeinschaft (DFG) over a period of six years from 1991 to 1997. The four materials selected were: 1. light metal PM-aluminium and titanium base alloys; 2. ferritic chromium and austenitic alloy 800 steels; 3. (monocrystalline) nickel-base superalloys; and 4. nickel- and iron-base oxide-dispersion-strengthened superalloys. All papers have been abstracted separately for the ENERGY database

  8. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

    Science.gov (United States)

    Gayda, John

    2001-01-01

    Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

  9. Effective and Environmentally Friendly Nickel Coating on the Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Ivana Škugor Rončević

    2016-12-01

    Full Text Available The low density and good mechanical properties make magnesium and its alloys attractive construction materials in the electronics, automotive, and aerospace industry, together with application in medicine due to their biocompatibility. Magnesium AZ91D alloy is an alloy with a high content of aluminum, whose mechanical properties overshadow the low corrosion resistance caused by the composition of the alloy and the existence of two phases: α magnesium matrix and β magnesium aluminum intermetallic compound. To improve the corrosion resistance, it is necessary to find an effective protection method for the alloy surface. Knowing and predicting electrochemical processes is an essential for the design and optimization of protective coatings on magnesium and its alloys. In this work, the formations of nickel protective coatings on the magnesium AZ91D alloy surface by electrodeposition and chemical deposition, are presented. For this purpose, environmentally friendly electrolytes were used. The corrosion resistance of the protected alloy was determined in chloride medium using appropriate electrochemical techniques. Characterization of the surface was performed with highly sophisticated surface-analytical methods.

  10. Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys

    Science.gov (United States)

    Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely

    2018-03-01

    An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.

  11. Applicability of creep damage rules to a nickel-base heat-resistant alloy Hastelloy XR

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Najime; Tanabe, Tatsuhiko; Nakasone, Yuji

    1992-01-01

    A series of constant load and temperature creep rupture tests and varying load and/or temperature creep rupture tests was carried out on a nickel-base heat-resistant alloy Hastelloy XR, which was developed for applications in the High-Temperature Engineering Test Reactor, at temperatures ranging from 850 to 1000deg C in order to examine the applicability of the conventional creep damage rules, i.e., the life fraction, the strain fraction and their mixed rules. The life fraction rule showed the best applicability of these three criteria. The good applicability of the rule was considered to result from the fact that the creep strength of Hastelloy XR was not strongly affected by the change of the chemical composition and/or the microstructure during exposure to the high-temperature simulated HTGR helium environment. In conclusion the life fraction rule is applicable in engineering design of high-temperature components made of Hastelloy XR. (orig.)

  12. Cerium Titanate Nano dispersoids in Ni-base ODS Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Chun, Young-Bum; Rhee, Chang-Kyu; Jang, Jinsung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chung, Hee-Suk [Korea Basic Science Institute, Jeonju (Korea, Republic of)

    2016-10-15

    Oxide-dispersion-strengthened (ODS) nickel-base alloys have potential for use in rather demanding elevated-temperature environments, such as aircraft turbine engines, heat exchanger of nuclear reactor. For improved high temperature performance, several ODS alloys were developed which possess good elevated temperature strength and over-temperature capacity plus excellent static oxidation resistance. The high temperature strength of ODS alloys is due to the presence of a uniform dispersion of fine, inert particles. Ceria mixed oxides have been studied because of their application potential in the formation of nanoclusters. By first principle study, it was estimated that the formation energy of the Ce-O dimer with voids in the nickel base alloy is lower than other candidates. The result suggests that the dispersion of the Ceria mixed oxides can suppress the voiding or swelling behavior of nickel base alloy during neutron irradiation. In this study, the evolution of cerium titanate nano particles was investigated using in-situ TEM. It was found that the Ce{sub 2}Ti{sub 3}O{sub 9} phase was easily formed rather than remain as CeO{sub 2} during annealing; Ti was effective to form the finer oxide particles. Ce{sub 2}Ti{sub 3}O{sub 9} is expected to do the great roll as dispersoids in Ni-base alloy, contribute to achieve the better high temperature property, high swelling resistance during neutron radiation.

  13. Method of fabricating thin-walled articles of tungsten-nickel-iron alloy

    Science.gov (United States)

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1982-01-01

    The present invention relates to a method for fabricating thin-walled high-density structures oftungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.

  14. Iron and silicon effect on the phase composition of nickel-beryllium bronzes

    International Nuclear Information System (INIS)

    Zakharov, A.M.; Zakharov, M.V.; Ajvaz'yan, N.G.

    1977-01-01

    In order to specify phase composition and strengthening heat treatment conditions for nickel beryllium bronzes that are promising electrode materials for welding of high strength steels and nickel-base superalloys, the primary section of the quinternary Cu-Ni-Be-Fe-S system was studied at constant nickel and beryllium concentration and varying silicon and iron concentration (max. 4% of every element). The study was made using the metallographic and x-ray phase techniques, determination of alloy solidus temperature, and exessphase microhardness testing. Silicon additions are shown to decrease abruptly and those of iron, in contrast, somewhat to raise the solidus temperature of ternary Cu + 2% Ni + 0.3% Be alloy. When added concurrently, iron compensates for the damaging silicon effect on the solidus temperature of Cu-Ni-Be alloys. The excess phases formed can be used as strengthening agents of Cu-Ni-Be-Si-Fe alloys during quenching and subsequent aging

  15. Mechanical and wear properties of pre-alloyed molybdenum P/M steels with nickel addition

    Directory of Open Access Journals (Sweden)

    Yamanoglu R.

    2012-01-01

    Full Text Available The aim of this study is to understand the effect of nickel addition on mechanical and wear properties of molybdenum and copper alloyed P/M steel. Specimens with three different nickel contents were pressed under 400 MPa and sintered at 1120ºC for 30 minutes then rapidly cooled. Microstructures and mechanical properties (bending strength, hardness and wear properties of the sintered specimens were investigated in detail. Metallographical investigations showed that the microstructures of consolidated specimens consist of tempered martensite, bainite, retained austenite and pores. It is also reported that the amount of pores varies depending on the nickel concentration of the alloys. Hardness of the alloys increases with increasing nickel content. Specimens containing 2% nickel showed minimum pore quantity and maximum wear resistance. The wear mechanism changed from abrasive wear at low nickel content to adhesive wear at higher nickel content.

  16. Tool life and surface integrity aspects when drilling nickel alloy

    Science.gov (United States)

    Kannan, S.; Pervaiz, S.; Vincent, S.; Karthikeyan, R.

    2018-04-01

    Nickel based super alloys manufactured through powder metallurgy (PM) route are required to increase the operational efficiency of gas turbine engines. They are material of choice for high pressure components due to their superior high temperature strength, excellent corrosion, oxidation and creep resistance. This unique combination of mechanical and thermal properties makes them even more difficult-to-machine. In this paper, the hole making process using coated carbide inserts by drilling and plunge milling for a nickel-based powder metallurgy super alloy has been investigated. Tool life and process capability studies were conducted using optimized process parameters using high pressure coolants. The experimental trials were directed towards an assessment of the tendency for surface malformations and detrimental residual stress profiles. Residual stresses in both the radial and circumferential directions have been evaluated as a function of depth from the machined surface using the target strain gauge / center hole drilling method. Circumferential stresses near workpiece surface and at depth of 512 µm in the starting material was primarily circumferential compression which was measured to be average of –404 MPa. However, the radial stresses near workpiece surface was tensile and transformed to be compressive in nature at depth of 512 µm in the starting material (average: -87 Mpa). The magnitude and the depth below the machined surface in both radial and circumferential directions were primarily tensile in nature which increased with hole number due to a rise of temperature at the tool–workpiece interface with increasing tool wear. These profiles are of critical importance for the selection of cutting strategies to ensure avoidance/minimization of tensile residual stresses that can be detrimental to the fatigue performance of the components. These results clearly show a tendency for the circumferential stresses to be more tensile than the radial stresses

  17. Advanced characterization techniques in understanding the roles of nickel in enhancing strength and toughness of submerged arc welding high strength low alloy steel multiple pass welds in the as-welded condition

    Science.gov (United States)

    Sham, Kin-Ling

    Striving for higher strength along with higher toughness is a constant goal in material properties. Even though nickel is known as an effective alloying element in improving the resistance of a steel to impact fracture, it is not fully understood how nickel enhances toughness. It was the goal of this work to assist and further the understanding of how nickel enhanced toughness and maintained strength in particular for high strength low alloy (HSLA) steel submerged arc welding multiple pass welds in the as-welded condition. Using advanced analytical techniques such as electron backscatter diffraction, x-ray diffraction, electron microprobe, differential scanning calorimetry, and thermodynamic modeling software, the effect of nickel was studied with nickel varying from one to five wt. pct. in increments of one wt. pct. in a specific HSLA steel submerged arc welding multiple pass weldment. The test matrix of five different nickel compositions in the as-welded and stress-relieved condition was to meet the targeted mechanical properties with a yield strength greater than or equal to 85 ksi, a ultimate tensile strength greater than or equal to 105 ksi, and a nil ductility temperature less than or equal to -140 degrees F. Mechanical testing demonstrated that nickel content of three wt. pct and greater in the as-welded condition fulfilled the targeted mechanical properties. Therefore, one, three, and five wt. pct. nickel in the as-welded condition was further studied to determine the effect of nickel on primary solidification mode, nickel solute segregation, dendrite thickness, phase transformation temperatures, effective ferrite grain size, dislocation density and strain, grain misorientation distribution, and precipitates. From one to five wt. pct nickel content in the as-welded condition, the primary solidification was shown to change from primary delta-ferrite to primary austenite. The nickel partitioning coefficient increased and dendrite/cellular thickness was

  18. Improved Mo-Re VPS Alloys for High-Temperature Uses

    Science.gov (United States)

    Hickman, Robert; Martin, James; McKechnie, Timothy; O'Dell, John Scott

    2011-01-01

    Dispersion-strengthened molybdenum- rhenium alloys for vacuum plasma spraying (VPS) fabrication of high-temperature-resistant components are undergoing development. In comparison with otherwise equivalent non-dispersion-strengthened Mo-Re alloys, these alloys have improved high-temperature properties. Examples of VPS-fabricated high-temperature-resistant components for which these alloys are expected to be suitable include parts of aircraft and spacecraft engines, furnaces, and nuclear power plants; wear coatings; sputtering targets; x-ray targets; heat pipes in which liquid metals are used as working fluids; and heat exchangers in general. These alloys could also be useful as coating materials in some biomedical applications. The alloys consist of 60 weight percent Mo with 40 weight percent Re made from (1) blends of elemental Mo and Re powders or (2) Re-coated Mo particles that have been subjected to a proprietary powder-alloying-and-spheroidization process. For most of the dispersion- strengthening experiments performed thus far in this development effort, 0.4 volume percent of transition-metal ceramic dispersoids were mixed into the feedstock powders. For one experiment, the proportion of dispersoid was 1 volume percent. In each case, the dispersoid consisted of either ZrN particles having sizes <45 m, ZrO2 particles having sizes of about 1 m, HfO2 particles having sizes <45 m, or HfN particles having sizes <1 m. These materials were chosen for evaluation on the basis of previously published thermodynamic stability data. For comparison, Mo-Re feedstock powders without dispersoids were also prepared.

  19. Electrochemical and surface characterization of a nickel-titanium alloy

    NARCIS (Netherlands)

    Wever, Dirk; Veldhuizen, AG; de Vries, J; Busscher, HJ; Uges, DRA; van Horn, James

    1998-01-01

    For clinical implantation purposes of shape memory metals the nearly equiatomic nickel-titanium (NiTi) alloy is generally used. In this study, the corrosion properties and surface characteristics of this alloy were investigated and compared with two reference controls, AISI 316 LVM stainless steel

  20. The Influence of Nickel and Tin Additives on the Microstructural and Mechanical Properties of Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Haider T. Naeem

    2014-01-01

    Full Text Available The effects of nickel and nickel combined tin additions on mechanical properties and microstructural evolutions of aluminum-zinc-magnesium-copper alloys were investigated. Aluminum alloys containing Ni and Sn additives were homogenized at different temperatures conditions and then aged at 120°C for 24 h (T6 and retrogressed at 180°C for 30 min and then reaged at 120°C for 24 h (RRA. Comparison of the ultimate tensile strength (UTS of as-quenched Al-Zn-Mg-Cu-Ni and Al-Zn-Mg-Cu-Ni-Sn alloys with that of similar alloys which underwent aging treatment at T6 temper showed that gains in tensile strengths by 385 MPa and 370 MPa were attained, respectively. These improvements are attributed to the precipitation hardening effects of the alloying element within the base alloy and the formation of nickel/tin-rich dispersoid compounds. These intermetallic compounds retard the grain growth, lead to grain refinement, and result in further strengthening effects. The outcomes of the retrogression and reaging processes which were carried on aluminum alloys indicate that the mechanical strength and Vickers hardness have been enhanced much better than under the aging at T6 temper.

  1. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. Pt. 2

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1985-01-01

    The reactive impurities H 2 O, CO, H 2 and CH 4 which are present in the primary coolant helium of high temperature gas-cooled reactors can cause scale formation, internal oxidation and carburization or decarburization of the high temperature structural alloys. In Part 1 of this contribution a theoretical model was presented, which allows the explanation and prediction of the observed corrosion effects. The model is based on a classical stability diagram for chromium, modified to account for deviations from equilibrium conditions caused by kinetic factors. In this paper it is shown how a stability diagram for a commercial alloy can be constructed and how this can be used to correlate the corrosion results with the main experimental parameters, temperature, gas and alloy composition. Using the theoretical model and the presented experimental results, conditions are derived under which a protective chromia based surface scale will be formed which prevents a rapid transfer of carbon between alloy and gas atmosphere. It is shown that this protective surface oxide can only be formed if the carbon monoxide pressure in the gas exceeds a critical value. Psub(CO), which depends on temperature and alloy composition. Additions of methane only have a limited effect provided that the methane/water ratio is not near to, or greater than, a critical value of around 100/1. The influence of minor alloying additions of strong oxide forming elements, commonly present in high temperature alloys, on the protective properties of the chromia surface scales and the kinetics of carbon transfer is illustrated. (orig.) [de

  2. An electron-microscope study of alpha to gamma transformation in an iron-nickel alloy

    Science.gov (United States)

    Lobodyuk, V. A.; Khandros, L. G.; Fedas, N. P.

    1980-01-01

    Procedures used to study the alpha to gamma conversion in thin foils of an iron alloy with 32% nickel concentration and initial martensite conversion temperature of -60 C are described. Photomicrographs show deformation twinning as well as changes in samples after they were heated. Reverse conversion is discussed and results are examined.

  3. Effect of microstructure on high-temperature mechanical behavior of nickel-base superalloys for turbine disc applications

    Science.gov (United States)

    Sharpe, Heather Joan

    2007-05-01

    Engineers constantly seek advancements in the performance of aircraft and power generation engines, including, lower costs and emissions, and improved fuel efficiency. Nickel-base superalloys are the material of choice for turbine discs, which experience some of the highest temperatures and stresses in the engine. Engine performance is proportional to operating temperatures. Consequently, the high-temperature capabilities of disc materials limit the performance of gas-turbine engines. Therefore, any improvements to engine performance necessitate improved alloy performance. In order to take advantage of improvements in high-temperature capabilities through tailoring of alloy microstructure, the overall objectives of this work were to establish relationships between alloy processing and microstructure, and between microstructure and mechanical properties. In addition, the projected aimed to demonstrate the applicability of neural network modeling to the field of Ni-base disc alloy development and behavior. The first phase of this work addressed the issue of how microstructure varies with heat treatment and by what mechanisms these structures are formed. Further it considered how superalloy composition could account for microstructural variations from the same heat treatment. To study this, four next-generation Ni-base disc alloys were subjected to various controlled heat-treatments and the resulting microstructures were then quantified. These quantitative results were correlated to chemistry and processing, including solution temperature, cooling rate, and intermediate hold temperature. A complex interaction of processing steps and chemistry was found to contribute to all features measured; grain size, precipitate distribution, grain boundary serrations. Solution temperature, above a certain threshold, and cooling rate controlled grain size, while cooling rate and intermediate hold temperature controlled precipitate formation and grain boundary serrations. Diffusion

  4. Study of cutting speed on surface roughness and chip formation when machining nickel-based alloy

    International Nuclear Information System (INIS)

    Khidhir, Basim A.; Mohamed, Bashir

    2010-01-01

    Nickel- based alloy is difficult-to-machine because of its low thermal diffusive property and high strength at higher temperature. The machinability of nickel- based Hastelloy C-276 in turning operations has been carried out using different types of inserts under dry conditions on a computer numerical control (CNC) turning machine at different stages of cutting speed. The effects of cutting speed on surface roughness have been investigated. This study explores the types of wear caused by the effect of cutting speed on coated and uncoated carbide inserts. In addition, the effect of burr formation is investigated. The chip burr is found to have different shapes at lower speeds. Triangles and squares have been noticed for both coated and uncoated tips as well. The conclusion from this study is that the transition from thick continuous chip to wider discontinuous chip is caused by different types of inserts. The chip burr has a significant effect on tool damage starting in the line of depth-of-cut. For the coated insert tips, the burr disappears when the speed increases to above 150 m/min with the improvement of surface roughness; increasing the speed above the same limit for uncoated insert tips increases the chip burr size. The results of this study showed that the surface finish of nickel-based alloy is highly affected by the insert type with respect to cutting speed changes and its effect on chip burr formation and tool failure

  5. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.

    Science.gov (United States)

    Rabah, Mahmoud A

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 degrees C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 degrees C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 degrees C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  6. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps

    International Nuclear Information System (INIS)

    Rabah, Mahmoud A.

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 deg. C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 deg. C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 deg. C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics

  7. Electron beam and laser surface alloying of Al-Si base alloys

    International Nuclear Information System (INIS)

    Vanhille, P.; Tosto, S.; Pelletier, J.M.; Issa, A.; Vannes, A.B.; Criqui, B.

    1992-01-01

    Surface alloying on aluminium-base alloys is achieved either by using an electron beam or a laser beam, in order to improve the mechanical properties of the near-surface region. A predeposit of nickel is first realized by plasma spraying. Melting of both the coating and part of the substrate produces a surface alloy with a fine, dendritic microstructure with a high hardness. Enhancement of this property requires an increase in the nickel content. Various problems occur during the formation of nickel-rich surface layers: incomplete homogenization owing to a progressive increase of the liquidus temperature, cracks owing to the brittleness of this hard suface alloy, formation of a plasma when experiments are carried out in a gaseous environment (laser surface alloying). Nevertheless, various kinds of surface layers may be achieved; for example very hard surface alloys (HV 0.2 =900), with a thickness of about 500-600 μm, or very thick surface alloys (e>2 mm), with a fairly good hardness (greater than 350 HV 0.2 ). Thus, it is possible to obtain a large variety of new materials by using high energy beams on aluminium substrates. (orig.)

  8. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Hamad ur

    2016-07-01

    Nickel and cobalt-based superalloys with a γ-γ{sup '} microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ{sup '} phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  9. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    International Nuclear Information System (INIS)

    Rehman, Hamad ur

    2016-01-01

    Nickel and cobalt-based superalloys with a γ-γ ' microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ ' phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  10. Isothermal oxidation behavior of ternary Zr-Nb-Y alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id [Research Center for Nuclear Materials and Radiometry, Jl. Tamansari 71, Bandung 40132 (Indonesia); Soepriyanto, Syoni; Basuki, Eddy Agus [Metallurgy Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Wiryolukito, Slameto [Materials Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    The effect of yttrium content on isothermal oxidation behavior of Zr-2,5%Nb-0,5%Y, Zr-2,5%Nb-1%Y Zr-2,5%Nb-1,5%Y alloy at high temperature has been studied. High temperature oxidation carried out at tube furnace in air at 600,700 and 800°C for 1 hour. Optical microscope is used for microstructure characterization of the alloy. Oxidized and un oxidized specimen was characterized by x-ray diffraction. In this study, kinetic oxidation of Zr-2,5%Nb with different Y content at high temperature has also been studied. Characterization by optical microscope showed that microstructure of Zr-Nb-Y alloys relatively unchanged and showed equiaxed microstructure. X-ray diffraction of the alloys depicted that the oxide scale formed during oxidation of zirconium alloys is monoclinic ZrO2 while unoxidised alloy showed two phase α and β phase. SEM-EDS examination shows that depletion of Zr composition took place under the oxide layer. Kinetic rate of oxidation of zirconium alloy showed that increasing oxidation temperature will increase oxidation rate but increasing yttrium content in the alloys will decrease oxidation rate.

  11. Internal nitridation of nickel-base alloys; Innere Nitrierung von Nickelbasis-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Krupp, U.; Christ, H.J. [Siegen Univ. (Gesamthochschule) (Germany). Inst. fuer Werkstofftechnik

    1998-12-31

    The chromuim concentration is the crucial variable in nitridation processes in nickel-base alloys. Extensive nitridation experiments with various specimen alloys of the system Ni-Cr-Al-Ti have shown that the Cr itself starts to form nitrides as from elevated initial concentrations of about 10 to 20 weight%, (depending on temperature), but that lower concentrations have an earlier effect in that they induce a considerable increase in the N-solubility of the nickel-base alloys. This causes an accelerated nitridation attack on the alloying elements Ti and Al. Apart from experimental detection and analysis, the phenomenon of internal nitridation could be described as well by means of a mathematical model calculating the diffusion with the finite-differences method and determining the precipitation thermodynamics by way of integrated equilibrium calculations. (orig./CB) [Deutsch] Im Verlauf der Hochtemperaturkorrosion von Nickelbasis-Superlegierungen kann durch beanspruchungsbedingte Schaedigungen der Oxiddeckschicht ein Verlust der Schutzwirkung erfolgen und als Konsequenz Stickstoff aus der Atmosphaere in den Werkstoff eindringen. Der eindiffundierende Stickstoff bildet vor allem mit den Legierungselementen Al, Cr und Ti Nitridausscheidungen, die zu einer relativ rasch fortschreitenden Schaedigung fuehren koennen. Eine bedeutende Rolle bei diesen Nitrierungsprozessen in Nickelbasislegierungen spielt die Cr-Konzentration in der Legierung. So ergaben umfangreiche Nitrierungsexperimente an verschiedenen Modellegierungen des Systems Ni-Cr-Al-Ti, dass Cr zwar selbst erst ab Ausgangskonzentrationen von ca. 10-20 Gew.% (abhaengig von der Temperatur) Nitride bildet, allerdings bereits bei geringen Konzentrationen die N-Loeslichkeit von Nickelbasis-Legierungen entscheidend erhoeht. Dies hat zur Folge, dass es zu einem beschleunigten Nitrierungsangriff auf die Legierungselemente Ti und Al kommt. Neben den experimentellen Untersuchungen konnte das Phaenomen der inneren

  12. High Bismuth Alloys as Lead-Free Alternatives for Interconnects in High-Temperature Electronics

    Science.gov (United States)

    Mallampati, Sandeep

    Predominant high melting point solders for high-temperature electronics (operating temperatures from 200 to 250°C) are Pb-based which are being banned from usage due to their toxic nature. In this study, high bismuth alloy compositions (Bi-14Cu-8Sn, Bi-20Sb-10Cu, Bi-15Sb-10Cu and Bi-10Sb-10Cu) were designed, cast, and characterized to understand their potential as replacements. The desirable aspect of Bi is its high melting temperature, which is 271°C. Alloying elements Sn, Sb and Cu were added to improve some of its properties such as thermal conductivity, plasticity, and reactivity with Cu and Ni surface. Metallographic sectioning and microstructure analysis were performed on the bulk alloys to compare the evolution of phases predicted from equilibrium phase diagrams. Reflow processes were developed to make die-attach samples out of the proposed alloys and die-shear testing was carried out to characterize mechanical integrity of the joint. Thermal shock between -55°C to 200°C and high temperature storage at 200°C were performed on the assembled die-attach samples to study microstructure evolution and mechanical behavior of the reflowed alloys under accelerated testing conditions. In addition, heat dissipation capabilities, using flash diffusivity, were measured on the bulk alloys and also on the die-attach assembly. Finally, tensile testing was performed on the dogbone specimens to identify the potential for plastic deformation and electron backscatter diffraction (EBSD) analysis was used to study the grain orientations on the fracture surfaces and their influence on the crack propagation. Bi-14Cu-8Sn has formed BiNi by on the die backside metallization and the reaction with Cu was poor. This has resulted in weaker substrate side interface. It was observed that Bi-Sb alloys have strong reactivity with Ni (forming Bi3Ni, BiNi and NiSb intermetallic phases), and with Cu (forming Cu2Sb, Cu4Sb). Spallation was observed in NiSb interfacial intermetallic layer and

  13. Wear of carbide inserts with complex surface treatment when milling nickel alloy

    Science.gov (United States)

    Fedorov, Sergey; Swe, Min Htet; Kapitanov, Alexey; Egorov, Sergey

    2018-03-01

    One of the effective ways of strengthening hard alloys is the creating structure layers on their surface with the gradient distribution of physical and mechanical properties between the wear-resistant coating and the base material. The article discusses the influence of the near-surface layer which is modified by low-energy high-current electron-beam alloying and the upper anti-friction layer in a multi-component coating on the wear mechanism of the replaceable multifaceted plates in the dry milling of the difficult to machine nickel alloys.

  14. Alloy model for high temperature superconductors

    International Nuclear Information System (INIS)

    Weissmann, M.; Saul, A.

    1991-07-01

    An alloy model is proposed for the electronic structure of high temperature superconductors. It is based on the assumption that holes and extra electrons are localized in small copper oxygen clusters, that would be the components of such alloy. This model, when used together with quantum chemical calculations on small clusters, can explain the structure observed in the experimental densities of states of both hole and electron superconductors close to the Fermi energy. The main point is the strong dependence of the energy level distribution and composition on the number of electrons in a cluster. The alloy model also suggests a way to correlate Tc with the number of holes, or extra electrons, and the number of adequate clusters to locate them. (author). 21 refs, 4 figs, 1 tab

  15. Corrosion resistance of nickel alloys with chromium and silicon to the red fuming nitric acid

    International Nuclear Information System (INIS)

    Gurvich, L.Ya.; Zhirnov, A.D.

    1994-01-01

    Corrosion and electrochemical behaviour of binary Ni-Cr, Ni-Si nickel and ternary Ni-Cr-Si alloys in the red fuming nitric acid (RFNA) (8-% of HNO 3 +20% of N 2 O 4 ) is studied. It is shown that nickel alloying with chromium improves its corrosion resistance to the red fuming nitric acid. Nickel alloying with silicon in quantities of up to 5 % reduces, and up to 10%-increases abruptly the corrosion resistance with subsequent decrease of the latter after the further increase of concentration. Ni-15% of Cr alloy alloying with silicon increases monotonously the corrosion resistance. 10 refs., 7 figs., 3 tabs

  16. Investigation of the behaviour of 35% nickel alloys in the presence of helium coolant impurities

    International Nuclear Information System (INIS)

    Dixmier, J.; Leclercq, D.; Olivier, P.; Vincent, L.; Willermoz, H.

    1976-01-01

    Alloys of the Incoloy 800 type containing 35% nickel are being considered for the heat exchangers of steam-cycle high-temperature reactors for electricity production. Corrosion tests at 650 and 800 0 C have been carried out at atmospheric pressure and at 50 bar on four such alloys (commercially available and specially produced ones) with different titanium and aluminium contents. It appears that the degree of intergranular attack occurring in these materials increases with the titanium and aluminium concentration. Examination with a scanning electron microscope fitted with analysers confirms the decisive role of these two elements which are actually to be found in oxidized form at the grain boundaries to the exclusion of other components of the alloy. This type of corrosion can lead in the long run to a deterioration in the alloy's mechanical characteristics at high temperature. To assess the true risk of in-service rupture, various rigs have been developed for investigating corrosion under stress conditions. The atmosphere in these rigs consists of helium, of which the impurity content is rigorously controlled. In particular, the Aida high-pressure loop installed at the Grenoble Nuclear Research Centre can accommodate a large number of test-pieces. These are either subjected to a definite tensile stress or placed in a circuit through which helium is passed at high velocity. At present experiments are being conducted at 700 and 750 0 C on an Incoloy 800 alloy corresponding to the designers' specifications. The experiments are performed at atmospheric pressure and a pressure of 50 bar with the same impurity pressures. (author)

  17. Study of the high temperature oxidation of nickel; Contribution a l'etude de l'oxydation du nickel aux temperatures elevees

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-11-01

    The parabolic oxidation of nickel by oxygen and by air at atmospheric pressure has been studied in the temperature range 600 to 1400 C, in particular by thermogravimetric and micrographic techniques. The mechanism of the reaction has been determined; it has been shown in particular that the break in the Arrhenius plot of the kinetics, occurring at about 950 C, is the result of a stimulation of the diffusion across the nickel prot-oxide film above this temperature; this is the result of the presence of excess nickel vacancies in the film. A systematic study has also been made of the influence of the oxygen pressure P{sub O{sub 2}} (10{sup -2} torr {<=} P{sub O{sub 2}} {<=} 760 torr) on the parabolic oxidation of nickel between 800 and 1400 C. In the range 1000 to 1400 C, the activation energy of the process decreases monotonously from 57 to 34 kcal/mole as P{sub O{sub 2}} decreases from 760 to 1 torr. Furthermore, it has been shown that the parabolic oxidation constant is proportional to P{sub O{sub 2}}{sup 1/n} the value of n is not invariant however in the temperature range examined, but decreases from 6 to about 3 when the temperature increases from 900 to 1400 C. Finally, a study has been made of the oxidation of nickel in carbon dioxide at atmospheric pressure between 750 and 1400 C. The main reaction is Ni + CO{sub 2} {yields} NiO + CO, and corresponds, with a good approximation, to the reaction of the metal with the oxygen produced by the thermal dissociation of the CO{sub 2}. (author) [French] L'oxydation parabolique du nickel avec l'oxygene et l'air a la pression atmospherique a ete etudiee dans l'intervalle de temperatures 600-1400 C, surtout par voies thermogravimetrique et micrographique. Le mecanisme de la reaction a ete precise; en particulier, il a ete montre que la brisure de la courbe d'Arrhenius traduisant sa cinetique, qui se produit a 950 C environ, resulte d'une stimulation de la diffusion dans la pellicule de protoxyde de nickel au dessous de

  18. High temperature mechanical forming of Mg alloys

    International Nuclear Information System (INIS)

    Mwembela, A.; McQueen, H.J.; Myshlyaev, M.

    2002-01-01

    Mg alloys are hot worked in the range 180-450 o C and 0.0-10 s -1 ; the present project data are compared with a wide selection of published results. The flow stresses and their dependence on temperature and strain rate are fairly similar to simple Al alloys: however, the hot ductility is much lower (≤3 in torsion). Twinning plays a significant role in Mg alloys almost independently of temperature; the twins initiate at low strains in grains poorly oriented for basal slip and in consequence become well disposed for such slip. As T rises, there is increasing formation of subgrains that spread toward the grain centers from grain and twin boundaries: this is indicative of stress concentrations inducing non-basal sup which helps provide the geometrically necessary dislocations. Above about 240 o C, dynamic (DRX) nucleates at grain and twin boundaries, preferentially at intersections; this again is evidence of non-basal slip that provides the highly misoriented cells. The boundaries in which further strain concentrates producing further DRX. The microstructure remains very heterogeneous compared to the uniform dynamically recovered substructure in Al alloys, thus giving rise to the reduced ductility. These results are employed to interpret the mechanical and microstructural behavior of Mg alloys in extrusion, rolling and forging. (author)

  19. Microstructure and corrosion behavior of electrodeposited nano-crystalline nickel coating on AZ91 Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zarebidaki, Arman, E-mail: arman.zare@iauyazd.ac.ir; Mahmoudikohani, Hassan, E-mail: hassanmahmoudi.k@gmail.com; Aboutalebi, Mohammad-Reza

    2014-12-05

    Highlights: • Activation, zincating, and Cu electrodeposition were used as pretreatment processes for electrodeposition of nickel coatings. • Nano-crystalline nickel coatings were successfully electrodeposited onto the AZ91 Mg alloys. • Effect of nickel electrodeposited coating on the corrosion resistance of AZ91 Mg alloy has been studied. - Abstract: In order to enhance the corrosion resistance, nickel coating was electrodeposited onto AZ91 Mg alloy. Activation, zincating, and Cu electrodeposition used as pretreatment processes for better adhesion and corrosion performance of the nickel over layer. The corrosion properties of the AZ91 Mg alloy, nickel electroplated AZ91 Mg alloy, and pure nickel was assessed via polarization and electrochemical impedance spectroscopy (EIS) methods in 3.5 wt% NaCl solution. Moreover, the structure of the coating was investigated by means of X-ray diffraction, whereas specimen’s morphology and elemental composition were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS). Measurements revealed that the coating has a nano-crystalline structure with the grain size of 95 nm. Corrosion results showed superior corrosion resistance for the coated AZ91 Mg alloy as the corrosion current density decreased from 2.5 × 10{sup −4} A cm{sup −2}, for the uncoated sample, to 1.5 × 10{sup −5} A cm{sup −2}, for coated specimen and the corrosion potential increased from −1.55 V to −0.98 V (vs. Ag/AgCl) at the same condition.

  20. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    Science.gov (United States)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  1. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  2. Iron-nickel alloys as canister material for radioactive waste disposal in underground repositories

    International Nuclear Information System (INIS)

    Apps, J.A.

    1982-01-01

    Canisters containing high-level radioactive waste must retain their integrity in an underground waste repository for at least one thousand years after burial (Nuclear Regulatory Commission, 1981). Since no direct means of verifying canister integrity is plausible over such a long period, indirect methods must be chosen. A persuasive approach is to examine the natural environment and find a suitable material which is thermodynamically compatible with the host rock under the environmental conditions with the host rock under the environmental conditions expected in a waste repository. Several candidates have been proposed, among them being iron-nickel alloys that are known to occur naturally in altered ultramafic rocks. The following review of stability relations among iron-nickel alloys below 350 0 C is the initial phase of a more detailed evaluation of these alloys as suitable canister materials

  3. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  4. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  5. Graph theory and binary alloys passivated by nickel

    International Nuclear Information System (INIS)

    McCafferty, E.

    2005-01-01

    The passivity of a nickel binary alloy is considered in terms of a network of -Ni-O-Ni- bridges in the oxide film, where Ni is the component of the binary alloy which produces passivity. The structure of the oxide is represented by a mathematical graph, and graph theory is used to calculate the connectivity of the oxide, given by the product of the number of edges in the graph and the Randic index. A stochastic calculation is employed to insert ions of the second metal into the oxide film so as to disrupt the connectivity of the -Ni-O-Ni- network. This disruption occurs at a critical ionic concentration of the oxide film. Mathematical relationships are developed for the introduction of a general ion B +n into the oxide film, and critical ionic compositions are calculated for oxide films on the nickel binary alloys. The notation B refers to any metal B which produces B +n ions in the oxide film, where +n is the oxidation number of the ion. The results of this analysis for Fe-Ni and Cu-Ni binary alloys are in good agreement with experimental results

  6. APT characterization of high nickel RPV steels

    International Nuclear Information System (INIS)

    Miller, M.K.; Russell, K.F

    2004-01-01

    Full text: The microstructures of several high nickel content pressure vessel steels have been characterized by atom probe tomography. The purposes of this study were to investigate the influence of high nickel levels on the response to neutron irradiation of high and low copper pressure vessel steels and to establish whether any additional phases were present after neutron irradiation. The nickel levels in these steels were at least twice that typically found in Western pressure vessel steels. Two different types of pressure vessel steels with low and high copper contents were selected for this study. The first set of alloys was low copper (∼0.05% Cu) base (15Ch2NMFAA) and weld (12Ch2N2MAA) materials used in a VVER-1000 reactor. The composition of the lower nickel VVER-1000 base material was Fe- 0.17 wt% C, 0.30% Si, 0.46% Mn, 2.2% Cr, 1.26% Ni, 0.05% Cu, 0.01% S, 0.008% P, 0.10% V and 0.50% Mo. The composition of the higher nickel VVER-1000 weld material was Fe- 0.06 wt % C, 0.33% Si, 0.80% Mn, 1.8% Cr, 1.78% Ni, 0.07% Cu, 0.009% S, 0.005% P, and 0.63% Mo. The VVER-1000 steels were irradiated in the HSSI Program's irradiation facilities at the University of Michigan, Ford Nuclear Reactor at a temperature of 288 o C for 2,137 h at an average flux of 7.08 x 10 11 cm 2 s -1 for a fluence of 5.45 x 10 18 n cm -2 (E >1 MeV) and for 5,340 h at an average flux of 4.33 x 10 11 cm -2 s -1 for a fluence of 8.32 x 10 1 28 n cm -2 (E >1 MeV). Therefore, the total fluence was 1.38 x 10 19 n cm -2 (E >1 MeV). The second type of pressure vessel steel was a high copper (0.20% Cu) weld from the Palisades reactor. The average composition of the Palisades weld was Fe- 0.11 wt% C, 0.18% Si, 1.27% Mn, 0.04% Cr, 1.20% Ni, 0.20% Cu, 0.017% S, 0.014% P, 0.003% V and 0.55% Mn. The Palisades weld, designated weldment 'B' from weld heat 34B009, was irradiated at a temperature of 288 o C and a flux of ∼7 x 10 11 cm -2 s -1 to a fast fluence of 1.4 x 10 19 n cm -2 (E >1 MeV). These three

  7. Improvement of the performance of Mg-based alloy electrodes at ambient temperatures

    International Nuclear Information System (INIS)

    Liu, H.K.; Chen, J.; Sun, L.; Bradhurst, D.H.; Dou, S.X.

    1998-01-01

    Full text: Rechargeable batteries are finding increased application in modern communications, computers, and electric vehicles. The Nickel-Metal Hydride (Ni-MH) battery has the best comprehensive properties. It is known that the important step to increase the energy density of Ni-MH battery is to improve the negative (metal hydride) electrode properties. Of all the hydrogen storage alloys studied previously, (the best know alloys are LaNi 5 , Mg 2 Ni, Ti 2 Ni , TiNi and Zr 2 Ni), the intermetallic compound Mg 2 Ni has the highest theoretical hydrogen storage capacity. The Mg 2 Ni-based hydrogen storage alloy is a promising material for increasing the negative electrode capacity of Ni-MH batteries because this alloy is superior to the LaNi 5 -system or the Zr-based alloys in materials cost and hydrogen absorption capacity. A serious disadvantage, however, is that the reactions of most magnesium based alloys with hydrogen require relatively high temperature (>300 deg C) and pressure (up to 10 atm) due to the slowness of the hydriding/dehydriding reactions. In this paper it is shown that with a combination of modifications to the alloy composition and methods of electrode preparation, magnesium-based alloys can be made into electrodes which will not only be useful at ambient temperatures but will have a useful cycle life and extremely high capacity

  8. Welding and Weldability of Directionally Solidified Single Crystal Nickel-Base Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J M; David, S A; Reed, R W; Burke, M A; Fitzgerald, T J

    1997-09-01

    Nickel-base superalloys are used extensively in high-temperature service applications, and in particular, in components of turbine engines. To improve high-temperature creep properties, these alloys are often used in the directionally-solidified or single-crystal form. The objective of this CRADA project was to investigate the weldability of both experimental and commercial nickel-base superalloys in polycrystalline, directionally-solidified, and single-crystal forms.

  9. High-temperature performance of a new nickel-based filler metal for power generation application

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, J.; Coleman, K. [Electric Power Research Institute, Charlotte, NC (United States); Siefert, J.; Tanzosh, J. [Babcok and Wilcox Research Center, Barberton, OH (United States); Newell, W. [Euroweld, Mooresville, NC (United States)

    2010-07-01

    A new nickel-based weld filler metal, EPRI P87, has been developed as a superior alternative to ERNiCr-3 for use in dissimilar metal welds (DMW) between ferritic and austenitic materials. EPRI P87 has a low coefficient of thermal expansion more closely matching alloys such as Grade 91 and 92 than other available filler metals. Additionally, the size of the carbon denuded region adjacent to the weld in the heat-affected-zone is minimized/eliminated by proper control of weld metal composition. In this work the high-temperature mechanical behavior of DMWs utilizing EPRI P87 (GTAW and GMAW processes) was characterized through tensile and long-term creep-rupture testing. Microstructure analysis was also conducted on tested specimens to evaluate the HAZ regions and failure modes. Performance of the weld metal and welded joints is discussed and compared with ERNiCr-3 and typical 9%Cr-MoV filler metals. (orig.)

  10. SCC Initiation Testing of Alloy 600 in High Temperature Water

    Science.gov (United States)

    Etien, Robert A.; Richey, Edward; Morton, David S.; Eager, Julie

    Stress corrosion cracking (SCC) initiation tests have been conducted on Alloy 600 at temperatures from 304 to 367°C. Tests were conducted with in-situ monitored smooth tensile specimens under a constant load in hydrogenated environments. A reversing direct current electric potential drop (EPD) system was used for all of the tests to detect SCC initiation. Tests were conducted to examine the effects of stress (and strain), coolant hydrogen, and temperature on SCC initiation time. The thermal activation energy of SCC initiation was measured as 103 ± 18 kJ/mol in hydrogenated water, which is similar to the thermal activation energy for SCC growth. Results suggest that the fundamental mechanical parameter which controls SCC initiation is plastic strain not stress. SCC initiation was shown to have a different sensitivity than SCC growth to dissolved hydrogen level. Specifically, SCC initiation time appears to be relatively insensitive to hydrogen level in the nickel stability region.

  11. High Temperature Deformation Mechanisms in a DLD Nickel Superalloy

    Directory of Open Access Journals (Sweden)

    Sean Davies

    2017-04-01

    Full Text Available The realisation of employing Additive Layer Manufacturing (ALM technologies to produce components in the aerospace industry is significantly increasing. This can be attributed to their ability to offer the near-net shape fabrication of fully dense components with a high potential for geometrical optimisation, all of which contribute to subsequent reductions in material wastage and component weight. However, the influence of this manufacturing route on the properties of aerospace alloys must first be fully understood before being actively applied in-service. Specimens from the nickel superalloy C263 have been manufactured using Powder Bed Direct Laser Deposition (PB-DLD, each with unique post-processing conditions. These variables include two build orientations, vertical and horizontal, and two different heat treatments. The effects of build orientation and post-process heat treatments on the materials’ mechanical properties have been assessed with the Small Punch Tensile (SPT test technique, a practical test method given the limited availability of PB-DLD consolidated material. SPT testing was also conducted on a cast C263 variant to compare with PB-DLD derivatives. At both room and elevated temperature conditions, differences in mechanical performances arose between each material variant. This was found to be instigated by microstructural variations exposed through microscopic and Energy Dispersive X-ray Spectroscopy (EDS analysis. SPT results were also compared with available uniaxial tensile data in terms of SPT peak and yield load against uniaxial ultimate tensile and yield strength.

  12. Research and Development of Some Advanced High Temperature Titanium Alloys for Aero-engine

    Directory of Open Access Journals (Sweden)

    CAI Jian-ming

    2016-08-01

    Full Text Available Some advanced high temperature titanium alloys are usually selected to be manufactured into blade, disc, case, blisk and bling under high temperature environment in compressor and turbine system of a new generation high thrust-mass ratio aero-engine. The latest research progress of 600℃ high temperature titanium alloy, fireproof titanium alloy, TiAl alloy, continuous SiC fiber reinforced titanium matrix composite and their application technology in recent years in China were reviewed in this paper. The key technologies need to be broken through in design, processing and application of new material and component are put forward, including industrial ingot composition of high purified and homogeneous control technology, preparation technology of the large size bar and special forgings, machining technology of blisk and bling parts, material property evaluation and application design technique. The future with the continuous application of advanced high temperature titanium alloys, will be a strong impetus to the development of China's aero-engine technology.

  13. Influence of Chromium and Molybdenum on the Corrosion of Nickel Based Alloys

    International Nuclear Information System (INIS)

    Hayes, J R; Gray, J; Szmodis, A W; Orme, C A

    2005-01-01

    The addition of chromium and molybdenum to nickel creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the complementary roles of Cr and Mo in Ni alloy passivation. Four nickel alloys with varying amounts of chromium and molybdenum were studied in 1 molar salt solutions over a broad pH range. The passive corrosion and breakdown behavior of the alloys suggests that chromium is the primary element influencing general corrosion resistance. The breakdown potential was nearly independent of molybdenum content, while the repassivation potential is strongly dependant on the molybdenum content. This indicates that chromium plays a strong role in maintaining the passivity of the alloy, while molybdenum acts to stabilize the passive film after a localized breakdown event

  14. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated a basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.

  15. Fireside corrosion of nickel base alloys in future 700 C coal fired power plants; Rauchgasseitige Korrosion von Nickelbasislegierungen fuer zukuenftige 700 C-Dampfkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Luettschwager, Frank

    2011-09-27

    Coal is still the most important energy source in Germany. In 2009 it produced 42.9 % of the overall German electrical power. Coal is available world-wide in large quantities and can be delivered economically. One of the possible ways to reduce CO{sub 2} pollution is the increase of efficiency of coal fired power plants, which requires steam conditions of up to 700 C - 730 C and 350 bar. Because many German power units will reach the end of their technical lifespan in a few years or the following decade, one will have the possibility to build up modern types of power plants with increased efficiency of more than 50 %. Some international standards (European Pressure Equipment Directive or ASME Boiler and Pressure Vessel Code) require 100 000 hour creep rupture strength of 100 MPa at 750 C. Therefore, nickel base alloys are in the focus of material qualification processes. Nickel base alloys are well investigated due to their hot corrosion behaviour. It is known that sodium sulphate may generate hot corrosion on those alloys at temperatures above its melting point of 884 C. On nickel base alloys an eutectic mixture of nickel sulphate and sodium sulphate with a melting point of 671 C can be generated, which leads to accelerated corrosion. This work examines, whether the high amount of sulphur and alkali metals will induce hot corrosion at the estimated working temperature on devices manufactured from nickel base alloy. Two synthetic coal ash deposits, according to the chemical composition of hard coal and lignite, and typical flue gases with and without sulphur dioxide were blended of pure agents. The reactions of the deposits with heater tubes' materials and synthetic flue gases are examined in the temperature range from 650 C to 800 C and different time ranges up to 2000 hours. The corroded specimen are examined with SEM/EDX to identify relevant corrosion products and determine the corrosivity of deposited compounds. Deposits increase the corrosion rate of

  16. Enhancing the high temperature capability of Ti-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Donchev, Alexander; Schuetze, Michael [DECHEMA-Forschungsinstitut, Frankfurt/Main (Germany); Kolitsch, Andreas; Yankov, Rossen [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden (Germany)

    2012-08-15

    Titanium is a widely used structural material for applications below approximately 500 C but right now it cannot be used at higher temperatures. Titanium forms a fast growing rutile layer under these conditions. Furthermore enhanced oxygen uptake into the metal subsurface zone leads to embrittlement which deteriorates the mechanical properties. To overcome this problem a combined Al- plus F-treatment was developed. The combination of Al-enrichment in the surface zone so that intermetallic Ti{sub x}Al{sub y}-layers are produced which form a protective alumina layer during high temperature exposure plus stabilization of the Al{sub 2}O{sub 3}-scale by the fluorine effect led to significantly improved resistance against increased oxidation and embrittlement in high temperature exposure tests of several Ti-alloys. In this paper, the experimental procedures and achieved improvements are described. The results will be discussed for the use of Ti-alloys at elevated temperatures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Ductile tungsten-nickel-alloy and method for manufacturing same

    Science.gov (United States)

    Ludwig, Robert L.

    1978-01-01

    The tensile elongation of a tungsten-nickel-iron alloy containing essentially 95 weight percent reprocessed tungsten, 3.5 weight percent nickel, and 1.5 weight percent iron is increased from a value of less than about 1 percent up to about 23 percent by the addition of less than 0.5 weight percent of a reactive metal consisting of niobium and zirconium.

  18. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  19. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture

    Science.gov (United States)

    Ignatiev, Victor; Surenkov, Alexander; Gnidoy, Ivan; Kulakov, Alexander; Uglov, Vadim; Vasiliev, Alexander; Presniakov, Mikhail

    2013-09-01

    In Russia, R&D on Molten Salt Reactor (MSR) are concentrated now on fast/intermediate spectrum concepts which were recognized as long term alternative to solid fueled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarizes results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salt on tellurium attack and to develop means of controlling tellurium cracking in the special Ni-based alloys recently developed for molten salt actinide recycler and tranforming (MOSART) system. Tellurium corrosion of Ni-based alloys was tested at temperatures up to 750 °C in stressed and unloaded conditions in molten LiF-BeF2 salt mixture fueled by about 20 mol% of ThF4 and 2 mol% of UF4 at different [U(IV)]/[U(III)] ratios: 0.7, 4, 20, 100 and 500. Following Ni-based alloys (in mass%): HN80М-VI (Mo—12, Cr—7.6, Nb—1.5), HN80МТY (Mo—13, Cr—6.8, Al—1.1, Ti—0.9), HN80МТW (Mo—9.4, Cr—7.0, Ti—1.7, W—5.5) and ЕМ-721 (W—25.2, Cr—5.7, Ti—0.17) were used for the study in the corrosion facility. If the redox state the fuel salt is characterized by uranium ratio [U(IV)]/[U(III)] uranium intermetallic compounds and alloys with nickel and molybdenum. This leads to spontaneous behavior of alloy formation processes on the specimens' surface and further diffusion of uranium deep into the metallic phase. As consequence of this films of intermetallic compounds and alloys of nickel, molybdenum, tungsten with uranium are formed on the alloys specimens' surface, and intergranular corrosion does not take place. In the fuel salt with [U(IV)]/[U(III)] = 4-20 the potentials of uranium

  20. Surface-finish effects on the high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1981-06-01

    Alloy 718 us a precipitation-hardening nickel-base superalloy that is being specified for various components for liquid-meal fast breeder reactors (LMFBRs). This alloy maintains high strength at elevated temperatures making it a desirable structural material. But the property that justifies most LMFBR applications is the alloy's resistance to thermal striping damage due to its high fatigue endurance strength. Thermal striping is a high-cycle fatigue phenomenon caused by thermal stresses from the fluctuating mixing action of sodium streams of differing temperatures impinging on the metal surfaces. Most of the design data is generated from laboratory fatigue specimens with carefully controlled surface finishes prepared with a low-stress grind and buffed to a surface finish 8--12 in. Since Alloy 718 has been shown to be quite notch sensitive under cyclic loading, the detrimental effect on the high-cycle fatigue properties caused by shop surface finishes of actual components has been questioned. This report examines some of the surface finishes that could be produced in a commercial shop on an actual component

  1. High temperature sealing method : induction brazing for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Y.H.; Lee, S.B.; Song, R.H.; Shin, D.R. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of); Lim, T.H. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of). Advanced Fuel Cell Research Center

    2009-07-01

    This study examined the use of induction brazing as a high temperature sealing method for solid oxide fuel cells (SOFCs). Nickel-based brazing alloys were modified using reactive titanium-hydride (TiH2). The gas sealing properties of the induction brazing process on anode-supported tubular SOFCs and ferritic stainless steel were evaluated. Brazing alloys BNi-2 and BNi-4 were not wetted in a yttria-silica-zircon (YSZ) electrolyte. The brazing alloy with added TiH2 showed good wettability with the YSZ electrolyte as a result of the formation of a TiOX layer. Only the BNi-4 alloy joined with the YSZ electrolyte. An open circuit voltage (OCV) value was used to estimate the gas tightness of the brazed cell. It was concluded that the BNi-4 TiH2 modified alloy is a suitable sealing material for SOFCs operating in temperatures up to 750 degrees C.

  2. 46 CFR 56.60-5 - Steel (High temperature applications).

    Science.gov (United States)

    2010-10-01

    ....A.) Upon prolonged exposure to temperatures above 775 °F (412 °C), the carbide phase of plain carbon steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel, and carbon-silicon steel may convert to graphite. (b) (Reproduces 124.2.B.) Upon prolonged exposure to...

  3. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    Science.gov (United States)

    Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew

    2018-02-01

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  4. Ceramic filters for bulk inoculation of nickel alloy castings

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2011-07-01

    Full Text Available The work includes the results of research on production technology of ceramic filters which, besides the traditional filtering function, playalso the role of an inoculant modifying the macrostructure of cast nickel alloys. To play this additional role, filters should demonstratesufficient compression strength and ensure proper flow rate of liquid alloy. The role of an inoculant is played by cobalt aluminateintroduced to the composition of external coating in an amount from 5 to 10 wt.% . The required compression strength (over 1MPa isprovided by the supporting layers, deposited on the preform, which is a polyurethane foam. Based on a two-level fractional experiment24-1, the significance of an impact of various technological parameters (independent variables on selected functional parameters of theready filters was determined. Important effect of the number of the supporting layers and sintering temperature of filters after evaporationof polyurethane foam was stated.

  5. Platinum-nickel alloy nanoparticles supported on carbon for 3-pentanone hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lihua, E-mail: lihuazhu@stu.xmu.edu.cn [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Zheng, Tuo; Yu, Changlin [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zheng, Jinbao [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Tang, Zhenbiao [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zhang, Nuowei [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Shu, Qing [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Chen, Bing H., E-mail: chenbh@xmu.edu.cn [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2017-07-01

    Highlights: • The PtNi/Ni(OH){sub 2}/C catalyst was successfully synthesized at room temperature. • PtNi alloy/C was obtained after PtNi/Ni(OH){sub 2}/C reduced in hydrogen at 300 °C. • Nanostructures of the PtNi catalysts were characterized by numerous techniques. • PtNi alloy/C exhibited high catalytic activity for 3-pentanone hydrogenation. - Abstract: In this work, we prepared the Ni/Ni(OH){sub 2}/C sample at room temperature by hydrazine hydrate reducing method. The galvanic replacement reaction method was applied to deposit platinum on the Ni/Ni(OH){sub 2} nanoparticles, to prepare the PtNi/Ni(OH){sub 2}/C catalyst. The catalyst of platinum-nickel alloy nanoparticles supported on carbon (signed as PtNi/C) was obtained by the thermal treatment of PtNi/Ni(OH){sub 2}/C in flowing hydrogen at 300 °C for 2 h. The size, nanostructure, surface properties, Pt and Ni chemical states of the PtNi/C catalyst were analyzed using powder X-ray diffraction (XRD), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM), high-angle annular dark-field scanning TEM (HAADF-STEM) and elemental energy dispersive X-ray spectroscopy (EDS) line scanning, X-ray photoelectron spectroscopy (XPS) and high-sensitivity low-energy ion scattering spectroscopy (HS-LEIS) techniques. The as-synthesized PtNi/C catalyst showed enhanced catalytic performance relative to the Ni/Ni(OH){sub 2}/C, Ni/C, Pt/C and PtNi/Ni(OH){sub 2}/C catalysts for 3-pentanone hydrogenation due to electron synergistic effect between Pt and Ni species in the PtNi/C catalyst. The PtNi/C catalyst also had exceling stability, with industrial application value.

  6. Magnetic properties of the binary Nickel/Bismuth alloy

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa; Şarlı, Numan, E-mail: numansarli82@gmail.com

    2017-09-01

    Highlights: • We model and investigate the magnetic properties of the Ni/Bi alloy within the EFT. • Magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc. • Magnetization of the Bi1 is dominant and Ni is at least dominant T < Tc. • Total magnetization of the Ni/Bi alloy is close to those of Ni at T < Tc. • Hysteresis curves are overlap at T < 0.1 and they behave separately at T > 0.1. - Abstract: Magnetic properties of the binary Nickel/Bismuth alloy (Ni/Bi) are investigated within the effective field theory. The Ni/Bi alloy has been modeled that the rhombohedral Bi lattice is surrounded by the hexagonal Ni lattice. According to lattice locations, Bi atoms have two different magnetic properties. Bi1 atoms are in the center of the hexagonal Ni atoms (Ni/Bi1 single layer) and Bi2 atoms are between two Ni/Bi1 bilayers. The Ni, Bi1, Bi2 and Ni/Bi undergo a second-order phase transition from the ferromagnetic phase to paramagnetic phase at Tc = 1.14. The magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc; hence the magnetization of the Bi1 is dominant and Ni is at least dominant. However, the total magnetization of the Ni/Bi alloy is close to magnetization of the Ni at T < Tc. The corcivities of the Ni, Bi1, Bi2 and Ni/Bi alloy are the same with each others, but the remanence magnetizations are different. Our theoretical results of M(T) and M(H) of the Ni/Bi alloy are in quantitatively good agreement with the some experimental results of binary Nickel/Bismuth systems.

  7. Sulfidation/oxidation resistant alloys

    International Nuclear Information System (INIS)

    Smith, G.D.; Tassen, C.S.

    1989-01-01

    The patent describes a nickel-base, high chromium alloy. It is characterized by excellent resistance to sulfidation and oxidation at elevated temperatures as high as 2000 degrees F. (1093 degrees C.) and higher, a stress-rupture life of about 200 hours or more at a temperature at least as high as 1800 degrees F. (990:0083 degrees C.) and under a stress of 2000 psi, good tensile strength and good ductility both at room and elevated temperature. The alloy consists essentially of about 27 to 35% chromium, about 2.5 to 5% aluminum, about 2.5 to about 6% iron, 0.5 to 2.5% columbium, up to 0.1% carbon, up to 1% each of titanium and zirconium, up to 0.05% cerium, up to 0.05% yttrium, up to 1% silicon, up to 1% manganese, and the balance nickel

  8. Nickel/carbon core/shell nanotubes: Lanthanum nickel alloy catalyzed synthesis, characterization and studies on their ferromagnetic and lithium-ion storage properties

    International Nuclear Information System (INIS)

    Anthuvan Rajesh, John; Pandurangan, Arumugam; Senthil, Chenrayan; Sasidharan, Manickam

    2014-01-01

    Highlights: • Ni/CNTs core/shell structure was synthesized using LaNi 5 alloy catalyst by CVD. • The magnetic and lithium-ion storage properties of Ni/CNTs structure were studied. • The specific Ni/CNTs structure shows strong ferromagnetic property with large coercivity value of 446.42 Oe. • Ni/CNTs structure shows enhanced electrochemical performance in terms of stable capacity and better rate capability. - Abstract: A method was developed to synthesize ferromagnetic nickel core/carbon shell nanotubes (Ni/CNTs) by chemical vapor deposition using Pauli paramagnetic lanthanum nickel (LaNi 5 ) alloy both as a catalyst and as a source for the Ni-core. The Ni-core was obtained through oxidative dissociation followed by hydrogen reduction during the catalytic growth of the CNTs. Transmission electron microscopy (TEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) analyses reveal that the Ni-core exists as a face centered cubic single crystal. The magnetic hysteresis loop of Ni/CNTs particle shows increased coercivity (446.42 Oe) than bulk Ni at room temperature. Furthermore, the Ni/CNTs core/shell particles were investigated as anode materials in lithium-ion batteries. The Ni/CNTs electrode delivered a high discharge capacity of 309 mA h g −1 at 0.2 C, and a stable cycle-life, which is attributed to high structural stability of Ni/CNTs electrode during electrochemical lithium-ion insertion and de-insertion redox reactions

  9. Development and characterization of protective nickel coatings by CVD process for non-ferrous metals and alloys

    International Nuclear Information System (INIS)

    Haq, A.U.

    2012-01-01

    Objective of this thesis is the formation of adhesive and corrosion resistant nickel film on aluminum, aluminum-lithium (Li 0.5 %) alloy and copper substrates by chemical vapor deposition (CVD) technique. Different surface preparation treatments such as electropolishing, anodizing and pickling are applied to the aforementioned substrates and its effect on the adhesion and corrosion resistance of nickel coating is studied. Nickel coating is deposited on different substrates by using already optimized parameters of 190-200 degree C deposition temperature, 9-8 x 10/sup -1/ Torr pressure during deposition, pure nickel-tetra-carbonyl gas, and induction heating source and 5 minutes deposition time. Substrates subjected to pickling treatment show excellent adhesion of nickel coating with a value of 5B based on ASTM standard while electropolished substrates show valve of 3B. XRD characterization of the nickel film show characteristic peaks of nickel confirming its phase purity. The SEM images show that nickel coating follows the surface features of the substrate. The pickled surface results in film with rough morphology than electropolished or anodized surface. The corrosion resistance of both uncoated and coated substrates is studied by monitoring its open circuit potential in different electrolytes (brine solution, sea and distilled water) at different temperatures. All substrates coated with nickel show 120-400mV potential difference compare with uncoated substrates in different electrolytes. (author)

  10. Quality assurance when surface welding nickel-based alloys; Qualitaetssicherung bei der Auftragsschweissung von Nickelbasislackierungen

    Energy Technology Data Exchange (ETDEWEB)

    Metschke, J. [Muellkraftwerk Schwandorf Betriebsgesellschaft mbH (Germany)

    2003-07-01

    The cladding of evaporator heat exchanger surfaces in refuse incineration boilers with alloy 625 can effectively protect against the corrosive wear of the basic tube if the described rules concerning the pre-treatment, processing, quality control and after-care are observed. This statement is supported by the positive experience with this alloy at the Schwandorf refuse-fired power plant over a period of eight years now. Since the maximum service temperature is limited to 420 C, alloy 625 is only suitable for protecting superheater pipes subject to certain conditions. Long-term experience with alternative nickel-based alloys (alloy 622, alloy 686 and others) are not yet available. (orig.) [German] Die Schweissplattierung von Verdampferwaermetauscherflaechen in Muellverbrennungskesseln mit Alloy 625 kann einen wirksamen Schutz gegen den korrosiven Verschleiss des Grundrohres darstellen, wenn die vorstehenden Regeln ueber Vorbehandlung, Verarbeitung, Qualitaetskontrolle und laufende Nachsorgearbeiten beachtet werden. Diese Aussage wird durch die positiven Erfahrungen mit dieser Legierung im Muellkraftwerk Schwandorf ueber einen Zeitraum von nunmehr acht Jahren gestuetzt. (orig.)

  11. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  12. Nickel W14 substrates for high-temperature superconductors

    International Nuclear Information System (INIS)

    Kolb-Telieps, Angelika; Gehrmann, Bodo

    2008-01-01

    High-temperature superconductivity is on the threshold of market launch. Starting from the results of a research project, ThyssenKrupp VDM has successfully developed an industrial-scale production process for nickel W14, which is used as substrate strip in superconductors destined for applications such as generators for wind turbines. The deoxidation of the melt presented a particular challenge. On the one hand, this is required in order to avoid fractures during the hot forming, on the other, the usual deoxidation elements have negative effects on the nanoscale texture and surface roughness needed for the substrate strip. (orig.)

  13. Electrodeposition of zinc-nickel alloy from fluoborate baths - as a substitute for electrogalvanising

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Bapu, G.N.K.; Ayyapparaju, J.; Devaraj, G.

    Use of fluoborate electroytes have been investigated for depositing a suitable composition of zinc-nickel alloy on mild steel for better corrosion protection. In the present investigation, the plating and bath conditions have been optimized so that zinc-nickel alloy coating from fluoborate solutions find applications for plating wires as well as other articles advantageously in the place of zinc coatings.

  14. Phase transformation and precipitation in aged Ti-Ni-Hf high-temperature shape memory alloys

    International Nuclear Information System (INIS)

    Meng, X.L.; Cai, W.; Zheng, Y.F.; Zhao, L.C.

    2006-01-01

    More attention has been paid to ternary Ti-Ni-Hf high-temperature shape memory alloys (SMAs) due to their high phase transformation temperatures, good thermal stability and low cost. However, the Ti-Ni-Hf alloys have been found to have low ductility and only about 3% shape memory effect and these have hampered their applications. It is well known that there are three methods to improve the shape memory properties of high-temperature SMAs: (a) cold rolling + annealing; (b) adding another element to the alloy; (c) aging. These methods are not suitable to improve the properties of Ti-Ni-Hf alloys. In this paper, a method of conditioning Ni-rich Ti-Ni-Hf alloys as high-temperature SMAs by aging is presented. For Ni-rich Ti 80-x Ni x Hf 20 alloys (numbers indicate at.%) the phase transformation temperatures are on average increased by more than 100 K by aging at 823 K for 2 h. Especially for those alloys with Ni contents less than 50.6 at.%, the martensitic transformation start temperatures (M s ) are higher than 473 K after aging. Transmission electron microscopy shows the presence of (Ti + Hf) 3 Ni 4 precipitates after aging. Compared with the precipitation of Ti 3 Ni 4 particles in Ni-rich Ti-Ni alloys, the precipitation of (Ti + Hf) 3 Ni 4 particles in Ni-rich Ti-Ni-Hf alloys needs higher temperatures and longer times

  15. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  16. Advanced STEM/EDX investigation on an oxide scale thermally grown on a high-chromium iron–nickel alloy under very low oxygen partial pressure

    International Nuclear Information System (INIS)

    Latu-Romain, L.; Madi, Y.; Mathieu, S.; Robaut, F.; Petit, J.-P.; Wouters, Y.

    2015-01-01

    Highlights: • A scale grown on a high-chromium iron–nickel alloy under low oxygen partial pressure was studied. • STEM-EDX maps at high resolution on a transversal thin lamella have been conducted. • The real complexity of the oxide layer has been highlighted. • These results explain the elevated number of semiconducting contributions. - Abstract: A thermal oxide scale has been grown on a high-chromium iron-nickel alloy under very low oxygen partial pressure (1050 °C, 10"−"1"0 Pa). In this paper, a special attention has been paid to morphological and chemical characterizations of the scale by scanning transmission electron microscopy and energy dispersive X-ray analysis at high resolution on a cross-section thin lamella beforehand prepared by using a combined focused ion beam/scanning electron microscope instrument. The complexity of the oxide layer is highlighted, and the correlation between the present results and the ones of a photoelectrochemical study is discussed.

  17. Experimental Investigation of the Electro Co-deposition of (Zinc-Nickel Alloy

    Directory of Open Access Journals (Sweden)

    Ekhlas Abdulrahman Salman

    2018-02-01

    Full Text Available abstract An experimental investigation has been carried out for zinc-nickel (Zn-Ni electro-deposition using the constant applied current technique. Weight difference approach method was used to determine the cathode current efficiency and deposit thickness. Also, the influence effect of current density on the deposition process, solderability, and porosity of the plating layer in microelectronic applications were examined. The bath temperature effect on nickel composition and the form of the contract was studied using Scanning Electron Microscope (SEM. Moreover, elemental nature of the deposition was analyzed by Energy Dispersive X-Ray (EDX. It has been found that the best bath temperature was 40˚C, specifically at a concentration of 73 g/L of NiCl2.6H2O, has a milestone influence on the nickel composition and structure of the deposits. The potential is a major factor influencing the deposition coating alloy which is adjusted by the operations of the cathodic polarization; rather than the standard potential of the two metals as determined by the e.m.f. series. The anomalous deposition was obtained at a current density lower than 0.8 A/dm2, while normal deposition occurred at current densities less than 1.2 A/dm2. Corrosion behavior was exhibited by the bath and for performance was carried out, and it shows that the best corrosion performance was for nickel composition of 10-12.6 wt%.

  18. Use of thermogravimetry and thermodynamic calculations for specifying chromium diffusion occurring in alloys containing chromium carbides during high temperature oxidation

    International Nuclear Information System (INIS)

    Berthod, Patrice; Conrath, Elodie

    2015-01-01

    The chromium diffusion is of great importance for the high temperature oxidation behaviour of the chromium-rich carbides-strengthened superalloys. These ones contain high chromium quantities for allowing them well resisting hot corrosion by constituting and maintaining a continuous external scale of chromia. Knowing how chromium can diffuse in such alloys is thus very useful for predicting the sustainability of their chromia-forming behaviour. Since Cr diffusion occurs through the external part of the alloy already affected by the previous steps of oxidation (decarburized subsurface) it is more judicious to specify this diffusion during the oxidation process itself. This was successfully carried out in this work in the case of a model chromia-forming nickel-based alloy containing chromium carbides, Ni(bal.)–25Cr–0.5C (in wt.%). This was done by specifying, using real-time thermogravimetry, the mass gain kinetic due to oxidation, and by combining it with the post-mortem determination of the Cr concentration profiles in subsurface. The values of D Cr thus obtained for 1000, 1050 and 1100 °C in the alloy subsurface are consistent with the values obtained in earlier works for similar alloy's chemical compositions. - Highlights: • A Ni25Cr0.50C alloy was oxidized at high temperature in a thermo-balance. • The mass gain files were analysed to specify the Cr 2 O 3 volatilization constant K v . • Concentration profiles were acquired to specify the chromium gradient. • The diffusion coefficient of chromium through the subsurface was deduced. • The obtained diffusion coefficient is consistent with values previously obtained.

  19. The performance of electroless nickel deposits in oil-field environments

    International Nuclear Information System (INIS)

    Mack, R.; Bayes, M.

    1984-01-01

    An experimental study was conducted on an electroless nickel plated (represented by Enplate NI-422) C-90 steel, uncoated C-90 steel, AISI 420, 174 PH, SAF 2205, and HASTELLOY /sup R/ G-3 to determine their corrosion-performance in twelve simulated downhole oil or gas production environments during 28 day exposures. These environments were aqueous brines containing various concentrations of Cl - , H 2 S and/or CO 2 , and over a range of temperatures. The results from this study and oilfield data for electroless nickel plated low alloy steels are presented and discussed. The study demonstrates the feasibility of electroless nickel coated low alloy steels as an economical substitute for some highly alloyed materials in certain oilfield applications; the field data support this

  20. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: zhouyumei@mail.xjtu.edu.cn [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2015-04-24

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti{sub 50}(Pd{sub 50−x}D{sub x}) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q{sup −1}~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q{sup −1}~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges.

  1. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    International Nuclear Information System (INIS)

    Xue, Dezhen; Zhou, Yumei; Ding, Xiangdong; Otsuka, Kazuhiro; Lookman, Turab; Sun, Jun; Ren, Xiaobing

    2015-01-01

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti 50 (Pd 50−x D x ) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q −1 ~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q −1 ~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges

  2. Corrosion Inhibition of Copper-nickel Alloy: Experimental and Theoretical Studies

    Energy Technology Data Exchange (ETDEWEB)

    Khadom, Anees A. [Univ. of Daiyla, Baquba (Iran, Islamic Republic of); Yaro, Aprael S. [Univ. of Baghdad, Aljadreaa (Iran, Islamic Republic of); Musa, Ahmed Y.; Mohamad, Abu Bakar; Kadhum, Abdul Amir H. [UniversitiKebangsaan Malaysia, Bangi (Malaysia)

    2012-08-15

    The corrosion inhibition of copper-nickel alloy by Ethylenediamine (EDA) and Diethylenetriamine (DETA) in 1.5M HCl has been investigated by weight loss technique at different temperatures. Maximum value of inhibitor efficiency was 75% at 35 .deg. C and 0.2 M inhibitor concentration EDA, while the lower value was 4% at 35 .deg. C and 0.01 M inhibitor concentration DETA. Two mathematical models were used to represent the corrosion rate data, second order polynomial model and exponential model respectively. Nonlinear regression analysis showed that the first model was better than the second model with high correlation coefficient. The reactivity of studied inhibitors was analyzed through theoretical calculations based on density functional theory (DFT). The results showed that the reactive sites were located on the nitrogen (N1, N2 and N4) atoms.

  3. Creep-Data Analysis of Alloy 617 for High Temperature Reactor Intermediate Heat Exchanger

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Kim, Yong Wan; Yin, Song Nan

    2006-01-01

    The design of the metallic components such as hot gas ducts, intermediate heat exchanger (IHX) tube, and steam reformer tubes of very high temperature reactor (VHTR) is principally determined by the creep properties, because an integrity of the components should be preserved during a design life over 30 year life at the maximum operating temperature up to 1000 .deg. C. For designing the time dependent creep of the components, a material database is needed, and an allowable design stress at temperature should be determined by using the material database. Alloy 617, a nicked based superalloy with chromium, molybdenum and cobalt additions, is considered as a prospective candidate material for the IHX because it has the highest design temperature. The alloy 617 is approved to 982 .deg. C (1800 .deg. F) and other alloys approved to 898 .deg. C (1650 .deg. C), such as alloy 556, alloy 230, alloy HX, alloy 800. Also, the alloy 617 exhibits the highest level of creep strength at high temperatures. Therefore, it is needed to collect the creep data for the alloy 617 and the creep-rupture life at the given conditions of temperature and stress should be predicted for the IHX construction. In this paper, the creep data for the alloy 617 was collected through literature survey. Using the collected data, the creep life for the alloy 617 was predicted based on the Larson-Miller parameter. Creep master curves with standard deviations were presented for a safety design, and failure probability for the alloy 617 was obtained with a time coefficient

  4. On aging of iron-nickel-titanium alloys

    International Nuclear Information System (INIS)

    Vintajkin, E.Z.; Dmitriev, V.B.; Udovenko, V.A.

    1978-01-01

    The mechanism of structural transformations on the initial stages of aging of Fe-(26-29) at. % Ni-(2.5-5.75) at. % Ti alloys was studied by neutron radiography. It was shown that at the earliest aging stages at 550 deg C there appear ordered areas which are FCC nuclei of the Ni 3 Ti phase. The rate of nucleation depends on the content of titanium in the all. In alloys with more than 3% Ti, nuclei appear even at the hardening stage. During the subsequent aging, the nuclei are enriched with nickel and titanium

  5. Effect of interlayer composition diffusion bonding behavior of an ods nickel alloy

    International Nuclear Information System (INIS)

    Saha, R.K.; Khan, T.I.

    2005-01-01

    Oxide dispersion strengthened superalloys have been developed with excellent mechanical properties for use at elevated temperatures. However, in order to achieve commercial application an appropriate joining process is necessary which minimizes the disruption to the alloy microstructure. In transient liquid phase (TLP) diffusion Hardness, and bonding technique an interlayer containing melting point depressants is placed between the bonding surfaces and at the bonding temperature this interlayer melts and solidifies isothermally. In this study, TLP bonding technique , was used to join a Ni-based ODS alloy, MA 758, using a number of different nickel based interlayer compositions, namely, Ni-Cr-Fe-Si-B-Co, Ni-Cr-B, Ni-P and Ni-Cr-Si-B. These foils are ductile and melt quickly within a narrow temperature range producing strong, non-porous joints. The results showed that the hold time at the bonding temperature affected the rate of isothermal solidification during the TLP bonding process. Furthermore, the use of a post-bond heat treatment helped to homogenize the joint region. (author)

  6. Cladding Alloys for Fluoride Salt Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Walker, Larry R [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-06-01

    This report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for cladding large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high-power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for cladding inaccessible surfaces such as the interior surfaces of heat exchangers. An initial evaluation for performed on the quality of nickel claddings processed using the two selected cladding techniques.

  7. Braze alloy process and strength characterization studies for 18 nickel grade 200 maraging steel with application to wind tunnel models

    Science.gov (United States)

    Bradshaw, James F.; Sandefur, Paul G., Jr.; Young, Clarence P., Jr.

    1991-01-01

    A comprehensive study of braze alloy selection process and strength characterization with application to wind tunnel models is presented. The applications for this study include the installation of stainless steel pressure tubing in model airfoil sections make of 18 Ni 200 grade maraging steel and the joining of wing structural components by brazing. Acceptable braze alloys for these applications are identified along with process, thermal braze cycle data, and thermal management procedures. Shear specimens are used to evaluate comparative shear strength properties for the various alloys at both room and cryogenic (-300 F) temperatures and include the effects of electroless nickel plating. Nickel plating was found to significantly enhance both the wetability and strength properties for the various braze alloys studied. The data are provided for use in selecting braze alloys for use with 18 Ni grade 200 steel in the design of wind tunnel models to be tested in an ambient or cryogenic environment.

  8. Segregation in welded nickel-base alloys

    International Nuclear Information System (INIS)

    Akhtar, J.I.; Shoaib, K.A.; Ahmad, M.; Shaikh, M.A.

    1990-05-01

    Segregation effects have been investigated in nickel-base alloys monel 400, inconel 625, hastelloy C-276 and incoloy 825, test welded under controlled conditions. Deviations from the normal composition have been observed to varying extents in the welded zone of these alloys. Least effect of this type occurred in Monel 400 where the content of Cu increased in some of the areas. Enhancement of Al and Ti has been found over large areas in the other alloys which has been attributed to the formation of low melting slag. Another common feature is the segregation of Cr, Fe or Ti, most likely in the form of carbides. Enrichment of Al, Ti, Nb, Mb, Mo, etc., to different amounts in some of the areas of these materials is in- terpretted in terms of the formation of gamma prime precipitates or of Laves phases. (author)

  9. Radiation-enhanced diffusion in nickel-10.6% chromium alloys

    International Nuclear Information System (INIS)

    Gieb, M.

    1995-01-01

    Results of investigations of the diffusion rate of nickel-10.6% chromium alloys after plastic deformation, after quenching from 700 C and from 1030 C, and during irradiation with 18 MeV protons and 1.85 MeV electrons are reported. The diffusion rate is measured by means of the electrical resistivity which increases with increasing degree of short range order. It was found that the characteristic temperature below which short range order develops is T t =550 C. Below about 400 C the atomic mobilities of the component atoms of the alloy are so small that no further increase in the degree of short range order is found in due laboratory times. The activation energy for self-diffusion was determined after quenching from 700 C to Q SD =2.88 eV. For the migration activation energy of vacancies a value of E M 1V =1.18 eV was obtained after quenching from 1030 C. For the migration activation energies of interstitials and vacancies values of E M 1I =1.04 eV and E M 1V =1.16 eV are derived from results of measurements of radiation enhanced diffusion, respectively. These values decrease with increasing high energy particle flux. The characteristic temperature for interstitial cluster formation is T t =300 C. Above this temperature radiation-induced interstitials and vacancies annihilate mainly by pair recombination. Below this temperature interstitials also annihilate at sinks which are formed during irradiation so that the concentration of vacancies increases with irradiation time. Their migration activation energy is approximately obtained in a straight-forward way from the experimental data. Above about 380 C the radiation enhanced diffusion rate is surprisingly much smaller than the thermal diffusion rate. The quasi-dynamic vacancy concentration built up during irradiation is much smaller than the thermal vacancy concentration. (orig.)

  10. Development of high temperature property database for Alloy 800H

    International Nuclear Information System (INIS)

    Yokoyama, Norio; Watanabe, Katsutoshi; Tsuji, Hirokazu; Nakajima, Hajime.

    1993-07-01

    JAERI Material Performance Database (JMPD) has been developed since 1989 in JAERI with a view to utilizing the various kinds of characteristic data of nuclear materials efficiently. Using relational database management system, PLANNER on the mainframe, the JMPD provides the retrieval supporting system, graphic and statistical analyses system. The data obtained with 7868 sets on characteristic data of metallic materials including fatigue crack growth data, etc. have been stored in the JMPD at the end of March in 1993. A ferritic superalloy, Alloy 800H is used for the structural material of the control rods of the High Temperature Engineering Test Reactor (HTTR). Thermal stress generates which might cause a severe creep damage at a reactor scram. It therefore needs to be designed with consideration on the fracture modes induced by creep deformation after neutron irradiation. The creep data (approximately 240 sets) and tensile data (approximately 100 sets) of Alloy 800H including the effects of test environment, aging treatment and neutron irradiation have been stored in the JMPD. Furthermore, using a personal computer, high temperature property database for Alloy 800H has been developed. The present report outlines the development of high temperature property database for Alloy 800H. (author)

  11. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    Science.gov (United States)

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  12. High temperature diffusion induced liquid phase joining of a heat resistant alloy

    International Nuclear Information System (INIS)

    Wikstrom, N.P.; Egbewande, A.T.; Ojo, O.A.

    2008-01-01

    Transient liquid phase bonding (TLP) of a nickel base superalloy, Waspaloy, was performed to study the influence of holding time and temperature on the joint microstructure. Insufficient holding time for complete isothermal solidification of liquated insert caused formation of eutectic-type microconstituent along the joint centerline region in the alloy. In agreement with prediction by conventional TLP diffusion models, an increase in bonding temperature for a constant gap size, resulted in decrease in the time, t f, required to form a eutectic-free joint by complete isothermal solidification. However, a significant deviation from these models was observed in specimens bonded at and above 1175 deg. C. A reduction in isothermal solidification rate with increased temperature was observed in these specimens, such that a eutectic-free joint could not be achieved by holding for a time period that produced complete isothermal solidification at lower temperatures. Boron-rich particles were observed within the eutectic that formed in the joints prepared at the higher temperatures. An overriding effect of decrease in boron solubility relative to increase in its diffusivity with increase in temperature, is a plausible important factor responsible for the reduction in isothermal solidification rate at the higher bonding temperatures

  13. The influence of nickel content on microstructures of Fe-Cr-Ni austenitic alloys irradiated with nickel ions

    International Nuclear Information System (INIS)

    Muroga, T.; Yoshida, N.; Garner, F.A.

    1990-11-01

    The objectives of this effort is to identify the mechanisms involved in the radiation-induced evolution of microstructure in materials intended for fusion applications. The results of this study are useful in interpreting the results of several other ongoing experiments involving either spectral or isotopic tailoring to study the effects of helium on microstructure evolution. Ion-irradiated Fe-15Cr-XNi (X = 20, 35, 45, 60, 75) ternary alloys and a 15Cr-85Ni binary alloy were examined after bombardment at 675 degree C and compared to earlier observations made on these same alloys after irradiation in EBR-II at 510 or 538 degree C. The response of the ion-irradiated microstructures to nickel content appears to be very consistent with that of neutron irradiation even though there are four orders of magnitude difference in displacement rate and over 200 degree C difference in temperature. It appears that the transition to higher rates of swelling during both types of irradiation is related to the operation of some mechanisms that is not directly associated with void nucleation. 6 refs., 8 figs

  14. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].

    Science.gov (United States)

    Ohno, H

    1976-11-01

    The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.

  15. Design criteria for rhenium-reduced nickel-based single-crystal alloys. Identification and computer-assisted conversion

    International Nuclear Information System (INIS)

    Goehler, Thomas

    2016-01-01

    In the present work, design criteria and property models for the creep strength optimization of rhenium-free nickel based single crystal Superalloys are investigated. The study focuses on a typical load condition of 1050 C and 150 MPa, which is representative for flight engine applications. Thereby the key aspect is to link chemical composition, manufacturing processes, microstructure formation and mechanistic understanding of dislocation creep through a computational materials engineering approach. Beside the positive effect of rhenium on solid solution hardening, a second mechanism in which rhenium increases high temperature creep strength is identified. It indirectly stabilizes precipitation hardening by reducing the coarsening kinetics of γ'-rafting. Five 1st and 2nd generation technical Superalloys show a comparable microstructure evolution for up to 2 % plastic elongation, while creep times differ by a factor of five. The application of a microstructure sensitive creep model shows that these coarsening processes can activate γ-cutting and thus lead to an increasing creep rate. Based on these calculations a threshold value of φ γ/γ' > 2,5 at 150 MPa is estimated. This ratio of matrix channel to raft thickness has been proofed for multiple positions by microstructure analysis of interrupted creep tests. The mechanism described previously can be decelerated by the enrichment of the γ-matrix with slow diffusing elements. The same principle also increases the solid solution strength of the γ-matrix. Therefore, the present work delivers an additional mechanistic explanation why creep properties of single phase nickel based alloys can be transferred to two phase technical Superalloys with rafted γ'-structure. Following, the best way to substitute both rhenium fundamental properties, namely a slow diffusion coefficient and a small solubility in g', has been investigated by means of CALPHAD-modeling. Only molybdenum and especially tungsten

  16. Cryoforming evaluation using high-purity nickel

    International Nuclear Information System (INIS)

    Lord, D.E.; Meisner, L.F.

    1976-01-01

    The cryogenic forming process was evaluated using nickel 270 to see if it had significant advantages over room-temperature (RT) forming. Typically, the procedure involved fast-strain-rate forming a set of nickel samples at cryogenic temperatures and another set at RT. Both sets were measured at RT for failure strength and their strength-preparation elongation curves compared at equal strains. Two more sets were formed, this time at slow strain rates (one at cryogenic temperatures, the other at RT). Both sets were measured at RT for failure strength and their strength-preparation elongation curves of these sets compared with the previous two at equal temperatures and strains. Cryoforming produced a 30 percent higher-strength nickel than that produced at room temperature at equal strains and strain rates. Forming rate effects disappeared as working temperature decreased. Rate-insensitive cryoforming produced a considerably stronger room-temperature material than room-temperature forming at high strain rates. Transmission electron microscopy indicated apparent structural differences between cryoformed and room-temperature-formed nickel. 14 fig

  17. Corrosion of stainless steels and nickel-base alloys in solutions of nitric acid and hydrofluoric acid

    International Nuclear Information System (INIS)

    Horn, E.M.; Renner, M.

    1992-01-01

    Reactions involving nitric acid may always result in the contamination of this acid with fluorides. In highly concentrted nitric acid, the presence of small amounts of HF will substantially reduce the corrosion of metallic materials. Mixtures consisting of hydrofluoric acid and hypo-azeotropic nitric acid on the other hand will strongly attack: the metal loss will markedly increase with increasing HNO 3 and HF concentrations as well as with rising temperatures. The investigation covered 12 stainless steel grades and nickel-base alloys. With constant HNO 3 content, corrosion rates will rise linearly when increasing the HF concentration. With constant HF concentration (0,25 M), corrosion rates will increase rapidly with increasing nitric acid concentration (from 0.3 M to 14.8 M). This can best be described by superimposing a linear function and a hyperbolic function that is reflecting the change in the HNO 3 content. Alloys containing as much chromium as possible (up to 46 wt.%) will exhibit the best corrosion resistance. Alloy NiCr30FeMo (Hastelloy alloy G-30) proved to be well suitable in this investigation. (orig.) [de

  18. Morphological Transition in the Cellular Structure of Single Crystals of Nickel-Tungsten Alloys near the Congruent Melting Point

    International Nuclear Information System (INIS)

    Azhazha, V.M.; Ladygin, A.N.; Sverdlov, V.Ja.; Zhemanyuk, P.D.; Klochikhin, V.V.

    2005-01-01

    The structure and microhardness of single crystals of nickel-tungsten alloys containing 25-36 wt % W are investigated. The temperature gradient at the crystallization front and the velocity of the crystallization front are the variable parameters of directional crystallization. It is found that, when the velocity of the crystallization front is 4 mm/min, the morphology of the cellular structure of the single crystals grown from nickel-tungsten alloys changes from square cells to hexagonal cells at a tungsten content of greater than or equal to 31 wt %. As the velocity of the crystallization front increases to 10 mm/min, no morphological transition occurs. It is shown that impurities play an important role in the formation of a cellular structure with cells of different types

  19. Contribution to the study of the electrodeposition of iron-nickel alloys

    International Nuclear Information System (INIS)

    Valignat, J.

    1968-01-01

    Using a coulometric technique based upon the anodic intentiostatic dissolution, we studied the potentiostatic, deposition of nickel, iron and nickel iron alloys. We have shown that the minimum of the curve I = f (t) (deposition current versus time) is probably due to the transitory blocking of the surface by hydrogen and that the syn-crystallisation of nickel and iron is responsible for the anomalous co-deposition of these two elements. (author) [fr

  20. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

    2002-11-24

    To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

  1. Fracture behavior of nickel-based alloys in water

    Energy Technology Data Exchange (ETDEWEB)

    Mills, W.J.; Brown, C.M.

    1999-08-01

    The cracking resistance of Alloy 600, Alloy 690 and their welds, EN82H and EN52, was characterized by conducting J{sub IC} tests in air and hydrogenated water. All test materials displayed excellent toughness in air and high temperature water, but Alloy 690 and the two welds were severely embrittled in low temperature water. In 54 C water with 150 cc H{sub 2}/kg H{sub 2}O, J{sub IC} values were typically 70% to 95% lower than their air counterparts. The toughness degradation was associated with a fracture mechanism transition from microvoid coalescence to intergranular fracture. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that susceptibility to low temperature cracking is due to hydrogen embrittlement of grain boundaries. The effects of water temperature, hydrogen content and loading rate on low temperature crack propagation were studied. In addition, testing of specimens containing natural weld defects and as-machined notches was performed to determine if low temperature cracking can initiate at these features. Unlike the other materials, Alloy 600 is not susceptible to low temperature cracking as the toughness in 54 C water remained high and a microvoid coalescence mechanism was operative in both air and water.

  2. High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  3. High temperature diffusion of hafnium in tungsten and a tungsten-hafnium carbide alloy

    International Nuclear Information System (INIS)

    Ozaki, Y.; Zee, R.H.

    1994-01-01

    Refractory metals and ceramics are used extensively in energy systems due to their high temperature properties. This is particularly important in direct conversion systems where thermal to electric conversion efficiency is a direct function of temperature. Tungsten, which has the highest melting temperature among elemental metals, does not possess sufficient creep resistance at temperature above 1,600 K. Different dispersion strengthened tungsten alloys have been developed to extend the usefulness of tungsten to higher temperatures. One of these alloys, tungsten with 0.4 mole percent of finely dispersed HfC particles (W-HfC), has the optimum properties for high temperature applications. Hafnium carbide is used as the strengthening agent due to its high chemical stability and its compatibility with tungsten. The presence of HfC particles retards the rate of grain growth as well as restricting dislocation motion. Both of which are beneficial for creep resistance. The long term behavior of this alloy depends largely on the evolution of its microstructure which is governed by the diffusion of its constituents. Data on the diffusion of carbon in tungsten and tungsten self-diffusion are available, but no direct measurements have been made on the diffusion of hafnium in tungsten. The only diffusion data available are estimated from a coarsening study and these data are highly unreliable. In this study, the diffusion behavior of hafnium in pure tungsten and in a W-HfC alloy was directly measured by means of Secondary Ion Mass Spectroscopy (SIMS). The selection of the W-HfC alloy is due to its importance in high temperature engineering applications, and its higher recrystallization temperature. The presence of HfC particles in tungsten restricts grain growth resulting in better high temperature creep resistance. The higher recrystallization temperature allows measurements to be made over a wider range of temperatures at a relatively constant grain size

  4. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  5. The Study of the Impact of Surface Preparation Methods of Inconel 625 and 718 Nickel-Base Alloys on Wettability by BNi-2 and BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-04-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  6. The Study Of The Impact Of Surface Preparation Methods Of Inconel 625 And 718 Nickel-Base Alloys On Wettability By BNi-2 And BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-06-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  7. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments.

    Science.gov (United States)

    Mercieca, Sven; Caligari Conti, Malcolm; Buhagiar, Joseph; Camilleri, Josette

    2018-01-01

    The aim of this study was to compare the degradation resistance of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys used as a base material for partial dentures in contact with saliva. Wiron® 99 and Wironit Extra-Hard® were selected as representative casting alloys for Ni-Cr and Co-Cr alloys, respectively. The alloys were tested in contact with deionized water, artificial saliva and acidified artificial saliva. Material characterization was performed by X-ray diffractometry (XRD) and microhardness and nanohardness testing. The corrosion properties of the materials were then analyzed using open circuit potential analysis and potentiodynamic analysis. Alloy leaching in solution was assessed by inductively coupled plasma mass spectrometry techniques. Co-Cr alloy was more stable than the Ni-Cr alloy in all solutions tested. Leaching of nickel and corrosion attack was higher in Ni-Cr alloy in artificial saliva compared with the acidified saliva. The corrosion resistance of the Co-Cr alloy was seen to be superior to that of the Ni-Cr alloy, with the former exhibiting a lower corrosion current in all test solutions. Microstructural topographical changes were observed for Ni-Cr alloy in contact with artificial saliva. The Ni-Cr alloy exhibited microstructural changes and lower corrosion resistance in artificial saliva. The acidic changes did not enhance the alloy degradation. Ni-Cr alloys are unstable in solution and leach nickel. Co-Cr alloys should be preferred for clinical use.

  8. Stress corrosion cracking of nickel base alloys in PWR primary water

    International Nuclear Information System (INIS)

    Guerre, C.; Chaumun, E.; Crepin, J.; De Curieres, I.; Duhamel, C.; Heripre, E.; Herms, E.; Laghoutaris, P.; Molins, R.; Sennour, M.; Vaillant, F.

    2013-01-01

    Stress corrosion cracking (SCC) of nickel base alloys and associated weld metals in primary water is one of the major concerns for pressurized water reactors (PWR). Since the 90's, highly cold-worked stainless steels (non-sensitized) were also found to be susceptible to SCC in PWR primary water ([1], [2], [3]). In the context of the life extension of pressurized water reactors, laboratory studies are performed in order to evaluate the SCC behaviour of components made of nickel base alloys and of stainless steels. Some examples of these laboratory studies performed at CEA will be given in the talk. This presentation deals with both initiation and propagation of stress corrosion cracks. The aims of these studies is, on one hand, to obtain more data regarding initiation time or crack growth rate and, one the other hand, to improve our knowledge of the SCC mechanisms. The aim of these approaches is to model SCC and to predict components life duration. Crack growth rate (CGR) tests on Alloy 82 with and without post weld heat treatment are performed in PWR primary water (Figure 1). The heat treatment seems to be highly beneficial by decreasing the CGR. This result could be explained by the effect of thermal treatment on the grain boundary nano-scopic precipitation in Alloy 82 [4]. The susceptibility to SCC of cold worked austenitic stainless steels is also studied. It is shown that for a given cold-working procedure, SCC susceptibility increases with increasing cold-work ([2], [5]). Despite the fact that the SCC behaviour of Alloy 600 has been widely studied for many years, recent laboratory experiments and analysis ([6], [7], [8]) showed that oxygen diffusion is not a rate-limiting step in the SCC mechanism and that chromium diffusion in the bulk close the crack tip could be a key parameter. (authors)

  9. Study of the corrosion of nickel base alloys in molten fluorides medium

    International Nuclear Information System (INIS)

    Fabre, St.; Finne, J.; Noel, D.; Catalette, H.; Cabet, C.; Chamelot, P.; Taxil, P.; Cassayre, L.

    2007-01-01

    The aim of this work is to study the corrosion mechanisms of nickel and its alloys in molten fluoride media. In a first part, the behaviour of the pure alloy metals has been studied (Ni, Mo, W, Fe and Cr) in three different salts mixtures: LiF-NaF, LiF-CaF 2 and LiF-AlF 3 in a temperature range of 700-1000 C. An experimental assembly allowing the implementation of electrochemical methods has been fabricated and validated. Linear scanning volt-amperometry has been used for studying the corrosion reactions of metals. It has then been possible to obtain intensity-potential curves and to determine the currents and corrosion potentials by the plotting of Tafel straight lines. These experimental results have finely been interpreted in considering the thermodynamic data accessible in literature (potential-oxo-acidity diagrams of metals in salts built from HSC Chemistry 5.1) and the influence of temperature and the nature of the bath have been estimated. (O.M.)

  10. [The effect of hydrogen peroxide on the electrochemical corrosion properties and metal ions release of nickel-chromium dental alloys].

    Science.gov (United States)

    Wang, Jue; Qiao, Guang-yan

    2013-04-01

    To investigate the effect of hydrogen peroxide on the electrochemical corrosion and metal ions release of nickel-chromium dental alloys. The corrosion resistance of nickel-chromium dental alloys was compared by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PD) methods in artificial saliva after immersed in different concentrations of hydrogen peroxide for 112 h. The metal ions released from nickel-chromium dental alloys to the artificial saliva were detected after electrochemical measurements using inductively coupled plasma mass spectrometry (ICP-MS). The data was statistically analyzed by analysis of variance (ANOVA) using SPSS 13.0 software package. The electrochemical experiment showed that the sequence of polarization resistance in equivalent circuit (Rct), corrosion potential (Ecorr), pitting breakdown potential (Eb), and the difference between Ecorr and Eb representing the "pseudo-passivation" (δE) of nickel-chromium alloys in artificial saliva was 30% alloys to the artificial saliva, and the order of the concentrations of metal ions was 0% corrosion resistance of nickel-chromium dental alloys decrease after immersed in different concentrations of hydrogen peroxide for 112 h. Nickel-chromium dental alloys are more prone to corrosion in the artificial saliva with the concentration of hydrogen peroxide increased, and more metal ions are released in the artificial saliva.

  11. Surface modification of 2014 aluminium alloy-Al2O3 particles composites by nickel electrochemical deposition

    International Nuclear Information System (INIS)

    Molina, J.M.; Saravanan, R.A.; Narciso, J.; Louis, E.

    2004-01-01

    A method to modify the surface of aluminium matrix composites (AMC) by electrochemical nickel deposition has been developed. Deposition was carried out in a stirred standard Watt's bath, whereas potential and time were varied to optimize coating characteristics. The method, that allowed to overcome the serious difficulties associated to electrochemical deposition of an inherently inhomogeneous material, was used to nickel coat composites of 2014 aluminium alloy-15 vol.% Al 2 O 3 particles. Coats with a good adherence and up to 60 μm thick were easily obtained. In order to improve surface properties, the coated composite was subjected to rather long (from 10 to 47.5 h) heat treatments at a temperature of 520 deg,C. The heat treatments improved the uniformity of the deposited layer and promoted the formation of Al-Ni intermetallics (mainly Al 3 Ni 2 , as revealed by X-ray diffraction and energy-dispersive X-ray analysis (EDX)). Experimental results indicate that growth of the intermetallic layer is diffusion limited

  12. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  13. The determination of sulphur in copper, nickel and aluminium alloys by proton activation analysis

    International Nuclear Information System (INIS)

    Vandecasteele, C.; Dewaele, J.; Esprit, M.; Goethals, P.

    1981-01-01

    The 34 S(p,n) 34 sup(m)Cl reaction, induced by 13 MeV protons is used for the determination of sulphur in copper, nickel and aluminium alloys. The 34 sup(m)Cl is separated by repeated precipitation as silver chloride. The results obtained were resp. 3.08 +- 0.47, 1.47 +- 0.17 and -1 for copper, nickel and aluminium alloys. (orig.)

  14. Influence of niobium addition on the high temperature mechanical properties of a centrifugally cast HP alloy

    International Nuclear Information System (INIS)

    Andrade, A.R.; Bolfarini, C.; Ferreira, L.A.M.; Vilar, A.A.A.; Souza Filho, C.D.; Bonazzi, L.H.C.

    2015-01-01

    The influence of niobium addition on the mechanical properties at high temperature of HP alloy has been investigated. Two HP alloys were centrifugally cast with a similar chemical composition differing only in the niobium content. Low strain rate high temperature tensile tests and creep-rupture tests were performed in the range of 900–1100 °C, and the results compared between the alloys. According to the results, the high temperature mechanical behavior of both alloys is controlled by several factors like solid solution, network of eutectic carbides, intradendritic precipitation and dendrite spacing. A significant increase in the mechanical properties for the HP alloy with niobium addition was found within the temperature range of 900–1050 °C. Beyond this temperature the mechanical behavior of both alloys is basically the same

  15. Development of a database for the prediction of phases in Pt-Al-Cr-Ru alloys for high-temperature and corrosive environments: Al-Cr-Ru

    International Nuclear Information System (INIS)

    Suess, R.; Watson, A.; Cornish, L.A.; Compton, D.N.

    2009-01-01

    Platinum-based alloys for high-temperature corrosive environments are being developed which have microstructures that are analogous to the γ/γ' microstructure of the nickel-based superalloys. The need for a predictive thermodynamic database for these alloys was identified. Because experimental studies suggested that such a database should be based on Pt-Al-Cr-Ru, the Al-Cr-Ru system is of importance in this research programme. Using the CALPHAD method and Thermo-Calc software, existing binary data were used to optimise a ternary database for Al-Cr-Ru against available experimental ternary data. The database gives good predictions with regards to phase equilibria in the system as well as the nature of the primary solidification phases.

  16. Some observations on the physical metallurgy of nickel alloy weld metals

    International Nuclear Information System (INIS)

    Skillern, C.G.; Lingenfelter, A.C.

    1982-01-01

    Numerous nickel alloys play critical roles in various energy-related applications. Successful use of these alloys is almost always dependent on the availability of acceptable welding methods and welding products. An understanding of the physical metallurgy of these alloys and their weld metals and the interaction of weld metal and base metal is essential to take full advantage of the useful properties of the alloys. To illustrate this point, this paper presents data for two materials: INCONEL alloy 718 and INCONEL Welding Electrode 132. 8 figures, 9 tables

  17. Tungsten wire-nickel base alloy composite development

    Science.gov (United States)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  18. Multimodal Nanoscale Characterization of Transformation and Deformation Mechanisms in Several Nickel Titanium Based Shape Memory Alloys

    Science.gov (United States)

    Casalena, Lee

    . NiTiAu alloys are shown to demonstrate work output at extremely high temperatures - above 400 °C - where the potential benefits may offset material cost. Crystal structures and chemical effects of previously undocumented secondary phases are extensively examined using STEM and X-ray energy dispersive spectroscopy (XEDS). These insights are combined with mechanical test data to develop an understanding of the critical microstructure-property relationships involved. In addition to the native corrosion resistance common to all these alloys, a nickel rich NiTi-1Hf alloy is shown to demonstrate extremely high strength and wear resistance, making it an ideal candidate for tribological applications such as bearings used in corrosive environments. Details of the stress-induced martensite phase are revealed in this alloy system using synchrotron radiation and aberration-corrected STEM. Finally, post mortem Transmission Kikuchi Diffraction (TKD) and in situ High Energy Diffraction Microscopy (HEDM) are used to explore the remarkable grain refinement process that occurs in NiTi and related alloys through load-biased thermal cycling. Microstructural changes in the form of defect generation and subgrain development are key mechanistic insights sought to further understand the processes resulting in unrecovered strain accumulation, which lead to detrimental functional fatigue in these alloys.

  19. Extractive spectrophotometric determination of molybdenum in steels and nickel base high-temperature alloys as a ternary complex with hydroxylamine hydrochloride and 4-(2-pyridylazo) resorcinol

    International Nuclear Information System (INIS)

    Reddy, M.R.P.; Kumar, P.V.S.; Shyamsundar, J.P.; Anjaneyulu, Y.

    1990-01-01

    The red coloured, ternary complex formed by molybdenum(VI) with hydroxylamine hydrchloride and 4-(2-pyridylazo) resorcinol (PAR), on heating for 20 minutes in a hot water bath at pH 6-8, can be extracted with a mixture of n-butanol and benzene (4:1). This complex exhibits absorption maximum at 530nm with a molar absorptivity of 2.8x10 4 lit. mol -1 cm -1 and obeys Beer's law upto 4.5μg/ml of Mo(VI). The composition of the complex is found to be 1:1:1, for Mo(VI): hydroxylamine hydrochloride: PAR. Large amounts of tartaric acid and 2, 2-diamino-cyclohexane tetra acetic acid (CyDTA) can be tolerated in this method. The extraction becomes highly selective in presence of CyDTA (3ml of 5x10 -2 M) and interference of ions like Fe(III)(5mg), Pb(II)(4mg), Zn(II)(2mg), Cu(II)(4mg), Mn(II)(3mg), Ni(II)(4mg), Sn(II)(3mg), Cr(VI)(2mg) and Bi(III)(0.5mg) can be effectively supressed in the determination of 10-45μg of molybdenum. The method can be successfully applied for the determination of molybdenum in steels and nickel base high temperature alloys. (author). 2 tabs., 8 refs

  20. Low cost AB{sub 5}-type hydrogen storage alloys for a nickel-metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Lijun [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Zhan Feng [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Bao Deyou [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Qing Guangrong [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Li Yaoquan [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Wei Xiuying [General Res. Inst. for Non-Ferrous Metals, Beijing (China)

    1995-12-15

    The studies have been carried out on utilizing Ml(NiAl){sub 5}-based alloys as a low cost negative battery electrode. The replacement of nickel by copper improved the cycle lifetime to some extent without a decrease in capacity. Using Ml(NiAlCu){sub 5} alloys, hydrogen storage alloys with good overall characteristics and low cost were obtained through substituting cobalt or silicon for nickel. The discharge capacity was further increased by increasing the lanthanum content in lanthanum-rich mischmetal. (orig.)

  1. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    Science.gov (United States)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  2. Microstructural and wear characteristics of cobalt free, nickel base intermetallic alloy deposited by laser cladding

    International Nuclear Information System (INIS)

    Awasthi, Reena; Kumar, Santosh; Viswanadham, C.S.; Srivastava, D.; Dey, G.K.; Limaye, P.K.

    2011-01-01

    This paper describes the microstructural and wear characteristics of Ni base intermetallic hardfacing alloy (Tribaloy-700) deposited on stainless steel-316 L substrate by laser cladding technique. Cobalt base hardfacing alloys have been most commonly used hardfacing alloys for application involving wear, corrosion and high temperature resistance. However, the high cost and scarcity of cobalt led to the development of cobalt free hardfacing alloys. Further, in the nuclear industry, the use of cobalt base alloys is limited due to the induced activity of long lived radioisotope 60 Co formed. These difficulties led to the development of various nickel and iron base alloys to replace cobalt base hardfacing alloys. In the present study Ni base intermetallic alloy, free of Cobalt was deposited on stainless steel- 316 L substrate by laser cladding technique. Traditionally, welding and thermal spraying are the most commonly employed hardfacing techniques. Laser cladding has been explored for the deposition of less diluted and fusion-bonded Nickel base clad layer on stainless steel substrate with a low heat input. The laser cladding parameters (Laser power density: 200 W/mm 2 , scanning speed: 430 mm/min, and powder feed rate: 14 gm/min) resulted in defect free clad with minimal dilution of the substrate. The microstructure of the clad layer was examined by Optical microscopy, Scanning electron microscopy, with energy dispersive spectroscopy. The phase analysis was performed by X-ray diffraction technique. The clad layer exhibited sharp substrate/clad interface in the order of planar, cellular, and dendritic from the interface upwards. Dilution of clad with Fe from substrate was very low passing from ∼ 15% at the interface (∼ 40 μm) to ∼ 6% in the clad layer. The clad layer was characterized by the presence of hexagonal closed packed (hcp, MgZn 2 type) intermetallic Laves phase dispersed in the eutectic of Laves and face centered cubic (fcc) gamma solid solution. The

  3. Nb effect on Zr-alloy oxidation under high pressure steam at high temperatures

    International Nuclear Information System (INIS)

    Park, Kwangheon; Yang, Sungwoo; Kim, Kyutae

    2005-01-01

    The high-pressure steam effects on the oxidation of Zircaloy-4 (Zry-4) and Zirlo (Zry-1%Nb) claddings at high temperature have been analyzed. Test temperature range was 700-900degC, and pressures were 1-150 bars. High pressure-steam enhances oxidation of Zry-4, and the dependency of enhancement looks exponential to steam pressure. The origin of the oxidation enhancement turned out to be the formation of cracks in oxide. The loss of tetragonal phase by high-pressure steam seems related to the crack formation. Addition of Nb as an alloying element to Zr alloy reduces significantly the steam pressure effects on oxidation. The higher compressive stresses and the smaller fraction of tetragonal oxides in Zry-1%Nb seem to be the diminished effect of high-pressure steam on oxidation. (author)

  4. Influence of the alloying effect on nickel K-shell fluorescence yield in Ni Si alloys

    Science.gov (United States)

    Kalayci, Y.; Agus, Y.; Ozgur, S.; Efe, N.; Zararsiz, A.; Arikan, P.; Mutlu, R. H.

    2005-02-01

    Alloying effects on the K-shell fluorescence yield ωK of nickel in Ni-Si binary alloy system have been studied by energy dispersive X-ray fluorescence. It is found that ωK increases from pure Ni to Ni 2Si and then decreases from Ni 2Si to NiSi. These results are discussed in terms of d-occupation number on the Ni site and it is concluded that electronic configuration as a result of p-d hybridization explain qualitatively the observed variation of ωK in Ni-Si alloys.

  5. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method

    Directory of Open Access Journals (Sweden)

    Victor Gostishchev

    2018-06-01

    Full Text Available This paper deals with the investigation of complex-alloyed nickel aluminides obtained from oxide compounds by aluminothermic reduction. The aim of the work was to study and develop the physicochemical basis for obtaining complex-alloyed nickel aluminides and their application for enhancing the properties of coatings made by electrospark deposition (ESD on steel castings, as well as their use as grain refiners for tin bronze. The peculiarities of microstructure formation of master alloys based on the Al–TM (transition metal system were studied using optical, electronic scanning microscopy and X-ray spectral microanalysis. There were regularities found in the formation of structural components of aluminum alloys (Ni–Al, Ni-Al-Cr, Ni-Al-Mo, Ni-Al-W, Ni-Al-Ti, Ni-Cr-Mo-W, Ni-Al-Cr-Mo-W-Ti, Ni-Al-Cr-V, Ni-Al-Cr-V-Mo and changes in their microhardness, depending on the composition of the charge, which consisted of oxide compounds, and on the amount of reducing agent (aluminum powder. It is shown that all the alloys obtained are formed on the basis of the β phase (solid solution of alloying elements in nickel aluminide and quasi-eutectic, consisting of the β′ phase and intermetallics of the alloying elements. The most effective alloys, in terms of increasing microhardness, were Al-Ni-Cr-Mo-W (7007 MPa and Al-Ni-Cr-V-Mo (7914 MPa. The perspective is shown for applying the synthesized intermetallic master alloys as anode materials for producing coatings by electrospark deposition on steel of C1030 grade. The obtained coatings increase the heat resistance of steel samples by 7.5 times, while the coating from NiAl-Cr-Mo-W alloy remains practically nonoxidized under the selected test conditions. The use of NiAl intermetallics as a modifying additive (0.15 wt. % in tin bronze allows increasing the microhardness of the α-solid solution by 1.9 times and the microhardness of the eutectic (α + β phase by 2.7 times.

  6. Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications.

    Science.gov (United States)

    Rittapai, Apiwat; Urapepon, Somchai; Kajornchaiyakul, Julathep; Harniratisai, Choltacha

    2014-06-01

    This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (α=0.05). The alloy toxicity was evaluated according to the ISO standard. The solidus and liquidus points of experimental alloys ranged from 1023℃ to 1113℃ and increased as the nickel content increased. The highest ultimate tensile strength (595.9 ± 14.2 MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity (113.9 ± 8.0 and 122.8 ± 11.3 GPa, respectively), but also had a value of 0.2% proof strength (190.8 ± 4.8 and 198.2 ± 3.4 MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications.

  7. Study of superficial films and of electrochemical behaviour of some nickel base alloys and titanium base alloys in solution representation of granitic, argillaceous and salted ground waters

    International Nuclear Information System (INIS)

    Quang, K.V.; Da Cunha Belo, M.; Benabed, M.S.; Bourelier, F.; Jallerat, N.; Pari, F.L.

    1985-01-01

    The corrosion behaviour of the stainless steels 304, 316 Ti, 25Cr-20Ni-Mo-Ti, nickel base alloys Hastelloy C4, Inconel 625, Incoloy 800, Ti and Ti-0.2% Pd alloy has been studied in the aerated or deaerated solutions at 20 0 C and 90 0 C whose compositions are representative of interstitial ground waters: granitic or clay waters or salt brine. The electrochemical techniques used are voltametry, polarization resistance and complexe impedance measurements. Electrochemical data show the respective influence of the parameters such as temperature, solution composition and dissolved oxygen, addition of soluble species chloride, fluoride, sulfide and carbonates, on which depend the corrosion current density, the passivation and the pitting potential. The inhibition efficiency of carbonate and bicarbonate activities against pitting corrosion is determined. In clay water at 90 0 C, Ti and Ti-Pd show very high passivation aptitude and a broad passive potential range. Alloying Pd increases cathodic overpotential and also transpassive potential. It makes the alloy less sensitive to the temperature effect. Optical Glow Discharge Spectra show three parts in the composition depth profiles of surface films on alloys. XPS and SIMS spectrometry analyses are also carried out. Electron microscopy observation shows that passive films formed on Ti and Ti-Pd alloy have amorphous structure. Analysis of the alloy constituents dissolved in solutions, by radioactivation in neutrons, gives the order of magnitude of the Ni base alloy corrosion rates in various media. It also points out the preferential dissolution of alloying iron and in certain cases of chromium

  8. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  9. High temperature corrosion in the service environments of a nuclear process heat plant

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1987-01-01

    In a nuclear process heat plant the heat-exchanging components fabricated from nickel- and Fe-Ni-based alloys are subjected to corrosive service environments at temperatures up to 950 0 C for service lives of up to 140 000 h. In this paper the corrosion behaviour of the high temperature alloys in the different service environments will be described. It is shown that the degree of protection provided by Cr 2 O 3 -based surface oxide scales against carburization and decarburization of the alloys is primarily determined not by the oxidation potential of the atmospheres but by a dynamic process involving, on the one hand, the oxidizing gas species and the metal and, on the other hand, the carbon in the alloy and the oxide scale. (orig.)

  10. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963)

    International Nuclear Information System (INIS)

    Langlois, G.

    1963-01-01

    The corrosion of the following metals or alloys by UF 6 : nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [fr

  11. Influence of the alloy composition on the oxidation and internal-nitridation behaviour of nickel-base superalloys

    International Nuclear Information System (INIS)

    Krupp, U.; Christ, H.-J.

    1999-01-01

    Internal nitridation of nickel-base superalloys takes place as a consequence of the failure of protecting oxide scales (Al 2 O 3 and Cr 2 O 3 , respectively) and leads to a deterioration of the material properties due to near-surface embrittlement caused by the nitrides precipitated (TiN and AlN, respectively) and due to near-surface dissolution of the γ' phase. By using thermogravimetric methods in a temperature range between 800 C and 1100 C supplemented by microstructural examinations, the failure potential due to internal nitridation could be documented. A quantification was carried out by extending the experimental program to thermogravimetric studies in a nearly oxygen-free nitrogen atmosphere which was also applied to various model alloys of the system Ni-Cr-Al-Ti. It could be shown that the nitrogen diffusivity and solubility in nickel-base alloys is influenced particularly by the chromium concentration. An increasing chromium content leads to an enhanced internal-nitridation attack. (orig.)

  12. Structural Investigation of Fe-Ni-S and Fe-Ni-Si Melts by High-temperature Fluorescence XAFS Measurements

    International Nuclear Information System (INIS)

    Manghnani, Murli H.; Balogh, John; Hong Xinguo; Newville, Matthew; Amulele, G.

    2007-01-01

    Iron-nickel (Fe-Ni) alloy is regarded as the most abundant constituent of Earth's core, with an amount of 5.5 wt% Ni in the core based on geochemical and cosmochemical models. The structural role of nickel in liquid Fe-Ni alloys with light elements such as S or Si is poorly understood, largely because of the experimental difficulties of high-temperature melts. Recently, we have succeeded in acquiring Ni K-edge fluorescence x-ray absorption fine structure (XAFS) spectra of Fe-Ni-S and Fe-Ni-Si melts and alloys. Different structural environment of Ni atoms in Fe-Ni-S and Fe-Ni-Si melts is observed, supporting the effect of light elements in Fe-Ni melts

  13. Study of the oxidation of Fe-Cr alloys at high temperatures

    International Nuclear Information System (INIS)

    Carneiro, J.F.; Sabioni, A.C.S.

    2010-01-01

    The high temperature oxidation behavior of Fe-1.5%Cr, Fe-5.0%Cr, Fe-10%Cr and Fe- 15%Cr model alloys were investigated from 700 to 850 deg C, in air atmosphere. The oxidation treatments were performed in a thermobalance with a sensitivity of 1μg. The oxide films grown by oxidation of the alloys were characterized by scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The oxide films are Fe-Cr spinels with variable composition depending on the alloy composition. For all conditions studied, the oxidation kinetics of these alloys follow a parabolic law. The comparison of the oxidation rates of the four alloys, at 700 deg C, shows that the parabolic oxidation constants decrease from 1.96x10 -9 g 2 .cm -4 .s -1 , for the alloy Fe-1.5% Cr, to 1.18 x 10-14g 2 .cm -4 .s -1 for the alloy Fe-15% Cr. Comparative analysis of the oxidation behavior of the Fe-10%Cr and Fe-15%Cr alloys, between 700 and 850 deg C, shows that the oxidation rates of these alloys are comparable to 800 deg C, above this temperature the Fe-10%Cr alloy shows lower resistance to oxidation. (author)

  14. Investigations on chloride-induced high temperature corrosion of iron-, nickel-, cobalt-base alloys by scanning electron microscopy and energy dispersive X-ray microspot analysis

    International Nuclear Information System (INIS)

    Ross, W.; Umland, F.

    1984-01-01

    The direct oxidation at 900 0 C in air and the corrosion of alloys in air after short exposure to chloride have been compared under identical conditions. Chloride destroys the original oxide layers by recristallisation and modifies the following scale growing in such a manner that no firmly sticking layers can be rebuilt. After a chloride induction therefore all other following corrosions will be enhanced. Experiments in a closed system, a so called transport furnace, showed that the chloride also acts as a gas phase carrier transporting firstly the oxide layer, under reducing conditions metals, too, as volatile chloro metal gas complexes in this case from hot to cold region of the furnace. Cobalt base alloys are less attacked than iron or nickel base alloys. As chloride is not found implicitly on the treated surface the identification of the chloride induced corrosion is difficult. However the scanning electron microscopy combined with quantitative energy dispersive X-ray analysis has been proved as an appropriate method for early detection. As the phenomena depend on the type of alloy, respectively, an illustration and interpretation catalogue is necessary. (orig.) [de

  15. Spectrophotometric determination of zirconium in nickel-base alloys with Arsenazo III after separation by froth flotation

    International Nuclear Information System (INIS)

    Sekine, K.; Onishi, H.

    1977-01-01

    0.02-0.1% of zirconium can be determined in nickel alloys by spectrophotometry with Arsenazo III after its separation from the sample solution by means of froth flotation using Arsenazo III and Zephiramine. Nickel, chromium and iron do not interfere. Analysis of standard alloys yielded a standard deviation of 2.2%. (orig.) [de

  16. Cyclic Oxidation and Hot Corrosion Behavior of Nickel-Iron-Based Superalloy

    Science.gov (United States)

    Chellaganesh, D.; Adam Khan, M.; Winowlin Jappes, J. T.; Sathiyanarayanan, S.

    2018-01-01

    The high temperature oxidation and hot corrosion behavior of nickel-iron-based superalloy are studied at 900 ° and 1000 °C. The significant role of alloying elements with respect to the exposed medium is studied in detail. The mass change per unit area was catastrophic for the samples exposed at 1000 °C and gradual increase in mass change was observed at 900 °C for both the environments. The exposed samples were further investigated with SEM, EDS and XRD analysis to study the metallurgical characteristics. The surface morphology has expressed the in situ nature of the alloy and its affinity toward the environment. The EDS and XRD analysis has evidently proved the presence of protective oxides formation on prolonged exposure at elevated temperature. The predominant oxide formed during the exposure at high temperature has a major contribution toward the protection of the samples. The nickel-iron-based superalloy is less prone to oxidation and hot corrosion when compared to the existing alloy in gas turbine engine simulating marine environment.

  17. High-temperature microstructural characteristics of a novel biomedical titanium alloy

    International Nuclear Information System (INIS)

    Chang, Ming-Chih; Luo, Chin-Wan; Huang, Mao-Suan; Ou, Keng-Liang; Lin, Li-Hsiang; Cheng, Hsin-Chung

    2010-01-01

    In this study, the high-temperature microstructural characteristics of the Ti-5Al-1Sn-1Fe-1Cr (Ti-5111) alloy were determined by optical microscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectrometry. During solution treatment between 800 and 1000 o C, the phase transformation sequence of the alloy was found to be (α + β) → (α + α' + β) → (α + α' + α'' + residual β) → (α' + β). The residual β phase subsequently transforms to the α'' phase during quenching. The driving force for this transformation is the cooling rate. The martensite starting point (Ms) and β transus temperature of the Ti-5111 alloy are nearly 860 and 960 o C, respectively. These values are lower than those of the Ti-6Al-4V alloy. Moreover, it is believed that the concentration of Al in α' martensite plays a crucial role in the formation of the twin-type martensite.

  18. Fabrication of tungsten wire reinforced nickel-base alloy composites

    Science.gov (United States)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  19. Surface alloying of nickel based superalloys by laser

    International Nuclear Information System (INIS)

    Rodriguez, G.P.; Garcia, I.; Damborenea, J.J. de

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new technology developments force to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance. (Author) 8 refs

  20. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    Science.gov (United States)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; Bai, Jianming; Ghose, Sanjit; Rebak, Raul B.; Ecker, Lynne E.

    2017-12-01

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy "Alloy 33" using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. Our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr2O4) oxides, wherein the concentration of the FeCr2O4 phase decreased from the surface to the bulk-oxide interface.

  1. Evolution of Nickel-titanium Alloys in Endodontics.

    Science.gov (United States)

    Ounsi, Hani F; Nassif, Wadih; Grandini, Simone; Salameh, Ziad; Neelakantan, Prasanna; Anil, Sukumaran

    2017-11-01

    To improve clinical use of nickel-titanium (NiTi) endodontic rotary instruments by better understanding the alloys that compose them. A large number of engine-driven NiTi shaping instruments already exists on the market and newer generations are being introduced regularly. While emphasis is being put on design and technique, manufacturers are more discreet about alloy characteristics that dictate instrument behavior. Along with design and technique, alloy characteristics of endodontic instruments is one of the main variables affecting clinical performance. Modification in NiTi alloys is numerous and may yield improvements, but also drawbacks. Martensitic instruments seem to display better cyclic fatigue properties at the expense of surface hardness, prompting the need for surface treatments. On the contrary, such surface treatments may improve cutting efficiency but are detrimental to the gain in cyclic fatigue resistance. Although the design of the instrument is vital, it should in no way cloud the importance of the properties of the alloy and how they influence the clinical behavior of NiTi instruments. Dentists are mostly clinicians rather than engineers. With the advances in instrumentation design and alloys, they have an obligation to deal more intimately with engineering consideration to not only take advantage of their possibilities but also acknowledge their limitations.

  2. The development of hydrogen storage electrode alloys for nickel hydride batteries

    Science.gov (United States)

    Hong, Kuochih

    The development of hydrogen storage electrode alloys in the 1980s resulted in the birth and growth of the rechargeable nickel hydride (Ni/MH) battery. In this paper we describe briefly a semi-empirical electrochemical/thermodynamic approach to develop/screen a hydrogen storage alloy for electrochemical application. More specifically we will discuss the AB x Ti/Zr-based alloys. Finally, the current state of the Ni/MH batteries including commercial manufacture processes, cell performance and applications is given.

  3. Formation of chemical compounds under vacuum plasma-arc deposition of nickel and its alloy onto piezoceramics

    International Nuclear Information System (INIS)

    Grinchenko, V.T.; Lyakhovich, T.K.; Prosina, N.I.; Khromov, S.M.

    1988-01-01

    The phase composition of the transition layer appearing during vacuum-arc coating of nickel and nickel alloy with copper on barium titanate and lead zirconate-titanate is identified. During vacuum plasma-arc coating of nickel and its alloy at the boundary with barium titanate and lead zirconate-titanate the Ni 2 Ti 4 O compound appears which has the crystal lattice type identical with substrate with the parity of lattice parameters. The transition layer contains nickel oxides and NiTiO 3 in the case of barium titanate. When titanate content in substrate increases the zone of reaction diffusion increases in value and becomes more complicate in composition

  4. Microstructural evolution in a Ti-Ta high-temperature shape memory alloy during creep

    International Nuclear Information System (INIS)

    Rynko, Ramona; Marquardt, Axel; Pauksen, Alexander; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther

    2015-01-01

    Alloys based on the titanium-tantalum system are considered for application as high-temperature shape memory alloys due to their martensite start temperatures, which can surpass 200 C. In the present work we study the evolution of microstructure and the influence of creep on the phase transformation behavior of a Ti 70 Ta 30 (at.%) high-temperature shape memory alloy. Creep tests were performed in a temperature range from 470 to 530 C at stresses between 90 and 150 MPa. The activation energy for creep was found to be 307 kJ mol -1 and the stress exponent n was determined as 3.7. Scanning and transmission electron microscopy investigations were carried out to characterize the microstructure before and after creep. It was found that the microstructural evolution during creep suppresses subsequent martensitic phase transformations.

  5. Cladding Alloys for Fluoride Salt Compatibility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-05-01

    This interim report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for coating large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for coating inaccessible surfaces such as the interior surfaces of heat exchangers. The final project report will feature an experimental evaluation of the performance of the two selected cladding techniques.

  6. Synthesis of carbon nanofibers by catalytic CVD of chlorobenzene over bulk nickel alloy

    Science.gov (United States)

    Kenzhin, Roman M.; Bauman, Yuri I.; Volodin, Alexander M.; Mishakov, Ilya V.; Vedyagin, Aleksey A.

    2018-01-01

    Catalytic chemical vapor deposition (CCVD) of chlorobenzene over bulk nickel alloy (nichrome) was studied. The bulk Ni-containing samples being exposed to a contact with aggressive reaction medium undergo self-disintegration followed by growth of carbon nanofibers. This process, also known as a metal dusting, requires the simultaneous presence of chlorine and hydrogen sources in the reaction mixture. Molecule of chlorobenzene complies with these requirements. The experiments on CCVD were performed in a flow-through reactor system. The initial stages of nickel disintegration process were investigated in a closed system under Autogenic Pressure at Elevated Temperature (RAPET) conditions. Scanning and transmission electron microscopies and ferromagnetic resonance spectroscopy were applied to examine the samples after their interaction with chlorobenzene. Introduction of additional hydrogen into the flow-through system was shown to affect the morphology of grown carbon nanofibers.

  7. Alkaline stress corrosion of iron-nickel-chromium austenitic alloys

    International Nuclear Information System (INIS)

    Hocquellet, Dominique

    1984-01-01

    This research thesis reports the study of the behaviour in stress corrosion of austenitic iron-nickel-chromium alloys by means of tensile tests at imposed strain rate, in a soda solution at 50 pc in water and 350 degrees C. The author shows that the mechanical-chemical model allows the experimental curves to be found again, provided the adjustment of characteristic parameters, on the one hand, of corrosion kinetics, and on the other hand, of deformation kinetics. A classification of the studied alloys is proposed [fr

  8. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures

    International Nuclear Information System (INIS)

    Oliveira, Fabio Branco Vaz de

    2008-01-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature, time and

  9. Hydrogen permeation inhibition by zinc-nickel alloy plating on steel XC68

    International Nuclear Information System (INIS)

    El Hajjami, A.; Gigandet, M.P.; De Petris-Wery, M.; Catonne, J.C.; Duprat, J.J.; Thiery, L.; Raulin, F.; Starck, B.; Remy, P.

    2008-01-01

    The inhibition of hydrogen permeation and barrier effect by zinc-nickel plating was investigated using the Devanathan-Stachurski permeation technique. The hydrogen permeation and hydrogen diffusion for the zinc-nickel (12-15%) plating on steel XC68 is compared with zinc and nickel. Hydrogen permeation and hydrogen diffusion were followed as functions of time at current density applied (cathodic side) and potential permanent (anodic side). The hydrogen permeation inhibition for zinc-nickel is intermediate to that of nickel and zinc. This inhibition was due to nickel-rich layer effects at the Zn-Ni alloy/substrate interface, is shown by GDOES. Zinc-nickel plating inhibited the hydrogen diffusion greater as compared to zinc. This diffusion resistance was due to the barrier effect caused by the nickel which is present at the interface and transformed the hydrogen atomic to Ni 2 H compound, as shown by GIXRD.

  10. Hydrogen permeation inhibition by zinc-nickel alloy plating on steel XC68

    Energy Technology Data Exchange (ETDEWEB)

    El Hajjami, A. [Institut UTINAM, UMR CNRS 6213, Sonochimie et Reactivite des Surfaces, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Coventya S.A.S., 51 rue Pierre, 92588 Clichy Cedex (France); Gigandet, M.P. [Institut UTINAM, UMR CNRS 6213, Sonochimie et Reactivite des Surfaces, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: marie-pierre.gigandet@univ-fcomte.fr; De Petris-Wery, M. [Institut Universitaire de Technologie d' Orsay, Universite Paris XI, Plateau de Moulon, 91400 Orsay (France); Catonne, J.C. [Professeur Honoraire du Conservatoire national des arts et metiers (CNAM), Paris (France); Duprat, J.J.; Thiery, L.; Raulin, F. [Coventya S.A.S., 51 rue Pierre, 92588 Clichy Cedex (France); Starck, B.; Remy, P. [Lisi Automotive, 28 faubourg de Belfort, BP 19, 90101 Delle Cedex (France)

    2008-12-30

    The inhibition of hydrogen permeation and barrier effect by zinc-nickel plating was investigated using the Devanathan-Stachurski permeation technique. The hydrogen permeation and hydrogen diffusion for the zinc-nickel (12-15%) plating on steel XC68 is compared with zinc and nickel. Hydrogen permeation and hydrogen diffusion were followed as functions of time at current density applied (cathodic side) and potential permanent (anodic side). The hydrogen permeation inhibition for zinc-nickel is intermediate to that of nickel and zinc. This inhibition was due to nickel-rich layer effects at the Zn-Ni alloy/substrate interface, is shown by GDOES. Zinc-nickel plating inhibited the hydrogen diffusion greater as compared to zinc. This diffusion resistance was due to the barrier effect caused by the nickel which is present at the interface and transformed the hydrogen atomic to Ni{sub 2}H compound, as shown by GIXRD.

  11. A Study on Fretting Behavior in Room Temperature for Inconel Alloy 690

    Science.gov (United States)

    Kwon, Jae Do; Chai, Young Suck; Bae, Yong Tak; Choi, Sung Jong

    The initial crack under fretting condition occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. The fretting damage, for example, can be observed in fossil and nuclear power plant, aircraft, automobile and petroleum chemical plants etc. INCONEL alloy 690 is a high-chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the industries of nuclear power, chemicals, heat-treatment and electronics. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 690 was studied. Also, various kinds of tests on mechanical properties such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 43% compared to the plain fatigue strength. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks are initiated at an earlier stage. These results can be used as the basic data in a structural integrity evaluation of heat and corrosion resistant alloy considering fretting damages.

  12. Improvement of the Wear Resistance of Ferrous Alloys by Electroless Plating of Nickel

    Science.gov (United States)

    Kaleicheva, J. K.; Karaguiozova, Z.

    2018-01-01

    The electroless nickel (Ni) and composite nickel - nanodiamond (Ni+DND) coatings are investigated in this study. The method EFTTOM-NICKEL for electroless nickel plating with nanosized strengthening particles (DND 4-6 nm) is applied for the coating deposition. The coatings are deposited on ferrous alloys samples. The wear resistance of the coatings is performed by friction wear tests under 50-400 MPa loading conditions - in accordance with a Polish Standard PN-83/H-04302. The microstructure observations are made by optic metallographic microscope GX41 OLIMPUS and the microhardness is determined by Vickers Method. Tests for wear resistance, thickness and microhardness measurements of the coatings without heat treatment and heat treatment are performed. The heat treatment regime is investigated with the aim to optimize the thermal process control of the coated samples without excessive tempering of the substrate material. The surface fatigue failure is determined by contact fatigue test with the purpose to establish suitable conditions for production of high performance materials.

  13. Anodic behaviours, dissolution and passivation of iron-nickel alloys in sulphuric environment. Influence of friction

    International Nuclear Information System (INIS)

    Ponthiaux, Pierre

    1990-01-01

    This research thesis reports the study of anodic dissolution and passivation of iron-nickel alloys (10, 20 and 31 pc nickel) in a sulphuric environment, with or without friction, by using anodic polarization curves. Without friction, the three alloys have a similar behaviour as pure iron. The analysis reveals different dissolution and passivation mechanisms with pure iron, and highlights the influence of nickel content on corresponding kinetics. The influence of cyclic plane-on-plane friction has been studied for the 31 pc nickel alloy which has an unsteady austenitic structure. Fretting results in some modifications of polarization curves. These modifications are analysed with respect to fretting parameters (relative speed of antagonist surfaces, contact pressure). They reveal the specific influence of the following phenomena: material strain hardening, martensitic transformation induced by strain hardening, partial destruction of adsorbates and/or of the passive film. Modifications of polarization curves give also information on the evolution of friction characteristics with respect to speed (a phenomenon of lubrication by the electrolyte occurs) [fr

  14. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  15. Influence of manganese, carbon and nitrogen on high-temperature strength of Fe-Cr-Mn austenitic alloys

    International Nuclear Information System (INIS)

    Hosoi, Y.; Okazaki, Y.; Wade, N.; Miyahara, K.

    1990-01-01

    High Mn-Cr-Fe base alloys are candidates for the first wall material of fusion reactors because of rapid decay of radioactivity of the alloys after neutron irradiation compared with that of Ni-Cr-Fe base alloys. Their high temperature properties, however, are not clearly understood at present. In this paper, a study has been made of the effects of Mn, C and N content on the high-temperature tensile strength and creep properties of a 12% CR-Fe base alloy. Mn tends to decrease tensile strength and proof stress at intermediate temperatures. At higher temperatures in the austenite range, however, tensile properties scarcely depend on Mn content. C and N additions improve the tensile properties markedly. The combined addition of 0.2%C and 0.2%N to a 12%Cr-15%Mn-Fe base alloy makes the strength at 873K as high as that of a modified type 316 stainless steel. Combined alloying with C and N also improves the creep strength. Cold working is very useful in increasing the creep strength because of the finely dispersed precipitates in the matrix during creep. From these results, Fe-12%Cr-15%Mn-15%Mn-0.2%c-0.2%N is recommended as one of the most suitable alloys in this system for high temperature usage. (author)

  16. High-temperature deformation of B2 NiAl-base alloys

    International Nuclear Information System (INIS)

    Lee, I.G.; Ghosh, A.K.

    1994-01-01

    The high-temperature deformation behavior of three rapidly solidified and processed NiAl-base alloys--NiAl, NiAl containing 2 pct TiB 2 , and NiAl containing 4 pct HfC--have been studied and their microstructural and textural changes during deformation characterized. Compressions tests were conducted at 1,300 and 1,447 K at strain rates ranging from 10 -6 to 10 -2 s -1 . HfC-containing material showed dispersion strengthening as well as some degree of grain refinement over NiAl, while TiB 2 dispersoid-containing material showed grain refinement as well as secondary recrystallization and did not improve high-temperature strength. Hot-pack rolling was also performed to develop thin sheet materials (1.27-mm thick) and from these alloys. Without dispersoids, NiAl rolled easily at 1,223 K and showed low flow stress and good ductility during the hot-rolling operation. Rolling of dispersoid-containing alloys was difficult due to strain localization and edge-cracking effects, resulting partly from the high flow stress at the higher strain rate during the rolling operation. Sheet rolling initially produced a {111} texture, which eventually broke into multiple-texture components with severe deformation

  17. Austenitic alloys Fe-Ni-Cr dominating

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Austenitic alloy essentially comprising 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminium, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06% zirconium, the balance being iron. The characteristic of this alloy is a conventional elasticity limit to within 2% of at least 450 MPa, with a maximum tensile strength of at least 500 MPa at a test temperature of 650 0 C after immersion annealing at 1038 0 C and 30% hardening. To this effect the invention concerns Ni-Cr-Fe high temperature alloys possessing excellent mechanical strength characteristics, that can be obtained with lower levels of nickel and chromium than those used in alloys of this kind in the present state of the technique, a higher amount of niobium than in the previous alloys and with the addition of 0.5 to 1.5% vanadium [fr

  18. Au-Ge based Candidate Alloys for High-Temperature Lead-Free Solder Alternatives

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure and microhard......Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure...... was primarily strengthened by the refined (Ge) dispersed phase. The distribution of phases played a relatively more crucial role in determining the ductility of the bulk solder alloy. In the present work it was found that among the low melting point metals, the addition of Sb to the Au-Ge eutectic would...

  19. Nickel based alloys for molten salt applications in pyrochemical reprocessing applications

    International Nuclear Information System (INIS)

    Ningshen, S.; Ravi Shankar, A.; Rao, Ch. Jagadeeswara; Mallika, C.; Kamachi Mudali, U.

    2016-01-01

    Pyrochemical reprocessing route is one of the best option for reprocessing of spent metallic nuclear fuel from future fast breeder in many countries, especially in the US (Integral fast reactor, IFR), Russia (Research Institute of Atomic Reactors, RIAR), Japan, Korea and India. This technology with intrinsic nuclear proliferation resistance is regarded as one of the most promising nuclear fuel cycle technologies of the next-generation. However, the selection of materials of construction for pyrochemical reprocessing plants is challenging because of the extreme environments, i.e., high radiation, corrosive molten salt (LiCl-KCl, LiCl-KCl-CsCl, KCl-NaCl-MgCl 2 , etc.), reactive molten metals, and high temperature. Efforts have been made to develop compatible materials for various unit operations like salt preparation, electrorefining, cathode processing and alloy casting in pyrochemical reprocessing. Nickel and its alloy are the candidate materials for salt purification exposed to molten LiCl-KCl under Cl 2 bubbling, in air or ultra high purity argon environment. In the present study, the corrosion behavior of candidate materials like Inconel 600, Inconel 625, Inconel 690 exposed to molten LiCl-KCl eutectic salt environment at 500 to 600 °C have been carried out. The surface morphology of the exposed samples and scales were examined by SEM/EDX and XRD. The weight loss results indicated that Inconel 600 and Inconel 690 offer better corrosion resistance compared to Inconel 625 in air and chlorine environment. Higher corrosion of Inconel 625 is attributed to development of Mo rich salt layers. However, Ni base alloys exhibited a decreasing trend of weight loss with increasing time of exposure and weight gain was observed under UHP Ar environment. The mechanism of corrosion of Ni base alloys appeared to be due to formation of Cr rich and Ni rich layers of Cr 2 O 3 , NiO and spinel oxides at the surface and subsequent spallation. Based on the present studies, Inconel 690

  20. Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom

    Science.gov (United States)

    Liu, Chain T.; Inouye, Henry

    1979-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Fe, Co).sub.3 and V(Fe, Co, Ni).sub.3 systems. These alloys have the following compositions comprising by weight: 22-23% V, 14-30% Fe, and the remainder Co or Co and Ni with an electron density no more than 7.85. The maximum combination of high temperature strength, ductility and creep resistance are manifested in the alloy comprising by weight 22-23% V, 14-20% Fe and the remainder Co and having an atomic composition of V(Fe .sub.0.20-0.26 C Co.sub.0.74-0.80).sub.3. The alloy comprising by weight 22-23% V, 16-17% Fe and 60-62% Co has excellent high temperature properties. The alloys are fabricable into wrought articles by casting, deforming, and annealing for sufficient time to provide ordered structure.

  1. Effects of Processing Temperatures of Nickel Plating on Capacitance Density of Alumina Film Capacitor.

    Science.gov (United States)

    Jeong, Myung-Sun; Ju, Byeong-Kwon; Lee, Jeon-Kook

    2015-06-01

    We observed the effects of nickel plating temperatures for controlling the surface morphologies of the deposited nickel layers on the alumina nano-pores. The alumina nano-channels were filled with nickel at various processing temperatures of 60-90 degrees C. The electrical properties of the alumina film capacitors were changed with processing temperatures. The electroless nickel plating (ENP) at 60 degrees C improved the nickel penetration into the alumina nano-channels due to the reduced reaction rate. Nickel layers are uniformly formed on the high aspect ratio alumina pores. Due to the uniform nickel electrode, the capacitance density of the alumina film capacitors is improved by the low leakage current, dissipation factor and equivalent series resistance. Alumina film capacitors made by ENP at 60 degrees C had a high capacitance density of 160 nF/cm2.

  2. Resistance of various coatings to high temperature corrosion in HCl and SO{sub 2} containing environments

    Energy Technology Data Exchange (ETDEWEB)

    Cizner, Josef; Mlnarik, Jakub; Hruska, Jan [SVUM a.s., Prague (Czech Republic). Lab. of High Temperature Corrosion

    2010-07-01

    For high efficiency of the steam turbines it is necessary to produce steam of temperature at least 400 C, which in conjunction with specific composition of combustion gases causes fireside corrosion problems. The combustion gases contain aggressive compounds ike HCl and SO{sub 2} and some other elements which can form deposits on heat exchanging surfaces e.g. calcium, potassium salts etc. Using of high-alloy steels or nickel-based alloys is very costly and also these materials could have lower thermal conductivity. A cheaper solution is to produce a coating on low (medium)-alloy steel. Common heat-resistant steels show very short lifetime under these conditions. The solution is then to use the appropriate coatings. Some types of coatings can be applied even inside older boilers. In this work we tested many coatings composition (nickel-based, aluminium-based etc. As well as with different processing method - arc sprayed coating, weld deposits, HVOF, etc.) on 16Mo3 steel. In particular their high temperature corrosion behaviour in model atmosphere containing SO{sub 2} and HCl and also under deposit of fly ash was studied. (orig.)

  3. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    Science.gov (United States)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  4. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    Science.gov (United States)

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  5. Electrochemical characterization of oxide film formed at high temperature on Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Geogy J., E-mail: gja@barc.gov.in [Materials Science Division, BARC, Mumbai 400 085 (India); Bhambroo, Rajan [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India); Kain, V. [Materials Science Division, BARC, Mumbai 400 085 (India); Shekhar, R. [CCCM, BARC, Hyderabad 500 062 (India); Dey, G.K. [Materials Science Division, BARC, Mumbai 400 085 (India); Raja, V.S. [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer GD-QMS studies of high temperature oxide film formed on Alloy 690. Black-Right-Pointing-Pointer Defect density reduced with increase in temperature. Black-Right-Pointing-Pointer Electrochemical behaviour of oxide film correlated to the Cr-content in oxide. - Abstract: High temperature passivation studies on Alloy 690 were carried out in lithiated water at 250 Degree-Sign C, 275 Degree-Sign C and 300 Degree-Sign C for 72 h. The passive films were characterized by glow discharge-quadrupole mass spectroscopy (GD-QMS) for compositional variation across the depth and micro laser Raman spectroscopy for oxide composition on the surface. The defect density in the oxide films was established from the Mott-Schottky analysis using electrochemical impedance spectroscopy. Electrochemical experiments at room temperature in chloride medium revealed best passivity behaviour by the oxide film formed at 300 Degree-Sign C for 72 h. The electrochemical studies were correlated to the chromium (and oxygen) content of the oxide films. Autoclaving at 300 Degree-Sign C resulted in the best passive film formation on Alloy 690 in lithiated water.

  6. Solidification Mapping of a Nickel Alloy 718 Laboratory VAR Ingot

    Science.gov (United States)

    Watt, Trevor J.; Taleff, Eric M.; Lopez, Felipe; Beaman, Joe; Williamson, Rodney

    The solidification microstructure of a laboratory-scale Nickel alloy 718 vacuum arc remelted (VAR) ingot was analyzed. The cylindrical, 210-mm-diameter ingot was sectioned along a plane bisecting it length-wise, and this mid-plane surface was ground and etched using Canada's reagent to reveal segregation contrast. Over 350 photographs were taken of the etched mid-plane surface and stitched together to form a single mosaic image. Image data in the resulting mosaic were processed using a variety of algorithms to extract quantities such as primary dendrite orientation, primary dendrite arm spacing (PDAS), and secondary dendrite arm spacing (SDAS) as a function of location. These quantities were used to calculate pool shape and solidification rate during solidification using existing empirical relationships for Nickel Alloy 718. The details and outcomes of this approach, along with the resulting comparison to experimental processing conditions and computational models, are presented.

  7. Investigations on the determination of corrosion kinetics and the structure of corrosion products on high-temperature alloys under low oxygen partial pressures

    International Nuclear Information System (INIS)

    Poestges, A.; Naoumidis, A.; Nickel, H.

    1979-04-01

    On three nickel-base-alloys (NIMONIC 80A, INCONNEL 617 and ALLOY 713LC), which are planned as materials for components of the primary cooling circuit of high-temperature reactors, studies for the determination of the oxidation behaviour under reactor relevant conditions were performed. The test conditions were fixed at an oxygen partial pressure of 10 -16 bars with a total pressure of 0,2 bars and a temperature of 1080 0 C. The use of the X-ray diffraction analysis on the oxidised samples of type NIMONIC 80A showed the corrosion products Cr 2 O 3 , TiO 2 and Cr 2 Ti 2 O 7 in the outer oxide coating as well as Al 2 O 3 in the inner oxide zone. The samples of the alloy type INCOEL 617 showed the oxides Cr 2 O 3 and Cr 2 Ti 2 O 7 in the outer oxide coating. Samples of the alloy ALLOY 713LC showed Cr 2 O 3 and CrNbO 4 in the outer oxide coating and Al 2 O 3 in the zone of inner oxidation. Sufficient detection certainty was only ascertained by investigating samples with plane surface. For both alloys first mentioned, it was possible to prove the validity of the paralinear relationship W = k x t -1 / 2 - a x t for the increase in weight for the explanation of the time law of the oxidation. For the non-destructive determination of the oxide coating thickness on the alloys samples, the X-ray fluorescence analysis gave reproducible results of good precision. (orig.) [de

  8. Recovery Of Nickel From Spent Nickel-Cadmium Batteries Using A Direct Reduction Process

    Directory of Open Access Journals (Sweden)

    Shin D.J.

    2015-06-01

    Full Text Available Most nickel is produced as Ferro-Nickel through a smelting process from Ni-bearing ore. However, these days, there have been some problems in nickel production due to exhaustion and the low-grade of Ni-bearing ore. Moreover, the smelting process results in a large amount of wastewater, slag and environmental risk. Therefore, in this research, spent Ni-Cd batteries were used as a base material instead of Ni-bearing ore for the recovery of Fe-Ni alloy through a direct reduction process. Spent Ni-Cd batteries contain 24wt% Ni, 18.5wt% Cd, 12.1% C and 27.5wt% polymers such as KOH. For pre-treatment, Cd was vaporized at 1024K. In order to evaluate the reduction conditions of nickel oxide and iron oxide, pre-treated spent Ni-Cd batteries were experimented on under various temperatures, gas-atmospheres and crucible materials. By a series of process, alloys containing 75 wt% Ni and 20 wt% Fe were produced. From the results, the reduction mechanism of nickel oxide and iron oxide were investigated.

  9. Nickel brittling by hydrogen. Temperature effect

    International Nuclear Information System (INIS)

    Lapitz, P.A; Fernandez, S; Alvarez, M.G

    2006-01-01

    The results of a study on the effect of different variables on the susceptibility to brittling by hydrogen and the velocity of propagation of fissures in nickel wire (99.7% purity) are described. The hydrogen load was carried out by cathodic polarization in H 2 SO 4 0.5m solution. The susceptibility to brittling by hydrogen was determined with traction tests at slow deformation speed and constant cathodic potential, and the later observation of the fracture surface by scanning electron microscopy. The variables studied were: applied cathodic overpower, speed of initial deformation and temperature. The results showed that the speed of fissure propagation in the nickel by brittleness from hydrogen is a function of the applied potential and the speed of deformation used. Without tension, the hydrogen load by cathodic polarization at room temperature leads to the formation of cavities similar to those observed when the hydrogenation is performed in the presence of gaseous hydrogen at high pressure and temperature (CW)

  10. Precipitation Strengthenable NiTiPd High Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen; Garg, Anita; Benafan, Othmane; Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II

    2017-01-01

    In binary NiTi alloys, it has long been known that Ni-rich alloys can be heat treated to produce precipitates which both strengthen the matrix against dislocations and improve the behavior of the material under thermal and mechanical cycling. Within recent years, the same effect has been observed in Ni-rich NiTiHf high temperature shape memory alloys and heat treatment regimens have been defined which will reliably produce improved properties. In NiTiPd alloys, precipitation has also been observed, but studies are still underway to define reliable heat treatments and compositions which will provide a balance of strengthening and good thermomechanical properties. For this study, a series of NiTi-32 at.Pd alloys was produced to determine the effect of changing nickeltitanium content on the transformation behavior and heat treatability of the material. Samples were aged at temperatures between 350C and 450C for times up to 100 hours. Actuation type behavior was evaluated using uniaxial constant force thermal cycling (UCFTC) to determine the effect of composition and aging on the material behavior. TEMSEM was used to evaluate the microstructure and determine the types of precipitates formed. The correlation between composition, heat treat, microstructure, and thermomechanical behavior will be addressed and discussed.

  11. Theromdynamics of carbon in nickel-based multicomponent solid solutions

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1978-04-01

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215 0 C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO 2 equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by many investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented

  12. Fracture toughness of copper-base alloys for ITER applications: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J.; Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Oxide-dispersion strengthened copper alloys and a precipitation-hardened copper-nickel-beryllium alloy showed a significant reduction in toughness at elevated temperature (250{degrees}C). This decrease in toughness was much larger than would be expected from the relatively modest changes in the tensile properties over the same temperature range. However, a copper-chromium-zirconium alloy strengthened by precipitation showed only a small decrease in toughness at the higher temperatures. The embrittled alloys showed a transition in fracture mode, from transgranular microvoid coalescence at room temperature to intergranular with localized ductility at high temperatures. The Cu-Cr-Zr alloy maintained the ductile microvoid coalescence failure mode at all test temperatures.

  13. Cermet anode compositions with high content alloy phase

    Science.gov (United States)

    Marschman, Steven C.; Davis, Norman C.

    1989-01-01

    Cermet electrode compositions comprising NiO-NiFe.sub.2 O.sub.4 -Cu-Ni, and methods for making, are disclosed. Addition of nickel metal prior to formation and densification of a base mixture into the cermet allows for an increase in the total amount of copper and nickel that can be contained in the NiO-NiFe.sub.2 O.sub.4 oxide system. Nickel is present in a base mixture weight concentration of from 0.1% to 10%. Copper is present in the alloy phase in a weight concentration of from 10% to 30% of the densified composition. Such cermet electrodes can be formed to have electrical conductivities well in excess of 100 ohm.sup.-1 cm.sup.-1. Other alloy and oxide system cermets having high content metal phases are also expected to be manufacturable in accordance with the invention.

  14. Grain growth behavior and high-temperature high-strain-rate tensile ductility of iridium alloy DOP-26

    International Nuclear Information System (INIS)

    McKamey, C.G.; Gubbi, A.N.; Lin, Y.; Cohron, J.W.; Lee, E.H.; George, E.P.

    1998-04-01

    This report summarizes results of studies conducted to date under the Iridium Alloy Characterization and Development subtask of the Radioisotope Power System Materials Production and Technology Program to characterize the properties of the new-process iridium-based DOP-26 alloy used for the Cassini space mission. This alloy was developed at Oak Ridge National Laboratory (ORNL) in the early 1980's and is currently used by NASA for cladding and post-impact containment of the radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for interplanetary spacecraft. Included within this report are data generated on grain growth in vacuum or low-pressure oxygen environments; a comparison of grain growth in vacuum of the clad vent set cup material with sheet material; effect of grain size, test temperature, and oxygen exposure on high-temperature high-strain-rate tensile ductility; and grain growth in vacuum and high-temperature high-strain-rate tensile ductility of welded DOP-26. The data for the new-process material is compared to available old-process data

  15. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab

  16. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab.

  17. The effect of temperature on primary defect formation in Ni–Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chengbin, E-mail: wangchengbin@sinap.ac.cn [Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, Wei; Ren, Cuilan [Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhiyuan [Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-02-15

    Molecular dynamics (MD) simulations have been used to study the influence of temperature on defect generation and evolution in nickel and Ni–Fe alloy (with 15% and 50% Fe content) with a 10-keV primary knock-on atom (PKA) at six different temperatures from 0 to 1500 K. The recently available Ni–Fe potential is used with its repulsive part modified by Vörtler. The temporal evolution and temperature dependence of stable defect formation and in-cascade clustering processes are analysed. The number of stable defect and the interstitial clustering fraction are found to increase with temperature whereas the vacancy clustering fraction decreases with temperature. The alloy composition dependence of the stable defect number is also found for the PKA energy considered here. Additionally, a study of the temperature influence on the cluster size distribution is performed, revealing a systematic change in the cluster size distributions, with higher temperature cascades producing larger interstitial clusters.

  18. Corrosion investigation of multilayered ceramics and experimental nickel alloys in SCWO process environments

    International Nuclear Information System (INIS)

    Garcia, K.M.; Mizia, R.

    1995-02-01

    A corrosion investigation was done at MODAR, Inc., using a supercritical water oxidation (SCWO) vessel reactor. Several types of multilayered ceramic rings and experimental nickel alloy coupons were exposed to a chlorinated cutting oil TrimSol, in the SCWO process. A corrosion casing was designed and mounted in the vessel reactor with precautions to minimize chances of degrading the integrity of the pressure vessel. Fifteen of the ceramic coated rings were stacked vertically in the casing at one time for each test. There was a total of 36 rings. The rings were in groupings of three rings that formed five sections. Each section saw a different SCWO environment, ranging from 650 to 300 degrees C. The metal coupons were mounted on horizontal threaded holders welded to a vertical rod attached to the casing cover in order to hang down the middle of the casing. The experimental nickel alloys performed better than the baseline nickel alloys. A titania multilayered ceramic system sprayed onto a titanium ring remained intact after 120-180 hours of exposure. This is the longest time any coating system has withstood such an environment without significant loss

  19. Corrosion investigation of multilayered ceramics and experimental nickel alloys in SCWO process environments

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, K.M.; Mizia, R.

    1995-02-01

    A corrosion investigation was done at MODAR, Inc., using a supercritical water oxidation (SCWO) vessel reactor. Several types of multilayered ceramic rings and experimental nickel alloy coupons were exposed to a chlorinated cutting oil TrimSol, in the SCWO process. A corrosion casing was designed and mounted in the vessel reactor with precautions to minimize chances of degrading the integrity of the pressure vessel. Fifteen of the ceramic coated rings were stacked vertically in the casing at one time for each test. There was a total of 36 rings. The rings were in groupings of three rings that formed five sections. Each section saw a different SCWO environment, ranging from 650 to 300{degrees}C. The metal coupons were mounted on horizontal threaded holders welded to a vertical rod attached to the casing cover in order to hang down the middle of the casing. The experimental nickel alloys performed better than the baseline nickel alloys. A titania multilayered ceramic system sprayed onto a titanium ring remained intact after 120-180 hours of exposure. This is the longest time any coating system has withstood such an environment without significant loss.

  20. Corrosion behaviour of Alloy 800 in high temperature aqueous solutions: Electrochemical studies

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Villegas, M.; Alvarez, M.G.

    1996-01-01

    The anodic behaviour and passivity breakdown of Alloy 800 in aqueous solutions of sodium chloride, sodium sulphate and sodium bicarbonate were studied by electrochemical techniques in the temperature range from 60 C to 280 C. The pitting resistance and pitting morphology of the alloy in chloride plus sulphate and chloride plus bicarbonate mixtures, at 60 C and 280 C, were also examined. Increasing bicarbonate or sulphate additions to chloride solutions shift the characteristic pitting potential of Alloy 800 to higher values, both at low and high temperatures. Changes in pitting morphology were observed in sulphate containing solutions while the morphology of the attack found in bicarbonate containing solutions was similar to that in pure chloride solutions. Finally, no localized or substantial generalized corrosion was detected in pure sulphate or bicarbonate solutions at any temperature. (orig.)

  1. High Temperature Degradation Behavior and its Mechanical Properties of Inconel 617 alloy for Intermediate Heat Exchanger of VHTR

    International Nuclear Information System (INIS)

    Jo, Tae Sun; Kim, Se Hoon; Kim, Young Do; Park, Ji Yeon

    2008-01-01

    Inconel 617 alloy is a candidate material of intermediate heat exchanger (IHX) and hot gas duct (HGD) for very high temperature reactor (VHTR) because of its excellent strength, creep-rupture strength, stability and oxidation resistance at high temperature. Among the alloying elements in Inconel 617, chromium (Cr) and aluminum (Al) can form dense oxide that act as a protective surface layer against degradation. This alloy supports severe operating conditions of pressure over 8 MPa and 950 .deg. C in He gas with some impurities. Thus, high temperature stability of Inconel 617 is very important. In this work, the oxidation behavior of Inconel 617 alloy was studied by exposure at high temperature and was discussed the high temperature degradation behavior with microstructural changes during the surface oxidation

  2. High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asqardoust, Sh.; Zarei-Hanzaki, A. [School of Metallurgical & Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Fatemi, S.M., E-mail: mfatemi@ut.ac.ir [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Moradjoy-Hamedani, M. [School of Metallurgical & Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-06-05

    Magnesium alloys containing RE elements (WE grade) are considered as potential materials for high temperature structural applications. To this end, it is crucial to study the flow behavior and the microstructural evolution of these alloys at high temperatures. In present work, the hot compression testing was employed to investigate the deformation behavior of a rolled WE54 magnesium alloy at elevated temperatures. The experimental material failed to deform to target strain of 0.6 at 250 and 300 °C, while the straining was successfully performed at 350 °C. A flow softening was observed at 350 °C, which was related to the depletion of RE strengthener elements, particularly Y atoms, from the solid solution and dynamic precipitation of β phases. It was suggested that the Zener pinning effect of the latter precipitates might retard the occurrence of dynamic recrystallization. As the temperature increased to 450 and 500 °C, the RE elements dissolved in the matrix and thus dynamic recrystallization could considerably progress in the microstructure. The comparative study of specimens cut along transverse ad normal direction (TD and ND specimens) implied that the presence of RE elements might effectively reduce the yield anisotropy in WE54 rolled alloy. Microstructural observations indicated a higher fraction of dynamically-recrystallized grains for the ND specimens. This was discussed relying on the different shares of deformation mechanism during compressing the TD and ND specimens. - Highlights: • Deformation behavior of a high Zr WE alloy was addressed at low strain rate. • Dynamic precipitation was realized at 350 °C. • The occurrence of DRX was retarded due to Zener pinning effect. • A higher DRX fraction was obtained in ND specimens comparing with TD ones.

  3. Thresholds of time dependent intergranular crack growth in a nickel disc alloy Alloy 720Li

    Directory of Open Access Journals (Sweden)

    Li Hangyue

    2014-01-01

    Full Text Available At high temperatures in air, introducing a dwell period at the peak stress of fatigue cycles promotes time dependent intergranular crack growth which can increase crack growth rates by upto a few orders of magnitude from the rates of transgranular fatigue crack growth in superalloys. It is expected that time dependent intergranular crack growth in nickel-based superalloys may not occur below a critical mechanical driving force, ΔKth−IG, analogous to a fatigue threshold (ΔKth and a critical temperature, Tth. In this study, dwell fatigue crack growth tests have been carefully designed and conducted on Alloy 720Li to examine such thresholds. Unlike a fatigue threshold, the threshold stress intensity factor range for intergranular crack growth is observed to be highly sensitive to microstructure, dwell time and test procedure. The near threshold crack growth behaviour is made complex by the interactions between grain boundary oxidation embrittlement and crack tip stress relaxation. In general, lower ΔKth−IG values are associated with finer grain size and/or shorter dwell times. Often a load increasing procedure promotes stress relaxation and tends to lead to higher ΔKth−IG. When there is limited stress relaxation at the crack tip, similar ΔKth−IG values are measured with load increasing and load shedding procedures. They are generally higher than the fatigue threshold (ΔKth despite faster crack growth rates (da/dN in the stable crack growth regime. Time dependent intergranular crack growth cannot be activated below a temperature of 500 ∘C.

  4. Plastic strain characterization in austenitic stainless steels and nickel alloys by electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Saez-Maderuelo, A., E-mail: alberto.saez@ciemat.es [CIEMAT, Av. Complutense, 22-28040 Madrid (Spain); Castro, L.; Diego, G. de [CIEMAT, Av. Complutense, 22-28040 Madrid (Spain)

    2011-09-01

    Stress corrosion cracking (SCC) is enhanced by cold work and causes many problems in components of the nuclear power plants. Besides, during manufacturing, installation, welding and service of the material, residual strains can be produced increasing the susceptibility to SCC. For this reason, it is important to characterize the degree of plastic strain due to dislocation accumulation in each crystal. Electron backscatter diffraction (EBSD), in conjunction with scanning electron microscope (SEM), has been a great advance in this field because it enables to estimate the plastic strain in a quick and easy way. Nevertheless, over the last few years, a lot of different mathematical expressions to estimate the plastic strain have appeared in the literature. This situation hinders the election of one of them by a novel scientist in this field. Therefore, in this paper some of the more common expressions used in the calculation of the angular misorientation have been presented and discussed in order to clarify their more important aspects. Then, using one of these expressions (average local misorientation), curves relating misorientation density with known levels of strain will be obtained for an austenitic stainless steel 304L and nickel base alloy 690, which have shown a linear behaviour that is in good agreement with results found in the literature. Finally, using curves obtained in previous steps, levels of plastic strain in a plate of nickel base alloy 600 welded with weld metal 182 were estimated between 8 and 10% for a high temperature mill annealing sample.

  5. Plastic strain characterization in austenitic stainless steels and nickel alloys by electron backscatter diffraction

    International Nuclear Information System (INIS)

    Saez-Maderuelo, A.; Castro, L.; Diego, G. de

    2011-01-01

    Stress corrosion cracking (SCC) is enhanced by cold work and causes many problems in components of the nuclear power plants. Besides, during manufacturing, installation, welding and service of the material, residual strains can be produced increasing the susceptibility to SCC. For this reason, it is important to characterize the degree of plastic strain due to dislocation accumulation in each crystal. Electron backscatter diffraction (EBSD), in conjunction with scanning electron microscope (SEM), has been a great advance in this field because it enables to estimate the plastic strain in a quick and easy way. Nevertheless, over the last few years, a lot of different mathematical expressions to estimate the plastic strain have appeared in the literature. This situation hinders the election of one of them by a novel scientist in this field. Therefore, in this paper some of the more common expressions used in the calculation of the angular misorientation have been presented and discussed in order to clarify their more important aspects. Then, using one of these expressions (average local misorientation), curves relating misorientation density with known levels of strain will be obtained for an austenitic stainless steel 304L and nickel base alloy 690, which have shown a linear behaviour that is in good agreement with results found in the literature. Finally, using curves obtained in previous steps, levels of plastic strain in a plate of nickel base alloy 600 welded with weld metal 182 were estimated between 8 and 10% for a high temperature mill annealing sample.

  6. Development of high temperature fasteners using directionally solidified eutectic alloys

    Science.gov (United States)

    George, F. D.

    1972-01-01

    The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.

  7. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  8. Thermal Coefficient of Linear Expansion Modified by Dendritic Segregation in Nickel-Iron Alloys

    Science.gov (United States)

    Ogorodnikova, O. M.; Maksimova, E. V.

    2018-05-01

    The paper presents investigations of thermal properties of Fe-Ni and Fe-Ni-Co casting alloys affected by the heterogeneous distribution of their chemical elements. It is shown that nickel dendritic segregation has a negative effect on properties of studied invars. A mathematical model is proposed to explore the influence of nickel dendritic segregation on the thermal coefficient of linear expansion (TCLE) of the alloy. A computer simulation of TCLE of Fe-Ni-Co superinvars is performed with regard to a heterogeneous distribution of their chemical elements over the whole volume. The ProLigSol computer software application is developed for processing the data array and results of computer simulation.

  9. Structural stability of high entropy alloys under pressure and temperature

    DEFF Research Database (Denmark)

    Ahmad, Azkar S.; Su, Y.; Liu, S. Y.

    2017-01-01

    The stability of high-entropy alloys (HEAs) is a key issue before their selection for industrial applications. In this study, in-situ high-pressure and high-temperature synchrotron radiation X-ray diffraction experiments have been performed on three typical HEAs Ni20Co20Fe20Mn20Cr20, Hf25Nb25Zr25Ti...

  10. Surface preparation process of a uranium titanium alloy, in particular for chemical nickel plating

    International Nuclear Information System (INIS)

    Henri, A.; Lefevre, D.; Massicot, P.

    1987-01-01

    In this process the uranium alloy surface is attacked with a solution of lithium chloride and hydrochloric acid. Dissolved uranium can be recovered from the solution by an ion exchange resin. Treated alloy can be nickel plated by a chemical process [fr

  11. Processing of Advanced Alloys for A-USC Steam Turbine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, P. D. [National Energy Technology Laboratory (NETL); Hawk, Jeffrey A. [National Energy Technology Laboratory (NETL); Cowen, Christopher J. [National Energy Technology Laboratory (NETL); Maziasz, Philip J [ORNL

    2010-01-01

    The high-temperature components within conventional supercritical coal-fired power plants are manufactured from ferritic/martensitic steels. To reduce greenhouse-gas emissions, the efficiency of pulverized coal steam power plants must be increased to as high a temperature and pressure as feasible. The proposed steam temperature in the DOE/NETL Advanced Ultra Supercritical power plant is high enough (760 C) that ferritic/martensitic steels will not work for the majority of high-temperature components in the turbine or for pipes and tubes in the boiler due to temperature limitations of this class of materials. Thus, Ni-based superalloys are being considered for many of these components. Off-the-shelf forged nickel alloys have shown good promise at these temperatures, but further improvements can be made through experimentation within the nominal chemistry range as well as through thermomechanical processing and subsequent heat treatment. However, cast nickel-based superalloys, which possess high strength, creep resistance, and weldability, are typically not available, particularly those with good ductility and toughness that are weldable in thick sections. To address those issues related to thick casting for turbine casings, for example, cast analogs of selected wrought nickel-based superalloys such as alloy 263, Haynes 282, and Nimonic 105 have been produced. Alloy design criteria, melt processing experiences, and heat treatment are discussed with respect to the as-processed and heat-treated microstructures and selected mechanical properties. The discussion concludes with the prospects for full-scale development of a thick section casting for a steam turbine valve chest or rotor casing.

  12. Low cycle fatigue and creep fatigue behavior of alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-01-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure. (authors)

  13. In situ corrosion testing of various nickel alloys at Måbjerg waste incineration plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Hansson, A. N.; Jensen, S. A.

    2013-01-01

    overlay material currently being used to give improved corrosion resistance. In order to assess the use of alternative nickel alloys, test panels have been manufactured and inserted into Måbjerg waste incineration plant. Inconel 625 as a 50% weld overlay, two layered weld overlay and as a spiral weld......The majority of waste in Denmark is disposed via waste to energy (WTE) incineration plants which are fabricated from carbon steel. However, due to the increasing corrosiveness of waste over the years, more corrosion resistant alloys are required. In Denmark, Inconel 625 (UNSN06625) is the weld...... overlay was exposed. Other nickel materials exposed were weld overlay Alloy 686, Alloy 50 and Sumitomo Super 625 coextruded tube. Exposure has been undertaken from 2003 to 2009 in the first pass and 2005–2009 in the second pass, and sections have been removed and investigated during this period...

  14. High-temperature superconducting phase in rare earth alloys

    International Nuclear Information System (INIS)

    Vedyaev, A.V.; Molodykh, O.Eh.; Savchenko, M.A.; Stefanovich, A.V.

    1984-01-01

    A possibility of high-temperature superconducting phase existence in rare e arth alloys with aluminium: TbAl-NdAl is predicted. Such a phase is shown t o exist at t approximately 40 k, however its existence is possible only in a nar row temperature range and it might be metastable. A possibility of a supercondu cting phase occurrence in spin glass is studied. It is shown that the first kin d phase transition to superconducting state may first occur under definite condi tions in the system. But the phase in question will be a low-temperature one be cause of rather inefficient elctron-phonon interaction. Further temperature dec rease would lead to an appearance of magnetic order and to disappearance of the superconductivity

  15. Analysis of nickel-base alloys by Grimm-type glow discharge emission and x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ferreira, N.P.; Strauss, J.A.; Van Maarseveen, I.; Ivanfy, A.B.

    1985-01-01

    Nickel-base alloys can be analysed as satisfactorily as steels by XRF as well as by the Grimm-type source, in spite of problems caused by element combinations, spectral line overlap and the influence of the structure and heat conduction properties on sputtering in the glow discharge source. This extended abstract briefly discusses the use of Grimm-type glow discharge emission and XRF as techniques for the analysis of nickel-base alloys

  16. High temperature ductility of austenitic alloys exposed to thermal neutrons

    International Nuclear Information System (INIS)

    Watanabe, K.; Kondo, T.; Ogawa, Y.

    1982-01-01

    Loss of high temperature ductility due to thermal neutron irradiation was examined by slow strain rate test in vacuum up to 1000 0 C. The results on two heats of Hastelloy alloy X with different boron contents were analyzed with respect to the influence of the temperatures of irradiation and tensile tests, neutron fluence and the associated helium production due to nuclear transmutation reaction. The loss of ductility was enhanced by increasing either temperature or neutron fluence. Simple extrapolations yielded the estimated threshold fluence and the end-of-life ductility values at 900 and 1000 0 C in case where the materials were used in near-core regions of VHTR. The observed relationship between Ni content and the ductility loss has suggested a potential utilization of Fe-based alloys for seathing of the neutron absorber materials

  17. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.M.A., E-mail: madel@uqac.ca [Center for Advanced Materials, Qatar University, Doha (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Samuel, F.H. [Université du Québec à Chicoutimi, Chicoutimi, QC, Canada G7H 2B1 (Canada); Al Kahtani, Saleh [Industrial Engineering Program, Mechanical Engineering Department, College of Engineering, Salman bin Abdulaziz University, Al Kharj (Saudi Arabia)

    2013-08-10

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si){sub 3}(Zr, Ti), Al{sub 3}CuNi and Al{sub 9}NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied.

  18. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    International Nuclear Information System (INIS)

    Mohamed, A.M.A.; Samuel, F.H.; Al Kahtani, Saleh

    2013-01-01

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si) 3 (Zr, Ti), Al 3 CuNi and Al 9 NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied

  19. Texture development in Al-Mg alloys during high temperature annealing

    International Nuclear Information System (INIS)

    Saitou, T.; Inagaki, H.

    2001-01-01

    To clarify the effect of Mg content on annealing textures developed in Al-Mg alloys during high temperature annealing, Al-Mg alloys containing up to 9 wt.% Mg in supersaturated solid solution were cold rolled 95% and isothermally annealed at 450 C. Their textures were investigated with the orientation distribution function analysis. It was found that, in the recrystallization textures observed at complete recrystallization, addition of more than 1 wt.% Mg was sufficient to suppress the development of {100} left angle 001 right angle. With increasing Mg content, {100} left angle 001 right angle decreased remarkably, whereas {100} left angle 013 right angle and {103} left angle 321 right angle increased. Thus, {100} left angle 013 right angle and {103} left angle 321 right angle were found to be the main orientations of the recrystallization textures of Al-Mg alloys annealed at high temperatures. {100} left angle 013 right angle developed most remarkably at 4 wt.% Mg, while {103} left angle 321 right angle showed the maximum development at 7 wt.% Mg. During subsequent grain growth at 450 C, remarkable texture changes were observed only in the alloys containing Mg in the range between 2 and 4 wt.%. In these alloys, {100} left angle 013 right angle developed at the expense of {100} left angle 001 right angle at earlier stages of grain growth, whereas {103} left angle 321 right angle increased independently of these two orientations at later stages of grain growth. Reflecting these texture changes, grain growth occurred in these alloys discontinuously. Such a discontinuous grain growth with large texture changes is expected, if strong textures are already present before grain growth, and if recrystallized grains having similar orientations are distributed by forming large clusters before grain growth. (orig.)

  20. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1969-10-01

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 360 0 C and flow tests (approx. 20 ft/sec) in reactor process water at 130 0 C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 360 0 C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 360 0 C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 150 0 C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 50 0 C

  1. Swelling of austenitic iron-nickelchromium ternary alloys during fast neutron irradiation

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1984-01-01

    Swelling data are now available for 15 iron-nickel-chromium ternary alloys irradiated to exposures as high as 110 displacements per atom (dpa) in Experimental Breeder Reactor-II (EBR-II) between 400 and 650 0 C. These data confirm trends observed at lower exposure levels and extend the generality of earlier conclusions to cover a broader range of composition and temperature. It appears that all austenitic iron-nickel-chromium ternary alloys eventually approach an intrinsic swelling rate of about1%/dpa over a range of temperature even wider than studied in this experiment. The duration of the transient regime that precedes the attainment of this rate is quite sensitive to nickel and chromium content, however. At nickel and chromium levels typical of 300 series steels, swelling does not saturate at engineering-relevant levels. However, there appears to be a tendency toward saturation that increases with declining temperature, increasing nickel and decreasing chromium levels. Comparisons of these results are made with those of similar studies conducted with charged particles. Conclusions are then drawn concerning the validity of charged particle simulation studies to determine the compositional and temperature dependence of swelling

  2. Modeling of High Temperature Oxidation Behavior of FeCrAl Alloy by using Artificial Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Joon; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Refractory alloys are candidate materials for replacing current zirconium-base cladding of light water reactors and they retain significant creep resistance and mechanical strength at high temperatures up to 1500 ℃ due to their high melting temperature. Thermal neutron cross sections of refractory metals are higher than that of zirconium, however the loss of neutron can be overcome by reducing cladding thickness which can be facilitated with enhanced mechanical properties. However, most refractory metals show the poor oxidation resistance at a high temperature. Oxidation behaviors of the various compositions of FeCrAl alloys in high temperature conditions were modeled by using Bayesian neural network. The automatic relevance determination (ARD) technique represented the influence of the composition of alloying elements on the oxidation resistance of FeCrAl alloys. This model can be utilized to understand the tendency of oxidation behavior along the composition of each element and prove the applicability of neural network modeling for the development of new cladding material of light water reactors.

  3. Adhesive wear of iron chromium nickel silicon manganese molybdenum niobium alloys with duplex structure

    International Nuclear Information System (INIS)

    Lugscheider, E.; Deppe, E.; Ambroziak, A.; Melzer, A.

    1991-01-01

    Iron nickel chromium manganese silicon and iron chromium nickel manganese silicon molybdenum niobium alloys have a so-called duplex structure in a wide concentration range. This causes an excellent resistance to wear superior in the case of adhesive stress with optimized concentrations of manganese, silicon, molybdenum and niobium. The materials can be used for welded armouring structures wherever cobalt and boron-containing alloy systems are not permissible, e.g. in nuclear science. Within the framework of pre-investigations for manufacturing of filling wire electrodes, cast test pieces were set up with duplex structure, and their wear behavior was examined. (orig.) [de

  4. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  5. Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy

    NARCIS (Netherlands)

    Veldhuizen, AG; Sanders, MM; Schakenraad, JM; vanHorn, [No Value

    The nearly equiatomic nickel-titanium (NiTi) alloy is known for its shape memory properties. These properties can be put to excellent use in various biomedical applications, such as wires for orthodontic tooth alignment and osteosynthesis staples. The aim of this study was to evaluate the short-term

  6. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  7. Precipitation hardened nickel-base alloys for sour gas environments

    International Nuclear Information System (INIS)

    Igarashi, M.; Mukai, S.; Kudo, T.; Okada, Y.; Ikeda, A.

    1987-01-01

    SCC (Stress Corrosion Cracking) in sour gas environments of γ'(gamma prime: Ni/sub 3/(Ti and/or Al)) and γ''(gamma double prime: Ni/sub 3/Nb) precipitation hardened nickel-base alloys has been studied using the SSRT (Slow Strain Rate Tensile) test, anodic polarization measurement and transmission electron microscopy (TEM). The γ'-type alloy containing Ti was more susceptible to SCC in the SSRT tests up to 350 0 F(450 K) than the γ''-type alloy containing Nb. The susceptibility to SCC was related to their deformation structures in terms of stress localization and sensitivity to pitting corrosion in H/sub 2/S solutions. TEM observation showed the γ'-type alloy deformed by the superlattice dislocations in coplanar structures. This mode of deformation induced the stress localization to some boundaries such as grain boundary and as a result the susceptibility to SCC of the γ'-type alloy was increased. On the other hand, the γ''-type alloy deformed by the massive dislocation not in coplanar structures so that it was less susceptible to SCC in terms of the stress localization. The anodic polarization measurement suggested the γ'-type alloy was more susceptible to pitting corrosion compared with the γ''-type alloy

  8. High temperature alloys for the primary circuit of a prototype nuclear process heat plant

    International Nuclear Information System (INIS)

    Ennis, P.J.; Schuster, H.

    1979-01-01

    As part of a comprehensive materials test programme for the High Temperature Reactor Project 'Prototype Plant for Nuclear Process Heat' (PNP), high temperature alloys are being investigated for primary circuit components operating at temperatures above 750 0 C. On the basis of important material parameters, in particular corrosion behaviour and mechanical properties in primary coolant helium, the potential of candidate alloys is discussed. By comparing specific PNP materials data with the requirements of PNP and those of conventional plant, the implications for the materials programme and component design are given. (orig.)

  9. Investigations of carbon diffusion and carbide formation in nickel-based alloys

    International Nuclear Information System (INIS)

    Schulten, R.; Bongartz, K.; Quadakkers, W.J.; Schuster, H.; Nickel, H.

    1989-11-01

    The present thesis describes the carburization behaviour of nickel based alloys in heavily carburizing environments. The mechanisms of carbon diffusion and carbide precipitation in NiCr alloys with and without ternary additions of iron, cobalt or molybdenum have been investigated. Using the results of carburization experiments, a mathematical model which describes carbon diffusion and carbide formation, was developed. The simulation of the carburization process was carried out by an iterative calculation of the local thermodynamic equilibrium in the alloy. An accurate description of the carbon profiles as a function of time became possible by using a finite-difference calculation. (orig.) [de

  10. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, Mehdi; Azadi, Mohammad; Hossein Farrahi, Gholam; Winter, Gerhard; Eichlseder, Wilfred

    2013-01-01

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests

  11. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, Mehdi [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, Mohammad, E-mail: m_azadi@ip-co.com [Fatigue and Wear Workgroup, Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of); Hossein Farrahi, Gholam [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Winter, Gerhard; Eichlseder, Wilfred [Chair of Mechanical Engineering, University of Leoben, Leoben (Austria)

    2013-12-20

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests.

  12. Comparison of high temperature, high frequency core loss and dynamic B-H loops of two 50 Ni-Fe crystalline alloys and an iron-based amorphous alloy

    International Nuclear Information System (INIS)

    Wieserman, W.R.; Schwarze, G.E.; Niedra, J.M.

    1994-01-01

    The availability of experimental data that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency is almost non-existent. An experimental investigation was conducted over the temperature range of 23 to 300 C and frequency range of 1 to 50 kHz to determine the effects of temperature and frequency on the core loss and dynamic B-H loops of three different soft magnetic materials; an oriented-grain 50Ni-50Fe alloy, a nonoriented-grain 50Ni-50Fe alloy, and an iron-based amorphous material (Metglas 2605SC). A comparison of these materials show that the nonoriented-grain 50Ni-50Fe alloy tends to have either the lowest or next lowest core loss for all temperatures and frequencies investigated

  13. High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy)

    Science.gov (United States)

    Daoud, H. M.; Manzoni, A. M.; Wanderka, N.; Glatzel, U.

    2015-06-01

    Homogenizing at 1220°C for 20 h and subsequent aging at 900°C for 5 h and 50 h of a novel Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) produces a microstructure consisting of an L12 ordered γ' phase embedded in a face-centered cubic solid-solution γ matrix together with needle-like B2 precipitates (NiAl). The volume fraction of γ' phase is ~46% and of needle-like B2 precipitates database; Thermo-Calc Software, Stockholm, Sweden). The high-temperature tensile tests were carried out at room temperature, 600°C, 700°C, 800°C, and 1000°C. The tensile strength as well as the elongation to failure of both heat-treated specimens is very high at all tested temperatures. The values of tensile strength has been compared with literature data of well-known Alloy 800H and Inconel 617, and is discussed in terms of the observed microstructure.

  14. Phase Stability in Ultra-High Temperature Refractory Metal Alloys and Coatings

    National Research Council Canada - National Science Library

    Perepezko, John

    2002-01-01

    ...) base alloys such as those in the Mo-Si-B system and the evaluation of thermal barrier and oxidation resistant coatings for these systems requires very high temperature annealing furnaces with long...

  15. Lifetime assessment of thick-walled components made of nickel-base alloys under near-service loading conditions

    International Nuclear Information System (INIS)

    Hueggenberg, Daniel

    2015-01-01

    Until 2050 the renewable energies should provide 80% of the power in Germany according to Renewable Energy law. Due to that reason the conventional power plants are not used for base load, but rather for the supply of average and peak load. The change of the operating mode leads to shorter times at stationary temperatures and the number of faster start-ups/shut-downs of the power plants will increase. As a result of this the components are exposed to an interacting load of creep and fatigue which reduces the lifetimes. The aim of this thesis is the development and verification of a lifetime assessment procedure for components made of the nickel-base alloys Alloy 617 mod. and Alloy 263 under creep fatigue loading conditions based on numerical phenomenological models and on the approaches of different standards/recommendations. The focus lies on two components of the high temperature material test rig II (HWT II), a header made of Alloy 617 mod. and Alloy 263 as well as a formed part made of Alloy 617 mod. For the basis characterization of the HWT II melts, specimens of the Alloy 617 mod. and Alloy 263 are tested in uniaxial tensile tests, (creep-)fatigue tests, creep tests and charpy tests in a temperature range between 20 C and 725 C. From the comparisons of the test results and the material specifications respectively the results of the projects COORETEC DE4, MARCKO DE2 and MARCKO700 no deviations were obvious for both materials with the exception of the creep test results with Alloy 617 mod. material. The creep tests with Alloy 617 mod. material of the HWT II melt show differences regarding the deformation and damage behavior. In addition to the basis characterization tests some complex lab tests for the characterization of the material behavior under creep-fatigue and multiaxial loading conditions were conducted. The developments of the microstructure, the precipitations as well as the structure of dislocations are investigated in the light optical microscope

  16. Effects of alloying and temperature on the high-temperature oxidation of Cr-Cr{sub 2}Nb

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; DeVan, J.H. [Oak Ridge National Lab., TN (United States); Carson, L.J. [Lincoln Univ., PA (United States)

    1993-06-01

    Effects of alloying additions and temperature on isothermal and cyclic oxidation resistance of Cr-Cr{sub 2}Nb alloys were examined for air exposures. An isothermal exposure temperature of 1100C led to rapid reaction of binary Cr-12 at.% Nb as manifested a high oxidation rate and nonprotective behavior. Generally parabolic kinetics, complicated by some isothermal scale cracking, were observed at 900--1000C. Scale damage was exacerbated by thermal cycling. The addition of 8 at.% Al to Cr-12 at.% Nb did not effect cyclic oxidation resistance, but there was some evidence that scale adherence on Cr-6 at.% Nb-8 at.% Al was better than that for binary Cr-6 at.% Nb. Alloying additions of Al (up to 18 at.%) or Re (2 at.%) did not improve the isothermal oxidation resistance of Cr-12 at.% Nb. However, the tendency for scale damage during both isothermal and thermal cycling exposures suggests that alloying additions that specifically improve scale plasticity or modify growth stresses could be effective for Cr-Nb alloys. 10 refs, 9 figs, 1 tab.

  17. Adhesive bonding of super-elastic titanium-nickel alloy castings with a phosphate metal conditioner and an acrylic adhesive.

    Science.gov (United States)

    Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T

    2003-06-01

    The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin.

  18. Processing of Advanced Cast Alloys for A-USC Steam Turbine Applications

    Science.gov (United States)

    Jablonski, Paul D.; Hawk, Jeffery A.; Cowen, Christopher J.; Maziasz, Philip J.

    2012-02-01

    The high-temperature components within conventional supercritical coal-fired power plants are manufactured from ferritic/martensitic steels. To reduce greenhouse-gas emissions, the efficiency of pulverized coal steam power plants must be increased to as high a temperature and pressure as feasible. The proposed steam temperature in the DOE/NETL Advanced Ultra Supercritical power plant is high enough (760°C) that ferritic/martensitic steels will not work for the majority of high-temperature components in the turbine or for pipes and tubes in the boiler due to temperature limitations of this class of materials. Thus, Ni-based superalloys are being considered for many of these components. Off-the-shelf forged nickel alloys have shown good promise at these temperatures, but further improvements can be made through experimentation within the nominal chemistry range as well as through thermomechanical processing and subsequent heat treatment. However, cast nickel-based superalloys, which possess high strength, creep resistance, and weldability, are typically not available, particularly those with good ductility and toughness that are weldable in thick sections. To address those issues related to thick casting for turbine casings, for example, cast analogs of selected wrought nickel-based superalloys such as alloy 263, Haynes 282, and Nimonic 105 have been produced. Alloy design criteria, melt processing experiences, and heat treatment are discussed with respect to the as-processed and heat-treated microstructures and selected mechanical properties. The discussion concludes with the prospects for full-scale development of a thick section casting for a steam turbine valve chest or rotor casing.

  19. Improvement in mechanical properties of chromium-nickel sintered compacts by repeated rolling and annealing; Kuromu nickel shoketsuzai no kurikaeshi atsuen shodon ni yoru kikaiteki seishitsu no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Y. [Toyohashi University of Technology, Aichi (Japan); Omori, M. [Hiroshima-Denki Institute of Technology, Hiroshima (Japan); Ando, H. [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Matsui, H. [Tadano Ltd., Kagawa (Japan); Okita, T. [Honda R and D Co. Ltd., Tokyo (Japan)

    1998-09-20

    Chromium-nickel sintered compacts containing 50 and 80 mass%Cr were tried to improve their mechanical properties by means of a thermo-mechanical treatment, i.e., repeated rolling and annealing. Specimens from the as-sintered compacts showed no ductility at room temperature and small ductility at temperatures higher than 1000 K because of poor alloying of nickel with chromium. Tensile properties of the sheets repeatedly rolled with the intermediate annealing at 1173 K were very similar to those of the as-sintered specimen. While the sheets rolled with the annealing at 1573 K were excellently improved in their strength and ductility due to the considerable interdiffusion of chromium and nickel. The intermediate temperature embrittlement, that is, the ductility minimum well observed around 1000 K in a chromium-nickel alloy appeared also in the sheets rolled with the annealing at 1573 K. 15 refs., 13 figs., 1 tab.

  20. Corrosion behaviour of austenitic stainless steel, nickel-base alloy and its weldments in aqueous LiBr solutions

    Energy Technology Data Exchange (ETDEWEB)

    Blasco-Tamarit, E.; Igual-Munoz, A.; Garcia Anton, J.; Garcia-Garcia, D. [Departamento de Ingenieria Quimica y Nuclear. E.T.S.I.Industriales, Universidad Politecnica de Valencia, P.O. Box 22012 E-46071 Valencia (Spain)

    2004-07-01

    With the advances in materials production new alloys have been developed, such as High- Alloy Austenitic Stainless Steels and Nickel-base alloys, with high corrosion resistance. These new alloys are finding applications in Lithium Bromide absorption refrigeration systems, because LiBr is a corrosive medium which can cause serious corrosion problems, in spite of its favourable properties as absorbent. The objective of the present work was to study the corrosion resistance of a highly alloyed austenitic stainless steel (UNS N08031) used as base metal, a Nickel-base alloy (UNS N06059) used as its corresponding filler metal, and the weld metal obtained by the Gas Tungsten Arc Welding (GTAW) procedure. The materials have been tested in different LiBr solutions (400 g/l, 700 g/l, 850 g/l and a commercial 850 g/l LiBr heavy brine containing Lithium Chromate as corrosion inhibitor), at 25 deg. C. Open Circuit Potential tests and potentiodynamic anodic polarization curves have been carried out to obtain information about the general electrochemical behaviour of the materials. The polarization curves of all the alloys tested were typical of passivable materials. Pitting corrosion susceptibility has been evaluated by means of cyclic potentiodynamic curves, which provide parameters to analyse re-passivation properties. The galvanic corrosion generated by the electrical contact between the welded and the base material has been estimated from the polarization diagrams according to the Mixed Potential Method. Samples have been etched to study the microstructure by Scanning Electron Microscopy (SEM). The results demonstrate that the pitting resistance of all these materials increases as the LiBr concentration decreases. In general, the presence of chromate tended to shift the pitting potential to more positive values than those obtained in the 850 g/l LiBr solution. (authors)

  1. Sintering of nickel catalysts. Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, Jens; Gelten, Johannes A.P.; Helveg, Stig [Haldor Topsoee A/S, Nymoellevej 55, DK-2800 Kgs. Lyngby (Denmark)

    2006-08-01

    Supported nickel catalysts are widely used in the steam-reforming process for industrial scale production of hydrogen and synthesis gas. This paper provides a study of sintering in nickel-based catalysts (Ni/Al{sub 2}O{sub 3} and Ni/MgAl{sub 2}O{sub 4}). Specifically the influence of time, temperature, atmosphere, nickel-carrier interactions and dopants on the rate of sintering is considered. To probe the sintering kinetics, all catalysts were analyzed by sulfur chemisorption to determine the Ni surface area. Furthermore selected samples were further analyzed using X-ray diffraction (XRD), mercury porosimetry, BET area measurements, and electron microscopy (EM). The observed sintering rates as a function of time, temperature, and P{sub H{sub 2}O}/P{sub H{sub 2}} ratio were consistent with recent model predictions [J. Sehested, J.A.P. Gelten, I.N. Remediakis, H. Bengaard, J.K. Norskov, J. Catal. 223 (2004) 432] over a broad range of environmental conditions. However, exposing the catalysts to severe sintering conditions the loss of nickel surface area is faster than model predictions and the deviation is attributed to a change in the sintering mechanism and nickel removal by nickel-carrier interactions. Surprisingly, alumina-supported Ni particles grow to sizes larger than the particle size of the carrier indicating that the pore diameter does not represent an upper limit for Ni particle growth. The effects of potassium promotion and sulfur poisoning on the rates of sintering were also investigated. No significant effects of the dopants were observed after ageing at ambient pressure. However, at high pressures of steam and hydrogen (31bar and H{sub 2}O:H{sub 2}=10:1) potassium promotion increased the sintering rate relative to that of the unpromoted catalyst. Sulfur also enhances the rate of sintering at high pressures, but the effect of sulfur is less than for potassium. (author)

  2. Prospects for zirconium structural alloys at high temperatures

    International Nuclear Information System (INIS)

    Thomas, W.R.

    1969-05-01

    Improved station efficiencies and lower capital costs provide incentives for the development of zirconium alloys for pressure tubes which can operate at temperatures above 450 o C. The experience of the Ti industry indicates that a complex alloy containing solution hardeners of Sn or Al and precipitation hardeners of Mo and Nb and perhaps Si will be required. The thermal neutron cross-section of the alloy will be about 10% higher than Zircaloy-2 and because of its poor corrosion resistance will require cladding with a corrosion resistant alloy such as Zr-Cr. Results to date indicate that such a pressure tube is feasible. (author)

  3. The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys

    Science.gov (United States)

    Nathal, M. V.; Ebert, L. J.

    1985-01-01

    The influence of composition on the tensile and creep strength of 001-line oriented nickel-base superalloy single crystals at temperatures near 1000 C was investigated. Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single crystal version of MAR-M247. For alloys with the baseline refractory metal level of 3 wt pct Ta and 10 wt pct W, decreases in Co level from 10 to 0 wt pct resulted in increased tensile and creep strength. Substitution of 2 wt pct W for 3 wt pct Ta resulted in decreased creep life at high stresses, but improved life at low stresses. Substitution of Ni for Ta caused large reductions in tensile strength and creep resistance, and corresponding increases in ductility. For these alloys with low Ta-plus-W totals, strength was independent of Co level. The effects of composition on properties were related to the microstructural features of the alloys. In general, high creep strength was associated with high levels of gamma-prime volume fraction, gamma-gamma-prime lattice mismatch, and solid solution hardening.

  4. Microstructure and high temperature stability of age hardenable AA2219 aluminium alloy modified by Sc, Mg and Zr additions

    Energy Technology Data Exchange (ETDEWEB)

    Naga Raju, P. [Metallurgical and Materials Engineering Department, IIT-Madras, Chennai 600036 (India)], E-mail: puvvala_nagaraju@yahoo.com; Srinivasa Rao, K. [Metallurgical Engineering Department, Andhra University, Visakapatnam 530003 (India); Reddy, G.M. [Defence Metallurgical Research Laboratory, Hyderabad 500258 (India); Kamaraj, M.; Prasad Rao, K. [Metallurgical and Materials Engineering Department, IIT-Madras, Chennai 600036 (India)

    2007-08-25

    The present work pertains to the improvement of high temperature stability of age hardenable AA2219 aluminium-copper (6.3%) alloy. Addition of scandium, magnesium and zirconium to the base metal AA2219 was adopted to improve this high temperature stability. These additions were systematically varied by preparing alloys of different composition using gas tungsten arc melting. Long time ageing studies and impression creep technique were used to study the high temperature stability of the alloys. These modified compositions of the alloy resulted in fine equiaxed grains, refined eutectics, large number of high temperature stable and finer precipitates. Among all the compositions, 0.8% Sc + 0.45% Mg + 0.2% Zr addition was found to be significant in improving the high temperature stability of AA2219 alloy. This may be attributed to the possible microstructural changes, solute enrichment of the matrix and pinning of the grain boundaries by the finer precipitates.

  5. Influence of Nickel Addition on Properties of Secondary AlSi7Mg0.3 Alloy

    Directory of Open Access Journals (Sweden)

    Richtárech L.

    2015-06-01

    Full Text Available This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by nickel. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich intermetallic phases. It is impossible to remove iron from melt by standard operations. Some elements eliminates iron by changing iron intermetallic phase morphology, decreasing its extent and by improving alloy properties. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of nickel as iron corrector of iron based phases.

  6. Study of the high temperature characteristics of hydrogen storage alloys

    CERN Document Server

    Rong, Li; Shaoxiong, Zhou; Yan, Qi; 10.1016/j.jallcom.2004.07.006

    2005-01-01

    In this work, the phase structure of as-cast and melt-spun (MmY)/sub 1/(NiCoMnAl)/sub 5/ alloys (the content of yttrium is 0-2.5wt.%) and their electrochemical properties were studied with regard to discharge capacity at different temperatures (30-80 degrees C) and cycling life at 30 degrees C. It is found that the substitution of yttrium increase the electrochemical capacity of the compounds and decrease the difference in capacity between as-cast and as-quenched compounds at 30 degrees C. When increasing the yttrium concentration from 0 to 2.5wt.%, the cycling life of both the as-cast and the melt- spun compounds deteriorated, although the latter have a slightly longer cycle life than the former. The remarkable feature of the alloys obtained by yttrium substitution is the improvement of the high temperature electrochemical properties. It shows that the stability of the hydrides is increased. Compared with the as-cast alloys, the melt-spun ribbons have higher electrochemical charge /discharge capacity in the ...

  7. Basic principles of creating a new generation of high- temperature brazing filler alloys

    Science.gov (United States)

    Kalin, B. A.; Suchkov, A. N.

    2016-04-01

    The development of new materials is based on the formation of a structural-phase state providing the desired properties by selecting the base and the complex of alloying elements. The development of amorphous filler alloys for a high-temperature brazing has its own features that are due to the limited life cycle and the production method of brazing filler alloys. The work presents a cycle of analytical and experimental materials science investigations including justification of the composition of a new amorphous filler alloy for brazing the products from zirconium alloys at the temperature of no more than 800 °C and at the unbrazing temperature of permanent joints of more than 1200 °C. The experimental alloys have been used for manufacture of amorphous ribbons by rapid quenching, of which the certification has been made by X-ray investigations and a differential-thermal analysis. These ribbons were used to obtain permanent joints from the spacer grid cells (made from the alloy Zr-1% Nb) of fuel assemblies of the thermal nuclear reactor VVER-440. The brazed samples in the form of a pair of cells have been exposed to corrosion tests in autoclaves in superheated water at a temperature of 350 °C, a pressure of 160 MPa and duration of up to 6,000 h. They have been also exposed to destructive tests using a tensile machine. The experimental results obtained have made it possible to propose and patent a brazing filler alloy of the following composition: Zr-5.5Fe-(2.5-3.5)Be-1Nb-(5-8)Cu-2Sn-0.4Cr-(0.5-1.0)Ge. Its melting point is 780 °C and the recommended brazing temperature is 800°C.

  8. Alloy spreading and filling of gaps in brazing of VDU-2 and KhN50VMTYuB heat resistant nickel alloys with VPr3K and VPr10 alloys

    International Nuclear Information System (INIS)

    Shapiro, A.E.; Podol'skij, B.A.; Lepisko, M.R.; Borzyak, A.G.; Moryakov, V.F.; Rostislavskaya, T.T.

    1984-01-01

    A study was made on contact interaction of VDU-2 and KhN50VMTYuB alloys with VPr3K and VPr10 alloys at 1325 and 1220 deg C in argon and industrial vacuum. The contact angles and wettability indexes were determined. The solders fill the vertical gaps of up to 0.25 mm width through 80 mm height. Spreading and filling of gaps proceeds better during soldering in argon with boron trifluoride addition as compared to soldering in industrial vacuum. VPr10 alloy is divided into two phases when wetting KhN50VMTYuB alloy: fusible one on the base of nickel-chromium-manganese solution and infusible one on the base of nickel-niobium eutectics. The square of fusible phase spreading is 2.5...3 times larger as compared to infusible one

  9. Fusion neutron irradiation of Ni-Si alloys at high temperature*1

    Science.gov (United States)

    Huang, J. S.; Guinan, M. W.; Hahn, P. A.

    1988-07-01

    Two Ni-4% Si alloys, with different cold work levels, have been irradiated with 14-MeV fusion neutrons at 623 K, and their Curie temperatures have been monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2-MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14-MeV fusion neutrons is only 6-7% of that for an identical alloy irradiated by 2-MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6-7% for the fusion neutron irradiated sample.

  10. X-ray diffraction study of low-temperature phase transformations in nickel-titanium orthodontic wires.

    Science.gov (United States)

    Iijima, M; Brantley, W A; Guo, W H; Clark, W A T; Yuasa, T; Mizoguchi, I

    2008-11-01

    Employ conventional X-ray diffraction (XRD) to analyze three clinically important nickel-titanium orthodontic wire alloys over a range of temperatures between 25 and -110 degrees C, for comparison with previous results from temperature-modulated differential scanning calorimetry (TMDSC) studies. The archwires selected were 35 degrees C Copper Ni-Ti (Ormco), Neo Sentalloy (GAC International), and Nitinol SE (3M Unitek). Neo Sentalloy, which exhibits superelastic behavior, is marketed as having shape memory in the oral environment, and Nitinol SE and 35 degrees C Copper Ni-Ti also exhibit superelastic behavior. All archwires had dimensions of 0.016in.x0.022in. (0.41 mm x 0.56 mm). Straight segments cut with a water-cooled diamond saw were placed side-by-side to yield a 1 cm x 1cm test sample of each wire product for XRD analysis (Rint-Ultima(+), Rigaku) over a 2theta range from 30 degrees to 130 degrees and at successive temperatures of 25, -110, -60, -20, 0 and 25 degrees C. The phases revealed by XRD at the different analysis temperatures were in good agreement with those found in previous TMDSC studies of transformations in these alloys, in particular verifying the presence of R-phase at 25 degrees C. Precise comparisons are not possible because of the approximate nature of the transformation temperatures determined by TMDSC and the preferred crystallographic orientation present in the wires. New XRD peaks appear to result from low-temperature transformation in martensite, which a recent transmission electron microscopy (TEM) study has shown to arise from twinning. While XRD is a useful technique to study phases in nickel-titanium orthodontic wires and their transformations as a function of temperature, optimum insight is obtained when XRD analyses are combined with complementary TMDSC and TEM study of the wires.

  11. 1 Molar concentration hydrofluoric acid effect at 400 C in the corrosion resistance of alloys containing nickel

    International Nuclear Information System (INIS)

    Contreras P, H.

    1992-01-01

    Corrosion rate for pure nickel, Inconel 600 and Monel alloys in a 1 Molar hydrofluoric acid solution at a 40 0 C temperature were determined. For contrasting purposes both SAE 304 SS and SAE 316 SS were included. As expected these Stainless Steels do not show good corrosion performance in the solution used. Several expressions correlating the weight and thickness loss v/s time were obtained. In the particular case of Monel, up to 2.021 hours, two expressions for the weight loss and three expressions for the thickness loss were obtained with a close to 1,0 correlation coefficient value. The Monel showed the best overall corrosion performance among the tested alloys. (author)

  12. Pt-Rh alloys. Investigation of creep rate and rupture time at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Trumic, Biserka; Gomidzelovic, Lidija; Marjanovic, Sasa; Ivanovic, Aleksandra; Dimitrijevic, Silvana [Belgrade Univ., Bor (Serbia). Inst. of Mining and Metallurgy; Krstic, Vesna

    2013-02-01

    The results of experimental investigation of creep rate and rupture time of the alloys of Pt-Rh system are presented in this paper. Selected alloys with 7-40 wt.-% Rh content were examined using a universal device for tensile testing of materials at high temperatures, and monitoring structure changes of the samples by electron microscopy. Investigations were performed in the temperature range between 1200 C and 1700 C at a stress between 2 MPa and 15 MPa. (orig.)

  13. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James [Univ. of Illinois, Urbana-Champaign, IL (United States); Heuser, Brent [Univ. of Illinois, Urbana-Champaign, IL (United States); Robertson, Ian [Kyushu Univ. (Japan); Sehitoglu, Huseyin [Univ. of Illinois, Urbana-Champaign, IL (United States); Sofronis, Petros [Kyushu Univ. (Japan); Gewirth, Andrew [Kyushu Univ. (Japan)

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  14. Nickel silicide formation in silicon implanted nickel

    Science.gov (United States)

    Rao, Z.; Williams, J. S.; Pogany, A. P.; Sood, D. K.; Collins, G. A.

    1995-04-01

    Nickel silicide formation during the annealing of very high dose (≥4.5×1017 ions/cm2) Si implanted Ni has been investigated, using ion beam analytical techniques, electron microscopy, and x-ray diffraction analysis. An initial amorphous Si-Ni alloy, formed as a result of high dose ion implantation, first crystallized to Ni2Si upon annealing in the temperature region of 200-300 °C. This was followed by the formation of Ni5Si2 in the temperature region of 300-400 °C and then by Ni3Si at 400-600 °C. The Ni3Si layer was found to have an epitaxial relationship with the substrate Ni, which was determined as Ni3Si∥Ni and Ni3Si∥Ni for Ni(100) samples. The minimum channeling yield in the 2 MeV He Rutherford backscattering and channeling spectra of this epitaxial layer improved with higher annealing temperatures up to 600 °C, and reached a best value measured at about 8%. However, the epitaxial Ni3Si dissolved after long time annealing at 600 °C or annealing at higher temperatures to liberate soluble Si into the Ni substrate. The epitaxy is attributed to the excellent lattice match between the Ni3Si and the Ni. The annealing behavior follows the predictions of the Ni-Si phase diagram for this nickel-rich binary system.

  15. Standard specification for cobalt-chromium-nickel-molybdenum-tungsten alloy (UNS R31233) plate, sheet and strip. ASTM standard

    International Nuclear Information System (INIS)

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt, and Alloys Containing Nickel or Cobalt or Both as Principal Constituents. Current edition approved Apr. 10, 1998 and published September 1998. Originally published as B 818-91. Last previous edition was B 818-93

  16. High-temperature deformation of dispersion-strengthened Cu-Zr-Ti-C alloys

    International Nuclear Information System (INIS)

    Palma, Rodrigo H.; Sepulveda, Aquiles; Espinoza, Rodrigo; Dianez, M. Jesus; Criado, Jose M.; Sayagues, M. Jesus

    2005-01-01

    The hot mechanical behaviour and microstructure of Cu-5 vol.% TiC, Cu-5 vol.% ZrO 2 and Cu-2.5 vol.% TiC-2.5 vol.% ZrO 2 alloys prepared by reaction milling were studied. After a test of 1 h annealing at 1173 K, the Cu-5 vol.% ZrO 2 alloy presented the lower softening resistance to annealing, while the other two ones kept their initial room-temperature hardness (about 2 GPa). Hot-compression tests at 773 and 1123 K, at initial true strain rates of 0.85 x 10 -3 and 0.85 x 10 -4 s -1 were performed. The Cu-2.5 vol.% TiC-2.5 vol.% ZrO 2 and the Cu-5 vol.% ZrO 2 alloys were the strongest and softest materials, respectively. Moreover, by electron microscopy, nanometric TiC and micrometric particles were detected in the Cu-5 vol.% TiC and Cu-5 vol.% ZrO 2 alloys, respectively. A possible explanation for the observed behaviour of these materials is proposed. In the compression tests, it was also found that strain rate has a low effect on flow stress, as it has been previously observed by various authors in dispersion-strengthened alloys deformed at high temperatures

  17. Phase martensitic transformation study in mechanically alloyed Ti{sub 50}Ni{sub 25}Fe{sub 25} alloy via high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Joao Cardoso de; Ferreira, Ailton da Silva, E-mail: joao.cardoso.lima@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis (Brazil); Rovani, Pablo Roberto; Pereira, Altair Soria [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2016-07-01

    Full text: Alloys based on titanium and nickel with shape memory effect (SME) have been widely investigated due to potential use in different areas of science and technology, such as electronics, medicine, and space.1 Among them, the superalloys Ti-Ni-Fe show high corrosion resistance and good mechanical properties even at high temperatures that make them suitable for use in applications such as power plant components that work under aggressive conditions. At room temperature, the TiNi alloy has a monoclinic (B19'), known as the martensitic phase. With increasing temperature, the B19' phase transforms into a trigonal/hexagonal (B19) phase, known as the R- or pre martensitic phase, which, in its turn, transforms into a cubic (B2) structure, known as the austenitic phase. On cooling to room temperature, the reverse B2→B19→B19' phase transformations are observed. Since the B19↔B19' transformation occurs at a temperature low enough to inhibit diffusion-controlled processes, it belongs to a class of diffusionless phase transformations known as martensitic transformations. For this study, a Ti{sub 50}Ni{sub 25}Fe{sub 25} (B2) alloy was prepared by mechanical alloying, and the effects of high pressures up to 18 GPa will be presented. The structural changes with increasing pressure were followed by recording in situ angle-dispersive X-ray diffraction (ADXRD) diffractograms, in transmission geometry, using a long fine focus Mo X-ray tube and an imaging plate detector. The obtained results were already reported in Ref [1]. (1) A. S. Ferreira, P. R. Rovani, J. C. de Lima, A. S. Pereira, J. Appl. Phys. 117 (2015). (author)

  18. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    Science.gov (United States)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  19. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    Science.gov (United States)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  20. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  1. Thermal conductivities and conduction mechanisms of Sb-Te Alloys at high temperatures

    International Nuclear Information System (INIS)

    Lan, Rui; Endo, Rie; Kobayashi, Yoshinao; Susa, Masahiro; Kuwahara, Masashi

    2011-01-01

    Sb-Te alloys have drawn much attention due to its application in phase change memory as well as the unique properties as chalcogenide. In this work, the thermal conductivities of Sb-x mol%Te alloys (x = 14, 25, 44, 60, 70, and 90) have been measured by the hot strip method from room temperature up to temperature just below the respective melting points. For the intermetallic compound Sb 2 Te 3 (x = 60), the thermal conductivity decreases up to approximately 600 K and then increases. For other Sb-x mol%Te alloys where x > 60, the thermal conductivities of the alloys decrease with increasing temperature. In contrast, for x < 60, the thermal conductivities of the alloys keep roughly constant up to approximately 600 K and then increase with increasing temperature. It is proposed that free electron dominates the heat transport below 600 K, and ambipolar diffusion also contributes to the increase in the thermal conductivity at higher temperatures. The prediction equation from temperature and chemical composition has been proposed for thermal conductivities of Sb-Te alloys.

  2. Effect of Al alloying on the martensitic temperature in Ti-Ta shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Alberto; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universitaet Bochum (Germany)

    2017-07-01

    Ti-Ta-based alloys are promising candidates as high temperature shape memory alloys (HTSMAs) for actuators and superelastic applications. The shape memory mechanism involves a martensitic transformation between the low-temperature α'' phase (orthorhombic) and the high-temperature β phase (body-centered cubic). In order to prevent the degradation of the shape memory effect, Ti-Ta needs to be alloyed with further elements. However, this often reduces the martensitic temperature M{sub s}, which is usually strongly composition dependent. The aim of this work is to analyze how the addition of a third element to Ti-Ta alloys affects M{sub s} by means of electronic structure calculations. In particular, it will be investigated how alloying Al to Ti-Ta alters the relative stability of the α'' and β phases. This understanding will help to identify new alloy compositions featuring both a stable shape memory effect and elevated transformation temperatures.

  3. High temperature properties of Zircaloy--oxygen alloys

    International Nuclear Information System (INIS)

    Mellinger, G.B.; Bates, J.L.

    1977-03-01

    The effect of oxygen on three properties of Zircaloy-4 cladding relevant to LOCA evaluation codes was determined. Thermal expansion, elastic moduli, and thermal diffusivity were measured over the range room temperature--1200 0 C (2192 0 F) and 0.7 to 28 at.% oxygen. Thermal expansion and elastic moduli showed increases with oxygen concentration, while thermal diffusivity tended to decrease. Zircaloy-2 was examined over the same temperature range, but only to 5 at.% oxygen, differences in the properties between the two alloys were minor. The thermal emittance of Zircaloy-4 was measured in argon over the wavelength range 1.5 to 2.5 μm on previously oxidized tubing and on surfaces in the process of oxidizing in unlimited steam. For the latter, a high emittance (approximately 0.9) was reached at an oxide thickness of about 100 mg/dm 2 , and the tubing surface remained black and substoichiometric as oxidation continued at temperatures to 1200 0 C

  4. Hydrogenation of the rare earth alloys for production negative electrodes of nickel-metal hydride batteries

    International Nuclear Information System (INIS)

    Casini, Julio Cesar Serafim

    2011-01-01

    In this work were studied of La 0.7-x Mg x Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (X = 0 and 0.7) alloys for negative electrodes of the nickel-metal hydride batteries. The hydrogenation of the alloys was performed varying pressing of H 2 (2 and 10 bar) and temperature (room and 500 ℃). The discharge capacity of the nic kel-metal hydride batteries were analyzed in ARBIN BT- 4 electrical test equipment. The as-cast alloys were analyzed by scanning electron microscopy (SEM), energy disperse spectroscopy (EDX) and X-Ray diffraction. The increasing Mg addition in the alloy increases maximum discharge capacity but decrease cycle life of the batteries. The maximum discharge capacity was obtained with the Mg 0.7 Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy (60 mAh) and the battery which presented the best performance was La 0.4 Mg 0.3 Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy (53 mAh and 150 cycles). The H 2 capability of absorption was diminished for increased Mg addition and no such effect occurs for Mg 0.7 Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy. (author)

  5. Structure determination of electrodeposited zinc-nickel alloys: thermal stability and quantification using XRD and potentiodynamic dissolution

    International Nuclear Information System (INIS)

    Fedi, B.; Gigandet, M.P.; Hihn, J-Y; Mierzejewski, S.

    2016-01-01

    Highlights: • Quantification of zinc-nickel phases between 1,2% and 20%. • Coupling XRD to partial potentiodynamic dissolution. • Deconvolution of anodic stripping curves. • Phase quantification after annealing. - Abstract: Electrodeposited zinc-nickel coatings obtained by electrodeposition reveal the presence of metastable phases in various quantities, thus requiring their identification, a study of their thermal stability, and, finally, determination of their respective proportions. By combining XRD measurement with partial potentiodynamic dissolution, anodic peaks were indexed to allow their quantification. Quantification of electrodeposited zinc-nickel alloys approximately 10 μm thick was thus carried out on nickel content between 1.2% and 20%, and exhibited good accuracy. This method was then extended to the same set of alloys after annealing (250 °C, 2 h), thus bringing the structural organization closer to its thermodynamic equilibrium. The result obtained ensures better understanding of crystallization of metastable phases and of phase proportion evolution in a bi-phasic zinc-nickel coating. Finally, the presence of a monophase γ and its thermal stability in the 12% to 15% range provides important information for coating anti-corrosion behavior.

  6. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  7. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  8. Development of Ion-Plasma Coatings for Protecting Intermetallic Refractory Alloys VKNA-1V and VKNA-25 in the Temperature Range of 1200 - 1250°C

    Science.gov (United States)

    Budinovskii, S. A.; Matveev, P. V.; Smirnov, A. A.

    2017-05-01

    Multilayer heat-resistant ion-plasma coatings for protecting the parts of the hot duct of gas-turbine engines produced from refractory nickel alloys based on VKNA intermetallics from high-temperature oxidation are considered. Coatings of the Ni - Cr - Al (Ta, Re, Hf, Y) + Al - Ni - Y systems are tested for high-temperature strength at 1200 and 1250°C. Metallographic and microscopic x-ray spectrum analyses of the structure and composition of the coatings in the initial condition and after the testing are performed. The effect of protective coatings of the Ni - Cr - Al - Hf + Al - Ni - Y systems on the long-term strength of alloys VKNA-1V and VKNA-25 at 1200°C is studied.

  9. Twin solution calorimeter determines heats of formation of alloys at high temperatures

    Science.gov (United States)

    Darby, J. B., Jr.; Kleb, R.; Kleppa, O. J.

    1968-01-01

    Calvert-type, twin liquid metal solution calorimeter determines the heats of formation of transition metal alloys at high temperatures. The twin differential calorimeter measures the small heat effects generated over extended periods of time, has maximum operating temperature of 1073 degrees K and an automatic data recording system.

  10. Orientation dependence of the thermal fatigue of nickel alloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dul' nev, R A; Svetlov, I L; Bychkov, N G; Rybina, T V; Sukhanov, N N

    1988-11-01

    The orientation dependence of the thermal stability and the thermal fatigue fracture characteristics of single crystals of MAR-M200 nickel alloy are investigated experimentally using X-ray diffraction analysis and optical and scanning electron microscopy. It is found that specimens with the 111-line orientation have the highest thermal stability and fatigue strength. Under similar test conditions, the thermal fatigue life of single crystals is shown to be a factor of 1.5-2 higher than that of the directionally solidified and equiaxed alloys. 6 references.

  11. Study on the Simulation of Crud Formation using Piping Materials of Nuclear Power Plant in High Temperature Water

    International Nuclear Information System (INIS)

    Kim, Sang Hyun; Kim, In Sup; Lee, Kun Jai

    2005-01-01

    High temperature - high pressure apparatus was developed to simulate nickel fewite corrosion products which were main compositions of the radioactive crud in the nuclear power plant. Corrosion product similar to the crud was obtained by a tube accumulator system. Nickel alloy (Inconel 690) and carbon steel (SA106 Gr. C) were corroded at 270 in the corrosion product generator. Ni ions and Fe ions dissolved by corrosion reaction were able to be transported to the accumulator because the crud generation mechanism was the solubility change with temperature. To evaluate the properties of simulated corrosion products, scanning electron microscope (SEM) observation and EDAX analysis were performed. SEM observation of corrosion product showed the needle like or crystal structure of oxide depending on precipitating location. The crystal oxide was the nickel ferrite, which was similar to the crud in nuclear power plants.

  12. Improved creep strength of nickel-base superalloys by optimized γ/γ′ partitioning behavior of solid solution strengthening elements

    International Nuclear Information System (INIS)

    Pröbstle, M.; Neumeier, S.; Feldner, P.; Rettig, R.; Helmer, H.E.; Singer, R.F.; Göken, M.

    2016-01-01

    Solid solution strengthening of the γ matrix is one key factor for improving the creep strength of single crystal nickel-base superalloys at high temperatures. Therefore a strong partitioning of solid solution hardening elements to the matrix is beneficial for high temperature creep strength. Different Rhenium-free alloys which are derived from CMSX-4 are investigated. The alloys have been characterized regarding microstructure, phase compositions as well as creep strength. It is found that increasing the Titanium (Ti) as well as the Tungsten (W) content causes a stronger partitioning of the solid solution strengtheners, in particular W, to the γ phase. As a result the creep resistance is significantly improved. Based on these ideas, a Rhenium-free alloy with an optimized chemistry regarding the partitioning behavior of W is developed and validated in the present study. It shows comparable creep strength to the Rhenium containing second generation alloy CMSX-4 in the high temperature / low stress creep regime and is less prone to the formation of deleterious topologically close packed (TCP) phases. This more effective usage of solid solution strengtheners can enhance the creep properties of nickel-base superalloys while reducing the content of strategic elements like Rhenium.

  13. Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications

    International Nuclear Information System (INIS)

    Rieth, M.; Materna-Morris, E.; Dudarev, S.L.; Boutard, J.-L.; Keppler, H.; Mayor, J.

    2009-01-01

    The phase stability of alloys and steels developed for application in nuclear fission and fusion technology is one of the decisive factors determining the potential range of operating temperatures and radiation conditions that the core elements of a power plant can tolerate. In the case of ferritic and ferritic-martensitic steels, the choice of the chemical composition is dictated by the phase diagram for binary FeCr alloys where in the 0-9% range of Cr composition the alloy remains in the solid solution phase at and below the room temperature. For Cr concentrations exceeding 9% the steels operating at relatively low temperatures are therefore expected to exhibit the formation of α' Cr-rich precipitates. These precipitates form obstacles for the propagation of dislocations, impeding plastic deformation and embrittling the material. This sets the low temperature limit for the use of of high (14% to 20%) Cr steels, which for the 20% Cr steels is at approximately 600 deg. C. On the other hand, steels containing 12% or less Cr cannot be used at temperatures exceeding ∼600 deg. C due to the occurrence of the α-γ transition (912 deg. C in pure iron and 830 deg. C in 7% Cr alloy), which weakens the steel in the high temperature limit. In this study, we investigate the physical properties of a concentrated ternary alloy system that attracted relatively little attention so far. The phase diagram of ternary Fe-Cr-V alloy shows no phase boundaries within a certain broad range of Cr and V concentrations. This makes the alloy sufficiently resistant to corrosion and suggests that steels and dispersion strengthened materials based on this alloy composition may have better strength and stability at high temperatures. Experimental heats were produced on a laboratory scale by arc melting the material components to pellets, then by melting the pellets in an induction furnace and casting the melt into copper moulds. The compositions in weight percent (iron base) are 10Cr5V, 10Cr

  14. Progress on sputter-deposited thermotractive titanium-nickel films

    International Nuclear Information System (INIS)

    Grummon, D.S.; Hou Li; Zhao, Z.; Pence, T.J.

    1995-01-01

    It is now well established that titanium-nickel alloys fabricated as thin films by physical vapor deposition can display the same transformation and shape-memory effects as their ingot-metallurgy counterparts. As such they may find important application to microelectromechanical and biomechanical systems. Furthermore, we show here that titanium-nickel films may be directly processed so as to possess extremely fine austenite grain size and very high strength. These films display classical transformational superelasticity, including high elastic energy storage capacity, the expected dependence of martensite-start temperature on transformation enthalpy, and large, fully recoverable anelastic strains at temperatures above A f . Processing depends on elevated substrate temperatures during deposition, which may be manipulated within a certain range to control both grain size and crystallographic texture. It is also possible to deposit crystalline titanium-nickel films onto polymeric substrates, making them amenable to lithographic patterning into actuator elements that are well-suited to electrical excitation of the martensite reversion transformation. Finally, isothermal annealing of nickel-rich films, under conditions of controlled extrinsic residual stress, leads to topotaxial orientation of Ni 4 Ti 3 -type precipitates, and the associated possibility of two-way memory effects. Much work remains to be done, especially with respect to precise control of composition. (orig.)

  15. High temperature oxidation of β-NbTi alloys

    International Nuclear Information System (INIS)

    Parida, S.C.; Gupta, N.K.; Rama Rao, G.A.; Sen, B.K.; Krishnan, K.

    2008-01-01

    The isothermal oxidation kinetics of pure Ti metal and two different β-NbTi alloys with compositions of 85 and 75 at.% Ti were studied using thermogravimetric technique in the temperature range of 1073-1323 K at an interval of 50 K. The value of the power exponent n of the rate equation was found to be close to one suggesting that each reaction follows first order kinetic rate law. X-ray diffraction analysis of oxidation products at each temperature revealed the simultaneous formation of TiO 2 and TiNb 2 O 7 . The rate constants and the activation energies of oxidation reactions for each alloy compositions were evaluated. (author)

  16. Effects of cobalt on creep rupture properties and dislocation structures in nickel base superalloys

    International Nuclear Information System (INIS)

    Wang, W.Z.; Jin, T.; Jia, J.H.; Liu, J.L.; Hu, Z.Q.

    2015-01-01

    The influences of cobalt (Co) on creep rupture lives and dislocation structures in nickel base superalloys with and without rhenium (Re) are investigated. The creep rupture test conditions were high temperature low stress (1100 °C/150 MPa), intermediate temperature and stress (982 °C, 1010 °C) and low temperature high stress (850 °C/586 MPa). The results show that increasing Co content could enhance the creep rupture lives at low and intermediate temperature, and does not degrade the creep rupture lives of alloys at high temperature. In Re-containing alloys, at high temperature low stress (1100 °C/150 MPa), the effects of Co on the dislocation structures are negligible, while at low temperature high stress (850 °C/586 MPa), stacking faults are generated in alloy with 12% Co, and in alloy with 3% Co and free of Co, gamma prime particles are sheared by dislocation pairs. In Re-free alloys, at intermediate temperature and stress (1010 °C/248 MPa), large quantities of stacking faults appear in alloy without Co, while in alloy having 12% Co, gamma prime particles are sheared by dislocation pairs coupled by anti-phase boundary (APB). The gamma prime sheared by stacking faults or by dislocation pairs coupled by APB depends on the competition of stacking faults energy and APB energy which is affected by temperature and the interaction of Re and Co

  17. Studies on the permeation of hydrogen through steam generator tubes at high temperatures using an electrochemical method

    International Nuclear Information System (INIS)

    Giraudeau, F.; Yang, L.; Steward, F.R.; DeBouvier, O.

    1998-01-01

    The permeation of hydrogen through steam generator tubes at high temperatures (∼ 300 degrees C) has been studied using an electrochemical technique. With this technique, hydrogen is generated on one side of the tube and monitored on the other side. The time for the hydrogen to reach the other side is used to determine the diffusion coefficient of hydrogen in the tube. Boundary conditions at the entry and exit sides have been investigated separately. Preliminary studies were performed on Stainless Steel 316 and Nickel Alloy 800 to better understand the influence of the solution chemistry on the electrochemical evolution of hydrogen. The surface phenomena effect and the trapping effect are discussed to account for differences observed in the permeation response. The hydrogen permeation through oxides at the exit side has been studied. Two nickel alloys (Alloy 800 and Alloy 600), materials widely used for steam generator tubes, have been investigated. The tubes were prefilmed using two different treatments. The oxides were formed in dry air at high temperatures (300 degrees C to 600 degrees C), or in humid gas at 300 degrees C. The diffusion coefficients at 300 degrees C in Stainless Steel 316 and Alloy 800 were determined to be of the order of 10 -6 - 10 -7 cm 2 /s for the bare metal. This is in agreement with results obtained by gas phase permeation techniques in the literature. (author)

  18. Microstructure Evolution During Stainless Steel-Copper Vacuum Brazing with a Ag/Cu/Pd Filler Alloy: Effect of Nickel Plating

    Science.gov (United States)

    Choudhary, R. K.; Laik, A.; Mishra, P.

    2017-03-01

    Vacuum brazing of stainless steel and copper plates was done using a silver-based filler alloy. In one set of experiments, around 30-µm-thick nickel coatings were electrochemically applied on stainless steel plates before carrying out the brazing runs and its effect in making changes in the braze-zone microstructure was studied. For brazing temperature of 830 °C, scanning electron microscopy examination of the braze-zone revealed that relatively sound joints were obtained when brazing was done with nickel-coated stainless steel than with uncoated one. However, when brazing of nickel-coated stainless steel and copper plates was done at 860 °C, a wide crack appeared in the braze-zone adjacent to copper side. Energy-dispersive x-ray analysis and electron microprobe analysis confirmed that at higher temperature, the diffusion of Cu atoms from copper plate towards the braze-zone was faster than that of Ni atoms from nickel coating. Helium leak rate of the order 10-11 Pa m3/s was obtained for the crack-free joint, whereas this value was higher than 10-4 Pa m3/s for the joint having crack. The shear strength of the joint was found to decrease considerably due to the presence of crack.

  19. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  20. Very High Temperature Test of Alloy617 Compact Heat Exchanger in Helium Experimental Loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Soo; Park, Byung-Ha; Kim, Eung-Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The Intermediate Heat eXchanger (IHX) is a key-challenged high temperature component which determines the efficiency and the economy of VHTR system. Heat generated in the VHTR fuel block is transferred from the VHTR to the intermediate loop through IHX. In the present, the shell-helical tube heat exchanger is generally used as IHX of the helium cooled reactor. Recently, a Printed Circuit Heat Exchanger (PCHE) is one of the candidates for the IHX in a VHTR because its operation temperature and pressure are larger than any other compact heat exchanger types. These test results show that there is no problem in operation of HELP at the very high temperature experimental condition and the alloy617 compact heat exchanger can be operated in the very high temperature condition above 850℃. In the future, the high temperature structural analysis will be studied to estimate the thermal stress during transient and thermal shock condition. The conditions and evaluation standard for the alloy 617 diffusion bonding will be minutely studied to fabricate the large-scale PCHE for the high temperature condition.

  1. Contribution to the study of the electrodeposition of iron-nickel alloys; Contribution a l'etude du depot electrolytique des alliages fer-nickel

    Energy Technology Data Exchange (ETDEWEB)

    Valignat, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    Using a coulometric technique based upon the anodic intentiostatic dissolution, we studied the potentiostatic, deposition of nickel, iron and nickel iron alloys. We have shown that the minimum of the curve I = f (t) (deposition current versus time) is probably due to the transitory blocking of the surface by hydrogen and that the syn-crystallisation of nickel and iron is responsible for the anomalous co-deposition of these two elements. (author) [French] En employant une methode coulometrique par dissolution anodique intensipstatique, nous avons etudie le depot potentiostatique du nickel, du fer et des alliages fer-nickel. Nous avons pu montrer que le minimum de la courbe I = f (t) enregistree au cours du depot est du probablement au blocage momentane de la surface par l'hydrogene et que la syncristallisation du fer et du nickel est responsable de l'anomalie du depot simultane de ces deux elements. (auteur)

  2. Chloride stress corrosion cracking of Alloy 600 in boric acid solutions

    International Nuclear Information System (INIS)

    Berge, Ph.; Noel, D.; Gras, J.M.; Prieux, B.

    1997-10-01

    The high nickel austenitic alloys are generally considered to have good resistance to chloride stress corrosion cracking. In the standard boiling magnesium chloride solution tests, alloys with more than 40% nickel are immune. Nevertheless, more recent data show that cracking can occur in both Alloys 600 and 690 if the solution is acidified. In other low pH media, such as boric acid solution at 100 deg C, transgranular and intergranular cracking are observed in Alloy 600 in the presence of minor concentrations of sodium chloride (2g/I). In concentrated boric acid at higher temperatures (250 and 290 deg C), intergranular cracking also occurs, either when the chloride concentration is high, or at low chloride contents and high oxygen levels. The role of pH and a possible specific action of boric acid are discussed, together with the influence of electrochemical potential. (author)

  3. Composition tunable cobalt–nickel and cobalt–iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl

    International Nuclear Information System (INIS)

    Schooneveld, Matti M. van; Campos-Cuerva, Carlos; Pet, Jeroen; Meeldijk, Johannes D.; Rijssel, Jos van; Meijerink, Andries; Erné, Ben H.; Groot, Frank M. F. de

    2012-01-01

    A general organometallic route has been developed to synthesize Co x Ni 1−x and Co x Fe 1−x alloy nanoparticles with a fully tunable composition and a size of 4–10 nm with high yield. In contrast to previously reported synthesis methods using dicobalt octacarbonyl (Co 2 (CO) 8 ), here the cobalt–cobalt bond in the carbonyl complex is first broken with anhydrous acetone. The acetonated compound, in the presence of iron carbonyl or nickel acetylacetonate, is necessary to obtain small composition tunable alloys. This new route and insights will provide guidelines for the wet-chemical synthesis of yet unmade bimetallic alloy nanoparticles.

  4. Sonocatalytic injury of cancer cells attached on the surface of a nickel-titanium dioxide alloy plate.

    Science.gov (United States)

    Ninomiya, Kazuaki; Maruyama, Hirotaka; Ogino, Chiaki; Takahashi, Kenji; Shimizu, Nobuaki

    2016-01-01

    The present study demonstrates ultrasound-induced cell injury using a nickel-titanium dioxide (Ni-TiO2) alloy plate as a sonocatalyst and a cell culture surface. Ultrasound irradiation of cell-free Ni-TiO2 alloy plates with 1 MHz ultrasound at 0.5 W/cm(2) for 30s led to an increased generation of hydroxyl (OH) radicals compared to nickel-titanium (Ni-Ti) control alloy plates with and without ultrasound irradiation. When human breast cancer cells (MCF-7 cells) cultured on the Ni-TiO2 alloy plates were irradiated with 1 MHz ultrasound at 0.5 W/cm(2) for 30s and then incubated for 48 h, cell density on the alloy plate was reduced to approximately 50% of the controls on the Ni-Ti alloy plates with and without ultrasound irradiation. These results indicate the injury of MCF-7 cells following sonocatalytic OH radical generation by Ni-TiO2. Further experiments demonstrated cell shrinkage and chromatin condensation after ultrasound irradiation of MCF-7 cells attached on the Ni-TiO2 alloy plates, indicating induction of apoptosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased with decre......Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  6. Penetration of hydrogen isotopes through EhI 698 alloy at high pressure and temperature

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Voznyak, Ya.; Granovskij, V.B.

    1986-01-01

    The paper deals with investigations of the process of hydrogen and deuterium penetration through the high-temperature alloy EhI-698 at a pressure up to 1 kbar and temperature up to 1050 K. Parameters of the process obey Sieverts's law and can be described by Arrenius's and Vant-Goff's equations. The obtained results lead to a conclusion that the alloy EhI-698 is good for vessels to be employed in hydrogen media

  7. Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation

    Directory of Open Access Journals (Sweden)

    Tiziana Segreto

    2017-12-01

    Full Text Available Nickel-Titanium (Ni-Ti alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT. The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions.

  8. Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation.

    Science.gov (United States)

    Segreto, Tiziana; Caggiano, Alessandra; Karam, Sara; Teti, Roberto

    2017-12-12

    Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions.

  9. High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, J.Y.; Wang, H.; Wu, Y.; Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Nieh, T.G. [Department of Materials Science and Engineering, the University of Tennessee, Knoxville, TN 37996 (United States); Lu, Z.P., E-mail: luzhaoping@163.com [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-02-16

    In this work, we systematically investigated flow behavior of a high entropy alloy (HEA) strengthened by coherent γ′ precipitates in the temperature range of 1023–1173 K. In contrast to the single-phase FeCoNiCrMn HEA, this precipitate-hardened alloy, i.e., (FeCoNiCr){sub 94}Ti{sub 2}Al{sub 4}, exhibited large reduction of the steady-state strain rate (by ~2 orders of magnitude) or drastic enhancement in flow stress, indicating significant improvement in high-temperature properties. Our results showed that the deformation could be divided into two regimes. At temperatures below 1123 K, coherent γ′ precipitates effectively blocked the dislocation motion, thus resulted in a threshold stress effect. Above 1123 K, however, γ′ particles dissolved and the deformation was controlled by the ordinary dislocation climb mechanism. In addition, we conducted transmission electron microscopy to characterize dislocation-precipitate interaction to provide microstructural evidences to support our conclusion of the specific deformation mechanisms in the two temperature regimes.

  10. Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria

    Science.gov (United States)

    Stein, Frank; Philips, Noah

    2018-03-01

    High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).

  11. Development of phased array UT procedure for crack depth sizing on nickel based alloy weld

    International Nuclear Information System (INIS)

    Hirasawa, Taiji; Okada, Hisao; Fukutomi, Hiroyuki

    2012-01-01

    Recently, it is reported that the primary water stress corrosion cracking (PWSCC) has been occurred at the nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing is important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The crack was detected in the axial direction of the safe end weld. Furthermore, the crack had some features such as shallow, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect detection and sizing capabilities for ultrasonic inspection technique is required. Phased array UT technique was applied to nickel based alloy weld specimen with SCC cracks. From the experimental results, good accuracy of crack depth sizing by phased array UT for the inside inspection was shown. From these results, UT procedure for crack depth sizing was verified. Therefore, effectiveness of phased array UT for crack depth sizing in the nickel based alloy welds was shown. (author)

  12. Evolution of grain boundary character distributions in alloy 825 tubes during high temperature annealing: Is grain boundary engineering achieved through recrystallization or grain growth?

    International Nuclear Information System (INIS)

    Bai, Qin; Zhao, Qing; Xia, Shuang; Wang, Baoshun; Zhou, Bangxin; Su, Cheng

    2017-01-01

    Grain boundary engineering (GBE) of nickel-based alloy 825 tubes was carried out with different cold drawing deformations by using a draw-bench on a factory production line and subsequent annealing at various temperatures. The microstructure evolution of alloy 825 during thermal-mechanical processing (TMP) was characterized by means of the electron backscatter diffraction (EBSD) technique to study the TMP effects on the grain boundary network and the evolution of grain boundary character distributions during high temperature annealing. The results showed that the proportion of ∑ 3 n coincidence site lattice (CSL) boundaries of alloy 825 tubes could be increased to > 75% by the TMP of 5% cold drawing and subsequent annealing at 1050 °C for 10 min. The microstructures of the partially recrystallized samples and the fully recrystallized samples suggested that the proportion of low ∑ CSL grain boundaries depended on the annealing time. The frequency of low ∑ CSL grain boundaries increases rapidly with increasing annealing time associating with the formation of large-size highly-twinned grains-cluster microstructure during recrystallization. However, upon further increasing annealing time, the frequency of low ∑ CSL grain boundaries decreased markedly during grain growth. So it is concluded that grain boundary engineering is achieved through recrystallization rather than grain growth. - Highlights: •The grain boundary engineering (GBE) is applicable to 825 tubes. •GBE is achieved through recrystallization rather than grain growth. •The low ∑ CSL grain boundaries in 825 tubes can be increased to > 75%.

  13. Basic research for alloy design of Nb-base alloys as ultra high temperature structural materials; Chokoon kozoyo niobuki gokin no gokin sekkei no tame no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, E [Tohoku University, Sendai (Japan); Yoshimi, K; Hanada, S [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1997-02-01

    This paper describes an influence of additional elements on the high temperature deformation behavior of Nb-base solid solution alloys. Highly concentrated solid solution single crystals of Nb-Ta and Nb-Mo alloys were prepared. Compression test and strain rate sudden change test were conducted in the vacuum at temperatures ranging from 77 to 1773 K, to determine the strain rate sensitivity index. Yield stress of the Nb-Ta alloy was similar to that of Nb alloy at temperatures over 0.3{times}T{sub M}, where T{sub M} is fusing point of Nb. While, the yield stress increased with increasing the impurity oxygen concentration at temperatures below 0.3{times}T{sub M}. The yield stress became much higher than that of Nb alloy. The strain rate sensitivity index showed positive values in the whole temperature range. On the other hand, the yield stress of Nb-Mo alloy was higher than that of Nb alloy in the whole temperature range, and increased with increasing the Mo concentration. The strain rate sensitivity index showed negative values at the temperature range from 0.3{times}T{sub M} to 0.4{times}T{sub M}. It was found that serration occurred often for Nb-40Mo alloys. 1 ref., 4 figs., 1 tab.

  14. Heat treatment effect on ductility of nickel-base alloys

    International Nuclear Information System (INIS)

    Burnakov, K.K.; Khasin, G.A.; Danilov, V.F.; Oshchepkov, B.V.; Listkova, A.I.

    1979-01-01

    Causes of low ductility of the KhN75MBTYu and KhN78T alloys were studied along with the heat treatment effects. Samples were tested at 20, 900, 1100, 1200 deg C. Large amount of inclusions was found in intercrystalline fractures of the above low-ductile alloys. The inclusions of two types took place: (α-Al 2 O 3 , FeO(Cr 2 O 3 xAl 2 O 3 )) dendrite-like ones and large-size laminated SiO 2 , FeO,(CrFe) 2 O 3 inclusions situated as separate colonies. Heat treatment of the alloys does not increase high-temperature impact strength and steel ductility. The heating above 1000 deg C leads to a partial dissolution and coagulation of film inclusions which results in an impact strength increase at room temperature

  15. Stiffness-constant variation in nickel-based alloys: Experiment and theory

    International Nuclear Information System (INIS)

    Hennion, M.; Hennion, B.

    1979-01-01

    Recent measurements of the spin-wave stiffness constant in several nickel alloys at various concentrations are interpreted within a random-phase approximation, coherent-potential approximation (RPA-CPA) band model which uses the Hartree-Fock approximation to treat the intraatomic correlations. We give a theoretical description of the possible impurity states in the Hartree-Fock approximation. This allows the determination of the Hartree-Fock solutions which can account for the stiffness-constant behavior and the magnetic moment on the impurity for all the investigated alloys. For alloys such as NiCr, NiV, NiMo, and NiRu, the magnetizations of which deviate from the Slater-Pauling curve, our determination does not correspond to previous works and is consequently discussed. The limits of the model appear mainly due to local-environment effects; in the case of NiMn, it is found that a ternary-alloy model with some Mn atoms in the antiferromagnetic state can account for both stiffness-constant and magnetization behaviors

  16. B2-ordered iron-aluminium alloys strengthening. Influence of additions (Ni and B) and microstructure

    International Nuclear Information System (INIS)

    Colas, David

    2004-01-01

    We study the effects of additions (Ni and B) and microstructure on the mechanical behaviour of 40 at. % Al iron-aluminium alloys. From a macroscopic point of view, we show that nickel reinforces FeAl alloys over the whole temperature range, but that it simultaneously leads to emphasize the room temperature brittleness of these alloys through a cleavage stress decrease. We confirm powder metallurgy grain refining interest to enhance yield stress as well as fracture resistance. We show that nickel-induced yield stress effect is additive to 'Hall-Petch' one. Also, we point out that the strengthening phenomena (nickel or grain size) cause the yield stress anomaly, which these alloys usually present, to be hidden. Through a dislocation structures analysis of deformed materials we precise that low temperature nickel-induced solid solution hardening (SSH) cannot be explained on the basis of classical SSH theories but more probably through nickel influence upon the Peierls stress. Moreover, we show that the APB tubes dragging model may be compatible with our microscopic and macroscopic results about the anomaly. Eventually, we put into relation a dynamic super-dislocations multiplication process observation (in situ transmission microscopy) with the nickel-containing alloys tendency to cleavage. (author) [fr

  17. Microstructure and mechanical properties of a novel rapidly solidified, high-temperature Al-alloy

    Energy Technology Data Exchange (ETDEWEB)

    Overman, N.R., E-mail: Nicole.Overman@pnnl.gov [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Mathaudhu, S.N. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); University of California, Riverside, 3401 Watkins Dr., Riverside, CA 92521 (United States); Choi, J.P.; Roosendaal, T.J.; Pitman, S. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

    2016-02-15

    Rapid solidification (RS) processing, as a production method, offers a variety of unique properties based on far-from-equilibrium microstructures obtained through rapid cooling rates. In this study, we seek to investigate the microstructures and properties of a novel Al-alloy specifically designed for high temperature mechanical stability. Synthesis of, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} (wt.%), was performed by two approaches: rotating cup atomization (“shot”) and melt spinning (“flake”). These methods were chosen because of their ability to produce alloys with tailored microstructures due to their inherent differences in cooling rate. The as-solidified precursor materials were microstructurally characterized with electron microscopy. The results show that the higher cooling rate flake material exhibited the formation of nanocrystalline regions as well additional phase morphologies not seen in the shot material. Secondary dendritic branching in the flake material was on the order of 0.1–0.25 μm whereas branching in the shot material was 0.5–1.0 μm. Consolidated and extruded material from both precursor materials was mechanically evaluated at both ambient and high (300 °C) temperature. The consolidated RS flake material is shown to exhibit higher strengths than the shot material. The ultimate tensile strength of the melt spun flake was reported as 544.2 MPa at room temperature and 298.0 MPa at 300 °C. These results forecast the ability to design alloys and processing approaches with unique non-equilibrium microstructures with robust mechanical properties at elevated temperatures. - Highlights: • A novel alloy, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} was fabricated by rapid solidification. • Room temperature yield strength exceeded 500 MPa. • Elevated temperature (300 °C) yield strength exceeded 275 MPa. • Forging, after extrusion of the alloy resulted in microstructural coarsening. • Decreased strength and ductility was

  18. Initial deposition mechanism of electroless nickel plating on AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Song, Y.; Shan, D.; Han, E.

    2006-01-01

    The pretreatment processes and initial deposition mechanism of electroless nickel plating on AZ91D magnesium alloy were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The results showed that alkaline cleaning could remove the greases and oils from the substrate surface. Acid etching could wipe off the metal chippings and oxides. The hydrofluoric acid activating process which could improve the adhesion of coating to substrate played a key role in the subsequent process of electroless nickel plating. The nickel coating was deposited preferentially on the primary α phase and then spread to the eutectic α phase and β phase. The nickel initially nucleated on the primary α phase by a replacement reaction, then grew depending on the autocatalysis function of nickel. The coating on the β phase displayed better adhesion than that on the α phase due to the nails fixing effect. (author)

  19. High temperature dissolution of chromium substituted nickel ferrite in nitrilotriacetic acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Sathyaseelan, V.S.; Chandramohan, P.; Velmurugan, S., E-mail: svelu@igcar.gov.in

    2016-12-01

    High temperature (HT) dissolution of chromium substituted nickel ferrite was carried out with relevance to the decontamination of nuclear reactors by way of chemical dissolution of contaminated corrosion product oxides present on stainless steel coolant circuit surfaces. Chromium substituted nickel ferrites of composition, NiFe{sub (2−x)}Cr{sub x}O{sub 4} (x ≤ 1), was synthetically prepared and characterized. HT dissolution of these oxides was carried out in nitrilotriacetic acid medium at 160 °C. Dissolution was remarkably increased at 160 °C when compared to at 85 °C in a reducing decontamination formulation. Complete dissolution could be achieved for the oxides with chromium content 0 and 0.2. Increasing the chromium content brought about a marked reduction in the dissolution rate. About 40 fold decrease in rate of dissolution was observed when chromium was increased from 0 to 1. The rate of dissolution was not very significantly reduced in the presence of N{sub 2}H{sub 4}. Dissolution of oxide was found to be stoichiometric. - Highlights: • Dissolution of NiFe{sub (2−x)}Cr{sub x}O{sub 4} was remarkably increased at 160 °C in NTA medium. • The dissolution was significantly decreasing with the increase in Cr content in the oxide. • Dissolution rate is dependent on the lability of metal-oxo bonds. • The rate of dissolution was not significantly reduced in the presence of N{sub 2}H{sub 4.} • NTA at high temperature is effective for decontamination of stainless steel surfaces.

  20. Structural features and properties of the laser-deposited nickel alloy layer on a KhV4F tool steel after heat treatment

    Science.gov (United States)

    Shcherbakov, V. S.; Dikova, Ts. D.; Stavrev, D. S.

    2017-07-01

    The study and application of the materials that are stable in the temperature range up to 1000°C are necessary to repair forming dies operating in this range. Nickel-based alloys can be used for this purpose. The structural state of a nickel alloy layer deposited onto a KhV4F tool steel and then heat treated is investigated. KhV4F tool steel (RF GOST) samples are subjected to laser deposition using a pulsed Nd:YAG laser. A nickel-based material (0.02C-73.8Ni-2.5Nb-19.5Cr-1.9Fe-2.8Mn) is employed for laser deposition. After laser deposition, the samples are subjected to heat treatment at 400°C for 5 h, 600°C for 1 h, 800°C for 1 h, and 1000°C for 1 h. The microstructure, the phase composition, and the microhardness of the deposited layer are studied. The structure of the initial deposited layer has relatively large grains (20-40 μm in size). The morphology is characterized by a cellular-dendritic structure in the transition zone. The following two structural constituents with a characteristic dendritic structure are revealed: a supersaturated nickel-based γ solid solution and a chromium-based bcc α solid solution. In the initial state and after heat treatment, the hardness of the deposited material (210-240 HV 0.1) is lower than the hardness of the base material (400-440 HV 0.1). Only after heat treatment at 600°C for 1 h, the hardness increases to 240-250 HV0.1. Structure heredity in the form of a dendritic morphology is observed at temperatures of 400, 600, and 800°C. The following sharp change in the structural state is detected upon heat treatment at 1000°C for 1 h: the dendritic morphology changes into a typical α + γ crystalline structure. The hardness of the base material decreases significantly to 160-180 HV 0.1. The low hardness of the deposited layer implies the use of the layer material in limited volume to repair the forming surfaces of dies and molds for die casting. However, the high ductility of the deposited layer of the nickel